
Per-se Privacy Preserving Solution Methods
Based on Optimization

P. C. Weeraddana⋆, G. Athanasiou⋆, C. Fischione⋆, and J. S. Baras⋆⋆
⋆KTH Royal Institute of Technology, Stockholm, Sweden, ⋆⋆ University of Maryland, MD 20742, USA

{chatw, georgioa, carlofi}@kth.se, baras@umd.edu

Abstract— Ensuring privacy is an essential requirement in
various contexts, such as social networks, healthcare data, e-
commerce, banks, and government services. Here, different en-
tities coordinate to address specific problems where the sensitive
problem data are distributed among the involved entities and no
entity wants to publish its data during the solution procedure.
Existing privacy preserving solution methods are mostly based
on cryptographic procedures and thus have the drawback of
substantial computational complexity. Surprisingly, little atten-
tion has been devoted thus far to exploit mathematical opti-
mization techniques and their inherent properties for preserving
privacy. Yet, optimization based approaches to privacy require
much less computational effort compared to cryptographic
variants, which is certainly desirable in practice. In this paper,
a unified framework for transformation based optimization
methods that ensure privacy is developed. A general definition
for the privacy in the context of transformation methods is
proposed. A number of examples are provided to illustrate the
ideas. It is concluded that the theory is still in its infancy and
that huge benefits can be achieved by a substantial development.

I. INTRODUCTION

Privacy and security are central requirements in many real-
world problems [1]–[12]. Several real-world optimization
problems involve parties or nodes interacting via some net-
works that must collaborate to solve an optimization problem
for mutual benefit. For example, independent hospitals would
like to coordinate for diagnostic decision making based
on their existing patient records. In the business sector,
independent companies need to interact for completing a
common business and thus have to work together to optimize
their joint operations. Normally, optimization solvers require
much public data sharing among the parties, which may
substantially hinder the cooperation for optimization due to
privacy concerns (e.g., privacy for patients’ records). The
fundamental question is how to solve optimization problems
among parties that would receive much benefit by collab-
oration and yet are unwilling to share their data without
preserving privacy.

Cryptography is the standard approach to preserve privacy
in distributed optimization solvers [4]. Cryptographic prim-
itives include secure multiparty computations [1], [3], [6],
pseudo random generators [13], and homomorphic encryp-
tion [14]. These methods use cryptographic tools, such as
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zero-knowledge [15], oblivious transfer [16], oblivious eval-
uation of polynomials [17], secret sharing [18], and threshold
cryptography [19]. In general, the area of cryptography-based
privacy preserving optimization is well investigated [4]. In
the context of optimization problems, cryptographic tools are
used to securely perform iterations of well known simplex
algorithm and interior-point algorithm so that sensitive data
is not disclosed during the iterations to compute the solution,
see [20]–[22] for secure simplex variants and [23] for secure
variants of interior-point method. In terms of security, cryp-
tographic methods are desirable, though they are unfavorable
in terms of computational complexity and efficiency [23]. In
particular, cryptography may introduce substantial overhead
among the nodes due to the exchange of security infor-
mation and coordination. Moreover, cryptography is prone
to attacks by third parties who may inadvertently own the
cryptographic keys.

Non-cryptographic methods have attracted the interest of
the research community [6], [8], [10], [23]–[31], which are
essentially based on algebraic transformations. We refer to
those approaches as transformation methods in general. The
key idea of these methods is to use algebraic manipulations
to disguise the original problem into an equivalent problem
so that the private data of each are hidden. However, in these
papers, only some specific problems have been considered
and no attempts have been made to establish a systematic ap-
proach. As a result, even unintended mistakes have emerged
in [28], [29] as pointed out by [26].

In this paper, we consider non-cryptographic approaches,
as opposed to treatments based on well investigated crypto-
graphic primitives. In particular, we investigate the transfor-
mation methods, see Fig. 1. We show that the transformation
methods possess many appealing merits, which are desirable
in practice, e.g., efficiency, scalability, natural (geographical)
distribution of problem data. More importantly, they can
be per-se privacy preserving without requiring any extra
coordination or overhead. In addition to transformation meth-
ods, decomposition methods can also be used for distributed
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optimization with privacy, see Fig. 1. We proposed a de-
tailed treatment of decomposition methods in [32]. In the
following, we summarize more in detail the contribution of
this paper.

A. Our Contributions

The main contributions of this paper can be summarized
as follows:

1) We develop a unified framework where the exist-
ing privacy preserving solution approaches based on
transformation methods can be derived. Absence of
a systematic approach to design privacy preserving
transformation based methods (e.g., [6], [8], [10],
[23]–[31]) limits the scope of applicability of such
methods and sometimes results in unintended mistakes
(e.g., [26], [28], [29]). It is desirable to have a canon-
ical framework where all existing approaches can be
included, because this allows to develop standard proof
techniques for proving the privacy properties.

2) We give a general definition for privacy, which allows
the quantification of privacy of transformation based
methods.

3) We present several examples to highlight the impor-
tance of our generalized transformation methods for
privacy preserving optimization and to illustrate the
proposed privacy definitions.

The rest of the paper is organized as follows. In Sec-
tion II we present some basic definitions that are useful for
describing the properties of privacy preserving optimization.
A unified framework to model the transformation methods is
presented in Section III. Conclusions are given in Section IV.

B. Notations

Boldface lower case and upper case letters represent
vectors and matrices, respectively, and calligraphy letters
represent sets. The set of real n-vectors is denoted by IRn, the
set of real m×n matrices is denoted by IRm×n. We denote by
N the set of non-negative integers, i.e., IN = {0, 1, . . .}. The
n× n identity matrix is denoted by In. The superscript (·)T

stands for transpose. Vectors and matrices are delimited with
square brackets, with the components separated by space.
The ith submatrix of a matrix is denoted by a subscript. We
use parentheses to construct column vectors from comma
separated lists, e.g., (a,b, c) = [aT bT cT]T.

II. PER-SE PRIVACY PRESERVING DEFINITIONS

Many standard privacy/security conventional definitions
are already adopted in cryptographic literature, see for ex-
ample [6], [33]–[37]. However, such definitions cannot be
directly applied or adopted for non-cryptographic approaches
(in particular optimization based approaches). The reason is
that the key mechanisms used for preserving the privacy in
cryptographic protocols are entirely different from those that
are to be used in optimization based approaches. Theoretical
foundations for defining the privacy of optimization methods
deserve attention in their own right. However, to highlight
the appealing privacy preserving properties associated with

optimization based approaches, and to provide a cohesive
discussion, we give some basic definitions in the sequel.

Definition 1 (Optimization problem): We consider the
following standard notation to describe the problem of
finding a point x that minimizes the function f0(x) subject
to a number of inequality and equality constraints:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , q

hi(x) = 0, i = 1, . . . , p .
(1)

We call (1) an optimization problem. Here f0 : IRn → IR
is called the objective function, fi(x) ≤ 0, i = 1, . . . , q
are called inequality constraints with the associated inequal-
ity constraint functions fi : IRn → IR, i = 1, . . . , q,
hi(x) = 0, i = 1, . . . , p are called equality constraints
with the associated equality constraint functions hi : IRn →
IR, i = 1, . . . , p, and x = (x1, . . . , xn) ∈ IRn is called the
optimization variable or the decision variable [38].

Definition 2 (Convex optimization problem): A convex
optimization problem is

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , q

Cx− d = 0 ,
(2)

where the functions fi, i = 0, . . . , q are convex and hi, i =
, . . . , p are affine, i.e., the equality constraint functions are
given by C ∈ IRp×n with rank(C) = p and d ∈ IRp. The
optimization variable is x = (x1, . . . , xn) ∈ IRn. Typically,
we have p < n in practice, otherwise the only potential
solution, if it exists, is C†d, where C† is called the pseudo-
inverse of C (see [38, § A.5.4]).

Definition 3 (K-party environment): A set of K parties is
called a K-party environment.

Throughout this paper, we consider problems of the
form (2), which are to be solved in a K-party environment
via coordination among the parties. Note that the treat-
ment can be generalized to problems of the form (1) in a
straightforward manner, and therefore we restrict ourselves
to problem (2) for clarity. The global variable x, objective
function f0, inequality constraint functions fi i = 1, . . . , q,
equality constraint functions Cx − d = 0, different subsets
of components of x, different subsets of functions, and/or
function definitions themselves can be spread out among K
parties. We use the terms ownership and private data to
indicate the spreading of such functions, data, etc. among
K parties. Note that the terms party and entity are often
used interchangeably in this paper.

Example 1: Consider the case f0(x) =
∑K

i=1 cT
i xi, where ci ∈

IRni , xi ∈ IRni with
∑K

i=1 ni = n, and x = (x1, . . . ,xK). Here,
the objective function f0 and the optimization variable x is spread out
among K parties, such that ci and xi are owned by party i.

Definition 4 (Inputs and outputs of a convex problem):
Consider the convex problem (2). We call the set of problem
parameters, i.e., C,d, and those required to define the
functions f0, fi themselves, as inputs of problem (2).
Moreover, we call the solution and the optimal value of
problem (2) as outputs.
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Example 2: Consider the following linear program:

minimize cTx
subject to Ax ≤ b

x ≥ 0 ,
(3)

where the variable is x ∈ IRn and problem data are c ∈ IRn, A ∈
IRm×n, and b ∈ IRm. Suppose x⋆ solves the problem. The parameters
{c,A,b} are the inputs of the problem and {x⋆, p⋆} are the outputs
of the problem, where p⋆ = cTx⋆.

Definition 5 (Attacker model, Passive adversary): In a
multi-party environment, an entity involved in solving
a global optimization problem of the form (2), or even
a third party is called a passive adversary, if it taps the
communication lines of the multi-party environment to
obtain messages exchanged during different stages of
the solution method, keeps a record of all information it
receives, and tries to discover others’ private data.

The definition above is similar to the passive eavesdrop-
pers considered in [39, § 5.1-5.3] and to the good and the
passive adversary models given in [40] and [41], respec-
tively. In a multi-party environment, there can be more than
one adversaries. Unlike active adversaries (e.g., Dolev-Yao
attackers [3]), as the name suggests, the passive adversaries
are limited to eavesdropping and are not capable of taking
any active actions, such as sending, deleting, or modifying
fields in messages being sent as part of some solution
method execution. We consider the passive adversary model
throughout this paper to exemplify the privacy properties of
non-cryptographic approaches.

Definition 6 (Adversarial knowledge): The set of infor-
mation that an adversary might exploit to discover the
input and/or the output of problem (2) is called the ad-
versarial knowledge. This set can encompass eavesdropped
measures of input/output elements, transformed variants of
input/output elements, statements to infer the properties of
the input/output, and others, see Example 3 for an illustra-
tion.

Let us finally give a formal definition to quantify the
privacy of transformation methods. To do this, we consider
a pair of parameters (ξ, η) ∈ [0, 1) × IN. In particular,
ξ quantifies the privacy of the input and the output of
problem (2).1 Roughly speaking, for a given adversarial
knowledge, when ξ = 0, there is no protection against the
adversary and when ξ = 1, there is perfect protection against
the adversary.2 Values of the parameter ξ between 0 and 1
correspond to moderate cases. On the other hand, for the
same adversarial knowledge, the parameter η indicates a
measure of the spread of the uncertainty of the private data.
For example, the higher the value of η, the more effective
the transformation used to disguise the private data. We refer
to (ξ, η) as the privacy index.

As we have already remarked, the privacy index depends
on the adversarial knowledge that compromises security of
the transformation methods. Therefore, when the privacy

1The formal definition of ξ is inspired by the informal definition of
security considered in [6, p. 128].

2The perfect protection is usually impossible to be realized because
adversaries coevolve, see [42, p. 48]

index (ξ, η) is computed, it is always linked to a specified
adversarial knowledge. The definitions considered in [23] for
2-party environments can be considered as particular cases
of our following definition.

Definition 7 (Input privacy index, (ξin, ηin)): Let Cin de-
note the input of problem (2). Suppose the mechanism for
solving the problem creates an obfuscation of the original
element c of Cin by using functions of the form f inc : Cin →
Gin, where Gin ⊂ K and K denote the set of adversarial
knowledge. Given the adversarial knowledge K, let

ξin(c) = 1− 1/N in
K , (4)

where N in
K ≥ 1 is the cardinality of the uncertainty set

U in(c) = {c
∣∣ f inc (c) = k, f inc is arbitrary, K} . (5)

Moreover, let ηin(c) be the affine dimension [38, § 2.1.3]
of the set U in(c). We call (ξin(c), ηin(c)) the input privacy
index of c ∈ Cin in the presence of adversarial knowledge
K.

We use the convention that N in
K is infinity, whenever the

set (5) is uncountable [43, Def. 2.4(d)]. Let us next give an
example to illustrate the idea of input privacy.

Example 3: Consider once again the linear program (3), which is to
be solved by Alice and Bob. The input ownership is as follows: Alice
owns c and Bob owns {A,b}. Now suppose they use the following
solution procedure: instead of the input c, Alice uses ĉ, where ĉ = αc
and α is a positive scalar known by Alice only. Similarly, instead of
the input {A,b}, Bob uses {Â, b̂}, where Â = βA, b̂ = βb, and
β is a positive scalar known by Bob only. The result is the following
optimization problem:

minimize ĉTx
subject to Âx ≤ b̂

x ≥ 0 ,

(6)

where the variable is x. Problem (3) and (6) are clearly equivalent,
because Âx ≤ b̂ ⇔ Ax ≤ b and minimizing cTx is identical to
minimizing ĉTx = αcTx with α > 0. Either Alice or Bob can use any
linear programming solver for solving the problem.

Suppose now that Bob is a passive adversary to Alice and vice-a-
versa. Moreover, assume that Bob’s knowledge KBob of Alice’s data c
is

KBob =
{
ĉ, {∃α > 0 s.t. ĉ = αc}

}
(7)

Note that the first element of KBob is the transformed version of
c available to Bob. The second component can be considered as an
statement learned by Bob. With this knowledge, the uncertainty set of c
is given by

U in(c) = {c|c = (1/α)ĉ, α > 0} (8)

From Definition 7, we can conclude that the corresponding privacy index
(ξin(c), ηin(c)) = (1, 1). The first element ξin(c) = 1 implies the
cardinality of the uncertainty set U in(c) is uncountable, which is indeed
desirable as far as the privacy of Alice data c is concerned. Nevertheless,
ηin(c) = 1 means that the uncertainty set U in(c) is restricted to a line
in the Euclidean space. Similarly we can show that (ξin(A), ηin(A)) =
(ξin(b), ηin(b)) = (1, 1).

Definition 8 (Output privacy index, (ξout, ηout)): This is
very similar to Definition 7, except that the output of
problem (2) is considered instead of the input, see [32].

More examples will be discussed in section III. We note
that a comprehensive treatment of a set of mathematical
definitions is out of the scope of this paper. We believe that
the basic definitions (5)-(8) given above are sufficient for
investigating the appealing aspects and properties of privacy
preserving optimization approaches presented in this paper.
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III. TRANSFORMATION BASED METHODS FOR PRIVACY

PRESERVING

Let (2) be the original problem to be solved in a pri-
vacy preserving manner. Now consider the situation where
the entities who own the data of problem (2) rely on an
untrusted party or parties during the solution method. The
untrusted parties are assumed to be passive adversaries,
see Definition 5. Each participating entity wants protection
against passive adversaries. This is realized by disguising
problem (2) into another, where the transformation methods
play a key role.

Transformation methods are directly based on the notion
of equivalence of optimization problems [38, § 4.1.3]. There
are many general transformations that yield equivalent prob-
lems. In the sequel, we present two transformations, which
we believe are the most important and useful for privacy
preserving optimization to unify all special cases considered
in [8], [10], [23]–[31]. To simplify the presentation, we
denote by D the set of points for which the objective and all
constraint functions are defined, or domain of problem (2),
i.e., D =

∩q
i=0 dom.fi ∩ IRn. For many considered problem

formulations in this paper, the domain D = IRn. Let x⋆

denote the solution and p⋆ denote the optimal value of
problem (2).

A. Transformation via Change of Variables

The following proposition establishes the equivalence be-
tween two problems by performing a transformation via
change of variables.

Proposition 1: Let ϕ : IRm → IRn be a function, with
image covering the problem domain D. Now consider the
following change of variables:

x = ϕ(z) . (9)

The resulting problem is given by

minimize f0(ϕ(z))
subject to fi(ϕ(z)) ≤ 0, i = 1, . . . , q

Cϕ(z)− d = 0 ,
(10)

where the variables are z ∈ IRm. Suppose x⋆ solves
problem (2). Then z⋆ = ϕ−1(x⋆) solves problem (10).
Moreover, if z⋆ solves problem (10), then x⋆ = ϕ(z⋆) solves
problem (2).

Proof: See [32].
Interestingly, such an equivalence can be exploited to

ensure privacy, as we see next.

Privacy Properties

If the function ϕ is chosen appropriately, the transforma-
tion via change of variables can be used to achieve input
privacy (see Definition 7) for many inputs, except for d, via
the function compositions:

f̂i(z) = fi(ϕ(z)) , dom.f̂i = {z ∈ dom.ϕ | ϕ(z) ∈ dom.fi} ,

ĥi(z) = Cϕ(z)−d , dom.ĥi = {z ∈ dom.ϕ | ϕ(z) ∈ IRn} .

The output privacy (see Definition 8) for the optimal solution
is attained by the definition of ϕ, see (9). In the sequel, we

highlight these privacy properties by some examples. First,
let’s see some choices for the function ϕ.

Example 4: • xxx
• Scaling: Here, we simply use the change of variable x = ϕ(z) =
az, where a is a scalar.

• Translation: Here, we use the following change of variable, x =
ϕ(z) = z+ a, where a ∈ IRn.

• Affine transformation: This is a generalization of both scaling and
translation. Specifically, we use the following change of variable,
x = ϕ(z) = Bz + a, where B ∈ IRn×m is a full rank matrix
with rank(B) = n and a ∈ IRn. Thus, a particular inverse
transformation ϕ−1 : IRn → IRm is given by

z = ϕ−1(x) = B†x−B†a ,

where B† = BT(BBT)−1, which is typically known as pseudo-
inverse or Moore-Penrose inverse.

• Nonlinear transformations: One example is as follows, xi =
ϕi(zi) = ai exp (zi), where ai > 0.

We see that all the approaches [8], [23]–[31] have used
change of variables (affine transformations) as one of the
mechanism for preserving privacy in their proposed solution
methods. To illustrate this, we consider some original exam-
ples, as well as few key examples from the literature.

Example 5 (Computation outsourcing in the cloud [27]): Here we
have a 2-party environment. Suppose a cloud customer (party 1) wants
to outsource to the cloud (party 2) his linear program

minimize cTx
subject to Ax = b

Bx ≥ 0 ,
(11)

where the variable is x ∈ IRn and the problem data are c ∈ IRn,
A ∈ IRm×n with m < n, nonsingular B ∈ IRn×n, and b ∈ IRm.
The cloud it self is assumed to be the passive adversary. The customer
does not want to reveal problem data c,A,b,B and the solution x⋆ of
the problem to the cloud, i.e., input privacy for {c,A,b,B} and output
privacy for x⋆ is the requirement.

The cloud customer then uses the affine transformation [27, § III-C]

x = ϕ(z) = Mz− r , (12)

where M ∈ IRn×n is a nonsingular matrix and r ∈ IRn is a vector,
both known by the customer only. The equivalent problem outsourced
by the customer to the cloud is given by

minimize ĉTz
subject to Âz = b̂

B̂z ≥ 0 ,

(13)

where the variable is z ∈ IRm and the problem input is ĉ = MTc,
Â = AM, b̂ = b + Ar, and B̂ = BM. The cloud computes the
optimal solution of problem (13), which we denote by z⋆.

The sensitive inputs of problem (11), {c,A,b,B}, cannot be recov-
ered by a potential adversary or the cloud because the matrix M and the
column vector r are not known to the cloud. For the same reasons, the
cloud cannot construct the sensitive output x⋆ by using z⋆. Thus, the
solution procedure yields both input privacy and output privacy.

To see the changes in privacy indexes due to the changes in
adversarial knowledge, let us consider the variable transfor-
mation (12) used in Example 5. In particular, we compute
the input privacy index of the sensitive input A with different
adversarial knowledge. Similar computations can be carried
out to quantify the privacy of other inputs and outputs of
problem (11) as well.

Scenario 1: Suppose that the clouds’ knowledge Kcloud of
the cloud customer’s data A ∈ IRm×n is

Kcloud =
{
Â, {∃ M ∈ IRn×n s.t Â = AM}

}
. (14)
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With this knowledge, the uncertainty set of A is given by

U in(A) = {A|AM = Â,M ∈ IRn×n} .

We denote by (ξin0 (A), ηin0 (A)) the corresponding in-
put privacy index. From Definition 7, we conclude that
(ξin0 (A), ηin0 (A)) = (1, nm), where ξin0 (A) = 1 follows
from the fact that the cardinality of the uncertainty set
U in(A) is uncountable and ηin0 (A) = nm follows from the
fact that the matrix A, as seen by the cloud, is arbitrary,
and therefore the affine dimension of U in(A) is simply the
number of elements in A, i.e., nm.

Scenario 2: Next consider the case where the cloud has
more knowledge, in addition to Kcloud given in (14). In
particular, we consider the scenario where the cloud knows
the first column of M. Let (ξin1 (A), ηin1 (A)) denote the
corresponding input privacy index. After some calculations,
we get the corresponding privacy index (ξin1 (A), ηin1 (A)) =
(1, (n− 1)m) [32].

Roughly speaking, the higher the adversarial knowledge,
the smaller the privacy against the adversary. It is inter-
esting to note that the privacy definitions (7)-(8) can be
used to quantify these variations in privacy as desired, e.g.,
(ξin1 (A), ηin1 (A)) ≼ (ξin0 (A), ηin0 (A)), where the notation
“≼” here means the componentwise inequality. One can
easily show that if the adversary knows all n columns of
M, then the input privacy index (ξinn (A), ηinn (A)) of A is
(0, 0), provided columns of M are independent. As desired
privacy index (0, 0) essentially means that there is no privacy
against the adversary.

As listed in Example 4, it is also possible to use non-
linear change of variables for developing privacy preserving
solution methods. To see this let us consider the following
example:

Example 6 (Nonlinear transformation, a 2-party situation): Alice
wants to outsource to an untrusted party the problem

minimize
∑n

i=1(αi/xi)
subject to

∑n
i=1 βix

2
i ≤ γ

x ≥ 0 ,
(15)

where the variable is x. Here, the problem data are αi > 0, βi >
0, and γ > 0. Suppose Alice wants input privacy for problem data
{αi, βi}i=1,...,n, γ. By using the nonlinear change of variable given in
Example 4, we have xi = ϕi(zi) = αi exp(zi). Next Alice can obtain
the equivalent problem:

minimize
∑n

i=1 exp(−zi)
subject to

∑n
i=1 λi exp(2zi) ≤ 1 ,

(16)

where the variable is z = (z1, . . . , zn) and problem parameter λi =
(βiα

2
i /γ). Now Alice can outsource problem (16) to the untrusted party.

We can see that this solution procedure clearly yields input privacy
for the sensitive input {{αi, βi}i=1,...,n, γ} . The solution x⋆ of the
original problem is simply obtained by x⋆i = αi exp(z

⋆
i ), where z⋆i is

the solution of problem (16).

To quantify the input privacy, as well as the output privacy
of the transformations used in Example 6, we can follow
similar arguments as we presented in the case of Example 5.

B. Transformation of Objective and Constraint Functions

The equivalence between two problems, by performing
transformation of objective and constraint functions, is es-
tablished by the following proposition:

Proposition 2: Suppose ψ0 : ID0 ⊆ IR → IR is monotoni-
cally increasing, with domain covering the image of f0, i.e.,
ID0 ⊇ image.f0. Moreover, suppose that for i = 1, . . . , q,
ψi : IDi ⊆ IR → IR, with IDi ⊇ image.fi, ψi(z) ≤ 0 if and
only if z ≤ 0 and ψ : IRp → IRm satisfies ψ(z) = 0 if and
only if z = 0. Then if x⋆ solves the problem

minimize ψ0(f0(x))
subject to ψi(fi(x)) ≤ 0, i = 1, . . . , q

ψ(Cx− d) = 0 ,
(17)

where the variable is x ∈ IRn, the solution must also solve
problem (2) and vice versa. Moreover, the optimal value of
problem (2), p⋆, and that of problem (17), q⋆, are related by

ψ0(p
⋆) = q⋆ . (18)

Proof: See [32].
Let us next provide couple of examples which give insights

into Proposition 2 in the context of privacy.
Example 7 (Scaling): The idea of scaling was presented in Exam-

ple 3. Scaling is used in part to develop privacy preserving solution
methods in references such as [23], [25]–[29]. Generally speaking, here
all the functions ψi, i = 0, . . . , q and ψ are linear (see (17)), i.e.,

ψi(z) = aiz , i = 0, . . . , q and ψ(z) = Bz , (19)

where {ai}i=0,...,q are positive scalars and B ∈ IRp×p is a diagonal
matrix with nonzero diagonal entries, which are unknown to any passive
adversary. Specifically, the generalized permutation matrix used in [26,
§ 4.1], [23, p. 69], the scalar γ used in [27, III-B-3], and the positive
diagonal matrix S used in [25, § III] are identical to some scaling of the
form (19).

Example 8 (Horizontally Partitioned Linear Programs [10]): The
considered set up is in a multi-party environment. The method is built
on the following equality constraint transformation:

ψ(z) = Bz , (20)

where the B ∈ IRm×p with m ≥ p and rank(B) = p. Thus, the
following equivalence holds:

Ax− b = 0 ⇔ ψ(Ax− b) ⇔ B(Ax− b) = 0 , (21)

where A ∈ IRp×n and b ∈ IRp. We can easily show (21) by using
the pseudo-inverse of B, which is given by B† = (BTB)−1BT. In
reference [10], the authors exploit the partitioning of matrices A,b
together with carefully chosen partitioned matrix B to develop a solution
method that yields input privacy for sensitive input (see [10, § 2] for
details).

Due to page limitations, we omit the computations of input
privacy index and the output privacy index associated with
the transformations used in Examples 7-8. Similar arguments
as in the case of Example 5 can be applied straightforwardly.

One can readily apply hybrid variants of the transforma-
tion via change of variables (see § III-A) and transformation
of objective and constraints (see § III-B). Such hybrid
variants can be found in [25], [27]–[29]. For example, in [25,
§ III], the authors have first used the change of variable
x = Qz−Qr, where Q is a generalized permutation ma-
trix [26, § 4.1]. Then, for some constraints in the resulting
equivalent problem, they performed scaling by Q−1 and a
positive diagonal matrix S.

IV. CONCLUSIONS

In this paper we proposed a unified framework that encom-
passes transformation methods, which is a non-cryptographic
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privacy preserving solution approach. The proposed frame-
work is general and allows to avoid potential mistakes and
limitations that can arise when developing transformation
methods. More importantly, the framework plays a central
role when developing generalized standard proof techniques
to guarantee the privacy properties associated with transfor-
mation methods. A new general definition for the privacy
of transformation methods was proposed. The proposed
definitions gracefully quantify the privacy of transformation
methods, in the presence of passive adversaries with different
knowledge levels. The key idea of transformation methods,
their applicability, and computation of their privacy was
exemplified by a number of examples. We believe that the
theory of non-cryptographic approaches, such as transforma-
tion methods for privacy preserving optimization is at a very
early stage, and therefore substantial extensions are required.
We started working toward such direction in [32].
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