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Abstract—Alzheimer’s  disease  (AD)  is  a  complex  disease  showing  
dysregulation of several key pathways and an abnormal increase 
in   levels   of   beta   amyloid   (Aβ)   and   hyperphosphorylated   tau.    
Although AD is the most common type of memory loss among the 
elderly, its pathogenesis is not well understood.  Mathematical 
modeling offers a unique opportunity to gain a better 
understanding of the AD disease process by combining the 
current knowledge within a quantitative framework.  Using a 
network model for AD, we discuss how the transition from a 
normal, healthy brain to an AD brain network can be modeled 
using a Markov model. 

I. INTRODUCTION 
   Alzheimer’s   disease   (AD)   is   the   most   common   form   of  
dementia, affecting nearly one out of six elderly individuals 
over the age of 65.  Aside from memory loss, a variety of 
symptoms are observed, including depression, disruptions in 
circadian rhythm and loss of voluntary muscle control.  
Histological  markers  of  AD  include  diffuse  beta  amyloid  (Aβ) 
plaques and oligomers in brain parenchyma and 
hyperphosphorylated tau in axons [1].  Neuroinflammation, as 
well as dysregulation of lipid metabolism and mitochondrial 
dysfunction, are also observed.   
   Given the significant complexity of the disease, using 
network biology to study the interactions between different 
molecules and various pathways opens new avenues of 
understanding the pathogenesis and key regulators of AD.  
Here, we present a network model that studies AD at both the 
intercellular and intracellular levels.  Generalizing to an organ 
and systems level, we conclude with a discussion on the 
ability of hidden Markov models to study the transition from a 
‘healthy  brain’  state  to  a  ‘diseased  brain’  state  in  the  context  of  
networks describing other hierarchal levels. 

II. HIERARCHIES OF NETWORKS IN BIOLOGICAL SYSTEMS 
   One way of quantitatively thinking about diseases is to view 
them as aberrant networks.  A given organism can be 
represented as a hierarchy of interacting networks, with nano- 
or picoscale interactions on one end of the spectrum (protein-
protein, gene-protein and other biomolecular interactions) to 
systems-level interactions between various organs and the 
organism and its environment.  Networks can interact within 
their respective hierarchal level, as well as with other levels.  
For example, energy available to a cell is dependent on 
mitochondrial function, ability of the cell to uptake nutrients 
from the local microenvironment, local blood flow rate, 
nutritional intake of the organism, and organismal response to 
the environment (stress, exercise, resting). 

   The natural hierarchy in biological networks is apparent not 
just from their structure, but also from the fact that interactions 
that occur between molecules, cells or organs on the same 
level tend to have time constants on the same order.  Thus, 
modeling interactions between different levels of a systems 
biological network poses the problem of which time scale is 
most important to the overall behavior of the network. 
   The quasi steady state approximation (QSSA), instead of 
standard Michaelis-Menten kinetics, is often used to overcome 
this issue in cases where there are variable time scales 
between coupled reaction networks, or where enzyme and 
substrate (or protein and protein) are of equivalent 
concentrations.  In the case of a hierarchal model for AD, 
where the disease develops over the course of years, the QSSA 
can be used to simplify coupled reaction networks to 
approximate reactions with both fast and intermediate kinetics 
as nearly constant, aside from perturbations to the input 
values,  

III. A NETWORK MODEL FOR AD 
   The brain has been modeled as a system of several key cell 
types as seen in Figure 1: neurons, astrocytes, microglia, and 
brain endothelial cells (ECs).  The brain has a finite volume, 
thus, there exists a limit, or carrying capacity or concentration 
threshold, for the number of cells, proteins, signaling 

Figure 1: Hierarchal network for AD.  A, astrocytes; N, neurons; EC, 
brain endothelial cells; M, microglia; L, lipid metabolism; P, proteomic 
network; R, regulatory pathways; M, energy metabolism  
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molecules, lipids and other biomolecules that can be contained 
in this volume.  Above these concentration thresholds, 
regulatory systems are triggered in an effort to return the 
system back to a state of homeostasis.  Independent of these 
regulatory mechanisms, cellular damage can occur due to 
activation of inflammatory pathways, mechanical loading, 
activation of apoptosis or necrosis, or changes in local 
osmolarity.  In this model, the blood is considered to be a 
relatively infinite sink (as in previous models that we have 
developed) since the rate of blood flow is considered to be 
sufficient enough to transport any molecule that is transported 
across the BBB and out of the brain. 
    The key cell types in the brain and their interactions with 
each other can be represented as a directed graph with both 
weak and strong connection strengths (Figure 1).  Not all cell 
types interact with each other, and only the brain ECs have a 
direct connection with the blood for waste removal.  Within 
this cellular network, each cell type possesses its own set of 
metabolic, lipidomic, proteomic and regulatory pathways that 
are expressed depending on what genes are currently active.  
This cellular sub-network can be considered cell-dependent 
topology.   The following figure shows a sample simulation 
that was run for the equivalent of 60 years, demonstrating how 
most reactions quickly reach a steady state, while some vary 
slowly over timescales of years. 

IV. MARKOV MODELS OF AD 
   Markov models have been used extensively in 
epidemiological studies, by insurance companies to determine 
the best course of treatment for AD and in certain diseases to 
model transitions from one state of the disease to another [2, 
3].  The concept of using a Markov model to study the 
pathogenesis of networks in an AD model has not been 
discussed in the literature.  By defining the overall output of 
the described network for AD as a state, a hidden Markov 
model can be developed to better describe whether the system 
is in a disease or healthy state, or whether it is in an 
intermediate state heading towards disease.  Assume that 
initially, the brain starts in a healthy state i, where all 
pathways are interacting as expected and expression levels are 
also at the expected values.  Over time, external influences, 
responses to the environment, oxidative stress and other 

stimuli cause the system to shift from state i -> state j, which 
represents one of the many possible states of a perturbed 
network that is operating less efficiently.   
  There is a range of healthy states that are possible for a single 
organism to take one; that is, small deviations in the 
expression level or interaction between pathways lead to only 
minor changes in the system, which, as a whole, can adjust to 
such a perturbation.  However, as enough of the networks 
become perturbed, expression and concentration levels slowly 
begin to deviate from the expected range, which leads to 
downstream consequences in other network topologies.  This 
is the suggested beginning of many disease processes.  The 
system may attempt to compensate initially, but if the external 
stimulus (environment, stressor, etc) is not removed or its 
effect ameliorated, the system converges to an alternative 
steady state, where pathways are running non-optimally, 
alternate pathways may be activated, and eventually networks 
must adapt and concentration levels change.  Future work will 
continue to develop this hidden Markov model approach. 

V. CONCLUSION 
   In this paper, we have presented a network model for AD 
looking at both intercellular and intracellular interactions.  A 
sample simulation representative of the various time scales 
that are present in this network was also given.  The use of 
Markov models in studying the pathogenesis of AD was 
introduced as a future endeavor. 
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Figure 3: AD as a Markovian State Space.  It is being proposed here that 
diseases, regardless of their underlying pathogenesis mechanisms, can be 
modeled as Markov state space.  The highest probability is to find the system 
in the healthy state, which transitions to other states (unhealthy states) upon 
exposure to an environmental stimulus or other external factor.  Over time, 
these transitions can tend towards a disease state.  This may be a final, 
absorbing state, or there may be opportunities to escape this state. 

Figure 2: Simulation Run.  The basic network for AD was simulated for 
approximately 20,000 days (about 60 years), demonstrating the relatively 
fast convergence of some pathways. 
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