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Abstract. The dynamics of a 2-D rational map are studied for various values of
it’s control parameters. Despite it’s simple structure this model is very rich in
non-linear phenomena such as, multi-scroll strange attractors, transitions to chaos
via period doubling bifurcations, quasi-periodicity as well as intermittency, inte-
rior crisis, hyper-chaos etc. In this work, strange attractors, bifurcation diagrams,
periodic windows, invariant characteristics are investigated both analytically and
numerically.
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1 Introduction

Over the past few decades, scientists have come to understand that a large
variety of systems exhibit complicated evolution both in time and in space.
Chaos is such a behaviour; It is met in systems that mathematically appear
to be too simple to exhibit high complexity. In the case of maps, there
are several examples of simple polynomial maps are thoroughly studied in
literature [9]. This is not the case though, with rational systems that to our
best knowledge have not thoroughly been studied yet. The first example of a
1-D rational map is discussed in [1]. The map ga(x) =

1
0.1+x2 − ax has come

up from the study of evolutionary algorithms and is reported in [1] as a first
example of a complex 1-D rational map. In [2], Chang et al. proposed a two
dimensional version of ga(x); ha,b(x, y) = ( 1

0.1+x2 − ay, 1
0.1+y2 + bx).

The model we discuss, in this paper, is

F

(

x
y

)

=

(

− ax

1 + y2

x+ by

)

(F)

where a, b ∈ R are the control parameters. The map was first reported in [4]
we revisit and discuss (F) presenting some new analytical results as well as
numerical measurements. We explore (F)’s dynamics verifying that exhibits
exceptionally interesting complex behaviour together various non-linearities.

The paper is organized as follows. In section 2, we present simulations of
the phase space for typical values of the parameters a and b. These figures
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illustrate the state dynamics of (F) and shall be discussed throughout the
paper. In section 3, we discuss some elementary properties of the map and
report the dynamics of the fixed and period 2 points. Moreover, we state,
without proof, few useful propositions that outline the steady state dynam-
ical behaviour of the system for the very interesting, as we will see below,
region of |b| < 1. In section 4, we discuss the transition of (F) to chaos. We
fix parameter b and identify the bifurcations that take place as a increases
through critical values. We argue that a rather unusual quasi-periodicity in-
volved scenario takes place as (F) becomes chaotic. In section 5, we report
and characterise some other non-linearities such as coexistence of attractors,
interior crises and hyper-chaos. In section 6, we estimate the Lyapunov spec-
trum and the correlation sums of the attractors of section 2. We summarize
and discuss our results in section 7. Our effort to make this paper as self-
contained as possible competes with the strict page limit. The reader may
either believe our claims or consult the technical report for complete proofs
and detailed discussion of the work presented here [11].

2 Orbit Simulations

In this section, we illustrate typical attractors of (F) for different values
of (a, b). The results are presented in Fig. 1. The variety of the strange
attractors motivates a further investigation of this dynamical system.

3 First Remarks and Rigorous Results

The fact that the denominator of (F) is larger than 1, the system is C∞(R2).
Another remark is that the (F) is anti-symmetric, i.e. F (−x,−y) = −F (x, y).
Now, the Jacobian matrix, at (x, y), is

DF (x, y) =





−a

1 + y2
2axy

(1 + y2)2

1 b



 (1)

The general solution is at the (n+ 1)th iterate is:

(

xn+1

yn+1

)

= F

(

xn

yn

)

= F (n+1)

(

x0

y0

)

=





(−1)nan
∏n−1

i=0 (1 + y2i )
x0

bn+1y0 + bn
∑n

i=0 b
−ix0



 (2)

From (2) one notes that the y-axis is F -invariant and for |b| < 1 (the range of
main interest in this work), we have yn+1/xn ∝ 1 for large n. Then for a > 0,
xn alternates around 0, and so does yn in anti-phase with xn. We conclude
that for positive values of a the 2nd and the 4th quadrant are eventually F -
invariant while for a < 0 the 1st and 3rd quadrants are eventually F -invariant.
With this observation in mind, it can be verified that det(DF ) 6= 0 for b < 0.
It follows that (F) is invertible and in fact it is possible to extract F−1 in
closed form [11].It can be shown that for b < 0, (F) is a diffeomorphism.
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Fig. 1. Phase Plots of (F). The title of each sub-plot carries the parameter values
that generate the limit set. In the following, the notation Fig.1(a,b) will be used to
enumerate the corresponding sub-plot.
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3.1 Fixed and Period 2 Solutions

The fixed points of (F) are:

i. b 6= 1, a ≤ −1: (0, 0),
(

± (1− b)
√
−1− a,±

√
−1− a

)

.
ii. b 6= 1, a > −1: (0, 0) unique.
iii. b = 1: y-axis is a continuum of fixed points.

In this paper we will consider the case a > −1. We have the following results.

Proposition 1 [11] For |b| < 1 all solutions of (F) are bounded.

Proposition 2 [11] For |a|, |b| < 1 the origin (0, 0) is globally asymptotically
stable for almost every initial condition.

Moreover, (F) has the unique period 2 orbit
(

∓ (b+1)
√
−1 + a,±

√
−1 + a

)

which arises for a > 1. and is asymptotically stable for 1 < a < 2.

Proposition 3 [11] For any |b| < 1, (F) exhibits a period-doubling bifurca-
tion as a increases through 1 and for all but two values of |b| < 1, it exhibits
a supercritical Naimark-Sacker (i.e. discrete Hopf) bifurcation as a increases
through 2.

Proposition 1 is a first step to argue that the case |b| < 1 in fact implies
that the existence of a global attractor for almost every initial condition (as
unstable periodic orbits may exist). This is also claimed in [4]. Proposition
3 follows the discussion in [6]. There are two critical values of |b| < 1 that do
not full-fill the assumption of the bifurcation theorem and, technically, they
should be avoided. For complete proof consult [11]; and Fig. 2 for numerical
validation. The conclusion is that as a increases through 2, the solutions of
(F) become quasi-periodic.

4 Chaotic Transitions

Here we present and discuss some numerical results of the types of chaotic
transitions of (F) and try to interpret the findings that are theoretically
consistent. Numerical evidence suggest that one route to chaos is via the
typical period doubling cascade (see Fig. 2). It is also claimed that chaos
may occur via a quasiperiodic torus break down [4]. It is true that the quasi-
periodic behaviour of the system is ubiquitous on the (a,b) plane and it is
reasonable to investigate the possibility that (F) follows the Ruelle-Takens-
Newhouse route to chaos [8]. Another chaotic transition that is reported, it
is this via intermittency.

4.1 Bifurcation Diagram

A bifurcation diagram for the fixed value of b = 0.5 and a ∈ (1.8, 4.2) is
presented in Fig. 2. From the discussion in the previous section we sus-
pect that for |b| < 1 any bifurcation diagram is qualitatively similar for a
significant part of the range of parameter a1. Indeed, for a ∈ (−1, 1) the
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origin is asymptotically stable while for a ∈ (1, 2) a period 2 orbit becomes
stable. As a increases through zero a Naimark-Sacker bifurcation leads to
quasi-periodicity. If one imagines the phase space of (F) as a Poincaré sec-
tion, on a plane manifold embedded in the 3D space, the period 2 and the
Naimark-Sacker bifurcations correspond to 2 subsequent Hopf bifurcations of
the abstract continuous system.

Fig. 2. Bifurcation diagram for b = 0.5 and a ∈ (1.8, 4.2). At a = 2 a Naimark-
Sacker bifurcation occurs bringing the system into quasi-periodic behaviour.

4.2 Ruelle-Takens-Newhouse route to chaos

If a continuous system undergoes three subsequent Hopf bifurcations, then it
is “likely” that the system possesses a strange attractor after the third bifur-
cation. The power spectrum of such a system will exhibit one, then two and
then possibly three independent frequencies. When the third frequency is
about to appear some broad band noise will simultaneously appear, if there
is a strange attractor. Practically, the three tori can decay into a strange
attractor immediately after the critical parameter value for its existence has
been reached such that one observes in the power spectrum only two inde-
pendent frequencies, that is, two Hopf bifurcations and then chaos. This is
not the case here though.

4.3 Quasi-periodic destruction → period doubling → chaos

A chaotic transition is described in Fig. 3. As a increases, the quasiperiodic
attractor (3(a)) folds and degenerates continuously (3(c)) to a periodic at-
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tractor ( 3(d)). Then as we continue to increase a a period doubling cascade
process leads to chaos (Fig. 3(e),3(f)). This is not what we should expect
according to the scenario in section 4.1. Quasi-periodic attractors occurs for
many values of (a, b), however they all seem to degenerate according to this
scenario. Strange attractors occur and in many cases they take the place and
shape of a previous quasi-periodic attractor. We argue that the transition
follows a classical cascade.

Fig. 3. Chaotic transition via destruction of quasi-periodicity. All simulations sug-
gests that a period doubling cascade intervenes between quasi-periodic and chaotic
dynamics.

4.4 Transition to chaos through Intermittency

Another transition for some parameters of (F) is this through intermittency.
In Fig. 4 we report such a transition for fixed b = 0.8 and a decreas-
ing through 4.2186 (period 8) to 4.218 (chaotic). The plots are the time
series (x(n), n) and the intermittency is of Type III following the Pomeau-
Manneville classification [9]. The intermittency occurs after an inverse period
doubling bifurcation for decreasing a [11].

5 Other Non-linear Phenomena

5.1 Coexistence of Attractors and Hyper-Chaos

For the most part of this paper we focus in the case |b| < 1. For such b the
unique fixed point at the origin admits a global stable manifold WS(0, 0) :=
{(x, y) ∈ R

2 : x = 0}. For |b| > 1, WS(0, 0) vanishes to (0, 0) becoming
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Fig. 4. Chaotic transition via intermittency. The time-series plots are more appro-
priate to capture this phenomenon than the phase plots.

actually a ’stable manifold’ of the point at infinity. Solutions then may be-
come unbounded although there are attractors both non-chaotic and chaotic,
depending on the value a. This is the co-existence of attractors phenomenon.
The strange attractors in Fig.1(2.5) and Fig.1(2.6,1.2) are in the area of |b| > 1.
Note that Fig.1(2.6,1.2) is in fact hyper-chaotic (i.e. both Lyapunov exponents
are positive- see Table 1).

5.2 Interior Crisis at ac = 3.5657, b = 0.5

We report now an interior type of crisis that occurs for b = 0.5 at the vicinity
of ac := 3.5657. As the parameter a increases through ac the orbit on the
attractor spends long stretches of time in the region to which the attractor
was confined before the crisis. At the end of one of long stretches the orbit
bursts out of the old region and bounces around chaotically in the new en-
larged region made available to it by the crisis. The times between bursts
appear to be intermittent and have a long-time exponential distribution [11].

6 Exponents, Dimensions, Entropies

In this section, we present numerical results of the main invariant characteris-
tics of the attractors illustrated in Fig. 1, mainly for consistency reasons. The
three measures we approximate are the Lyapunov spectrum, the correlation
dimension and the entropy as these are the easiest and most appropriate for
strange attractors to compute. Assuming that a natural F -invariant measure
exists, the correlation sums were first introduced by Grassberger & Procaccia
[5]

C(m, ε,N) =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

Θ(ε− ||xi − xj ||m) (3)

where Θ is the Heavyside step function, m the embedding dimension [7]. So
C(m, ε,N) counts the pairs (xi,xj) of points on the attractor, embedded in
mth dimensional phase space, whose distance is smaller than ε. The ansatz
is then that C(m, ε,N) behaves like a power law as N → ∞, ε → 0. The
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Fig. 5. Interior Crisis. A sudden and significant increase in size and shape of the
attractor is illustrated as a passes through ac.

correlation dimension and entropy are then defined as

Dc = lim
ε→0

lim
m,N→∞

∂ logC(m, ε,N)

∂ log ε
, hc = lim

ε→0
lim

m.N→∞

ln
C(m, ε,N)

C(m+ 1, ε,N)
(4)

Numerical results are given in Figure 6 and Table 1. The approximations
of the correlation sums were done the use of the TI.SE.AN. package [10,7]
while the algorithm of the Lyapunov exponent spectrum is based on the
Oseledets multiplicative ergodic theorem and is an implementation of a robust
algorithm from [3]. In Fig. 6(b,c) we have outlined with a bold line the
range of ε where scaling occurs and is the same for increasing embedding
dimensions. A comprehensive analysis of these plots is discussed in [7]

2 2.5 3 3.5 4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
Lyapunov Spectrum for b=0.5

a

LE
1,

2

10
−3

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

ε

D
c

Correlation Dimension [a=3.23 , b=0.5]

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Correlation Entropy [a=3.23 , b=0.5]

ε

h c

Fig. 6. (a).The Lyapunov exponent spectrum for b = 0.5. Compare it with the
bifurcation diagram in Fig. 2. (b) The Dc estimator. (c) The hc estimation.

7 Concluding Remarks

We presented one of the simplest examples of a rational planar map that
exhibits chaotic behaviour. For a > 0 the system exhibits mainly symmetric
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Fig.1(a,b) Lyapynov Spectrum Dc hc

(2.1, 0.5) (-0.035, 0.000) 1.000 0.000

(3.23, 0.5) (-0.207, 0.057) 1.162 0.153

(3.4, 0.5) (-0.043, 0.060) 1.304 0.150

(3.96, 0.5) (-0.248,0.099) 1.178 0.220

(2.78, 0.8) (-0.051, 0.032) 1.326 0.110

(2.8, 0.8) (-0.011, 0.015) 1.500 0.080

(2.9, 0.8) (-0.045, 0.038) 1.480 0.012

(6.5, 0.8) (-0.132, 0.116) 1.470 0.350

(2.5, 1.2) (-0.025, 0.028) 1.458 0.149

(2.6, 1.2) (0.004, 0.052) 1.686 0.213

Table 1. Estimates of the invariant characteristics of the attractors of Fig. 1

attractors which however do not merge, as long as |b| < 1. For a > 1 the
origin is a saddle fixed point with y-axis to be the global stable manifold which
the attractors approach as a gets larger and larger but they never overrun
it. A typical orbit will oscillate between the second and third quadrant
getting attracted by an anti-symmetric attractor. For |b| < 1 all solutions
are bounded although it can be verified that as a gets larger and larger the
magnitude of the limit set increases. The transition to chaos is made either
through intermittency or period-doubling bifurcations. The quasi-periodic
behaviour is ubiquitous for a numerous values of the parameters, however
there is no convincing evidence that (F) goes to chaos via quasi-periodic
behaviour. The full version of this work is [11].
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