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Abstract—1In this paper, we introduce the stable path topol-
ogy control problem for link-state routing in mobile multi-
hop networks. We formulate the topology control problem of
selective link-state broadcast as a graph pruning problem with
restricted local neighborhood information. We develop a multi-
agent optimization framework where the decision policies of
each agent are restricted to local policies on incident edges and
independent of the policies of other agents. We show that under
a condition called the positivity condition, these independent
local policies preserve the stable routing paths globally. We
then provide an efficient algorithm, which we call the Stable
Path Topology Control algorithm, to compute this local policy
that yields a pruned graph. Using simulations, we demonstrate
that this algorithm, when used with the popular ETX metric,
outperforms topology control mechanisms commonly used for
Mobile Ad Hoc Networks.

I. INTRODUCTION

Topology control in wireless multi-hop networks has been
a topic of active research in the recent years. Different
topology control mechanisms have been proposed for various
purposes, including connectivity, energy-efficiency, through-
put and robustness to mobility [1]. In particular, several
topology control algorithms, both centralized and distributed,
that are aimed to reduce the broadcast storm problem have
been developed [2]: Broadcasting in a network is the process
by which a packet sent from one station reaches all other
stations in the network. Several routing protocols in Mobile
Ad Hoc Networks (MANETS) are proactive link state pro-
tocols, which broadcast the link state information. However,
in these networks, the link states are highly dynamic, and
consequently, a large number of packets, corresponding to
every link state change, is broadcast in the network. This
problem is referred to as the broadcast storm problem [2].

We adopt a graph pruning approach to reduce the broad-
cast storm problem for link state routing: by selecting a
subset of the graph topology to be broadcast, the broadcast
storm can be reduced [2]. Several of the pruning mechanisms
proposed in literature are distributed localized algorithms [3],
[4], [2], [5]. These local pruning algorithms have access to
only their local neighborhood information (typically two-hop

Kiran K. Somasundaram, John S. Baras and Kaustubh Jain are with
the Institute for Systems Research and the Department of Electrical and
Computer Engineering, University of Maryland, {kirans, baras,
ksjain}@umd.edu

Vahid Tabatabaee is with the Institute for Systems Research, University
of Maryland, vahidt@umd.edu

This material is based upon work supported by the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory un-
der the Collaborative Technology Alliance Program, Cooperative Agreement
DAADI19-01-2-0011 and the MURI Award Agreement W911-NF-0710287
from the Army Research Office.

978-1-4244-7746-3/10/$26.00 ©2010 IEEE

neighborhood information), which they prune to reduce the
broadcast storm. Although there are a number of metrics that
capture the link dynamics (Subsection II-A), few algorithms
use these link metrics for topology control in routing. Even
those that do are only heuristic methods; they do not offer
proof guarantees for stability of the routing paths [6].

One important metric for routing in wireless multi-hop
networks is path stability [7]. Although path stability has
been studied for many reactive distance vector schemes [7],
[8], there is little work that addresses topology control for
stable paths in link state routing. We introduce a new topol-
ogy control algorithm that guarantees stable path routing: a
mechanism that prunes the initial topology (to reduce the
broadcast storm) while guaranteeing that the stable paths
(for unicast routing) from every host to any target station
are preserved in the pruned topology. Topology control for
stable paths has a two-fold advantage: First, these long lived
paths are cheaper to maintain because they are less likely to
change. Second, it offers the higher layer traffic long lived
sessions and consequently yields improved traffic carrying
performance.

The main contributions of this paper are the following.
We formulate the stable path topology control problem as
a constrained multi-agent optimization problem, where the
agents include all the stations in the network, which have
access to only their local neighborhood information. We
formulate the pruning problem as a policy selection on the
incident edges for each of these agents. Then we propose
a policy for pruning and prove that this policy under a
positivity condition guarantees that the stable routing paths
are preserved. Finally, we develop a distributed pruning
algorithm, which we call the Stable Path Topology Control
(SPTC) algorithm, that solves the multi-agent optimization
problem for our policy.

Our goal, in this paper, is not to engineer new link stability
metrics, but to develop a general framework for the stable
path topology control that can make use of any available
link stability metric. We choose the ETX metric, a popular
link stability metric, and apply it to the SPTC algorithm
to demonstrate its performance. We call this the SPTC-
ETX algorithm. This algorithm can be implemented with
minor modifications to OLSR’s neighbor discovery [9] and
topology selection mechanism [10].

This paper is organized as follows. In Section II, we
summarize related prior work. We also illustrate a funda-
mental limitation of the existing topology control algorithms.
In Section III, we introduce the mathematical notations
that is needed to formulate the stable path topology con-
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trol problem. In Section IV, we develop the mathematical
framework for the multi-agent pruning problem. Finally in
Section V, we present the SPTC pruning algorithm and using
simulations, we demonstrate the performance of this SPTC-
ETX algorithm.

II. RELATED WORK

A more detailed summary of the related work is in our
technical report [11].

A. Stability Metrics for Multi-Hop Wireless Networks

The wireless mesh networking community has been ac-
tively developing several stability metrics for routing [12].
To our knowledge, the earliest metric proposed, in this area,
is the Expected Transmission Count (ETX) metric in [13],
[14]. The ETX link metric computes the expected number
of transmissions, including retransmissions, for a packet to
reach a neighboring station. The authors of [13] design the
ETX metric for 802.11 MAC with acknowledgements, and
consequently, this ETX metric accounts for the link stability
both in the forward and reverse direction of the link. This
makes the link ETX metric symmetric. The ETX of a path is
the sum of the link ETX metrics along the path. Although,
currently it is not in the RFC [4], the ETX metric has
been used in popular OLSR implementations [15], [16]. In
this paper, we choose the ETX metric as an example link
stability metric to compare the performance of our topology
control algorithm (SPTC) with that of OLSR. There have
been several other link stability metrics in the context of
MANETs. See [11], for a detailed summary.

B. Limitations of Existing Topology Control Mechanisms

The algorithms that make use of the link stability met-
rics, in most cases, are modifications of reactive distance
vector protocols. There are few proactive routing protocol
that incorporate these link stability metrics for topology
control for reduced flooding. Most of these are variants
of OLSR’s [4] pruning methods. For a brief summary of
OLSR’s pruning mechanism, see [11]. In [17], [6], [18], [16],
the authors modify OLSR’s MPR selection algorithm using
a weighted set-cover algorithm [19]. In [15], [16], the ETX
metric is used for link-stability weights. Let ETX (u,v) be
the symmetric ETX metric for the link (u, v). In the topology
control algorithm proposed in [16], the host h computes the
ETX metric of the best two-hop path to reach a two-hop
neighbor j by min; ETX(h, ;) + ETX(i;, j), where i;’s are
the one-hop neighbors. The host then selects a minimal set of
its one-hop neighbors (MPRs) that are in these best paths for
each two-hop neighbor j. In essence, this is another set-cover
problem [11], where all the two-hop neighbors are covered
by a subset of one-hop neighbors using the computed ETX
weights.

However, these set-cover methods offer no proof guaran-
tees for the stability of the pruned paths, i.e., the stable
paths for routing need not be preserved by these pruning
methods. To illustrate this, consider an example weighted
graph shown in Figure 1. The symmetric ETX metrics for

Fig. 1: Example Local View with ETX metric for each link
indicated

the links are indicated in the figure. The host h has two
one-hop neighbors ¢; and i5 and one two-hop neighbor j. In
this example, the link (h,i;) is unstable (ETX = 4), while
all other links are stable. For this topology, the set cover
method of the implementations in [16], [15] has only one
feasible (two-hop) path (h,i1,7) to reach j, which has an
ETX cost 5. However, if we relax the artificial constraint of
two-hop feasible paths, there exists an alternative better path
(h,i2,11,7) of ETX cost 3. Clearly, the set-cover pruning
methods (of OLSR and its variants) will not preserve this
stable path.

In the forthcoming sections, we will formulate and solve
a distributed pruning problem that can provably preserve
all the stable paths between every source-destination pair in
the pruned topology. Our pruning method is not specific to
any particular stability metric and can be applied for all the
stability metrics summarized in [11].

III. MATHEMATICAL NOTATIONS AND DEFINITIONS
A. Graphs and Neighborhoods

Let G(V, E) denote the communication graph, where V'
is the vertex set and E is the undirected edge set. For
(u,v) € E, there is an associated symmetric link stability
metric a(u, v) = a(v,u) > 0. Thus, G is an undirected edge-
weighted graph. A subgraph of G, denoted by G’ C G, is a
graph G'(V', E’) such that V! C V and E’ C E (restricted
to V' x V). For any vertex i € V’, the set of edges incident to
i in any subgraph G’ is denoted by Q¢ (¢). The set of paths
in any subgraph G’ between a pair of vertices 7,7 € G’ is
denoted by Pg,. For any path p € Pgl, the successor vertex
for a vertex i in p is denoted by 7,,.

The hop count hc of a path is the number of edges in the
path. Then the minimal hop count distance between a pair
of vertices (4,7) in G is given by dp.(i,75) = Iél}l)lé he(p).

pePC

We define the k-hop neighborhood for a host h 7€J V by
NF = {j € V : dpc(h,j) < k. Here, k is called the size
of the neighborhood. The boundary set for the neighborhood
NF is given by ON} = NF\N;~', where N = {h}, and
NF =0,k < 0. Let N}* = NF\{h} denote the exclusive
neighborhood, which is the neighborhood excluding h.
Consider a special induced subgraph G'°®, which is a
subgraph of G, that contains only the vertices in NV ,’f and
all the edges between them, expect those between any two
vertices of the boundary set, i.e, the vertex set is IV, ,’f and the
edge set is {(u,v) € E: u,v € N} and {u,v} Z ONF}.
We will, later, call this edge-weighted subgraph the local
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view of h (Subsection IV-A). For brevity of notation, we
define for this special sub-graph, the paths rooted at h by

h—local __ Glhocal . k
P =bB," L JeN,.

B. Path Stability

For the stability metrics discussed in Subsection II-A, the
stability of path p, denoted by w(p), is computed by com-
posing the link stability metrics a(u,v), (u,v) € p. Most
of the metrics from Subsection II-A follow either additive
or multiplicative compositions. Since a multiplicative com-
position can be transformed to an additive composition (i.e.,
using logarithms), we only consider additive compositions
for path stability: w(p) = Z a(u,v). The optimal value

u,v)€
of the path stability metric(betizvgen a vertex pair (z,7) in G’
is

we(i,§) =

min
eP&’

s Z a(u,v),

7 (u,0)€Ep

and the corresponding optimal path set, which is the set
of paths that achieve the optimal value of the optimal path
stability metric from ¢ to j in the subgraph G’, is

PE" ={pe PS : w(p) =wi(i,j)}

In essence, computing the optimal paths corresponds to
computing the shortest paths in the restricted graph G’. From
hereon, we will call these shortest paths, optimal paths. We
will denote the h-locally optimal paths, in G, from h to
j c N]{f by P]h—local*-

IV. THEORY OF LOCAL PRUNING

Topology control by local pruning [2] in multi-hop wire-
less networks is an interesting graph optimization problem.
These pruning algorithms make use of the local neighbor-
hood information that is provided by neighbor discovery
protocols [9]. From this local neighborhood information they
select a subset of the topology that is broadcast in the
network. This subset is chosen such that the resulting pruned
graph preserves some properties of the original graph. The
non-triviality in these problems is in establishing a relation
between the local and pruned-global graph. In this section,
we develop a framework to study local pruning policies that
preserve the global properties of the original graph.

In [20], we extended the notion of local and global views
introduced in [5] to encompass edge-weighted dynamic
graphs. We summarize these extensions in the forthcoming
subsections.

A. Heartbeat Discovery and Local View

We assume that every host has a neighbor discovery
module [4],[10],[16]. It discovers its local neighborhood
information using periodic HELLO messages. The HELLO
message from each host contains both the communication
adjacency and the link stability information for all of its
(k—1)-hop neighbors (k > 2). Consequently, every host h €

V discovers the dynamic edge-weighted graph G'°¢%!, where
the edge-weights correspond to the symmetric link stability
metrics a(u,v), (u,v) € G, In OLSR k = 2 because
every host exchanges its one-hop link state information.
This notion is formally abstracted as the local view Gloc!
(Subsection III-A).

B. Pruning with Local Policies

In local pruning algorithms, the host h € V, which has
discovered the edge-weighted graph Gﬁ{’cal, chooses a subset
of its incident edges, which we call the pruned edge set of
h. We denote the set of such pruning policies at host h by

Qcilocal (h) }7

where 2 is the power-set of €guocar (h) (set of of
all subsets of QGiocaz(h)).

For a given pruning policy f, € Fy™"“ at h € V, we
denote the pruned edge set by Q5 = f,(Glc). From
henceforth, f, and €, will represent the pruning policy
and pruned edge set at host h respectively. €2, is, then,
broadcast network-wide. If the subset £2;, is small compared
to QGzhocaz,(h), then the broadcast information rate is signifi-
cantly reduced. In essence, this reduced information (pruned
link states) reduces the broadcast storm.

In [5], the authors show several local pruning methods, in
essence, try to construct a Connected Dominating Set (CDS)
for the dynamic graph G by local pruning. However, the
CDS constructions [5], in general, do not offer guarantees
on the quality of the routing paths in the pruned CDS (see
Subsection II-B).

The pruning policy f3 selects a pruned edge set €2;, and
the host h broadcasts this €2, and their corresponding edge-
weights. The corresponding broadcast edge set is given by
Ebroadeast — j, \,Q)y,, and this induces an edge-weighted
subgraph G®roedeast which we call the broadcast view. At
every host station h € V, the global view Gfll"b“l is the edge-
weighted graph union Glocal UGPbroadeast where Glebal and
Gbroadeast gre exposed by some neighbor discovery and link
state broadcast mechanisms respectively.

Fprne = {f : Gieet =2

Qgiocat (b
Gl 1(h)

C. Expressing Global Constraints

The fundamental pruning problem for each host h € V is
to construct a minimal pruned edge set 2} such that G‘Zl(’bal
preserves some desired properties of G. This is an inter-
esting multi-agent optimization problem where the objective
function (finding a minimal pruned edge set) for each agent
(host) depends only on local neighborhood information (local
view). However, the agents (hosts) together must satisfy
a global constraint (the global view must preserve some
desired properties of (). Before we consider the optimization
problem (of finding the minimal pruned edge set), we will
mathematically express the global constraint for stable path
topology control. This is non-trivial because the global
constraint involves the global view, while the hosts have
access to strictly their local view. We will introduce more
notation for this purpose.

2344



For stable path routing, we want GZlObal to preserve all
stable routing paths (of G) from h to every other vertex
j € V. This can be expressed as a shortest path property:

Let I1¥(G) denote all the subgraphs of G that contain at-least
one 0pt1mal path tree rooted at h, i.e., 7} (G) holds. Then
the stable path preserving global constraint can be expressed
as Glocal CTI7(@).

Although we have mathematically expressed the global
constraint for stable path pruning, this constraint cannot be
directly imposed on the local view. We need local constraints
that will guarantee that the global constraints are satisfied.
Since the local pruning policies of interest at host h € V
are given by the functions f, € F}*"°, we will consider
a class of pruning functions and show that they satisfy the
global constraint.

We define a local property w5 at h € V. Given the
local view Gloce! | the property '~ (Glo°?) is said to hold
for a pruning policy f, € F/™" if for all j € ONF there
exists a path p € Ph local™ quch that (h, nh) € fh(Glocal)
Let IT5} % (Glocat) denote the subset of policies (of FF"™"™)
for Wthh 7TQ (Glecaly holds. Clearly, the property ™, s
local because it depends on only Gﬁfml. This local constraint,
in essence, requires for every host h to select an incident edge
on at-least one locally optimal path to every boundary node
in ON}.

To understand the intuition behind this local policy, con-
sider a line graph shown in Figure 2, where all edge-weights
are 1. Let the size of the neighborhood be k£ = 2. Clearly,
in this example, only the hosts he and hg are responsible of
selecting (hs, h3) (by the virtue of the local pruning policy in
Subsection IV-B). Let us consider the pruning policy at hs.
Here, N}, = {ha}. (ha, hs, hs) is the only path from hy
to hy. And, 6N,’f = {h1,hs}. (h3, ha,hy) is the only path
from hgz to hy. If (ha, hs) & Qp, and (hs, h2) € Q. then
(hQ,hg) g Gbroadcast Since (hg,hg) ¢ Glocal (hz,hg) ¢
Gng:bal. Consequently, Ggl;’bal
optimal paths to h; and ho.

Ox0x02020
Fig. 2: Example line graph illustrating the local pruning
condition

does not contain the globally

However, this local condition is not sufficient to ensure
G9°* € T15 (@), since it does not guarantee loop-freedom.
This is a well-known problem for distributed routing pro-
tocols [21]: Loops typically occur in distributed graph al-
gorithms when tie-breaking mechanisms are not employed.
Using an example, we illustrate that a similar problem is
likely to occur in stable path distributed pruning without tie-
breaking.

Consider an example edge-weighted graph shown in Fig-
ure 3, where the edge-weights correspond to some link

5
050500
Fig. 3: An example to illustrate loops in pruning

stability metric (Section II). Consider any stable path pruning
policy at stations hi,ho, ..., hs. Let the size of the neigh-
borhood exposed be k = 2. The neighborhood boundary
sets are N7 = {hs}, ONZ, = {ha}, ONZ = {hi},
ONp, = {hz,h } and 8Nh {h4}. If the pruning
mechanisms at these stations satisfy the necessary condi-
tions, then station h4 choses (hy, h3) and station hs choses
(hs, hs). However, the pruning mechanisms at stations hq,
ho and hs have multiple optimal paths to choose from.
For station h; to reach hs, there are two optimal paths,
(h1, ha, hs) and (hy, hs, hs). For station hy to reach hy, there
are two optimal paths, (ha, hs, hq) and (he, by, hs, hs, ha).
For station hg to reach hp, there are two optimal paths,
(hs, ha,h1) and (hs, hs, hy). The Figure 3 illustrates one
pruning policy that satisfies the necessary conditions: hj
chooses (h1, ha) for path (hy, ha,hs), he chooses (ha, hi)
for path (hg,hy, hs, hs, hy), and hs chooses (hs, hs) for
path (hs, hs,h1). The pruned graph G®r°?dcast  shown in
the Figure 3, is then disconnected! Clearly, the distributed
pruning does not preserve the stable optimal paths in the
different global views.

D. Positivity Assumption and Sufficiency

The example of Figure 3 suggests a sufficient condition,
which we call the positivity condition: all the edge weights
are strictly positive, a(u,v) > 0, (u,v) € E. We will
show that under the positivity assumptions, the local pruning
conditions become sufficient.

Theorem 4.1: Under the positivity assumption, if h € V,
frn € M5 (Glecal), then GI'°* € TIS(@).

Due to space limitations, we omit the proof in this paper.
For the proof, see [11].

E. Optimal Pruning as a Local Set-Cover Problem

In the previous section, we showed sufficient conditions
for preserving global stable paths. In this section, we formu-
late the pruning problem as an optimization problem subject
to the local pruning constraints. Every host h € V given
only its local view solves for a minimal pruned edge set:

min |2 (2)

fh,eHgiS(Gibocal)
Attempting to list out all feasible pruning policies f; €
159 (Glecal), in general, is computationally intractable.
However, the additive path stability metric follows Bellman’s
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optimality principle [11], and consequently, can be efficiently
k

computed. Let ¢, : ON} — 29Ni denote the covering

function: for i € N} and

(i) ={j€dN}: Ipe Pjh_local* such that ¢ = 1/;}}.

The corresponding inverse ;' : NF — 20Nn is: for j €
ON}
Gy () ={i € Ny = j € Guli)}

This function (; can be computed efficiently using any
shortest path procedures [19] (see Section [11]). Then local
pruning problem of Eqn. 2 can be posed as a set-cover
problem:
min |A| (3)
oNl

A€27h

subject to UieaCn(i) = ONF.

Theorem 4.2: For any minimizer A* in Equation (3),
{(h,%) : i € A*} solves the minimal pruning problem of
Equation (2).

Again, due space limitations, we omit the proof. See [11]
for the proof.

Note that with increasing local neighborhood size k, the
size of the optimal cover ¢* will be smaller. This implies
that with increasing k, the algorithms can prune more of the
local topology. However, this comes at the cost of a larger
neighborhood discovery.

V. STABLE PATH TOPOLOGY CONTROL ALGORITHM

In this section, we present the Stable Path Topology Con-
trol (SPTC) algorithm that solves the set-cover problem (to
an approximation) in Equation (3). Finally, we demonstrate
the performance of the SPTC algorithm by using the ETX
metric (discussed in Subsection II-A).

A. Greedy Approximation Algorithm to Solve Set-Cover
Problem

Given (},, Algorithm 1 is a greedy algorithm that approx-
imately solves Equation (3).

Let dj, = max;cpn1 [Ca(i)]. Then the following lemma
gives the approximation bounds for the greedy solution
Rhfgreedy:

Lemma 5.1: Let the optimal solution to Equation (3) be
A} and Rp_greedy be the output of Algorithm 1 at host A,
then |Ry—greeay| < H(d*)|AF|, where H(N) =0 L.

This lemma is proved in Chapter 11 of [19].

B. Simulation Resuts

All simulations were carried out in OPNET Modeler 14.5
[22]. The parameters of the simulation and the different
modifications to the OLSR code are reported in our technical
report [11]. From the simulations, we compare both the
data traffic carrying and Topology Control (TC) overhead
performance of SPTC-ETX and OLSR-ETX. Due to the
space limitation, we present the result for only the simple
topology shown in Figure 4 (Results for more realistic and
complex topologies are presented in our technical report

Algorithm 1 Greedy Set-Cover Algorithm at h

INPUT: ¢, G, ONL, ON}
Init: Rp—greeay < 0, U «— ONF;

// Find and append essential cover elements
for all {j € ON}: ¢, (j)| =1} do
Rh—greedy — Rh—greedy U C}?l(])y
U —U\{j}
end for

/I Greedy selection

while U # () do
i — argmax;con: [{j €U s j € Gui(i)}]
Rhfgreedy — Rhfgreedy U {Z*}
U U\jeU: i€l

end while

Output: Rp,—greedy

[11]). This scenario corresponds to the example topology
in Subsection II-B that illustrates the fundamental limitation
of CDS constructions. The topology is set up such that there
is a long-distance unstable wireless between manet_0 and
manet_I. All other links are short and hence more stable
compared to (manet_0,manet_I ).

manet_3

manet_0

manet_1

~ 500 m

Fig. 4: 4 node topology to illustrate the limitation of CDS
constructions

Consider OLSR-ETX MPR selection process at node
manet_0. Since the link (manet_O,manet_I) is unstable, it
goes ON and OFF frequently. Whenever this link is ON,
manet_.3 € BmemetO. The OLSR-ETX set-cover con-
struction selects the unstable link (manet_O,manet_1) as
Qnanet.o because it the only edge in the two-hop path
to reach manet_3. When the link (manet_O,manet_1) is
OFF, manet_1 € ON2,,,.... 0. and consequently, OLSR-ETX
chooses (manet_0,manet_2) as ), qnet o- Thus as the unstable
link (manet_O,manet_1) goes ON and OFF, Q,,4net0 OS-
cillates between (manet_0,manet_1) and (manet_0,manet_2).
This is shown in Figure 5, which is the topology selection
process at manet_0 obtained from one of the OPNET simu-
lation runs.

Fundamental limitation of the set-cover OLSR construc-

2346



tion is that it is not designed to exploit the local path
diversity. This limitation is overcome by the SPTC-ETX
that provides a more stable 2,4t 0. From simulations we
observed that SPTC-ETX almost always chooses 2,,qnet.0 =
{(manet_0,manet 2)} and Qaneto = {(manet 2,manet_1)},
thus preserving the stable path (manet_0,manet_2,manet_I).
For a simulation period of 1 hour, we observed 96 topology
changes for OLSR-ETX and only 6 for SPTC-ETX on an
average.

151
= =A Link (manet_0 — manet_1)
—A Link (manet_0 — manet_2)

S 1A A A A A A A MAAA AA A
2 (. 1 1 i
g 1 1| W
z 1 1 i
c 1 1 i
2 o 1 W
2 1 1 i
o
= o5 1 1 1 i
= 1 1 i

1 1 i

1 1 i

1 1 i

1 1 i

1 1 i

0 L I I i . )
0 500 1000 1500
Timeins

Fig. 5: Topology selection process at manet 0 for OLSR-
ETX

We report the simulation results characterizing the traffic
carrying performance and topology control overheard for
several realistic scenarios in [11]. We observe that the SPTC-
ETX outperforms OLSR-ETX, in both the performance
metrics, for all the scenarios considered [11].

VI. CONCLUSION

In this paper, we introduced a new topology control prob-
lem for preserving stable routing paths. We formulated the
problem as a constrained multi-agent optimization problem
with only local neighborhood information. We established
sufficient conditions that reduce the global pruning constraint
to a local constraint on the pruning policies. We presented
the SPTC algorithm that approximately solves the stable path
topology control problem. Finally, we quantified the two-
fold advantage of SPTC with different simulation scenarios:
by using the popular ETX metric, we showed that the
topology formed by SPTC-ETX is stable and is able to carry
significantly higher traffic compared to OLSR-ETX.
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