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Abstract—We consider distributed mode estimation in power
systems. The measurements are observed by PMUs (Power
Management Units). We introduce a novel model of trust,
using weights on the graph links and nodes that represent the
networked PMUs. We describe two algorithms that integrate
distributed Kalman filtering with these trust weights. We consider
two interpretations of these trust weights as information accuracy
and reliability. We show that by appropriate use of these weights
the distributed estimation algorithm avoids using information
from untrusted PMUs. Simulation experiments further demon-
strate the behavior of these algorithms.

I. INTRODUCTION

The digital control and protection of power systems require
the collection of huge amounts of data to estimate various
parameters in real-time. For instance, when a short circuit
occurs in a power transmission line, the steady state values
of the post-fault currents and voltages must be estimated to
locate the fault location. Furthermore, next generation power
grids involve large interconnected power networks, resulting
in greater emphasis on reliable and secure operations [1]. The
large scale communication networks underlying the power
grids make it impossible to collect data and control power
systems in a centralized manner. The new power systems
must have a distributed communication and control system in
the face of an ever changing environment such as equipment
failures and even attacks (e.g. cyber-attacks).

Because the new communication and control system enables
many more interactions between many more participants, it has
security requirements beyond the conventional Confidentiality,
Integrity and Availability properties provided by conventional
security systems. For example, integrity and confidentiality
have nothing to say about the quality of the data obtained from
various substations. Nor does confidentiality protect against
disclosure of a measurement by an intended recipient. As
the community of participants in the power grids operations
grows, properties that involve the behavior of participants be-
come increasingly critical for reliable operations and difficult
to deal with.

One crucial question is: how the control system can trust the
data provided by the communication network? Our research
efforts are motivated by two key observations. First, due to
the distributed and dynamic nature of the power systems, the

uncertainty of data accuracy has to be taken into consideration.
Second, PMUs in the power grids often operate unattended
in physically insecure environments, and are designed with
an emphasis on numbers and low cost which makes security
measures such as tamper-proof hardware not cost effective.
Therefore, we cannot only resort to costly cryptography to
guarantee reliable operations. In this paper, the concept of
trust is used in a specific problem of power systems: mode
estimation. We propose a trust based distributed Kalman
filtering approach to estimate the modes of power systems.
We show that by establishing appropriate trust relations, the
estimation is more resilient to attacks.

II. PROBLEM FORMULATION

Large interconnected power networks are often associated
with inter-area oscillations between clusters of generators.
These inter-area oscillations are of critical importance in sys-
tem stability and require on-line observation and control [2].
The inter-area oscillations (often referred to as modes) are
damped sinusoids which all have a particular frequency and
damping factor. The damping factor determines the transient
ability of the system to stabilize post disturbance. Therefore, it
is critical to have a rapid and good estimation of the damping
factor in large distributed power systems.

This work addresses automatic detection of oscillations in
power systems using dynamic data such as currents, voltages
and angle differences measured across transmission lines given
that some measurements are false. The measurements are
provided on-line by the PMUs distributed throughout the
large-area power system. The power system is assumed being
driven by disturbances around nominal operating points ([3]),
therefore linear models can be used to linearize the system
and to model oscillations.

The linearizaton method used in this paper is based on the
work by Lee and Poon [4]. Disturbance inputs in a power
system (such as load changes) consist of M frequency modes
and, with the initial steady-state value eliminated, can be
generalized over a specific time period as

f(t) = a1 exp(σ1t) cos(ω1t)
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+
M∑

j=2

aj exp(σjt) cos(ωjt + φi) (1)

where ai are oscillation amplitudes, σi are damping constants,
ωi are the oscillation frequencies and φi are phase angles of
the oscillations. Without loss of generality, we consider two
modes in Eqn. (1), given by

f(t) = a1 exp(σ1t) cos(ω1t) +
a2 exp(σ2t) cos(ω2t + φ2), (2)

which is a nonlinear function of the parameters ai, σi and
φi. Using the first two terms in the Taylor series expansion
of the exponential function and expanding the trigonometric
functions, we have that

f(t) = a1(1 + σ1t) cos(ω1t) +
a2(1+σ2t)[cos φ2 cos(ω2t)−sin φ2 sin(ω2t)].(3)

We introduce the notation:

x1 = a1 x2 = a1σ1

x2 = a2 cosφ2 x4 = a2σ2 cosφ2

x5 = a2 sin φ2 x6 = a2σ2 sin φ2

and

c11 = cos(ω1t) c12 = t cos(ω1t)
c13 = cos(ω2t) c14 = t cos(ω2t)
c15 = − sin(ω2t) c16 = −t sin(ω2t)

Then we have

f(t) =
6∑

i=1

c1i(t)xi(t). (4)

The power system is sampled at a preselected rate, say
every ∆t seconds. Eqn. (4) can be written in discrete time
k, k = 1, . . . , K. We have the linear measurement model as
the following:

yi(k) = Cix(k) + vi(k), (5)

where yi(k) is the measurement of the state x(k) made by
PMU i, and vi(k) is the measurement noise assumed Gaussian
with zero mean and covariance matrix Ri.

For N measurements, Eqn. (5) can be written in vector form
as

y(k) = Cy(k) + v(k). (6)

The state transition matrix A(k), which relates the state x(k)
to x(k− 1) is the identity matrix. The state space equation is
given by

x(k + 1) = A(k)x(k) + w(k), (7)

where w(k) ∈ Rn is the state noise, assumed Gaussian with
zero mean and covariance matrix Q. The initial state x0 has
a Gaussian distribution, with mean µ0 and covariance matrix
P0. Eqn. (6) and (7) form a linear random process that can be
estimated using the Kalman filter algorithm.

Having estimated the parameter vector x(k), the amplitude,
damping constant, and phase angle can be calculated at any
time step k using the following equations:

a1(k) = x1(k) (8)

σ1(k) =
x2(k)
x1(k)

(9)

a2(k) = [x2
3(k) + x2

5(k)]1/2 (10)

σ2(k) =
[
x2

4(k) + x2
6(k)

x2
3(k) + x2

5(k)

]1/2

(11)

φ2(k) = tan−1

[
x6(k)
x4(k)

]
= tan−1

[
x5(k)
x3(k)

]
. (12)

Fig. 1 shows a power system with several PMUs. Measure-
ments from the entire grid are synchronized via a satellite. As

PMU
PMU

PMU

GPS Satellite

Fig. 1. An Overview of the Monitoring System

we discussed in Section I, distributed computation and com-
munication are needed given the large scale communication
networks underlying the power grid. We consider a power
system with N multiple recording sites (PMUs) to measure
the output signals, indexed by i. The goal of each PMU i is
to compute an accurate estimation of the state x(k), using: the
local measurements yi(k); the information received from the
PMUs in its communication neighborhood (e.g. measurements
and estimates); and the confidence in the information received
from other PMUs provided by the trust model described in the
following sections.

Each PMU i has a communication neighborhood containing
PMUs with whom the PMU can exchange information. Let Ni

denote such a communication neighborhood:

Ni = {j | i exchanges information with j}.
The communication neighborhoods of the PMUs determine a
communication graph with N vertices, such that a link from
i to j exists if PMU i sends information to PMU j.

We attach a positive value Tij to each link (j, i) which
represents the confidence value that PMU i places on the
information coming from PMU j. The value Tij represents
a measure of the trust PMU i has in the information received
from PMU j.
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There are many different definitions of “trust” depending
on the particular domains. An operational definition of “trust”
for information, mainly considers two aspects: information
accuracy and reliability. Accuracy reflects the deviation of
the information from truth, and reliability is confidence in the
assessment of accuracy. In this paper, we apply trust weights
to the distributed estimation problem where these two aspects
of trust are investigated separately.

III. DISTRIBUTED KALMAN FILTERING

The main idea behind distributed estimation, found in most
of the papers addressing this problem, consists of using a
standard Kalman filter locally, together with a consensus step
in order to ensure that the local estimates agree [5]. In what
follows, we use a simplified version of the algorithm proposed
in [5].

Algorithm 1: Distributed Kalman Filtering algorithm with
consensus step on estimates [5]

Input: µ0, P0

Initialization: ξi = µ0, Pi = P01

while new data exists2

Compute the intermediate Kalman estimate of the target3

state:
Mi = P−1

i + C ′iR
−1
i Ci

Li = MiCiR
−1
i

ϕi = ξi + Li(yi − Ciξi)

Estimate the state after a consensus step:4

x̂i = ϕi + ε
∑

Ni∪{i}(ϕj − ϕi)

Update the state of the local Kalman filter:5

Pi = AMiA
′ + Q

ξi = Ax̂i

For simplicity we omitted the time index in Algorithm 1.
Notice that with the exception of line 4, the above algorithm
is the standard linear Kalman filter. In line 4, the local infor-
mation is linearly combined with information received from
neighbors. We will refer to line 4 as either the information
fusion step or the consensus step. We will focus our analysis
on the values of the weights wij . In fact they will play the role
of the confidence values introduced in the previous section.
Unlike the original algorithm [5], we assume that only local
estimates are exchanged and not output measurements as well.

IV. DISTRIBUTED KALMAN FILTERING WITH TRUST
DEPENDENT WEIGHTS IN THE CONSENSUS STEP

In this section we develop the distributed filtering equations
that take into account the confidence (trust) of the PMUs.
We address two cases reflecting what the confidence values
represent. In the first case, we assume that the weights wij

are a measure of the information accuracy, i.e. the larger the
value of wij is, the more accurate the information received

by i from j is. In the second case, the weights wij are a
measure of the trustworthiness of the data received by PMU
i from PMU j. It may be the case that either a PMU or
a link were compromised, so that the information received
from the respective PMU or through the respective link is not
trustworthy.

A. Distributed Kalman Filtering with accuracy dependent
consensus step

We attach to each PMU a trust value. In this subsection,
the trust refers to the accuracy of information. The larger the
trust value is, the more accurate the information received from
the respective PMU is. The information exchanged between
PMUs is represented by estimates. As previously mentioned,
we denote by Tij the trust PMU i has in information received
from PMU j. We propose to choose the trust values to be
inversely proportional to the estimation error, according to the
formula:

Tij =
1

trace(Mj)
, j ∈ Ni, (13)

where Mj represents the covariance matrix of the estimation
error from the standard Kalman filter step. The properties of
this matrix will be affected by how observable the state is
from PMU j, (such as the rank of matrix Cj) and how noisy
the measurements are, i.e. the variance of the measurements’
noise Rj . We can expect the variance of the estimation error,
given by the trace of Mj , to be small for highly observable
measurements with low noise. Therefore, we computed the
weight values in the information fusion step, by normalizing
the trust values Tij :

wij =
Tij∑
k Tik

. (14)

This way, we assign a larger influence to the more accurate
estimates, directing the resulting average towards estimates
with high accuracy. Note however that the matrix Mj is not the
actual covariance matrix of the estimation error for the current
estimate x̂j , but the covariance error given by the standard
Kalman filter. In does however reflect the observability prop-
erties of the PMU, making it a good candidate for constructing
the weight values. We summarize the idea introduced above
in Algorithm 2.

B. Distributed estimation with reliability dependent consensus
step

In this subsection we propose a distributed estimation
scheme where the averaging operation depends on the reliabil-
ity of the PMUs. We assume that PMUs may be compromised
and may send data aimed at modifying the result of the
estimation process. The update mechanism for the trust values
Tij is based on the notion of belief divergence [6]:

di =
1
|Ni|

∑

j∈Ni

‖x̂i − x̂j‖2, (15)

where we denoted by x̂i the current estimates.
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Algorithm 2: Distributed Kalman Filtering Algorithm with
accuracy dependent consensus step on estimates

Input: µ0, P0

Initialization: ξi = µ0, Pi = P01

while new data exists2

Compute the intermediate Kalman estimate of the target3

state:
Mi = P−1

i + C ′iR
−1
i Ci

Li = MiCiR
−1
i

ϕi = ξi + Li(yi − Ciξi)

Compute the consensus weight values:4

Tij =
1

trace(Mj)

wij =
w̄ij∑
k w̄ik

Estimate the state after a consensus step:5

x̂i =
∑

j∈Ni∪{i}
wijϕj

Update the state of the local Kalman filter:6

Pi = AMiA
′ + Q

ξi = Ax̂i

The belief divergence di, gives to PMU i a measure of how
different its own estimate is with respect to the estimates of
the other PMUs within its communication neighborhood.

Since the PMUs exchange only state estimates, every PMU
will compute a belief divergence, dij , for each PMU in his
neighborhood, according to the formula:

dij =
1

Ni − 1

∑

k∈Ni

‖x̂j − x̂k‖2. (16)

This metric shows how far a received estimate is from the
other received estimates in some neighborhood. Note that in
the fusion step, estimates far from their real values are prone
to hurt more. However, if enough neighbors provide reliable
information, the belief divergence for a PMU sending false
information is going to by high. We use the locally computed
belief divergence metric, to update the trust values Tij . We
first choose a positive constant ci, satisfying:

ci > max{dij | j ∈ Ni}.
We use the constant ci in the following formula for updating

the trust values:

Tij = ci − dj , j ∈ Ni (17)

Notice that the parameters ci were chosen so that the trust
value Tij are nonnegative. Moreover, ci are discriminating in
the sense that they influence the ratios Tij/Tik. Typically,
the smaller ci is, the more PMUs with large values of the
belief divergence are penalized. From (17) we note that we

favor the PMU whose estimate is close to the other estimates
in its neighborhood, in a sense ‘accelerating convergence’ to
consensus. We denote by pij the normalized versions of the
trust values Tij , computed according to the formula:

pij =
Tij∑

k∈Ni
Tik

, (18)

which may be interpreted as the ”probability the data received
by PMU i from j are accurate”. Note from the above for-
mulas that, although small, the normalized trust values are
not necessarily zero for PMUs with large belief divergence.
Therefore if the value of a false estimate is large compared
with the others, it will still influence negatively the information
fusion step. That is why we introduce a thresholding scheme
on the normalized trust values. Let pmin

i be the minimum value
accepted for pij . If pij < pmin

i the trust value Tij will be set
to zero, hence filtering out information that is not considered
sufficiently trustworthy. The lower bound pmin

i should be
chosen to be inversely proportional to the size (cardinality)
of the neighborhood.

The updated trust values are next used to compute the
weights in the consensus step:

wij =
Tij∑

k∈Ni
Tik

. (19)

The distributed estimation algorithm with a reliability de-
pendent averaging scheme is presented in Algorithm 3 below.
The intuition behind our proposed algorithm is that if a node
j sends false data, the other nodes will compute large belief
divergence values, and hence low trust values, which together
with the thresholding scheme will eliminate the node from
the information flow. The consensus step has the role of
producing a new state estimate by averaging the estimates
on neighborhoods. If an estimate is not accurate enough, it
may drag the updated estimate towards the wrong direction.
By computing the consensus weight values using a trust
dependent mechanism, we try to minimize the possibility of an
estimate update moving in the wrong direction. By adjusting
the minimum accepted value for the normalized trust values,
pmin

i , the PMUs can control their sensibility with respect to
the received data.

V. SIMULATIONS

In this section, we report results on simulations and test of
our implementation of the disitributed Kalman filter algorithm
to estimate the oscillation amplititudes and the damping co-
efficients of a practical example, given in [4]. It is noted that
it has two modes at ω1 = 0.4Hz and ω2 = 0.5Hz. A model
of power system was used as shown in Figure 2. The model
employs five measurements, where each PMU is installed over
a line connected to one generator.

We first test Algorithm 2 against Algorithm 1, where
independent white noise with different SNR was added to
each measurement before feeding them into the estimation
procedure. For computing the weights wij in Algorithm 1
we used the original scheme proposed in [5], the value for
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Algorithm 3: Distributed Kalman Filtering Algorithm with
a reliability dependent consensus step on estimates

Input: µ0, P0

Initialization: ξi = µ0, Pi = P01

while new data exists2

Compute the intermediate Kalman estimate of the target3

state:
Mi = P−1

i + C ′iR
−1
i Ci

Li = MiCiR
−1
i

ϕi = ξi + Li(yi − Ciξi)

Compute locally the belief divergence:4

dij =
1

Ni − 1

∑

k∈Ni

‖ϕj − ϕk‖2

Compute the trust values:5

Tij = ci − d̄ij , j ∈ Ni

Compute the normalized trust values:6

pij =
Tij∑
k Tik

Eliminate insufficiently accurate data by setting Tij to7

zero if pij < pmin
i

Compute the consensus weight values:8

wij =
Tij∑
k Tik

Estimate the state after a consensus step:9

x̂i =
∑

j∈Ni∪{i}
wijϕj

Update the state of the local Kalman filter:10

Pi = AMiA
′ + Q

ξi = Ax̂i

G1

G5G2

G3

G4

Fig. 2. Power System for Simulations

ε being chosen such that the average estimation error per
node was as small as posssible. More precisely we want to
compare the average estimation errors per node, given by
the two algorithms. Since the trust weights are computed so
that more weight is given to information coming from PMUs

with smaller variance of the estimation error, we would expect
Algorithm 2 to perform better, in the sense that the average
estimation error per node should converge to a smaller value.
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Fig. 3. Comparison of estimating parameter a1 given by Alg 1 and Alg 2
respectively
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Fig. 4. Comparison of estimating parameter σ1 given by Alg 1 and Alg 2
respectively

The comparison results for estimating parameters a1 and σ1

are shown in Fig. 3 and 4. The results for a2 and σ2 are similar.
We observe that Algorithm 2, as expected, performs better.
This is mainly due to the fact that in the estimation fusion
step, we move the estimate updates closer to the local estimate
with better observability and lower measurement noise.

For testing Algorithm 3, we assume that the measurements
from the PMU connecting G3 were compromised and send
false information to all the other PMUs. The goal of the PMU
in G3 is to shift the estimates of other nodes away from their
true values. We consider the case when the PMU connecting
G3 sends to its neighbors a white noise with standard deviation
equal to 0.1. The PMU connecting G3 is chosen because it
is centered and has potential to do a lot of damage since
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it is connected to all other PMUs. We compare the results
using Algorithm 1 and Algorithm 3. The results for estimating
parameter a1 and σ1 are shown in Figure 5 and Figure 6
respectively.
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Fig. 5. Distributed Kalmann filtering with constant false information,
estimating a1
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Fig. 6. Distributed Kalmann filtering with constant false information,
estimating σ1

We observe that Algorithm 3 is able to detect the false data
provided by the PMU connecting G3 and eliminate it from
further participation in the processing. The other PMUs are
able to estimate closely the parameters. However, the false
data does have influence on how fast the estmates converge
to the real value at the beginning, since the false data are
not immediately detected and rejected, the PMUs are able to
compute parameter estimates that are close to the state values.

VI. CONCLUSION

In this paper, a distributed Kalman filtering approach is
used to estimate oscillation modes in power systems that
have false measurements and even under attacks. We proposed

two modified distributed Kalman filtering algorithms, which
incorporate the notion of trust. The first algorithm uses the
trust notion to quantify the estimation errors in terms of
observation and measurement noise. The second algorithm
interpreted trust in terms of security. The low trusted PMUs
are excluded from the estimation procedure. Via simulations,
we compared our trust based algorithms with the original
distributed Kalman filtering algorithm and showed that our
modified algorithms perform better when there are large noises
in the system and are able to detect malicious data.
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