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Abstract— We consider the collaboration of autonomous
agents as a coalitional game subject to constraints, like commu-
nication, trust or reputation. We analyze the tradeoff between
the benefits of collaboration and these constraints (or costs
of collaboration) via dynamic, iterative stochastic games. The
agents can observe locally the actions of other agents in their
neighborhood and decide whether to collaborate or not in
a distributed asynchronous manner. Trust values are taken
into consideration when agents act and collaborate. Specifically
they affect the selection of agents to collaborate with. We
consider only problems where the information used for either
estimating reputations or deciding on strategies is mostly local;
i.e. from the neighbors of each agent. We show that randomized
algorithms emerge as the agents try to reach the maximum
payoff. We also investigate the topology of the formed network
by studying the second largest eigenvalue of the corresponding
graph, and describe its effects on control performance.

I. I NTRODUCTION

Dynamic networked systems are used as models for many
phenomena and situations in science and engineering: com-
munication networks, collaborating robots, organizations,
societal systems and communities, economic systems and
biological systems. Discovering fundamental principles gov-
erning the design-synthesis, control-operation, and perfor-
mance evaluation of dynamic networked systems represents
a major research challenge currently in science and engineer-
ing at large. The recent emphasis on and significance of this
challenge is well described in the recent reports on Network
Science [1], [2].

In this paper we develop the fundamental view that agents
in such a network are dynamic entities that collaborate
because via collaboration they can accomplish objectives and
goals much better than working alone, or even accomplish
objectives that they cannot achieve alone at all. Yet the
benefits derived from such collaboration require some costs
(or expenditures), for example due to communications, or
due to energy expenditure. Or in equivalent terms, the
collaboration is subject to constraints (static or dynamic).
Understanding and quantifying this tradeoff between the
benefits vs the costs of collaboration, leads to new methods
that can be used to analyze, design and control/operate
networks of agents. Multiple metrics for benefits and costs
can be considered within this framework; that is we can
consider vector valued benefits and costs of collaboration.
Furthermore, we investigate topology effects of the formed

networks. We study the topology efficiency while the benefit-
cost relations change.

This paper is organized as follows. Section II defines the
graphic model and benefit-cost relation we use in the paper.
A description of the coalition formation game is provided in
Sec. III. Section IV investigates the dynamics of the game,
including its convergence, steady state and topology at the
steady state. Section V concludes the paper and discusses
future work.

II. PROBLEM FORMULATION

A. Graphic model

Suppose there aren nodes1 in the network. Define the set
of nodesN = {1, 2, . . . , n}. The communication structure of
the network is represented by anundirectedgraphg, where a
link between two nodes implies that they are able to directly
communicate. It is natural to assume that nodes only agree
to collaborate with those who are willing to collaborate.
Thus a link in a network means that two end nodes agree to
collaborate with each other. Notice that even though links are
undirectional, the weights (related to gain and cost mentioned
below) of the links are not undirectional. Suppose there is a
link between nodei andj. The weights on linkij, denoted as
wij andwji for two directions, are not necessary the same.

Let gN represent the complete graph, where every node
is directly connected to every other node, and let the set
G = {g|g ⊆ gN} be the set of all possible graphs. Ifi and
j are directly linked ing, we write ij ∈ g. Let g + ij denote
the graph obtained by adding linkij to the existing graph
g where ij /∈ g and g − ij denote the graph obtained by
severing linkij from the existing graphg whereij ∈ g (i.e.,
g + ij = g ∪ {ij} andg − ij = g \ {ij}). The set of nodes
in graphg is N(g) = {i|i ∈ g} andn(g) is the number of
nodes ing.

A communication link is established only if two end
nodes agree to collaborate with each other, i.e., they are
directly connected with each other ing. Once the link is
added, two end nodes join one coalition and they agree to
forward all the traffic from each other. Note thatindirect
communication between two players require that there is a
path connecting them. A path ing connectingi1 and im is

1In this paper, the terms node, player and agent are interchangeable.
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a set of distinct nodes{i1, i2, . . . , im} ⊂ N(g), such that
{i1i2, i2i3, . . . , im−1im} ⊂ g.

The communication structureg gives rise to a partition
of the node set into groups of nodes who can communicate
with each other. Acoalition of g is a subgraphg′ ⊂ g,
where∀i ∈ N(g′) and j ∈ N(g′), i 6= j, there is a path in
g′ connectingi and j, andij ∈ g implies ij ∈ g′.

B. Benefit and cost

As we have discussed, agents obtain benefits by joining
a coalition. Suppose the characteristics of each node are
represented as a profile. The profile of nodei is xi, which
includes characteristics of several aspects. For instance, in
communication networks,xi can include the location of node
i, neighbor set of nodei, power level, noise, interference etc.
Then both the benefit and the cost that occur when nodei
connects with nodej is a function ofxi andxj . We denote
by Bij the benefit nodei obtains by collaborating with node
j. On the other hand, establishing links is costly; we denote
the cost of activating linkij by Cij .

We are particularly interested in studying one type of cost
or constraints: the trust values nodes have on others. The
performance of autonomous agents is well-known to suffer
from “free-riding” as there is a natural incentive for nodes
to only consume, but not contribute to the services of the
system. One well-known solution is the application of trust
establishment and management systems. By trust we mean
an estimate about an agent’s actual quality in terms of its
behavior in the network, which is sometimes also referred to
as reputation. Nodes with a high trust value are then favored,
while nodes with a low trust value are isolated from others.
Assume the trust value nodei has on nodej is denoted as
sij . The simple constraint will be thati only establishes a
direct collaboration with nodej, if sij > θ, i.e., a node with
a trust value less thanθ is untrusted.

In this paper, we will study coalition formation under
trust constraints. There are many ways to incorporate trust
constraints. One way used is the so-called ‘hard constraint’.
As long assij does not satisfy certain conditions, a link
cannot be established at all between nodesi and j. The
thresholdθ mentioned above is an example. Another way
is the so-called ‘soft constraint’, where trust is considered as
a risk of collaboration. The risk is the cost nodei expects to
have when collaborating with nodej and is integrated into
the costCij . Our previous work on trust and cooperation
[3] showed that both ways can be used as incentive for
cooperation among selfish nodes. Trust values are based on
local monitoring and previous experience. Notice that these
trust values may change over time because new information
has been received about agents, or agents’ behavior has
changed [4].

In the rest of this section, we describe examples of gains
and costs in various networks:

C. Wireless networks

The benefit of nodes in wireless networks can be the rate
of data flow they receive, which is known to be related to

the received power. Letxi denote the physical coordinates
of node i. Then we can define the benefit functionBij =
Pj l(xi, xj), where Pj is the power spend to generate the
transmission andl(xi, xj) < 1 is the loss factor due to
isotropic dispersion and absorption in the environment.

On the other hand, the power used in transmission is a cost.
Therefore, the cost for nodei to activate his communication
link to nodej can be equal to the transmission energy (or
power) necessary fori to send data toj. We defineCij as
the following

Cij = RSd(xi, xj)
α, (1)

where RS is a parameter depending on the transmit-
ter/receiver antenna gains and the system loss not related
to propagation, andα is the path loss exponent depending
on the specific propagation environment.

Another example of cost in wireless communications is the
data loss during transmission, which is related to the noise
and interference of the wireless channel. Therefore, we can
defineCij = h(N, I) > 0, whereN is the environment noise
andI is the interference.

D. Social connection model

We present a model used in social networks[5]. Assume
that each node potentially offers benefitsV to other nodes
per time unit. The potential benefit may be reduced with
multi-hop interactions in the network. Following the Jackson-
Wolinsky connections model, then the gain nodei obtains by
connecting with nodej is defined as

Bij =
∑

V δrij−1 (2)

whererij is the number of hops in the shortest path between
i andj (also known as the geodesic distance in graph theory),
and0 ≤ δ ≤ 1 is the communication depreciation rate. The
gain function gives higher value to paths with smaller number
of hops. It captures the fact that more directly collaborating
nodes gain more than nodes far away in terms of ‘social’
distance. The depreciation can be explained by diminishing
benefits due to intermediate collaboration failures or delays.

The cost can be the degree of trust between usersi and
j: the morei trustsj, the lower the cost of establishing the
link.

III. C OALITION FORMATION GAME

We are interested in studying autonomous networks, where
each node manages and controls its own operations in the
network. A node decides to directly collaborate with others
only if it gets the maximum payoff. The coalition formation
process is modelled as pairwise games, which is called
coalition formation game in the literature [6]. In this section,
we give the detailed description of the games.

The pairwise games are modelled as an iterated process in
which individual nodes activate and delete links based on the
improvement that the resulting network offers them relative
to the current network. A link between two nodes can be
formed only if both nodes agree to activate the link, while a
single node can sever an existing link. Each user receives a
payoff based on the network configuration that is in place.
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Initially the n nodes are disconnected. The players meet
over time and have the opportunity to form links with each
other. The time horizon,T , is divided into periods and is
modelled as a countable, infinite set,T = {1, 2, . . . , t, . . . }.
Let g(t) represent the network that exists at the end of period
t.

A strategy of node i is a vector, defined asγi =
(γi,1, . . . , γi,i−1, γi,i+1, . . . , γi,n), where γi,j ∈ {0, 1} for
eachj 6= i. γi,j = 1 is interpreted as saying that nodei
wants to form a link with nodej, while γi,j = 0 states that
i does not directly communicate with nodej. The set of all
strategies of nodei is denoted byΓi. Since nodei has the
option of forming or not forming a link with each of the
remainingn − 1 nodes, the number of strategies of nodei
is |Γi| = 2n−1. The setΓ = Γ1 × · · · × Γn is the strategy
space of all the nodes. A linkij is formed in networkg
only if γi,j = 1 and γj,i = 1. Therefore, a strategy profile
γ(t) = (γ

(t)
1 , . . . , γ

(t)
n ) at time periodt corresponds to the

networkg(t) at timet. The payoff of nodei from the network
g is defined as

Ui(g) = Bi(g) − Ci(g), (3)

whereBi(g) =
∑

j∈N(g) Bij andCi(g) =
∑

j∈N(g) Cij .
Now we describe the dynamic process generated by the

iterated pairwise game. The game is assumed to be repeated
in each time periodt = 1, 2, . . . . Definepij as the probability
that the node pairij is selected, in each time period, to
play the pairwise game. Notice that there may be multiple
pairs selected in the same time period. These pairs can play
simultaneously as long as they do not contain the same node.
On the other hand, if bothij and ik are selected,i cannot
play two games simultaneously. Thusi will not play any of
the two games and it will inform its neighborsj and k as
well. Therefore, there would be no game played on linksij
and ik in the current time period.

We assume that each node is myopic. Given that nodesi
andj play the game, if the linkij is already in the network,
then the decision is whether to sever it, and otherwise the
decision is whether to establish the link. The nodes involved
act myopically, activating the link if it makes each at least
as well off and one strictly better off, and deleting the link
if its deletion makes either player better off. Mathematically
speaking, if only node pairij is selected in time periodt,
then the networkg(t+1) has either

• g(t+1) = g(t)−ij if vi(g
(t)−ij) > vi(g

(t)) or vj(g
(t)−

ij) > vj(g
(t)), or

• g(t+1) = g(t)+ij if vi(g
(t)+ij) > vi(g

(t)) andvj(g
(t)+

ij) ≥ vj(g
(t)), or vi(g

(t) + ij) ≥ vi(g
(t)) andvj(g

(t) +
ij) > vj(g

(t)), or
• g(t+1) = g(t) if none of the above satisfies.

If more than one pairs are selected to play the game, each
pairwise game could be considered separately. If after some
time period t, no additional links are formed or severed,
then the network formation process has reached asteady
state. Thus a coalition or coalitions have been formed at
the steady state. Then the coalition formation game moves

to the second phase, in which users act together to achieve
maximum payoffs.

IV. GAME DYNAMICS

In this section, we study the dynamics of the game we just
defined, including its convergence, steady state and topology
at the steady state.

A. Convergence

Having described the iterated pairwise game,we study the
convergence of such a game. In particular, we are interested
in the conditions under which all nodes in the network are
connected. The coalition that contains all the nodes is called
the “grand coalition”.

To study the convergence, we first define a concept of
stability: pairwise stability.

Definition 1 A network g is pairwise stableif

• for all ij ∈ g vi(g) ≥ vi(g−ij) andvj(g) ≥ vj(g−ij),
and

• for all ij /∈ g, if vi(g) < vi(g+ij) thenvj(g) > vj(g+
ij) or if vj(g) < vj(g + ij) thenvi(g) > vi(g + ij).

We first give a simple fact on the dynamics of the pairwise
game:

Lemma 1:The iterated pairwise game converges to a
pairwise stable network or a cycle of networks.
Sketch of Proof: If in certain time period, the network
is not pairwise stable, there must exist at least one link that
can be formed or severed to improve the payoffs of the two
end nodes. As long as such a link is selected, the network
changes to another network. This procedure either stops at
the pairwise stable network or it changes back to a network
that has been met due to the limited number of possible
networks|gN |. In the later case, the procedure forms a cycle.

Figure 1(a) is a network of 6 nodes starting from no links.
The benefit follows the definition of Eqn. (2). Takec12 =
c23 = c34 = c45 = c56 = c61 = 1, wherecij = cji for all
i, j ∈ N and the cost of other links are much greater than
1, V = 0.9 and δ = 0.3. We observe that the first link’s
cost exceeds its payoff, while subsequent links are valuable.
Following the myopic strategy, no link could be formed at all.
However, it is obvious that the network shown in Figure 1(b)
provides better payoffs than the empty network, wherevi =
0.421 for all i = 1, 2, . . . , 6, and it is easy to verify that the
network is pairwise stable. Some random events are needed

potential

1

2 3

4

56

1

2 3

4

56

v=0.9<c=1

(a) (b)

link

Fig. 1. A network where the game converges to an inefficient network.
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to help the network jump out of the inefficient stable network,
which (random events) are calledmutations.

In evolutionary games, mutations are introduced so that the
evolution of games is modelled as a Markov chain, where
the states of the Markov chain are the strategy profilesγ.
Given nonzero mutations for each state of the Markov chain,
we have that the Markov chain is irreducible and aperiodic.
Therefore, it has a unique corresponding stationary distri-
bution. The work of Harsanyi and Selten [7] and Kardori,
et al. [8] show that by letting the mutation probability go to
0 in a certain way, the game converges to a unique Pareto
equilibrium. The mutations for network formation mean that
when two nodes agree to form a link, with a probability
p, the link is not formed, or when a link is to be deleted
because one of the two nodes choose to sever it, the link
is not deleted with probabilityp. Such mutations may result
from transmission failures or noise. Thus by using mutations,
the pairwise game converges to a stable network.

The dynamic system defines a Markov chain on a finite
state space.P = [pij ] is the Markov transition matrix. Note
that, under our assumptions, all elements in the matrixP
are strictly positive. It is well known , then, that the Markov
chain has a unique stationary distribution. A stationary
distribution is a row vectorµ satisfying

µP = µ.

Asymptotically, independent of the initial condition, the
strategy distribution is given byµ. By introducing stochastic
mutations, we have obtained uniqueness and global stability.

We examine the long run behavior of the system when the
probability of mutations is small. To this end, we introduce
the concept of the limit distribution.

Definition 2 The limit distribution µ∗ is defined byµ∗ =
limp→0 µ(p), if it exists.

If the limit distribution places positive probability on the
strategy configurationz ∈ Z, z is called a long run equi-
librium. In principle, we can calculate the limit distribution,
for eachp, by explicitly writing down the closed form for
pij and then solving the equationµP = µ for µ, but the
procedure is complicated. In this paper, we only present the
result that shows that by permutation the game converges to
a dominant equilibrium.

Theorem 2:If there exists an equilibrium which domi-
nates other equilibria, with probability 1 theN -player game
converges to the dominant equilibrium.

Proof: This is true since the dominant equilibrium is
the single absorbing state. The Markov chain will converge
to the single absorbing state with probability 1.

B. Steady state

In this section, we investigate the coalitions formed when
the pairwise games reach the steady state. The network
model we studied is described as the following:

• Gain: Bij = B if ij ∈ g.
• The cost is the summation of two components: com-

munication cost and risk that depends on trust values,
Cij = CCij + Rij .

Fig. 2. Number of coalitions vs. benefitB

– The communication cost is defined as in Eqn. (1),
CCij = RSd2

ij , wheredij is the distance between
i and j.

– The risk is defined as the reverse of trust values.
Trust values are based on the history of a node’s
game strategy. More specifically, if at timeT ,
sij(T ) =

∑T
t=1 γji(t)/T , thenRij = 1/sij .

• Game strategy: in addition to the strategy defined in
Sec. III, a scheme that uses trust as an incentive for
collaboration is introduced, where ifsij is less than a
threshodθ, nodei always chooses to collaborate with
j.

We run simulations where 20 nodes are randomly placed
on a 1000 meters× 1000 meters square. Two nodes are
selected to play the pairwise game with a fixed probability
1/n(n − 1), where n = 20. ParametersRS and θ are
fixed and the benefit parameterB changes. We compare the
number of coalitions that are formed with and without the
trust constraint when the network reaches the pairwise stable
state as shown in Figure 2. It shows that the trust constraint
serves as an incentive that helps the pairwise game to form
the grand coalition (the number of coalitions is equal to 1).

C. Topology Effects

We studied the topology of the network when the game
reaches the steady state. One particular topology we are
interested in is the small-world topology: most links are
connected between neighboring nodes with few long-range
shortcuts. In the past five years, there has been substan-
tial research on the small-world model in various complex
networks, such as the Internet and biological systems. One
important result is that the second largest eigenvalue modulus
(SLEM) of the corresponding adjacency matrix of a graph
determines the convergence speed of distributed dynamic
algorithms on the graph.

In the rest of this section, we investigate the normalized
matrix F of the adjacency matrixA, that is

F = D−1A, (4)

whereD is the diagonal matrix whoseith diagonal element
is the degree of vertexi. Thus F matrices are a class
of stochastic matrices. SinceF is a primitive stochastic
matrix, according to the Perron-Frobenius theorem [9],λ1
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Fig. 3. SLEM vs. benefitB

is a simple eigenvalue with a right eigenvector1 and a
left eigenvectorπ such that1T π = 1. Let λ2, λ3, . . . , λr

be the other eigenvalues ofF ordered in a way such that
λ1 = 1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λr|, andm2 is the algebraic
multiplicity of λ2. Then it is shown that the convergence of
F t is geometric, with relative speed equal to SLEM= |λ2|.
The spectral gap of a graph is the quantity1 − SLEM; so
iterations on graphs with higher spectral gaps converge faster.

We study the SLEM of graphs that are formed by the
formation game we described in Sec. IV-B. Since the SLEM
is defined in a connected graph, we only study benefit
parameter valuesB > 0.5, when a grand coalition is formed
at the steady state as shown in Fig 2. In Figure 3, the SLEM
decreases with the benefit. Especially, the SLEM decreases
dramatically in the range of[0.7, 0.8]. We calculated the
shortest path and clustering coefficients of these graphs. The
results show that the range of[0.7, 0.8] is exactly where we
observe the small-world property. Research has shown that
a graph with the small-world property is efficient regarding
convergence of distributed algorithms. Our study on network
structure formation shows that a small increase in benefit
may result in an efficient network topology.

More specifically, we study networks in the form similar
to the one of Fig. 1, that is, all nodes are placed on the
circumference of a circle. Suppose that the gain and cost
are defined as in Eqns. (2) and (1) respectively. We assume
that all nodes areequally placed on the circle. Therefore,
the distance between any pair of neighboring nodes on the
circle is the same, denoted asd1, and the corresponding cost
is Cd1

. Similarly, the distance between nodes that arer hops
away on the circle is denoted asdr and the corresponding
cost isCdr

.

We first present the following proposition:

Proposition 3: There exist direct connections between
nodes that are at leastr hops away on the circle ifV >

Cdr

1−δ
⌊n

2 ⌋−r+1
.

Sketch of Proof: Suppose nodes are numbered in a
clockwise order. Now consider a connection that connects
nodes 1 andr + 1. By adding this connection, the benefit of

node 1 from noder + 1 to node⌊n
2 ⌋ changes to

V
(

1 + δ + · · · + δ⌊
n
2 ⌋−r

)

− Cdr
.

The least gain change due to adding the connection
between node1 and r + 1 takes place if there has been
a connection between node1 and r. Therefore, a direct
connection that connects nodes 1 andr + 1 is added if

V
(

1 + δ + · · · + δ⌊
n
2 ⌋−r

)

−Cdr
>V

(

δ + · · · + δ⌊
n
2 ⌋−r+1

)

.

The right hand side is the gain node1 gets from noder to
⌊n

2 ⌋ given there is a direct connection between node1 and
r−1 and no direct connection between node1 ands, where
s ≥ r.

Then we have that

V >
Cdr

1 − δ⌊
n
2 ⌋−r+1

.

Notice that the condition onV is only a sufficient condi-
tion.

Consider the basic case where the formed network is the
1-dimensional lattice having a ring topology. We have that

Corollary 4: The formed network is a 1-dimensional lat-
tice if Cd1

< V <
Cd2

1−δ
⌊n

2 ⌋−1
.

The correspondingF matrix of the network is called the
base matrixF0 and is the following:

F0 =

















0 1
2 0 . . . 0 1

2
1
2 0 1

2 0 . . . 0
0 1

2 0 1
2 . . . 0

. . . . . .

. . . . . .
1
2 0 0 . . . 1

2 0

















(5)

The matrix F0 is actually a circulant matrix. Circulant
matrices have a special structure which provides them with
special properties. All entries in a given diagonal are the
same. Each row is determined by its previous row by a
shift to the right (modulon). Suppose the first row of a
circulant matrix is [a1, a2, . . . , an]. We write a circulant
matrix A = circ[a1, a2, . . . , an]. Now consider then × n
permutation matrix,Π = circ[0, 1, 0, . . . , 0]. ThenA can be
written asA = a1I + a2Π + · · · + anΠn−1. For a vector
a = [a1, a2, . . . , an], the polynomialpa(z) = a1 + a2z +
· · · + anzn−1 is called therepresenterof the circulant. The
following theorem based on [10] states how to calculate the
eigenvalues of circulants.

Theorem 5:[10] Let ω = e
2π

√
−1

n be thenth root of unity.
The eigenvalues ofA = circ[a1, a2, . . . , an] are given by
λi = pa(ωi−1), wherei = 1, 2, . . . , n.

Then we have the following proposition:
Proposition 6: The SLEM of the base matrixF0 has

multiplicity at least2.
Sketch of Proof: F0 is a circulant matrix. The representer
of the circulantF0 is

pa(z) =
1

2
(z + zn−1). (6)
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So the eigenvalues of this matrix areλi = pa(ωi−1). It is
easy to show thatλ1 = 1 and more over it is a simple
eigenvalue because the underlying graph is connected. Since
for integersA andB, ωAn+B = ωB , it follows thatλ2 = λn,
λ3 = λn−1 and so on.

By substitutingλ2 = pa(ω), we have that
Corollary 7: SLEM(F0) = cos( 2π

n
).

Now consider the case whereV >
Cdr

1−δ
⌊ n

2
⌋−r+1

, wherer

is any integer in the range[2, ⌊n
2 ⌋]. Shortcuts with length at

leastr (i.e. direct connections among nodesr hops away) are
added in the network. The largerV is, the ‘longer’ shortcuts
are established.

We investigate the effect of shortcuts following the pertur-
bation approach to small worlds proposed by Higham [11].
We add “small” nonzero positive numbers for the entries of
F0 that correspond to connections between nodes that are at
mostr hops away. We perturb these entries of the matrixF0

by a constantε. The idea is thatε represents the probability
of having a shortcut. Then the expected number of shortcuts
added isε(r−1)n. This model can be considered as a “mean
field” approximation of the real network. We anticipate that
the analysis of these perturbed matrices gives us some insight
on the evolution of network topologies as the gain increases.

The perturbed matrix is the following:

Fr,ε =



















0 1−2(r−2)ε
2 ε ε

1−2(r−2)ε
2 0 1−(r−2)ε

2 ε

ε 1−2(r−2)ε
2 0 1−2(r−2)ε

2
. . . .
. . . .

1−2(r−2)ε
2 ε ε ε

. . . 0 . . . ε 1−2(r−2)ε
2

. . . 0 . . . ε ε

. . . 0 . . . ε ε
. . . . .
. . . . .

. . . 0 . . . 1−2(r−2)ε
2 0

















(7)
Fr,ε is also a circulant matrix. The representer of this

circulant is

pa(z)=
1 − 2(r − 2)ε

2
z + εz2 + · · · + εzr−1 + 0 + · · · + 0

+εzn−r+1 + · · · + εzn−2 +
1 − 2(r − 2)ε

2
zn−1.(8)

Substitutingz = ω, we have the SLEM ofFr,ε

λ2(Fr,ε) = (1−2(r−1)ε) cos(
2π

n
)+2ε

r−1
∑

k=1

cos(
2kπ

n
). (9)

Thus we can state the following proposition:
Proposition 8: Let rε = K

nβ , whereK > 0 and β ≥ 0.
For β > 2, the effect of shortcuts on convergence rate is
negligible.β = 2 is the threshold. Forβ < 2, the shortcuts
are dominantly decreasing the SLEM, thus the small-world
topology appears.

Proof: For largen, applying Taylor series, we can write:

λ2(Fr,ε) = 1 −
2π2

n2
− 2rε + o(

1

n4
). (10)

The first two terms are the contributions of the base matrix
F0 and the rest are the contributions of the perturbation. It
is easy to yield the results of this proposition.

V. CONLUSIONS

In this paper, we developed the fundamental view that
agents in an autonomic network collaborate to accomplish
objectives and goals much better than working alone, or even
accomplish objectives that they cannot achieve alone at all.
We modelled the process of coalition formation by under-
standing and quantifying the tradeoff between the benefits vs.
the costs of collaboration. Our analysis leads to new methods
that can be used to design and control/operate networks of
agents. Multiple metrics for benefits and costs can be con-
sidered within this framework including trust values between
agents. Furthermore, we investigated the topology effects of
formed coalitions by studying the graph’s spectral gap. Our
future work will integrate the current framework into real
networks, such as communication networks and biological
networks, and study how the new methods can be applied to
fundamental network design.
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