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Abstract

Trust establishment in networks is the essential foundation for follow-on security mecha-
nisms, such as key management and secure transmission. In this paper, we concentrate on
self-organized, distributed and resource-constraint networks which pose formidable challenges
on trust establishment due to lack of infrastructure and centralized servers. We model our trust
establishment strategy as a local voting scheme and discuss its long run behavior. More specif-
ically, we investigate the dynamic evolution of trust within the network, i.e. how trust spreads
among nodes, via analyzing its convergence behavior. By theoretical analysis based on graph
theory, we also find the conditions under which trust spreads to a maximum set of nodes and
parameters that speed up or slow down this transition.
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1 Introduction

As an important concept in network security, trust is interpreted as a set of relations among agents
participating in network activities. Trust relations are based on the previous behavior of agents
within a protocol. Trust establishment in distributed and resource-constraint networks, such as
mobile ad hoc networks (MANETS), sensor networks and ubiquitous computing systems, is much
more difficult but more crucial than in traditional hierarchical architectures, such as Internet and
base station- or access point-centered wireless LANs. Generally, this type of distributed networks
has neither pre-established infrastructure, nor centralized control servers or trusted third parties
(TTPs). The trust information or evidence used to evaluate trustworthiness is provided by peers,
i.e. the agents that form the network. Furthermore, resources (power, bandwidth, computation
etc.) are normally limited because of the wireless and ad hoc environment, so the trust evaluation
procedure should only rely on local information. Schemes that depend only on local interaction
also have the desired emergent property that enables fast reaction to network member changes,
topology changes and security changes that frequently happen in mobile networks. Therefore, the
essential and unique properties of trust management in this new paradigm of wireless networking,
as opposed to traditional centralized approaches are: uncertainty and incompleteness of trust
evidence, for instance, trust value is between —1 and 1; locality in trust information exchange;
distributed computation, trust evaluation is employed individually.

Trust establishment is a process starting from a small set of agents who are known to be
trustworthy. For example, the first few peers to join a network are often known to be trustworthy.
While the majority are neutral, i.e. with trust value 0. They are evaluated by agents who have
direct interactions with them. Those agents are either the physical or logical neighbors of target
agents. Based on their observations and evidence, they are able to provide opinions on the target
agent, to build the trust value (also called reputation) of the target agent. The whole network
therefore evolves as the local interactions iterate from “isolated trust island” to “a connected trust
graph”. Our interest is to discover the rules that establish trust-connected networks using only
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local interactions, to understand the impact of local interactions on the whole network and also to
find the conditions under which trust spreads to a maximum set as well as parameters that speed
up or slow down this transition.

There have been several works on trust computation based on interactions with one-hop physical
neighbors. In [3], for instance, first-hand observations are exchanged between neighboring nodes,
where node A adjusts his opinion for node B, based on how close B’s evidence is to A’s previous
opinion about another node C. It provides an innovative model to link nodes’ trustworthiness
with the quality of the evidence they provide. While, our work emphasizes the inference of trust
value rather than the methods to generate the direct trust. It is similar with [5] and [6], where
weighted averages are used to aggregate multiple votes for trust evaluation and provided promising
results on using this simple local interaction rule to correctly evaluate trust in distributed networks.
Particularly in [5], different kinds of malicious behaviors have been simulated and their results
showed that by ranking nodes according to the trust value, the network application (in their case,
file downloading in p2p networks) doesn’t get affected by malicious nodes. However, the results of
both [5] and [6] are based on simulation. In this paper, we analyze our local interaction rule using
graph theory and provide a theoretical justification for network management that facilitates trust
propagation.

In addition to the above works, an extensive amount of research has focused on designing
decentralized trust-inference protocols, such as [1] and [8]. These works categorize trust information
into direct trust and recommendations (though they have different specific meanings), and trust
evaluation is computed by aggregating along and across paths. Those schemes are applicable for
networks that are easy to obtain routing and path information, but this requirement is not always
true in our settings.

This paper is organized as follows. In Section 2 we discuss our framework based on the graph
model. We formally define our trust evaluation rule and discuss some security issues. As our main
contribution, Section 3 gives theoretical results and provides necessary conditions for establishing
a trusted network. In Section 4, the topology impacts on our trust establishment procedure is pro-
vided and an important graphical parameter, the second largest eigenvalue of a graph, is discussed,
which furthermore guides the network topology design.

2 Problem formulation

The network is modeled as an undirected graph G(V,E). Throughout this paper, we use the
terms node and agent interchangeably, where a node ¢ is an element in the set V. From the
discussion in Sect. 1, local interaction requires that the control law for each agent should not
require state information from all other agents, but rather from a subset which we call neighbors:
N; = {jl(i,j) € E} € {1,...,N}\ {i}. The neighbor set of agent i, N, can represent the set of
agents with which i is allowed to communicate (giving rise to a logical interconnection network), or
the set of agents which i can sense, transit or receive information (physical wireless communication
links).

In order to estimate the trustworthiness of agents based on their neighbors’ opinion, the most
straightforward scheme is to ask all their neighbors to “vote” for them. The value of each vote
represents the opinion of a particular voter on the target agent, which comes from observation of
the voter. There have been several works that evaluate trustworthiness of agents in a distributed
manner, such as network traffic monitoring and distributed intrusion detection systems [7, 12]. In
this paper, we assume the voting values are provided by a certain scheme. Let’s first introduce two
notations. Let ¢; be the trust value of node i and v;; be the voting value from node 7 about node j,
and v;; € [—1,1], where ¢ fully trusts j with v;; = 1 (absolutely positive vote), and v;; = —1 when
i totally distrusts j (absolutely negative vote). Our local voting rule for the trust value of node 4



(t;) could be interpreted as the following general rule:
ti = f(vij,tj,Vj € Nj).
The function f(-) should satisfy the following properties:
e —1 < f(-) <1, since our trust value is in the range of [—1,1].

e Votes from the nodes with high trust value are more credible, so they should carry larger
weights.

There are several choices for the voting rule, i.e. the function f(-). For instance, it can be the
average, maximum or minimum of all votes. In this paper, the rule we use is the weighted average
of all votes, where the efficient vote made by ¢ is equal to the multiplication of v;; and ¢;, i.e., the
trust value of node ¢ is the weight applied to all votes taken by i. Therefore, we have the updating
rule for the trust value of node i

ti(n) = di S 4500 — Doji(n), (1)

' jEN;

where n represents discrete time and d; = || is the degree of node i. For the rest of the paper,
we assume vj; is a constant. Generally this assumption is not true, since agents are always willing
to adjust their votes based on new information. However, what we are concerned within this paper
is the convergence of the voting rule. By varying the voting values, the convergence time would
be longer, but eventually trust value converges to the same steady state, given that voting values
will be fixed finally. Therefore, we use v;; instead of v;j(n) from now on. Let’s define D to be
the diagonal matrix whose ith diagonal element is d; and the matrix V represents the values of all
votes, vj; = 0 if node j and ¢ are not neighbors. Then Eqn. (1) is rewritten as

T(n)=D7'VT(n 1), (2)

where T' = [t1 ta ... ty] is the trust value vector. Obviously, Eqn.(1) satisfies the properties of
the voting rule described above. Notice that this rule is quite conservative (or pessimistic), in the
sense that nodes get fully trusted with value 1 only if all their neighbors are fully trusted and the
votes by them are with 1. We consider that pessimism may be necessary in self-organized networks,
since such networks are more vulnerable to malicious behaviors.

To determine the trustworthiness of nodes, we apply a threshold rule on the steady states of
trust values, which are defined as t; = lim,,,o t;(n). Our threshold rule is dependent on a system
defined parameter 7 as follows:

Node i is { trusted, %f t; >n
neutral, ift; <n
There are also concerns about the integrity, authenticity and availability of votes. We assume
that nodes vote on all their neighbors, which can be forced by penalty, i.e. non-voting nodes
are considered to be distrusted. The authenticity and integrity could be achieved by resorting to
cryptography, such as digital signature. A more involved scheme is discussed in [4], where votes are
used for key revocation. The difference is that our decision is based on collective values of all votes,
while [4] considers the number of votes received for revocation. A different method is discussed
in [5], where the weighted average is computed by another specific delegated node instead of the
target node itself by using a distributed hash table (DHT); therefore nodes are not able to cheat
on the votes for them. Hence, we assume that the voter of each vote is known and all votes cannot
be modified.



Since our voting scheme is purely decentralized, any complete trust is not assured beforehand
even when assuming that all agents are virtuous. The first and indispensable question to answer is
how to build up a fully trusted or at least trust connected network in virtuous environments. Our
theoretic analysis provides the necessary and sufficient condition for trust spreading through out
the whole network, which is presented in the next section.

3 Trust spreading

In this section, we regard the trust establishment process as a dynamic system. We discuss the
convergence property of the system and investigate the spreading of trust as the system reaches
the steady state. First, we discuss the situation where voting starts without any intentional con-
figuration, and we show that the condition to reach a fully trusted network is quite non-intuitive.
Then we provide a mechanism that guarantees trust to be established in the whole network.

3.1 Simple voting

Since we assume no adversary in the network, i.e. all nodes behave rationally and all votes are
“reasonable”, which means we admit the uncertainty of the voting value but no one is voting
maliciously, we have v;; € [0, 1]. Furthermore, nodes start with trust value no less than 0. Otherwise
if a node has trust value less than 0 initially, it is excluded by others immediately. Therefore,
ti(n) >0, Vi € V and n > 0. Our goal is to show that as n — oo the vector sequence {T'(n)}
converges and to find the steady-state value T.

Define a matrix F' = D~V then the state equation (2) is written as T'(n) = F"T(0). First,
a very simple scenario is considered where all votes are all of the value 1, which means all nodes
are able to correctly verify their neighbors as trusted. Therefore V' = A, where A is the adjacency
matrix of graph G, and F' is the normalized adjacency matrix. It’s trivial to verify that F' is a
2. We show in the following that the convergence behavior of T'(n) depends on
whether F' is reducible or not, which represents the connectivity of the network.

stochastic matrix

e (G is connected, i.e. F is irreducible.

Since F' is a stochastic matrix, the largest eigenvalue of F'is 1. Let 7 be the right eigenvector
corresponding to eigenvalue 1, which is an N-dimension normalized row vector?, then 7F=x.
We could prove by ergodicity that [9],
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Thus Vi € V, t; £ lim, .o t;(n) = 7 x T(0) = Zjvzl 7;t;(0). Therefore, every node reaches
the same trust value at the steady state. We can see that whether a node is trusted or not,
purely depends on the initial configuration of 7°(0). Obviously, if Z;VZI 7;t;(0) > n, all nodes
are trusted, and none is trusted otherwise. Therefore the initial trust value is very crucial
here. It is easier to establish a complete trusted network if a large number of nodes have high
trust value initially, otherwise none will get trusted.

e G is not connected, i.e. F' can be written (decomposed) as F' = blockdiag|[Fy, Fs, ..., Fk|,
where Fj,,k =1,..., K are irreducible matrices of order Ny, 25:1 N = N. Thus the graph

2A matrix is called a stochastic matrix, if the sum of the elements of each row is 1.
3For a normalized vector, the sum of all elements is equal to 1.



G has K components, which are disconnected with each other. Let’s use C;,i = {1,..., K}
to denote those components, where C; has normalized adjacency matrix Fj. Similarly, since
F' is irreducible, we can find the vector m; which is the right eigenvector of F; correspond-
ing to eigenvalue 1, such that t; = lim,, . t;(n) = > j—c, ™tj(0), if i € C. Therefore, the
trustworthiness of a node is related to the initial configuration within its connected compo-
nent. It’s easy to extend the results of irreducible matrices to reducible ones by applying the
method above. From then on, we will assume G is connected.

More generally, the voting value vj; is less or equal to 1 instead of always being 1, i.e., uncertainty
is considered. Then F' is a semi-stochastic matrix. We can prove that F* — 0 as n — o0
(see Appendix), thus 7" also goes to 0. Therefore, trust cannot be established at all if there is
uncertainty in votes.

We have shown that using the simple voting scheme, trust can only be established under certain
strict conditions: all voting values are 1 and the initial configuration must satisfy Z;VZI m;t;(0) > 1.
A single vote with value less than 1 will result in failure of trust establishment. This actually
emphasizes the difficulties of designing algorithms in self-organized networks. However, we want to
ensure fully established trust relations in virtuous network without depending on the initial states.
Therefore we introduce the notion of headers, which are agents that are always trusted with trust
value 1.

3.2 Voting with headers

As we just mentioned, headers are pre-trusted agents. For instance, they can be the leader of a
cluster, or agents holding a certificate signed by authorities. To simplify the discussion, we also
assume all headers only vote for nodes that they fully trust. Therefore, if a node i is trusted with
b; headers, it will get b; more votes with value 1. So define b; as the number of headers that fully
trust node i. Let B be the diagonal matrix with ith diagonal element equal to b; and 1 =[1 ... 1]’
Then the updating rule in (2) changes to

T(n)=(D+B)" Y VT(n—1)+ B1). (3)

Again as we did in Sect. 3.1, first the situation with all 1-valued votes is considered, i.e., V=A.
Define T'(n) =1 — T'(n). By Eqn.(3), we can deduce that T satisfies the equation

T(n) = (D+ B) "AT(n—1) £ FT(n — 1), (4)

where F = (D + B)™'A. Thus, T(n) = F*T(0). It’s casy to observe that if there is at least one
node i such that b; > 0, F' is a semi-stochastic matrix. From Lemma 1 in the Appendix, we have
F™ — 0, as n — oo. Therefore T'(n) — 1. It follows that

Corollary 1 For a connected graph, all nodes get fully trusted in steady state given 1-valued votes,
iff 3 at least one node that connects to one or more headers.

Thus adding just one header guarantees a fully trusted network. Now consider votes with
uncertainty. The following theorem is the main result of this paper.

Theorem 1 Given that the threshold of trustworthiness is i, the number of headers for each node

must satisfy
n

B1> -1 (D-V)1
L=mn
Proof Using a similar technique as above, let T(n) = £ — T(n). Substituting it into Eqn.(3), we
have

T(n)=(D+B)"'VTI(n—1)+(D+B)"'(D+B-V)¢t - B1). (5)



Let the last term on the right hand side of Eqn. (5) be 0. Then T(n) — 0 as n — 0, so T(n) — &.
According to the decision rule, we want 7' = lim,,_,, T'(n) > 71, therefore £ > n1. Consider
the case & =01, since (D + B)"! (D + B — V)¢ — B1) = 0, we have

n
Bl=——(D-V)1.
(D)

Notice that the function f(x) = % is strictly increasing for z € [0,1). If we want £ > 1, then

n
Bl1>—(D-V)1.
> - (0-V)

Similarly, for graphs that are not connected, the theorem holds for each connected component
separately.

Theorem 1 proves as well as provides a network design method to establish a fully trusted
network by introducing certain number of headers. Moreover, this method only employs local
interactions, and it converges to the desired result without dependence on any initial configuration.

4 Convergence rate and network topology

Having found a simple and light-weight trust establishment method, the next concern is the dy-
namics of the trust establishment procedure. In particular, we investigated the time it takes to
reach the steady state, in other words how fast the trust values converge. We introduce an im-
portant theorem , the Perron-Frobenius Theorem[2], which states that for a stochastic matrix A,
A" = Xtoyul + O (n™27 1 A9|™) ,where )\; is the largest eigenvalue with its left and right eigenvector
u and v; respectively?, Ao is the second largest eigenvalue and ms is the algebraic multiplicity of
A2. Thus the convergence rate of A" is of order n™2~!|\y|". Normalized adjacency matrices are
stochastic matrices, therefore those with smaller Ay converge faster.

Then the question becomes: what kind of networks or which network topology has smaller
A2? Since the well-known small-world paper by Watts and Strogatz in 1998 ([11]), research on
network topology has gained voluminous attention. The small world models have two prominent
properties: high clustering coefficient and small average graphical distance between any pairs. The
small average distance essentially indicates that nodes can communicate with other nodes in a few
hops given a very large network.

In this paper, we consider one of many small-world models, the so-called ¢-model ([10]), which
is modeled by adding small number of new edges into a regular lattice. The network starts as a
two-dimensional lattice with periodic boundary, and the neighbors are those one hop away. Then
new edges are added by randomly choosing two unlinked nodes. In our simulations, a network is
considered with 400 nodes on the lattice. For the original lattice, each node has 4 neighbors, and
the total number of edges is 800. Each simulation includes several rounds. At each round, 2 new
edges are added randomly into the network. The second largest eigenvalue and the convergence
time are computed for each round. Figure 1 shows the second largest eigenvalue A9 as a function of
the number of new edges added. It shows that with more edges added, the second largest eigenvalue
of the graph decreases. So, generally speaking, small-world networks have smaller second largest
eigenvalue than the original lattice. Figure 2 illustrates the substantial changes of the convergence
time as new edges are added. Notice that given 8 new edges are added, which is just 1% of the
total edges, the convergence time drops from 5000 rounds to 500 rounds. Thus trust is established
much faster in a network with small-world property than a regular lattice. This conclusion also
provides a direction for network management so as to achieve good performance.

4Notice that A\; = 1 for a stochastic matrix.
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5 Conclusions and Future Work

In this paper, we formally defined a trust establishment strategy only based on local interactions.
We showed that under very strict conditions, this self-organized rule is capable to establish a trust-
connected graph. However, we provided a very simple and light-weight scheme that guarantees the
trust establishment procedure converging to the fully trusted state. We also discussed the topology
effects on trust spreading, which enlightens a new way for network management.

The scheme in this paper is a simple weighted average. We believe there are better rules for local
interactions, for instance, only nodes with high enough trust value are legitimate to vote. However,
though the weighted average rule in this paper is primitive, it’s the starting point of our exploration
on how reputation is built up in a purely decentralized network. Even though previous works have
shown good results on identifying malicious behaviors, we are also working on the analytical proofs.

Appendix

Lemma 1 If F is a semi-stochastic matriz, then F™ — 0 as n — o

Proof Define F" = { fl-(;l)}. Without loss of generality, assume Z]kvzl fl(llg) < 1 and for j # 1,

N (1
> k=1 f](k) =1
Define positive integers m; = min{n]fl(?) > 0},v2 < j < N and m; = 0. Then

f(n) =0, ifn<m;
1j >0, ifn=m;

m; actually represents the shortest path length between 1 and j. Since the graph is connected,
m; < oo. The proof is finished by the following two facts

Fact 1 V1< j <N, ifl>m;+1, then S5 i) <1.
— N (m+1) .
Fact 2 Let m = max{my,...,mn} < oo, then > ,_, fjk: <LV1I<j<N.

So the largest eigenvalue of F™ is strictly less than 1. Thus F™ = (Fm)% —0,as > —oo. N
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