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Worms, DDoS and other Network Attacks 
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Abstract-Self-propagating code (worms) and Distributed 
Denial of Service @DOS) attacks are the most frequent and 
quite devastating attacks on communication networks and the 
Internet. In this paper we provide novel formulations for 
the rapid detection of these attacks in the control-theoretic 
framework of change detection. We present algorithms that 
effectively can detect worms from their temporal spread- 
ing characteristics. We describe the effects of the network 
topology on the algorithms and their performance. We next 
present algorithms for detecting DDoS while discriminating 
against changes in the normal traffic. This is accomplished 
by a distributed detection formalism where a concept of 
directionality is introduced and exploited. We then turn into 
attacks to routing protocols in mobile wireless networks. 
We develop change detection formulations involving Hidden 
Markov models, which match distribution of the number of 
hops in the mobile and wireless nodes. Using observations that 
suggest that this distribution is altered substantially in the 
presence of such attacks we develop and analyze algorithms 
for their detection. 

I. INTRODUCTION 
Intrusion detection mechanisms usually monitor and de- 

tect the misuse of network resources by keeping a series 
of statistics related to the normal or acceptable use of the 
network. Continuous monitoring of the network statistics 
is performed and as soon as the monitored statistics cross 
certain thresholds or violate a fixed policy on network usage 
an alarm is raised. 

Sequential detection theory provides an ideal framework 
to analyze and propose new algorithms for the quickest 
change detection of the monitored statistics. In this paper 
we use this approach to quickly detect attacks such as 
Worm spreading and Distributed Denial of Service. Due 
to the large scale of these attacks a distributed formulation 
where sensors are placed in different parts of the network 
is considered. In this way we are able to get a big view of 
the state of the network. Finally we consider monitoring the 
hop count distribution for distance vector routing algorithms 
as an approach to detect attacks to the routing protocols of 
wireless ad hoc networks. We assume the reader has some 
knowledge on change detection theory [I] .  

11. CHANGE DETECTION FOR WORMS 
For clarity of presentation we will consider active worms 

as opposed to email worms. Active worms are programs 
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that self-propagate across a network by exploiting vulnera- 
bilities in widely used services offered by computers in the 
network. In order to locate the vulnerable computers, the 
worm probes different computer addresses at the specilic 
port number of the service it is looking for. By exploiting 
the security Raw in the service offered by the computer, the 
worm can execute arbitrary code with elevated privileges, 
allowing it to copy and execute itself in the compromised 
machine. In order to reproduce, the worm scans for new vul- 
nerable machines from each new compromised computer. 
The prevalence of active worms can be seen from some 
examples in the last couple of years: Code Red I (July 
ZOOl), Code Red I1 (August 2001), NIMDA (September 
2001), Sapphire, also known as Slammer (January 2003) 
and Blaster (August 2003). 

A .  Why is it important to detect worms early in their 
development? 

The top three categories of computer attacks are directly 
related to worms and other self-propagating hybrid threats 
which exploit multiple vulnerabilities across desktops and 
servers. 

We would like to detect a worm as soon as possible 
in order to minimize the number of compromised hosts. 
A case example is the quick discovery and prompt action 
by System Administrators which prohibited Slapper from 
spreading further and prevented its damage [2]. Some 
highly contagious worms can also have side effects such as 
BGP routing instabilities [3] when they reach their peak. 
Currently however, detection usually relies via informal 
email discussion on a few key mailing lists. This process 
takes hours at a minimum, which is too slow for the rapidly- 
propagating worms. 

Furthermore in [4] it is stated that the spread of the 
theoretical flash or Warhol worms will be so fast that 
no human-driven communication will suffice for adequate 
identification of an outbreak before nearly complete infec- 
tion is achieved. It is therefore proposed to sponsor research 
in automated mechanisms for detecting worms based on 
their traffic pattems. 

B. Detection algorithms 
Although the spread of a worm increases traffic over a 

network, the worm itself is small (Code Red was 4KB), 
and it only takes 40 bytes for a TCP SYN packet to 
determine if a service is accessible, so detection cannot 
rely of bandwidth statistics. However, the self propagating 
code will try to use specific vulnerabilities that can be 
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identified with certain port numbers. So in the rest of this 
chapter we will assume that the traffic monitoring variable 
X is the connection attempts (probes) to a given TCPAJDP 
port number(s). We will also assume most of the times a 
parametric pdf /(X) on the traffic observations. 

The use of host unreachable messages and connection 
attempts to routers as a way of detecting worms will be 
less reliable while the worm is getting off the ground if 
it uses a hit-list scanning [4]. The observations can be 
made at different participating ISPs enforcing policies for 
blocking self-propagating code once it is detected. So in OUI 
framework we assume that there is a baseline of connections 
to the given monitored port in all sensors (computers) of the 
network. 

We explore the effect of aggregation from distributed 
sensors. This approach is motivated by the current infras- 
tructure of distributed Intrusion Detection Systems. Further 
motivation is presented in [4] as the authors propose to 
foster the deployment of a widespread set of sensors for 
worm detection (possibly in the Internet backbone.) 

We first introduce the simple model of detecting changes 
in the mean, and then we introduce a "signature" for worm 
detection, as a way to reduce the detection delay (or the 
false alarm rate). 

1) Distributed defection of a change in the mean: Clearly 
the simplest approach to change detection is to detect a 
change in the mean. 

Despite the abundance of techniques addressing the 
change detection problem, optimum schemes can mostly 
be found for the case where the data are independent 
and identically distributed (i.i.d.) and the distributions are 
completely known before and after the change time ko [SI. 
The cumulative sum (CUSUM) and the Shiryaev-Roberts 
statistics are the two most commonly used algorithms for 
change detection problems. 

Let {xk} he the aggregate traffic from all the sensors in 
the network. To detect a change in the mean we assume 
{Xk} is i.i.d with pdf jfo) before and f l l )  after the change, 
such that the historical mean ELfia)(A')] is less than the 
change mean E v l ) ( X ) ] .  

2) Detection ofan exponential signal in noise: Clearly 
detecting a change in the mean might give rise to several 
false alarms as there might be cases where the observed 
traffic increases during the normal operation of the network. 
Furthermore, the i.i.d assumption of the observations after 
the change is too strong because each infected host will 
try in general to scan the same number of hosts in a 
given interval of time, and as more and more hosts become 
infected& will increase with k. In particular we know from 
simple population dynamic models that a worm scanning 
uniformly random the whole network will follow a logistic 
growth [4]. 

Let f l  be the population of infected hosts. Let r be the 
intrinsic growth rate (the growth rate when q is small) and 
let a be a given positive constant. Then the logistic growth 

satisfies the nonlinear ordinary differential equation 

with solution 

where B = r / a  and NO is the population at time 0. Since we 
are interested in detecting a worm as soon as possible we 
will be interested in the behavior of a ( / )  when it is small, 
i.e. we consider the exponential growth 

~ q(r )  = Noer' (3) 

The equivalent discrete time recursion is 

(4) a(kAt) := 7; =Nom 

(d stands for "discrete") where m is the discretized growth 
rate when qd is small (m = e') and NO is the number of 
hosts compromised at k = 0. 

For the detection problem we will assume that the values 
of NO and r (or m) are unknown. We will also consider a 
dummy signal to represent any other growth pattern 
we want to discriminate (e.g. linear growth, a step function 
etc) from the growth of the worm 7;. 

k 

We assume a normal traffic aggregate 

distributed as fl0)(w1, ..., wk). Let X, denote the aggregate 
observation from all sensors at time k, i.e. 

Our main assumption in this section is that the number 
of probes seen at the' sensors will be proportional to the 
number of infected hosts aqi. The usual change detection 
hypothesis testing problem for the aggregate traffic (equa- 
tion 6) would he as follows: 

Ho:xk=q$n;mY+Wk when l i k < M  

dummy H I :  %=?Ik +wk w h e n I < k < k o  
Xk = a l $ + W k  when ko < k < M  

However, we want k to restart to 1 whenever If0 is 
accepted, so we use a sequential hypothesis test where the 
change time ko is implicitly given by the time in which the 
sequential test restarted and HI was accepted. 

I 

H I :  x k = a $ + w k w h e n l < k < M  
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a) Exponential signal detection in noise: Since we 
assume we do not know the parameters a,No and m, we 
compute the generalized likelihood ratio (GLR) in a given 
time window [l, ..., MI and compare it to a threshold h. 
We also assume the dummy signal has some unknown 
parameter p (e.g. the slope in a linear growth). Therefore 
detection of the signal aqi in noise wk is achieved with 
the test: 

b) Nonparametric regression detection: So far we 
have always been assuming a parametric distribution 
f l o l ( w , ,  ..., wk) for the n o m 1  traffic. This assumption is 
valid for a wide number of ports as the traffic seen can he 
regular. However in some cases the real distribution can be 
quite difficult to obtain. For example the number of probes 
seen to port 80 (WWW) or port 21 (FTP) for computers 
providing those services can exhibit long range dependence 
and multifractal behavior that can he difficult to capture with 
a parametric model. In order tn deal with some of the more 
complicated traffic observations we propose a heuristic non- 
parametric change detection algorithm similar in essence to 
the problem of detection of an exponential signal in noise. 

The idea is to do a linear regression on log(xi) .  This 
regression will produce two parameters, a slope c and the 
error err from the estimated regression OfXk, ..., X M + ~ ,  From 
this we compute the statistic z ~ + k  = c/err.  We use a sliding 
window on k to compute the statistic. Then we apply the 
non-parametric version of CUSUM or the Girshik-Rubin- 
Shiryaev algorithms to z ~ + k  [6] .  

111. CHANGE DETECTION FOR DDOS ATTACKS 

A .  w71y is it important to quickly detect routers participat- 
ing in a denial of service attack? 

Almost all DDoS attacks involve multiple networks and 
attack sources, many of which have spoofed IP addresses 
to make detection even harder. An attempt of the victim to 
choke off the offending traffic requires network administra- 
tors to call upstream service providers, alerting them of the 
attack and having them shut down the traffic. That process 
has to be repeated all the way back to every attack source. 
So although DDoS are easily identified at the victim’s site, 
it is natural to extend the quickest detection problem to 
transit networks (ISPs) for faster response to an attack. 

At the ISP level, traffic anomalies are difficult to detect 
in the aggregated network traffic. Examination at per-flow 
basis at the IP level cannot usually scale up to the high- 
speed links in the transit networks, sn a reasonable approach 
for transit networks carrying a large amount of traffic which 
cannot be analyzed at line rate should not keep the number 
of packets to a specific destination, as this might he too 
expensive during operation. Thus we are interested only in 
passively monitoring the aggregate traffic, without the need 

L 

Fig. 1. A transit network composed of nodes a. b, c and d 

to store header information from the packets transmitted 
through the network. 

E. Detection Algorithms 

I )  Problem formulation : We take a new approach for 
identifying Distributed Denial of Service attacks by a set 
of nodes in a transit network. The basic idea is that at each 
highly connected node the data tends to aggregate from the 
distributed sources toward the destination, giving a sense 
of directionality to the attack. This directionality idea will 
provide a framework to design change detection algorithms 
that are going to be less sensitive to changes in the average 
intensity of the overall traffic and will focus on differen- 
tiating random fluctuations of the network traffic versus 
fluctuations where there is a clear change in the direction 
of the flow at a given node. We are considering packets 
in a very broad and general way, hut clearly our approach 
can be extended to monitor certain specific packet types 
given the protocol. For example we might be interested 
in measuring only TCP SYN-ACK response packets for 
identifying a reflected distributed denial of service attack, 
or ICMP packets for identifying ping floods. 

Assume we are monitoring node d in figure 1. Let @ 
denote the stochastic process representing the total number 
of packets sent by d through the link ( d , m )  (an ordered 
pair) at time step k, where m E J ( d )  denotes a neighbor 
of d, and N ( d )  the set of neighbors of d .  Let Xi denote 
the vector with the elements @ and let 

We will be interested in changes of the form: 

e: + vr, (9) 

where v is a non-negative scalar and Tm (in the case of 
three observed links IA’(d)l = 3 )  is one of the usual basis 
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vectors of the three dimensional Euclidean space. Namely: 

So in figure 1, if node d suddenly starts a broadcast, there 
will be a change in the mean of all processes. However 
we are not interested in such a change. Instead if there are 
attackers in the subnetworks attached to b and c, and they 
target a host in the network attached to a by flooding it, 
there will be a change in the direction To. Testing directions 
should help us in discriminating unwanted false alarms due 
to random fluctuations of the flows. 

To formalize our ideas we consider the framework dis- 
cussed in [ l ]  of change detection in a known direction 
but unknown magnitude of the change. Our problem is 
a little bit different in that we are considering an M-ary 
sequential hypothesis testing problem and that we will not 
allow changes with negative or zero values for V ,  i.e. we 
impose the restriction v 2 0. 

Thus the resulting change detection problem is: 

where tChange is an unknown time step when the change 

Since we have an unknown parameter v we follow the 
generalized likelihood ratio (GLR) for a multihypothesis 
test: a test for each possible direction T,, vs the null hy- 
pothesis: a change in all directions Yd. The null hypothesis 
is selected for discriminating a change in one direction vs 
a change of the overall traffic of the network either as an 
increase or decrease: 

occurs. 

where A is a scalar not necessarily greater than a positive 
constant c1 unlike v (i.e. we allow also for a decrease in the 
overall network traffic). The threshold hdxm for each of the 
tests is selected given a fixed false alarm rate probability. 

To stop the test we can run all hypothesis in parallel 
and only the test $." that reaches its given threshold is 
stopped. However this is a heuristic procedure as optimal 
solutions to the problem of sequential testing of more than 
two hypotheses are, in general, intractable. A more elaborate 
stopping rule is presented in [7] with a proof of asymptotic 
optimality as the decision risks (or error probabilities) go 
to zero. 

2) Sensor Fusion: So far we have been focusing on 
detecting a change in a single node. One of the main 
advantages in having several nodes under monitoring is that 
we can perform an aggregation of the statistics between 
the different nodes in order to decrease our detection delay 

Fig. 2. The transit network 

given a fixed false alarm rate probability. In particular if we 
are monitoring nodes far away from the destination, most 
of the local statistics will not yield an alarm and the attack 
might be unnoticed. 

The alarm aggregation can be performed by several 
methods. Here we propose a simple heuristic that will apply 
to any distance vector routing protocol. 

We want a mechanism to aggregate the different statistics 
at each monitored node, taking into account that the com- 
puted statistics for all nodes can vary to different scales 
of magnitude yielding a biased addition. To cope with this 

problem we compute the normalized statistic cp,"'" := k. 
I f  none of our monitored nodes has raised an alarm, the 
number of monitored nodes will be bounded by xdpp. 
This can be in tumed,interpreted as a new upper bound for 
a collective threshold which can be selected given a false 
alarm rate probability: 

Selecting which statistics to add is the key issue. In 
keeping with our directionality framework we will combine 
only the statistics relating two or more nodes to a common 
destination. The algorithm is as follows: 

Given two nodes d and e; 
For each link d + m 

For each link e +,n 
If there is a node f reachable through d + m and e + n 

d,m 

then add their normalized statistic; 

We now apply this formulation to the case of two monitored 
nodes (a natural extension follows when we are monitoring 
several nodes). Suppose we monitor nodes 6 and 3 in the 
transit network model'shown in figure 2, where the transit 
network consists of 15 routers numbered from 0 to 14. 
Each cloud represents a stub network with its own routing 
domain. 

The routing tables required for the aggregation algorithm 
are given in Tables 1 iand 2. By simple inspection of the 
routing tables we see that we need to correlate the link (6,O) 
with (3 , l )  because nodes 6 and 3 use them (respectively) to 
reach nodes 0, 1 and 14. Similarly, the link (6 , l l )  must be 
correlated with (3,l I),, link (6,4) with (3,4), link (6,7) with 
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I Link I Routing to nodes I 
1,0,2,14, I0,9,12 

(3.13) 

13.11) 
(3,subnetwark) 

TABLE II 
ROUTING TABLE FOR NODE 3 

(3,13), (6,7) with (3,l)  and (6,s) with (3 , l l ) .  
If we denote as H; the hypothesis when node i or its 

subnetwork are under attack, then we have the follow- 
ing hypothesis testing problem created by the aggregation 
mechanism 

l (HnvHIvHII)  = q6" + Cp3" > hov lv14  

'IHii) 
- - p6,11+q3,11 > h i  

~ ( H ~ v H ~  = d''4 + q324 > h4vs 

~ ( H I I V H ~ )  
= > h13v7 6,7 + cp3,13 

1[HZVHIOVHIzVH9) = q6" + p3" ~ Z V I O V I Z Y ~  

I[&) = p 6 , 8 + p 3 J  > ha 

where 1 0  is the indicator function of the Hypotheses. If we 
have fixed routes in the network, the thresholds h;v...vj can 
be computed to reach a given false alarm rate. 

With this formulation not only can we improve our 
chances to detect "buried" attacks in single links by corre- 
lating statistics, but also diminish the impact of false alarms 
originating in individual nodes. 

Iv. CHANGE.DETECTION FOR ROUTING ATTACKS IN 
A D - H O C  NETWORKS 

A .  Problem formulation: mobility and hop count distribu- 
tion 

Our objective is to present a statistical framework that 
allows the incorporation of prior information about the 
normal behavior of the network and of network attacks in 
a principled way for the detection of known and unknown 
attacks. In order to avoid a large number of false alarms, 
we have to consider robust statistical models describing a 
baseline behavior for our feature of interest in MANETs. In 
contrast to other frameworks that allow anomaly detection 

Fig. 3. HMM interpretation 

[SI, we focus on the dynamic behavior of the protocol rather 
than using static models. 

In a highly mobile ad hoc network, as viewed by a 
monitoring node, the hop count is an important statistic and 
in most cases can be monitored with no overhead. The evo- 
lution of this distribution is directly related to the changes 
in the topology of the network. Each configuration imposes 
certain constraints on the space of hop count distributions 
and as the topology of the network changes from one set of 
configurations to the next. The space of the configuration 
can be abstracted and viewed as representing the hidden 
states of the network and the hop count distribution as the 
observations. 

In terms of the intrusion detection, the basic idea is 
that an attacker will change the routing information or 
maliciously modify the routing algorithm in such a way 
that our perceived evolution of the hop count distribution 
differs from the its dynamics under the "normal" conditions. 
When such a deviation persists, in a statistical sense to be 
described, we declare that an intrusion has occurred. 

B .  Statistical Model 

We build a discrete Hidden Markov Model (HMM) [9] 
with parameters ( n , A , B )  for modeling the evolution of 
hop count distributions. HMMs were selected for several 
reasons. They provide an generative representation of our 
system as the hidden states of the HMM can be viewed as 
abstractions of different spatial configurations of the mobile 
nodes (figure 3) and the observations as the dynamic evolu- 
tion of the hop count distribution. The parameters of discrete 
state HMMs can be specified or can be estimated efficiently 
while keeping a model with a low bias. The generative 
and intuitive nature of HMMs allows incorporation of prior 
knowledge and misuse detection by providing a language 
model, i.e. a model that provides the HMM with expert 
information on allowable state transitions which reflect our 
knowledge on mobility. Signature-like intrusion detection 
can also be incorporated by using HMM models of the 
attacks we already know. 

For simplicity, we will assume aproactive distance vector 
routing protocol such as DSDV [IO] in order to have access 
to all hop counts at any time. 

If we have N + 1 nodes, the hop count distribution at the 
time step k can be considered as a vector in {O, . . . ,N}D: 
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Xk = [z, .._, XF-']' (4 E {O, ..., N } )  where D is a limit we 
impose in the maximum number of hops we will consider, 
i.e. is the number of disconnected nodes, is Xi the 
number of nodes 1 hop away, ..., XF-' is the number of 
nodes D - 2 hops away and XF-' is the number of nodes 
D - 1 or more hops away. 

In order to consider a discrete HMM we need a way to 
deal with the high-dimensional observation vectors Xk. The 
number of all possible observations is ( N t  l)D-l since we 
are working with a hyperplane in ( N +  with constraint 
CEi'Xi = N +  1. A natural approach is to encode xk to 
&, a member of a set .of M codewords. A good selection 
of the codewords is nontrivial. One approach to obtain the 
codebook B is to leam it from the normal operation of the 
network, or from simulations of expected node mobility. 
The Ieaming algorithm can be a compression algorithm in 
which for a given fixed rate R, we try to find the codehook 
that minimizes a distortion function (usually a quadratic 
distortion is considered). Another approach to is to consider 
a set of M key reference distributions of the hop counts, 
chosen by an expert trying to define the observables of an 
anomalous behavior. 

C. Defection 
In order to continue in the change detection setup we 

follow a CUSUM procedure applicable to the case of 
dependent observations xj with distributions fe, and fen 
under hypotheses H ~ a n d  Ho respectively [ I  11: 

where xk is the first sample after the last reset, i.e., 3k-l = 0. 
It is clear that this algorithm is only a reformulation of the 
sequential probability ratio test (SPRT) algorithm for the 

threshold selected at 0. The upper threshold h will be 
selected given a false alarm rate. 

The attack models can be intuitively represented as 
HMMs fe, = (ne, , A B ,  ,BeI). Prior knowledge and misuse 
detection can be introduced as previously discussed. We can 
also take an approach of anomaly detection by selecting 
the uniform distribution, i.e. V i  E 2 we have fe, (2) = 1/M 
as the altemate hypothesis. By the principle of maximum 
entropy we can conclude that this is a way of not assuming 
anything about the attack and therefore it is particularly 
suited for detecting the attacks we do not know. 

log-likelihood ratio: log (" f&n,xn_l (X"'"-''.."') ,,,,, y) with the lower 

v. EXPERIMENTS, SIMULATION AND RESULTS 
We performed several experiments to evaluate the perfor- 

mance of the algorithms under a wide range of network traf- 
fic assumptions and network topologies. The experiments 
and simulations can be found in [12]. Here we summarize 
some of the results. 

The worm detection problem is heavily dependent on 
the network topology and selection of monitoring nodes. 
In scale-free networks [13] a very small set of the highly 

connected nodes is sufficient for detection, and aggrega- 
tion only improves +e performance of the nonparametric 
statistics. However, if we select sensors at random or if we 
monitor a random network [I31 then aggregation is very 
important for detection. Most of the paramehic statistics 
perform comparably ,under a wide variety of conditions. 
However when the traffic deviates significantly from the 
assumed distribution,: the best performance is obtained by 
the nonparametric statistics. 

In the simulation of denial of service attacks, for local 
detection, testing for changes in the direction of the flow 
(our discrimination parameter from normal changes in the 
network) provides better performance than simply testing 
for change detection separately per link. In the distributed 
detection case, by cokelating an overall flow directionality 
we were able to extrakt waming of attacks that would have 
been otherwise missed in local detection nodes. 

For ad hoc networks, our HMMs provide an intuitive 
model of the network routing behavior, and a principled 
way for adding expert knowledge in the form of language 
models. Simple dismptions to the routing protocol such 
as a faulty node claiming a random distance to any other 
nodes can he detected with a system that leams the normal 
behavior of the network and uses the anomaly detection 
framework. Detection of more complex attacks such as a 
Blackhole or a Wormhole require incorporation of prior 
knowledge into the HMMs in the form of a normal behavior 
specification or as attack models. 
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