Near-optimal policies for broadcasting files with unequal sizes*

Majid Raissi-Dehkordi and John S. Baras
Institute for Systems Research
University of Maryland
College Park, MD 20742
majidQ@isr.umd.edu, baras@isr.umd.edu

Abstract

Information broadcasting is an effective method to deliver popular files to a large number
of users in wireless and satellite networks. In a previous work, we used a dynamic optimiza-
tion approach to address the problem of broadcast scheduling for a pull system with equal
file sizes. In this paper, we address that problem in a more general setting where the file
sizes are not equal and have geometric size distributions with possibly different means. The
dynamic optimization approach allows us to find a near-optimal scheduling policy, which
we use as a benchmark to evaluate a number of other heuristic policies. Also, we modify
the resulting policy and apply it to the case with fixed (unequal) file sizes and compare the
results with some other well known, as well as new, heuristic policies. Finally, we introduce
a low-complexity heuristic policy to be used for practical implementations. The results show
that the performance of the new policy is very close to that of the original policy.

1 Introduction

Due to the increasing demand for access to information through wireless channels, finding
methods for more efficient usage of the bandwidth in satellite and wireless systems has become
an important issue. In many systems, popular packages of information are stored in the Network
Operation Center (NOC) and the users can retrieve them by sending a request to the NOC
and receive the corresponding file via the downlink channel. In wireless and satellite systems,
the inherent broadcast capability of the system allows for serving a number of requests, from
different users for a single file, simultaneously. This is done by sending a single copy of the
requested file on the broadcast channel so that all of the requesting users can receive it at
the same time. We call this type of systems the pull broadcast or pull systems as opposed to
the push systems where the files are broadcasted irrespective of the instantaneous number of
requests for them.

In a pull system with a large number of stored files, the server receives all the requests
and must schedule the transmissions based on the number of requests for different files. The
objective of the scheduling is usually the average waiting time of the requests for all files.
Compared to the wealth of research works on the scheduling problem in push broadcast systems,
fewer works have addressed the scheduling problem in the pull systems. The papers by Ammar,
Dykeman and Wong[1][2] introduced this problem and presented both heuristic and numerical
solutions for special cases. Later, Franklin and Aksoy[3] presented a heuristic policy (LxW)
that used the number of requests for each file together with the time since the last broadcast
of the file to calculate the index associated with that file. The policy would then chose the
file with the largest index value to be broadcasted. Su and Tassiulas[4] introduced another

*Research partially supported by NASA cooperative agreement NCC3-528, by MIPS grant with Hughes
Network Systems, and by, Lockheed Martin Networking Fellowship all with the Center for Satellite and Hybrid
Communication Networks at the University of Maryland at College Park.



index policy (PIP), which used the number of requests for each file together with the request
arrival rate for the file to calculate the index associated with that file. Both of these policies
performed almost identical to each other and also to the LTWF performance. In [4], a Markov
Decision Process(MDP) formulation of the problem was also presented. However, the complex
form of the problem prevented them from going very far with that approach. The work in [5] is
probably the only one to use a MDP formulation of the problem and find an analytical solution
for it. They investigated the problem in a more general framework and derived a near-optimal
index policy using the MDP formulation. They also used that policy to propose low complexity
heuristic policies that extend the PIP policy to this more general setting. All of the above works
on pull systems with minimum average delay objective assume equal file sizes. This restriction
results in a degradation of the performance when those policies are applied to more realistic
systems where the stored files have different sizes.

In this paper we investigate the same problem i.e., optimal scheduling of the broadcasts in a
pull system in order to minimize the average waiting time of the users. However, we investigate
the problem when the file sizes need not be equal. This situation is more general than the
fixed-length setting[5] and applies to a larger number of practical situations. To our knowledge,
there has not been any previous work, neither heuristic nor analytical, on this more general
problem and this work seems to be the first attempt to study it. We propose a MDP formulation
of the problem and use the ideas from the bandit problems to propose index-type scheduling
policies. We study the problem with random file sizes and later extend the policy to the
case with deterministic file sizes as well. In section 2, we present our MDP formulation of
the problem and the restless bandit approach for solving it. In section 3, after proving the
necessary properties of the system, we find a heuristic index policy for this problem. Section
4 is dedicated to evaluation of the policy and comparing it with some other policies. Due to
the lack of previous works on this problem, the well known scheduling policies do not cover
our system. Hence, we deviate from our evaluation and first find an experimentally optimized
heuristic policy for our problem and compare its results with that of our initial policy.

2 Problem formulation

We denote by N(> 1), the number of files stored in the system. We also assume that the
broadcasts can only start in certain time instants which are equally spaced in time. This
periodic setting introduces a time unit that can be set to one without any loss of generality.
The file sizes are random variables with Geometric distributions with parameter ¢; for type ¢
files. If we denote by I; the length of file ¢, we have

Pli=nl=q(l—q¢)" 'n>1,0<¢<1i=1,. N (1)

Here we implicitly assume that the sizes are rounded up to the smallest integer multiple of the
above time unit. We also allow preemption in the system, i.e. the broadcast of a file can be
interrupted by the system, so that another file is broadcasted, and can be resumed at a later
time. However, this can only happen at the beginning of every broadcast period. Therefore,
every broadcast initiation time t = 0,1, ... is a decision time (and also a possible preemption
time). The waiting time of the requests for a file is defined as the time since the arrival of the
request until the end of the transmission of the last segment of that file. The new requests for
each file which arrive after the beginning of the transmission of the first segment of the file, need
to wait till the beginning of the next transmission of the file. We also assume that the system
has K(1 < K < N) identical broadcast channels. This pull system has complete knowledge
about the number of pending requests for each file and based on this information determines
the file to broadcast in the next time unit in order to minimize the average waiting time over
all users.

The request arrival process for each file 4; i = 1,..., N is a discrete-time, stationary, iid process



Currently in servickA waiting for the next service

page 1 - (=== .,___..___‘_" ““““““ 1
page 2
f—————=17 T "
page 3 e == '__,___r——
Transmitted 2 1 3 3 2 1
P
aiveses N\ T
have length 2)
t t+1 t+2 t+3 t+4

Figure 1: Sample path of a system with three files.

which we show by A;(t); t =0,1,.... We denote by p;(a); a > 0 the pmf of the arrivals during
every time unit and show its mean value by A;. In this paper, we assume that the time slots are
short enough so that the probability of having more than one arrival for each file is negligible,
though many of our results hold for the general case as well. The state of the system at any time
instance t is X (t) = (X1(t),Y1(t), Xa2(t), Ya(t),..., Xn(t),Yn(t)) where X;(t) is the number of
requests for file 7 at time ¢t that have received at least one segment of the requested file and
Yi(t) is the number of requests for the same file which arrived after the broadcast of the first
segment of the file and therefore need to wait till the next full broadcast of that file. Each
(Xi(t),Yi(t)); i =1,..., N process is a Markov process with transition probability

(0, V() + Ai(1)) w.p. g if i €d(t)
(Xi(t+1),Yi(t+1)) = § (Xi(t), Yi(t) + Ai(t)) w.p. (1 —qi) ified(t) (2)
(Xi(t), Yi(t) + Ai(t)) ifi¢d)
if X;(t) > 0 and
(0, A;(t) w.p. ¢ ifiedt)
(Xt + 1),Yit + 1)) = (Yi(t), Aq(t)) wp. (1—q) ifiedt) (3)
(0,Yi(t) + Ai(t)) ifidd(t)

if X;(t) = 0. Here d(t) C {1,..., N} is the set containing the indices of the K files broadcasted
at time ¢. Figure (1) shows a sample path of the evolution of a system with three files and a
single broadcast channel.

The average waiting time over all users is defined by

z%

where W; is the average waiting time for all file i requests and \ is the total request arrival rate
to the system. By Little’s law the average waiting time can be written as

1
=3 g (4)

where X; and Y; are the average numbers of the requests currently in service or waiting for ser-
vice in queue i, respectively. To avoid the difficulties associated with the average cost problems,



instead of minimizing (4), we use the total discounted reward criteria and try to minimize the
total discounted expected number of waiting requests defined as

00 N
Jp(m) = E | B (Xi(t) + Yi(t) (5)
t=0 =1

Here 7 is the scheduling policy resulting in Jg(7) and under mild conditions[6] (1 — 3)Jg(m)
approaches the optimal value for problem (4) as  — 1. Equations (5) and (2), together with
the initial condition (X (0),Y(0)), define the minimization problem

N

S8 S (X(t) + Yil)
t=0

=1

J3(m) = min (6)

It can be shown[7] that Jg(m) satisfies

N

> (Xi(0) +Y;(0))

i=1

(1=pB)Js(m)=E +BE

o) N
B At
t=0 =1

= BE > 8" aiXi(t) + Vi) I[Xi(t) = 0])
t=0

=0 ed(t)

Therefore, since the first two terms of the right-hand side are independent of the policy m, the
problem of minimizing Jg(7) would be equal to the maximization problem

Js(m) = max > BN G(Xa(t) + Vi) I[X(t) = 0]) | - (7)

t=0  ded(t)

Our goal is to find near-optimal policies for this maximization problem.

3 Derivation of the index policy

Problem (7) is a dynamic programming (DP) problem with decision space D = {d; d C
{1,2,...,N} & |d| = K} and state vector s = {x1,y1,...,2ZN,yn}. Let us denote by S the
state space of the problem. The expected reward for broadcast of files in d € D at any state
seSis
r(s,d) =Y qi(x; + yil [z = 0)).
i€d

Also, if we show the optimal value function of this problem by V(s), then V(s) satisfies the
optimality equation

V(s) = max r(s,d)+ Z pi(s,s\V(s')| Vse s (8)
s'eS

where p?(s, s') is the probability of going from state s to state s’ with decision d as defined
by equations (2) and (3). In generic terms, this problem is a scheduling problem in a queue-
ing system with N queues and K servers with different Geometric service times for different
queues. The additional property which distinguishes this problem from the similar well-known
scheduling problems [8, 9] is the fact that the servers are of the bulk service type with infinite
bulk size.

In this work, we limit our search to non-idling policies. Given the fact that there is no cost



associated with each service, it can be shown that a non-idling optimal policy always exists.
Moreover, for practical reasons, we are only interested in index policies. An index policy assigns
a value (indez) to each queue and picks the queue(s) with largest index for service. Whittle’s
formulation of the restless bandit problems[10][11] provides a general framework for finding
heuristic index policies for this type of problems where a limited resource should be allocated
to a finite number of controllable Markov chains in order to maximize some average or time-
discounted reward function. That heuristic policy also benefits from some form of asymptotic
optimality [12]. However, its existence and the form and complexity of the index function de-
pends on the properties of the problem at hand. For the current problem, we need to consider
the auxiliary single-queue problem defined as follows:

Imagine one of our bulk service queues with arrivals and service times as before. The sub-
problem we are interested at is to find the optimal policy that results in the maximum expected
value of the discounted reward given a fixed service cost v for each service. The optimal policy is
the optimal assignment of active (serving the queue) or passive (leaving the queue idle) actions
to every state. More precisely, the objective function is:

Js=E|> B'R(t)
t=0

where R(t) is the reward at time ¢, that is

a:éti —v  wp.q if dEt; =1& 1‘Et§ >0
) oyt)—v w.p. q if d(t)=1& x(t) =0
R(t) = —v wp.l—q if d(t)=1

0 if d(t) =0

where d(t) is the action at time ¢ which is 1 if the queue is served and 0 otherwise and (x(t),y(t))
is the state of this system at time ¢ as defined before.

With the definition of the single-queue sub-problem, the requirements and the index function
defined by the restless bandit formulation are as follows. We need to find if the solution to the
auxiliary single-queue problem is of the threshold type i.e., there exists a curve defined by a set
of points in the state space S where it is optimal to serve the queue if (x(t),y(t)) falls inside
(or below) the curve and leave the queue idle otherwise. The switching curve is of course a
function of system parameters including v. If the switching curve is a non-decreasing function
of v, the near-optimal index function for each queue i = 1,..., N in the original problem is the
value of v; that places the switching curve over the state (x;,v;).

For any given A\, 8 and ¢, The optimal policy can be found by numerically solving the above
DP problem using one of the well-known numerical methods[6]. Figure (2) shows one example
of the form of the optimal policy with the idle and active regions distinguished. It can be seen
that the optimal policy is of the threshold type in both x and y directions (except x = 0). In
fact,

Property 1 If d(z,y) is the decision defined by the optimal policy for state (x,y) we have
if d(xz,y) =1 then d(z +1i,y) =1; Vo > 0andi > 0; 9)

Proof: [7].

Although all of our numerical results (e.g. figures 3 and 2) also confirm the threshold property
in the y direction, a general proof for this property proved to be rather difficult and involves
considering different situations depending on the parameter values. However, the interested
reader is referred to [7] for a detailed discussion of the proof for the properties of the switching
curve using the induction over policy iteration method along with other algebraic arguments.
These properties basically describe the threshold property in the x and y directions in more



Optimal decision regions for a single queue problem Examples of the switching curve for different parameter values
T T T T T T T T T T T T

120

o (*qv]

=)
S
=
u
o
©
/

switching curve B=099 120 TT~—

—T
/
/

T~ [09 02 80]

~—

|
100+ T

@
S

activation region [1.0 0.8 12.0]

idling region

IS
S
T

[1.0 02 3.0]

Requests waiting for the next service (y)
@
3
y

20

, . . . . . , . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45 50
Requests currently in service (x) X

Figure 2: Typical shapes of the idle and ac- Figure 3: Optimal switching curves for prob-
tive regions for a single queue problem. lems with different parameter values.

detail. In fact, in [7], the continuous space approximation of the value function for this problem
is used to also find the exact location (within the rounding errors) of the switching curve. It
can be shown that the intersection of the curve with the x = 0 axis, shown by yq is given by

v Bp1 -
Yo=—+ 1—c¥ 10
Sty - (10)
where ¢ = 1235 f 9 po =1 —p1 and p; is the rate or equivalently, the probability of one arrival.
The intersections of the switching curve with & = cte lines shown by y.; x = 1,...,x( are given
by
1 |v ap1
} Ba | q q
where a = % and xg = {%J Also, y = 0; x > x¢. For the switching curve defined with

the above equations the following property holds:
Property 2 all y,; x =0,...,x9 values are increasing functions of v.

Proof: [7].

Since z( is also a non-decreasing function of v, the idling region defined by the above values
is also a non-decreasing function of v. The above equations also allow us to find the index
function for any (z,y) state. As mentioned before, the index function at any state (z,y) is by
definition the amount of service cost v that puts the point (x,y) on the switching curve. for
x < xg, the yo value satisfies

1 | Bp ] ap1 < 1 ) P
y+—[ +z|+— =y |1+ — |+ 5. 12
Ba [1-p q Ba)  a(l—p) ()
Having found the value of yg, the corresponding v is
q8p1 -
V:qyo_l_ﬂ(l_c yo)_ (13)

If the resulting v turns out to be smaller than gz, then x is on the right border of the idling
region, i.e. v = qr. For x = 0 case, the available y is in fact the yg value and v is directly
calculated from equation (13).

Having found the index function, the near-optimal scheduling policy is to calculate the index
vi(z;(t),y:(t)) associated with each queue i = 1,..., N at any decision instance ¢, and broadcast
the K queues with the largest index values. In the next section, we compare the results of this
policy with those of other well-known policies through simulation studies.



4 Results

Unfortunately, to our knowledge, the broadcast scheduling problem with unequal file sizes
has not been addressed before. Therefore, we do not have any immediate rival policy readily
available for comparison. However, based on previous experiences, we chose a number of well-
known policies used in simpler broadcast systems for comparison. Also, we suggested a low
complexity index function with three parameters and experimentally optimized the parameter
values via a large number of simulations. We then used this policy as one of our candidate
policies and evaluated its performance with respect to our initial policy and also to the other
candidate policies. In all experiments, we extended our original index function to general arrival
rates by replacing the light traffic rate p; in the equations with the actual rate A; for each queue.

4.1 Candidate policies

We compared our policy, which we named NOP(Near-Optimal Policy), with a number of other
policies. We set up a system with 50 files and simulated it under different settings with each
policy. Other than the choice of the scheduling policy, every experiment had two other sets
of parameters namely, the average sizes of the files 1/¢;; ¢ = 1,..., N and, the total request
arrival rate of the system A. In all experiments, we used the Zipf law to assign the individual
request arrival rates \; to each queue i given the total request arrival rate A of the system.

In other words, for j > ¢, we have % = % and Zf\il Ai = A. In order to investigate the

effect of the choice of the average file sizes on the performance of the policy, we performed our
experiments for two different choices. In one set of experiments, we used ¢; = 1/i and in the
other set ¢; = 1/(N —1—1) for i = 1,..., N. In other words, the first set assigns the largest
size (on average) to the least popular file (¢ = N), and the smallest size to the most popular
file (¢ = 1). The second set uses the inverse assignment so that the most popular file also is
the longest file (on average). In the following, we use the terms increasing assignment and
decreasing assignment for these two methods, respectively. The policies that were used in the
final set of experiments are:

e NOP: The index policy derived in this paper.

e EPIP: Our extension of the original PIP policy introduced in [4] extended for the new

two dimensional setting
Tt oyl

TN

e EMRF': Our extension of Maximum-Request-First index defined as
vi = (z; + cyyi)

e FCFS: First-Come-First-Serve index defined as the current waiting time of the oldest
request in each queue.

e HP2: Heuristic policy defined as

. (mi + cyyi) g™
v, = T
Although the FCFS is a well-known policy in the queueing systems, our experiments showed
that it performs significantly worse than the other policies under consideration. Therefore, we
do not include its results in our graphs and concentrate on the closer behavior of the other
four policies. In the above equations, ¢, is an additional weight parameter to allow for more



average waiting time surfaces for cy:O.S and cy=1 0 average waiting times for diiierentaq and a, values

total arrival rate = 50
450 file sizes increasing with file index

520 total arrival rate = 50

00 GO
file sizes decreasing with file index

400
480
460
350
440
420
300 400
380

250 360

340
1

200 =
-0.8

02 -08

Figure 4: Effect of ¢, on the performance of Figure 5: Sample performance surface for de-
the heuristic policy. creasing average file size assignment.

flexibility in the index functions. We optimized this value for PIP and MRF policies by running
a number of simulations with different arrival rates (5, 10,20, 50, 100, 150, 200) and different ¢,
values (0.1,0.2,...,1.0) and finding the value that resulted in the smallest average delay for
each policy. Interestingly, for both policies ¢, = 0.5 gave the best results.

The heuristic policy HP2 involved a larger number of experiments to tune its three parameters.
In our experiments, for each of the two methods for assignment of file sizes, we ran experiments
for all combinations of ay € {0.0,...,1.0}, oy € {0.0,...,1.0} and ¢, € {0.1,...,1.0}. The
experiments were performed for two choices of the total request arrival rates namely A = 50
and A = 150. Figure (4) shows an example of the average waiting time surfaces for different
aq and ay values and ¢, = 0.5 and ¢, = 1.0. In this figure, for any choice of oy and «, the
average waiting time values for ¢, = 0.5 is always smaller than that of the ¢, = 1.0. In all of
our experiments, regardless of the choice of the rate, file size assignment and the two exponent
values, ¢, = 0.5 always gave the best results. Also, in all of the experiments, regardless of the
values for the rate, file size assignment and c¢,, the choice of oy = 0.5 and a = 0.4 resulted in
the minimum average waiting time among other choices or a value very close to the minimum
(figures 5 and 4). We remind that our HP2 policy in its general form includes the EPIP and
EMRF policies and after finding the "optimal” parameter values for HP2, we always expect
HP2 to outperform these two policies. However, we still include the results for these two policies
as well-known policies that may be used by other people.

4.2 Performance results

The experiments were performed under seven choices of the total request arrival rates namely,
A = 5,10,20,50,100,150,200. Figure (6) shows the results obtained from all policies for the
qgi = 1/i; i = 1,..., N file size assignment. The results clearly show that the HP2 and NOP
policies perform almost identically. Also, although EPIP results in larger waiting time, it still
performs very close to the other two policies. However, EMRF results in a significantly larger
waiting time. Figure (7) shows the results for the case with ¢; = 1/(N —1—14); i =1,...,N.
Although HP2 and NOP again perform almost identical, EPIP results in a significantly larger
waiting time for this case. However, EMRF comes closer in performance to the optimal policies.
In general, we conclude that the original NOP policy is indeed a near-optimal policy since it
performs identical to the experimentally optimized policy HP2. The analytical procedure for
finding the NOP, gives it the flexibility to be modified for other variations of the problem. On
the other hand, for practical situations that match our experimental settings, HP2 can be used
as a low-complexity alternative to NOP.



File sizes inversly related to the arrival rate for each queue
350 T T T T T T T

Average waiting time

50 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
Total arrival rate .

Figure 6: Performances of the policies for in-
creasing average file size assignment.

File sizes L, increase as the file index i increases
350 T T T T T

300 I |

Average waiting time
I o
S &
3 g

@
=)

100

50 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Total arrival rate &

Figure 8: Performances of the policies for in-
creasing file size assignment.

4.3 Fixed file sizes

File sizes directly related to the arrival rate for each queue
800 T T T T T T

700 q

Average waiting time

200

100 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
Total arrival rate A

Figure 7: Performances of the policies for de-
creasing average file size assignment.

File sizes L, decrease as the file index i increases
700 T T T T T

600 1

IS a
S =}
S S}
T
L

@
S
3

Average waiting time

200

100

0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Total arrival rate A

Figure 9: Performances of the policies for de-
creasing file size assignment.

In some broadcast systems, the files to be broadcasted are locally stored in the system and
therefore the system knows their exact sizes. Despite the failure of our approach for this case,
the resulting index policy can still be applied to these system as a candidate scheduling policy.
Also, all other policies defined above can be defined for this case by replacing the average file
size value 1/¢; with its exact value L; for each file. As a preliminary investigation, we applied
the same four policies namely, NOP, HP2, EPIP and, EMRF to similar broadcast systems
but with deterministic file sizes which exactly matched the average size values in the previous
cases. Figures 8 and 9 show the results for two choices of the assignment of sizes to the files.
The results are basically the same as our previous results for the Geometric file size case.
These results suggest that both HP2 and NOP policies might also be near-optimal policies for
the deterministic case. However, more investigations and experiments are needed for a better

evaluation of this policy.



5 Conclusion

In this paper, we used the restless bandit problem formulation to address the problem of optimal
scheduling in broadcast systems with random file lengths. We showed that the problem satisfies
the requirements for the existence of a near-optimal index policy and derived an equation for the
index function for the light traffic regime and extended it for use in moderate traffic cases and
fixed file size situations. At the same time, we chose several well-known, as well as new, heuristic
policies and tried to optimize them for use in our experiments. All of the results strongly suggest
that our policy outperforms the other policies. Also, one of our heuristic policies proved to
perform as good as the original policy in all experiments and can be used as a low complexity
policy for practical applications. The results suggest that the optimization approach can serve
as an effective method for finding near-optimal policies for different variations of this problem
with different cost structures or when distinct weights are assigned to different files.

References

[1] J. W. Wong and M. H. Ammar, “Analysis of broadcast delivery in a videotext system,”
IEEFE Trans. on computers, Vol. C-34, No. 9, pp863-966, 1985.

[2] H. D. Dykeman, M. H. Ammar, and J. W. Wong, “Scheduling algorithms for videotex
systems under broadcast delivery,” IEEFE Int. Conf. on Comm. ICC86, Vol. 3,pp1847-51,
1986.

[3] D. Aksoy and M. Franklin, “Scheduling for large-scale on-demand data broadcasting,”
Proc. INFOCOM 98, Vol. 2, pp651-9, 1998.

[4] C. Su and L. Tassiulas, “Broadcast scheduling for information distribution,” Proc. of
INFOCOM 97, 1997.

[5] Majid Raissi-Dehkordi and John S. Baras, “Broadcast scheduling in information delivery
systems,” Proceedings of IEEE GLOBECOM2002, Nov. 2002, Taipei, Taiwan.

[6] M. Putterman, Markov Decision Processes : Discrete Stochastic Dynamic Programming,
Wiley, New York., 1994.

[7] Majid Raissi-Dehkordi, “Broadcast scheduling in information delivery networks,” Doctoral
dissertation, Department of Electrical and Computer Engineering, University of Maryland
at College Park, 2002.

[8] P. Varaiya, J. Walrand, and C. Buyukkoc, “Extensions of the multi-armed bandit prob-
lem,” IEEFE Transactions on Automatic Control AC-30, pp426-439, 1985.

[9] J. Baras, D. Ma, and A. Makowski, “K competing queues with geometric requirements
and linear costs: the c-rule is always optimal,” J. Systems Control Lett., Vol. 6, pp173-180,
1985.

[10] P. Whittle, “Restless bandits: activity allocation in a changing world,” A Celebration of
Applied Probability, ed. J. Gani, J. Appl. Prob., 25A, pp287-298, 1988.

[11] Jose Nino-Mora, “Restless bandits, partial conservation laws and indexability,”
http://www.econ.upf.es/ ninomora/.

[12] Richard R. Weber and Gideon Weiss, “On an index policy for restless bandits,” J. Appl.
Prob., Vol. 27, pp637-648, 1990.



