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Abstract 
 

Dynamic and adaptive routing algorithms are the “brains” of mobile ad-hoc networks (MANETs), in that they 
govern the self organization of these networks. MANETs are infrastructureless “intelligent” networks, which 
are becoming increasingly popular and have wide applicability. In this paper we view dynamic adaptive routing 
algorithms for MANETs as hybrid systems (partly based on logic and partly based on numerics). In this paper, 
we introduce formal models for the analysis and verification of one such routing algorithm, the Temporally 
Oriented Routing Algorithm (TORA) under certain assumptions. More specifically we give a rigorous 
mathematical proof of correctness and convergence of TORA. Other formal methods, their limitations and 
future research challenges are also discussed. 
 

1. Introduction 
 

Mobile ad-hoc networks (MANETs) are 
infrastructureless communication networks that are 
becoming popular due to the expansion of broadband 
wireless connectivity to millions of users. They 
provide instant infrastructure for many applications 
including communications on the move, collaborative 
work, gaming, disaster relief, exploration, and defense. 
Routing algorithms (or protocols as they are often 
called) are an integral part of the operations of 
MANETs, particularly since they are directly involved 
in the self organization of these networks. Self 
organization is the reason why MANETs are 
considered “intelligent” systems. Thus careful design, 
evaluation and verification is a critical need for 
MANETs. Unfortunately, despite intensive research 
we do not have today many systematic and analytical 
methods and tools for the design, evaluation and 
verification of routing algorithms for MANETs. The 
situation is even worse regarding analysis of security 
properties of these routing protocols. 
 
These routing protocols are very good examples of 
hybrid systems, in the sense that they have some 
components that are logic-based and some 
components that are based on numeric variables and 
computations. Since they form the “brains” of 
MANETs, it is therefore of paramount importance to 
develop systematic methods for the design, 

evaluation, and verification of routing protocols for 
MANETs. 
 
In this paper we apply formal methods to the 
verification of TORA, which is a mobile ad hoc 
networking routing algorithm.  The main difficulty in 
applying any formal methods to a system like this is 
exponential state space explosion.  More commonly, 
formal methods have been applied to protocols rather 
than algorithms where the number of states is clearly 
finite.  TORA has an infinite number of states, 
though there is a structure to the state space that 
makes it simpler than the general problem. 
 
The primary reason for making things formal is that 
in doing so, the system becomes more precise and 
loses any ambiguity in interpretation. Sometimes, the 
only precise specification of any system is actually the 
source code, but code contains too many details 
specific to the implementation language and machine 
architecture. In our work, we considered several types 
of formal models including extended finite state 
machines, finite automata and regular expressions. A 
formal model here means that the system can always 
be decomposed into nothing more than typographical 
manipulations, which is why string representations are 
important. The ultimate goal of formal methods and 
models is to develop a way to go automatically from a 
specification to a proof of correctness for a system. 
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There are two separate approaches to formal methods 
although some work has been done towards their 
unification.  The first category of formal methods is 
state enumeration techniques.  The underlying model 
used here is that of a finite automaton.  The typical 
state enumeration system requires the specification of 
the system in some formal language, each claiming 
some advantages over the others, but fundamentally, 
they are all exhaustive simulations with extensive state 
space pruning techniques.  The limitation in these 
approaches is state space explosion.  In a routing 
algorithm like TORA, there is an infinite amount of 
space and an infinite number of scenarios that it can 
act in.  At most, a model checker will be able to say 
that under a given finite set of scenarios, a routing 
algorithm like TORA behaves as expected.  There is 
not in general a way to automatically infer that based 
on correctness in a finite number of scenarios that the 
algorithm performs correctly in an infinite number of 
cases.  It is usually unknown whether the very next 
unexplored scenario will exhibit an incorrect behavior. 
 
The second approach can be called proof methods. 
This approach attempts to deduce properties of the 
system by using theorems.  There is some work that 
has been done towards automating this, but most 
work is still done by hand.  Even so called “automatic 
theorem provers” would more aptly be called 
automatic theorem “checkers” as their main strength 
is in making sure that the human theorem prover 
remains honest and does not make any mistakes in his 
calculations.  Verification of proof steps is decidable 
in general, but actually proving a result from axioms is 
not.  This makes it possible to check theorems 
automatically, but not prove them.  Using theorems 
and proofs is much more powerful than model 
checking in the sense that it is possible to establish 
general results for an infinite number of scenarios.  
The disadvantage is that very little can be automated 
and a large amount of the work is left to the human 
analyst. 
 
1.1  TORA 
    
TORA, like other distance vector algorithms, uses 
only local information to maintain global structure.  
The information is distributed across different nodes, 
and no individual node has complete information 
about the routes in the network.  Each individual 
node acts according to a set of simple rules and 
through their combined behavior, routes emerge.  
The goal of this work is to “decompile” the lower 
level mechanisms of TORA into higher level 
mechanisms that can be verified as producing routes 
for the network. 

   TORA is based on a class of algorithms referred to 
as the Gafni-Bertsekas (GB) algorithms.  This class of 
algorithms is deficient in that when the network is 
partitioned, the heights (the distance metric associated 
with each node) grow unboundedly.  In practice, this 
will cause excessive network traffic as routing 
information continually propagates unproductively.  
TORA includes a partition detection mechanism to 
prevent this from happening.  This includes 
mechanisms for reactivating a node once it has been 
deactivated.  TORA also features some performance 
improvements over the original GB algorithms. 
   A proof of correctness and convergence properties 
for the GB algorithms exists. However as we shall see 
shortly TORA is not a GB algorithm. Indeed, there 
are actually cases where TORA fails to converge 
under some very special conditions involving changes 
in topology and link requests. 
 
1.2  Notation 
    
Throughout this paper, the following notation is used. 
 

G a finite graph with undirected links 

V the set of ordered vertices or nodes in 
G 

E the set of edges or links in G 

N the size of vertex set |V| 

x a node in V (each node x is assumed 
to have a unique integer ID and x is 
used interchangeably to represent 

(x, y) a link in V ((x, y) is equivalent to (y, x) 
as all links are assumed undirected) 

N(x) neighbors of x, { y ∈ V | (x, y) ∈ E } 

D(x, y) length of shortest path from node x 
to node y 

h(x) the height of node x (h(x) represents 
just the height, not the unique height) 

hf(x) the full unique height of node x, 
(h(x),x) 

h(x).α the first component of the height of 
node x

h(x).β the second component of the height 
of node x

 
If the link (x, y) exists, then it is expressed as (x, y) ∈ 
E, otherwise (x, y) ∉ E. 

∀ x, y ∈ V  x ∈ N(y) ⇔ y ∈ N(x) ⇔ (x, y) 
∈ E ⇔ (y, x) ∈ E. 

Since the graphs are undirected, nodes that are 
adjacent are adjacent in both directions.  Also, saying 
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that a node is in the neighborhood of another node is 
equivalent to saying that there is an edge between 
them. 
 
The system may evolve with time.  When it is 
necessary, appending [t] to a symbol represents its 
value at time t, for example E[t], or h(x)[t]. 
 
Sequences are ordered sets and they are represented 
by listing their elements separated by commas in 
order enclosed by the characters “<” and “>”.  
Certain set operations are defined for sequences.  
Membership, denoted with “∈” is a valid infix 
operator that indicates whether or not a particular 
symbol occurs in the sequence.  Care must be taken in 
defining other set operations, such as union and 
disjunction are not clearly defined for sequences 
because they depend on the elements to be 
unordered.  Sequences will have certain operations 
that are specific to them that are defined later. 
 
Tuples are denoted by having their elements listed 
enclosed by “(“ and “)” separated by commas,  are 
not like sets or sequences.  Tuples are a fixed length 
list of elements where like a sequence, the ordering of 
the elements has significance.  Unlike in a sequence, 
however, each element in a tuple has a specific 
meaning associated with it and this meaning is 
assigned by the position within the list.  In some 
cases, the meaning associated with each element in the 
tuple is the same, so the ordering effectively does not 
matter.  We allow an abuse of notation in that tuples, 
when they are prefixes of other tuples may have fields 
appended to them and then become the other tuples. 
 
TORA Specific Notation 
 

r(x) the reference level of node x 

h(x).α / 
r(x).α 

what TORA refers to as τ 

h(x).oid / 
r(x).oid 

the ID of the node originally 
defining x’s reference level 

h(x).r / 
r(x).r 

reflected bit of x’s height 

h(x).β what TORA refers to as δ 
 
In the GB algorithms, α and β are used to represent 
characters in a height string.  For notational 
consistency, α and β will also represent characters in 
the height strings of TORA.  TORA usually refers to 
these terms as τ and δ, but they are conceptually 
equivalent to the α and β of the GB algorithms. 
 

When referring to TORA, h(x) is a 4-tuple defined as 
h(x) ≡ ( α, oid, r, β ). 

r(x), which applies only to TORA, and not to the 
general GB algorithms, is given by the 3-tuple 

r(x) ≡ ( α, oid, r ). 
r(x) is also called the reference level and serves as a 
convenient way to refer to the first three fields of h(x). 
 
1.3  Link Reversal Algorithms 
    
TORA is based on a group of link reversal algorithms 
that we will refer to as the Gafni-Bertsekas (GB) 
algorithms [3].  The GB algorithms provide loop free 
routes in a network with bidirectional links to a single 
destination in the network using only information 
available locally, from adjacent nodes.  GB algorithms, 
unlike other distance vector routing algorithms, such 
as distributed Bellman-Ford, do not suffer from 
routing table loops. 
 
The algorithm assigns heights to each node such that 
the nodes can be totally ordered by their heights.  This 
ordering on the nodes implies a direction to each of 
the links: the links are directed from nodes with 
greater heights to the nodes with the lower heights.  
This creates a directed acyclic graph (DAG) from the 
undirected graph. 
 
The way that the algorithm assigns heights is by 
updating only those nodes that become local minima 
and therefore have no outgoing links.  When a node 
other than the destination becomes a local minimum, 
that is all of its neighbors have heights that are greater 
than its own, it increases its height so that it is no 
longer a local minimum.  As long as local minima 
other than the destination exist in the network, their 
heights continue to increase, until only the destination 
node is a local minimum.  When this occurs, and all 
nodes except the destination have neighbors that are 
lower in height, no more events are enabled, assuming 
a fixed topology.  The resulting height assignment is 
such that starting at any node in the network, by 
following links that lead to nodes of lower height, 
eventually the destination is reached.  The paths will 
not form any loops because the heights of the nodes 
are totally ordered and the hops along the paths must 
proceed by strictly decreasing node height, 
guaranteeing uniqueness of the nodes traversed.  For 
a proof of all the properties discussed here, see the 
paper by Gafni and Bertsekas. 
 
There are assumptions that an algorithm must satisfy 
in order to guarantee the properties to be described 
below: 
P1) The only time a node may update its height is    
       when it assumes a greater height, reversing the  
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       direction of its links when it is a local minimum.   
       Decreasing height is forbidden.  This rule has one  
       exception: for the destination node, height  
       updates are never allowed. 
P2) The new height must depend solely on the  
       heights of the neighbors of the node. 
P3) An unbounded number of link reversals must  
       lead to the height of the node becoming  
       unbounded. 
 
With these assumptions, additionally assuming that 
the network is not under partition (not partitioned 
meaning that all nodes are connected to the 
destination), the following properties apply. 
 
By construction, the paths are always loop-free.  
However, the algorithm will exhibit routing loops 
while the heights are evolving and links are reversing 
directions.  When a link reverses directions, packets 
that traversed the link just prior to the reversal now 
have an option of going backwards, up the same link 
that they just traversed.  The routing loops formed in 
this fashion are purely transient and once the 
algorithm converges, all the routes are loop-free. 
 
The algorithm always converges in a bounded period 
of time.  The algorithm is also stable in that any node 
that has a directed path to the destination will not 
undergo any further reversals.  Furthermore, the 
number of reversals and the final resulting heights 
depend only on the initial conditions of the network, 
though multiple paths (the algorithm behaves non-
deterministically) can be used to reach the final state. 
 
Like other distance vector algorithms, GB algorithms 
count to infinity under network partition.  Since the 
heights are totally ordered, there will always be a 
globally minimal height, which implies that there will 
always be at least one locally minimal height.  When 
the network is partitioned, that is the destination is 
not connected to the network, the local minimum 
cannot be the destination.  Since there is always a local 
minimum that is not the destination, height updates 
are always enabled.  The heights in the network 
increase indefinitely. 

2. Proof of Correctness 
    
TORA stands for Temporally-Oriented Routing 
Algorithm [8].  The temporally-oriented comes from 
the fact that TORA uses timestamps to create new 
heights.  Using timestamps enhances performance 
over other GB algorithms. Another significant 
difference between TORA and the GB algorithms is 
that it does not suffer from the count to infinity 

problem under network partition.  TORA includes a 
partition detection mechanism that takes advantage of 
the way height increases diffuse throughout a 
network. 
 
2.1  Not Gafni-Bertsekas 
  
As mentioned above, TORA uses timestamps for the 
new heights violating assumption (P2).  This 
immediately puts TORA outside of the Gafni-
Bertsekas class of algorithms.  TORA does not have 
path independence.  The set of final heights can vary, 
even for the same initial conditions.  Also, unlike the 
GB algorithms, the number of reversals depends on 
the ordering of events.  While many properties from 
the GB algorithms are lost, TORA should always 
converge in a finite period of time.  Establishing this 
formally is one of the primary goals of this work. 
 
2.2 Advantage of Temporally-Oriented Heights 
 
Since the new heights are based on time, they are 
always globally the greatest heights in the network.  
This can improve the performance over other link 
reversal algorithms of the GB class.  Consider the 
case of ordinary partial reversal algorithms and 
consider a chain of nodes where the heights are 
ordered completely backwards with respect to the 
location of the destination.  In the case of TORA, the 
local minimum at the end of the chain would define a 
new globally highest reference level.  The nodes in the 
chain upstream of TORA would then have room to 
increase their heights without exceeding the new 
globally highest node.  In the case of non-temporally 
oriented heights, this is not the case and a large 
number of ‘oscillations’ are necessary before all the 
heights converge. 
 
2.3 Partition Detection 
 
TORA includes a partition detection mechanism.  
Under certain conditions, it is possible for a partition 
to be detected when none actually exists.  What the 
algorithm can guarantee is that if a partition is 
detected by TORA, then at some point in time 
previous to the partition being detected, a partition 
did occur, that is part of the network became 
completely disconnected from the destination.  This 
result will be proved in a later section.  There is a 
problem though, in that sometimes the network will 
become partitioned, but then another topology 
change may cause the network to become connected 
again.  In this case, it is possible for TORA to detect a 
partition when it does not actually exist. 
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2.4  TORA Model 
 
To improve the tractability of analyzing TORA, we 
omit modeling the details of the query response 
mechanism.  We construct a simplified model of 
TORA similar to the model of link reversal algorithms 
presented by Gafni and Bertsekas[3]. 
 
In TORA, each node in V has a height associated 
with it.  The heights and reference levels of nodes are 
ordered lexicographically, that is, they are equal only 
when all fields are equal and h1 > h2 if the first 
different field counting from left to right, of h1 is 
greater than that of h2.  Each node has a unique 
identifier and these identifiers are totally ordered.  
This lexical ordering has the following obvious result 
for any nodes x, y ∈ V 

r(x) > r(y)  ⇒  h(x) > h(y)  ⇒  hf(x) > hf(y). 

TORA by definition adheres to (P1), that nodes may 
update their heights when they are local minima.  
Define S to be the set of nodes that are local minima 
excluding the destination. 

S  ≡ { x ∈ V | x ≠ destination ∧ ∀ y ∈ N(x)  
hf(y) > hf(x) }.                             (1) 

This set is of interest because it is on this set that 
reversals are enabled.  When S is empty, no further 
height update events are possible and the algorithm 
has converged, at least while the topology remains 
constant. 
 
Lemma 1:  ∀ (x, y) ∈ E  ¬(x ∈ S ∧ y ∈ S).  If x and y 
are adjacent, only one may be a local minimum. 
Proof:  Suppose ∃ (x, y) ∈ E  (x ∈ S ∧ y ∈ S). 

(x, y) ∈ E ⇒ y ∈ N(x)                            (2.1) 
x ∈ S ⇒ ∀ z ∈ N(x)  hf(z) > hf(x) ⇒ hf(y) > 

hf(x)                                         (2.2)     
(By (1)) 
y ∈ S ⇒ ∀ z ∈ N(y)  hf(z) > hf(y) ⇒ hf(x) > hf(y)  (2.3) 
(2.2) and (2.3) are direct contradictions of each other, 
so ¬∃ (x, y) ∈ E  (x ∈ S ∧ y ∈ S).  � 
 
Corollary 1:  Link reversal events are only enabled for 
non-neighboring nodes. 
Proof:  By (P1) and Lemma 1.  � 
 
One of the features of this algorithm is that no 
assumption about the atomicity of events is necessary.  
This is because  
Corollary 1 excludes any two adjacent nodes from both 
updating at the same time.  This means there is no 
contention between neighbors performing height 
updates simultaneously. The algorithm does not even 
require that the updates occur in order.  The 
algorithm, viewed at this level, only requires that the 

updates can be reliably sent between nodes.  This 
assumes that the topology is fixed while the 
information is being updated.  While topology 
changes may disrupt the operation of the algorithm, 
TORA is only guaranteed to converge while the 
topology remains constant. 
 
We now formalize the update rule for nodes in S.  Let 
x ∈ S.  Let λ represent the event causing  x  to 
become a local minimum.  Let t be the time at which 
the update takes place.  Let h ′ express the new height 
to be selected.  h ′ can also be expressed as 
components r ′ and β ′.  h ′ is selected according to 
the criterion below. 

(1)  If λ is a link failure 
then h ′ := ( t, x, 0, 0 ).                              (3) 

(2)  If λ is not a link failure 
and ∃ y, z ∈ N(x) r(y) ≠ r(z)                   (4.1) 
then let r* ≡ 

( )
max ( ( ))
y N x

r y
∈

                  (4.2) 

and    h ′:=
{ ( )| ( ) *}

min ( ( ))
y N x r y r

h y
∈ =

+(0,0,0,-1).      (4.3) 

(3)  If λ is not a link failure 
and ¬∃ y, z ∈ N(x)  r(y) ≠ r(z)  (5.1)  

(complement of 4.1) 
and ∀ y ∈ N(x)  r(y).r = 0                       (5.2) 
then r ′ := r(y) + ( 0, 0, 1 ) for any y ∈ N(x) 

and β ′ := 0.                             (5.3) 
(4)  If λ is not a link failure  

and ¬∃ y, z ∈ N(x) r(y) ≠ r(z)        (6.1)  
(same as 5.1) 

and ∀ y ∈ N(x)  r(y).r = 1   (6.2)  
(complement of 5.2) 

and ∀ y ∈ N(x)  r(y).oid = x                   (6.3) 
then a partition is detected. 

(5)  If λ is not a link failure 
and ¬∃ y, z ∈ N(x) r(y) ≠ r(z)         (7.1) 

(same as 6.1) 
and ∀ y ∈ N(x)  r(y).r = 1              (7.2) 

(same as 6.2) 
and ∀ y ∈ N(x)  r(y).oid ≠ x    (7.3)  

(complement of 6.3) 
then h ′ := ( t, x, 0, 0 ).                    (7.4)  

(same as (3)) 
Note that in case 4, no height is assigned because a 
partition is detected.  Also note that we will not model 
the events that occur after the partition is detected 
and assume that TORA’s CLR flood works properly. 
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2.5  TORA Properties 
 
Using the above formalisms for TORA, we shall 
prove that for a connected, static topology, TORA 
converges in a finite number of steps. 
Lemma 2: Whenever a node increases its height in a 
reversal, its reference level increases. 
Proof: Let x be a local minimum.   Let r denote r(x) 
while x is a local minimum, and let r′ denote the 
reference level TORA chooses as the next reference 
level.  Proceed by verifying the result, r′ > r, for all 
cases. 
Case (1) and (5):  x generates a new globally highest 
reference level.  The desired condition, 

r′ > r, 
holds true trivially. 
Case (2):  This case applies only when 

∃ y, z ∈ N(x)  r(y) ≠ r(z).      (4.1) 
TORA will choose to propagate the highest reference 
level of those nodes in N(x).  Let 

r* ≡ 
( )

max ( ( ))
y N x

r y
∈

. 

Given (4.1), and the fact that r* is a maximum, 
∃ y ∈ N(x)  r* > r(y).                                 (8) 

Let y* be any element of N(x) satisfying (8).  Since x is 
a local minimum, r(y*) ≥ r(x), and 

r* > r(y*) ≥ r(x).                                         (9) 
When x takes r* as its reference level, its reference 
level increases. 
Case (3):  Reflect back a higher sublevel when all 
neighbors have the same reference level.  Since x is a 
local minimum, ∀ y ∈ N(x) r(y) ≥ r(x).  When 
reflecting back a higher sublevel, the new reference 
level r′ > r(y) ≥ r(x). 
Case (4):  This case ultimately causes TORA to halt 
and clears the heights altogether.  It does not really 
perform a reversal. 
   Since the statement holds true for all cases, it must 
be true.  � 
 
Lemma 3:  Whenever a node increases its height in a 
reversal, its reference level becomes greater than or 
equal to the reference level of its highest neighbor. 
Proof:  Let x be a local minimum.  Let r denote r(x) 
while x is a local minimum and let r′ denote the 
reference level TORA chooses as the next reference 
level for x. 
Case (1) and (5):  x generates a globally highest 
reference level.  Obviously r′ > the reference level of 
any node in N(x). 
Case (2):  By (4.2) r′  ≥  the reference level of all 
neighbors of x. 
Case (3):  All neighbors of x have the same reference 
level, s by (5.1). 

r′ = s + ( 0, 0, 1 )  >  s. 

Case (4):  This does not cause a reversal to be 
performed. 
In all cases, the result holds.  � 
Lemma 4:  A node may perform at most two 
reversals until all of its neighbors reverse and increase 
their reference levels. 
   Consider case by case what happens after the first 
reversal.  Let h be the height of x prior to its reversal 
and let h′ be the height TORA selects to update x, 
and r′ be the corresponding reference level. 
Case (1) and Case (5):  x generates a globally highest 
reference level h′ > h(y) ∀ y ∈ V.  In order for x to 
become a local minimum again, all of its neighbors 
must increase in height to be higher than x.  In these 
cases, x may only reverse again after all of its 
neighbors have increased. 
Case (2):  Since x performs only a partial reversal, it is 
possible that x is still lower than some of its neighbors 
after it reverses.  Let 

O ≡ { y ∈ N(x) | hf(y) > hf ′ } 
be the set of x’s neighbors that are still higher than x 
after its first reversal.  x may become a local minimum 
again without these nodes reversing, though all of x’s 
other neighbors must reverse before x may reverse.  
By (4.3), we know that 

∀ y ∈ O  r(y) = r′.                                    (10) 
Now consider x’s second reversal.  Let r″ be x’s 
reference level after it reverses the second time.  By 
Lemma 2, we know that r″ > r′ and by (10) we know 
that ∀ y ∈ O  r″ > r(y).  The only way that x may 
become a local minimum again to reverse for the 
third time is if all the nodes in O reverse, thus proving 
the result for case 2. 
Case (3): Since prior to x’s reversal, all of its neighbors 
are at the same reference level, and x takes on a 
reference level higher than its neighbors’ reference 
level, in order for x to become a local minimum again, 
all of its neighbors must increase in height first.  � 
 
Corollary 2:  For any two nodes in a connected, fixed 
topology graph, where ∆ is the number of hops along 
the shortest path between the two nodes, the 
difference in the number of reversals between the two 
nodes must be less than or equal to 2∆. 
Proof:  Proceed by induction on the number of hops, 
∆.  For ∆ = 1, Lemma 4 states directly that the number 
of reversals can differ by at most 2, which equals 2∆.  
Assume that for ∆ - 1 hops, the result is true.  Let x, y 
∈ V be two nodes that are ∆ hops apart. 

∃ z ∈ V  z ∈ N(x) ∧ y and z are ∆ - 1 hops 
apart. 
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By the inductive assumption, z can differ in reversal 
count with y by only by 2(∆ - 1).  Since z ∈ N(x), and 
using Lemma 4, x may only differ in hop count from z 
by 2, so it can only differ in hop count from y by 2(∆ - 
1) + 2 = 2∆.  � 
Theorem 1:  Convergence:  TORA always converges in 
a connected network. For a connected, fixed topology 
graph, TORA either converges in a finite number of 
steps, or a partition is detected. 
Proof:  Suppose that there exists some connected 
network for which TORA never converges and never 
detects any partitions.  This implies that S is never 
empty and that there are an infinite number of 
reversal events.  For this to be true, there must be at 
least one node x, that undergoes an infinite number of 
reversals.  Let D be the diameter of the network (the 
length of the longest shortest path).  By Corollary 2 and 
the fact that the destination never reverses its height, 
we know that the upper bound on the number of 
reversals that any node can undergo is 2D.  This is a 
contradiction and thus TORA always converges in a 
finite period of time.  This result is only valid when 
the network is connected to the destination.  � 
 
We have completed the proof that TORA always 
converges or detects a partition when the nodes in the 
network are connected to the destination.  It is also 
possible to show that under certain conditions, 
TORA cannot detect a partition in a connected 
network. 
 
Lemma 5:  Let nodes x, y ∈ V, be s.t. (x, y) ∈ E[t0] 
and hf(y)[t0] < hf(x)[t0]. If  ∃ t1 > t0  hf(y)[t1] < hf(x)[t0]  
∧ ∀ τ∈[t0, t1](x, y)∈E(τ)                                        (11) 

then ∀ τ ∈ [t0, t1]  hf(x)[τ] = hf(x)[t0]. 
In other words, given two nodes x and y that are 
initially adjacent and remain connected over the 
period of interest, if initially, hf(y) < hf(x), and hf(y) 
remains less than hf(x), then hf(x) must remain 
constant. 
Proof:  Assume (11) holds.  By (P1), the fact that 
heights are non-decreasing, 
hf(y)[t1] < hf(x)[t0] ⇒ ∀ τ ∈ [t0, t1]  hf(x)[t0] > hf(y)[t1] ≥ 
hf(y)[τ]. 

∀ τ ∈ [t0, t1]  hf(x)[τ] ≥ hf(x)[t0].  (by (P1)) 
∀ τ ∈ [t0, t1]  hf(x)[τ] ≥ hf(x)[t0] > hf(y)[τ]. 
∀ τ ∈ [t0, t1]  ∃ y ∈ N(x)  hf(x) > hf(y). 

Hence x cannot change its height because it is never a 
local minimum.  Therefore x’s height must be 
constant over [t0, t1].  � 
 
Corollary 3:  Let X ≡ {x1, …, xn } ⊆ V be such that 
the set 

P ≡ { (x, y) | ∃ i ∈ {1, …, n-1 }  x = xi ∧ y = xi+1 } 

is a subset of E and ∀ i ∈ { 1, …, n-1 }  hf(xi)[t0] > 
hf(xi+1)[t0].   

If ∃ t1 > t0  hf(xn)[t1] = hf(xn)[t0] ∧ ∀ τ ∈ [t0, t1]    
P ⊆ E(τ)                                                  (12) 

       then ∀ x ∈ X  ∀ τ ∈ [t0, t1]  h(x)[τ] = h(x)[t0]. 
Proof:  Proceed by induction on n applying Lemma 5.   
For X ≡ {x1, x2 }, the result is a direct consequence of 
Lemma 5.  Assume that the result holds true for   X ≡ 
{x1, …, xn-1}. In the case of X ≡ {x1, …, xn }, assume 
that (12) holds.  Then from Lemma 5 we know that 

∀ τ ∈ [t0, t1]  h(xn-1)[τ] = h(xn-1)[t0]. 
Using the inductive hypothesis, the result follows.  � 
   Corollary 3 generalizes Lemma 5 to apply to chains of 
connected nodes.  The result could be extended to 
have the same condition as Lemma 5, but it is not 
necessary. 
 
The following is an important result that characterizes 
the propagation of reference levels throughout the 
network. 
Lemma 6:  Let x generate at time t0, a new reference 
level r ≡ ( t0, s, 0 ) where 

h(x)[t0] = ( t0, x, 0, 0 ). 
Assume that ∃ t1 > t0  ∀ τ ∈ [t0, t1]  E[t0] = E[τ], that 
is the topology is static over [t0, t1].  Then 

∃ y ∈ V  r(y)[t1] = r  ⇒  h(x)[t1] = h(x)[t0]. 
Proof:  r is uniquely generated by node x at time t0.  
Let y1 ∈ V be any node such that r(y1)[t1] = r.  This 
reference level may be reached in only two ways.  All 
node IDs being unique guarantees that x is the only 
node that may generate r.  If y1 is any node other than 
x, then it must take on this reference level does so by 
propagation, which is by case (2) of the height 
selection algorithm. 
 
Since prior to t0, reference level r does not exist, and 
r(y1)[t1] = r, ∃ t ∈ [t0, t1] where y1 reverses and takes on 
reference level r.  By Lemma 2, y1 may only update its 
reference level to r once, so t is unique.  The condition 
below is necessary for the propagation of reference 
level r at time t to node y1. 

( ∀ z ∈ N(y1)  hf(z)[t] > hf(y1)[t] )              (13) 
∧ (∃ m ∈ N(y1)((∀z ∈ N(y1) (m =z ∨ hf(m)[t]> hf(z)[t]))                                 
                                                                               (14) 

∧ ∃ z ∈ N(y1) r(m)[t] > r(z)[t] ) .               (15) 
(13) states that y1 must be a local minimum.  (14)-(15) 
state that there must exist some neighbor m where its 
height is greater than any of y1’s neighbors and there 
must be another neighbor of y1 with a reference level 
strictly less than r(m)[t].  Let y2 be the node satisfying 
conditions (14) and (15).  When y1 updates its height 
at time t, according to (4.3), h(y1)[t] < h(y2)[t] and 
h(y1)[t1] = h(y1)[t] < h(y2)[t] so by Lemma 5, h(y2)[t1] = 
h(y2)[t].  The statement below summarizes the result. 
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∀ y1 ∈ V  r(y1)[t1] = r  ⇒  y1 = x  ∨  ∃ y2 ∈ N(y1)  
r(y2)[t1] = r  ∧ h(y2)[t1] > h(y1)[t1]               (16) 

Equation (16) has a recursive structure.  Assume that 
y1 ≠ x.  Then there exists y2 with reference level r, 
having a height at t1 strictly greater than h(y1)[t1].  Now 
y2 is another node, where the condition r(y2)[t1] = r 
holds.  If y2 is not x, by (16) again, there exists another 
node y3 such that r(y3)[t1] = r.  Also, h(y3)[t1] > h(y2)[t1] 
> h(y1)[t1].  This recursion can be repeated whenever 
the next node discovered  is  not  x.  Any  sequence  
<y1, …, yn > generated in this way is always increasing 
in height, so each node in the sequence is unique.  
Since there are a finite number of nodes in the 
network, the recursion must terminate and the only 
way it can terminate is if yn = x.  � 
 
Corollary 4:  Under the same conditions given in 
Lemma 6, 

∀  y ∈ { y ∈ V | r(y)[t1] = r   ∧  y ≠ x }        
                ∃ X ≡ {x1, …, xn } ⊆ V   
∀ x ∈ X  r(x) = r  
∧  x1 = y  ∧  xn = x 
∧ ∀ i ∈ { 1, …, n-1 }                                     
               ( xi, xi+1 ) ∈ E  ∧  h(xi)[t1] < h(xi+1)[t1]. 

In other words, starting at y, there exists a path of 
connected nodes connected, such that all have 
reference level r, and increase in height, terminating at 
x. 
Proof:  Follows in arguments given in Lemma 6.  � 
 
Lemma 6 and Corollary 4 illustrate how a reference level 
propagates through the network.  As a newly defined 
reference level propagates, a DAG is formed, rooted 
at the node generating the new reference level.  This 
DAG consists of nodes all having the same reference 
level.  In order for the root node to become a local 
minimum and reverse, it is necessary that no nodes in 
the entire network have the same reference level. 
 
Lemma 7:  Assume that the topology is fixed.  Let x 
∈ V generate a new reference level r at time t0.  
Assume that x detects a partition at time t1 by having 
its reference level reflected back. 
∀ τ1 ∈ [t0  , t1]  ∀ y ∈ { y ∈ V | y ≠ x  ∧  r(y)[τ1] = r }  

∃ τ2 ∈ (τ1, t1)  ∀ t < [τ1, τ2]  r(y)[t] = r  ∧ r(y)[τ2] = 
r + ( 0, 0, 1 ). 

In other words, any y that acquires reference level r, 
must update its reference level from r to the reflected 
reference level r + ( 0, 0, 1 ) in order for x to detect a 
partition. 
Proof:  Assume that that the topology is fixed and 
node x ∈ V generates a new reference level r at time 

t0.  At time τ1, let y ≠ x ∈ V be such that r(y)[τ1] = r.  
By Corollary 4, 

∃ X ≡ { x1, …, xn } ∀ x ∈ X  r(x) = r  ∧  x1 = y  
∧  xn = x  ∧  ∀ i ∈ { 1, …, n-1 }  ( xi , xi+1 )  
∈ E  ∧  h(xi)[t1] < h(xi+1)[t1]. 

 For this set X, we proceed by induction on n to show 
for n > 1, the result is true.  For n = 2, where y ∈ 
N(x), we know by the fact that x detects a partition at 
time t1, and by required conditions (6.1)-(6.3), that 
r(y)[t1] = r + ( 0, 0, 1 ).  Since r(y)[τ1] = r, the result 
follows by (P1).   
 
Now assume that the result holds for n-1.  Let y ∈ V 
be such that r(y)[τ1] = r and the set X associated with y 
by Corollary 4 satisfy |X| = n.  Then x2 ∈ N(y) 
satisfies the criterion for case n-1.  By the inductive 
hypothesis, x2 must change reference level from r to r 
+ ( 0, 0, 1 ).  This means that x2 must become a local 
minimum.  This cannot happen until x1 increases its 
reference level so that hf(x1) > hf(x2).  Let r′  > r be the 
reference level that x1 increases to.  Suppose that r′ ≠ r 
+ ( 0, 0, 1 ).  Since r + ( 0, 0, 1 ) is the least reference 
level greater than r.  Then r′ ≠ r + ( 0, 0, 1 )  ⇒  r′ > r 
+ ( 0, 0, 1 ) by Lemma 2.  This means that when node 
x2 updates its height, its reference level will be at least 
r′.  This contradicts the inductive hypothesis, so r′ = r 
+ ( 0, 0, 1 ).  � 
 
Corollary 5:  Assume the topology is fixed.  Let x ∈ 
V generate a new reference level r at time t0.  If at any 
time before x detects a partition, 
∃ y ∈ V  r(y) = r  ∧ ∃ z ∈ N(y)  r(z) > r  + (0,0,1)  (17) 
then x1 cannot detect a partition. 
Proof:  By Lemma 7, all nodes acquiring reference 
level r must reverse to reference level r + ( 0, 0, 1 ).  
By Lemma 3, any node reversing, must take on a 
reference at least as high as its highest neighbor, 
which in this case has a reference level greater r + 
(0,0,1).  � 
 
Lemma 8:  Assume that the topology is fixed and all 
nodes are connected to the destination d.  Let x ∈ V 
generate a new reference level r at time t0.  For any 
node that propagates the reference level r + ( 0, 0, 1 ) 
via case (2) of the decision tree, two conditions hold 
at the time when it updates its reference level to r + 
(0,0,1). 

1) All its neighbors have reference level r or the 
reflected reference level r + ( 0, 0, 1 ). 

2) It must have reference level r. 
Proof:  Let z be a node generating the reflected 
reference level r + ( 0, 0, 1 ) by case (3) at time t > t0.  
Proceed by induction using the neighbors of z as the 
base case. 
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Let w be any node in N(z).  Case (3) requires that all 
neighbors of z have reference level r, so r(w)[t] = r.  
Assume that w takes on the reflected reference level at 
time t1 > t.  By Lemma 2, the fact that r(w)[t] = r, and 
the fact that r + ( 0, 0, 1 ) is the minimum reference 
level greater than r, ∀ τ ∈ [t, t1]  r(w)[τ] = r, so the 
second property is true for w.  In order for w to be a 
local minimum 

∀ v ∈ N(w)  hf(v)[t1-] ≥ hf(w)[t1-]. 
∀ v ∈ N(w)  r(v)[t1-] ≥ r. 
∀ v ∈ N(w)  r + ( 0, 0, 1 ) ≥ r(v)[t1-].   

(if not, w propagates a higher reference level) 
∀ v ∈ N(w)  r(v)[t1-] = r. 

So the first property is true for w.  The result holds for 
all neighbors of any node generating the reflected 
reference level. 
 
Assume that the first and second property hold for 
some node w ∈ V.  Assume that w takes on the 
reflected reference level at time t1 > t.  Let v ∈ N(w)  
r(v)[t1] ≠ r + ( 0, 0, 1 ).  Assume that v takes on 
reference level r + ( 0, 0, 1 ) at time t2 > t1.  By the 
first property applied to node w, r(v) = r.  Therefore, 
by the argument for the base case, the second 
property applies to node v.  Arguing again as in the 
base case, the first property must also apply to node v.  
The result holds for the neighbor of any node for 
which the result holds.  
 
Since the only way a node can propagate reference 
level r + ( 0, 0, 1 ) is by 

a) being a neighbor of  a node generating the 
reflected reference level or 

b) being a neighbor of a node propagating the 
reflected reference level, 
it must be true in all cases.  � 

 
Definition:  The frontier of r, where r is a reference 
level, denoted f(r) ⊆ V, is defined 

f(r) ≡ { y ∈ V | r(y) ≠ r  ∧  ∃ z ∈ N(y)  r(z) = r }. 

Theorem 2:  Correctness Criterion:  No partitions detected 
in connected networks 
Assume that the topology is fixed and all nodes are 
connected to the destination d.  Let x ∈ V generate a 
new reference level r at time t0.  x cannot detect a 
network partition through case (4) of the height 
selection process. 
Proof:  Assume that the topology is fixed and all 
nodes are connected to the destination d.  Let x ∈ V 
generate a new reference level r at time t0.  Since all 
nodes are connected to d, then there must be a path 
from x to d. 

Let F  ≡ f(r). 

Let M ≡ { y ∈ V | r (y) = r }. 
Let G ≡ { y ∈ M | ∀ z ∈ M  D(z, d) ≥ D(y, d) }. 

In other words G is the set of nodes having reference 
level r with the shortest distance to the destination.  F, 
M and G change with time so let F[t], M[t] and G[t] 
denote their respective values at time t. 
Proceed by showing that in all cases either 

1) ∀ t > t0  |G[t]| > 0 ∧ ∀ τ1 ∈ [t0 , t)   ∀ τ2 ∈ 
( τ1, t ]  ∀ y ∈ G[τ1]  ∀ z ∈ G[τ2]  D(y, d) ≥ 
D(z, d).  That is |G| > 0 and the distance 
between G and the destination is non-
increasing with time.  Since |G| > 0 and ∀ y 
∈ G  r(y) = r , by Lemma 6, x cannot detect a 
partition. 

or 
2) ∃ t > t0, ∃ y ∈ F[t]  r(y)[t] > r + ( 0, 0, 1 ).  

Then by Corollary 5, x cannot detect a 
partition. 

Initially, the first condition is satisfied.  |G| = 1 > 0 
and since there are no comparisons, the distance 
between nodes in G and d satisfy the non-increasing 
criterion.  It is possible for the second condition to 
hold also, and either way, the property holds true. 
 
Assume that the first condition is satisfied. Now 
proceed by showing that for all enabled events, either 
the first or second result will hold.  If this is the case, 
then no sequence of events may ever cause the 
conditions to be violated and the proof is complete. 
    
There are only two events that may directly affect G. 

A. Node y with reference level r(y) ≠ r updates 
its reference level to r(y) = r. 

B. Node y ∈ G updates its reference level from 
r(y) = r to r(y) > r. 

Event A can only occur for nodes in F by definition.  
Event B applies to nodes in G. 
 
Consider the effects of event A on conditions 1 and 2.  
Let y ∈ F[t] be a local minimum at time t.   Assume 
that conditions 1 and 2 hold prior to updating the 
height of y to r.  If 

∀ z ∈ G[t]  D(z, d) > D(y, d)                    (18) 
then G[t] will be replaced with { y } after the event 
occurs.  Since y is closer to the destination than any 
node in G[t], condition 1 is preserved.  If 

∀ z ∈ G [t]  D(z, d) = D(y, d),                  (19) 
then G[t] will be replaced with G[t] ∪ { y }, still 
preserving condition 1.  Otherwise, if 

∀ z ∈ G[t]  D(z, d) < D(y, d),                   (20) 
G[t] is unaffected and condition 1 is still preserved.  
Any occurrence of event A preserves condition 1.  
Note that once ∀ z ∈ G  D(z, d) = 1, the only frontier 
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node is the destination, but since the destination 
cannot update its height, (18) is no longer reachable. 
 
Consider now the effects of event B on conditions 1 
and 2.  Let y ∈ G be a local minimum at time t.  Let N 
≡ F ∩ N(y).  y ∈ G  ⇒ 

∃ z ∈ N(y)  r(z)[t] = r.  (21)  (by Corollary 4) 
∃ z ∈ N  r(z)[t] ≠ r  ∧  D(z, d) = D(y, z) - 1.  (22)  

(by definition of G) 
Since y is a local minimum and by the fact that ∀ z ∈ 
F  r(z) ≠ r, 

∀ z ∈ N  r(z) > r.                                    (23) 
⇒  ∀ z ∈ N  r(z) ≥ r + ( 0, 0, 1 ).            (24) 

Assume ∃ z ∈ N  r(z) > r + ( 0, 0, 1 ), condition 2 is 
satisfied and the result holds.  Otherwise suppose 

¬∃ z ∈ N  r(z) > r + ( 0, 0, 1 )                (25) 
then ∀ z ∈ N  r(z) = r + ( 0, 0, 1 ).  (26)  

(with (24)) 
By Lemma 8 and (26) ∀ z ∈ N  z must have had 
reference level r just prior to having reference level r 
+ ( 0, 0, 1 ).  By (19), ∃ z ∈ N  D(z, d) < D(y, z).  This 
contradicts the assumption that condition 1 holds 
prior to event B occurring:  the distance between 
nodes in G and the destination are non-increasing 
with time.  Therefore, (25) is not reachable. 
The conditions are satisfied by all possible events.  � 
 
Theorem 2 shows that any node generating a new 
reference level cannot detect a partition if the 
topology remains static after the reference level has 
been created.  However, in cases where the topology 
is dynamic and changing, it is easy to produce cases of 
partitions being detected in connected topologies. 
 
There are two distinct cases of partition detection 
when the topology is allowed to change.  In one case, 
partitions have never existed in the network and the 
fact that a topology change can lead to a partition 
being detected is an artifact of the algorithm.  In the 
other case, a network partition existed transiently and 
was detected, but is already in the process of 
communicating the partition being detected.  The first 
case is avoidable, but the second case is not in the 
current framework. 

3. Conclusions and Suggestions for 
Future Research. 

 
We have developed a formal proof method for the 
correctness of TORA, a dynamic adaptive routing 
algorithm for mobile ad-hoc networks (MANETs). 
We have also developed a formal proof of a partition 
detection criterion. While all tests have failed to find 

anything wrong with the algorithm, there is still no 
guarantee that it is correct in its full specification, as 
our proof requires simplifications and assumptions to 
be placed on the algorithm. 
 
The ultimate goal of this type of research is to 
develop a way to automatically check a specification 
for correctness and liveness properties. This is 
currently an entirely open ended question. While our 
results do verify correctness in TORA, it is only under 
certain assumptions that the proof is valid. The vision 
of being able to go automatically from a specification 
to a proof of correctness still requires further research  
and progress.  
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