
 1

Correctness Proof for a Dynamic Adaptive
Routing Algorithm for Mobile Ad-hoc Networks

Shah-An Yang and John S. Baras

Electrical and Computer Engineering Department

and the Institute for Systems Research
University of Maryland

College Park, MD 20742, USA

Abstract

Dynamic and adaptive routing algorithms are the “brains” of mobile ad-hoc networks (MANETs), in that they
govern the self organization of these networks. MANETs are infrastructureless “intelligent” networks, which
are becoming increasingly popular and have wide applicability. In this paper we view dynamic adaptive routing
algorithms for MANETs as hybrid systems (partly based on logic and partly based on numerics). In this paper,
we introduce formal models for the analysis and verification of one such routing algorithm, the Temporally
Oriented Routing Algorithm (TORA) under certain assumptions. More specifically we give a rigorous
mathematical proof of correctness and convergence of TORA. Other formal methods, their limitations and
future research challenges are also discussed.

1. Introduction

Mobile ad-hoc networks (MANETs) are
infrastructureless communication networks that are
becoming popular due to the expansion of broadband
wireless connectivity to millions of users. They
provide instant infrastructure for many applications
including communications on the move, collaborative
work, gaming, disaster relief, exploration, and defense.
Routing algorithms (or protocols as they are often
called) are an integral part of the operations of
MANETs, particularly since they are directly involved
in the self organization of these networks. Self
organization is the reason why MANETs are
considered “intelligent” systems. Thus careful design,
evaluation and verification is a critical need for
MANETs. Unfortunately, despite intensive research
we do not have today many systematic and analytical
methods and tools for the design, evaluation and
verification of routing algorithms for MANETs. The
situation is even worse regarding analysis of security
properties of these routing protocols.

These routing protocols are very good examples of
hybrid systems, in the sense that they have some
components that are logic-based and some
components that are based on numeric variables and
computations. Since they form the “brains” of
MANETs, it is therefore of paramount importance to
develop systematic methods for the design,

evaluation, and verification of routing protocols for
MANETs.

In this paper we apply formal methods to the
verification of TORA, which is a mobile ad hoc
networking routing algorithm. The main difficulty in
applying any formal methods to a system like this is
exponential state space explosion. More commonly,
formal methods have been applied to protocols rather
than algorithms where the number of states is clearly
finite. TORA has an infinite number of states,
though there is a structure to the state space that
makes it simpler than the general problem.

The primary reason for making things formal is that
in doing so, the system becomes more precise and
loses any ambiguity in interpretation. Sometimes, the
only precise specification of any system is actually the
source code, but code contains too many details
specific to the implementation language and machine
architecture. In our work, we considered several types
of formal models including extended finite state
machines, finite automata and regular expressions. A
formal model here means that the system can always
be decomposed into nothing more than typographical
manipulations, which is why string representations are
important. The ultimate goal of formal methods and
models is to develop a way to go automatically from a
specification to a proof of correctness for a system.

 2

There are two separate approaches to formal methods
although some work has been done towards their
unification. The first category of formal methods is
state enumeration techniques. The underlying model
used here is that of a finite automaton. The typical
state enumeration system requires the specification of
the system in some formal language, each claiming
some advantages over the others, but fundamentally,
they are all exhaustive simulations with extensive state
space pruning techniques. The limitation in these
approaches is state space explosion. In a routing
algorithm like TORA, there is an infinite amount of
space and an infinite number of scenarios that it can
act in. At most, a model checker will be able to say
that under a given finite set of scenarios, a routing
algorithm like TORA behaves as expected. There is
not in general a way to automatically infer that based
on correctness in a finite number of scenarios that the
algorithm performs correctly in an infinite number of
cases. It is usually unknown whether the very next
unexplored scenario will exhibit an incorrect behavior.

The second approach can be called proof methods.
This approach attempts to deduce properties of the
system by using theorems. There is some work that
has been done towards automating this, but most
work is still done by hand. Even so called “automatic
theorem provers” would more aptly be called
automatic theorem “checkers” as their main strength
is in making sure that the human theorem prover
remains honest and does not make any mistakes in his
calculations. Verification of proof steps is decidable
in general, but actually proving a result from axioms is
not. This makes it possible to check theorems
automatically, but not prove them. Using theorems
and proofs is much more powerful than model
checking in the sense that it is possible to establish
general results for an infinite number of scenarios.
The disadvantage is that very little can be automated
and a large amount of the work is left to the human
analyst.

1.1 TORA

TORA, like other distance vector algorithms, uses
only local information to maintain global structure.
The information is distributed across different nodes,
and no individual node has complete information
about the routes in the network. Each individual
node acts according to a set of simple rules and
through their combined behavior, routes emerge.
The goal of this work is to “decompile” the lower
level mechanisms of TORA into higher level
mechanisms that can be verified as producing routes
for the network.

 TORA is based on a class of algorithms referred to
as the Gafni-Bertsekas (GB) algorithms. This class of
algorithms is deficient in that when the network is
partitioned, the heights (the distance metric associated
with each node) grow unboundedly. In practice, this
will cause excessive network traffic as routing
information continually propagates unproductively.
TORA includes a partition detection mechanism to
prevent this from happening. This includes
mechanisms for reactivating a node once it has been
deactivated. TORA also features some performance
improvements over the original GB algorithms.
 A proof of correctness and convergence properties
for the GB algorithms exists. However as we shall see
shortly TORA is not a GB algorithm. Indeed, there
are actually cases where TORA fails to converge
under some very special conditions involving changes
in topology and link requests.

1.2 Notation

Throughout this paper, the following notation is used.

G a finite graph with undirected links

V the set of ordered vertices or nodes in
G

E the set of edges or links in G

N the size of vertex set |V|

x a node in V (each node x is assumed
to have a unique integer ID and x is
used interchangeably to represent

(x, y) a link in V ((x, y) is equivalent to (y, x)
as all links are assumed undirected)

N(x) neighbors of x, { y ∈ V | (x, y) ∈ E }

D(x, y) length of shortest path from node x
to node y

h(x) the height of node x (h(x) represents
just the height, not the unique height)

hf(x) the full unique height of node x,
(h(x),x)

h(x).α the first component of the height of
node x

h(x).β the second component of the height
of node x

If the link (x, y) exists, then it is expressed as (x, y) ∈
E, otherwise (x, y) ∉ E.

∀ x, y ∈ V x ∈ N(y) ⇔ y ∈ N(x) ⇔ (x, y)
∈ E ⇔ (y, x) ∈ E.

Since the graphs are undirected, nodes that are
adjacent are adjacent in both directions. Also, saying

 3

that a node is in the neighborhood of another node is
equivalent to saying that there is an edge between
them.

The system may evolve with time. When it is
necessary, appending [t] to a symbol represents its
value at time t, for example E[t], or h(x)[t].

Sequences are ordered sets and they are represented
by listing their elements separated by commas in
order enclosed by the characters “<” and “>”.
Certain set operations are defined for sequences.
Membership, denoted with “∈” is a valid infix
operator that indicates whether or not a particular
symbol occurs in the sequence. Care must be taken in
defining other set operations, such as union and
disjunction are not clearly defined for sequences
because they depend on the elements to be
unordered. Sequences will have certain operations
that are specific to them that are defined later.

Tuples are denoted by having their elements listed
enclosed by “(“ and “)” separated by commas, are
not like sets or sequences. Tuples are a fixed length
list of elements where like a sequence, the ordering of
the elements has significance. Unlike in a sequence,
however, each element in a tuple has a specific
meaning associated with it and this meaning is
assigned by the position within the list. In some
cases, the meaning associated with each element in the
tuple is the same, so the ordering effectively does not
matter. We allow an abuse of notation in that tuples,
when they are prefixes of other tuples may have fields
appended to them and then become the other tuples.

TORA Specific Notation

r(x) the reference level of node x

h(x).α /
r(x).α

what TORA refers to as τ

h(x).oid /
r(x).oid

the ID of the node originally
defining x’s reference level

h(x).r /
r(x).r

reflected bit of x’s height

h(x).β what TORA refers to as δ

In the GB algorithms, α and β are used to represent
characters in a height string. For notational
consistency, α and β will also represent characters in
the height strings of TORA. TORA usually refers to
these terms as τ and δ, but they are conceptually
equivalent to the α and β of the GB algorithms.

When referring to TORA, h(x) is a 4-tuple defined as
h(x) ≡ (α, oid, r, β).

r(x), which applies only to TORA, and not to the
general GB algorithms, is given by the 3-tuple

r(x) ≡ (α, oid, r).
r(x) is also called the reference level and serves as a
convenient way to refer to the first three fields of h(x).

1.3 Link Reversal Algorithms

TORA is based on a group of link reversal algorithms
that we will refer to as the Gafni-Bertsekas (GB)
algorithms [3]. The GB algorithms provide loop free
routes in a network with bidirectional links to a single
destination in the network using only information
available locally, from adjacent nodes. GB algorithms,
unlike other distance vector routing algorithms, such
as distributed Bellman-Ford, do not suffer from
routing table loops.

The algorithm assigns heights to each node such that
the nodes can be totally ordered by their heights. This
ordering on the nodes implies a direction to each of
the links: the links are directed from nodes with
greater heights to the nodes with the lower heights.
This creates a directed acyclic graph (DAG) from the
undirected graph.

The way that the algorithm assigns heights is by
updating only those nodes that become local minima
and therefore have no outgoing links. When a node
other than the destination becomes a local minimum,
that is all of its neighbors have heights that are greater
than its own, it increases its height so that it is no
longer a local minimum. As long as local minima
other than the destination exist in the network, their
heights continue to increase, until only the destination
node is a local minimum. When this occurs, and all
nodes except the destination have neighbors that are
lower in height, no more events are enabled, assuming
a fixed topology. The resulting height assignment is
such that starting at any node in the network, by
following links that lead to nodes of lower height,
eventually the destination is reached. The paths will
not form any loops because the heights of the nodes
are totally ordered and the hops along the paths must
proceed by strictly decreasing node height,
guaranteeing uniqueness of the nodes traversed. For
a proof of all the properties discussed here, see the
paper by Gafni and Bertsekas.

There are assumptions that an algorithm must satisfy
in order to guarantee the properties to be described
below:
P1) The only time a node may update its height is
 when it assumes a greater height, reversing the

 4

 direction of its links when it is a local minimum.
 Decreasing height is forbidden. This rule has one
 exception: for the destination node, height
 updates are never allowed.
P2) The new height must depend solely on the
 heights of the neighbors of the node.
P3) An unbounded number of link reversals must
 lead to the height of the node becoming
 unbounded.

With these assumptions, additionally assuming that
the network is not under partition (not partitioned
meaning that all nodes are connected to the
destination), the following properties apply.

By construction, the paths are always loop-free.
However, the algorithm will exhibit routing loops
while the heights are evolving and links are reversing
directions. When a link reverses directions, packets
that traversed the link just prior to the reversal now
have an option of going backwards, up the same link
that they just traversed. The routing loops formed in
this fashion are purely transient and once the
algorithm converges, all the routes are loop-free.

The algorithm always converges in a bounded period
of time. The algorithm is also stable in that any node
that has a directed path to the destination will not
undergo any further reversals. Furthermore, the
number of reversals and the final resulting heights
depend only on the initial conditions of the network,
though multiple paths (the algorithm behaves non-
deterministically) can be used to reach the final state.

Like other distance vector algorithms, GB algorithms
count to infinity under network partition. Since the
heights are totally ordered, there will always be a
globally minimal height, which implies that there will
always be at least one locally minimal height. When
the network is partitioned, that is the destination is
not connected to the network, the local minimum
cannot be the destination. Since there is always a local
minimum that is not the destination, height updates
are always enabled. The heights in the network
increase indefinitely.

2. Proof of Correctness

TORA stands for Temporally-Oriented Routing
Algorithm [8]. The temporally-oriented comes from
the fact that TORA uses timestamps to create new
heights. Using timestamps enhances performance
over other GB algorithms. Another significant
difference between TORA and the GB algorithms is
that it does not suffer from the count to infinity

problem under network partition. TORA includes a
partition detection mechanism that takes advantage of
the way height increases diffuse throughout a
network.

2.1 Not Gafni-Bertsekas

As mentioned above, TORA uses timestamps for the
new heights violating assumption (P2). This
immediately puts TORA outside of the Gafni-
Bertsekas class of algorithms. TORA does not have
path independence. The set of final heights can vary,
even for the same initial conditions. Also, unlike the
GB algorithms, the number of reversals depends on
the ordering of events. While many properties from
the GB algorithms are lost, TORA should always
converge in a finite period of time. Establishing this
formally is one of the primary goals of this work.

2.2 Advantage of Temporally-Oriented Heights

Since the new heights are based on time, they are
always globally the greatest heights in the network.
This can improve the performance over other link
reversal algorithms of the GB class. Consider the
case of ordinary partial reversal algorithms and
consider a chain of nodes where the heights are
ordered completely backwards with respect to the
location of the destination. In the case of TORA, the
local minimum at the end of the chain would define a
new globally highest reference level. The nodes in the
chain upstream of TORA would then have room to
increase their heights without exceeding the new
globally highest node. In the case of non-temporally
oriented heights, this is not the case and a large
number of ‘oscillations’ are necessary before all the
heights converge.

2.3 Partition Detection

TORA includes a partition detection mechanism.
Under certain conditions, it is possible for a partition
to be detected when none actually exists. What the
algorithm can guarantee is that if a partition is
detected by TORA, then at some point in time
previous to the partition being detected, a partition
did occur, that is part of the network became
completely disconnected from the destination. This
result will be proved in a later section. There is a
problem though, in that sometimes the network will
become partitioned, but then another topology
change may cause the network to become connected
again. In this case, it is possible for TORA to detect a
partition when it does not actually exist.

 5

2.4 TORA Model

To improve the tractability of analyzing TORA, we
omit modeling the details of the query response
mechanism. We construct a simplified model of
TORA similar to the model of link reversal algorithms
presented by Gafni and Bertsekas[3].

In TORA, each node in V has a height associated
with it. The heights and reference levels of nodes are
ordered lexicographically, that is, they are equal only
when all fields are equal and h1 > h2 if the first
different field counting from left to right, of h1 is
greater than that of h2. Each node has a unique
identifier and these identifiers are totally ordered.
This lexical ordering has the following obvious result
for any nodes x, y ∈ V

r(x) > r(y) ⇒ h(x) > h(y) ⇒ hf(x) > hf(y).

TORA by definition adheres to (P1), that nodes may
update their heights when they are local minima.
Define S to be the set of nodes that are local minima
excluding the destination.

S ≡ { x ∈ V | x ≠ destination ∧ ∀ y ∈ N(x)
hf(y) > hf(x) }. (1)

This set is of interest because it is on this set that
reversals are enabled. When S is empty, no further
height update events are possible and the algorithm
has converged, at least while the topology remains
constant.

Lemma 1: ∀ (x, y) ∈ E ¬(x ∈ S ∧ y ∈ S). If x and y
are adjacent, only one may be a local minimum.
Proof: Suppose ∃ (x, y) ∈ E (x ∈ S ∧ y ∈ S).

(x, y) ∈ E ⇒ y ∈ N(x) (2.1)
x ∈ S ⇒ ∀ z ∈ N(x) hf(z) > hf(x) ⇒ hf(y) >

hf(x) (2.2)
(By (1))
y ∈ S ⇒ ∀ z ∈ N(y) hf(z) > hf(y) ⇒ hf(x) > hf(y) (2.3)
(2.2) and (2.3) are direct contradictions of each other,
so ¬∃ (x, y) ∈ E (x ∈ S ∧ y ∈ S). �

Corollary 1: Link reversal events are only enabled for
non-neighboring nodes.
Proof: By (P1) and Lemma 1. �

One of the features of this algorithm is that no
assumption about the atomicity of events is necessary.
This is because
Corollary 1 excludes any two adjacent nodes from both
updating at the same time. This means there is no
contention between neighbors performing height
updates simultaneously. The algorithm does not even
require that the updates occur in order. The
algorithm, viewed at this level, only requires that the

updates can be reliably sent between nodes. This
assumes that the topology is fixed while the
information is being updated. While topology
changes may disrupt the operation of the algorithm,
TORA is only guaranteed to converge while the
topology remains constant.

We now formalize the update rule for nodes in S. Let
x ∈ S. Let λ represent the event causing x to
become a local minimum. Let t be the time at which
the update takes place. Let h ′ express the new height
to be selected. h ′ can also be expressed as
components r ′ and β ′. h ′ is selected according to
the criterion below.

(1) If λ is a link failure
then h ′ := (t, x, 0, 0). (3)

(2) If λ is not a link failure
and ∃ y, z ∈ N(x) r(y) ≠ r(z) (4.1)
then let r* ≡

()
max (())
y N x

r y
∈

 (4.2)

and h ′:=
{ ()| () *}

min (())
y N x r y r

h y
∈ =

+(0,0,0,-1). (4.3)

(3) If λ is not a link failure
and ¬∃ y, z ∈ N(x) r(y) ≠ r(z) (5.1)

(complement of 4.1)
and ∀ y ∈ N(x) r(y).r = 0 (5.2)
then r ′ := r(y) + (0, 0, 1) for any y ∈ N(x)

and β ′ := 0. (5.3)
(4) If λ is not a link failure

and ¬∃ y, z ∈ N(x) r(y) ≠ r(z) (6.1)
(same as 5.1)

and ∀ y ∈ N(x) r(y).r = 1 (6.2)
(complement of 5.2)

and ∀ y ∈ N(x) r(y).oid = x (6.3)
then a partition is detected.

(5) If λ is not a link failure
and ¬∃ y, z ∈ N(x) r(y) ≠ r(z) (7.1)

(same as 6.1)
and ∀ y ∈ N(x) r(y).r = 1 (7.2)

(same as 6.2)
and ∀ y ∈ N(x) r(y).oid ≠ x (7.3)

(complement of 6.3)
then h ′ := (t, x, 0, 0). (7.4)

(same as (3))
Note that in case 4, no height is assigned because a
partition is detected. Also note that we will not model
the events that occur after the partition is detected
and assume that TORA’s CLR flood works properly.

 6

2.5 TORA Properties

Using the above formalisms for TORA, we shall
prove that for a connected, static topology, TORA
converges in a finite number of steps.
Lemma 2: Whenever a node increases its height in a
reversal, its reference level increases.
Proof: Let x be a local minimum. Let r denote r(x)
while x is a local minimum, and let r′ denote the
reference level TORA chooses as the next reference
level. Proceed by verifying the result, r′ > r, for all
cases.
Case (1) and (5): x generates a new globally highest
reference level. The desired condition,

r′ > r,
holds true trivially.
Case (2): This case applies only when

∃ y, z ∈ N(x) r(y) ≠ r(z). (4.1)
TORA will choose to propagate the highest reference
level of those nodes in N(x). Let

r* ≡
()

max (())
y N x

r y
∈

.

Given (4.1), and the fact that r* is a maximum,
∃ y ∈ N(x) r* > r(y). (8)

Let y* be any element of N(x) satisfying (8). Since x is
a local minimum, r(y*) ≥ r(x), and

r* > r(y*) ≥ r(x). (9)
When x takes r* as its reference level, its reference
level increases.
Case (3): Reflect back a higher sublevel when all
neighbors have the same reference level. Since x is a
local minimum, ∀ y ∈ N(x) r(y) ≥ r(x). When
reflecting back a higher sublevel, the new reference
level r′ > r(y) ≥ r(x).
Case (4): This case ultimately causes TORA to halt
and clears the heights altogether. It does not really
perform a reversal.
 Since the statement holds true for all cases, it must
be true. �

Lemma 3: Whenever a node increases its height in a
reversal, its reference level becomes greater than or
equal to the reference level of its highest neighbor.
Proof: Let x be a local minimum. Let r denote r(x)
while x is a local minimum and let r′ denote the
reference level TORA chooses as the next reference
level for x.
Case (1) and (5): x generates a globally highest
reference level. Obviously r′ > the reference level of
any node in N(x).
Case (2): By (4.2) r′ ≥ the reference level of all
neighbors of x.
Case (3): All neighbors of x have the same reference
level, s by (5.1).

r′ = s + (0, 0, 1) > s.

Case (4): This does not cause a reversal to be
performed.
In all cases, the result holds. �
Lemma 4: A node may perform at most two
reversals until all of its neighbors reverse and increase
their reference levels.
 Consider case by case what happens after the first
reversal. Let h be the height of x prior to its reversal
and let h′ be the height TORA selects to update x,
and r′ be the corresponding reference level.
Case (1) and Case (5): x generates a globally highest
reference level h′ > h(y) ∀ y ∈ V. In order for x to
become a local minimum again, all of its neighbors
must increase in height to be higher than x. In these
cases, x may only reverse again after all of its
neighbors have increased.
Case (2): Since x performs only a partial reversal, it is
possible that x is still lower than some of its neighbors
after it reverses. Let

O ≡ { y ∈ N(x) | hf(y) > hf ′ }
be the set of x’s neighbors that are still higher than x
after its first reversal. x may become a local minimum
again without these nodes reversing, though all of x’s
other neighbors must reverse before x may reverse.
By (4.3), we know that

∀ y ∈ O r(y) = r′. (10)
Now consider x’s second reversal. Let r″ be x’s
reference level after it reverses the second time. By
Lemma 2, we know that r″ > r′ and by (10) we know
that ∀ y ∈ O r″ > r(y). The only way that x may
become a local minimum again to reverse for the
third time is if all the nodes in O reverse, thus proving
the result for case 2.
Case (3): Since prior to x’s reversal, all of its neighbors
are at the same reference level, and x takes on a
reference level higher than its neighbors’ reference
level, in order for x to become a local minimum again,
all of its neighbors must increase in height first. �

Corollary 2: For any two nodes in a connected, fixed
topology graph, where ∆ is the number of hops along
the shortest path between the two nodes, the
difference in the number of reversals between the two
nodes must be less than or equal to 2∆.
Proof: Proceed by induction on the number of hops,
∆. For ∆ = 1, Lemma 4 states directly that the number
of reversals can differ by at most 2, which equals 2∆.
Assume that for ∆ - 1 hops, the result is true. Let x, y
∈ V be two nodes that are ∆ hops apart.

∃ z ∈ V z ∈ N(x) ∧ y and z are ∆ - 1 hops
apart.

 7

By the inductive assumption, z can differ in reversal
count with y by only by 2(∆ - 1). Since z ∈ N(x), and
using Lemma 4, x may only differ in hop count from z
by 2, so it can only differ in hop count from y by 2(∆ -
1) + 2 = 2∆. �
Theorem 1: Convergence: TORA always converges in
a connected network. For a connected, fixed topology
graph, TORA either converges in a finite number of
steps, or a partition is detected.
Proof: Suppose that there exists some connected
network for which TORA never converges and never
detects any partitions. This implies that S is never
empty and that there are an infinite number of
reversal events. For this to be true, there must be at
least one node x, that undergoes an infinite number of
reversals. Let D be the diameter of the network (the
length of the longest shortest path). By Corollary 2 and
the fact that the destination never reverses its height,
we know that the upper bound on the number of
reversals that any node can undergo is 2D. This is a
contradiction and thus TORA always converges in a
finite period of time. This result is only valid when
the network is connected to the destination. �

We have completed the proof that TORA always
converges or detects a partition when the nodes in the
network are connected to the destination. It is also
possible to show that under certain conditions,
TORA cannot detect a partition in a connected
network.

Lemma 5: Let nodes x, y ∈ V, be s.t. (x, y) ∈ E[t0]
and hf(y)[t0] < hf(x)[t0]. If ∃ t1 > t0 hf(y)[t1] < hf(x)[t0]
∧ ∀ τ∈[t0, t1](x, y)∈E(τ) (11)

then ∀ τ ∈ [t0, t1] hf(x)[τ] = hf(x)[t0].
In other words, given two nodes x and y that are
initially adjacent and remain connected over the
period of interest, if initially, hf(y) < hf(x), and hf(y)
remains less than hf(x), then hf(x) must remain
constant.
Proof: Assume (11) holds. By (P1), the fact that
heights are non-decreasing,
hf(y)[t1] < hf(x)[t0] ⇒ ∀ τ ∈ [t0, t1] hf(x)[t0] > hf(y)[t1] ≥
hf(y)[τ].

∀ τ ∈ [t0, t1] hf(x)[τ] ≥ hf(x)[t0]. (by (P1))
∀ τ ∈ [t0, t1] hf(x)[τ] ≥ hf(x)[t0] > hf(y)[τ].
∀ τ ∈ [t0, t1] ∃ y ∈ N(x) hf(x) > hf(y).

Hence x cannot change its height because it is never a
local minimum. Therefore x’s height must be
constant over [t0, t1]. �

Corollary 3: Let X ≡ {x1, …, xn } ⊆ V be such that
the set

P ≡ { (x, y) | ∃ i ∈ {1, …, n-1 } x = xi ∧ y = xi+1 }

is a subset of E and ∀ i ∈ { 1, …, n-1 } hf(xi)[t0] >
hf(xi+1)[t0].

If ∃ t1 > t0 hf(xn)[t1] = hf(xn)[t0] ∧ ∀ τ ∈ [t0, t1]
P ⊆ E(τ) (12)

 then ∀ x ∈ X ∀ τ ∈ [t0, t1] h(x)[τ] = h(x)[t0].
Proof: Proceed by induction on n applying Lemma 5.
For X ≡ {x1, x2 }, the result is a direct consequence of
Lemma 5. Assume that the result holds true for X ≡
{x1, …, xn-1}. In the case of X ≡ {x1, …, xn }, assume
that (12) holds. Then from Lemma 5 we know that

∀ τ ∈ [t0, t1] h(xn-1)[τ] = h(xn-1)[t0].
Using the inductive hypothesis, the result follows. �
 Corollary 3 generalizes Lemma 5 to apply to chains of
connected nodes. The result could be extended to
have the same condition as Lemma 5, but it is not
necessary.

The following is an important result that characterizes
the propagation of reference levels throughout the
network.
Lemma 6: Let x generate at time t0, a new reference
level r ≡ (t0, s, 0) where

h(x)[t0] = (t0, x, 0, 0).
Assume that ∃ t1 > t0 ∀ τ ∈ [t0, t1] E[t0] = E[τ], that
is the topology is static over [t0, t1]. Then

∃ y ∈ V r(y)[t1] = r ⇒ h(x)[t1] = h(x)[t0].
Proof: r is uniquely generated by node x at time t0.
Let y1 ∈ V be any node such that r(y1)[t1] = r. This
reference level may be reached in only two ways. All
node IDs being unique guarantees that x is the only
node that may generate r. If y1 is any node other than
x, then it must take on this reference level does so by
propagation, which is by case (2) of the height
selection algorithm.

Since prior to t0, reference level r does not exist, and
r(y1)[t1] = r, ∃ t ∈ [t0, t1] where y1 reverses and takes on
reference level r. By Lemma 2, y1 may only update its
reference level to r once, so t is unique. The condition
below is necessary for the propagation of reference
level r at time t to node y1.

(∀ z ∈ N(y1) hf(z)[t] > hf(y1)[t]) (13)
∧ (∃ m ∈ N(y1)((∀z ∈ N(y1) (m =z ∨ hf(m)[t]> hf(z)[t]))
 (14)

∧ ∃ z ∈ N(y1) r(m)[t] > r(z)[t]) . (15)
(13) states that y1 must be a local minimum. (14)-(15)
state that there must exist some neighbor m where its
height is greater than any of y1’s neighbors and there
must be another neighbor of y1 with a reference level
strictly less than r(m)[t]. Let y2 be the node satisfying
conditions (14) and (15). When y1 updates its height
at time t, according to (4.3), h(y1)[t] < h(y2)[t] and
h(y1)[t1] = h(y1)[t] < h(y2)[t] so by Lemma 5, h(y2)[t1] =
h(y2)[t]. The statement below summarizes the result.

 8

∀ y1 ∈ V r(y1)[t1] = r ⇒ y1 = x ∨ ∃ y2 ∈ N(y1)
r(y2)[t1] = r ∧ h(y2)[t1] > h(y1)[t1] (16)

Equation (16) has a recursive structure. Assume that
y1 ≠ x. Then there exists y2 with reference level r,
having a height at t1 strictly greater than h(y1)[t1]. Now
y2 is another node, where the condition r(y2)[t1] = r
holds. If y2 is not x, by (16) again, there exists another
node y3 such that r(y3)[t1] = r. Also, h(y3)[t1] > h(y2)[t1]
> h(y1)[t1]. This recursion can be repeated whenever
the next node discovered is not x. Any sequence
<y1, …, yn > generated in this way is always increasing
in height, so each node in the sequence is unique.
Since there are a finite number of nodes in the
network, the recursion must terminate and the only
way it can terminate is if yn = x. �

Corollary 4: Under the same conditions given in
Lemma 6,

∀ y ∈ { y ∈ V | r(y)[t1] = r ∧ y ≠ x }
 ∃ X ≡ {x1, …, xn } ⊆ V
∀ x ∈ X r(x) = r
∧ x1 = y ∧ xn = x
∧ ∀ i ∈ { 1, …, n-1 }
 (xi, xi+1) ∈ E ∧ h(xi)[t1] < h(xi+1)[t1].

In other words, starting at y, there exists a path of
connected nodes connected, such that all have
reference level r, and increase in height, terminating at
x.
Proof: Follows in arguments given in Lemma 6. �

Lemma 6 and Corollary 4 illustrate how a reference level
propagates through the network. As a newly defined
reference level propagates, a DAG is formed, rooted
at the node generating the new reference level. This
DAG consists of nodes all having the same reference
level. In order for the root node to become a local
minimum and reverse, it is necessary that no nodes in
the entire network have the same reference level.

Lemma 7: Assume that the topology is fixed. Let x
∈ V generate a new reference level r at time t0.
Assume that x detects a partition at time t1 by having
its reference level reflected back.
∀ τ1 ∈ [t0 , t1] ∀ y ∈ { y ∈ V | y ≠ x ∧ r(y)[τ1] = r }

∃ τ2 ∈ (τ1, t1) ∀ t < [τ1, τ2] r(y)[t] = r ∧ r(y)[τ2] =
r + (0, 0, 1).

In other words, any y that acquires reference level r,
must update its reference level from r to the reflected
reference level r + (0, 0, 1) in order for x to detect a
partition.
Proof: Assume that that the topology is fixed and
node x ∈ V generates a new reference level r at time

t0. At time τ1, let y ≠ x ∈ V be such that r(y)[τ1] = r.
By Corollary 4,

∃ X ≡ { x1, …, xn } ∀ x ∈ X r(x) = r ∧ x1 = y
∧ xn = x ∧ ∀ i ∈ { 1, …, n-1 } (xi , xi+1)
∈ E ∧ h(xi)[t1] < h(xi+1)[t1].

 For this set X, we proceed by induction on n to show
for n > 1, the result is true. For n = 2, where y ∈
N(x), we know by the fact that x detects a partition at
time t1, and by required conditions (6.1)-(6.3), that
r(y)[t1] = r + (0, 0, 1). Since r(y)[τ1] = r, the result
follows by (P1).

Now assume that the result holds for n-1. Let y ∈ V
be such that r(y)[τ1] = r and the set X associated with y
by Corollary 4 satisfy |X| = n. Then x2 ∈ N(y)
satisfies the criterion for case n-1. By the inductive
hypothesis, x2 must change reference level from r to r
+ (0, 0, 1). This means that x2 must become a local
minimum. This cannot happen until x1 increases its
reference level so that hf(x1) > hf(x2). Let r′ > r be the
reference level that x1 increases to. Suppose that r′ ≠ r
+ (0, 0, 1). Since r + (0, 0, 1) is the least reference
level greater than r. Then r′ ≠ r + (0, 0, 1) ⇒ r′ > r
+ (0, 0, 1) by Lemma 2. This means that when node
x2 updates its height, its reference level will be at least
r′. This contradicts the inductive hypothesis, so r′ = r
+ (0, 0, 1). �

Corollary 5: Assume the topology is fixed. Let x ∈
V generate a new reference level r at time t0. If at any
time before x detects a partition,
∃ y ∈ V r(y) = r ∧ ∃ z ∈ N(y) r(z) > r + (0,0,1) (17)
then x1 cannot detect a partition.
Proof: By Lemma 7, all nodes acquiring reference
level r must reverse to reference level r + (0, 0, 1).
By Lemma 3, any node reversing, must take on a
reference at least as high as its highest neighbor,
which in this case has a reference level greater r +
(0,0,1). �

Lemma 8: Assume that the topology is fixed and all
nodes are connected to the destination d. Let x ∈ V
generate a new reference level r at time t0. For any
node that propagates the reference level r + (0, 0, 1)
via case (2) of the decision tree, two conditions hold
at the time when it updates its reference level to r +
(0,0,1).

1) All its neighbors have reference level r or the
reflected reference level r + (0, 0, 1).

2) It must have reference level r.
Proof: Let z be a node generating the reflected
reference level r + (0, 0, 1) by case (3) at time t > t0.
Proceed by induction using the neighbors of z as the
base case.

 9

Let w be any node in N(z). Case (3) requires that all
neighbors of z have reference level r, so r(w)[t] = r.
Assume that w takes on the reflected reference level at
time t1 > t. By Lemma 2, the fact that r(w)[t] = r, and
the fact that r + (0, 0, 1) is the minimum reference
level greater than r, ∀ τ ∈ [t, t1] r(w)[τ] = r, so the
second property is true for w. In order for w to be a
local minimum

∀ v ∈ N(w) hf(v)[t1-] ≥ hf(w)[t1-].
∀ v ∈ N(w) r(v)[t1-] ≥ r.
∀ v ∈ N(w) r + (0, 0, 1) ≥ r(v)[t1-].

(if not, w propagates a higher reference level)
∀ v ∈ N(w) r(v)[t1-] = r.

So the first property is true for w. The result holds for
all neighbors of any node generating the reflected
reference level.

Assume that the first and second property hold for
some node w ∈ V. Assume that w takes on the
reflected reference level at time t1 > t. Let v ∈ N(w)
r(v)[t1] ≠ r + (0, 0, 1). Assume that v takes on
reference level r + (0, 0, 1) at time t2 > t1. By the
first property applied to node w, r(v) = r. Therefore,
by the argument for the base case, the second
property applies to node v. Arguing again as in the
base case, the first property must also apply to node v.
The result holds for the neighbor of any node for
which the result holds.

Since the only way a node can propagate reference
level r + (0, 0, 1) is by

a) being a neighbor of a node generating the
reflected reference level or

b) being a neighbor of a node propagating the
reflected reference level,
it must be true in all cases. �

Definition: The frontier of r, where r is a reference
level, denoted f(r) ⊆ V, is defined

f(r) ≡ { y ∈ V | r(y) ≠ r ∧ ∃ z ∈ N(y) r(z) = r }.

Theorem 2: Correctness Criterion: No partitions detected
in connected networks
Assume that the topology is fixed and all nodes are
connected to the destination d. Let x ∈ V generate a
new reference level r at time t0. x cannot detect a
network partition through case (4) of the height
selection process.
Proof: Assume that the topology is fixed and all
nodes are connected to the destination d. Let x ∈ V
generate a new reference level r at time t0. Since all
nodes are connected to d, then there must be a path
from x to d.

Let F ≡ f(r).

Let M ≡ { y ∈ V | r (y) = r }.
Let G ≡ { y ∈ M | ∀ z ∈ M D(z, d) ≥ D(y, d) }.

In other words G is the set of nodes having reference
level r with the shortest distance to the destination. F,
M and G change with time so let F[t], M[t] and G[t]
denote their respective values at time t.
Proceed by showing that in all cases either

1) ∀ t > t0 |G[t]| > 0 ∧ ∀ τ1 ∈ [t0 , t) ∀ τ2 ∈
(τ1, t] ∀ y ∈ G[τ1] ∀ z ∈ G[τ2] D(y, d) ≥
D(z, d). That is |G| > 0 and the distance
between G and the destination is non-
increasing with time. Since |G| > 0 and ∀ y
∈ G r(y) = r , by Lemma 6, x cannot detect a
partition.

or
2) ∃ t > t0, ∃ y ∈ F[t] r(y)[t] > r + (0, 0, 1).

Then by Corollary 5, x cannot detect a
partition.

Initially, the first condition is satisfied. |G| = 1 > 0
and since there are no comparisons, the distance
between nodes in G and d satisfy the non-increasing
criterion. It is possible for the second condition to
hold also, and either way, the property holds true.

Assume that the first condition is satisfied. Now
proceed by showing that for all enabled events, either
the first or second result will hold. If this is the case,
then no sequence of events may ever cause the
conditions to be violated and the proof is complete.

There are only two events that may directly affect G.

A. Node y with reference level r(y) ≠ r updates
its reference level to r(y) = r.

B. Node y ∈ G updates its reference level from
r(y) = r to r(y) > r.

Event A can only occur for nodes in F by definition.
Event B applies to nodes in G.

Consider the effects of event A on conditions 1 and 2.
Let y ∈ F[t] be a local minimum at time t. Assume
that conditions 1 and 2 hold prior to updating the
height of y to r. If

∀ z ∈ G[t] D(z, d) > D(y, d) (18)
then G[t] will be replaced with { y } after the event
occurs. Since y is closer to the destination than any
node in G[t], condition 1 is preserved. If

∀ z ∈ G [t] D(z, d) = D(y, d), (19)
then G[t] will be replaced with G[t] ∪ { y }, still
preserving condition 1. Otherwise, if

∀ z ∈ G[t] D(z, d) < D(y, d), (20)
G[t] is unaffected and condition 1 is still preserved.
Any occurrence of event A preserves condition 1.
Note that once ∀ z ∈ G D(z, d) = 1, the only frontier

 10

node is the destination, but since the destination
cannot update its height, (18) is no longer reachable.

Consider now the effects of event B on conditions 1
and 2. Let y ∈ G be a local minimum at time t. Let N
≡ F ∩ N(y). y ∈ G ⇒

∃ z ∈ N(y) r(z)[t] = r. (21) (by Corollary 4)
∃ z ∈ N r(z)[t] ≠ r ∧ D(z, d) = D(y, z) - 1. (22)

(by definition of G)
Since y is a local minimum and by the fact that ∀ z ∈
F r(z) ≠ r,

∀ z ∈ N r(z) > r. (23)
⇒ ∀ z ∈ N r(z) ≥ r + (0, 0, 1). (24)

Assume ∃ z ∈ N r(z) > r + (0, 0, 1), condition 2 is
satisfied and the result holds. Otherwise suppose

¬∃ z ∈ N r(z) > r + (0, 0, 1) (25)
then ∀ z ∈ N r(z) = r + (0, 0, 1). (26)

(with (24))
By Lemma 8 and (26) ∀ z ∈ N z must have had
reference level r just prior to having reference level r
+ (0, 0, 1). By (19), ∃ z ∈ N D(z, d) < D(y, z). This
contradicts the assumption that condition 1 holds
prior to event B occurring: the distance between
nodes in G and the destination are non-increasing
with time. Therefore, (25) is not reachable.
The conditions are satisfied by all possible events. �

Theorem 2 shows that any node generating a new
reference level cannot detect a partition if the
topology remains static after the reference level has
been created. However, in cases where the topology
is dynamic and changing, it is easy to produce cases of
partitions being detected in connected topologies.

There are two distinct cases of partition detection
when the topology is allowed to change. In one case,
partitions have never existed in the network and the
fact that a topology change can lead to a partition
being detected is an artifact of the algorithm. In the
other case, a network partition existed transiently and
was detected, but is already in the process of
communicating the partition being detected. The first
case is avoidable, but the second case is not in the
current framework.

3. Conclusions and Suggestions for
Future Research.

We have developed a formal proof method for the
correctness of TORA, a dynamic adaptive routing
algorithm for mobile ad-hoc networks (MANETs).
We have also developed a formal proof of a partition
detection criterion. While all tests have failed to find

anything wrong with the algorithm, there is still no
guarantee that it is correct in its full specification, as
our proof requires simplifications and assumptions to
be placed on the algorithm.

The ultimate goal of this type of research is to
develop a way to automatically check a specification
for correctness and liveness properties. This is
currently an entirely open ended question. While our
results do verify correctness in TORA, it is only under
certain assumptions that the proof is valid. The vision
of being able to go automatically from a specification
to a proof of correctness still requires further research
and progress.

References

1. S. Bayern. 2001. Synchronized recursion. Dr.

Dobb’s Journal (June) : 151-155.
2. G. Chartrand and L. Lesniak. 1996. Graphs and

Digraphs. London: Chapman & Hall.
3. E. Gafni and D. Bertsekas. 1981. Distributed

algorithms for generating loop-free routes in
networks with frequently changing topology.
IEEE Transactions on Communications 29 (January) :
11-18.

4. E. Gamma, et al. 1995. Design Patterns. Reading:
Addison-Wesley.

5. G.J. Holzmann. 1997. The model checker Spin.
IEEE Transactions on Software Engineering (May) :
279-295.

6. L. Lamport. 1994. How to write a long formula.
Formal Aspects of Computing Journal (September) :
580-584.

7. B. McKay. 1981. Practical graph isomorphism.
Congress Numerantium (30) : 45-87.

8. V. Park and M. Corson. 1997. A highly adaptive
distributed routing algorithm for mobile wireless
networks. IEEE Proceedings of INFOCOM (April)
: 1405-1413.

9. R. Tarjan. 1972. Depth-first search and linear
graph algorithms. SIAM Journal of Computing (1) :
146-160.

10. S. Yang, TORA, Correctness, Proofs and Model
Checking, M.S. Thesis, Electrical and Computer
Engineering Department, University of
Maryland, College Park, December 2002.

