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Absrmcl-Informstiom hadersting is an dkctive method to doliver pop 
ular Information packager to P large number of users in wirelar and satel- 
Ute networks. In this papcr, we address the pmblem of bmidemt aehedul- 
Lag in the pull &mnment and try to solve this problem by (ormnl&g 
it p1 P dynamic optimimtioo problem. This approach sllow*s us to find a 
newoptimal scheduling policy, which PI rnch, we use as P benchmark to 
evaluate a number of other existing heurlitlc poliela. Also, in addltlon 
to providing a solotian for the usual eale with Poisson ~ n i v n l s  and equal 
priority pager, our appmarh enables UI to address the extended versions 
of this problem with other srrival pro~esses and with distinct weights e 
&ped to different pager. 

1. INTRODUCTlON 

ANY data communication applications are inherently a s p -  M . .  memc. That is, there are a few information soutces anda large 
number of uscrs, and the volume of data transferred from the sources 
to the users is much larger than that in the reverse direction and we 
use the term dola delivery to refer to this specific type of applications. 
Some data delivery applications have become increasingly popular in 
recent years. For example, many cellular phones or wireless hand-held 
devices are currently capable of receiving periodic updates of infor- 
mation like news, weather, traffic or stocks quotes from the air and the 
numberoftheseapplications is expected to increase with thegmwthof 
the Mobile Computing field. The WWW traffic can also be regarded as 
a data delivery application particularly in the networks with caching. 
One of the major issues in the design of a data delivery system is its 
scalability. Generally, wtellite and wireless environments due to their 
inherent broadcast capability are the perfect media for highly scalable 
data delivery systems. The two main architectures for broadcast deliv- 
ery are the one-way(or Push) and the two-way(or Puli) systems. The 
two systems differ in the lack or presence of a return channel to trans- 
fer the user requests to the server. In a push system, the server does 
not actually receive the requests and schedules its transmissions based 
on the statistics of the user request patrem(hence the term push). Con- 
versely, in a pull system the server receives all the requests and can 
schedule the transmissions based.on the number of requests for differ- 
ent data packages. Apull system is potentially able to achieve a bener 
performance than apush system but the cost of a re” channel can 
generally overshadow this performance improvement. For this reason 
hybrid architectures, those that combine push and pull systems, are 
commonly suggested in the literature [ I ] ,  [Z], [3]. The main problem 
with both of the above broadcast methods is the scheduling of data 
transmission. As we will mention in the next section, the problem of 
scheduling in apush system is solved to a large extent. However, to 
our knowledge, the problem of finding the optimal broadcast schedul- 
ing policy for apull system apparently has not been solved yet. 
Based on the nature of the applications suppotted by a data delivoy 
system, different performance metrics can be used to evaluate the per- 
formance ofthe system. In this work, we hy to minimize the weighted 
average waiting time ofthe users to allow some flexibility in assigning 
soj? priorities to the packages. 

Research pamally suppond by NASA cwpemtive agreement NCC3-528, 
by MIPS gram with Hugbss Network Systems, and by, h w l e e d  Manin Net- 
workhgFellowshipal1 with UleCentafo.SatelliteandHybridCommunieation 
Neworb at the U ~ v o J i t y  of Mayland at College Park. 

0-7803-7632-3/02/$17.00 0200’2 IEEE 

This paper addresses the scheduling problem in apul l  system. it aims 
to find the optimal (with respect to the weighted average waiting time) 
scheduling policy and also provide a benchmark for evaluating current 
and possibly future heuristic algorithms. We approached the schedul- 
ing problem from a dynamic optimization point of view. This formu- 
lation is similar to the formulation in [4] and [S) but instead of using 
numerical methods for extremely simplified versions of the problen or 
using this formulation to find a few properties of the unknown optimal 
policy, our goal is to reach an analytical solution and present an index 
policy through optimization arguments. Using the Restless Bondit[6] 
formulation, our approach naturally addresses the systems with multi- 
ple broadcast channels, or prioritized pages and also provides guide- 
lines for the case with unequal page sizes. 
This paper is organized as follows. Section 11 addresses the motivation 
of our work. There we review the current results for the problem of 
broadcast scheduling mainly in pull systems, the subject of our work, 
and to some extent in push systems. In section 111 the mathematical 
formulation ofthe problem as a dynamic optimization problem is pre- 
sented. Section IV describes our approach for solving the optimization 
problem and contains the main results of this work. Finally in section 
V we compare the performance of our algorithm with some of the 
current well-known algorithms in this field and present a discussion 
followed by some concluding remarks. 

11. RELATED WORK 

The saies of works by Ammar and Wong are probably the first pa- 
pers addressingthe broadcast scheduling problem in detail. In [7], [SI. 
they consider various aspects of the push systems by analyzing the 
problems associated with a Teletext system. They derive the theoreti- 
cal lower bound for the average waiting time of the users o f a  Teletext 
system and showed that the optimal scheduling policy is of the cyclic 
type. They also presented a heuristic algorithm to design the broadcast 
cycle based on the anival rates. Vaidya and Hameed [9], [ I O ]  extended 
the so called squatt rmt formula to coverpush systems with unequal 
page sizes and also considered the systems with multiple broadcast 
channels. There are also a number ofother works aboutpush systems 
[11],[12], 1131, [ 5 ]  whereallofthemaddress theschedulingproblem 
for different variations of apush system. 
Despite the wealth ofresources about the push systems, the number of 
works addressing the pull broadcast systems is very limited. However, 
none of those paper!(except [4], to our knowledge) have tried to find 
the optimalscheduling policy and most ofthem have suggested heuris- 
tic algorithms which despite their good performances in some cases 
[ i 4 ] ,  [SI, do not contain any notion of optimality. In [4], the problem 
of finding the optimal scheduling policy for a pull system is formu- 
lated as a Dynamic Programming@P) problem. This work might be 
the first attempt for an analytical approach to thepuN scheduling prob- 
Icm. However, the question of finding the optimal policy still remains 
unanswered. In [I] anumberofheuristicpolicies forapullsystemare 
proposed and their resulting average waiting times are compared. In 
[SI, an index policy called PIP was introduced and after experimental 
tuning of the parameter of that function for the case with Zipf distribu- 
tion of the arrival rates, it resulted in very satisfying results in a num- 
ber of experiments. The work by Aksoy and Franklin [I41 proposes 
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Fig. I. The pull type bmadcast as a queuing system. 

another index policy named RrW and reports a performance compm- 
ble to PIP in different experiments. The two above works are Iprobably 
the best hown scheduling methods for a pull system. However, the 
distance between their performances and that of an optimal policy still 
remains unknown. From another point of view, all of the abwe works 
only consider the case where all pages are of equal impomme and 
have equal sizes and do not apply to cases like cache broadcaning 
where the pages can have unequal lengths. In the following chapters 
we present our formulation of the problem and the solution to it. 

111. PROBLEM FORMULATION 

In this section a mathematical formulation for the pull broadcm 
scheduling is presented. We denote by N(> l), the number of infor- 
mation packages stored in the system. In this work we analyn: the case 
where all packages have equal sizes. Wis assumption is also made in 
[5], [4], [I41 and most of the other works on this subject and is a rea- 
sonable assumption for many applications. Throughout this ]paper, we 
will use the terms page and information packnge interchangeably to 
simplify the notation and also to s u e s  the equal sizes of the packages. 
The fixed page sire assumption naturally introduces a time unit that 
is equal to the time required to broadcast a page on a channel and it 
can be set to one without loss of generality. All of the broad8:ast times 
therefore, start at integer times denoted by t; t = 0,1,. . .. 
Here we assume that the system has K(l 5 K < N) identi’:al broad- 
cast channels. In apull broadcast system, the system receives the re- 
quests for all packages from the users and based on this information 
the scheduler decides which pages to transmit in the next tune unit in 
order to minimize the average waiting time over all users. 
For the systems with a large number ofusers it is reasonable to assume 
that the requests for each page i; i = 1,. . . , N arrive as a Poisson 
process and denote by Xit he rate ofthat process. The waiting time for 
every request is the time since the arrival of the request to the system 
until the beginning of the broadcast of the requested page. :Due to the 
Poisson assumption for the request arrival process we can asume that 
the requests for every page i arrive at discrete time instants t as batches 
of random size having Poissa(X i )  distributions and ignore the resid- 
ual waiting times without loss of generality. The system therefore, can 
be shown by a system of N queues where each queue corresponds to 
one of the packages and holds all the pending requests for that pack- 
age, and K servers as in figure I .  Due to the broadcast M t w  of the 
system, the queues are ofthe bulk service type [I51 with irlfinite bulk 
size i.e. the requests waiting in a queue will be served altogether once 
the queue is serviced. The state of this system at each time t is s h o w  
b y X ( t )  = (zt(t),zl(t), ..., zN(t)) where zi( t )  isthenumberof 
pending requests for page i at time t. Each zi(t); i = 1, . . . , N is a 
Markov process with transition probability 

Pp“’(z<(t) = z f ,z+( t  + 1) = z?) == 

, ... 
4- 

Fig. 2. Sample path of a system with thne pages 

(1) 
if z ? = z ; + A , ( t ) - z f l ( i  Ed(t)) 
otherwise 

where A,(t); i = 1,. . . , N is the number of new requests for page i 
during the time intend It, t + 1) and d ( t )  C { 1,. . . , N} is the set 
containing the indices of the K pages broadcast at time t. Figure 2 
shows a sample path of the evolution of a system with three pages and 
a single broadcast channel. 
The weighted average waiting time over all users is defined by 

where W, is the average waiting time for all page i requesrr and X is 
the total request arrival rate to the system. The ci coefficients are the 
weights associated with the pages to allow more flexibility in assign- 
ing so!? priorities to the pages. Due to the discrete-time nature of the 
system, and to avoid technical difficulties associated with the DP prob- 
lems with average reward criteria, instead of minimizing (Z), we use 
the policy-dependent total discounted reward criteria. Using Little’s 
law, the problem becomes to minimize the total discounted expected 
waiting time defined as 

m N  

Je(r) = E I X  0‘ cisi(t+)] (3) 
t=o i=* 

where 

(4) 
0 
x,(t) othenuise 

if page i i s  broadcast at time t 
Xi@+) = 

and ?r is the scheduling policy resulting in Jp(?r).  Equations (3) and 
(I), together with the initial condition X(O) ,  define the minimization 
problem 

m N  

J;(=) = m i n ~ [ C 0 ’ C r ; z i ( t + ) l .  r ( 5 )  
*=o i=t  

which can be shown to be equal to the maximization problem 

m 

j;(n) = maxE[xB‘ r cizi(t)]. (6) 
1=0 iEd(t) 

To facilitate the analysis we assume that the state space of each queue 
i; i = 1,2,. . . , N is a finite set Si and denote the state space of the 
system by S = SI x Sz x . . . x S.M. This problem is in fact a DP 
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pmblem with decision space D = {d; d C { l ,  2,.  . . , N] and Id1 = 
K) where ldl is the cardinality of set d. The decision space D is in fact 
the set ofall possible K ~ p l e s  ofthe indices 1 through N. The reward 
function for bmadcast of pages in d E D at state s = {.I, . . . , I N )  E 

IEd 

This maximization problem is the problem we will address in the se- 
quel to find a non-idling, stationary optimal policy for thepullhroad- 
cast environment and its derivation completes the formulation of tbe 
problem. What we are specially interested in is an index-+ policy 
where there is an index associated with each queue at every instant of 
time and the optimal decision is to service the queue(s) with the largest 
index value(s). If the index for each queue only depends on the state of 
that queue, the computation load for every decision would be of order 
N which is important from a practical point of view for systems with 
a large number of stored pages. 

1V. SOLUTION OF THE OPTIMIZATION PROBLEM 

The discrete time naNre of our formulation allows us to represent 
each queue as a wnrmllable discrete time Markov chain. This set 
up is quite similar to the family of Bnndif problems introduced in 
a number ofpapen by different researchers [16], [17J, [IS]. In the 
basic Muln-ormedBandit problem there are N independent control- 
lable Markov chains(called projects) and at each instant of time only 
one of the pmjects can be activated. With the activation of pmject 
I ;  1 = 1,2,. . . , N, a stationary reward of T = ri(z;) is achieved, 
where zi is the state of projen i, and the project icha nges its state 
according to its transition probability rule. The passive projects nei- 
ther produce any rewards nor change their states and the goal is to 
maximize the expected discounted sum of the rewards. Gittins [I91 
showed that the optimal policy is of the index type and the index for 
each project is independent of other projects. The main restriction 01 
the Multi-armed Bandit problem is the requirement that the passive 
projects do not change their states which is obviously not the case 
for our system. We therefore use what Whittle [6] introduced as an 
extension to this problem named the Resfless Bandit pmblem that al. 
lows the passive projects to produce rewards and change their states 
too. Unfomnately, with this generalization, the existence ofan index- 
type solution is no longer guaranteed. However, as Whittle showed. 
in some cases an index-type solution can be found for a relaxed VW 

sion of this problem that results into reasonable conclusions about the 
optimal policy for the original problem. In the following we briefly 
explain the application of this approach to our problem and refer the 
reader to [6],  [20] for more detailed information. 

A. Restless Bandit oppmach 
The Linear Programming(LP) formulation ofthe DP problems 1211 

andtheadditiveformoftherewardinourproblemallowsus toconverl 
problem (6) into the (dual) LP problem 

. .  

subject to 

zi(s’,d) - Pp:’(s, s ’ )z i (s ,d )  = a i ( s ’ )  (9)  
dt(O.1)  aESi dt[O,l)  

for i  = 1,. . . , N a n d  s’ E Ss. Here, U,(.) isthe initial probabilitydis- 
hibution of the states, ti (3) is the reward for activating project i while 

in state s, and LI(S, 1) is the discounted expected value of the number 
of times queue i is served while at state s. 
An additional constraint implicit to this scheduling problem is that at 
any time t ,  exactly K queues shouldbe served. Whittle’s relaxation as- 
sumes that instead of having exactly K projects activated at any time, 
only the time average of the number of activated projects be equal to 
K. Using the Lagrangean Relaxation [22] methodand some additional 
arguments[20], this maximization pmblem can be broken into N inde- 
pendent maximization problems as 

Mazimize C(v;(s) - u)z,(s, 1) (10)  
3ES. 

subject to constaint (9) Fori= 1,2, .  . . , N where U is the Lagrange 
multiplier of the problem. 
The solution to problem (IO) is a function of the parameter U and is an 
upper bound to the solution of problem (8) with the new relaxed con- 
straint. However, for a specific value i the solutions to both problems 
will be equal. If v’ was know, the problem would become finding 
the optimal policies foreach ofthe N problems in (IO) independently 
where for each queue the reward for serving the queue at state x is 
cz - U*. We have shown [23] that the solution to this single queue 
problem is of the thresholdtype that is, it is optimal to leave the queue 
idle forthe set ofstates {O, 1,. . . ,xi}(for some (U’)) and to serve the 
queue otherwise. It can be also shown that the idling set monotoni- 
cally increases from 0 to S, as the Service cost Y* is increased from 
-cc to m. The solution to the N queue pmblem is therefore to ser- 
vice those queues with their states zi; i = 1,. . . , N larger than their 
corresponding xi(u*) thresholds and leave other queues idle. Alter- 
natively, for every state 5; E Si pf each queue, we can find a value 
v,(z;) as the service cost where it is optimal to, leave that queue idle 
forstates{O,1,.,., z;-l]lservicethequeueforstates(z,+l ,... 
and equally optimal to serve or not serve at state zi. Therefore the 
optimal policy for (IO) can be rephrased as: service the queues with 
u;(zi)> v* and leave the other queues idle. The above monotonic- 
ity property for the queues is in fact the condition for indexability of 
the projects. Based on this result, a meaningful heuristic for the opti- 
mal solution to the original problem with the hard constraint(exac1ly 
K queues active at every time) is to find the index ui(zi) associated 
with each queue and serve the queues with K largest values of the in- 
dex. This policy requires a method for calculation ofthe index function 
which will be explained below 

B.  Calculation ofthe inderfunction 
Calculation of the index function involves finding the proper value 

of the service cost u(z)  for a discrete-time queue with infinite bulk 
service and Poissonarrivals so that it is optimal for the queue to remain 
idle for states smaller than z, to be serviced for states larger than x and 
indifferent for 5. The optimality is of course with respect to maximum 
total discounted reward obtained.given that the reward from serving 
the queue at any state z E S is equal to cz. 
Assuming that the value of u(z)  is known, the value function V(.) of 
the optimal policy satisfies the set of optimality equations 

m 

V(O) = ~ C p ( i ) v ( o + i )  
i=o 

m 

~ ( z )  = P c p ( i ) v ( x  + i) (11) 
i=o 
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Fig. 3. The form ofthe index function for Poisson arrivals with different rates. 

where V(z) is the expected reward of the optimal policy ,given the 
initial state z. Also, p ( i )  is the probability o f i  for a Poissonl:X) distri- 
bution. The critical value of u(z), by definition, adds anothei equation 
to the above system 

V(z) = - u + C z + B ~ p ( i ) V ( i ) .  
i=o 

Due to the special form of the V( . )  function we have 

V(z + i) = V(z) + ci; a = 0,1, 

Therefore, the number of unknowns can be reduced to 2: + 2 i.e. 
V(O), . . . , V(z), "(2). The solution to this set of equations can not 
be expressed in a c l a d  form expression. However, it can be shown 
[23] that the value of u(z)  can be calculated via recursive cakulations 
involving the value of v(z - 1). Figure 3 shows the index fiinction for 
several values of the input rate and with c = 1. 
Some thoughts about the form of the above equations reveal an impor- 

tant property of the index function. If we consider the above equations 
with c = 1 and assume that VI(.) and V I ( . )  are the solutions of that 
system, then it is not difficult to show that Vc(.)  = c * Vt(.)and 
uc(.)  = c * u ~ ( . )  are thesolutionsofthegeneralsystemwitharbitrary 
e value, hence: 

Pmperty I: If U=(.) is the index function for a bulk service queue 
with the reward function at state z defined as r(z) = a:, we have 

This propmy shows that the index function scales linearly with the 
weight factor c therefon, we can also extend the definition of the PIP 
index to cover the weighted caSe by multiplying the indcr by c, the 
original paper on PIP did not give a recipe for calculating ihe index in 
this general case 
Another constluctive observation is to investigate the shape of the in- 
dex function in light traffic. In the light traffic regime, the probability 
of having more than one arrival during any time interval of unit length 
is negligible. For a Poisson(X) distribution with a small value of A, 
a closed form representation of the index function can be found which 

U<(+) = cu1(z); 5 = 0,1,. . .. 

I I 
0s 20 UI m m rm 1m >M 

.W.yrM*pTU"l..hl 

Fig. 4. Comparison of the total average waiting time for different scheduling 
policies with the distribution of the arrival rates having a Zipf dislribution. 

Fig. 5. Average waiting times for the requests for each ofthe 400 pages under 
different policies. 

index function compared to the exact solution and found reasonably 
close results for the range of up to roughly 10 - 15 requests per period. 

V. RESULTS 
We tried to evaluate the performance of our policy through several 

experiments with a single-channel system with 100 pages and used 
different scheduling policies to schedule the broadcasts. During the 
experiments, we changed the total request arrival rate X from small 
to large values but kept the distribution of the (normalized) individ- 
ual arrival rates to be according to a Zipf distribution(@ = 1). Figure 
4 shows the resulting average waiting times for the FCFS, MU, PIP 
and our policy which we call NOP(Near-Optimal Policy) for notational 
convenience. The results show that the performance of PIP is almost 
the same as the performance of our policy. 
Figure 5 shows the individual average waiting times experienced by 

is the requests for each page under PIP-and NOfpolicies for a fixed &- 
rival rate in a system with 100 pages. The close matching of the two 
results suggests that the PIP policy is probably an approximate version 
of the optimal policy. Since PIP is optimized [ 5 ]  for a Zipf distribu- 
tion of the arrival rates, we c o m p d  the performances of PIP and 

Y(Z) = z + - [ ( )' - 11 . (12) 

Although the above formula is meaningful only for X < 1 values, we 
calculated the function for larger values of X to find the behavior ofthis 

1 - 8  l - B + B X  
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shows that the index function scales linearly with the c coefficient. 
Using this result and through a number of experiments we also came 
up with a heuristic extension to the PIP to include the weighted case as 
well. Another advantage of our approach is the guidelines it provides 
to consider the scheduling problem for a system where the pages do 
not have fixed lengths. This case is particularly of interest for cache 
broadcasting in the Internet and the previow methods do not address 
this impoltant case. We are cumently working on this case and will 
publish the results in another repon. 

- ~ - 
, , -  .,... ~... ...... . ~ ~ .  - 
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VI. CONCLUSION AND DISCUSSION 

In this repon we denved an scheduling policy for the scheduling of 
broadcasts in apull system. The policy defines an index function for 
each page in the system and at every decision instant the fin1 K pages 
with the largest values of the index are broadcast. The performance 
of OUT palicy is almost identical to the performance of the PIP policy 
however, sincc we have taken an analytical path for its derivation, it 
can be readily applied to cases with non-Poisson arrivals or when there 
are priority weights assigned to the pages. Other policies, due to their 
heuristic reasoning, do not address these general cases. Our approach 
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