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ABSTRACT 

W e  present a new class of distributed key generation and 
recovery algorithms suitable f o r  group communication sys- 
t ems  where the group membership is  either static or slowly 
time-varying, and m u s t  be tightly controlled. The  proposed 
key generation approach allows entities which m a y  have only 
partial trust  in each other t o  jointly generate a shared key 
without the aid of  a n  external third party. The shared key 
is  generated using strong one-way function of the group pa- 
rameter. This scheme also has perfect forward secrecy. The  
validity of  key generation can be checked using verifiable se- 
cret sharing techniques. The  key retrieval method does not  
require the keys t o  be stored in a n  external retrieval cen- 
ter. W e  note that m a n y  Internet-based applications m a y  
have these requirements. Fulfillment of these requirements 
is realized through the use of fractional keys-a distributed 
technique recently developed to  enhance the security of dis- 
tributed systems in a non-cryptographic manner.  

INTRODUCTION 

Cryptographic key generation and management is an im- 
portant problem in multicast and group communications 
[l-51. In many instances, it is desirable to  generate a group 
shared key (SK) for efficient intra-group communications. 
However, having the same SK implies that the all the group 
membership is at the same trust level. In a distributed, 
multicast group, it is often not possible nor desirable to  
have the same trust level throughout the group. One may 
be tempted to  suggest that a single trust level can be de- 
fined by choosing the lowest possible trust level as the group 
trust level. Though such a straightforward approach is fea- 
sible, one can do better by compartmentalizing the group 
based on local trust levels [5]. Such a compartmentalization 
inevitably leads to  clustering of a given group. Compart- 
mentalization also helps in having a better control over the 
set of key management and distribution functionalities as 
noted in [5]. 
While the entities in each cluster may share a common trust 
level, it may be that the clusters are mutually suspicious 
and have only partial trust in each other. Thus, a mecha- 
nism is desired that permits mutually suspicious parties to  

come together to  generate a shared key. In order to  avoid 
involving (and paying) a third party, it is also desirable that 
the scheme involve only the group members and no external 
parties. 

Schemes in [2,3,4] propose to replace the traditional (ex- 
ternal) Key Distribution Center (KDC) with a Group Con- 
troller (GC)  which can generate and distribute the keys. 
However, in these approaches, a single member is allowed 
to  generate the keys. This means that group members must 
place complete trust in this group member. In [5], a panel 
of members are allowed to  generate the keys. However, 
[5] does not present any explicit distributed key generation 
scheme. 

In this paper, we present a class of key management schemes 
which increase the security of key generation and recovery 
using non-cryptographic techniques. The schemes employ 
distributed algorithms based on Fractional Keys  (FK). The 
proposed methods allow the members to  automatically up- 
date the keys in a periodic manner without any assistance 
from an external third party, and use verifiable secret shar- 
ing techniques in [7,8]. 

PROPERTIES OF THE NEW KEY 
GENERATION SCHEME 

The following notation is used to describe the different quan- 
tities used in the algorithm: 

ai,j: The one-time pad of the i th member at the j t h  key 
update iteration. 

B j :  The pad binding parameter at the j t h  key update 
iteration. 

{Ki ,  K i l } :  Public key pair of the member i.  This pair 
is assumed to  be updated appropriately to key the 
integrity and confidentiality of any communication 
transaction by and with member i .  

FKi,j: The FK of the ith member at the j t h  key update 

HFKi,j: The hidden FK (HFK) of the i th member at the 

iteration. 

j t h  key update iteration. 
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SKj:  The group SK at the j t h  key update instance. 

A -+ B : X: Principal A sends principal B a message X. 

Our message format is {{Ti, M , j ,  Msg}KS1}KR,  where 

0 Ti: a real-valued, wallclock time stamp nonce 

0 M :  denotes the mode of operation with “I” for 
generated by member i. 

Initialization mode, “6” for key Generation mode, 
and “R” for key Recovery mode. 

number. 
0 j: integer-valued, denotes the current iteration 

0 Msg: the message to  be sent. 
0 K;’: Denotes the private key of the sender S. 
0 KR: Public key of the receiver. 

In developing the new key scheme, we note that the follow- 
ing properties are desirable for a multiparty key generation 
scheme: 

0 A FK contributed by a participating member should 
have the same level of security as the group SK. 

0 A single participating member, without valid permis- 
sions, should not be able to  obtain the FK of another 
member. 

0 If a FK-generating member has physically failed, com- 
promised or removed, the remaining FK-generating 
members should be able to  jointly recover the FK of 
the failed member (this requires not majority voting 
but total participation). 

We note that the first property simply states that the dis- 
tributed key generation scheme has to  be such that each 
FK space has at least the same size as the final SK space. 
Hence, each member may generate FK of different size but, 
when combined, they lead to a fixed length SK. 

The second property has to do with the need for protection 
of individual FKs that is desired due to the absence of a 
centralized key generation scheme. In the current scheme, 
every member perform an operation to  hide its FK such 
that, when all the hidden FKs (HFK) and the group pa- 
rameter are combined, the net result is a new SK. We note 
that even if a HFK is known, the problem of obtaining the 
actual FK or the SK needs further computation. We will 
describe the requirements of the FK concealment mecha- 
nism in the next section. 

If a contributing member physically fails, becomes compro- 
mised, or has to  leave the multicast group, then it becomes 
necessary to  replace the existing member with a new mem- 
ber. Hence, the newly-elected member should be able to  
securely recover the FK generated by the replaced member. 

However, to ensure the integrity of the scheme, this recov- 
ery should be possible only if all the remaining contributing 
members cooperate. This feature deviates significantly from 
the existing key generating schemes [2,3,4]. We note that 
the requirement that an individual member acting alone not 
be able to  obtain the FKs of other contributing members is 
similar to  protecting individual private keys in the public 
key crypto systems. 

DESCRIPTION OF THE MULTIPARTY KEY 
GENERATION SCHEME 

The followihg is a list of assumptions regarding the algo- 
rithm, some of which may appear rather abstract at first 
glance: 

0 There exist two commutative operators 0 and 0 which 
form an Abelian group when operating on the key el- 
ements. 

0 It is computationally difficult to  perform crypto anal- 
ysis on a cryptographically-secure random key by search 
methods if the key length is sufficiently large. 

0 The keys are all L bits in length, and all members 
know this length. 

0 The number of participants in generating the SK is 
fixed as n (where n may be a function of 0 and 0). 

0 There is a mechanism for certifying the members par- 
ticipating in the key generation procedure, for se- 
curely exchanging the quantities required in the al- 
gorithm and for authenticating the source of these 
quantities. 

0 Every member has the capability to  generate a 
cryptographically-secure random number, or a fresh 
quantity, of length at least L bits. 

With the assumptions above, we note that the key manage- 
ment scheme consists of three major parts: 

1. Initialization-consisting of member selection, and se- 
cure initial pad and binding parameter generation and 
distribution; 

2. Key Generation-an iterative process consisting of 
fractional, hidden and shared-key generation; and 

3. Key Recovery-required only in the case of a member 
node failure or compromise. 

INITIALIZATION ALGORITHM 
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A Group Initiator (GI) first selects a set of n FK-generating 
members, and the GI may be one of these members (how it 
occurs is not specified and is application-dependent). The 
GI then either (1) contacts a Security Manager (SM)-a 
third party who is not a FK-generating member-who gen- 
erates the initial pads and the binding parameter and dis- 
tributes them to the members, or (2) initiates a distributed 
procedure among the group members to  create these quan- 
tities without the aid of a third party. 

SECURITY MANAGER-BASED 
INITIALIZATION 

The initial pads and binding parameter are distributed to 
each member i, for i = 1,. . . , n, as 

S M  + i : {{TSM,I,1,ai,l,el}K,~}Ki 

where ai,l-its initial one-time pad-is computed such that 
al,l 8 a2,1 8 . . . 8 a,,1 = el. 

DISTRIBUTED INITIALIZATION 

n 

\ I 

I 
I 

/ 
/ 

Figure 1. Distributed initialization algorithm 

The GI (assumed to be a member and denoted here by the 
index 1 shown in Figure 1) can perform the following steps 
(1)-(5) t o  generate the initial parameters of the group: 

1. Generate two uniformly-distributed random quanti- 
ties y and v1,1 of bit length L,  operate on these two 
quantities as ~ @ ) Y ~ J  = dl,  and send the result to mem- 
ber 2 (the “next” member in the group) as 1 --+ 2: 
{{Tl , I , l ,WK;1}Kz.  

2. 

3. 

4. 

5. 

The following steps are repeated for i = 2, . . . , n - 1: 

(a) Member i generates a uniform random variable 
vi,l of bit length L. 

(b) Member i then operates on the quantity it re- 
ceived from member i - 1 as 6i-1 8 vi,l = &. 

(c) Member i then sends the result to member i + 1 
as i + i + 1: {{Ti, I, 1, C ~ ~ } ~ ~ I } K ; + ~ .  

Eventually, the group member i = n receives 6,-1 
and then generates a uniformly-distributed random 
quantity vn,l of bit length L,  performs 6,-1 8 v,,1 = 
6,, and then securely sends it to the initiating member 
i = 1 as n + 1: {{Tn,l,l,Sn}K,~}~l. 

The initiator (member 1) then decrypts it and per- 
forms y 8 6, = 91, and then sends & to each member 
i , f o r i = 2 ,  ... n , a s  
1 + i : { { z , I , l , e l } K ; l } K i .  

Each member i privately computes  ai,^ = 91 8  vi,^, 
and uses ai,l as its initial pad. 

We note that these two approaches of initialization-security 
manager-controlled and distributed-are not equivalent un- 
less additional security assumptions are made. For example, 
in the case of distributed initialization within the group, we 
point out that using following attack is feasible. 

Assume that members i - 1 and i + 1 conspire to obtain 
the secret of member i ,  where the numerical ordering cor- 
responds to the order of message passing in the distributed 
algorithm. 

Member i - 1 sends Si-1 to member i as per the algo- 
rithm, and also to member i+l  without i’s knowledge. 

Member i, who is unaware of the conspiracy between 
i - 1 and i + 1, computes 6i = 6 i - 1 8  vi,l and sends it 
to member i + 1 securely. 

Member i + 1 can now compute = didl 8 Si and 
obtain the secret vi,l of member i. 

However, the secret  vi,^ generated by member i becomes 
part of the pads (i.e. the a’s) of members i - 1 and i + 1. 
Hence, the knowledge of vi,l reduces the entropy of the 
initial pads of the conspiring members. Thus, while the 
attack is feasible, there may not be any incentive to conspire 
in this manner. 

KEY GENERATION ALGORITHM 
The key generation algorithm is an iterative process de- 
picted in Figure 2. Each iteration j requires as input (in- 
dicated as step (0) in the figure) a set of one-time pads 
ai,j, i = 1 ,..., n, and the binding parameter O j ,  which 
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Figure 2. Iteration and mappings of the key generation 
algorithm 

are obtained from the initialization algorithm for iteration 
j = 1, and from the preceding iterations for j > 1. 
The iterative key generation algorithm consists of the fol- 
lowing steps (1)-(5): 

1. 

2. 

3. 

4. 

5. 

For i = 1 , .  . . ,n, a member i generates a 

amount of computational burden in obtaining the FK 
as a crypto analyst; i.e. trust is not unconditional. 
WE note that the burden of breaking all the (n-1) 
terms simultaneously leads to  a (n-l)L dimensional 
search although the key is in L dimensional space. 

Even if an outsider captures and decrypts a packet 
and obtains the HFK of a single participating mem- 
ber, (a) having a HFK does not give any advantage 
to the crypto analyst in decrypting any message en- 
crypted with the SK, (b) attacker has to find the 
corresponding remaining time varying n - 1 HFKs. 
Such is the case since the keys are transported in a se- 
cure manner. Hence, only the participating members 
have the direct access-maybe after decrypting-to 
the HFKs. For an outsider, it may be much harder 
to simultaneously attack and obtain these n - 1 parts 
since the search space will be (n - l)L dimensional. 

RETRIEVAL OF THE FRACTIONAL KEY AND 
PAD OF A FAILED NODE 

The following steps are involved in recovery of the FKQ 
and a;,j of the node failed I ,  where j represents the iteration 
number in which the node was compromised or failed. 

cryptographically-secure random number FKi,j. 

For i = 1,. . . ,n, a member i generates a quantity 
HFKi,j = ai,j 0 FKi,j, and all the members securely 
exchange the HFKs as 
V 1 5 1,m 5 n,l # m, 
1 + m: { { ~ , G , ~ , H F K ~ , ~ } K ; ~ } K , .  

Once the exchange is complete, each member com- 
putes the new group parameter 6j+l as 
e j + l  = O j  O HFKl,j O HFK2,j O * e *  8 HFKn,j. 
=+ O j + l  = FKl,j 8 FK2,j 8 * * *  FKn,j. 

If the resulting group parameter O j + l  is cryptographically- 
2. insecure for a particular application, all members can 

repeat steps (1) - (3) creating a new high quality group 
parameter O j + l .  

For i = 1,. . . , n, a member i computes ai,j+~ = Oj+lO 
FKi,j, and SKj = f ( e j + l )  where f(.) is a strong one- 
way function. 

The steps (1) - ( 5 )  present the computational steps for gen- 
erating the keys at  each update. At the end of step ( 5 ) ,  
we have the SK for the current iteration. Note that the 
quantity ai,j+l is computed such that, for an outsider, ob- 
taining ai,j+l is much harder even if the actual key SKj 
is compromised at  any key update time interval ( j , j  + 1). 
Knowing the group key does not reveal the group parame- 
ters and hence the tight binding of the members will not be 
broken by the loss of the shared key!. We note the following 
additional features of the key scheme: 

0 Although all the members have each HFKi,j, ob- 
taining the FKi,j or a i , j + l  involves search in the L- 
dimensional space. Hence, even if a fellow member 
becomes an attacker, that rogue member has the same 

Any one FK-generating member-called the Recov- 
ery Initiator (RI)-must initiate recovery and give the 
HFK of the failed node i to the newly-elected node i 
as RI + i : { { T R I , R , ~ , H F K ~ , ~ } K ; ; : } K ; .  

The RI must also give the newly-elected node i the 
current SK as RI  3 i : {{TRI, R,~,SK~),;--}K~. 
Using the same algorithm as is used for distributed 
initialization, with the following replacements: (a) 6 
by < and (b) al,j by &. Except for the changes in 
the notation and the number of members participat- 
ing, the algorithm for pad generation is same as for 
distributed initialization. Hence, at  the end of this 
distributed pad generation, each member 1 has &,j as 
its pad for key recovery process, and all these pads 
are bound with the parameter t. 
For 1 = 1 , .  . . , n - 1, each node 1 then computes a 
modified hidden fractional key HFK1,j = ,@,jOFKl,j 
and hands it =he newly-elected member i as 1 + 
i : {{~ ,R, j ,HFKl , j } , ; l }K; .  

Node i then combines all of the modified HFKs and 
recovers the fractional key FK;,j using the operation - 
FK;,j = < OHFK1.j O . . . 8 HFKn-l,j O Oj+l .  

Node i then extracts the pad ai,j using the operation 
ai,j = HFK;,j 0 FK;,j. 
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We note that the recovered values of FKi,j  and a;,j are 
unique. Once the new node recovers the fractional key of 
the compromised node, it can inform the other contribut- 
ing members to  update the iteration number j to  j + 1, 
and then all members can execute the key generation algo- 
rithm. Note that even though the newly-elected member 
recovers the compromised fractional key and pad, the next 
key generation operation of the new node does not use the 
compromised key or pad. Hence, even if the attacker pos- 
sesses the fractional key or pad at iteration j, it does not 
allow the attacker to obtain the future fractional keys or 
pads without any computation. 

A SPECIFIC CHOICE OF THE FUNCTIONS 8 
AND 0 

We have presented a class of multiparty key generation al- 
gorithms where a given instance of the class is determined 
by choice of functions 8 and 0. Depending on the choice of 
these functions, the lower bound on n may be determined. 

We note that among the possible choices for both 8 and 
0 are the modulo 2 addition (or XOR) function when n is 
even, and the modulo 3 addition function when n is odd- 
both of which we denote here with @ simply meaning mod- 
ulo addition. 
Clearly, the choice of n = 2 is not appropriate for such a 
scheme. Although choosing n = 3 does not instantly ex- 
pose a secret pad a; when a participating member becomes 
an attacker (i.e. a rogue), the following attack-called frac- 
tional attack (FA)-is feasible. 

Lemma: When 8 is an @ function, independent of how non- 
trivial the bit-length of the key is, choosing n = 3 permits 
a FA. 

Proof: Assume that the time instant a t  which one member 
i (i = 1 or 2 or 3) becomes a rogue is j. At this time the 
members have values of a1,j = HFK2,j  @ HFK, , j ,  a 2 , j  = 
H F K s , j @ H F K l , j ,  a 3 , j  = HFKl , j@HFKZ, j .  Every mem- 
ber also has access to  the current 9j+l and their own F K l j  
( 1  = 1, 2, 3). At this stage, obtaining the a component 
of any other member is as computationally intensive as an 
outside attacker trying to obtain However, if a mem- 
ber, say i = 1, is compromised and releases its secret al,j,  

then each of the other members can use this and compute 
FKld = c u l , j @ f 9 j .  Since the f9j+l = FKl,jcBFK2,j@FK3,j, 
each member can now compute the other non-rogue mem- 
ber’s FK as well. 
This leads to  the following Corollary: When 0 is an @ 
function, independent of how non-trivial the bit-length of 
the key, the minimum number of members to  prevent a FA 
by a single rogue member for the multiparty key scheme is 
4. 

VERIFIABLE SECRET SHARING FOR KEY 
GENERATION SCHEME 

Since there are multiple entities involved in key generation, 
it becomes important to  have a mechanism to verify if the 
parameters exchanged actually contribute to the generated 
shared key. The verification steps have to  be followed at 
(1) SM-based group initialization, (b) Distributed Group 
initialization, (c) SK-generation iteration and (d) key re- 
cover y. 

SM- based Initialization 

In the case of the SM-based scheme, each member i needs 
to make sure that the SM uses non-trivial values for its ai,l 
and 91. Since each member needs to  protect its individual 
pad value, one method for openly checking correctness of 
the pads is to generate a public value that will enable all the 
key generating members to  check their correctness without 
revealing the actual value of the individual pads. Such a 
verification technique falls under the category of VSS [7, 81. 
If one wants to  check if the individual initial pads  ai,^ given 
by the security manager are “good” , the scheme given below 
can be used. 

1. Any one member (possibly the SM) picks a very large 
prime number p and sends it to  all the members. The 
number picked should larger than the possible range 
of the SK value. The same member also sends a gen- 
erator g of the multiplicative group under p .  

2. Each member i picks a random polynomial fi with 
value 0 at  the origin. 

3. Each member i adds the polynomial value to  the pad 
= gaijl+f; and sends the result value, generates 

to  all the other members. 

4. Each member i computes go’ = nj=, j=n ai,l h = g o,+xj:; f, 
and evaluates it a t  origin to  check if the value is equal 

5 .  Each member i checks if 6, where fail- 
ure (inequality) means that some or all of the given 
pads don’t correspond to  the given 81. 

to go’. 

We note that it is also possible to use specific polynomial 
based techniques to allow members to  verify if the individ- 
ual pads are correctly distributed to the members. 

Distributed Initialization 
In the case of distributed initialization, the following scheme 
can be used to  check if the GI gives the 9 that is generated 
from the contributions of the group members. 
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1. Any one member (possibly the GI) picks a very large shared key at a particular time interval compromises nei- 
prime number p and sends it to all the members. ther the integrity of the future keys nor the integrity of the 
The number picked should be larger than the pos- past keys. 
sible range of the SK value. The same member also 
sends a generator g of the multiplicative group under 
P .  
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