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Abstract

In the Data AirWaves Project at Univer-
sity of Maryland, we are integrating Direct
Broadcast Satellite (DBS) systems with ter-
restrial networks to provide a hybrid and ef-
fective communication substrate lying between
data resources and remote/mobile user appli-
cations. Smooth integration of these two me-
dia balances the need for rapid data dissemsi-
nation to very large numbers of clients and
This
paper describes the air—cache, a method for
¢ ffective data broadcasting and an algorithm

on—demand interactive data services.

which rapidly adapts the cantent of the cache
based on the which result in ex-

plicit (on-demand) data requests. Simulation

Cop 2
misSsSes

resulls show that the hypothesis of adapting
based only on the misses performs quite rea-
sonably and has very little deviation from a
system that has complete information — both
hits and misses.
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1 Introduction

Wireless connectivity is becoming increas-
ingly important. Applications utilizing satel-
lite wireless networks are emerging in the ar-
eas of multimedia communications and mo-
bile computing [10]. Both of these areas
are characterized by their increasing require-
ment for data to be “here and now”. Di-
rect Broadcast Satellite Systems (DBS) pro-
vide a very effective communication substrate
lying between the data resources and the re-
mote/mobile user applications.

DBS systems are particularly attractive for
networks with huge client population because
they result in potentially unlimited cumula-
tive bandwidth and reduce or eliminate indi-
vidual client requests, data transmissions and
the associated overhead [6]. However, passive
DBS systems are limited because clients have
no means of communicating neither their
data needs which can be dynamically chang-
ing, nor how useful the content of the broad-
cast is. Neither hits nor misses on the content
are reported.

On the other hand, Interactive Data Ser-
vice (IDS) connectivity in which clients con-
nect through some (wireless) terrestrial net-
works for on—-demand data pull, can build a
“fully-informed” model of the clients’ needs.



Monitoring the data pull allows the server
to improve performance by either caching
the hot-spots or prefetching correlated access
patterns.

In this paper we combine DBS with ter-
restrial (wireless) IDS access to strike a bal-
ance between the need for rapid data dissem-
ination and the need for specificity/filtering
of requests. We use DBS to broadcast the
hot set and, thus, achieve the highest cumu-
lative bandwidth of broadcast, while we mon-
itor the misses from IDS requests. The rates
of the misses are used to promote the data
objects to the broadcast channel (make them
hot). We show that the dynamic behavior of
the data need can accurately be estimated by
monitoring the misses through the IDS.

1.1 Existing Approaches

A small number of research projects have re-
cently addressed some similar issues. Gener-
ally, when it comes to data broadcasting the
crucial questions are:

What to broadcast? For environments
without up-links (i.e. clients cannot trans-
mit) the whole database has to be broad-
casted [2]. The main problems of this ap-
proach are: (1) the database may be too big
for the available bandwidth, (2) bandwidth
may be wasted for broadcasting data never
used. (3) it is static. If, however, up-links are
available the system can choose to broadcast
only the most frequently requested data (7).
But. techniques proposed so far rely mostly
on some apriori knowledge about access prob-
abilities which are assumed to be fairly static.

When to broadcast? Two general tech-
niques have been proposed. The first is prob-
abilistic data selection, i.e. select the ob-
ject to broadcast next using a predetermined
randomized function based on data access
probabilities {11, 7]. The main drawback is

that access time may grow arbitrarily large
(starvation problem). The second is periodic
or cyclic broadcasting of (a selected set of)
data [2]. It guarantees a maximum access
time equal to the broadcast period, and it
may be optimal in terms of minimizing the
mean response time [11].

How to broadcast? Different structures
for the broadcast program have been pro-
posed, each optimizing different performance
criteria. The simplest is flat broadcasting un-
der which a set of self-identifying data ob-
jects are broadcasted sequentially. Clients
have to listen to the broadcast channel un-
til the object of interest arrives. Broadcast
disks [1] improve average data access time,
by grouping data into popularity groups and
broadcasting each such group with differ-
ent frequency. Proper client data caching
and prefetching techniques can compensate
for infrequently broadcasted data and mis-
matching access probabilities [3]. Last, spe-
cial attribute indexing techniques that inter-
leave data and (primary and secondary) in-
dex structures (e.g. trees, hash tables) have
been proposed as a way of reducing client
tuning time and energy consumption (8, 9].

2 Effective Data Broad-
casting: Air—Cache

Let us assume that we broadcast data with
period T over a channel of bandwidth B.
This broadcast can be considered to form a
memory space of size B x T with some special
characteristics:

e It can be accessed by any number of
clients concurrently, i.e. there is no ac-
cess contention.

o [t can be accessed only sequentially. A
direct consequence is that the average



access time depends on the size of the
memory which in turn is determined by
the period T

e The server cannot have any information
about the effectiveness of this memory
space, i.e. which — if any - clients actu-
ally use it.

The most important question is to find
out when data broadcasting is effective. In
striving for the best overall performance, we
should be looking for solutions in the range
between:

Broadcast everything (pure data push):
This scheme includes the case when for one
reason or another clients are or choose to
be completelv passive making no explicit re-
quests. Such a scheme can accommodate an
arbitrary large number of clients (unlimited
scalability), although, the average data ac-
cess time may grow with the size of the da-
tabase and, thus be unacceptably high.

Broadcast nothing (pure data pull): All
requests are explicitly made to the server,
and thus this becomes just a standard point-
to-point client server architecture. Such a
scheme cannot scale beyond the server’s max-
imum throughput. The average data access
time depends on current system workload but
not on the size of the database.

We define the data broadcast scheme to

be effective if it provides data to the clients

faster and/or at a smaller cost compared to
an explicit request to the server, and at the
same time reduces contention for data access
at the server improving the system’s scalabil-
ity margin. This can be achieved if the server
can maintain a good balance between “data
push™ and “data pull”. In other words, the
goal should be to broadcast the right amount
of the hottest data that would satisfy the bulk

of the clients’ concurrent requests and leave

the rest of the requests to be serviced explic-
itly.

At the same time, we would like to guaran-
tee the best overall throughput performance
for any given workload even when it is very
dynamic and changes substantially. This is
exactly what is needed simply because:

e typically clients unpredictably connect
to and/or disconnect from the system

e mobile clients arbitrarily join or leave
coverage areas.

e data request patterns are not static over
time. For example, in the morning users
usually need information about traffic
delays and the weather, while in the
evening they may want to know about
movie showing times or table availabil-
ity in local restaurants!

e unscheduled events may generate bursty
requests for relevant information (e.g.
emergencies, news, sport results).

These are the very same performance ob-
jectives achieved with data caching. There-
fore, we can treat the broadcast capacity as a
global cache memory between the server and
the clients. This “air-cache” should be adap-
tive to the system workload in order to al-
low clients to get the data they need faster
and/or at a smaller cost than directly from
the server. The challenge in making adap-
tive data broadcasting effective lies on the
facts that the server cannot have a clear pic-
ture about the actual usage of the broad-
casted data simply because satisfied clients
do not acknowledge (at least not in real time)
the usefulness of the received data. “Air-
cache misses” indicated by explicit requests
for not broadcasted data objects, provide
the server the statistics on their demand fre-
quency. Thus, the more misses the better
server statistics. But, on the other hand. the



more passive the clients are, the better are
satisfied with the broadcast.

The air-cache can be adapted in three

. ways:

Size: Given a channel bandwidth, the size
of the air-cache is determined by the broad-
casting period, which in turn determines the
average access time.

Contents: Assuming that the entire data-
base cannot be broadcasted within a single

period, the server has to decide what data
should be broadcasted.

Program: The program determines the or-
der and the structure of the broadcasted
data. Many issues that affect client perfor-
mance can be taken into account. For exam-
ple, should some hot data be replicated in the
cache (i.e. broadcasted more than once in one
period as in broadcast disks) in order to re-
duce their access time? How should data be
structured and/or indexed so that the client
tuning time is minimal?

3 Adaptive Air—Caching

Our goal is to implement an adaptive air-
cache utilizing a repetitive data broadcasting
scheme. Note that we use the term repetitive
instead of pertodic since, although data are
broadcasted repeatedly, there is no clear fixed
broadcast period. The air-cache is adapted
to the current workload in order to reduce
both average data access time and the num-
ber of explicit data requests.

3.1 Vapor, Liquid and Frigid

Data
A kev idea of our approach is to define for

each object in the database a temperature
which corresponds to its current request rate

A. Based on their temperature, objects can
be in one of three states:

Vapor (Steamy) Hot: Very hot objects
(intensively requested) which are air-cached
(i.e. broadcasted).

Liquid Warm: Objects with lower request
rate, not large enough to justify broadcasting
but still sufficient to require fast access from
the server. For that reason, liquid data are
kept in the server’s main memory buffers.

Frigid (Icy) Cold: Objects that get re-
quested very infrequently and, therefore,
their temperature A is practically 0 (degrees
centigrade). In many applications, frigid data
comprise the bigger part of the database and
are maintained in secondary or even tertiary
Mmemory.

For the proposed adaptive scheme, the
server needs to dynamically determine the
state of the database objects. The only in-
formation available to it which provides some
insight about data need are the “air-cache
misses”, i.e. the explicit requests made to the
server for data not in the air—cache. These
can be considered as the “sparks” that reg-
ulate the temperature and the state of the
data.

In general, the following rules control the
data states:

e Irigid data that start being requested
may turn into liquid or even vapor de-
pending on the intensity of their sparks.
Obviously, as long as they get no sparks
they remain frigid.

e Liquid data that get requested either
turn into vapor or remain liquid. again
depending on the intensity of the sparks.
Liquid data that stop being requested
eventually freeze.

e We assume that clients always prefer ac-
cessing data from the broadcast channel



the data they
request are broadcasted)!. Therefore,
there are no sparks for vapor data which

whenever possible (i.e.

are gradually cooling down until they
turn into liquid again (and provided on
demand thereafter). The time it takes
for them to cool down depends on the
temperature that caused them to vapor-
ize in the first place.

3.2 Adaptive Repetitive Data
Broadcasting

In order to maximize the effectiveness of
broadcasting., the server needs to continu-
ously update the size and contents of the air—
cache to best match the ever changing system
workload. In other words, it should keep se-
lecting the set of objects to vaporize. Obvi-
ously. the selection should be based on the de-
creasing order request rates, i.e. the hottest
objects first. The number of number vapor
objects (i.e. the size of the air-cache) can
be dvnamically adjusted so that the system
can perform as expected. For this reason, we
need to establish a proper set of conditions
C' for the server to meet, such as maintain
a certain balance between broadcast and on-
demand average service time, limit the cumu-
lative rate of explicit requests, or hold the size
of the server input queue under a threshold.

We define the sets V, £ and F of vapor
objects, liquid objects, and those frigid ob-
jects for which there are requests pending in
the server’s input queue. The server moni-
tors the requests and estimates the temper-
atures for all objects in V, £ and F. For
objects in £ and F the observed request rate
is their actual request rate. Request rates for
frigid objects not in F are assumed to be 0.
This is very important since it discharges the
server from keeping statistics for a large part

"We are currently investigating the effects of re-
laxing this assumption

of the database. For vapor objects however.
the server observes no requests since vapor
data are never explicitly requested.

Based on these estimated temperatures the
adaptive broadcasting algorithm works as fol-
lows: We implement V as a queue and main-
tain £ as an ordered list based on object tem-
peratures. At any time the object in the head
of queue V is scheduled to be broadcasted
next. Right after broadcasted. the object is
(at least temporarily) liquefied by dropping
it off the queue into £ with a reduced tem-
perature to reflect the cooling of vapor data.
Then, the server checks whether the condi-
tions C hold. If so, then the dropped object
is indeed liquefied and the size of the air-
cache is reduced. If not, one or more objects
form L are added to the end of queue V (they
are vaporized) in decreasing order of temper-
ature until the conditions C' are met. Obvi-
ously, the size of the air-cache increases in
case more than one objects are added to the
queue. The object just dropped from V will
be placed back on if its temperature is still
adequately high. This leads to a repetitive
(but not periodic) data broadcasting scheme
since vapor objects are expected to remain
hot for a while.

The estimated request rates can be ex-
ploited for buffer management at the server
as well. When one or more requests cause(s) a
frigid object to be read from secondary mem-
ory, the server compares its temperature to
that of the coldest object in £. If it is bigger
then it “thaws” and replaces the colder lig-
uid object which in turn freezes. In this case,
the conditions C must be checked again since
the new liquid object may evoke the vapor-
ization of some liquid objects or even itself.
Note that when first requested, a frigid ob-
ject is appended to F so that its temperature
gets monitored and it is removed only after
all pending requests for it are serviced.



4 Preliminary  Experi-

ments and Results

. In order to establish the potential of adaptive
data broadcasting and investigate the possi-
ble alternatives, we have built a simulation
model of the proposed system. We have mod-
eled a large client-server information system
based on DBS technology where a very large
number of clients (in order of thousands)
can access information either by filtering the
broadcasted data stream or by explicitly re-
questing information from the server. For
the simulation, the whole client population
is modeled as a single module that imposes
the total workload to the server, a stream of
independent requests for objects. The rate of
these requests implicitly suggests the num-
ber of clients to the system. The database is
a collection of self-identifying objects each of
equal size.

For the initial set of experiments we set the
communication parameters to match those
of the DirecPCT™™ environment [5, 4]. We
assumed a data broadcast rate of 12Mbps,
and assymetric point-to—point connections
with 400Kbps downstream and 19.2Kbps up-
stream rates. The database consists of 1000
large objects of size 100KB each to model
multimedia information. The requests for
data are exponentially distributed with a
variable rate for different experiments. Each
timé the object to be requested is selected
according to the Zipf distribution in order to
create a skewed access pattern. However, the
position and size of its “hot spot” are chang-
ing in order to produce a dynamic workload.

The preliminary experimental results are
very promising and indeed demonstrate the
advantages of this approach. In this pa-
per, we briefly present some illustrative ex-
amples. The first figure shows the scalabil-
ity potential of our system. As it is demon-
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strated in the figure, a pure data pull system
breaks for workloads beyond its maximum
throughput (about 200 requests per second
in this case). The adaptive air—caching allows
the system to accommodate efficiently much
heavier workloads. For this example, the
overall response time appears to increase only
linearly (and not exponentially) with the re-
quest rate. This is a result of the most impor-
tant performance property of our technique:
The overall response time depends only on the
size of the hot spot and not the intensity of
the workload. In the best case where the size
of the hot spot does not change with the total
request rate, the performance of the system
is expected to be the same for any number of
clients.

A related benefit of adaptive air-caching
is the dramatic bandwidth savings that can
be achieved. Depending on the workload, we
have noticed that a pure data pull system
would require hundreds more messages to be
exchanged. Half of these messages would
be the client requests while the other half
would be the server’s replies to them. In ad-
dition, the available broadcast bandwidth is
very effectively utilized since, almost exclu-
sively, only popular objects are broadcasted.

For those first experiments, we have se-
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lected the following simple condition C': “The high since the workload exceeds the server’s

current rate of explicit requests must be be- capacity. We clear.ly see that a hybrid ap-
low the server’s throughput multiplied by proach is the best (in this case for f ~ 0.95).
some predetermined factor 7. Let Ay, Ap In figure 3, the same performance result is
and Ap be the current cumulative request repeated. This time we compare our server
rates of vapor. liquid and frigid objects re- which adapts the air-cache based on partial
spectively, and x be the maximum service knowledge about the usage of data to a un-
rate (throughput) of the server. Note that realistic server that has complete knowledge
we can consider that the current request rate (magically it knows about requests satisfied

for frigid objects not in F is 0, therefore Ap b)r the air-cache). We see that this lack of
can be approximated by the current cumula- information makes very little difference and

tive request rate of objects in F. Using these this is attributed to the fact that our scheme

definitions, the condition C' more formally is is adapting fast and usually pays a small
AL + A < [ x p. The second figure demon- penalty for errors. We also observe that it

strates the advantage of the hybrid approach tends to slightly overestimate request rates
and the effects of the factor f. The solid and therefore broadcast a few more objects.

line represents the overall average response

time of the requests for different values of

f (x axis). The shape of this line is more 5 Conclusions

easily explained with the help of the other

two lines which present the average response In this paper we have proposed adaptive
times for pushed and pulled data separately. air—caching as an effective way of integrat-
At the left end (f = 0) we have a system that ing satellite communication systems with ter-
broadcasts all the database and the average restrial networks to create a hybrid infor-
response time depends on the size of data- mation system for supporting remote/mobile
base. At the right end (large values of f) the user applications. Our goal is to balance
system chooses to broadcast very few objects, the need for rapid data dissemination to very
performing almost as a pure data pull system. large numbers of clients and on—-demand in-
In this case, the response time is extremely teractive data services. Air-caching is based



on repetitive data broadcasting and an al-
gorithm which rapidly adapts the content of
the cache based on the “misses” which re-
~sult in explicit (on-demand) data requests.
The initial simulation results provide clear
indications of the potential of this approach.
The system can efficiently accommodate huge
client populations, save valuable bandwidth
by broadcasting only popular information,
and adapt very well to dynamic workloads
despite the incomplete available information
about data need.
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