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ABSTRACT 

The performance degradation as a result of acoustical envi- 
ronment mismatch remains an important practical problem 
in speech recognition. The problem carries a greater signif- 
icance in applications over telecommunication channels, es- 
pecially with the wider use of personal communications sys- 
tems such as cellular phones which invariably present chal- 
lenging acoustical conditions. In this work, we introduce 
a vector quantization (VQ) based compensation technique 
which both makes use of a priori information about likely 
acoustical environments and adapts to the test environment 
to improve recognition. The technique is progressive and 
requires neither simultaneously recorded speech from the 
training and the testing environments nor EM-type batch 
iterations. Instead of using simultaneously recorded data, 
the integrity of the updated VQ codebooks with respect to 
acoustical classes is maintained by endowing the codebooks 
with a topology and using transformations which preserve 
the topology of the reference environment. We report re- 
sults on the McCaw Cellular Corpus where the technique 
decreases the word error for continuous ten digit recogni- 
tion of cellular hands free microphone speech with land line 
trained models from 23.8% to 13.6% and the speaker de- 
pendent voice calling sentence error from 16.5% to 10.6%. 

1. INTRODUCTION 

State of the art speech recognizers exhibit a particular sen- 
sitivity to mismatches in training and testing environments. 
This sensitivity degrades performance in many tasks such 
as command and digit recognition over telephone, voice di- 
aling, etc. and is currently one of the most important prac- 
tical problems in speech recognition. It carries a greater sig- 
nificance in applications over telecommunication channels, 
especially with the wider use of personal communications 
systems such as cellular phones which invariably present 
challenging acoustical conditions. 

In this work, we describe an environment adaptation 
technique based on Adaptive VQ (AVQ) by topology pre- 
serving transformations. It utilizes a priori information 
about likely acoustical environments in the form of envi- 
ronment codebooks derived off-line from the reference en- 
vironment codebook, and adapts on-line to the test envi- 
ronment to improve recognition. The technique requires 
neither simultaneously recorded speech from the training 
and the testing environments nor EM-type batch iterations. 

Instead of using stereo recorded data, the integrity of the 
updated VQ codebooks with respect to acoustical classes 
is maintained by endowing the codebooks with a topology 
and using transformations which preserve the topology of 
the reference environment. 

The organization of the paper is as follows: Section 2 
presents a brief review of VQ-class dependent compensa- 
tion/adaptation techniques in the literature. The modeling 
of distortion as a difference error field and discrete approxi- 
mations by VQ are included in Section :3. The approach we 
propose in the paper is developed in Section 4, and its re- 
sults on the McCaw Cellular Corpus where it decreases the 
word error for continuous ten digit recognition of cellular 
hands free microphone speech with land line trained mod- 
els from 23.8% to 13.6% and the speaker dependent voice 
calling sentence error from 16.5% to 10.16% are in Section 5. 

2. RELATED PRIOR ’WORK 

Speech recognition in noisy environments is an important 
practical problem and has attracted significant amount of 
research. There exists a variety of approaches to many ver- 
sions of the problem summarized in reasonable detail in 
the recent survey [2]. In this section, we review two main 
classes of techniques which utilize classs dependent com- 
pensation/adaptation of speech feature vectors. 

Two classes of techniques identify themselves by differing 
requirements in terms of data and computation. The Code- 
word Dependent Cepstral Normalization (CDCN) [l] and 
the Baum-Welch Codebook Adaptation (BWCA)[6] do not 
require a priori knowledge about the testing environment. 
CDCN relies on maximum likelihood estimation via EM al- 
gorithm of a model of degradation and BWCA also uses an 
EM-type iteration. They amount to iterative retraining of 
a reduced parameter set of the recognition system, there- 
fore the computational costs are high and the performance 
suffers at low SNR’s. 

The second class of techniques, the Fixed CDCN 
(FCDCN) [5] and Dual Channel Codebook Adaptation 
(DCCA)[6] are data-driven and computationally efficient 
but require simultaneously recorded speech from the train- 
ing and the testing environments. In many practical appli- 
cations, such stereo recorded data are simply not available. 
These techniques have been extended to the case of un- 
known environments by using a basis of environments for 
which stereo recordings are available and codebooks can be 
estimated; as in the Multiple FCDCN[B], and Schwartz [8]. 
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Figure 1. The difference vector field between two 
acoustical environments ( 0  and *)in a 2D feature  
space. 

This very important constraint has allowed both tech- 
niques to be used only with different types of microphones 
for which stereo recordings made in a studio environment 
are available. It would not be possible to collect simul- 
taneously recorded data for a variety of environments of 
practical importance, such as cellular phones in moving ve- 
hicles, etc. The technique we present bypasses the need for 
simultaneous stereo recordings by adapting the reference 
VQ codebook to secondary environments while maintain- 
ing the integrity of classes by preserving the topology of 
the reference environment. 

A second major difference is that the codebooks in the 
referenced approaches are fixed throughout recognition, and 
once an environment in the available set of environments 
is selected, compensation vectors or adaptation codebooks 
are not changed. In the technique presented here, the code- 
book selected among the available environment codebooks 
is adapted to the test environment on-line in a robust man- 
ner and therefore even if the initial match between the en- 
vironments is not as good, it gets better as the codebooks 
get updated. 

3. DISTORTION I N  THE FEATURE SPACE 

In the front-end of the HMM speech recognizer used in this 
work, a broad range of features such as frame energy, voic- 
ing, spectra and their derivatives are concatenated to form 
a high dimensional feature vector. Principal component 
analysis is applied to this high dimensional vector space to 
reduce dimensionality by selecting a subset of axes along 
which statistical variation is maximal. We denote the re- 
sulting principal component vector space by F. Vector 
quantization is applied to F, therefore, members in a class 
are related not only in terms of their spectra as in many 
other approaches, but by both static and dynamic features 
which determine in a more complete manner the way they 
are affected by the environment. 

A Gaussian mixture is a common assumption for 

Voronoi tessellation boundaries 

Figure 2. 
and 2 )  with the topology preserved. 

the distribution of the feature vectors of the reference 
environment[l, 71. Figure 1 depicts the difference vector 
field between two Gaussian mixtures in a 2D feature space. 
Even with an acoustical degradation model as simple as 
linear filtering and additive Gaussian noise, the distribu- 
tion of a Gaussian class of log-spectral feature vectors af- 
ter degradation is no longer Gaussian [7]. Non-parametric 
approaches such as VQ may therefore be more reason- 
able choices for modeling the distribution of feature vectors 
in various environments. VQ-class dependent techniques 
model the difference vector field as the difference between 
the VQ codebooks for the two environments. Let us denote 
the codebooks as Xh = {x; E F = %', k = 1,. . . , K } ,  h = 
1,2. Then, a discrete approximation to the difference vector 
field is the set of vectors {xi -xi E F = %', k = 1,. . . , K} .  
In this work, we are mainly interested in the estimation of 
these vectors in the absence of simultaneously recorded (la- 
beled) speech. The problem is to preserve the class pairs 
between the two codebooks with unlabeled data. 

VQ codebooks of two environments (1 

4. TOPOLOGICALLY CONSTRAINED 

An acoustical environment is described by a VQ codebook, 
Xh = {x: E F, k = 1,. . . , K }  where each codevector xk 
in the feature space 3 represents a class of feature vec- 
tors. The VQ codebook for the reference environment, 
XYef = {xTf E F , k  = 1, ..., K }  is designed using the 
Generalized Lloyd algorithm [4]. The design criterion is the 
minimization of the distortion 

ADAPTIVE VQ 

(1) D = E[d(x, x;')] 

where the "winner", w, is given by 

w = argminIx-xJef12 j (2) 

In the VQ codebooks for the testing environments, X = 
{Xh, h = 1,. . . , H } ,  xLef and x: must correspond to iden- 
tical acoustical classes. With a simultaneously recorded 
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Figure 3. Off-line topology preserving VQ codebook 
adaptation for a set of representative environments. 

stereo database, this is automatically satisfied since all the 
frames are labeled, and class confusion does not occur. In 
most practical cases, however, only unlabeled data are avail- 
able. 

4.1. Topology preserving codebook adaptation 
To address the codebook integrity problem, we propose a 
codebook adaptation technique which preserves the neigh- 
borhood relations in the reference codebook by introducing 
a modified distortion measure for VQ. The idea of topology 
preservation is due to Kohonen [3]. It is one of the math- 
ematical frameworks for the Self Organizing Map (SOM), 
a VQ algorithm. The topology of SOM is on a non-linear 
projection of the signal space onto a 1D or 2D “map”, and 
is arbitrarily decided a priori. In our technique, the topol- 
ogy is directly on the feature space and simply determined 
by the distortion measure in the reference environment. 

The topology of the reference environment, i.e. the local 
neighborhood relations, is captured with the neighborhood 
function 

Practically, only N-closest neighbors (N=5-10) are kept and 
the rest of the n i j ’ s  are set to zero leading to the representa- 
tion of the topology as an elastic mesh as in Figure 2. The 
codebook adaptation amounts to stretching of the mesh to 
better fit the new environment while keeping the neighbor- 
hood relations intact. 

Expressed in terms of distortion, the topologically con- 
strained VQ is the minimization of the modified distortion 

D’ = E[d(x, x:)] + Cn,iE[d(x, x:)] (4) 
i f W  

where the “winner” w is, similarly, w = argminj Ix(t) - 

The minimization of D’ is accomplished by the Robbins- 
Munro stochastic approximation technique, which in the 
case of squared error distortion reduces to the incremental 
adapt ation 

xj” ( t )  ( 2  

Xk(t f 1) = xk(t) -k nwk(t)[x( t )  - xk(t)] (5) 

Progressive compensarion 

I c o d h d u  
I 
I I 

A priori information about 
representative acoustical 
environments (off-line) 

Fiaure 4. Compensation with both 

I 

[ , Icompjmated speech feature 

vector 
I 

I 
I I 

a priori infor- - 
mat ion about likely environments and on-line adap- 
tation. 

where x(t), t = 0, .  . . , T are the available (unlabeled) data 
from the testing environment and the codebooks for the 
test environments are initialized with the codebook of the 
reference environment 

(6) xk(0) = xFf, k = 1,. . . , K. 

Notice that in the adaptation, the neighborhood function is 
also dynamic in the following form 

Ix;ef - xyf 2 

nij ( t )  = a(t) exp ( -- 202(t;  ’ ) vi , j  = 1 ,..., K .  (7) 

The functions a(t) and a2((t) are monotonically decreasing. 
For initial large values of cr2(t), all codevectors are updated 
similarly, thus the algorithm in the beginning may be re- 
garded as an incremental version of simple mean normal- 
ization. The scale of adaptation is made finer by decreasing 
a2(t) as increasingly more data are used. 

4.2. 
The off-line codebook adaptation described in the previous 
section is carried out for a set of representative environ- 
ments as shown in Figure 3. Once the codebooks are avail- 
able, they are simply used as a basis in which to express the 
data from an unknown environment. For a discrete density 
HMM, the technique may be regarded as codebook adapta- 
tion, for a continuous density HMM, such as the one used in 
this work, it is necessary to put it in the form of a compen- 
sation algorithm as follows. Let the incoming speech feature 
vector(t-th frame of the utterance) from the unknown test 
environment be denoted as x(t). Then, the compensated 
feature vector, k(t) is computed as 

Computation of the compensation vectors 

n(t) = x(t) f ph z P k ( t ) [ x r f  - xk(t)] (8) 
h k 

where the probability that the t-th frame belongs to Voronoi 
region k in the codebook h, p k ( t ) ,  and the probability that 
the utterance belongs to environment h, Ph are estimated 
as 

(9) 
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,-a C n ( X f : ( t ) - X ( t ) ) 2  

Ph = (10) 
a Cn(X$(t)-x(t))a . 

E h  e- 

4.3. On-line adaptation 
The initial codebook selection is a fast adaptation using a 
priori knowledge about likely representative environments. 
A new testing environment may not always fit the available 
codebooks to give a satisfactory performance. In such cases, 
on-line adaptation to the new environment may be accom- 
plished by utilizing the testing environment’s data during 
compensation via the same stochastic approximation. This 
is shown in the block diagram of the compensation in Figure 
4. In this way, even if the initial match between the envi- 
ronments is not as good, it gets better as the codebooks get 
updated. 

5. EXPERIMENTAL RESULTS 

Results are presented on continuous digit recognition and 
voice dialing in the McCaw Cellular Corpus. The corpus 
consists of data collected over cellular channels by using 
two types of microphones: a hand-held, close talking mi- 
crophone and a hands-free, visor mounted microphone to- 
gether with land-line collected speech data. The land-line 
and hand-held microphone parts of the corpus are mostly 
clean telephone speech comparable in quality to VAA cor- 
pus. The hands-free microphone part of the corpus, how- 
ever, is significantly noisier than the rest. 

I no. of I error I error I error 

land line 
hand held 
hands free 

17.8 13.6 

696 3.4 3.4 3.7 
688 4.7 4.8 5.4 
650 16.5 13.4 10.6 

Table 1. Results of the speaker independent digit 
recognition experiment. 

no of error I error I error I 1 environment I utt.’s 1 baseline w / M N  w /  AVQ 

Table 2. 
calling experiment. 

Results of the speaker dependent voice 

The first experiment investigates the effectiveness of the 
compensation algorithm in normalizing the McCaw speaker 
independent digit recognition data to improve recognition 
using models trained on the VAAl corpus. The codebook 
size for which the results are reported here is 16. The code- 
books were trained on data sets in the McCaw and VAA 
corpora disjoint from the model training and testing sets 
for which the recognition results were obtained. The re- 
sults in Table 1 indicate that the normalization does not 
disturb the reference environment (VAA) appreciably, nor 

the land line and hand held environments which are close to 
the VAA. There is a 43% decrease in the error of the hands 
free microphone. 

A similar experiment was carried out on the speaker de- 
pendent portion of the McCaw database. Table 2 summa- 
rizes the average results for 30 speakers each uttering 10 
names in a voice calling application in which the land-line 
is the reference environment. The reference and clean envi- 
ronments are again not disturbed appreciably and there is 
a 36% decrease in the error of the hands free microphone. 

6. CONCLUSION 

We introduce a topological constraint to VQ design which 
allows adaptation to environments while maintaining the 
integrity of the class memberships without using simultane- 
ously recorded speech. This adaptation is used both off-line 
to form a basis of representative environments and on-line 
to further improve the initial match between the codebook 
and the testing environment. The technique is useful in ap- 
plications where stereo recorded data are not available and 
the computational loads must be kept low. It decreases the 
word error for continuous ten digit recognition of cellular 
hands free microphone speech with land line trained mod- 
els from 23.8% to 13.6% and the speaker dependent voice 
calling sentence error from 16.5% to 10.6% in the McCaw 
cellular corpus. 
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