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Abstract: Anomaly detection is important for the correct functioning of wireless sensor networks. Recent
studies have shown that node mobility along with spatial correlation of the monitored phenomenon in sensor
networks can lead to observation data that have long range dependency, which could significantly increase the
difficulty of anomaly detection. In this paper, we develop an anomaly detection scheme based on multi-scale
analysis of the long range dependent traffic to address this challenge. In this proposed detection scheme, the
discrete wavelet transform is used to approximately de-correlate the traffic data and capture data characteristics
in different time scales. The remaining dependencies are then captured by a multi-level hidden Markov model
in the wavelet domain. To estimate the model parameters, we develop an online discounting Expectation Maxi-
mization (EM) algorithm, which also tracks variations of the estimated models over time. Network anomalies are
detected as abrupt changes in the tracked model variation scores. Statistical properties of our detection scheme
are evaluated numerically using long range dependent time series. We also evaluate our detection scheme in
malicious scenarios simulated using the NS-2 network simulator.
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1. INTRODUCTION

A wireless sensor network consists of a set of spatially scattered sensors that can measure various
properties of the environment, formulate local and distributed inferences, and make responses to events
or queries. It can be deployed to monitor and protect critical infrastructure assets, such as power
grids, automated railroad control, water and gas distribution, etc. However, due to the often unattended
operating environment, it could be easy for attackers to compromise sensors and conduct malicious
behaviors. Anomaly detection is thus critical to ensure the effective functioning of sensor networks.
Anomaly detection methods can be generally classified in two categories: signature-based and
statistics-based (see Dewaele et al., 2007). Signature-based detection methods use attack signatures
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to identify anomalies. The attack signatures are collected based on historical observations under the
same attack, thus it can not be applied to detect unknown anomalies. Statistics-based detection meth-
ods overcome this drawback by only modeling normal network traffic and treat everything that falls
outside the normal scope as anomalies. A typical statistics-based anomaly detection usually consists
of the following steps: first, collect network measurements and model the normal traffic as a reference,
then, apply a decision rule to detect whether current network traffic deviates from the reference. In
the decision rule, some statistical distance between the analyzed traffic and the reference is computed,
then it is decided whether the distance is large enough to trigger an alarm. Traditional anomaly detec-
tion methods assume that the network measurements are either independent or short range dependent.
However, recent studies have shown that node mobility along with spatial correlation of the moni-
tored phenomenon in sensor networks can lead to Long Range Dependent (LRD) traffic (see Wang and
Akyildiz, 2009), which can cause high false alarms if using traditional methods.

In this paper, we develop an anomaly detection scheme based on multi-scale analysis of the long
range dependent traffic. Since network anomalies can take a large variety of forms, e.g., they can
be caused by different MAC layer misbehaviors, various routing layer attacks and many others, these
anomalies may show statistically abnormal signals in different time scales (see Zhang et al., 2008).
The length of the time interval over which network measurements are collected can influence the re-
sults. Therefore, analyzing network traffic in different time scales is necessary for anomaly detection.
Discrete Wavelet Transform (DWT) is a useful tool for multi-scale analysis of network traffic due to
its capability of capturing data characteristics over different time scales and frequencies. Furthermore,
it can approximately de-correlate autocorrelated stochastic processes. Most of the literature work on
using DWT for anomaly detection would use the first order or second order statistics (mean or vari-
ance) of the wavelet coefficients for anomaly detection, e.g., they detect abrupt changes in the mean
or variance of the wavelet coefficients as anomalies (see Barford et al., 2002; Zuraniewski and Rincon,
2006). In contrast, we build a probabilistic model for the wavelet coefficients through a multi-level
hidden Markov model (HMM), in an effort to capture the remaining dependency among the trans-
formed data and thus better model the network traffic and improve detection accuracy. We design a
forward-backward decomposition scheme and an online discounting Expectation Maximization (EM)
algorithm to estimate model parameters. The online EM algorithm can also track the structure changes
of the estimated HMMs by evaluating a model variation score, which is defined as the symmetric rel-
ative entropy between the current estimated model and a previous estimated one. Network anomalies
are then detected as abrupt changes in the tracked model variation scores . To evaluate the proposed
anomaly detection schemes, we provide extensive simulations, including numerical experiments using
two types of well defined LRD models, namely, the Fractional Gaussian Noise (FGN) and the Autore-
gressive Fractionally Integrated Moving Average (ARFIMA) model. We also conducted experiments
using Network Simulator 2 (NS-2) for anomaly detection in wireless sensor networks.

The paper is organized as follows. Section 2 reviews the related work. Section 3 presents our
wavelet-domain HMM for modeling the network traffic. The anomaly detection algorithm that is based
on HMM structure changes is presented in Section 4. Numerical experiments are shown in Section 5
and simulation results using NS-2 are described in Section 6. Finally, Section 7 gives the conclusions.

2. Related Work

Network anomaly detection is an important problem and has attracted numerous research efforts. It
usually involves modeling the normal traffic as a reference, and computing the statistical distance be-
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tween the analyzed traffic and the reference.

The modeling of the normal traffic can be based on various statistical characteristics of the data. For
example, Lakhina et al. (2005) proposed to use principal component analysis to identify an orthogonal
basis along which the network measurements exhibit the highest variance. The principal components
with high variance model the normal behavior of a network, whereas the remaining components of
small variance are used to identify and classify anomalies. Scherrer et al. (2007) used a non-Gaussian
long-range dependent process to model network traffic, which can provide several statistics such as
the marginal distribution and the covariance to characterize the traffic. Zhang et al. (2009) proposed a
spatio-temporal model using traffic matrices that specify the traffic volumes between origin and destina-
tion pairs in a network. Anomalies are detected by finding significant differences from historical obser-
vations. Besides these methods, the wavelet transform is another popular technique used for capturing
network traffic, especially for the LRD traffic. Abry and Vitch (1998) proposed a wavelet-based tool
for analyzing LRD time series and a related semi-parametric estimator for estimating LRD parameters.
Barford et al. (2002) assume that the low frequency band signal of a wavelet transform represents the
normal traffic pattern. They then normalize both medium and high frequency band signals to compute
a weighted sum of the two signals. An alarm is raised if the variance of the combined signal exceeds
a pre-selected threshold. Kim et al. (2004) used wavelet-based technique for de-noising and separat-
ing queueing delay caused by network congestions from various other delay variations. Zuraniewski
and Rincon (2006) have combined wavelet transforms and change-point detection algorithms to detect
the instants that the fractality changes noticeably. The key feature of these wavelet-based methods
lies in the fact that the wavelet transform can turn the LRD that exists among the data samples into a
short memory structure among the wavelet coefficients (see Abry et al., 2010). In our work, we build
a wavelet-domain multi-level hidden Markov model for the LRD network traffic. The merit of our
method is the model’s mathematical tractability and its capability of capturing data dependency.

To measure the deviation of the analyzed traffic from the reference model, several statistical dis-
tances can be used, including simple threshold, mean quadratic distances, and entropy. Entropy is a
measure of the uncertainty of a probability distribution. It can be used to compare certain qualitative
differences of probability distributions. Gu et al. (2005) used a maximum entropy technique to es-
timate the reference traffic model and compute a distance measure related to the relative entropy of
the analyzed network traffic with respect to the reference. Nychis et al. (2008) thoroughly evaluated
entropy-based metrics for anomaly detection. In our detection scheme, we apply the symmetric relative
entropy as a distance measure. The online EM algorithm can efficiently compute the symmetric relative
entropy between the current HMM model and a previous estimated one. Anomalies are then detected
as abrupt changes in the symmetric relative entropy measurements.

3. Wavelet domain hidden Markov model for long range dependent traffic

Wavelet transforms have been popular for analyzing autocorrelated time series due to their capability
to compress multi-scale features and approximately de-correlate the time series. They can provide
compact information about a signal at different locations in time and frequency. Our traffic model is in
the wavelet domain. We build a Hidden Markov Model (HMM) for the wavelet transformed network
measurements. The basic idea for transform domain model is that a linear invertible transform can
often restructure a signal, generating transform coefficients whose structure is simpler to model.



3.1. Wavelet domain hidden Markov model

In wavelet transform (decomposition), the measurements z(t),t = 1,..., N are decomposed into mul-
tiple scales by a weighted sum of a certain orthonormal basis functions,

N

2(t) =D apsbrat) + YD dopthmi(t),
m=1 &

k=1

where ¢y, i, 1y, are the orthonormal basis, ar, x, d, are the approximation and detail coefficients.
The approximation coefficients ay, j, provide the general shape of the signal, while the detail coefficients
d 1 from different scales provide different levels of details for the signal content, with d, ;, providing
the finest details and d, , providing the coarsest details. The locality and multi-resolution properties
enable the wavelet transform to efficiently match a wide range of signal characteristics from high-
frequency transients and edges to slowly varying harmonics.

In our work, we apply the Discrete Wavelet Transform (DWT) to the network traffic. A DWT is a
wavelet transform for which the basis functions are discretely sampled. DWT can be explained using
a pair of quadrature mirror filters. Efficient methods have been developed for decomposing a signal
using a family of wavelet basis functions based on convolution with the corresponding quadrature
mirror filters. However, the wavelet transform cannot completely decorrelate real-world signals, 1.e.,
a residual dependency always remains among the wavelet coefficients. A key factor for a successful
wavelet-based algorithm is an accurate joint probability model for the wavelet coefficients (see Crouse
et al., 1998). A complete model for the joint probability density function would be too complicated, if
not impossible, to obtain in practice, while modeling the wavelet coefficients as independent is simple
but disregards the inter-coefficient dependencies. To make a balance between the two extremes, we
use a hidden Markov model to capture the remaining dependency among the wavelet coefficients. It is
based on two properties of the wavelet transform (see Crouse et al., 1998; Mallat and Zhong, 1992): first
is the Clustering property, meaning that if a particular wavelet coefficient is large/small, the adjacent
coefficients are very likely to also be large/small; second is the Persistence property, meaning that
large/small values of wavelet coefficients tend to propagate across scales.

For the wavelet coefficients d;;, j = 1,...,Land k = 1,...,n;, where L is the decomposition
level and n; is the number of wavelet coefficients in scale j, we assume that each d; j, is associated with
a hidden state s; ;. We then use a hidden Markov model to characterize the wavelet coefficients through
the factorization

({du,Su}?lp-- {dLiaSLz‘}?Ll)
L—1 n;

SL1 Hp SL,3|SL,3 1 Hp Szl|5z+11 HHP Sz,]|5m 15 Si41,[5/2] HHP ”’82,3 3.1

=1 j=2 =1 j=1

This factorization involves three main conditional independence assumptions: first, conditioned on
the states at the previous coarser scale i 4+ 1, the states at scale ¢ form a first order Markov chain;
second, conditioned on the corresponding state at the previous coarser scale 7+ 1, 1.€., s;11,[j/2], and the
previous state at the same scale, i.e., s; ;_1, the state s; ; is independent of all states in the coarser scales;
third, the wavelet coefficients are independent of everything else given their hidden states. The three
independence assumptions are critical for deriving the inference algorithms for this wavelet domain
HMM. Fig. 1 illustrate a hidden Markov model for a 3-level wavelet decomposition.
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Figure 1: HMM for 3-level wavelet decomposition

3.2. Estimating model parameters using an Expectation-Maximization (EM) algorithm

Denote the set of wavelet coefficients and their hidden states by D = {{dp;}/*,...,{d1;}*,} and

= {{spi}i, ..., {s1i}2,} respectively, where n; is the number of wavelet coefficients in the "
scale. The parameters of the HMM include the following three probability distributions: the first is the
initial probability for the state sy, 1, i.e., 7, = P(sp1 = k), k € K, where K represents the domain of
the hidden states; the second is the two types of state transition probabilities, i.e.,

1 .
ﬂ-;fﬂkz = P(si1 = k1]Siz11 = ko) fori < L,

7Tk;1|k2,k3 = P(si; = k1lsij1 = ko, Sit+1,[j/2] = k3);

and the third is the conditional probability of the wavelet coefficient given its hidden state, i.e., P(d; ;|s; ;
k), which can be modeled by a mixture Gaussian distribution. For simplicity and presentation clarity,
we use a single Gaussian distribution to capture P(d; ;|s;; = k), i.e, P(d; |si; = k) ~ N(uk,0}.),
where i and 0! are the mean and the standard deviation for the state k in the i" scale. The ex-
tension to mixture Gaussian distributions is straightforward. The model parameters, denoted by 8 =
{m, ﬂ,i’ll| . ﬁ}m koo M Ok 1> can be estimated from the real data using the maximum likelihood crite-
rion. Due to the intractability of direct maximization of the likelihood function, we apply an Expecta-
tion Maximization (EM) algorithm. The EM algorithm provides an maximum likelihood estimation of
model parameters by iteratively applying an E-step and an M-step. In the E-step, the expected value of
the log likelihood function Q(6]6\") = Egip g [log Po(S, D)] is computed. Then in the M-step, the

parameters that maximize Q(60]0")) are computed, i.e., 8" = argmaxy Q(6]6).
To implement the two steps, we define the following posterior probabilities,

/yllg’J — P(Si’j = k|D)”y]i€’117k2 f— P(si,l = ]{/‘1’ 8i+1,1 f— ]{;2|'Z))7 fori < L
Vi ks = P81 = k1, sij-1 =k, 8521 = ks|D).

According to equation (3.1), maximizing Q(6]6") using the Lagrange multiplier method leads to the
following estimation of 6,

2,1 n; 1,5
z 1 7’61,1@ i _ Z] =2 71617’?2,163
Tk = 7k kl\kg - i1 Thylka,ks — Z Z
1€k Viko lek 2aj= 271 kg,k:g,
nl 7.] nl
i_zj 17k;d 2-2_2] 1% (d',j_,uk)
= S S e .
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The computation of the posterior probabilities (-) is more involved. Using a brute force compu-
tation by direct marginalization will take O(N - |KC|") operations, where |KC| represents the cardinality
of set L and N is the length of the input signal. However, by exploiting the sparse factorization
in equation (3.1) and manipulating the distributive property of ‘+” and ‘x’, we are able to design a
forward-backward decomposition algorithm to compute these posterior probabilities with computa-
tional complexity O(N - |KC|F1), where L is the wavelet decomposition level and much smaller than
N.

3.3. Forward-backward decomposition

Our algorithm extends the classical forward-backward decomposition algorithm for a one-level hidden
Markov model to our multi-level case. The key point is to only maintain L appropriate hidden states in
both the forward and backward variables for computational efficiency.

3.3.1. Forward decomposition

Defining the following variables,
Si,j = {SL,Di—Lj]a <o Si41,[2715] 5 Siygs Si—1,2(5—1)5 - - - 5 S1,2071(5—1)5

D;j = {dpp<izi-£j1s- - dig1k<roa17s dik<js dim1k<a(—1)s - - - » A1 p<2i-1(j—1),

we let the forward variable be o; ; = P(S;;,D; ;). Let [aq on-1,] = f(h, o), Vh,j € Z* to define a
dynamic programming algorithm. The pseudo-code for computing the forward variables using dynamic
programming is shown in Table 1. Its correctness can be proved using the three conditional indepen-
dence assumptions in our HMM. For simplicity and presentation clarity, in Table 1 we assume that the
input data length NV is a power of 2, and denote the conditional probability P(d; ;|s; ;) by ¢1(d; ;). and
P(si5]8i-1, Sit1,1i/21) bY g2(8i;)-

There is some implementation issue for the algorithm in Table 1, namely, the numerical under-
or over-flow of «; ; as P(S; j, D; j) becomes smaller and smaller with the increasing size of the ob-
servations D; ;. Therefore, it is necessary to scale the forward variables by positive real numbers to
keep the numeric values within reasonable bounds. One solution is to use a scaled version &; ; = OCL;
where ¢;; = >, ai;. In this way, &;; represents the probability P(S;;|D;;) and ¢; ; represents the
probability P(d; ;|D; ;\d; ). It is straightforward to prove that both ¢; ; and @ ; do not depend on the
number of observations. The algorithm for computing (&; ;, ¢; ;) can be obtained by adding a normal-
ization step after each update of «; ; for the algorithm in Table 1. A by-product of the scaled forward

decomposition is that the log-likelihood log P(D) can be computed as
L n;
log P(D) = Z Z log¢; ;.
i=1 j=1

3.3.2. Backward decomposition

Letting D ; = D — D; ;, we define the backward variable to be 3; ; = P(D5 ,|S; ;). It can be computed
using a similar dynamic programming algorithm as the one in Table 1. To avoid the numerical under-
or over-flow problem, instead of computing f3; ;, we compute a scaled version j3; ; as is shown in
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Table 1: Algorithm for computing forward variables
Initialization: oy, ; = P(sp1,dL 1)
Fork, =1to 27N
Oy oL-1f; = f(L, OéL,kL), AL kp+1 = gl(dL,kL—i-l) Z [92(3L,kL+1) : 041,2L—1kL]

SLky,

end

function [OéLthlj] = f(h, o)
If h _—= 2’

a12j-1 = 91(d1,2j—1) Z [92(31,2]'—1) : CYQ,j], 195 = 91(d1,2j|31,2j) Z [92(31,2j) : 041,23'—1]

51,252 51,251
else
1,251 = g1(dp-1,2j-1) Z [g2(Sh—1,2j-1) - gl QU 2h=2(25-1) = f(h =1, an_12j-1)
Sh—1,2j—2
Op—_12j = gl(dh—l,zj) Z [QQ(Sh—LQj) : 01,2*'1—2(2]'71)], Q1 9h—2(25) = f(h -1, ah—l,Qj)
Sh—1,25—1
End

P(Dg ;18i,5)
P(D5 ;|Di,5)
the algorithm in Table 2 can be verified using the three conditional independence assumptions in our
HMM.

Table 2. The scaled backward variable B” represents the probability . The correctness of

3.3.3. Computing posterior probabilities

: _ 5 P(DE |S;. ;)
Since &, ; = P(S;;|D;;) and 3;; = P Dsy)’

Markovian property of our HMM. Then the posterior probability v(-) can be computed as

i _ N~ ~ 7 il N"~ A Li _ N\N" - = qildr;)g2(sLy)
Ve = QG5 - Bi,ja Vi1 ko = Qg - 5@17 Vi1 ko = A 2L-1(-1) '5L,j : c )
L?j
_ 2 91(di,j)-g2(si5) ¢ s
i B Y Qi gi-1_1)fiy - FERLel if j s even,
%ﬁ,kmks

5 gy g - PO i odd.

Ciyj

we have &, ; - B;; = P(S:;|D) according to the

Without confusion, we omit the indexing variables under the )~ symbol for the above equations.

4. Anomaly detection by tracking HMM model variations

A first thought on the anomaly detection problem is to treat the anomalies as abrupt changes in the
HMM modeled data and then apply change-point detection methods to detect these abrupt changes as
anomalies. This is also the general routine used in literature (see Dewaele et al., 2007). However, it
is found that directly applying change-point detection methods to the HMM modeled data is compu-
tationally expensive. We designe here a lightweight anomaly detection scheme based on detecting the
structure changes of the estimated HMM.



Table 2: Algorithm for computing the scaled backward variables
Initialization: 3 y/2 = 1
Fork, =2"tNto1l

3 5 g de g SLk ﬁLk
Brwy = F(L; Brar—iry)s Brar—1(e,-1) Z 1 L L)PLiy

P CLkyp,
end
function [Bh’j] = f(h, Bygn—1)
Ifh ==
91 d12 92(812 ) 512 91 12 1)92(812 1) 512 1
51 2j-1 = Z J J ] 52,] Z J— Jj— Jj—
C1,2j C1,25—-1
81,25 $1,25—1
else
2 2 3 91 dh 1,2 gz(Sh 1,2 5h 1,24
5h—1,2j = f(h -1, 51,2’17223'), 51,2’1*2(2]‘—1) = Z j) ]) 2
Ch—1,2j5
Sh—1,2j
> 91(dn-12j-1)92(Sh—12j-1) - Bu-1.2j-1
5h-1,2j—1 = f(h 1 51 2h—2(25-1) ) ﬁh,g = Z = = =
Ch—1,2j—1
Sh—1,25—1
End

4.1. Difficulty of applying change-point detection methods on HMM modeled data

An anomaly detection problem can be formulated as a hypotheses testing problem, i.e., given finite
samples Vi.y = {v1,¥2, ..., yn}, testing between two hypotheses,

Hy : for 1 < k < N, po(ye|Vik-1) = poo (Y| Vik—1),

for1 <k <ty—1, pe(ye|Yrk-1) = Po, (Y| V1:k-1)
Hy : dunknown 1 <ty < N, s.t ) o )
1 - { forto <k < N, pB(yk’ylsk—l) :p91(yk‘yl:k—l),

where 0, and 8, represent the model parameters for the normal network traffic and the abnormal net-
work traffic respectively. Since 6, usually can not be known in advance, the hypothesis H; is composite
(i.e., @1 € {0 : 0 # 0y}). The generalized likelihood ratio test (GLR) (see Chen and Gupta, 2000)
is one of the most popular change-point detection methods for solving this type of hypothesis testing
problem. The GLR test can be written as

gr = max sup S¥, SF= Zl Por (9l Vrii1) to = min{k : g5 > h}.

1<j<k ¢, i—g peo yz|ylz 1)7

It is known that the likelihood of an HMM belongs to the so called locally asymptotic normal family
(see Cappe and Moulines, 2005), and the GLR statistic supg, S]’-€ can be approximated by the second-
order expansion of S;? at 6y without the computation of sup,, over all possible 6,’s. However, the
computation of this second-order expansion involves computation of the Fisher information matrix of
In pe, (yi|V1.i—1), which, in our case, would require an update of an L|K|*> x L|K|* matrix each time
when a new data sample arrives. This is not computationally realistic for our application, especially in
the resource constrained wireless sensor networks.



In the next subsections, we design a lightweight algorithm for anomaly detection by detecting struc-
ture changes of the estimated HMM. An important requirement for anomaly detection is to make the
decision making process online. Therefore, we first develop an online EM algorithm for HMM model
estimation.

4.2. An online discounting EM algorithm

The online discounting EM algorithm is derived based on the so called limiting EM algorithm (see
Cappe, 2009). We first briefly present the limiting EM algorithm. Let x denote the hidden states
and y denote the observations. If the joint probability distribution pg(x,y) belongs to an exponential
family such that pg(x,y) = h(x,y)exp({(¢(0), ss(x,y)) — A(0)) where (-) denotes the scalar prod-
uct, ss(x,y) is the sufficient statistics for @ and A(8) is some log-partition function. If the equation
(Vo#(0), s5) — VgA(@) = 0 has a unique solution, denoted by & = O(ss), then the limiting EM
algorithm obeys the simple recursion ss'™" = Eg+[Ep . [s5(x,y)]y]], where 6" represents the true
model parameter . Since Fg+[Fg[ss(x,y)|y]] can be estimated consistently from the observations by
~ S N Eglss(x1,y:)|y:] » an online EM algorithm can be obtained by using the conventional stochastic
approximation procedure (see Cappe, 2009),

S5ttt = %HE@(SASt)[SS(ItH; Yer)[yen] + (1= 141) 55,

where 7,1 1s a time discounting factor. The estimation of model parameters can then be derived from
the sufficient statistics ss. It is proved by Cappe (2009) that under suitable assumptions, this online EM
algorithm is an asymptotically efficient estimator of the model parameter 6™.

It is not difficult to see that the joint probability distribution of our HMM model, i.e., P(S, D),
satisfies the above mentioned conditions. For each wavelet coefficient d; ;, we have the following
sufficient statistics for computing the HMM model parameters,

.. i,J

il = S Plsy = k. SiylDig), 37 = S Plsin = k. Si|Diy) - dim
fii—Zm 1 (Slm—kS,J|Du) lm’

T g s = Em o P(s1m = k1, Stm—1 = k2, 5111, 1my21 = k3, Sij|Dij),

where [ € {1,..., L} is the scale index, k& € K is the hidden state index, and nﬁj represents the number
of observed wavelet coefficients in scale [ after d, ; arrives, i.e.,

ni’j . IVQlilj—l if{ > 1,
L 2y ifl <.
Itis straightforward to prove that the HMM model parameters {7r§€1| K kg . ot} can be updated using

7] 7‘7.7
{Tl DT k TR T e, k3} as follows,
Z
Zk Zs Ty

Zs ;;ﬂhkg,kg Zk Zs Tzz, » Ig (Z Zs g) .1
k ko — )”.
T Zs T karks Zk; Yo, T Sk s, I ks, Tik

The other HMM parameters 7% and wk Ik, Can be updated using sufficient statistics defined as TL k=

i
5 (01)" =
k

P(sp1 =k,8;;|D; ) and 7 Tl’l = P(s;1 = k1, 81411 = ko2, S, j|D; ;). We omit the related computations
here, as they are similar.



The next step on the design of our online EM algorithm is to obtain recursive (online) updates
of the sufficient statistics Ti’kj, %Z’kj, ﬂ’;’kj and TZ’kjth’kg. According to the Markovian property of the
HMM, the online updates of the sufficient statistics can be achieved by following a similar dynamic
programming procedure as the one for computing the scaled forward variables ¢; ;. Recall that &; ;
is computed by adding a normalization step after «; ; is computed in the algorithm in Table 1. The
sufficient statistics can be updated once ; ; is updated. For illustration purposes, we show here how
to update the sufficient statistics when v, 5;_1 in Table 1 is computed, as updates for the other cases
are similar. For [ € {1,..., L}, let v,_; ;1 be a time discounting factor, and 52_1 be the Dirac Delta

function such that 6}, , = 1,ifl=h—1andé},_, =0ifl # h — 1, and let

l

o _ ! _ z 91(dh-12j-1)
Th—12j-1 = Op—1 " Yh=1,2j-1 " Qh—1,2j—1, tho12j-1 = (1= 0h1Vh-12j1)—— =

Ch,j

Y

! _ 4 91(dn—12j-1)92(8h—1,2j-1)
p—12j—1 = Op—17h—1,2j—1 )
Ch—1,2j—1

where ¢;(-) and g»(+) are defined as in Table 1. The sufficient statistics can be updated as follows,

h—1,25-1 __ 1 l h,j
Tk = Tho12j-1 Tlho12j-1 § 92(Sh-12j-1)77 4.2)
Sh—1,2j—2
~h—1,2j-1 ] l ~h.j
Tk = 7"h—l,2j—1dh—1,2j—1 Hth_195-1 E 92(3h—1,2j—1)7'z,k: (4.3)
Sh—1,2j—2
_h—12j—-1 | 2 l =h.j
Tk = Th—1,2j—1dh—1,2j—1 Fth_195-1 E 92(5h—1,2j—1)7'z,k;7 (4.4)
Sh—1,2j—2
h—1,2j-1 I ! h.j
Tikidiodks — Th—12j—1 Tth—12j-1 E 92(Sh-1,2j-1) " Tk ko ks (4.5)
Sh—1,2j—2

In summary, the online discounting EM algorithm works as follows. Each time a new wavelet
coefficient arrives, the sufficient statistics are updated accordingly, e.g., when dj, o;_1 arrives, updating
the sufficient statistics using equation (4.2, 4.3, 4.4, 4.5). After a minimum number n,,;, of wavelet
coefficients are observed, where n,,;, is small, i.e., n,,;,, = 20 might be enough, the HMM model
parameters are updated according to equation (4.1).

4.3. Change-point detection on model variations

To measure the structure changes of the estimated HMM models over time, we use the concept of the
symmetric relative entropy to define a model variation score (see Hirose and Yamanishi, 2008). Denote
the model at time ¢ — 1 and ¢ by P,_; and P, respectively, then the model variation score is defined as

.1 1
Ve = hm _D(PtHPt—l) + 7111)1’{.10 ED(Pt_lHPt),

n—oo N,

where D(pl||q) represents the relative entropy of distribution p to g, and n represents the length of the
input data. It is natural to let n — oo as we can then compare the two models under the stationary
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states in the limit of n — oo. It can be proved that

n—oo M

1 L
lim —D(F||Pi-1) Z §D 7Tk1|k2 i)' ||(7Tk1|k2,k3)t_1>
i=1
L
1 | - | |
£33 S DV () (o IV (), (),
=1 k

where 7}, = P(s;; = k). Therefore, besides the probability distributions 7 , , and N (4, 0}) pro-
vided by the online EM algorithm, the computation of lim,,_, ., + ~D(F||Pi- 1) also involves the probabil-

ity distributions 7r,€1 kb = P80 = k1, 8151 = ko, sHl r /21 = kg) and 7rk The estimation of 7}, and
l m z’

T}, ko ky €N be obtained from the sufficient statistics 7! % and T k:1 foky A T = 2 Sim Tik + Thikaks =
. .1

Z 7! Tyt koky- LD other relative entropy 7}1_)120 ED(Pt_l || P,;) can be computed similarly. We can see that
Sl,m

the symmetric model variation score actually captures two types of changes. The first is the changes in
the transition probabilities of the hidden states while the second is the changes in the generation pattern
of the observed data from a fixed state. By using the symmetric relative entropy as a distance measure
between two HMM models, it is expected that not only the changes of the data generation pattern will
be detected, but also the changes in the hidden states can also be detected.

5. Numerical Evaluations

In this section, we numerically evaluate the statistical properties of the proposed anomaly detection
scheme. Two types of LRD time series, including the Fractional Gaussian Noise (FGN) and the Au-
toregressive Fractionally Integrated Moving Average (ARFIMA) model, are used for generating data.
We then inject two types of model variations as anomalies. First is the mean level shift, i.e., a step
function with a constant amplitude is imposed on the original signal. Second is to vary model parame-
ters for the data generation process, including the standard deviation and the Hurst parameter for FGN
and ARFIMA. The duration for the normal state and the anomaly state is generated from exponential
distributions with different mean values. The performance of the detection scheme is evaluated by
the detection latency and the Receiver Operating Characteristic (ROC) curve, which is a plot of the
detection rate versus the false alarm rate at different thresholds.

The selection of the wavelet basis used in our scheme is based on a balance between its time local-
ization and frequency localization characteristics (see Barford et al., 2002). Long filters usually have
poor time localization, which can lead to excessive blurring in the time domain, thus may miss strong
but short-duration changes in the time series. In contrast, short filters have good time localization but
poor frequency localization, which can lead to the appearance of large wavelet coefficients when no
significant event is occurring and can cause high false alarms rates if detection is based on a simple
threshold. In our scheme, we build a hidden Markov model for the wavelet coefficients and the de-
tection is based on HMM structure changes rather than a simple threshold, thus the sensitivity of the
filter’s frequency localization capability on detection performance is significantly reduced. In our ex-
periments, we found that the D2 (Haar wavelets) and D4 wavelets from the Daubechies family wavelets
can give us relatively good performance. Hence we use the Haar wavelets for all the experiments in
this paper. For performance comparison, we implement a baseline method adapted from the method
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proposed by Barford et al. (2002), in which only the mean and variance of the wavelet coefficients is
used for anomaly detection. More specifically, for the wavelet coefficients at each scale, it only com-
putes the mean and variance over a time window with fixed length. Any abrupt changes in the mean
and variance values are treated as anomalies.

Fig. 2 shows one representative example of the detection performance on mean level shifts in
the synthetic LRD time series. The top figure illustrates the time series, which is generated from an
ARFIMA model with Hurst parameter 0.9 and length 2!5. The standard deviation for the generated
data sequence is set to 1. The mean level shift occurs at the first quarter of the time and ends at the
middle with intensity 0.75, which is less than the standard deviation. The bottom two figures show
the corresponding model variation scores computed by our online EM algorithm with 5-level and 4-
level wavelet decomposition respectively. The = axis represents the aggregated time due to the wavelet
decomposition and the y axis represents the model variation score. From Fig. 2, we can see that the

Time series data with mean level shift

4 T T T T T T 1 . . :
2
% 0 —+— Decomposition level = 5
© 2 0.95F | —— Decomposition level = 4
—4 . . . . . .
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Figure 2: Effect of Wavelet decomposition levels Figure 3: ROC curves: different wavelet levels

visual inspection of the injected mean level shift from the time series directly can be difficult. However,
in the tracked model variation scores, there are abrupt changes of the model variation scores at the two
time locations where the mean level shift starts and ends. These two abrupt changes suggest where the
injection starts and ends. Especially when the wavelet decomposition level is 5, these are the only 2
abrupt changes that exist. When the wavelet decomposition level is 4, there are some false alarms. We
further compare the effects of the wavelet decomposition level on detection performance. Fig 3 shows
the Receiver Operating Characteristic (ROC) curves using different decomposition levels. The ROC
curves are obtained over 1000 randomly generated time series with standard deviation 1. The mean
level drift starts at different random time points with length 2'3. For a fair comparison, all of them
have the same injected intensity of 0.75. We can see that a higher decomposition level can reduce the
false alarms while achieving the same detection rate. However, an L-level decomposition has a 2% time
aggregation scale, i.e., it transforms the data samples within a 2% time window to the wavelet domain,
so the wavelet coefficients within this window are time-indistinguishable. Therefore, a higher level
decomposition would often give longer detection latency than that of a smaller level decomposition. In
our experiments, we found that a 5-level wavelet decomposition can give a reasonable good balance
between detection accuracy and latency.
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The intensity of the injected mean level shift also affects the detection performance. Fig. 4 shows
the ROC curve and detection latency for the injected mean shift with different intensities. Each curve
is obtained over 1000 simulation traces with the 5-level wavelet decomposition. As is expected, for
higher injected mean level shifts, the detection becomes much easier, in terms of lower false alarms,
higher detection rates, and smaller detection latency.
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Figure 4: Effects of injected intensities Figure 5: Comparison with the baseline

As for the detection on changes in the data generation model, we have similar observations, i.e.,
when the Hurst parameter or the data variance changes more, the detection becomes easier. Due to
space constraints, we are not showing the corresponding results here.

We next compare the performance of our algorithm to the baseline method. It is observed that our
method can always beat the baseline method. For example, Fig. 5 shows the ROC curves and detection
latency for our method and the baseline methods on the detection of Hurst parameter changing from 0.9
to 0.7. While achieving the same false alarm rate, our method has a higher detection rate and smaller
detection latency. Similar results are observed for the detection of other types of injected anomalies. It
verifies our expectation that the hidden Markov model can capture more characteristics of the wavelet
domain data than using only the first and second order statistics.

6. NS-2 Simulation Studies

We next create anomaly scenarios in wireless sensor networks using NS-2 simulator. We simulate the
in-band wormhole attack in the routing layer and evaluate the proposed detection scheme. Note that
our detection scheme is a general method, i.e., it is not only designed for the wormhole attacks, but can
adapt to detect any other attacks that will cause deviation of the network traffic from its normal state.
The in-band wormhole attack is a collaborative attack in the routing layer. During a wormhole
attack, the malicious nodes perform a tunneling procedure to form a wormhole where one node receives
packets and covertly tunnels them to another colluding node, and then the colluding node replays these
packets as if it receives them from its physical neighbors. The in-band wormhole connects the purported
neighbors via multi-hop tunnels over the existing wireless medium. It can affect shortest path routing
calculations and allow the attacking nodes to attract and route traffic from other parts of the network
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to go through them, thus create artificial traffic choke points that can be utilized at an opportune future
time to analyze network traffic and degrade network performance. Fig. 6 shows an example of a 3-
hop in-band wormhole. By ‘n-hop wormhole’, we mean that the actual path length between the two
wormhole endpoints is n-hop but the routing protocol is fooled to consider it as only 1-hop.

Packet round trip time under different network traffic
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Figure 6: A 3-hop in-band wormhole Figure 7: Three scenarios of wormhole

In the in-band wormhole attack, the multi-hop tunneling process will cause the transmission delay
along a path to deviate from its normal state. For example, in Fig. 6 the attacker fools the routing
protocol to consider the 3-hop path 3-5-7-8 as a 1-hop path 3-8. The transmission delay of a 3-hop
path, however, would be different from a real 1-hop path due to different path lengths, not to mention
that the wormhole attack can introduce additional congestion in the path due to the attraction of traffic
from other parts of the network. The difficulty of detection lies in the fact that traffic variability, such
as network congestion, may lead to high false alarm rates.

We create the in-band wormholes in networks containing 50 nodes in a 1000x1000 square field us-
ing NS-2. Different simulation scenarios are considered, including networks that have different levels
of background traffic and wormholes that have different lengths. Fig. 7 shows three typical scenarios
of the collected packet round trip times between a source-destination pair that was attracted by a 4-hop
wormhole, where the wormhole starts at time around 2500. The top figure (scenario 1) corresponds to
the case when the background traffic is relatively light, so there is no congestion in the wormhole or
other places of the network. The packet round trip time becomes slightly higher after the wormhole
attack starts. The middle one (scenario 2) shows the case when the background traffic becomes heavier.
Since more traffic was attracted by the wormhole, leading to some level of congestion inside the worm-
hole, paths go through the wormhole have much longer round trip time than its previous normal state.
This case is the easiest case for wormhole detection. In the bottom figure (scenario 3) the background
traffic becomes much heavier, in which case the network congestion causes large traffic variation even
when there is no wormhole attack. It is the most difficult case for wormhole detection. Fig. 8 presents
the ROC curve for detection of the 4-hop wormhole under different levels of background traffic cor-
responding to the three scenarios. The results are obtained over 100 simulation runs. In the worst
case, i.e., scenario 3, our algorithm performs much better than a random guess, e.g., when the false
alarm rate reaches 0.4, the detection rate is around 0.8. The results are satisfactory considering that the
end-to-end packet round trip time is the only traffic profile we used for detection. We expect that if our
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detector is combined with methods based on other characteristics of the network traffic, better detection
performance can be achieved. Fig. 9 shows performance comparison of our method with the baseline
method for scenario 3, in which our method achieves better performance.

7. Conclusions

In this paper, we studied the anomaly detection problem in wireless sensor networks. As discovered
by recent works, the traffic in wireless sensor networks can have the similar long range dependency
(LRD) property as for the wireline and wireless 802.11 networks, which could significantly increase
the difficulty of network anomaly detection. To reduce the effect of LRD on anomaly detection perfor-
mance, we proposed a wavelet-domain hidden Markov model for capturing the normal network traffic.
The wavelet transform is able to turn the long range dependency that exists among the sample data
into a short memory structure among its wavelet coefficients. The HMM in the wavelet-domain is used
to further capture the remaining dependency among the wavelet coefficients, thus modeling the traf-
fic variability more accurately. Network anomalies are then detected as abrupt changes in the tracked
HMM model structures. The performance of our algorithm is evaluated by extensive simulations, in-
cluding numerical experiments in Matlab and experiments using Network Simulator 2. In our future
work, we plan to study the optimization of model parameters for the wavelet domain HMM model to
improve performance.
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