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Optimal State Estimation for Discrete-Time Markovian
Jump Linear Systems, in the Presence of
Delayed Output Observations

Ion Matei and John S. Baras

Abstract—We investigate the design of optimal state estimators for Mar-
kovian Jump Linear Systems. We consider that the output observations
and the mode observations are affected by delays not necessarily identical.
Our objective is to design optimal estimators for the current state, given
current and past observations. We provide a solution to this paradigm by
giving an optimal recursive estimator for the state, in the minimum mean
square sense, and a finitely parameterized recursive scheme for computing
the probability mass function of the current mode conditioned on the ob-
served output. We also show that if the output delay is less then the one in
observing the mode, then the optimal state estimation becomes nonlinear
in the output observations.

Index Terms—Markovian jump linear systems (MJLS), minimum mean
square error (MMSE).

I. INTRODUCTION

This technical note deals with the problem of designing optimal state
estimators in the mean square sense. More specifically, we consider
a plant modeled by a linear system, with parameters varying in time
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according to a Markovian process that takes values in a finite alphabet;
this class of systems is called Markovian jump linear systems (MJLS).
In the following we present the definition of a discrete-time MJLS.

Definition 1.1: (MJLS) Consider n, m, ¢ and s to be given positive
integers together with a s X s probability transition matrix P = (p;;)
(rows sum up to one). Consider the set S = {1,..., s} and consider
a set of matrices {4}, 5, {Ci},cs With 4; € R™™" and C; €
IR?*™, In addition consider two independent random variables X, and
My taking values in IR™ and S, respectively. Given the vector valued
random processes W; and V; taking values in IR" and IR respectively,
the following stochastic dynamic equations describe a (noise-driven)
discrete-time MJLS:

Xiv1 =Ap, Xt + Wy (1)
Y =Cu, Xt + V2. (2)

The process M, is a homogeneous Markovian jump process
taking values in S, with conditional probabilities given by
pr(Miyr = j|M; = i) = pij. Throughout this technical note,
we will consider W, and V; to be independent identically distributed
(i.i.d.) Gaussian noises with zero mean and covariance matrices X
and Y v, respectively. The initial condition vector X has a Gaussian
distribution with mean jpx, and covariance matrix X x,. The Mar-
kovian process {M: };~,, Xo and the noises {W:};=,, {Vi},o,, are
assumed independent.

Notice that the MJLS defined by (1), (2) has a hybrid state composed
of X4, the continuous component, and of My, the discrete part of the
state. Making the assumption that the state of the Markovian process
M can be directly observed, the system has a hybrid output, with Y;
representing the continuous component and }; representing the dis-
crete part of the output.

For simplicity, we will adopt an abuse of notation by referring to
X as state vector and to M; as mode (since it determines the mode
of operation, by selecting the matrices (Aar,, Cas,) in (1), (2)). With
respect to the hybrid output observations, we will call Y; output obser-
vation and M; mode observation.

A. Motivation and Survey of Related Results

This section introduces the motivation for the problem addressed in
this technical note and a short survey of the state of the art in the MJLS
theory in general and in the design of optimal state estimators for a
MILS in particular.

MIJLSs represent an important class of stochastic time-variant sys-
tems because they can be used to model random abrupt changes in
structure. Linear plants with random time-delays [19] or more gen-
eral networked control applications [14], where communication net-
works/channels are used to interconnect remote sensors, actuators and
processors, have been shown to be amenable to MJLS modeling. Moti-
vated by a wide spectrum of applications, there has been active research
in the analysis [6], [7], [9], and in the design of controllers and estima-
tors [8], [9], [11], [12] for MJLSs.

In this technical note, we address the problem of optimal state
estimation for discrete-time MJLS with Gaussian noise and arbitrary
delays on the observation output components. Relevant results con-
cerning the filtering problem for linear systems with time-delays can
be found in [5], [15], [20]. Existing results solve the problem of state
estimation for MJLS in the case of Gaussian noise for two main cases.
In the first case, both the output and mode can be observed and the
minimum mean square error (MMSE) estimator is derived from the
Kalman filter for time varying systems [9], [12]. Off-line computation
of the filter is inadvisable due to the dependence of the filter’s gain on
the mode path. An alternative estimator (filter), whose gain depends
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only on the current mode and for which off-line computations are fea-
sible, is given in [10]. In the second case, only the output is observed,
without any observation of the mode. The optimal nonlinear filter
consists of a bank of Kalman filters, whose memory requirements and
computation complexity increase exponentially with time [3]. To limit
the computational requirements sub-optimal estimators have been
proposed in the literature [1], [2], [4], [13]. A linear MMSE estimator,
for which the gain matrices can be calculated off-line, is described in
[11]. In this note we close the gap between the two cases mentioned
above. We have partially addressed the problem described in this note
in [18], where only the case with delays in the mode observations was
considered. Also, in the current note we have changed and improved
the proofs introduced in [18].

The framework proposed in this work is useful in addressing state
estimation problems for systems affected by failures, which are de-
tectable only after a delay. For instance, we can consider a set of sensors
that measure the output of a plant. These sensors can fail, the number
of fully functional sensors inducing a mode of operation. If we make
the assumption that the time while the sensor is fully functional and the
time it takes for a sensor to be repaired are exponentially distributed,
then the time evolution of the mode of operation can be modeled by
a Markov chain. However, the failure of a sensor is not necessarily
immediately detected, but typically is detected after a few time units,
depending on the fault detection techniques used. Hence the mode of
operation is not known instantly but with some delay, which is one
of the application domains that motivate the interest in pursuing the
problem addressed here. Detection of sensor faults can be done for in-
stance using techniques introduced in [16], [17].

Notations and Abbreviations: Consider a general random
process Z,. We denote by Z{ the history of the process from
time O up to time time ¢, i.e. Z{ {Zo,Z1,...,Z:}. A realiza-
tion (sample path) of Z{ is denoted by zf = {z0,21,...,2}.
Let { XYy " = yi " M = m{ "2} be the vector
valued random process representing the continuous part of the
system state given the past history of the observations. We de-

note by fX [y iR its probability density function (p.d.f.)

while :U’t\(t hy,t—hy) and Et|(t7h1 t—hy) Signify its mean and
covariance matrix, respectively. We will compactly write the
sum Zmo 1 Zmlﬂ an,ﬂ as ng Assuming that x
is a vector in IR", by the integral [ f(x)dz we understand
Jooof fxr,oo ap)dar .. dan, for some functlon f defined
on IR™ with values in IR.

Paper Organization: This technical note has four more sections be-
sides the introduction. After the formulation of the problem in Sec-
tion II, in Section III we introduce the main results. Two corollaries
will present the formulas for the optimal state estimator (discrete and
continuous components) in the mean square sense. In Section IV we
provide the proofs of these corollaries together with a number of sup-
porting results. The technical note ends with conclusions in Section V.

II. PROBLEM FORMULATION

In this Section, we formulate the problem for the MMSE state esti-
mation for MJLS in the case of delayed output and mode observations.

Problem 2.1: (MMSE state estimation for MJLS with delayed output
andmode observations) Consider aMJLS asin Definition 1.1.Leth1 and
ha be two positive integers representing the delays affecting the output
and mode observations, respectively. Assuming that the state vector X
and the mode M, are not known, and that at the current time the data
available consist of the output observations up to time ¢t — h; and mode
observations up to time ¢ — k2, i.e. the estimator has access to Yot*h ! and
M 57’” , we want to derive the MMSE estimators for the state vector X
and for the mode indicator function I45s,=;},¢ € S. More precisely, as
is well known [21], we want to compute the following:
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MMSE state estimator:

XZLI,;LQ def E |:‘X—1|Y—Dt—hl _ yt—hl ”t—h) _ mé h):| )

MMSE mode indicator function estimator:

~hyho def

L= my = E []l{mt,mt}ly = i

My =] @)

where the indicator function 1;7,=,y,} is defined by
A[f = m:

1 def 1
(M=l = Y0 M, # my.

Remark 2.1: We are interested in estimating the indicator function
rather than the mode itself, because the MMSE estimator of the mode
can produce real values, which may have limited usefulness. Also, ob-
taining an MMSE estimator of the mode indicator function, allows us
to compute the estimator of any function of the mode. Indeed the fol-
lowing holds for any real function g defined on the set S

g(M0) = B [g(M) Y5 ™" = " Mg = mie]

~hy,ho

= > amolpg2m,

m+ES

where by g(/z\z) we denote the MMSE estimator of the function
g(ﬂ/[[)

Remark 2.2: Considering the definition of the indicator function,
the MMSE mode indicator function estimator can be also written as:
U2 = prM = muf¥y " = i M = i)
Then we can also produce a marginal maximal a posteriori
mode estimator expressed in terms of the indicator function:

hi,ho t—h t—h t—h
_Ut = arg max,,,es p7 (JL = mt|Y T=yy My =

hi1,

—h
m 2) = arg maX,,, es ]l{\[t —

III. MAIN RESULT

In this Section, we present the solution for Problem 2.1. We intro-
duce here two Corollaries describing recursive formulas for computing
the optimal estimators for the state and mode indicator function. The
proofs of these Corollaries are deferred for the next section and they are
a direct consequence of Theorem 4.1 stated and proved in Section IV.

A. Standard Case

We begin by recapitulating some properties of the Kalman filter for
MILS in the standard case (i.e. the output and mode observations are
available with no delay), summarized in the following Theorem.

Theorem 3.1: Consider a discrete MJLS as in Definition 1.1.
The random processes { XYy = wb, M{ = mi}, {X(Y)~" =
yo LM = mb ) and {V: = yo L, M{ = m}} are
Gaussian processes with the means and covariance matrices calculated
by the following recursive equations:

X X X
Wif(e,e) = Bije—1,i—1) + La (yz - Cmt,”‘t\(f—],f—]))
x T
Ly :Et\(t—l,t—lj)Cm,,
X T -
X (C7n12t|(t—1‘t—1)cnzt + EV)

X X T
Til-1,0-1) :Amt_1Et—l\(tﬂ,tq)Amt,l +Xw (®)]
X _ X
Het|(t—1,¢—1) —A"tt71ﬂt71|(171,171)
X X
Sty = I = LeCry) Biji—1,i-1)
Y X
Ht|(t—1,t) :Omﬂf\(t—1,t—1) (6)
Y X T
-1, =Cm,Sije—1,t-1)Cm, + Zv ©)

with initial conditions H‘OX\(—L—]) = p1x, and EOX\(—1,—1) =Yx,.
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Proof: Equations (5) represent the standard Kalman filter for
the MJLS which is derived using Kalman filtering equations for time
varying systems [9], [12], since the output and mode are known with
no delay. Besides the Kalman filter equations, we added (6), (7) as
they will be used throughout the technical note. These equations are
an immediate consequence of the fact that the conditional random
process { X¢|Y{ ™" = yi™', M{™" = m}™'} is Gaussian. [ ]

B. Delayed Output and Mode Observation Case

Our main result consists of Corollaries 3.1 and 3.2, which show the
algorithmic steps necessary to compute the MMSE estimators for the
state and mode indicator function for MILS when the observations of
the output and mode are affected by some arbitrary (but fixed) delays.
These Corollaries are stated without proof. The proof of Corollary 3.1
is given in Section IV-A and of Corollary 3.2 is given in Section IV-B.

Corollary 3.1: Given a MILS as in Definition 2.1 and two positive
integers hy and h2, the MMSE state estimator from Problem 2.1 is
given by the following formulas:

(@) If hy > ha, he > 1

ho—1

E H Pmy_j_1,my_ Aﬂf|(f—h] t—1).

Lt
Tt —ho+1

vk
X =

(b) If (h] 2 hQ, ]7,2:1)07‘ (h] > h2, ho = 0)
thl’lm = l"ﬁ(t—h d—1)"

() If hi < ha, by > 1

hqi—1

, t—hq X
Py gy omy g Ct \My_pyq1 ) Htf(t—hy,t—1)-

-1 k=1
My ho41

h1,ho
X, =

(d) If hl < }lg, hl E {O,l}

t—hy X
Ct \Mt_hyt1 ) Ftf(t—hy,t—hy)

iR
Tt —ho+41

vhihe
X, =

where #?\|V(t7h1,t71) (and l’ﬁ(tﬂ,tﬂ)) is computed by the recurrence

fy

X

Hi|(t—hy,t—1) = <H A,
k=1

for each of the unknown mode paths represented by a term 1n the
above sums. The conditional means ,u:‘ hyl(t—hy,t—hyy (OF ufl(f )
are calculated according to the Kalman filter (5), and the coefficients
ct(mi:Z;_i_] ) are given by

) Nt—hl\(t hy,t—hy) (8

A
t—hy A
o (mhin) =3 ©
with
ho—hi1—1
-
N = Pmy_py —k—1mi gk
k=0
X t—hy—k—=1 , t—h]—k
fo hyp—klYy "t My
t—hi—k—1 t—h;—k
Ye—hy—k|Yo My ;
ho—hy—1
D= E H Pmy_py—k—1mi_ng ke
k=0

t—hy—k—1

X t—hy—k
fo hy—klYg My

(—hi—k—1 _1—hj—k
TR my )

(yi—hl— |y
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where
¥ G |7t—h1—k—1 mi—hiky
v, hl—k\Yt hi—k—1 Al;—hl—k Yt—h1—klYo » My
is the Gaussian p.d.f. of  the random process

{Yi o, kY1 M "t 7%}, whose mean and covariance
matrix are computed according to (6), (7) introduced in Theorem 3.1.
Corollary 3.2: Given a MJLS, as in Definition 2.1, and two positive
integers h1 and h», the MMSE mode indicator estimator from Problem
2.1 is computed according to the following formulas:
(a) Ifo < hz S hl

ho
~hy,ho

]I{AIf =mi} — Hpmf,;\,,m/t,;\dr]_
k=1

(b) If0 < hy < b

7/1
E : Hpmt ko gy Gt (mtfhfrl)
i1

= hQ+1

~hy,ho
]l{Mtffnt} =

) If0 =hy < ho

~hy,ho
{Mi=m;} =

Z Ct (m2—1L2+1) .

mt!
t—ho+41

where ¢ ( m;:Z; +1) are computed according to (9).

Since the delays are fixed, the algorithms have time-independent
computational complexity. We would like to note that the form of the
optimal estimators will depend on whether A1 > ho or ho > hy.In
the first case (i.e., h1 > h2), the optimal state estimator is linear with
respect to the output observation Y;, while the optimal estimation of
the mode indicator function is independent of Y;. In the second case
(i.e. h2 > h1), the optimal state and mode indicator function estima-
tors become nonlinear in the output observations due to the coefficients
c,e(mf:Z; 4+1)- These coefficients reflect the fact that the modes from
time ¢t — hz 4+ 1 up to ¢ are indirectly observed through Y;. In Corol-
laries 3.1 and 3.2 we were not concerned by the numerical efficiency
of the algorithms. However, we note that at the current time, the algo-
rithm uses information computed at previous steps indicating that an
economy in memory space and computation power can be achieved.
Corollaries 3.1 and 3.2 are consequences of a set of results (mainly
Lemmas 4.1 and 4.2 and Theorem 4.1) which will be detailed in the
next section.

IV. PROOF OF THE MAIN RESULT

In this Section, we introduce two Lemmas and a Theorem which will
aid in the proof the main results presented in Section III. In particular,
Corollaries 3.1 and 3.2 are a direct consequence of Theorem 4.1, which
is the main result of this section. This Theorem characterizes the p.d.f.
of the conditional random process {X;|Yy "t = y{ 7"t M2 =
mi” 2} where hy and ho are some known arbitrary p0s1t1ve integer
values and is proved with the help of Lemma 4.1 and Lemma 4.2. In
Lemma 4.1 we characterize the statistical properties of the conditional
random process { X[V ™" = yi7" M!™' = m{™'} where h is a
positive integer. This result is related to the case of state estimation
when the output observations are delayed but the modes are all known.
In Lemma 4.2 we analyze the statistical properties of the conditional
random process { X;|Yy = yb, M{™" = mi~"}. From Lemma 4.2 we
derive the MMSE state and mode indicator function estimators when
all the output observations are known but the mode observations are
delayed.

To simplify the exposition of Lemmas 4.1 and 4.2 we introduce
(without proof) the following Corollary presenting well known prop-
erties of the p.d.f of a linear combination of independent Gaussian
random vectors.



2238

Corollary 4.1: Consider two independent Gaussian random vectors

V and X of dimension m and n respectively, with means pyv = 0

and yx, and covariance matrices Xv and ¥ x respectively. Let Y be

a Gaussian random vector corresponding to a linear combination of X

and V,Y = CX + V where C' is a matrix of appropriate dimensions.
The following holds:

[ o= Corpxtarde = i) (10)

R”

where fy (y) is the multivariate Gaussian p.d.f. of Y with parameters
py = Cpx and By = CSxCT + Sy

Lemma 4.1: Consider a discrete MJLS as in Definition 1.1. Let h be
aknown strictly positive integer value. Then the p.d.f. of the conditional
random process { X |V ™" = ¢t 7" M!™' = m! ™'} is Gaussian with
mean computed by

h

_ A X
Hielt—h,t—1 = Amy g | Ht—n|(t—h,t—h)
k=1

an

and covariance matrix given by the recurrence

S kbt k) = Ay St kbt k1) Ay, + Ew

(12)

fork € {h —1,h — 2,...,1,0} and with initial covariance matrix

E;\,h‘t,hyt,h. In addition Nf—lﬂ(t—h,t—h) and E;\,h‘t,hyt,h are cal-
culated according to the Kalman filter described in (5).

Proof: The Gaussianity is shown by induction. Assume that for a

Efrom{0,1,....,h =1}, f [yt—h apt—k—1 is a Gaussian p.d.f.

t—k—11Yy My

Then t—r can be expressed as
X, M
4 Al

t—h
A

f T |7t—hmt—k
Xy glytmh otk \Ti—klYo Mo
= —H —k
/th—kat—k—l‘Yoi g5
Rn
- . t—h t—k 1
*i—kalt—k—ﬂyo PR AXt—f—1
= th,k\Xt,k,l,Mt,k,l(It7k|$t7k71,mtfkfl)

R”

X t—F t—k—1
fxf.—k—l RS

-, t—h o t-k-1) g
Ti—k—1lys Mg Ti—k—1.

Using (10) from Corollary 4.1, we conclude that th,

. : ' k‘yof,—h']\/jé—k 18
a Gaussian p.d.f. with mean given by

/Lfild(t—h,t—k) = ‘4777.171\.71)u’filcfl\(tfh,,tflcfl)
and covariance matrix
S ) = Ay o Dkt A, F S
Iterating overk € {h —1,h —2,...,1,0}, we obtain (11) and (12).m

Lemma 4.2: Consider a discrete MILS as in Definition 1.1 and let 1
be a known positive integer value. Then the p.d.f. of the conditional
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random process { XYy = yb, M{™" = m!{ ™"} is a mixture of
Gaussian probability densities. More precisely

f n (2|yhmb"
TXGly g (1700 TR0

= Z Ct(m:—hﬁ-L)f)(,,\yg,Mg (T|U6m6) (13)

t
My ht1

where ci(my_p ) = fot Rl (mf_h+l|yf),mg—h) are
the mixture coefficients and fxt‘ygﬁh,fé(;t|y3,7né) is the Gaussian
p.d.f. of the process {X:|Y{ = wi, M, = m)}, whose sta-
tistics are computed according to the recursions (5). The coeffi-
cients ci(mi_j,,,) are computed by (14), shown at the bottom
of the page, where f, [yi—k—1 ppt—k is the Gaussian p.d.f. of
t—klio o

{)fik }votfkfl — y67k7171{87k —
computed using (6) and (7).

Proof: Using the law of marginal probabilities we get

m&™F) whose statistics are

f omn (x]ys mi"
X YE,Mi" S0+ 7700

= E f ‘n (T m; lye mt_h’)
— . gt t oagt— L t—h+1[90s 170
‘\f=A1t_h+1‘Yo=Mo ’ v

t
My ha

o Fxovear (xlyo,mo) Fure

7

t agt—h
—h+1|Y0 Mg

t

" ha1

ot t . t—h
My—ht1 |y0g Mo

= Z Ct (’mf—h-q-i) th\YOi,]\/IS (;L’|y6,'m,3) .

t
My h1

Thus we obtained (13). We are left to compute the coefficients of this
linear combination. Applying Bayes’ rule we get

f M

} (mt s mt*h)
' t art—h | Me—ny1lYo0, Mo
t7h+l|Y0’A[0 +

fYOi M (yé mé)

Fyvt e (erfje mrf’)).
+1 0’°"0

Dot

t—h

15)
The p.d.f. fy £, can be expressed recursively as
tot t ot
fyotMé ('ym "Lo) = fx,,,yg.Mg (ib't: Yo mo) dy
-1 t—l)

i
:]]mi—lymtfyf‘*"wffl (l/o » Mo
0 o

X / fyoix,,0, (e, mt)fxi‘yof,q A
RH

N AT
(welyo ~omo ) day.

Applying (10) we obtain

t ty _
fYOi,Mg (y(Jﬂnl(J) = fyt|y(;'*17]\,jé

t—1 t - t—1 t—1
(Welyo™" s m0) Pny i Fy o1 ypeea (w0~ omo” ') -

h—1 . t—k—1 t—k
[Tz e svime iy, yi—rmt pye (We-klyo™ " mo ")

Ct (m;;hﬂ) =

t
My —h41

h—1 —k— —
Z Hk:[) pnl"'*k*]’"lf‘*]“fyt_k‘Yot_k_l,l\/jé_k (yt7k|y[t) k 1’7n,6 k)

(14)
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Using this recursive expression we get Observing  that  {M/Z} . Y=, Mihey =
et {M;_, ,,|M;™"*} and that
t t
fYOi,I\/Té (yowmo) = Hp'”tfkflﬂnt—kfYtik‘YOi_k_l’]\jg_k ho—l
- 5 h
= Of b1 ik i—n i—n ! jt 1 ‘y‘ hy /\lt ha (mf—hq-H |7/0 lla 2) = H Py g my g
(yt— lyo "~ mg ) Fyt—n - (yo ,my ’) . =hott
0 0
By substituting this last expression in (15), we obtain the coefficients we conclude the proof of this case.
ct(my_p41) given in (14). We can conclude de proof by making the Proof of case (b) (hi > he, he = 1) or (i > ho,
observation that the p.d.f. f,. | t-k-1 y,0-x is completely charac- he = 0)): When hy > hs, he = 1, the formula fol-
T M . _ .
terized in Theorem 3.1, (6) and (7). n lows trivially. If A >h hz’thi = 0, the expression for
. . . . . . . 1 —n2 3 : 10t
The following Theorem is the main contribution of this Section. f Xy (7 |U0 ,mgy %) is obtained by noticing
Theorem 4.1: Consider a discrete MJLS as in Definition 1.1 and let that {Xt|Y’*h1 MEYy = {Xt|Y’*h1 M t— } since X does not
hy and ho be tvsio }non—nega:ti\;e inteigegs. Then tltle }p.d.f. of the random depend on M,.
process {X:|Y; "' = y,~ ', My™"? = my "?} is given by the Proof of case (¢) (b1 < hz2, hi > 1): We start as in the case (a),
following formulas by conditioning on M, ~,
(@) If hy > ha,ha > 1 -
: t— t—hg
t—hy | t—h fx DALY A relyg™"mg
fo jotmhy o t—ho (Itlyo tomg 2) t1%o
X vy~
= Z H Pry_j_q1,my_y X, ‘Yt—hl 7\11‘—1 Mt—hot1
i1 t—hq t—ho
Myl (Cumt,h2+1|y .My )
oyt 1 t—1
(.u|y0 , Mg ) . = Z folyf,;,l M (¢t|y0 Lomg )
tfl
) If (hy > ha, ha = 1) or (hy > ha, ha = 0) T —hgy+1 A
t— h2)
| t—h t—1 X _ —h —hy (TR ,m .
f)(t\yoi*hlﬂwéflﬂ ($t|llo t,mg Z2) Taa it—llzoJrl‘yf " agg T ( = h2+1|y0 0
. —1 z
=f t—hy g, at—1 (mth/g m(g ) . B
Xy (16)
(C) If}ll < hz,hl > 1
In (16), the p.d.f. labeled by A is obtained from case (b) and for
t—hqy L t—ho (Tt|Yg Mg the p.d.f labele we can further write
Fatvi= lyo "t mg " he p.d.f labeled by B furth
hi—t1 - t—hy _ t—ho
T k=1 t—1 t—h —h
RRE , = fMt—,1L +1‘Yifh1 Ml (’mt—hl+1|7/0 'mg 1)
X f t—hy 1 Lt|yt "LombTt). !
Xt]Y, Mg hy t—hy t—ho
X f]w ,hl ‘Yoi—h.lﬁl,wé—hQ 771t_h2+1|y .My .
(d) If by < hs, by € {0,1} A
" t—hy From the Markovian property of the process M, the first term is
fo‘Yf—hl aih2 (;L'f|y0 LM )
hi t—hy
D g e () T (i)
il i
"t —hot1 = fMt,:L Ll (lrzf_,71+1|m0 ”)
1
where the p.d.f. fx i is characterized in Lemma 4.1 and hy—1

the formulas for coefficients c; (mf hat1) are given in (9).
Proof: Note that the most general cases are cases (a) and (c). The
rest are particular cases of the aforementioned ones.

| | Pmy_p1my_per
k=1

Proof of case (a) (b1 > ho, hz > 1): By conditioning on the We can notice that f\ff:,',” AR is a shifted (by h1)
missing mode observation M~ h ,41 We can write version of the coefficients c; mtroduced in the Lemma 4.2. Thus
Ct—hy t—hy t—hy | t—hy t—ho\ _ —h,
f)( Y TR agihe (l't|!/0 » Mg ) ff\jtt_]hl [y At (7nf—h2+1 lyo s mg ) =Ct (7nf—h2+1)
o140 0
mtz th"”f:h palYe T where c[('rrz}f:z,‘)H ) are given by (9). Thus we conclude the proof
(a2t for the third case.

(xtan:}L,)+l|yg— ,mp ’72) Proof of case (d) (h1 < ha, by € {0,1}): If by < ha, hy = 0

i . L we satisfy the conditions of Lemma 4.2. If hy < ha, hy = 1

= Z ! Xy (wt|yo ', mg ) we follow the same lines as in the case (c) with the difference
mij}l2 41 that since by = 1, there will be no products of the conditional

by probabilities p;; multiplying the terms in the sum.
fo vk gthe (mt,hz+1|y(J ,md ) .

}12+1
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A. Proof of Corollary 3.1

The proof follows from the linearity of the expectation operator
and by applying the results about the p.d.f. f Ny gt he detailed
in Theorem 4.1 together with the properties of Of Xt‘Yigh, -t and

) . 0 g
thlyot']\/[é—h shown in Lemmas 4.1 and 4.2.

B. Proof of Corollary 3.2

From the optimal estimator formula we have

shy,ho

_ ct—hy _  t—hy qrt—ho
Iov,=my =F I:]I{A/Ti:mi}n/[) =y, %, M,

=f me| F=hy pt=he

T gyt b (Mo Mo ‘

In the case hy > ho, from the Markovian property of the process M;
and from the fact that { M, |Yy ™", M} ™"2} = {M,|M,_,,} we ob-
tain

ho—1

i e e e = ] .
{Z\/[t:mt\YOt h1:yé hl,]\,jg hz:mto hz} Pmy_ o1 mye_y
k=1

In the case when 1y < ho, by > 1 we get

1 _ _ Y _
{Alt:mt\YOi hl:yé hl.ﬂl; hz:mg hQ}

= }: Fryt=1 AN VAGE
—1

. t—h2+1‘ 0
M ho+1

t t—hy _t—ho
mt7112+1|.710 » My

- Z Fare ¢

|Y,
i1 t—hy+1170
t—ho+1

t o t—hy  t—hy
(777't7h1+1 Yo » My ) fMt—hl

t—ho+
t—hy ) t—hy  t—ho
(mt—h2+1 [yo » My

hi—1

— . t—hy

= Pry_jo_yymy_p | Ct\ Ty pyt1
k=0

t—hy
™y —hot1

t—hy

—h
‘1M

t—hy ,,t—ho
1 Mg

where the last line was deduced from a similar analysis as in the proof of
Theorem 4.1. When hy < ho and hy = 0 we obtain a formula similar
to the one above, with the difference that there will be no longer any
product of conditional probabilities.

V. CONCLUSION

In this technical note, we considered the problem of state estimation
for MJLS, when the two components of the output observation are
affected by delays. We gave formulas for the optimal estimators for
both the continuous and discrete components of the state. These
formulas admit recursive implementations and have time-independent
complexity and therefore are feasible for practical implementation.
However, the ordering relation between the delays affects the com-
plexity of the estimators. An important observation is that when we
have less mode observations than output observations the estimators
become nonlinear in the outputs. Our problem setup can be viewed
as a generalization of the state estimation problem for MJLS since it
represents the link between the main cases addressed in the literature:
all mode and output observations are known at the current time and
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only the output observations are known at the current time, respec-
tively. Our framework can be used in monitoring applications where
component failures are not instantly detected.
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