2012
Consensus-Based Linear Distributed Filtering
I. Matei and J.S. Baras
Automatica, Volume 48, Issue 8, Pages 1776-1782, August 2012
Abstract
We address the consensus-based distributed linear filtering problem, where a discrete time, linear stochastic process is observed by a
network of sensors. We assume that the consensus weights are known and we first provide sufficient conditions under which the stochastic
process is detectable, i.e. for a specific choice of consensus weights there exists a set of filtering gains such that the dynamics of the
estimation errors (without noise) is asymptotically stable. Next, we develop a distributed, sub-optimal filtering scheme based on minimizing
an upper bound on a quadratic filtering cost. In the stationary case, we provide sufficient conditions under which this scheme converges;
conditions expressed in terms of the convergence properties of a set of coupled Riccati equations.
Key words: distributed filtering, consensus, sensor networks