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ADAPTIVE SAMPLING FOR LINEAR STATE ESTIMATION∗

MABEN RABI† , GEORGE V. MOUSTAKIDES‡ , AND JOHN S. BARAS§

Abstract. When a sensor has continuous measurements but sends occasional messages over a
data network to a supervisor which estimates the state, the available packet rate fixes the achievable
quality of state estimation. When such rate limits turn stringent, the sensor’s messaging policy
should be designed anew. What are good causal messaging policies? What should message packets
contain? What is the lowest possible distortion in a causal estimate at the supervisor? Is Delta
sampling better than periodic sampling? We answer these questions for a Markov state process
under an idealized model of the network and the assumption of perfect state measurements at the
sensor. If the state is a scalar, or a vector of low dimension, then we can ignore sample quantization.
If in addition we can ignore jitter in the transmission delays over the network, then our search for
efficient messaging policies simplifies. First, each message packet should contain the value of the state
at that time. Thus a bound on the number of data packets becomes a bound on the number of state
samples. Second, the remaining choice in messaging is entirely about the times when samples are
taken. For a scalar, linear diffusion process, we study the problem of choosing the causal sampling
times that will give the lowest aggregate squared error distortion. We stick to finite horizons and
impose a hard upper bound N on the number of allowed samples. We cast the design as a problem
of choosing an optimal sequence of stopping times. We reduce this to a nested sequence of problems,
each asking for a single optimal stopping time. Under an unproven but natural assumption about
the least-square estimate at the supervisor, each of these single stopping problems are of standard
form. The optimal stopping times are random times when the estimation error exceeds designed
envelopes. For the case where the state is a Brownian motion, we give analytically: the shape of
the optimal sampling envelopes, the shape of the envelopes under optimal Delta sampling, and their
performances. Surprisingly, we find that Delta sampling performs badly. Hence, when the rate
constraint is a hard limit on the number of samples over a finite horizon, we should not use Delta
sampling.
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1. Introduction. Networked control systems have some control loops completed
over data networks rather than over dedicated analog wires or field buses. In such
systems, monitoring and control tasks have to be performed under constraints on the
amount of information that can be communicated to the supervisor or control station.
These communication constraints limit the rate of packet transmissions from sensor
nodes to the supervisor node. Even at these limited rates, the network communica-
tions can be less than ideal: the packets can be delayed and sometimes lost. In the
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networked system, all of these communication degradations lower performance, and
so these effects must be accounted for during control design. In this paper, we only
account for the limit on the packet rates and completely ignore random delays and
packet losses.

Sending data packets as per a periodic timetable works well when high data rates
are possible. Sending packets aperiodically and at variable times becomes worthwhile
only when the packet rate limits get stringent, like in an industrial wireless network.
Conceptually, packet rate constraints can be of the following three types: (1) average
rate limit, a “soft constraint” that calls for an upper limit on the average number of
transmissions; (2) minimum waiting time between transmissions, under which there
is a mandatory minimum waiting time between two successive transmissions from the
same node; and (3) finite transmission budget, a “hard constraint” that allows only up
to a prescribed number of transmissions from the same node over a given time window.
In the simplest version of the third type of constraint, we set the constraint’s window
to be the problem’s entire time horizon. In its other variations, we can promote a
steadier flow of samples and avoid too many samples being taken in a short time.
This we do by cutting the problem’s time horizon into many disjoint segments and
applying the finite transmission budget constraint on every segment.

Notice that these different types of constraints can be mixed in interesting ways.
In this work, we will adopt the simple version of the finite transmission budget, in
which the budget window is the same as the problem’s time horizon. We study a
problem of state estimation which is an important component of distributed control
and monitoring systems. Specifically, a scalar linear system is continuously and fully
observed at a sensor which generates a limited number of packets. A supervisor
receives the causal sequence of packets and, on its basis, maintains a causal estimate.
Clearly, the fewer packets allowed, the worse the error in the supervisor’s estimate.
The design question is, How should the packets be chosen by the sensor to minimize
the estimation distortion? The answer to this question employs the idea that packets
should be generated only when they contain “sufficiently” new information. Adaptive
sampling schemes, or event-triggered sampling schemes as they are also called, exploit
this idea and send samples at times determined by the trajectory of the source signal
being sampled. In contrast, deterministic sampling chooses sample times according
to an extraneous clock.

But first we will consider possible times when packets should be sent and the
allowable payloads they can carry. The times when packets are sent must be causal
times which, even if random, are stopping times w.r.t. the sensor’s observations pro-
cess. Likewise, the payloads have to be measurable w.r.t. the filtration generated by
the observations process. The above restrictions are merely the demands of causality.
When we place some idealized assumptions about the network, a simple and obvious
choice of payload emerges.

1.1. Strong Markov property, idealized network, and choice of payload.
For all the problems treated in this paper, we need the two clocks at the sensor and
the supervisor to agree and, of course, to report time correctly. We also assume that
the state signal xt is a strong Markov process. This means that for any stopping
time τ , and any measurable subset A of the range of x, and for any time t ≥ τ ,

P [xt ∈ A |Fx
τ ] = P [xt ∈ A |xτ ] .

Linear diffusions, of course, have the strong Markov property.
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Let the sequence {τ1, τ2, . . . } of positive reals represent the sequence of times when
the sensor puts packets on the network. Let the sequence of binary words {π1,π2, . . . }
denote the corresponding sequence of payloads put out. Let the sequence {σ1,σ2, . . . }
of nonnegative reals denote the corresponding transmission delays incurred by these
packets. We let these delays be random but require that they be independent of the
signal process. The packet arrival times at the supervisor, arranged in the order in
which they were sent, will be {τ1 + σ1, τ2 + σ2, . . . }. Let the positive integer l(t)
denote the number of packets put out by the sensor up to and including the time t.
We have

l(t) = sup {i |τi ≤ t} .

A causal record of the sensor’s communication activities is the transmit process defined
as the following piecewise constant process:

TXt =

(

τl(t)
πl(t)

)

.

When a packet arrives, the supervisor can see its time stamp τj , its payload πj , and
of course its arrival time τj + σj . We ignore quantization noise in the time stamps,
with the result that the supervisor can read both τj and τj+σj with infinite precision.
The causal record of what the supervisor receives over the network is described by
the random process defined as

RXt =
∑

j

1{

τj + σj ≤ t, and
t < τj+1 + σj+1

}





τj
τj + σj
πj



 ,

where we have assumed that no two packets arrive at exactly the same time and that
packets are received in exactly the order in which they were sent. If we were to study
the general case where packets can arrive out of sequence, then the arguments below
will have to be made more delicate, but the conclusion below will still hold.

The supervisor’s task is causal estimation. This fact restricts the way in which
RXt is used by the supervisor. Let the count r(t) denote the number of packets
received so far. Then, the data in the hands of the supervisor at time t is the collection

r(t),
{

(τj , τj + σj ,πj) |1 ≤ j ≤ r(t)
}

This is to be used to estimate the present and future values of the state.
What should the sensor assign as payloads to maximize information useful for

signal extrapolation? Specifically, what should the latest payload πr(t) be? If the bit
width of payloads is large enough to let us ignore quantization, then the best choice
of payload is the sample value at the time of generation, namely, xτr(t) . Because of
the strong Markov property, at times s ≥ t,

P

[

xs ∈ A
∣

∣ xτr(t) , r(t),
{

(τj , τj + σj ,πj) |1 ≤ j ≤ r(t)
}

]

= P

[

xs ∈ A
∣

∣ xτr(t)

]

,

which means that if πr(t) carries xτr(t) exactly, then the future estimation errors are
minimized. Therefore, the ideal choice of payload is the sample value. But what
about the practical nonzero quantization noise? Again, the strong Markov property
implies that all the bits available should be used to encode the current sample; the
encoding scheme depends on the distortion criterion for estimation.
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If the packets do not arrive out of turn, the effect of packet delays even when
random is not qualitatively different from the ideal case where all transmission delays
are zero. Nonzero delays can merely make the estimation performance worse but
cannot change the structure of the optimal sampler and estimator. Hence, we will
assume all packet transit delays to be zero, and l(t) = r(t) always.

1.2. Ignoring quantization noise in payloads. In most networks [8, 21, 16],
the packets are of uniform size and even when of variable size have at least a few
header and trailer bytes. These segments of the packet carry source and destination
node addresses, a time stamp at origin, some error control coding, some higher layer
(link and transport layers in the terminology of data networks) data blocks, and any
other bits/bytes that are essential for the functioning of the packet exchange scheme
but which nevertheless constitute what is clearly an overhead. The payload or actual
measurement information in the packet should then be at least of the same size as
these “bells and whistles.” It costs only negligibly more in terms of network resources,
of time, or of energy to send a payload of 5 or 10 bytes instead of 2 bits or 1 byte when
the overhead part of the packet is already 5 bytes. This means that the samples being
packetized can be quantized with very fine detail, say, with 4 bytes, a rate at which
the quantization noise can be ignored for low-dimensional variables. For Markov state
processes, this means that all these bytes of payload can be used to specify the latest
value of the state. In other words, in essentially all packet-based communication
schemes, the right unit of communication cost is the cost of transmitting a single
packet. The exact number of bits used to quantize the sample is not important,
as long as there are enough to make quantization noise insignificant. There are of
course special situations where the quantization rate as well as the sample generation
rate matter. An example occurs in the Internet congestion control mechanism called
transmission control protocol [15], where a node estimates the congestion state of a
link through congestion bits added to regular data packets. In this case, the real
payload in packets is irrelevant to the congestion state, and the information on the
congestion state is derived from the 1 or 2 bits riding piggyback on the data packets.
The developments in this paper do not apply to such problems where quantization is
important.

1.3. Infinite Shannon capacity and well-posedness. The continuous time
channel from the sensor to the supervisor is idealized and noise-free. Even when a
sequence of packets is delivered with delays, the supervisor can recover perfectly the
input trajectory {TX}T0 from the corresponding trajectory of the output {RX}T0 . The
supervisor can read each time τi and the sample value xτi with infinite precision.
Since the sensor has an infinite range of choices for each τi, the channel has infinite
communication capacity in the sense of Shannon.

But this does not render the sampling problem ill-posed. A packet arriving at
time τi carries the data l(τi), τi, xτi . Given (τi, xτi), the trajectory of x prior to τi is
of no use for estimating {xs |s ≥ τi }. Therefore, it does not pay to choose τi cleverly
so as to convey extra news about the past trajectory of x. No such strategy can add
to what the supervisor already gets, namely, the pair (τi, xτi). There is nevertheless
scope, and in fact a need for choosing τi cleverly so that the supervisor can use the
silence before τi to improve its state estimate before τi. But for the causal estimation
problem the infinite Shannon capacity does not sway the choice of sampling policies.

In summary, our assumptions so far are (1) the state is a strong Markov process,
(2) the channel does not delay or lose packets, (3) the time stamps τi are available with
infinite precision to the supervisor, and (4) the sample value xτi is available with infi-
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nite precision to the supervisor. Thus we have σi = 0 ∀ i, RXt = TXt ∀ t, and r(t) =
l(t) ∀ t.

1.4. Relationship to previous works. State estimation problems with com-
munication rate constraints arise in a wide variety of networked monitoring and con-
trol setups such as sensor networks, wireless industrial monitoring and control sys-
tems, rapid prototyping using a wireless network, and multiagent robotics. A recent
overview of research in networked control systems including a variety of specific ap-
plications is available from the special issue [3].

Adaptive or event-triggered sampling may also be used to model the functioning
of various neural circuits in the nervous systems of animals. After all, the neuron is a
threshold-triggered firing device whose operation is closely related to Delta sampling.
However, it is not presently clear if the communication rate constraint adopted in this
paper occurs in biological neural networks.

Adaptive sampling and adaptive timing of actuation have been used in engineered
systems for close to a hundred years. Thermostats use on-off controllers which switch
on or off at times when the temperature crosses thresholds (subject to some hystere-
sis). Delta-Sigma modulation (Delta sampling) is an adaptive sampling strategy used
widely in signal processing and communication systems. Nevertheless, theory has not
kept up with practice.

Timing of observations via pull sampling and push sampling. The prob-
lem of choosing the time instants to sample sensor measurements received early atten-
tion in the literature. Kushner [19], in 1964, studied the deterministic, offline choice
of measurement times in a discrete-time, finite horizon, linear quadratic Gaussian
(LQG) optimal control problem. He showed that the optimal deterministic sampling
schedule can be found by solving a nonlinear optimization problem. Skafidas and
Nerode [31] allow the online choice of times for sampling sensor measurements, but
these times are to be chosen online by the controller rather than by the sensor. Their
conclusion is that for linear controlled systems, the optimal choice of measurement
times can be made offline. Their offline scheduling problem is the same as Kushner’s
deterministic one.

A generalization of these problems of deterministic choice of measurement times
is the sensor scheduling problem, which has been studied for estimation, detection,
and control tasks [22, 5, 32]. This problem asks for online schedules for gathering
measurements from different available sensors. However, the information pattern for
this problem is the same as in the works of Kushner and of Skafidas and Nerode. Under
this information pattern, data flow from sensors to their recipients is directed by the
recipients. Such sensor sampling is of the “pull” type. An alternative is the “push”
type of sampling, where the sensor itself regulates the flow of its data. When only one
sensor is available, that sensor has more information than the recipient and hence its
decisions on when to communicate its measurements can be better than decisions the
supervisor can make. Adaptive sampling is essentially the push kind of sampling.

Lebesgue sampling and its generalizations. The first analytic study of
the communication benefits of using event-triggered sampling was presented in the
2002 paper of Åström and Bernhardsson [4]. They treat a minimum variance control
problem with the push type of sampling. The control consists of impulses which
reset the state to the origin, but there is an upper limit on the average rate at which
impulses can be applied. Under such a constraint, the design asks for a schedule of
the application times for the impulses. For scalar Gaussian diffusions, they perform
explicit calculations to show that the application of impulses triggered by the crossing
of fixed, symmetric levels is more efficient than periodic resetting.
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This has spurred further research in the area. Our own work [26, 27, 28, 29]
generalized the work of Åström and Bernhardsson. Their impulse control problem is
equivalent to the problem of sampling for causal estimation. In the setting of discrete
time, Imer and Basar [14] study the problem of efficiently using a limited number
of discrete-time impulses. For a finite horizon LQG optimal control problem, they
use dynamic programming to show that time-varying thresholds are optimal. Hen-
ningsson, Johannesson, and Cervin [13] have generalized to delays and transmission
constraints imposed by real data networks.

In the setting of discrete time, for infinite horizons, Hajek [11] and Hajek, Mitzel,
and Yang [12] have treated essentially the same problem as ours. They were the first
to point out that in the sequential decision problem, the two agents have different
information patterns. For a general Markov state process, they describe as unknown
the jointly optimal choice of sampling policy and estimator. For state processes which
are symmetric random walks, they show that the jointly optimal scheme uses adaptive
sampling and that the corresponding estimator is the same “centered” estimator one
uses for deterministic sampling. We are unable to prove a similar claim about the
optimal estimator for our continuous time problem.

The study of optimal adaptive sampling timing leads to optimal stopping problems
of stochastic control or, equivalently, to impulse control problems. The information
pattern of adaptive sampling complicates the picture but methods of solving multiple
stopping time problems of standard form which are available in the literature [7] are
indeed useful.

The work reported in this paper has been announced previously in [25, 26, 30].
In [27], the single sample case has been dealt with in more detail than here.

1.5. Contributions and outline of the paper. For the finite horizon state
estimation problem, we cast the search for efficient sampling rules as sequential op-
timization problem over a fixed number of causal sampling times. This we do in
section 2, where we formulate an optimal multiple stopping problem with the aggre-
gate quadratic distortion over the finite time horizon as its cost function. We restrict
the estimate at the supervisor to be that which would be optimal under deterministic
sampling. Following Hajek [11] and Hajek, Mitzel, and Yang [12], we conjecture that
when the state is a linear diffusion process, this estimate is indeed the least-square
estimate corresponding to the optimal sampling strategy.

In section 3, we take the simplified optimal multiple stopping problem and solve
it explicitly when the state is the (controlled) Brownian motion process. The opti-
mal sampling policies are first hitting times of time-varying envelopes by the estima-
tion error signal. Our analytical solution shows that for each of the sampling times,
the triggering envelopes are symmetric around zero and diminish monotonically in a
reverse-parabolic fashion as time nears the end of the horizon. We also describe an-
alytically the performance of the class of modified Delta sampling rules in which the
threshold δ varies with the number of remaining samples. We point out a simple and
recursive procedure for choosing the most efficient of these Delta sampling policies.

For the Ornstein–Uhlenbeck process, in section 4, we derive dynamic program-
ming equations for the optimal sampling policy. We compute the solution to these
equations numerically. We are not able to say whether an explicit analytic solution like
for the Brownian motion process is possible. We can say that the optimal sampling
times are first hitting times of time-varying envelopes by the estimation error signal.
These envelopes are symmetric around zero and diminish monotonically as time nears
the end of the horizon. Also derived are the equations governing the performance of
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modified Delta sampling rules and the most efficient among them is found through a
numerical search. Finally, in section 5, we conclude and speculate on extensions to
this work for other estimation, control and detection problems.

2. Minimum mean-square-error estimation and optimal sampling. Un-
der a deterministic time-table for the sampling instants, the minimum mean square
error (MMSE) reconstruction for linear systems is well known and is straightforward
to describe—it is the Kalman filter with intermittent but perfect observations. The
error variance of the MMSE estimate obeys the standard Riccati equation. In Delta
sampling [23, 9, 10], also called Delta modulation, a new sample is generated when
the source signal moves away from the previously generated sample value by a dis-
tance δ. By this rule, between successive sample times, the source signal lies within
a ball of radius δ centered at the earlier sample. Such news of the state signal during
an intersample interval is possible in adaptive sampling but never in deterministic
sampling. Because of this, the signal reconstruction under adaptive sampling differs
from that under deterministic sampling, and we will see below what the difference is.

We will also set up an optimization problem where we seek an adaptive sampling
policy minimizing the distortion of the MMSE estimator subject to a limit on the
number of samples. Consider a state process xt which is a (possibly controlled) scalar
linear diffusion. It evolves according to the SDE

dxt = axtdt+ bdBt + utdt, x0 = x,(2.1)

where Bt is a standard Brownian motion process. The control process ut is right
continuous with left limits (RCLL) and of course measurable with respect to the
x-process. In fact, the feedback form of ut is restricted to depend on the sampled
information only; we will describe this subsequently. We assume that the drift coef-
ficient a, the noise coefficient b %= 0, and the initial value x are known. Now, we will
dwell upon sampling and the estimation process.

The state is sampled at instants {τi}i≥0 which are stopping times w.r.t. the x-
process. Recall that the process RXt represents the data contained in the packets
received at the estimator:

RXt =
∑

i

1 {

τi ≤ t, and
t < τi+1

}

(

τi
xτi

)

.(2.2)

Notice that the binary process 1{τi≤t} is measurable w.r.t. FRX
t . The MMSE estimate

x̂t is based on knowledge of the multiple sampling policy and all the information
contained in the output of the sensor and so it can be written as

x̂t = E

[

xt

∣

∣

∣
RXt

]

.

The control signal ut is measurable w.r.t. FRX
t . Typically it is restricted to be of the

certainty-equivalence type as depicted in Figure 2.1(a). In that case ut is, in addition,
measurable w.r.t. F x̂

t . The exact form of the feedback control is not important for our
work, but it is essential that both the supervisor and the sensor know the feedback
control policy (and so can compute the control waveform ut

0). With this knowledge,
the control waveform is a known additive component to the state evolution and hence
can be subtracted out. Therefore, there is no loss of generality in considering only
the uncontrolled plant.
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Plant
xt

Causal Sampler

{xτn}

MMSE
Estimator

x̂tController

ut

(a) Adaptive sampling for real-time estimation

T

X

O τ

Thresholds

MMSE estimate

Estimate as per deterministic sampling

(b) Sampling policy shapes the Estimator

Fig. 2.1. (a) Setup for the MMSE estimation based on samples arriving at a limited rate. (b)
Difference between estimators for adaptive sampling and deterministic sampling.

2.1. MMSE estimation under deterministic sampling. Consider now a
deterministic scheme for choosing the sampling times. Let the sequence of nonnegative
and increasing sampling times be

D = {d0, d1, . . . } , d0 = 0,

where the times di are all statistically independent of all data about the state received
after time zero. They can depend on the initial value of the state x0.

We will now describe the MMSE estimate and its variance. Consider a time t in
the semiopen interval [di, di+1). We have

x̂t = E

[

xt

∣

∣

∣
RXt

]

= E

[

xt

∣

∣

∣
di ≤ t < di+1,

{

(

dj , xdj

)

∣

∣

∣
0 ≤ j ≤ i

}]

= E

[

xt

∣

∣

∣
di ≤ t < di+1, di, xdi

]

= E

[

xt

∣

∣

∣
di, xdi

]

,

where we have used the Markov property of the state process and the mutual inde-
pendence, conditioned on x0, of the state and the sequence D. Furthermore,

x̂t = E

[

ea(t−di)xdi +

∫ t

di

ea(t−s)b dBs +

∫ t

di

ea(t−s)usds
∣

∣

∣
di, xdi

]

= ea(t−di)xdi +

∫ t

di

ea(t−s)usds.

Thus, under deterministic sampling, the MMSE estimate obeys a linear ODE with
jumps at the sampling times.

dx̂t

dt
= ax̂t + ut for t /∈ D and x̂t = xt if t ∈ D.
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The variance pt = E[(xt − x̂t)2] is given by the well-known Riccati equation

dpt
dt

= 2apt + b2 for t /∈ D and pt = 0 if t ∈ D.

The above description for the MMSE estimate and its variance is valid even when the
sampling times are random provided that these times are independent of the state
process except possibly the initial condition. There, too, the evolution equations
for the MMSE estimate and its error statistics remain independent of the policy for
choosing the sampling times; the solutions to these equations merely get reset with
jumps at these random times. On the other hand, adaptive sampling modifies the
evolution of the MMSE estimator, as we will see next.

2.2. The MMSE estimate under adaptive sampling. Between sample times,
an estimate of the state is an estimate up to a stopping time, and this is the crucial
difference from deterministic sampling. Denote this estimate by x̃t. At time t within
the sampling interval [τi, τi+1), the MMSE estimate is given by

x̃t = E

[

xt

∣

∣

∣
RXt

]

= E

[

xt

∣

∣

∣
τi ≤ t < τi+1,

{

(

τj , xτj
)

∣

∣

∣
0 ≤ j ≤ i

}]

= E

[

xt

∣

∣

∣
τi ≤ t < τi+1, τi, xτi

]

(strong Markov property)

= xτi + E

[

xt − xτi

∣

∣

∣
t− τi < τi+1 − τi, τi, xτi

]

.

Similarly, its variance pt can be written as

pt = E

[

(xt − x̂t)
2
∣

∣

∣
τi ≤ t < τi+1, τi, xτi

]

.

Between samples, the MMSE estimate is an estimate up to a stopping time because the
difference of two stopping times is also a stopping time. In general, it is different from
the MMSE estimate under deterministic sampling (see Appendix A). This simply
means that in addition to the information contained in previous sample times and
samples, there are extra partial observations about the state. This information is the
fact that the next stopping time τi+1 has not arrived. Thus, in adaptive schemes, the
evolution of the MMSE estimator is dependent on the sampling policy. This opens
the possibility of a timing channel [2] for the MMSE estimator.

Figure 2.1(b) describes a particular (suboptimal) scheme for picking a single sam-
ple. There are two time-varying thresholds for the state signal, an upper one and a
lower one. The initial state is zero and within the two thresholds. The earliest time
within [0, T ], when the state exits the zone between the thresholds, is the sample time.
The evolution of MMSE estimator is dictated by the shape of the thresholds, thus
utilizing information available via the timing channel.

2.3. An optimal stopping problem. We formalize a problem of sampling for
optimal estimation over a finite horizon. We seek to minimize the distortion between
the state and the estimate x̂. We conjecture that under optimal sampling,

x̃t = x̂t almost surely.(2.3)

If increments of the state process are not required to have symmetric PDFs, clearly
the conjecture is false (see Appendix A).
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On the interval [0, T ], for the state process xt obeying (2.1), with the initial
condition x0, we seek an increasing and causal sequence of at most N sampling times
{τ1, . . . , τN} to minimize the aggregate squared error distortion

J (T,N) = E

[

∫ T

0
(xs − x̂s)

2ds

]

.(2.4)

Notice that the distortion measure does not depend on the initial value of the state
because it operates only on the error signal (xt − x̂t), which is zero at time zero no
matter what x0 is. Notice also that the communication constraint is captured by an
upper limit on the number of samples. In this formulation, we do not get any reward
for using fewer samples than the budgeted limit.

The optimal sampling times can be chosen one at a time using a nested sequence
of solutions to optimal single stopping time problems. This is because for a sampling
time τi+1 which succeeds the time τi, using knowledge of how to choose the sequence
{τi+1, . . . , τN} optimally, we can obtain an optimal choice for τi by solving over [0, T ]
the optimal single stopping time problem

inf
τ≥0

E

[
∫ τi

0
(xs − x̂s)

2ds+ J∗ (T − τi, N − i)

]

,

where J∗ (T − τi, N − i) is the minimum distortion obtained by choosing N−i sample
times {τi+1, . . . , τN} over the interval [τi, T ]. The best choice for the terminal sampling
time τN is based on solving a single stopping problem. Hence we can inductively find
the best policies for all earlier sampling times. Without loss of generality, we can
examine the optimal choice of the first sampling time τ1 and drop the subscript 1 in
the rest of this section.

2.3.1. The optimal stopping problem and the Snell envelope. The sam-
pling problem is to choose a single Fx

t -stopping time τ on [0, T ] to minimize

F (T, 1) = E

[
∫ τ

0
(xs − x̂s)

2ds+ J∗ (T − τ, N − 1)

]

,

where

J∗ = ess inf
{τ2,...,τN}

E [J (T − τ, N − 1)] .

This is a stopping problem in standard form, and to solve it we can use the so-called
Snell envelope (see [18, Appendix D] and [24]):

St = ess inf
τ≥t

E

[
∫ τ

0
(xs − x̂s)

2ds+ J∗ (T − τ, N − 1)
∣

∣

∣
Fx

t

]

,

=

∫ t

0
(xs − x̂s)

2ds+ ess inf
τ≥t

E

[
∫ τ

t
(xs − x̂s)

2ds+ J∗ (T − τ, N − 1)
∣

∣

∣
xt

]

.

Then, the earliest time when the cost of stopping does not exceed the Snell envelope
is an optimal stopping time. Thus we get a simple threshold solution for our problem.

2.4. Extensions to nonlinear and partially observed systems. When the
plant is nonlinear, the MMSE estimate under deterministic sampling is the mean of
the Fokker–Planck equation and is given by

ξt = E

[

xt

∣

∣

∣
τlatest, xτlatest

]

, where, τlatest = sup {di ≤ t}.
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Under adaptive sampling, this may not be the optimal choice of estimate. To obtain
a tractable optimization problem we can restrict the kind of estimator waveforms
allowed at the supervisor. Using the Fokker–Planck mean above leads to a tractable
stopping problem, as does use of the following special zero-order hold waveform:

ξt = xτlatest .

However, even a slightly more general piecewise constant estimate

ξt = µ (xτlatest , τlatest)

leads to a stopping problem of nonstandard form because τ and µ have to be chosen
in concert.

When the plant sensor has noisy observations, or in the vector case, noisy partial
observations, the sampling problem remains unsolved. The important question now
is, What signal at the sensor should be sampled? Should the raw sensor measurements
be sampled and transmitted, or is it profitable to process them first? We propose a
solution with a separation into local filtering and sampling. Accordingly, the sensor
should compute a continuous filter for the state. The sufficient statistics for this filter
should take the role of the state variable. This means that the sensor should transmit
current samples of the sufficient statistics, at sampling times that are stopping times
w.r.t. the sufficient statistics process.

In the case of a scalar linear system with observations corrupted by white noise,
the local Kalman filter at the sensor x̂sensor

t plays the role of the state signal. The
Kalman filter obeys a linear evolution equation and so the optimal sampling policies
presented in this paper should be valid. In the rest of the paper, we will investigate
and solve the sampling problem, first for the Brownian motion process and then for
the Ornstein–Uhlenbeck process.

3. Sampling Brownian motion. The sampling problem for Brownian motion
with a control term added to the drift is no different from the problem without it.
This is because the control process {ut}t≥0 is measurable w.r.t. FRX

t , whether it is
a deterministic feed-forward term or a feedback based on the sampled information.
Thus for the estimation problem, we can safely set the control term to be zero to get

dxt = bdBt, x0 = x.

The diffusion coefficient b can be assumed to be unity. If it is not, we can simply scale
time, and in the t

b2 -time, the process obeys an SDE driven by a Brownian motion with
a unit diffusion coefficient. We study the sampling problem under the assumption that
the initial state is known to the MMSE estimator. Under deterministic sampling, the
MMSE estimate for this process is a zero-order hold extrapolation of received samples.

We study three important classes of sampling. The optimal deterministic one
is traditionally used, and it provides an upper bound on the minimum distortion
possible. The first adaptive scheme we study is Delta sampling, which is based on
first hitting times of symmetric levels by the error process. Finally, we completely
characterize the optimal sampling scheme by recursively solving an optimal multiple
stopping problem.

3.1. Optimal deterministic sampling. Given that the initial value of the er-
ror signal is zero, we will show through induction that uniform sampling on the interval
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[0, T ] is the optimal choice of N deterministic sample times. Call the deterministic
set of sample times

D = {d1, d2, . . . , dN | 0 ≤ di ≤ T, di−1 ≤ di for i = 2, . . . , N} .

Then, the distortion takes the form

JDeter (T,N) =

∫ d1

0
E (xs − x̂s)

2ds+

∫ d2

d1

E (xs − x̂s)
2ds+ . . .+

∫ T

dN

E (xs − x̂s)
2ds.

Consider the situation of having to choose exactly one sample over the interval [T1, T2]
with the supervisor knowing the state at time T1. The best choice of the sample time
which minimizes the cost JDeter (T2 − T1, 1) is the midpoint 1

2 (T2 + T1) of the given
interval. On this basis, we propose for N > 2 that the optimal choice of N − 1
deterministic times over [T1, T2] is the uniform one:

{d1, d2, . . . dN−1} =

{

T1 + i
T2 − T1

N

∣

∣

∣
i = 1, 2, . . . , N − 1

}

.

This gives a distortion equaling 1
2N (T2 − T1)

2. Let J∗
Deter (T2 − T1, N) be the min-

imum distortion over [0, T2 − T1] using N samples generated at deterministic times.
Now, we carry out the induction step and obtain the minimum distortion over the set
of N sampling times over [T1, T2] to be

min
d1

{

∫ d1

0
(xs − x̂s)

2ds+ min
{d2,d2,...dN}

JDeter (T2 − T1 − d1, N − 1)

}

= min
d1

{

d1
2

2
+

(T2 − T1 − d1)
2

2N

}

= min
d1

{

Nd21 + d21 − 2d2 (T2 − T1) + (T2 − T1)
2

2N

}

= min
d1











(N + 1)
(

d1 − 1
(N+1) (T2 − T1)

)2
+
(

1− 1
(N+1)

)

(T2 − T1)
2

2N











=
1

2(N + 1)
(T2 − T1)

2,

the minimum being achieved for d1 = 1
N+1 (T2 − T1). This proves the assertion about

the optimality of uniform sampling among all deterministic schemes provided that
the supervisor knows the value of the state at the start time.

3.2. Optimal Delta sampling. As described before, Delta sampling is a simple
event-triggered sampling scheme which generates a new sample whenever the input
signal differs from the last sample by a prespecified threshold. Delta sampling is
really meant for infinite horizon problems as it produces intersample intervals that
are unbounded. Since we have on our hands a finite horizon problem, we will use a
time-out at the end time of the problem’s horizon. To make the most of this class of
rules, we allow the thresholds to vary with the past history of sample times. Thus
the supervisor can compute the sequence of thresholds from the record of samples
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received previously. Only the sensor can find the actual sample time since it also has
full access to the state and error signals.

More precisely, at any sampling time as well as at the start of the horizon, the
threshold for the next sampling time is chosen. This choice is allowed to depend on
the number of samples remaining as well as the amount of time left till the end of the
horizon. We set τ0 = 0 and define thresholds and sampling times times recursively.
The threshold for the ith sampling time is allowed to depend on the values of the
previous sampling times, and so it is measurable w.r.t. FRX

t . Assume that we are given
the policy for choosing causally a sequence of nonnegative thresholds {δ1, δ2, . . . , δN}.
Then for i = 1, 2, . . . , N , we can characterize the sampling times {ζ1, ζ2, . . . , ζN} as
follows:

Fδi ⊂ F (τ1,...,τi−1) if i > 1,

τi,δi = inf
{

t
∣

∣

∣
t ≥ τi−1,δi−1 ,

∣

∣xt − xτi−1

∣

∣ ≥ δi
}

,

ζi = min {τi,δi , T } .

The first threshold δ1 depends only on the length of the horizon, namely, T .
The optimal thresholds can be chosen one at a time using solutions to a nested

sequence of optimization problems each with a single threshold as its decision variable.
This is because, knowing how to choose the sequence {ζi+1, . . . , ζN} optimally, we can
obtain an optimal choice for ζi by solving over the optimization problem:

inf
δi≥0

E

[

∫ ζi

0
(xs − x̂s)

2ds+ J∗
δ (T − ζi, N − i)

]

,

where the cost function J∗
δ (T − ζi, N − i) is the minimum aggregated distortion over

[T − ζi, T ] achievable using at most N − i samples generated using thresholds for the
magnitude of the error signal. Hence, if we know how to generate the last sample
efficiently, we can inductively figure out rules governing the best thresholds for earlier
sampling times.

3.2.1. Optimal level for a single sample. These computations are carried
out in Appendices B and C. In particular, (C.1) gives the expression

Jδ (T, 1) (λ) =
T 2

2







1 +
π4

32λ2
− π2

4λ
− π

λ2

∑

k≥0

(−1)k
e−(2k+1)2λ

(2k + 1)3







,

where λ = Tπ2

8δ2 . Parametrizing in terms of λ reveals some structural information
about the solution. First, note that the length of the time horizon does not directly
affect the optimum choice of λ. The function Jδ (T, 1) has a shape that does not

depend on T . It is merely scaled by the factor T 2

2 . The behavior of the distortion as
λ is varied can be seen in Figure 3.1(b). The minimum distortion incurred turns out
to be

c1
T 2

2
= 0.3952

T 2

2
,

this being achieved by the choice δ∗ = 0.9391
√
T . As compared to deterministic

sampling, whose optimum performance is 0.5T 2

2 , we have slightly more than 20%
improvement by using the optimum thresholding scheme.
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Fig. 3.1. (a) Delta sampling. (b) Estimation distortion due to Delta sampling as a function
of the threshold used. Notice that for a fixed δ, the distortion decreases steadily as the number
of samples remaining (N) grows. The distortion, however, never reaches zero. The minimum

distortion reaches its lower limit of 0.287T2

2 .

How often does the Delta sampler actually generate a sample? To determine
that, we need to compute the probability that the estimation error signal reaches the
threshold before the end time T . Equation (C.3) provides the answer: 98%. Note
that this average sampling rate of the optimal Delta sampler is independent of the
length of the time horizon.

We have the performance of the Delta sampler when the sample budget is one.
Now we will compute the performance for larger budgets, and we will find that for
budgets larger than one, it is actually more efficient to sample at deterministic times.

3.2.2. Multiple Delta sampling. Like in the single sample case, we will show
that the expected distortion over [0, T ] given at most N samples is of the form

cN
T 2

2
.

Let τδ be the level-crossing time as before. Then, given a positive real number α,
consider the following cost:

Υ (T,α, δ)
∆
= E

[

∫ τδ∧T

0
x2
sds+ α

[

(T − τδ)
+
]2
]

.

Using the same technique as in the single sample case (precisely, the calculations
between and including (B.1), (B.3)), we get

Υ (T,α, δ) =
T 2

2
− δ2E

[

(T − τδ)
+
]

−
(

1

2
− α

)

E

[

[

(T − τδ)
+
]2
]

.

Using calculations presented in Appendices B and C we can write (C.2)

Υ (T,α, δ) =
T 2

2

{

φ(λ) +

[

1

2
− α

]

ψ(λ)

}

,
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where, λ = Tπ2

8δ2 , and we define the functions φ,ψ as follows:

φ (λ)
∆
= 1 +

π4

32λ2
− π2

4λ
− π

λ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)3

and

ψ (λ)
∆
= − 5π4

96λ2
− π2

2λ
− 2 +

16

πλ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)5
.

The choice of λ that minimizes the cost Υ can be determined by performing a grid
search for the minimum of the scalar function φ(λ) + [ 12 −α]ψ(λ). Since this sum is a

fixed function, we conclude that the minimum cost is a fixed percentage of T 2

2 exactly
as in the case of the single sample. This property of this optimization problem is what
lets us compute the optimal sequence of thresholds by induction.

Consider the distortion when N samples are generated using a Delta sampler,
with N being at least 2. If we have the optimal Delta samplers for utilizing a budget
of N − 1 or less, then the minimum distortion with a budget of N takes the form

J∗
δ (T, N) = inf

δN ≥0
E

[

∫ ζN

0
(xs − x̂s)

2ds+ J∗
delta (T − ζN , N − 1)

]

= inf
δN ≥0

E

[

∫ τδ
N

∧T

0
(xs − x̂s)

2ds+ J∗
δ

((

T − τδ
N

)+
, N − 1

)

]

.

When the budget is zero, the distortion at the supervisor is T 2

2 . When the budget
is one, the minimum distortion is a fixed fraction of T 2

2 , namely, c1
T 2

2 . Similarly, by
mathematical induction, we find the minimum distortions under higher budgets to
be smaller fractions of T 2

2 . Let the positive coefficient ck stand for the hypothetical
fraction whose product with T 2

2 is the minimum distortion J∗
δ (T, k). Continuing the

previous set of equations, we get

J∗
δ (T, N) = inf

δ
N
≥0

E

[

∫ τ
δN

∧T

0
(xs − x̂s)

2ds+ cN−1

[

(

T − τδ
N

)+
]2
]

= inf
δN ≥0

Υ
(

T, cN−1, δN

)

=
T 2

2
inf

λN= Tπ2

8δ2
N

{

φ(λN ) +

[

1

2
− cN−1

]

ψ(λN )

}

.

Because of the scale-free nature of the functions φ,ψ, we have proved that the min-
imum distortion is indeed a fixed fraction of T 2

2 . Figure 3.1(b) shows for different
values of N the graph of Jδ (T, N) as a function of λ. The last equation gives us the
following recursion for k = 1, 2, . . . , N :

ck = inf
λ

{φ(λ) + (0.5− ck−1)ψ(λ)} , ρk =
π

2
√

2λ∗k
and

λ∗k = arg inf
λ

{φ(λ) + (0.5− ck−1)ψ(λ)} , δ∗k = ρN−k+1

√

T − ζk−1.
(3.1)
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Table 3.1
Characteristics of optimal multiple Delta sampling for small values of the sample budget.

N 1 2 3 4 5

cN 0.3953 0.3471 0.3219 0.3078 0.2995
ρN 0.9391 0.8743 0.8401 0.8208 0.8094

E [ΞN ] 0.9767 1.9306 2.8622 3.7541 4.4803
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Fig. 3.2. (a) Probability that a sample is generated (Ξ) as a function of the parameter λ, which
is inversely related to the square of the threshold δ. (b) Delta sampling is shown to be ill-suited for
repeated sampling over finite horizons. The average sample usage of optimal delta sampling does not
rise monotonically with the budget and is actually counterintuitive. In fact, for any finite budget,
the average sample usage is less than six.

Now we determine the expected sampling rate of the optimal Delta sampler. Let Ξk

be the random number of samples generated before T by the Delta sampler with a
budget of k samples. Then almost surely, Ξk equals the number of threshold crossings
generated by this sampler. Clearly, we have the bounds 0 ≤ Ξk ≤ k. Also, under
optimal Delta sampling, the statistics of the sampling rate do not depend on the length
of the time interval T as long as the latter is nonzero. This gives us the recursion

E [Ξk] = 0 · P
[

τ
δ∗1

≥ T
]

+ (1 + E[Ξk−1]) · P
[

τ
δ∗1

< T
]

,(3.2)

where δ∗1 is the optimal threshold for the first sample when the budget is k. The
performance of optimal Delta sampling for small values of k are given in Table 3.1. To
understand the behavior of optimal Delta sampling when the sample budget is larger
than five, look at Figures 3.2(b) and 3.4. The minimum distortion decreases with
increasing sample budgets but it does not decay to zero. It stagnates at approximately
0.3T 2

2 no matter how large a budget is provided. The expected number of samples
does not monotonically rise with the budget. It settles at a value close to 4.5. Clearly,
Delta sampling is far from optimal over finite horizons. In fact, if the sample budget
is at least two, even deterministic sampling performs better.

In optimal Delta sampling, the sensor chooses a sequence of thresholds to be
applied on the estimation error signal. The choice of a particular threshold is made at
the time of the previous sample and is allowed to depend on the past history of sample
times. Suppose now that the sensor is allowed to modify this choice causally and
continuously at all time instants. Then we get a more general class of sampling policies
with a family of continuously varying envelopes for the estimation error signal. This
class of policies happens to contain the optimal sampling policy which achieves the
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minimum possible distortion. Next, we will obtain the optimal family of envelopes by
studying the problem of minimum distortion as an optimal multiple stopping problem.

3.3. Optimal sampling. Consider the nondecreasing sequence {τ1, τ2, . . . , τN}
with each element lying within [0, T ]. For this to be a valid sequence of sampling
times, its elements have to be stopping times w.r.t. the x-process. We will look for
the best choice of these times through the optimization

J∗ (T, N) = inf
{τ1,...,τN}

E

[

∫ τ1

0
xs

2ds+

∫ τ2

τ1

(xs − x̂τ1)
2ds+ · · ·+

∫ T

τN

(xs − x̂τ
N
)2ds

]

.

The solution to this optimization parallels the developments for Delta sampling. In
particular, the minimum distortion obtained by optimal sampling will turn out to be
a fraction of T 2

2 . We will recursively obtain optimal sampling policies by utilizing the
solution to the following optimal (single) stopping problem concerning the objective
function χ:

inf
τ

χ (T,β, τ) = inf
τ

E

[
∫ τ

0
xs

2ds+
β

2
(T − τ)2

]

,

where τ is a stopping time w.r.t. the x-process that lies in the interval [0, T ] and β
is a positive real number. We reduce this stopping problem into one having just a
terminal cost using the calculations between and including (B.1), (B.3),

χ (T,β, τ) =
T 2

2
− E

[

2x2
τ (T − τ) + (1− β) [(T − τ)]2

]

,

which can be minimized by solving the following optimal stopping problem:

ess inf
τ

E

[

2x2
τ (T − τ) + (1− β) [(T − τ)]2

]

.

This stopping problem can be solved explicitly by determining its Snell envelope pro-
cess. We look for a C2 function g (x, t) which satisfies the free boundary PDE system:

1

2
gxx + gt = 0 and g (x, t) ≥ 2x2 (T − t) + (1− β) (T − t)2.(3.3)

Given a solution g, consider the process

St
∆
= g (xt, t) .

This is in fact the Snell envelope. To see that, fix a deterministic time t within [0, T ]
and verify using Itô’s formula that

E [Sτ (xτ )|xt]− St = E

[
∫ τ

t
dSt|xt

]

= 0

for any stopping time τ ∈ [t, T ], and hence,

St = E [Sτ |xt] ≥ E
[

x2
τ (1− τ)|τ ≥ t, xt

]

.

The last equation confirms that St is indeed the Snell envelope. Consider the following
solution to the free-boundary PDE system:

g(x, t) = A

{

(T − t)2 + 2x2 (T − t) +
x4

3

}

.
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Fig. 3.3. Optimal envelopes for the estimation error when the signal is a Brownian motion.

where A is a constant chosen such that g(x, t)− 2x2(T − t)− (1− β)(T − t)2 becomes
a perfect square. The only possible value for A then is

(5 + β)−
√

(5 + β)2 − 24

4
.

Then the first time when the reward equals or exceeds the Snell envelope is optimal

τ∗ = inf
t

{

t
∣

∣St ≤ 2x2
t (T − t) + (1− β)(T − t)2

}

,

= inf
t

{

t

∣

∣

∣

∣

∣

x2
t ≥

√

3(A− 1 + β)

A
(T − t)

}

and the corresponding minimum distortion becomes

χ∗ = (1−A)
T 2

2
.

We now examine the problem of choosing optimally a single sample.

3.3.1. Optimal choice of a single sample. The minimum distortion due to
using exactly one sample is

J∗ (T, 1) = inf
τ1

E

[

∫ τ1

0
xs

2ds+

∫ T

τ1

(xs − x̂τ1)
2ds

]

= inf
τ1

E

[
∫ τ1

0
xs

2ds+
1

2
(T − τ1)

2ds

]

= inf
τ1

χ (T, 1, τ1) .

We have thus reduced the optimization problem to one whose solution we already
know. Hence, we have

τ∗1 = inf
t≥0

{

t
∣

∣

∣
xt

2 ≥
√
3 (T − t)

}

and J∗ (T, 1) =
(√

3− 1
) T 2

2
.
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Fig. 3.4. The minimum distortions of the three sampling methods for the Brownian motion
process. As the budget grows, so does the relative efficiency of optimal sampling over periodic
sampling, and this efficiency aymptotically reaches a limit of 67%.

3.3.2. Optimal multiple sampling. We obtain the family of policies for op-
timal multiple sampling by mathematical induction. Suppose that the minimum dis-
tortions due to using no more than k − 1 samples over [0, T ] is given by the sequence

of values {θ1 T 2

2 , . . . , θk−1
T 2

2 }. Then consider the minimal distortion due to using up
to k samples:

J∗ (T, k) = inf
τ1

E

[
∫ τ1

0
xs

2ds+ J∗ (T − τ1, k − 1)

]

= inf
τ1

E

[
∫ τ1

0
xs

2ds+
θk−1

2
(T − τ1)

2ds

]

= inf
τ1

χ (T, θk−1, τ1) .

This proves the hypothesis that the minimum distortions for increasing values of the
sample budget form a sequence with the form {θk T 2

2 }
k≥1

. The last equation also
provides us with the recursion which is started with θ0 = 1:

θk = 1−
(5 + θk−1)−

√

(5 + θk−1)
2 − 24

4
,

γk =

√

3(θk−1 − θk)

1− θk
,

τ∗k = inf
t≥τk

{

t : (xt − xτk)
2 ≥ γN−k+1T − t

}

.

(3.4)

3.4. Comparisons. In Figure 3.4 we have a comparison of the estimation dis-
tortions incurred by the three sampling strategies. The remarkable news is that Delta
sampling which is optimal for the infinite horizon version of the estimation problem
is easily beaten by the best deterministic sampling policy. There is something in-
trinsic to Delta sampling which makes it ill-suited for finite horizon problems with
hard budget limits. This also means that it is not safe to settle for “natural” event-
triggered sampling policies such as Delta sampling. Also, notice that the relative gain
of optimal sampling over periodic sampling consistently grows to about 67%.
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4. Sampling the Ornstein–Uhlenbeck process. Now we turn to the case
when the signal is an Ornstein–Uhlenbeck process,

(4.1) dxt = axtdt+ dWt, t ∈ [0, T ],

with x0 = 0 and Wt being a standard Brownian motion. Again, the sampling times
S = {τ1, . . . , τN} have to be an increasing sequence of stopping times with respect to
the x-process. They also have to lie within the interval [0, T ]. Based on the samples
and the sample times, the supervisor maintains an estimate waveform x̂t given by

(4.2) x̂t =











0 if 0 ≤ t < τ1,

xτie
a(t−τi) if τi ≤ t < τi+1 ≤ τN ,

xτN e
a(t−τN ) if τN ≤ t ≤ T.

The quality of this estimate is measured by the aggregate squared error distortion:

J∗ (T, N) = E

[

∫ T

0
(xs − x̂s)

2ds

]

.

4.1. Optimal deterministic sampling. Just like in the case of Brownian mo-
tion, we can show through mathematical induction that uniform sampling on the
interval [0, T ] is the optimal deterministic choice of N samples. For the induction
step, we assume that the optimal choice of N − 1 deterministic samples over [T1, T2]
is the uniform one:

{d1, d2, . . . dN} =

{

T1 + i
T2 − T1

N + 1

∣

∣

∣
i = 1, 2, . . . , N

}

.

Then, the corresponding minimum distortion becomes

(N + 1)
e2a

T2−T1
N+1 − 1

4a2
− 1

2a
(T2 − T1) .

4.2. Optimal Delta sampling. We do not have an analytical characterization
of the performance of Delta sampling. Let us first address the single sample case.
The performance measure then takes the form

Jδ (T, 1) = E

[

∫ ζ1

0
x2
t +

∫ T

ζ1

(xt − x̂t)
2 dt

]

= E

[

∫ T

0
x2
t − 2

∫ T

ζ1

xtx̂t dt+

∫ T

ζ1

(x̂t)
2 dt

]

.

Now notice that the second term can be written as

E

[

∫ T

ζ1

xtx̂t dt

]

= E

[

∫ T

ζ1

E[xt|Fζ1 ]x̂t dt

]

= E

[

∫ T

ζ1

(x̂t)
2 dt

]

,

where we have used the strong Markov property of xt, and that for t > ζ1 we have
E[xt|Fζ1 ] = xζe−a(t−ζ1) = x̂t. Because of this observation the performance measure
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takes the form

Jδ (T, 1) = E

[

∫ T

0
x2
t dt−

∫ T

ζ1

(x̂t)
2 dt

]

=
e2aT − 1− 2aT

4a2
− E

[

x2
ζ1

e2a(T−ζ1) − 1

2a

]

= T 2

{

e2aT − 1− 2aT

4(aT )2
− E

[

x2
ζ1

T

e2(aT )(1−ζ1/T ) − 1

2(aT )

]}

= T 2

{

e−2ā − 1 + 2ā

4ā2
− E

[

−x̄2
ζ̄1

e2ā(1−ζ̄1) − 1

2ā

]}

,

where

(4.3) t̄ =
t

T
; ā = aT ; x̄t̄ =

x t
T√
T
.

We have x̄ satisfying the following SDE:

dx̄t̄ = −āx̄t̄dt̄+ dwt̄.

This suggests that without loss of generality, we can limit ourselves to the normalized
case T = 1 since the case T %= 1 can be reduced to the normalized one by using the
transformations in (4.3). In fact, we can solve the single sampling problem on [0, 1]
to minimize

Jδ (1, 1) =

{

e−2a − 1 + 2a

4a2
− E

[

−x2
ζ1

e2a(1−ζ1) − 1

2a

]}

.(4.4)

We carry over the definitions for threshold sampling times from section 3.2. We do
not have series expansions like for the case of the Brownian motion process. Instead
we have a computational procedure that involves solving a PDE initial and boundary
value problem [20]. We have a nested sequence of optimization problems, the choice
at each stage being the nonzero level δi. For N = 1, the distortion corresponding to
a chosen δ1 is given by

e2a − 1− 2a

4a2
− δ21

2a
E

[

e2a(1−ζ1) − 1
]

=
e2a − 1− 2a

4a2
− δ21

2a

{

e2a
(

1 + 2aU1(0, 0)
)

− 1
}

,

where the function U1(x, t) defined on [−δ1, δ1]× [0, 1] satisfies the PDE

1

2
U1
xx + axU1

x + U1
t + e−2at = 0,

along with the boundary and initial conditions
{

U1(−δ1, t) = U1(δ1, t) = 0 for t ∈ [0, 1],

U1(x, 1) = 0 for x ∈ [−δ1, δ1].

We choose the optimal δ1 by computing the resultant distortion for increasing values
of δ1 and stopping when the cost stops decreasing and starts increasing. Note that the
solution U(0, t) to the PDE also furnishes us with the performance of the δ1-triggered
sampling over [t, 1]. We will use this to solve the multiple sampling problem.
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Let the optimal policy of choosing N levels for sampling over [T1, 1] be given
where 0 ≤ T1 ≤ 1. Let the resulting distortion also be known as a function of T1.
Let this known distortion over [T1, 1] given N level-triggered samples be denoted
J∗
δ (1− T1, N). Then, the N + 1 sampling problem can be solved as follows. Let

UN+1(x, t) satisfy the PDE

1

2
UN+1
xx + axUN+1

x + UN+1
t = 0,

along with the boundary and initial conditions
{

UN+1(−δ1, t) = UN+1(δ1, t) = J∗
δ (1− t, N) for t ∈ [0, 1],

UN+1(x, 1) = 0 for x ∈ [−δ1, δ1].

Then the distortion is given by

e2a − 1− 2a

4a2
− δ21

2a
E

[

e2a(1−ζ1) − 1 +
e2a(1−ζ1) − 1

4a2
− 1− ζ1

2a

]

+ E [J∗
δ (1− ζ1, N)]

=
e2a − 1

4a2
− 1

2a
− δ21

2a

{

e2a
(

1 + 2aU1(0, 0)
)

− 1
}

+ UN+1(0, 0).

We choose the optimal δ1 by computing the resultant distortion for increasing values
of δ1 and stopping when the distortion stops decreasing.

4.3. Optimal sampling. We do not have analytic expressions for the minimum
distortion like in the Brownian motion case. We have a numerical computation of the
minimum distortion by finely discretizing time and solving the discrete-time optimal
stopping problems.

By discretizing time, we get random variables x1, . . . , xM that satisfy the AR(1)
model below. For 1 ≤ n ≤ M with h = T/(M + 1),

xn = eahxn−1 + wn, wn ∼ N
(

0,
e2ah − 1

2a

)

; 1 ≤ n ≤ M.

The noise sequence {wn} is independently and identically distributed (i.i.d.) and Gaus-
sian.

Sampling exactly once in discrete time means selecting a sample xν from the set of
M +1 sequentially available random variables x0, . . . , xM with the help of a stopping
time ν ∈ {0, 1, . . . ,M}. We can define the optimum cost to go which can be analyzed
as follows. For n = M,M − 1, . . . , 0, using (4.4),

V 1
n (x) = sup

n≤ν≤M
E

[

x2
ν
e2ah(M−ν) − 1

2a

∣

∣

∣
xn = x

]

= max

{

x2 e
2ah(M−n) − 1

2a
, E[V 1

n+1(xn+1)|xn = x]

}

.

The above equation provides a (backward) recurrence relation for the computation of
the single sampling value function V 1

n (x). Notice that for values of x for which the
left-hand side exceeds the right-hand side we stop and sample; otherwise we continue
to the next time instant. We can prove by induction that the optimum policy is a time-
varying threshold one. Specifically, for every time n there exists a threshold λn such
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(a) A stable case
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(b) A stable case
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(c) A stable case
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(d) An unstable case

Fig. 4.1. The minimum distortions of the three sampling methods for the Ornstein–Uhlenbeck
process. In the stable regime, for small budgets, Delta sampling is more efficient than deterministic
sampling. In the unstable regime, deterministic sampling always beats Delta sampling.

that if |xn| ≥ λn we sample; otherwise we go to the next time instant. The numerical
solution of the recursion presents no special difficulty if a ≤ 1. For a > 1, we need
to use careful numerical integration schemes in order to minimize the computational
errors [20]. If V 1

n (x) is sampled in x, then this function is represented as a vector.
In the same way we can see that the conditional expectation is reduced to a simple
matrix-vector product. Using this idea we can compute numerically the evolution of
the threshold λt with time. The minimum expected distortion for this single sampling
problem is

e2aT − 1− 2aT

4a2
− V 1

0 (0).

For obtaining the solution to the N +1-sampling problem, we use the solution to
the N -sampling problem. For n = M,M − 1, . . . 0,

V N+1
n (x) = sup

n≤ν≤M
E

[

V N
ν (0) + x2

ν
e2ah(M−ν) − 1

2a

∣

∣

∣
xn = x

]

= max

{

V N
n (0) + x2 e

2ah(M−n) − 1

2a
, V N

n+1(0) + E
[

V 1
n+1(xn+1)|xn = x

]

}

.

4.4. Comparisons. Figure 4.1 shows the result of the numerical computations
for a few stable plants and a single unstable plant. Again, Delta sampling is not



24 M. RABI, G. V. MOUSTAKIDES, AND J. S. BARAS

competitive. But in the stable cases, it provides a distortion lower than periodic
sampling, when the sample budget is small.

5. Summary and extensions. We have set up the problem of efficient sam-
pling as an optimal sequential sampling problem. We conjecture that the estimator
under optimal sampling is the simple least-squares one under deterministic sampling.
By fixing the estimate to be the same as the MMSE estimate under deterministic
sampling, we reduce the optimization into a tractable stopping time problem. Our
conjecture, of course, needs to be proved or disproved.

We have furnished methods to obtain good sampling policies for the finite horizon
state estimation problem. When the signal is a Brownian motion, we have analytic
solutions. When the signal is an Ornstein–Uhlenbeck process, we have provided com-
putational recipes to determine the best sampling policies and their performances.
In both cases, Delta sampling performs poorly with its distortion staying boundedly
away from zero even as the sample budget increases to infinity. This means that
the designer cannot just settle for “natural” event-triggered schemes without further
investigation. In particular, a scheme optimal in the infinite horizon may perform
badly on finite horizons.

The approach adopted in this paper leads us to also consider some sampling and
filtering problems with multiple sensors. These can possibly be solved in the same way
as the single sensor problem. The case where the samples are not reliably transmitted
but can be lost in transmission is computationally more involved. There, the relative
performances of the three sampling strategies is unknown. However, in principle,
the best policies and their performances can be computed using nested optimization
routines like we have used in this paper.

Another set of unanswered questions involves the performance of these sampling
policies when the actual objective is not filtering but control or signal detection based
on the samples. It will be very useful to know the extent to which the overall per-
formance suffers when we minimize filtering error rather than the true cost. The
communication constraint we treated in this paper was a hard limit on the number
of allowed samples. Instead, we could use a soft constraint: a limit on the expected
number of samples. We could also study the effect of mandatory minimum intervals
between successive sampling times. Extension to nonlinear systems is needed, as are
extensions to the case of partial observations at the sensor. One could follow the
attack line sketched at the end of section 2.

Appendix A. Optimal sampling with nonstandard MMSE estimates.
The conjecture expressed by (2.3) conforms to our intuition about scalar Gaussian
diffusions. Here, we give an example of a well-behaved and widely used stochastic
process for which the optimal sampling policy leads to an MMSE estimate which is
different from that under deterministic sampling. Its increments do not have symmet-
ric PDFs. For convenience, we consider an infinite horizon repeated sampling problem
where the communication constraint is a limit on the average sampling rate.

Choose the state process to be the Poisson counter Nt, a continuous time Markov
chain. This is a nondecreasing process which starts at zero and takes integer values.
Its sample paths are piecewise constant and RCLL. The sequence of times between
successive jumps is i.i.d., with an exponential distribution of parameter λ.

Under any deterministic sampling rule, the MMSE estimate is piecewise linear
with slope λ and has the form

N̂t = Ndlatest + λ (t− dlatest) ,(A.1)
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where dlatest is the latest sampling instant as of time t. The optimal sampling policy
leads to an MMSE estimate which is different.

Stipulate that the constraint on the average sampling rate is greater than or equal
to λ the parameter of the Poisson process. Consider the following sampling policy
whose MMSE estimate is of the zero-order hold type:

N̂t = Nτlatest ,(A.2)






τ0 = 0,
τi+1 = inf {t |t > τi, Nt > Nτi } ∀i ≥ 0,

τlatest = max {τi |τi ≤ t} .
(A.3)

This sampling rule with its MMSE estimate N̂t leads to an error signal which is
identically zero. We also have that

E [τi+1 − τi] =
1

λ
∀ i ≥ 0,

and so the communication constraint is met. On the other hand, the conventional
MMSE estimate (A.1) would result in a nonzero average squared error distortion.

Suppose now that the distortion criterion is not the average value of the squared
error but of the lexicographic distance:

D
(

Nt, N̂t

)

=

{

0 if Nt = N̂t,

1 otherwise.

Then, under deterministic sampling, the maximum likelihood estimate

N̄t = Ndlatest +
⌊

λ (t− dlatest)
⌋

minimizes the average lexicographic distortion which will be nonzero. However, the
adaptive policy (A.3) provides zero error reconstruction if the allowed average sam-
pling rate is at least λ.

Appendix B. Threshold sampling once. We drop the subscript N for the
terminal sample time

τδ = inf
t
{t : |xt − x̂t| = δ}

and its corresponding threshold δ. Here, δ is a threshold independent of the data
acquired after time 0. Our goal is to compute the estimation distortion for any non-
negative choice of the threshold and then select the one that minimizes the distortion:

Jδ (T, 1) (δ) = E

[

∫ τδ∧T

0
x2
sds+

∫ T

τδ∧T
(xs − xτδ∧T )

2ds

]

.
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By using iterated expectations on the second term, we get

Jδ (T, 1) (δ) = E

[

∫ τδ∧T

0
x2
sds+ E

[

∫ T

τδ∧T
(xs − xτδ∧T )

2ds

∣

∣

∣

∣

∣

τδ ∧ T , xτδ∧T

]]

= E

[

∫ τδ∧T

0
x2
sds+

∫ T

τδ∧T
E

[

(xs − xτδ∧T )
2
∣

∣

∣
τδ ∧ T , xτδ∧T

]

ds

]

= E

[

∫ τδ∧T

0
x2
sds+

∫ T

τδ∧T
(s− τδ ∧ T )ds

]

= E

[

∫ τδ∧T

0
x2
sds+

1

2

[

(T − τδ)
+
]2
]

.(B.1)

We have thus reduced the distortion measure to a standard form with a running cost
and a terminal cost. We will now take some further steps and reduce one with a
terminal part alone. Notice that

d
[

(T − t) x2
t

]

= −x2
tdt+ 2 (T − t)xtdxt + (T − t) dt,

which leads to the following representation for the running cost term:

E

[

∫ τδ∧T

0
x2
sds

]

= E

[

(T − τδ ∧ T )x2
τδ∧T +

T 2

2
− 1

2
(T − τδ ∧ T )2

]

=
T 2

2
− E

[

x2
τδ∧T (T − τδ)

+ +
1

2

[

(T − τδ)
+
]2
]

(B.2)

=
T 2

2
− E

[

δ2(T − τδ)
+ +

1

2

[

(T − τδ)
+
]2
]

.

Note that (B.2) is valid even if we replace τδ with a random time that is a stopping
time w.r.t. the x-process. Thus, the cost (B.1) becomes

Jδ (T, 1) (δ) =
T 2

2
− δ2E

[

(T − τδ)
+
]

.(B.3)

If we can describe the dependence of the expected residual time E [(T − τδ)
+] on the

threshold δ, then we can parametrize the cost purely in terms of δ. Had we known the
PDF of τδ the computation of the expectation of the difference (T − τδ)+ would have
been easy. Unfortunately the PDF of the hitting time τδ does not have a closed-form
solution. There exists a series representation [17, p. 99] which is

fτδ(t) = δ

√

2

πt3

∞
∑

k=−∞
(4k + 1)e−

(4k+1)2δ2

2t .

This series is not integrable and so it cannot meet our needs. Instead we compute the
moment generating function of (T−τδ)+ and thereby compute the expected distortion.

Appendix C. Statistics of an exit time curtailed by a time-out T. We
start by deriving the moment generating function of the first hitting time τδ:

τδ = inf
t
{t | x0 − x̂0 = w0, |xt − x̂t| = δ } .
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Lemma C.1. If τδ is the first hitting time of |xt − x̂t| at the threshold δ, then

E[e−sτδ ] =
cosh(w0

√
2s)

cosh(δ
√
2s)

= Fτ (s).

Proof. Consider the C2 function h(w, t) = e−st[1− cosh(
√
2sw)/ cosh(

√
2sδ)] and

apply the Itô calculus on h (wt, t). We can then conclude that

E [h (wτδ , τδ)]− h(w0, 0) = E

[
∫ τδ

0
[ht(wt, t) + 0.5hww(wt, t)] dt

]

= E[e−sτδ ]− 1,

from which we immediately obtain the desired relation because of the boundary con-
dition: h(wτδ , τδ) = 0.

Lemma C.1 suggests that the PDF of the random variable τδ can be computed
as fτ (t) = L−1(Fτ (s)), that is, the inverse Laplace transform of Fτ (s). Invoking the
initial condition w0 = 0, we can then write

E[(T − τδ)
+] =

∫ T

0
(T − t)fτ (t)dt =

∫ T

0
(T − t)

[

1

2πj

∮

Fτ (s)e
st ds

]

dt

=
1

2πj

∮

Fτ (s)

[

∫ T

0
(T − t)est dt

]

ds

=
1

2πj

∮

esT − 1− sT

s2 cosh(δ
√
2s)

ds,

this contour integral being evaluated along a path that encloses the whole left half of
the complex plane.

In order to compute this line integral over the complex plane, we need to find the
poles of the integrand and then apply the residue theorem. Notice first that s = 0 is
not a pole since the numerator has a double zero at zero. The only poles come from
the zeros of the function cosh(δ

√
2s). Since cosh(x) = cos(jx) we conclude that the

zeros of cosh(δ
√
2s) which are also the poles of the integrand are

sk = −(2k + 1)2
π2

8δ2
, k = 0, 1, 2, . . . ,

and they all belong to the negative half plane. This of course implies that they all
contribute to the integral. We can now apply the residue theorem to conclude that

E[(T − τ)+] =
1

2πj

∮

esT − 1− sT

s2 cosh(δ
√
2s)

ds =
∑

k≥0

eskT − 1− skT

s2k
lim
s→sk

s− sk
cosh(δ

√
2s)

.

In order to find the last limit we can assume that s = sk(1 + ε) and let ε → 0. Then
we can show that

lim
s→sk

s− sk
cosh(δ

√
2s)

= (−1)(k+1) 4sk
(2k + 1)π

.

Using this expression, the performance measure of the stopping time τδ takes the
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following form:

Jδ (T, 1) =
T 2

2
− δ2E

[

(T − τδ)
+
]

=
T 2

2







1− 8δ2

πT

∑

k≥0

(−1)(k+1) 1

2k + 1

eskT − 1− skT

skT







=
T 2

2
φ(λ),

where with the change of variables λ = Tπ2

8δ2 , we have

φ(λ)
∆
= 1− π

λ2

∑

k≥0

(−1)k
e−(2k+1)2λ − 1 + (2k + 1)2λ

(2k + 1)3
,

= 1− π

λ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)3
+

π

λ2

∑

k≥0

(−1)k

(2k + 1)3
− π

λ

∑

k≥0

(−1)k

2k + 1
.

The final two series in the last equation can be summed explicitly. To do so, we adopt
a summation technique described in the book of Aigner and Ziegler [1]. Consider

∫ 1

0

dx

1 + x2
=

∫ 1

0





∑

k≥0

(−1)kx2k



 dx =
∑

k≥0

(−1)k
∫ 1

0
x2kdx =

∑

k≥0

(−1)k

2k + 1
.

By an easy evaluation of the definite integral we started with, we get a sum of π
4

for the series
∑

k≥0
(−1)k

2k+1 ; this result is useful because the series converges slowly.
Proceeding along similar lines [6] and working with the multiple integral

∫

· · ·
∫

A

dx1 · · · dxn

1 + (x1x2 · · ·xn)
2

over the unit hypercube A = [0, 1]n in Rn, we get an explicit expression for the sum
∑

k≥0
(−1)k

(2k+1)n whenever n is an odd number. In particular,

∑

k≥0

(−1)k

(2k + 1)3
=
π3

32
;

∑

k≥0

(−1)k

(2k + 1)5
=

5π5

1536
.

This reduces the distortion to

Jδ (T, 1) =
T 2

2
φ(λ) =

T 2

2







1 +
π4

32λ2
− π2

4λ
− π

λ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)3







,

(C.1)

where λ = Tπ2

8δ2 .
The estimation distortion due to using N + 1 samples when N is nonnegative is

given through the recursion

Jδ (T, N + 1) =
T 2

2
− δ2E

[

(T − τδ1)
+
]

−
(

1

2
− Jδ (T, N)

)

E

[

[

(T − τδ1)
+
]2
]

.
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To use this we need to know the statistics of the first sample time τδ1 and how this
time determines the average distortion incurred by the remaining samples over the
remainder of the horizon. Regardless of actual budget, Jδ takes the generic form

Υ (T,α, δ)
∆
=

T 2

2
− δ2E

[

(T − τδ)
+
]

−
(

1

2
− α

)

E

[

[

(T − τδ)
+
]2
]

,

where α is positive but no greater than 0.5. This requires an evaluation of the second
moment: E[[(T − τδ)

+]
2
]. We can calcuate it like we did the first moment:

E

[

[

(T − τ)+
]2
]

=
1

πj

∮

esT − 1− sT − 1
2s

2T 2

s3 cosh
(

δ
√
2s
) ds.

This gives the expression for the cost Υ (T,α, δ)

Υ (T,α, δ) =
T 2

2

{

φ(λ) +

[

1

2
− α

]

ψ(λ)

}

,

where λ = Tπ2

8δ2 , and we define functions φ,ψ with φ being the same as it was earlier
in appendix:

φ (λ)
∆
= 1− π

λ2

∑

k≥0

(−1)k
e−(2k+1)2λ − 1 + (2k + 1)2λ

(2k + 1)3

= 1− π

λ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)3
+

π

λ2

∑

k≥0

(−1)k

(2k + 1)3
− π

λ

∑

k≥0

(−1)k

2k + 1

and

ψ (λ)
∆
=

16

πλ2

∑

k≥0

(−1)k
e−(2k+1)2λ − 1 + (2k + 1)2λ− 0.5(2k + 1)4λ2

(2k + 1)5

=
16

πλ2

∑

k≥0

(−1)k
(

e−(2k+1)2λ − 1
)

(2k + 1)5
+

16

πλ

∑

k≥0

(−1)k

(2k + 1)3
− 8

π

∑

k≥0

(−1)k

2k + 1
.

After replacing the summable series with their sums, the distortion due to multiple
samples based on thresholds reduces to the boxed expression below. With λ = Tπ2

8δ2 ,

Jδ (T, N + 1) =
T 2

2







1 +
π4

32λ2
− π2

4λ
− π

λ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)3

+
(

0.5− Jδ (T, N)
)





−5π4

96λ2
− π2

2λ
− 2

+
16

πλ2

∑

k≥0

(−1)ke−(2k+1)2λ

(2k + 1)5











.

(C.2)
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To characterize the statistics of sample budget utilization by multiple Delta sam-
pling, we need to find the probabilities of threshold crossings before the time-out T .
Given a budget of N samples, let ΞN be the random number of samples generated
under any timescale-free multiple Delta sampling scheme. Then we have

E[ΞN ] = 0 · P
[

τδ1 ≥ T
]

+ (1 + E[ΞN−1]) · P
[

τδ1 < T
]

,

= (1 + E[ΞN−1]) · P
[

τδ1 < T
]

,

where δ1 is the threshold for the first sample when the budget is N . As before, we
use the moment generating function of the hitting time to obtain

E [Ξ1] = E

[

1{τδ1>T}
]

=
1

πj

∮

esT − 1

s · cosh
(

δ
√
2s
) ds.

With the notation λ = Tπ2

8δ2
1

, and evaluating this complex line integral as in previous
cases, we obtain

E [Ξ1] = 1− 4

π

∑

k≥0

(−1)k
e−(2k+1)2λ

2k + 1
.(C.3)
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