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We analyze and solve various problems of security,
information assurance and trust in dynamic wireless
networks. These include detection and defense against
attacks, detection of propagating viruses, evaluation of
intrusion systems, attacks at the physical, MAC and
routing protocols, trust establishment-dynamics-
management. We demonstrate persistently that systems
and control models and methodologies provide new and
powerful techniques to analyze these problems. We
describe the use of distributed change detection
methods and algorithms for intrusion detection and
the use of non-cooperative games for the detection and
defense against attacks at all layers. We demonstrate
how Bayesian decision theory can be used to evaluate
intrusion detection systems and we resolve some key
problems in this area. We use game theoretic methods
again 1o develop robust protocols against attacks,
including Byzantine ones. We provide an in-depth
investigation of trust establishment and computation
in such networks. We describe various methods for
distributed trust evaluation and the associated trust
(and mistrust) ‘spreading’ dynamics. We investigate
rules and policies that establish ‘trust-connected’ net-
works using only local interactions, and find the
parameters (e.g. topology type) that speed up or slow
down this transition. We describe and explain the phase
transition phenomena that we have found in these
evolutions. We model the interactions among agents as
cooperative games and show that trust can encourage
agents to collaborate. This leads us to a fundamental
analytical technique, constrained coalitional games,

*Correspondence 10: John S. Baras, E-mail: baras@isr.umd.edu

that can be used to evaluate tradeoffs in collaborative
networks in various areas: communications, sensors,
economics, sociology, biology. We also describe a
model for trust evaluation that uses pairwise iterated
graph games between the agents to create a ‘trust
reputation’ with evolution coupled to the game
dynamics. Finally we present a new modeling frame-
work for trust metric evaluation as linear iterations
over ordered semirings. This allows us to formulate
problems of resilience of trust metrics and trust
evaluation to attacks.

Keywords: Autonomic networks; wireless; security;
trust; intrusion detection; dynamic games; change
detection; semirings

1. Introduction

The proliferation of networked devices and applica-
tions, integrates information technology into our
everyday environments. Mobile wireless networks
have become the largest component for ‘last mile’
connections to the global Internet, with the number of
connected wireless end-users and devices increasing
exponentially. The emerging broadband mobile wire-
less infrastructures (BMWI) are increasingly affecting
all aspects of quality of life and work [7]. Indeed
BMWTI applications include e-commerce, e-govern-
ment, e-health, e-education, universal service pro-
visioning, pervasive computing and PDAs, sensor
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networks, connectivity with  cars-ships-trains-
airplanes, intelligent transportation systems, human
health monitoring, health care delivery and manage-
ment, wireless vehicle networks, disaster relief,
homeland security, intelligent buildings. These vast
application domains and dramatic changes create
unique challenges for network design, management
and control. For example an intensive effort has been
initiated recently by the USA NSF to re-design the
Internet [62].

The traditional centralized server-based manage-
ment can no longer satisfy the requirements of next
generation networks, and new concepts of network
structure and management have been proposed. For
instance, mobile ad hoc networks (MANETS) [43] aim
to provide wireless network services without relying
on any infrastructure. The wireless mesh networks,
which have been implemented by various groups
[3,31), are essentially MANETS over a 802.11 wireless
LAN, which can be set up with almost ‘zero-cost’ in
highly mobile environments. Another example is peer-
to-peer (P2P) networks [38,78], where a large number
of data are shared among millions of network users.
All the aforementioned new types of networks share
a common characteristic: they are distributed and
self-organized, thus they are sometimes called
autonomous/autonomic networks [1] in the literature.
Our fundamental view is that such networks and their
design, performance evaluation and operation can be
best understood as autonomous, distributed, con-
trolled dynamical systems.

An autonomic network is one that is distributed
and mostly asynchronous, self-configuring and self-
protecting. Such a network requires minimal admin-
istration, which mostly only involves policy-level
management. All entities in autonomic networks
participate in network control through individual
interactions. To achieve desired network-management
goals under such ‘anarchy’ is not an easy task.

Autonomous networked systems have been studied
in various scientific and engineering fields: in colla-
borative robotics and networked control [2,45,64]
with the recent intensive efforts in this area by the
systems and control community; in biological systems,
where swarms of bacteria, insects and animals yield
sophisticated collective behaviors based on simple
individual interactions [14,37]; in physics, where a
group of particles interact with their neighbors to
achieve certain macroscopic properties, c.f. magneti-
zation [63]; in human societies, where sociologists
have modeled human interactions and societal struc-
tures evolution using iterated games [32]; in economics
where economists have analyzed coalitions and net-
work formations using again extensions of iterated
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games [32,75]. Thus, the models and methods pre-
sented here have wide applicability.

Security, authentication and trust are critical con-
cepts for any network. Indeed the system model we
currently and rather loosely refer to as a ‘network’
represents in an exemplary way the fundamental
design dilemma for such systems: namely the tradeoff
between the benefit of collaboration by the nodes
(or agents) vs. the cost of (or constraints for) such
collaboration. Security, authentication and trust are
fundamental for the creation, maintenance and
operation of any network. Yet, if their enforcement
and monitoring come to an extreme, the benefits of
the networked paradigm decrease and may be elimi-
nated all together. This is the main reason for selecting
the topic of security and trust in autonomic networks
for this paper. As we recently emphasized in [7],
security and trust are absolutely critical for the many
wonderful and ubiquitous applications and systems
that wireless network technologies promise. Simply
put ‘failure to address them will “kill” markets and the
current momentum’ [7). Thus, on one hand the results
and methods described here are important and inno-
vative in their own right (i.e. for network security,
information assurance and trust for wireless auto-
nomic networks), but even more importantly they
describe a circle of ideas and methods that have much
wider applicability for autonomous networks.

Network security addresses such problems as
detection of misbehaving agents, detection and clas-
sification of attacks by malicious agents, development
of defensive and restorative strategies against attacks,
development of network protocols and algorithms
resilient to attacks [4,50,73,76]). From a systems and
control perspective these problems are closely related
to failure detection and classification, design for
robust performance, and dynamic games between the
attackers and the controllers (defenders) of the net-
worked system. The models and performance
requirements are substantially more complex than
traditional systems control. Recently [40], network
security has been correctly identified as part of net-
work control and management. Thus, network
security has been recognized as a managed quality
metric, and this brings the entire subject much closer
to dynamic, measurement based, feedback control.

Trust is important and critical for network security.
It integrates with several components of network
management, such as risk management, access control
and authentication. Trust management is to collect,
analyze and present trust-related evidence and to
make assessments and decisions regarding trust rela-
tionships between entities in a network [13]. By ana-
lyzing, trust evaluation rules, such as local voting, we
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study how the ‘trustworthiness’ of the whole network
evolves with time. Trust evaluation is identified as an
iterated dynamic process (deterministic or stochastic);
indeed a dynamic system on a time varying graph. The
convergence of this process, its steady state and the
speed of convergence are investigated. The dynamics
and iterations involved in some simple cases are
surprisingly similar to certain iterations that have
created substantial excitement in the systems and
controls community recently [2,45,64], in relation to
collaborative robotics, swarms and formation control.
But in addition here they involve substantial new
extensions, in an exciting mixture of algebraic, statis-
tical and dynamical systems methods and optimiza-
tion. Some of our results are surprising, such as the
discovery of phase transition phenomena, and the
close relationship to recent advances in the statistical
physics of spin-glasses [63].

Trust is interpreted as a set of relations among
entities participating in network activities [9]. Trust
establishment and maintenance in distributed and
resource-constrained networks, such as mobile ad hoc
networks (MANETs) [18,42], sensor networks and
ubiquitous computing systems, is considerably more
difficult [9] than in traditional hierarchical archi-
tectures, such as the Internet and wireless LANs cen-
tered on base stations and access points. In traditional
networks, such as Internet, sources of trust evidence
are centralized control servers, such as trusted third
parties (TTPs) and authentication servers (ASs). Those
servers are trusted and available all the time. In con-
trast, autonomic networks [25] have neither fixed
infrastructures, nor centralized control servers. In
these networks, the sources of trust evidence are peers,
i.e. the entities that form the network. To manage trust
in a distributed way has several advantages. Because of
locality, it saves network resources (power, bandwidth,
computation, etc.). It avoids the single point of failure
problem as well.

Even in the conventional Internet, people have
gradually realized the importance of distributed trust
management as more and more people rely on net-
work resources. Through the Internet, individuals can
make their personal thoughts, reactions, and opinions
easily accessible to the global community of Internet
users. ‘Word-of-mouth’ is being given new sig-
nificance by this unique property of the Internet [27].
One prominent example is eBay. The control of such
distributed trust systems is much more difficult, as it
includes trust evidence collection, policy specifica-
tions, evaluation rules, etc.

This paper is organized as follows. In Section 2
we describe our results on intrusion detection for
worms and DDoS. In Section 3 we provide recent
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results on robust detection of misbehavior in wireless
network protocols. Section 4, describes very recent
results on the evaluation of IDS, and resolves the
base-rate fallacy. Section 5 provides analysis of dis-
tributed trust dynamics, convergence and topology
effects. In Section 6, we describe how trust can be used
to induce cooperation between nodes and we intro-
duce constrained coalitional games. Section 7, treats
trust computation as a generalized shortest path
problem in an ordered semiring. Finally, Section 8
provides very recent results on cooperative games and
reputation formation in networks. Throughout the
paper we point out promising research directions.

2. Intrusion Detection of Worms and DDoS

Intrusion detection systems (IDS) usually monitor
and detect the misuse of network resources by keeping
a series of statistics related to the normal or acceptable
use of the network. These network statistics are
computed from network data, collected by ‘security
sensors’, which are specialized software or hardware-
software systems that ‘sniff’ the network for specific
data gathering (e.g. flow, usability, program system
calls, etc.). Continuous monitoring of the network
statistics is performed and as soon as the monitored
statistics cross certain thresholds or violate a fixed
policy on network usage an alarm is raised. Alarms
can be raised by individual sensors or collaboratively
by groups of sensors.

Sequential detection theory provides an ideal
framework to analyze and propose new algorithms for
the quickest change detection in the monitored sta-
tistics. In our work [8,21] we have used this approach
to quickly detect attacks such as Spreading Worms
and Distributed Denial of Service (DDoS). Due to the
large scale of these attacks a distributed formulation,
where sensors are placed in different parts of the
network, is considered. We have also considered
monitoring the hop count distribution for distance
vector routing algorithms as an approach to detect
attacks to the routing protocols of wireless ad hoc
networks [21]. Change detection theory [I2] was
originally developed for failure detection in systems
and control, for multi-model tracking systems, for
network communication and control problems.

2.1. Change Detection for Worms

For clarity of presentation we will consider active
worms as opposed to email worms. Active worms are
programs that self-propagate across a network by
exploiting vulnerabilities in widely used services
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offered by computers in the network. In order to
locate the vulnerable computers, the worm probes
different computer addresses at the specific port
number of the service it is looking for. By exploiting
the security flaw in the service offered by the compu-
ter, the worm can execute arbitrary code with elevated
privileges, allowing it to copy and execute itself in the
compromised machine. In order to reproduce, the
worm scans for new vulnerable machines from each
new compromised computer. The prevalence of active
worms can be seen from some examples in recent
years: Code Red I (July 2001), Code Red II (August
2001), NIMDA (September 2001), Sapphire, also
known as Slammer (January 2003) and Blaster
(August 2003).

The top three categories of computer attacks are
directly related to worms and other self-propagating
hybrid threats, which exploit multiple vulnerabilities
across desktops and servers. An important require-
ment is to detect a worm as soon as possible in order
to minimize the number of compromised hosts. A case
example is the quick discovery and prompt action by
System Administrators which prohibited Slapper
from spreading further and prevented damage [44].
Some highly contagious worms can also have side
effects such as BGP routing instabilities [26] when they
reach their peak. Currently however, detection relies
mostly on informal email discussion through a few key
mailing lists. This process takes hours at a minimum,
which is too slow for rapidly propagating worms.
Furthermore [77] the spread of the theoretical flash or
Warhol worms will be so fast that no human-driven
communication will suffice for adequate identification
of an outbreak before nearly complete infection is
achieved. It is therefore critical to develop automated
mechanisms for detecting worms based on their traffic
patterns or other ‘signatures’.

The self propagating code will try to use specific
vulnerabilities that can be identified with certain port
numbers. So in the rest of this section we assume
that the traffic monitoring variable X is the con-
nection attempts (probes) to a given TCP/UDP port
number(s). We also assume most of the times a
parametric pdf model f{X) of the traffic observations.
We have explored [8,21] the effect of aggregation
from distributed sensors, motivated by the current
infrastructure of distributed Intrusion Detection
Systems [77].

2.1.1. Distributed Detection of A Change
in the Mean

Clearly the simplest approach to change detection is to
detect a change in the mean. Despite the abundance of
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techniques addressing the change detection problem,
optimum schemes can mostly be found for the case
where the data are independent and identically dis-
tributed (i.i.d.) and the distributions are completely
known before and after the change time ko [61]. The
cumulative sum (CUSUM) and the Shiryaev-Roberts
statistics are the two most commonly used algorithms
for change detection problems; we have applied both
to this problem [8,21]. Let {X;} be the aggregate
traffic from all the sensors in the network. To detect a
change in the mean we assume { Xy} is i.i.d with pdf

f© before and fI!) after the change, such that the

historical mean E[f*)(X)] is less than the change mean
E[fV(X)]. For further details we refer to [8,21].

2.1.2. Detection of an Exponential Signal in Noise

Clearly detecting a change in the mean might give rise
to several false alarms as there might be cases where
the observed traffic increases during the normal
operation of the network. Furthermore, the i.i.d
assumption of the observations after the change is too
strong because each infected host will try in general to
scan the same number of hosts in a given interval of
time, and as more and more hosts become infected X
will increase with k. In particular we know from
simple population dynamic models that a worm
scanning uniformly at random the network will follow
a logistic growth [77].

Let n be the population of infected hosts. Let r be
the intrinsic growth rate (the growth rate when 7 is
small) and let a be a given positive constant. Then the
logistic growth satisfies the nonlinear ordinary dif-
ferential equation
%Z(r—amﬂ (1)
with solution

NoB

") = Ny ¥ (B= Moy @

where B = r/aand Ny is the population at time 0. Since
we are interested in detecting a worm as soon as pos-
sible we will be interested in the behavior of 1j(¢) when ¢
is small, i.e. we consider the exponential growth

n(t) = Noe" (3)
The equivalent discrete time recursion is
n(kAt) = nf = Nom" (4)

(d stands for ‘discrete’) where m is the discretized
growth rate when 7y is small (m = €") and N is the
number of hosts compromised at k = 0.

D i
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For the detection problem we will assume that the
values of Ny and r (or m) are unknown. We will also
consider a dummy signal 75"™ to represent any
other growth pattern we want to discriminate
(e.g. linear growth, a step function, etc.) from the
growth of the worm nf.

Let X, denote the aggregate observation from all

_sensors at time k, i.e.

L
Xe= Z X,k (5)
=1

We assume that the normal traffic aggregate is
distributed as £ (x, ..., x).

Our main assumption is that the number of probes
seen at the sensors will be proportional to the number
of infected hosts anf. The usual change detection
hypothesis testing problem for the aggregate traffic

(Eq. (5) is:
Ho:xk=n,‘:"m’""+wk when 1 <k< M

when 1 <k < kg
when kg <k < M

However, we want k to restart at 1 whenever Hg is
accepted, so we use a sequential hypothesis test where
the change time kg is implicitly given by the time at
which the sequential test restarted and H; was
accepted.

dumm:
V) Xk =M Y+ i
H,: 4
Xk =amn +wk

Ho:xkznzummy+wk when 1 <k< M

H,:xkzan,‘f-i-wk when 1 <k<M

(a) Exponential signal detection in noise: Since we
assume we do not know the parameters a, No and m,
we compute the generalized likelihood ratio (GLR) in
a given time window [, ..., M] and compare it to a
threshold . We also assume the dummy signal has
some unknown parameter 3 (e.g. the slope in a linear
growth). Therefore detection of the signal anf in noise

wy 1s achieved with the test:
Sup,, No,mj(o) (Xk - aﬂg) gh (6)

sups /O (x¢ — n"™™)

Hy

(b)Nonparametric regression detection: So far we
have always been assuming a parametric distribution
SO(x), ..., xi) for the normal traffic. This assump-
tion is valid for a wide number of ports as the traffic
seen can be regular. However in some cases the real
distribution can be quite difficult to obtain. For
example the number of probes seen to port 80
(WWW) or port 21 (FTP) for computers providing
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srvices can exhibit long range dependence and
ictal behavior, difficult to capture with a
tric model. To deal with some of the more
:ated traffic observations we have used [8,21] a
¢ non-parametric change detection algorithm
to the problem of detection of an exponential
n noise.

2.2,

Almc
and ¢
addre
of the

iange Detection for DDoS Attacks

. all DDoS attacks involve multiple networks
:ack sources, many of which have spoofed IP
ies to make detection even harder. An attempt
rictim to choke off the offending traffic requires
netwd k administrators to call upstream service pro-
vider alerting them of the attack and having them
shut « ywn the traffic. That process has to be repeated
all th way back to every attack source. So although
DDo are easily identified at the victim's site, it is
natur | to extend the quickest detection problem to
trans networks (ISPs) for faster response to an
attacl

At he ISP level, traffic anomalies are difficult to
detec in the aggregated network traffic. Examination
at pel flow basis at the IP level cannot usually scale up
to the high-speed links in the transit networks. Thus
we a: interested only in passively monitoring the
aggre ate traffic, without the need to store header
infori jation from the packets transmitted through the
netwe (.

We have introduced [8,21] a new approach for
ident 'ying Distributed Denial of Service attacks by a
set of yodes in a transit network. The basic idea is that
at ea:h highly connected node the data tends to
aggrerate from the distributed sources toward the
destitation, giving a sense of directionality to the
attacl | This directionality idea provides a framework
to dejign change detection algorithms that are less
sensilyve to changes in the average intensity of the
overa] traffic and focus on differentiating random
fluctiations of the network traffic versus fluctuations
whert there is a clear change in the direction of the
flow it a given node. We are considering packets in a
very hroad and general way, but clearly our approach
can te extended to monitor certain specific packet
typesgiven the protocol; for example measuring only
TCP SYN-ACK response packets for identifying a
refleaed DDoS attack, or ICMP packets for identi-
fying ping floods.

As;ume we are monitoring node 4 in Fig. 1. Let

k’m denote the stochastic process representing the
total number of packets sent by d through the link
(d.m)(an ordered pair) at time step k, where m € N (d)




110
8-8 88
==
Fo
Fig. 1. A transit network composed of nodes a4, b, ¢ and d.

denotes a neighbor of d, and N (d) the set of neighbors
of d. Let X? denote the vector with the elements X‘,f""
and let

Eo[Xy "]
03 == | Eo[Xp"] (7)
Eo[Xy ‘]
We will be interested in changes of the form:
03 + VY (8)

where v is a non-negative scalar and T, is one of the
standard basis vectors. So in Fig. 1, if node d suddenly
starts a broadcast, there will be a change in the mean
of all processes; we are not interested in such a change.
Instead, if there are attackers in the subnetworks
attached to b and c, and they target a host in the
network attached to a by flooding it, there will be a
change in the direction T,. Testing directions should
help us in discriminating unwanted false alarms.

To formalize our ideas we consider the framework
discussed in [12] of change detection in a known
direction but unknown magnitude of the change. Our
problem is a little bit different in that we are
considering an M-ary sequential hypothesis testing
problem and in that we do not allow changes with
negative or zero values for v, i.e. we impose the
restriction v > 0.

Thus the resulting change detection problem is:

9({ when £ < Ichange
_— 82 +vY, or ;
) =9 o 4 7 o 9)
0 + vl or
l()]g +vY, when Kk > fchange

where fchange 1S an unknown time step when the change
occurs.

Since we have an unknown parameter v we follow
the generalized likelihood ratio (GLR) for a
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multi-hypothesis test: a test for each possible direction
Y,., vs. the null hypothesis: a change in all directions
Y. The null hypothesis is selected for discriminating
a change in one direction vs. a change of the overall
traffic of the network either as an increase or decrease:

Suvaq Hf=jf9g+vT",(X§!)
Sup, Hf:jfog‘kz\Td(X?)

where A is a scalar not necessarily greater than a
positive constant ¢; unlike v (i.e. we allow also for a
decrease in the overall network traffic). The threshold
k%™ for each of the tests is selected given a fixed false
alarm rate probability.

To stop the test we can run all hypothesis in parallel
and only the test g,'i’"' that reaches its given threshold
is stopped. However this is a heuristic procedure as
optimal solutions to the problem of sequential testing
of more than two hypotheses are, in general, intract-
able. A more elaborate stopping rule is presented in
[30] with a proof of asymptotic optimality as the
decision risks (or error probabilities) go to zero. For
further details we refer to [8,21].

d,m
= max lo
8 195k g

2.3. Sensor Fusion

So far we have been focusing on detecting a change in
a single node. One of the main advantages in having
several nodes under monitoring is that we can perform
an aggregation of the statistics between the different
nodes in order to decrease detection delay given a
fixed false alarm rate probability. In particular if we
are monitoring nodes far away from the destination,
most of the local statistics will not yield an alarm and
the attack might be unnoticed. The alarm aggregation
can be performed by several methods. Here we pro-
pose a simple heuristic that will apply to any distance
vector routing protocol.

We want a mechanism to aggregate the different
statistics at each monitored node, taking into account
that the computed statistics for all nodes can vary
to different scales of magnitude yielding a biased
addition. To cope with this problem we compute the

dym
normalized statistic cpZ"" = iﬁ,—,,. If none of our mon-
itored nodes has raised an alarm, the number of

monitored nodes will be bounded by 3, <p,‘f”". This
can be in turn interpreted as a new upper bound for
a collective threshold which can be selected given a
false alarm rate probability.

Selecting which statistics to add is the key issue. In
keeping with our directionality framework we com-
bine only the statistics relating two or more nodes to a
common destination.
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Fig. 2. The transit network.

We now apply this formulation to the case of two
monitored nodes (a natural extension follows for
several nodes). Suppose we monitor nodes 6 and 3 in
the transit network model shown in Fig. 2, where the
transit network consists of 15 routers numbered from
0 to 14. Each cloud represents a subnetwork with its
own routing domain.

The routing tables required for the aggregation
algorithm are given in Tables 1 and 2. By simple
inspection of the routing tables we see that we need to
correlate the link (6,0) with (3,1) because nodes 6 and
3 use them (respectively) to reach nodes 0, 1 and 14.
Similarly, the link (6,11) must be correlated with
(3,11), link (6,4) with (3,4), link (6,7) with (3,13), (6,7)
with (3,1) and (6,8) with (3,11).

With this approach not only we can improve our
chances to detect “buried” attacks in single links by
correlating statistics, but also diminish the impact of
false alarms originating from individual nodes. See
[8,21] for details.

3. Robust Detection of Misbehavior

The problem of deviation from legitimate protocol
operation in wireless networks and the efficient
detection of such behavior has become a significant
issue in recent years [4,18,42,50,73,76]. In our work we
have addressed and quantified the impact of MAC
layer attacks [23,24,68~-70], routing layer attacks [93],
that aim at disrupting critical network functionalities
and information flow in autonomous wireless
networks. We describe here our work on MAC
misbehavior detection.

In the distributed coordinating function (DCF) of
the IEEE 802.11 MAC protocol, coordination of
channel access for contending nodes is achieved via
carrier sense multiple access with collision avoidance
(CSMA/CA). A node with a packet to transmit selects
a random back-off value b uniformly from the set
{0,1, ..., W — 1}, where W is the (fixed) size of the
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Table 1. Routing table for node 6

Link Routing to nodes
(6,7) 7,13,2,10,12,9
(6,0) 0,14,1

(6,4) 4.3.5

6,11) 11,3

(6,8) 8

(6,subnetwork)

Table 2. Routing table for node 3

Link Routing to nodes
3,D 1,0,2,14,10,9,12
(3,13) 7,13

(3,4) 45

3,11 11,6,8
(3,subnetwork)

contention window. The back-off counter decreases
by one at each time slot that is sensed to be idle and the
node transmits after b idle slots. In case the channel is
perceived to be busy in one slot, the back-off counter
stops momentarily. After the back-off counter is
decreased to zero, the transmitter can reserve the
channel for the duration of data transfer. First, it
sends a request-to-send (RTS) packet to the receiver,
which responds with a clear-to-send (CTS) packet.
Thus, the channel is reserved for the transmission.
Both RTS and CTS messages contain the intended
duration of data transmission in the duration field.
Other hosts overhearing either the RTS or the CTS are
required to adjust their network allocation vector
(NAYV) that indicates the duration for which they will
defer transmission. This duration includes the SIFS
intervals, data packets and acknowledgment frame
following the transmitted data frame. An unsuccessful
transmission instance due to collision or interference
is denoted by lack of CTS or ACK for the data sent
and causes the value of contention window to double.
If the transmission is successful, the host resets its
contention window to the minimum value W.

IEEE 802.11 DCF favors the node that selects the
smallest back-off value among a set of contending
nodes. Therefore, a malicious or selfish node may
choose not to comply to protocol rules by selecting
small back-off intervals, thereby gaining significant
advantage in channel sharing over regularly behaving,
honest nodes. Moreover, due to the exponential
increase of the contention window after each unsuc-
cessful transmission, non-malicious nodes are forced
to select their future back-offs from larger intervals
after every access failure. Therefore the chance of their
accessing the channel becomes even smaller.
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MAC layer protocol misbehavior has been studied
in various scenarios and mathematical frameworks.
The random nature of access protocols coupled with
the highly volatile nature of the wireless medium poses
the major obstacle in developing a unified framework
for misbehavior detection. The goals of a misbehaving
peer can range from exploitation of available network
resources for its own benefit up to network disruption.
An efficient Intrusion Detection System should detect
a wide range of misbehavior policies with an accep-
table False Alarm rate; a major challenge.

The current literature offers two major approaches
in the field of misbehavior detection. The first provides
solutions based on modification of the current IEEE
802.11 MAC layer protocol by making each protocol
participant aware of the backoff values of its neigh-
bors. A different line of thought is followed in [69-71],
where the authors propose a misbehavior detection
scheme without making any changes to the actual
protocol. The authors in [69,70] address the detection
of an adaptive intelligent attacker by casting the pro-
blem of misbehavior detection within the minimax
robust detection framework. System performance is
measured in terms of number of required observation
samples to derive a decision (detection delay).

It is important to note that the parameters used for
deriving a decision of whether a protocol participant
misbehaves or not should be carefully chosen. For
example, choosing the percentage of time the node
accesses the channel as a misbehavior metric can result
in a high number of false alarms due to the fact that
the other protocol participants might not have any-
thing to transmit within a given observation period.
This could easily lead to false accusations of legitimate
nodes that have large amounts of data to send.

In our work we have derived analytical perfor-
mance bounds of two proposed schemes for detecting
random access misbehavior: DOMINO ([71] and
SPRT-based tests {23,24,68—70] and have shown the
optimality of SPRT against the worst-case adversary
for all configurations of DOMINO. Following the
main idea of DOMINO, we have introduced [24] a
nonparametric CUSUM statistic that shares the same
intuition as DOMINO but gives better performance
for all configurations of DOMINO.

3.1. Sequential Detection

Consider monitoring the behavior of node A for the
single-hop communication with node B. We assume
that any node within the transmission range of A or B
observes the same sequence of measurements of back-
off values used by A. Since the sequence of observations
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is the same, the procedure that will be described in the
sequel can take place in any of these observer nodes.
Since the back-off measurements are enhanced by an
additional sample each time A attempts to access the
channel, an on-line sequential scheme is natural. The
basis of such a scheme is a sequential detection test
that is implemented at an observer node. The objective
of the detection test is to derive a decision as to whe-
ther or not a misbehavior occurs as fast as possible,
namely with the least possible number of observation
samples.

The probability of false alarm and the probability of
missed detection constitute inherent tradeoffs in such
a scheme. Clearly, we can obtain small values for both
by accumulating more information, that is, at the
expense of larger detection delay. A logical compro-
mise would be to prescribe some maximal allowable
values for the two error probabilities and attempt to
minimize the expected detection delay. Expressing this
problem under a more formal setting, we are interested
in finding a sequential test D = (N,dy) that solves
the following constrained optimization problem:
infy, 4, Ei[N] under the constraints Poldy = 1] <o
P\[dv =0] < 8, where P,E; denote probability
and expectation under hypothesis H;,i= 0,1, and
0 < @, B8 < 1 are the prescribed values for the prob-
ability of false alarm and miss detection respectively.

This setup was first proposed in [88] where the
Sequential Probability Ratio Test (SPRT) was intro-
duced for its solution. Optimality of SPRT is assured
only when the data are i.i.d. under both hypotheses
[89]. In order to use the SPRT test it is necessary
to specify both probability density functions
fi(x),i = 0,1 under the two hypotheses. Although the
pdf fo(x) of a legitimate node is known, this is not the
case for an attacker. Furthermore, specifying a can-
didate density fi(x) for an attacker without some
proper analysis may result in serious performance
degradation if the attacker’s strategy diverges from
our selection.

In order to be able to propose a specific detection
rule we need to clarify and mathematically formulate
the notion of an ‘attack’. We should place our main
emphasis to attacks that incur large gains for the
attacker (result in higher chances of channel access).
Besides, if we assume that the detection of an attack is
followed by communication of the attack event
further in the network so as to launch a network
response, it would be rather inefficient for the algo-
rithm to consider less significant attacks and initiate
responses for them. Instead, it is meaningful for the
detection system to focus on encountering the most
significant attacks and at the same time not to consume
resources of any kind (processor power, energy, time
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or bandwidth) for dealing with attacks whose effect on
performance is rather marginal.

3.2. Minimax Robust Detection:
The Uncertainty Class

We need to cope with the encountered (statistically)
uncertain operational environment of a wireless net-
work. Hence, it is desirable to rely on robust detection
rules that would perform well regardless of these
uncertainties. In our work [24,68-70], we have
adopted a minimax robust detection approach, where
the goal is to optimize performance for the worst-case
instance of uncertainty. We identify the least favor-
able operating point of the system in the presence of
uncertainty and subsequently find the strategy that
optimizes system performance when operating at that
point. In our case, the least favorable operating point
corresponds to the worst-case instance of an attack
and the optimal strategy amounts to the optimal
detection rule. System performance is measured in
terms of the number of required observation samples.

Implicit in the minimax approach is the assumption
that the attacker has full knowledge of the employed
detection rule. Thus, it can create a misbehavior
strategy that maximizes the number of required sam-
ples for misbehavior detection. Our approach
addresses the case of an intelligent attacker that can
adapt its policy to avoid detection.

According to the IEEE 802.11 MAC standard, the
back-off for each legitimate node is selected from a set
of values in a contention window interval based on a
uniform distribution. The length of the contention
window is 2'W for the ith retransmission attempt,
where W is the minimum contention window. In
general, some back-off values will be selected uni-
formly from [0, W] and others will be selected uni-
formly from intervals [0,2'W], for i=1, ..., Imax
where I, 1s the maximum number of re-transmission
attempts. Without loss of generality, we can scale
down a back-off value that is selected uniformly in
[0,2'W] by a factor of 2/, so that all back-offs can be
considered to be uniformly selected from [0,#]). An
attack strategy is mapped to a probability density
function, which the attacker uses to select his back-off
value. We consider continuously back-logged nodes
that always have packets to send. Thus, the gain of the
attacker is signified by the percentage of time in which
it obtains access to the medium. This in turn depends
directly on the relative values of back-offs used by the
attacker and by the legitimate nodes.

Let us first compute the probability P, of the
attacker to access the channel as a function of the pdfs
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/1 and fo. Let us observe the backoff times during a
fixed period T that does not include transmission
intervals. Consider first the case of one misbehaving
and one legitimate node and assume that within the
time period T, we observe Xi, ..., Xy, N samples of
the attacker’s backoff and Yy, ..., Y, M samples of
the legitimate node’s backofTs. It is then clear that the
attacker’s percentage of accessing the channel during
the period T is N/(N+ M). In order to obtain the
desired probability we simply need to compute the
limit of this ratio as T — oco. We use the fact that

X1+ +XNST< X1+ + Xns
Yi+---+ Yy <T<Y 1+ 4+ Yyy,

and let T — oo (resulting in N, M — o0). Finally, by
applying the Law of Large Numbers, we conclude that
1
o _ _E[X
SRS NS vy v e e

(10)

Using exactly similar reasoning the probability Py,
for one misbehaving node against » legitimate ones, is

1

Eg __ 1 __ 1

E—llm-*'g—j['?[ 1+n%f‘—}‘%1 1+n—mm;‘;, ‘
If the attacker were legitimate then E;[X] = E¢[Y)]

and his probability of accessing the channel, from

Eq. (11), would have been 1/(n + 1). It is therefore
clear that whenever

Ei[X] = eEo[Y], withe € (0,1) (12)

the attacker enjoys a gain compared to legitimate
nodes since

Py = (11)

1 S 1 _l+n
n+1 n+1’n—l+en

€ (L,n+1).
(13)

His probability of accessing the channel is greater
than the probability of any legitimate node by a
factor n > 1.

Using this simple model we are now able to quantify
the notion of an ‘attack’. Let  be a quantity that
satisfies 1 < n < n+ | and consider the class 7, of all
pdfs that induce a probability P, of accessing the
channel that is no less than n/(n + 1). From (12), (13),
the class F,, is explicitly defined as

P1=T]

w
Fo= {fl () [ #hxax < —n_q_—‘%V}

n+l

(14)




114

This class includes all possible attacks for which the
incurred relative gain exceeds the legitimate one by
(n — 1) x 100%. The class F, is the uncertainty class of
the robust approach and 7 is a tunable parameter. We
define the severity of the attack by changing the gain
1. Values of 7 larger but close to 1 are equivalent to
low-impact attacks whereas values significantly larger
than 1 are equivalent to DoS attacks.

3.3. Minimax Robust Detection:
“The Worst-Case Attack

Hypothesis Hy concerns legitimate operation and thus
the corresponding pdf fy(x) is the uniform one.
Hypothesis H; corresponds to misbehavior with
unknown pdf fi(x) € F,. The performance of the
detection scheme is quantified by the average number
of samples E;[N] needed until a decision is reached,
which is clearly a function of the adopted detection
rule D and the pdf £ (x): E{[N] = ¢(D, /1)

Let T, 3 denote the class of all sequential tests for
which the false alarm and missed detection prob-
abilities do not exceed some specified levels a and 3
respectively. In the context of minimax robust detec-
tion, the goal is to optimize performance in the pre-
sence of worst-case attack, that is, solve the min-max
problem

inf su D,AH). 15
Dm,ﬂﬁegﬂw( ) (15)

A saddle point (D*,f}) of ¢ consists of a detection
scheme D and an attack distribution f}. It is specified in

Theorem 1. Let the gain factorn € (1,n + 1) and the
maximal allowable decision error probabilities o, 3 be
given. Then the pair (D", f}) which asymptotically (for
small values of a, §) solves the saddle point problem is

A= (e

where u > 0 is the solution to the following equation

oLt _ =g
poet—1 n-L °

n+l

(17)

The corresponding decision rule D* = (N*,dy-)
is the SPRT test that discriminates between fj(x)

and fo(x).

For the complete proof, we refer the reader to [70].
Our robust detection approach captures the case of an
intelligent attacker. The SPRT algorithm is part of the

J.S. Baras

intrusion detection system module that resides at an
observer node.

3.4. Colluding Attackers

Applying the same min-max robust approach to the
case of two colluding (cooperating) attackers, the
following expression is derived for the access policy of
the collaborating attackers:

f;z(xl,XZ) = e-l—Ae—umin(x|,x2)/W (18)

where x; and x; represent the backoff values of
malicious nodes 1 and 2. For further details on per-
formance of colluding attackers we refer to [67,69].

3.5. Experimental Results

The backoff distribution of an optimal attacker was
implemented in the network simulator Opnet and tests
were performed for various levels of false alarms. The
experimental results presented here correspond to the
scenario consisting of two legitimate and one selfish
node competing for channel access. It is important to
mention that the resulting performance comparison of
DOMINO, CUSUM and SPRT does not change for
any number of competing nodes, SPRT always
exhibits the best performance. In order to demon-
strate the performance of all detection schemes for
more aggressive attacks, we present the results for
the scenario where the attacker attempts to access the
channel for 60% of the time (as opposed to 33% if it
was behaving legitimately). The results for both
legitimate and malicious behavior were collected over
a fixed period of 100s. In order to obtain fair perfor-
mance comparison, a performance metric different
from the one in [70] was adopted. The evaluation was
performed as a tradeoff between the average time to
detection and the average time to false alarm.

We evaluated the performance of the SPRT using
the same parameters as in the theoretical analysis.
DOMINO was evaluated for fixed v = 0.9, which
corresponds to the value used in the experimental
evaluation in {71]. In order to compare the perfor-
mance to SPRT, we varied the value of K (determines
the number of false alarms). We computed the per-
formance of DOMINO for 2 different values of the
parameter m. As it can be seen from Fig. 3, SPRT
outperforms DOMINO for all values of K and m. We
note that the best performance of DOMINO was
obtained for m =1 (the detection delay is smaller
when the decision is made after every sample).
Therefore, we adopted m = 1 for further analysis of
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Tradeoff curves for DOMINO, CUSUM and SPRT
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Fig. 3. Tradeoff curves for each of the proposed algorithms.
DOMINO has parameters v = 0.9 and m = 1 while K is the
variable arameter. The nonparametric CUSUM algorithm has as
variable parameter ¢ and the SPRT has b = 0.1 and a is the
variable parameter.

DOMINO. We found that the optimal value of -« is
equal to 0.7 by experimental evaluation and we
adopted this as the optimal parameter for DOMINO.
With the optimal values of v and m we performed final
evaluations of DOMINO, CUSUM and SPRT, see
Fig. 4. We observe that even for the optimal para-
meters of DOMINO, the SPRT outperforms it for all
values of K.

We also compared the performance of collaborat-
ing attackers vs. a single attacker; results are shown in
Fig. 5.

4. Evaluation of Intrusion Detection Systems

Consider a company that, in an effort to improve its
information technology security infrastructure, wants
to purchase either intrusion detector | (ZDS)) or
intrusion detector 2 (ZDS,). Furthermore, suppose
that the algorithms used by each IDS are kept private
and therefore the only way to determine the perfor-
mance of each IDS (unless some reverse engineering is
done [54)) is through empirical tests determining how
many intrusions are detected by each scheme while
providing an acceptable level of false alarms. Suppose
these tests show with high confidence that IDS;
detects one-tenth more attacks than ZDS; but at the
cost of producing one hundred times more false
alarms. The company needs to decide based on these
estimates, which IDS will provide the best return on
investment for their needs and environment.

This general problem is more concisely stated as
the intrusion detection evaluation problem, and its
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Tradeoff curves for optimal DOMINO configuration, CUSUM and SPRT
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Fig. 4. Tradeoff curves for best performing DOMINO configura-
tion with v = 0.7, best performing CUSUM configuration with y =
0.7 and SPRT.

Tradeoff curves forn = 0.6
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Fig. 5. Tradeoff curves for n = 0.6; detection times for colluding
nodes are up to 2 times longer than for a single node with identical
strategy.

solution usually depends on several factors. The most
basic of these factors are the false alarm rate and the
detection rate, and their tradeoff can be intuitively
analyzed with the help of the receiver operating char-
acteristic (ROC) curve [34,53,55,56,90]. However, as
pointed out in [5,36,39], the information provided by
the detection rate and the false alarm rate alone might
not be enough to provide a good evaluation of the
performance of an IDS. Therefore, the evaluation
metrics need to consider the environment the IDS is
going to operate in, such as the maintenance costs and
the hostility of the operating environment (the like-
lihood of an attack). In an effort to provide such an
evaluation method, several performance metrics such
as the Bayesian detection rate [5), expected cost [36],
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sensitivity [28] and intrusion detection capability [39],
have been proposed.

Yet despite the fact that each of these performance
metrics makes their own contribution to the analysis
of intrusion detection systems, they are rarely applied
in the literature when proposing a new IDS. It is our
belief that the lack of widespread adoption of these
metrics stems from two main reasons. First, each
metric is proposed in a different framework (e.g.
information theory, decision theory, cryptography,
etc.) and in a seemingly ad hoc manner. Therefore an
objective comparison between the metrics is very dif-
ficult. The second reason is that the proposed metrics
usually assume the knowledge of some uncertain
parameters like the likelihood of an attack, or the
costs of false alarms and missed detections. Moreover,
these uncertain parameters can also change during the
operation of an IDS. Therefore the evaluation of an
IDS under some (wrongly) estimated parameters
might not be of much value.

More importantly, there does not exist a security
model for the evaluation of IDSs. Several researchers
have pointed out the need to include the resistance
against attacks as part of the evaluation of an IDS
[41,52,66,74,79,80). However, the traditional evalua-
tion metrics are based on ideas developed for non-
security related fields and they do not take into
account the role of an adversary and the evaluation of
the system against this adversary.

In our work, we have introduced a framework for
the evaluation of IDSs in order to address these con-
cerns. First, we identify the intrusion detection eva-
luation problem as a multi-criteria optimization
problem. This framework lets us compare several of
the previously proposed metrics in a unified manner.
To this end, we recall that there are in general two
ways to solve a multi-criteria optimization problem.
The first approach is to combine the critenia to be
optimized in a single optimization problem. We then
show how the intrusion detection capability, the
expected cost and the sensitivity metrics all fall into
this category. The second approach is to evaluate a
tradeoff curve. We show how the Bayesian rates and
the ROC curve analysis are examples of this approach.

To address the uncertainty of the parameters
assumed in each of the metrics, we have developed [22]
a graphical approach that allows the comparison of
the IDS metrics for a wide range of uncertain para-
meters. For the single optimization approach we
showed in [22] how the concept of isolines can capture
in a single value (the slope of the isoline) the uncer-
tainties like the likelihood of an attack and the
operational costs of the IDS. For the tradeoff curve
approach, we introduced in [22] a new tradeoff curve
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we call the intrusion detector operating characteristic
(IDOC). We believe the IDOC curve combines in a
single graph all the relevant (and intuitive) parameters
that affect the practical performance of an IDS.

We introduce here a robust evaluation approach in
order to deal with the adversarial environment the
IDS is deployed in. In particular, we do not want to
find the best performing IDS on average, but the IDS
that performs best against the worst type of attacks.
To that end we extend our graphical approach to
model the attacks against an IDS. In particular, we
show how to find the best performing IDS against the
worst type of attacks. This framework allows us to
reason about the security of the IDS evaluation and
the proposed metric against adaptive adversaries.

In [5] Axelsson pointed out that one of the causes
for the large amount of false alarms that intrusion
detectors generate is the enormous difference between
the amount of normal events compared to the small
amount of intrusion events. Intuitively, the base-rate
Jallacy states that because the likelihood of an attack
is very small, even if an IDS fires an alarm, the like-
lihood of having an intrusion remains relatively small.
Formally, when we compute the posterior probability
of intrusion (a quantity known as the Bayesian
detection rate, or the positive predictive value (PPV))
given that the IDS fired an alarm, we obtain:

PPV =Pr[I=1|4d = 1]
B Prj4 = 1|/ = 1]Pr[I = ]
" Pr{d = 1|1 = 1]Pt{I = 1] + Pr[4 = 1|I = 0]Pt[] = 0]
Ppp
(Pp — Pra)p + Pry

If the rate of incidence of an attack is very small, for
example p = 1073, and if our detector has Pp = 1 and
Pg4 = 0.01, then Pr[I = 1|4 = 1] = 0.000999. That is
on average, of 1000 alarms, only one would be a real
intrusion.

It is easy to demonstrate that the PPV value is
maximized when the false alarm rate goes to zero,
even if the detection rate also does! Therefore [5] we
require a trade-off between the PPV value and the
negative predictive value (NPV):

NPV = Pr[/ = 0|4 = 0]
_ (1 =p)(1 = Pr4)
p(1 = Pp) + (1 - p)(1 — Pr4)

4.1. Graphical Analysis

Our new graphical framework [22] allows the compar-
ison of different metrics in the analysis and evaluation
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of IDSs. This graphical framework can be used to
adaptively change the parameters of the IDS based on
its actual performance during operation. The frame-
work also allows for the comparison of different IDSs
under different operating environments. Throughout
this section we use one of the ROC curves analyzed in
[36] and in [39]; mainly the ROC curve describing the
performance of the Columbia team intrusion detector
for the 1998 DARPA IDS evaluation [57).

4.1.1. Visualizing the Expected Cost: The
Minimization Approach

The biggest drawback of the expected cost approach is
that the assumptions and information about the
likelihood of attacks and costs might not be known a
priori. Moreover, these parameters can change dyna-
mically during the system operation. It is thus desir-
able to be able to tune the uncertain IDS parameters
based on feedback from its actual system performance
in order to minimize E{C(, 4)).

We select the use of ROC curves as the basic 2-D
graph because they illustrate the behavior of a classifier
without regard to the uncertain parameters, such as the
base-rate p and the operational costs C(i, ). The ROC
curve decouples the classification performance from
these factors [65]. In the graphical framework, the
relation of these uncertain factors with the ROC curve
of an IDS will be reflected in the isolines of each metric,
where isolines refer to lines that connect pairs of false
alarm and detection rates such that any point on the
line has equal expected cost. The evaluation of an IDS
is therefore reduced to finding the point of the ROC
curve that intercepts the optimal isoline of the metric.

Under the assumption of constant costs, we can see
that the isolines for the expected cost E[C(Z, 4)] are in
fact straight lines whose slope depends on the ratio
between the costs and the likelihood ratio of an attack.
Formally, if we want the pair of points (Pg,;, Pp1)
and (Pr42, Pp2) to have the same expected cost, they
must be related by the equation:

Pp2 = Pp _ 1=pC(0,1) — C(0,0)
me,p = =
Pra - Praz p C(1,0) - C(1,1)
_I-r C
p
where C is the ratio between the costs, and mc,, is the
slope of the isoline. The optimal operating point in the
ROC is determined by the slope of the isolines, which
in turn is determined by p and C. Therefore we can
readily check how changes in the costs and in the
likelihood of an attack will impact the optimal
operating point.

Isolines of the probability of error under different p values

Fig. 6. As the base-rate p decreases, the slope of the optimal isoline
increases.

4.1.2. The Base-Rate Fallacy Implications on the
Costs of an IDS

In Fig. 6 we can see how as p decreases, the optimal
operating point of the IDS tends to (Pr4, Pp) = (0,0)
(the evaluator must decide not to use the IDS for its
current operating environment). Therefore, for small
base-rates the operation of an IDS will be cost effi-
cient only if we have an appropriate small C* such that
me- p» < mc. A small C* results if the cost of a false
alarm is much smaller than the cost of a missed
detection: C(1,0) > C(0,1).

4.1.3. The Intrusion Detector Operating
Characteristic: The Tradeoff Approach

Although the graphical analysis introduced so far can
be applied to analyze the cost efficiency of several
metrics, the intuition for the tradeoff between the PPV
and the NPV is still not clear. Therefore we have
extended the graphical approach [19,20,22] by intro-
ducing a new pair of isolines, those of the PPV and the
NPV metrics. It turns out that the most relevant
metrics to use for a tradeoff in the performance of an
IDS are PPV and Pp. However, even when we select
for tradeoff PPV and Pp, the isoline analysis has stitl
one deficiency when compared with the isoline per-
formance analysis of the previous section — there is no
efficient way to represent how the PPV changes with
different p values. In order to solve this problem we
introduced [19,20,22] the Intrusion Detector Operat-
ing Characteristic (IDOC) as a graph that shows how
the two variables of interest: Pp and PPV are related
under different base-rate values of interest. An
example of an IDOC curve is presented in Fig 7.
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Fig. 7. IDOC example.

We believe that the IDOC provides a better way to
evaluate IDS systems than most previously proposed
metrics, because it compares tradeoffs that are easier
to interpret.

4.2. Threat Models and Robust Evaluation of IDS

Traditional evaluation of intrusion detection schemes
assumes that an intruder behaves similarly before and
after the implementation of the IDS (i.e. a non-
adaptive intruder). Now consider an intruder who
adapts its attack when it faces a target system which
hosts a given IDS.

For our evaluation analysis we assume three
quantities that can be, up to a certain extent, con-
trolled by the intruder. They are the base-rate p, the
false alarm rate Pg,4 and the detection rate Pp. The
base-rate can be modified by controlling the frequency
of attacks. The perceived false alarm rate can be
increased if the intruder finds a flaw in any of the
signatures of an IDS that allows him to send mal-
iciously crafted packets that trigger alarms at the IDS
but that look benign to the IDS operator. Finally, the
detection rate can be modified by the intruder with the
creation of new attacks whose signatures do not
match those of the IDS, or by evading the detection
scheme, e.g. mimicry attack [52].

In an effort towards understanding the advantage
an intruder has by controlling these parameters, and
to provide a robust evaluation framework, we present
a formal framework to reason about the robustness of
an IDS evaluation method. For modeling purposes we
decompose the IDS algorithm into two parts: a
detector D and a decision maker DM.

For the case of an anomaly detection scheme,
D(x[j]) outputs the anomaly score y[j] on input x[j]
and DM represents the threshold that determines
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whether to consider the anomaly scOre as an intrusion
or not. For a misuse detection scheme, DM has to
decide to use the signature to report alarms or decide
that the performance of the signature is not good
enough to justify its use and therefore will ignore all
alarms. An IDS algorithm is the composition of
algorithms D (an algorithm from where we can obtain
an ROC curve) and DM (an algorithm responsible for
selecting an operating point). During operation, an
IDS receives a continuous data stream of event
features x[1],x[2], ... and classifies €ach input x[]] by
“raising an alarm or not.

We next study the performance of an IDS under an
adversarial setting. A basic assumption to make is to
consider that the intruder knows everything that we
know about the environment and can make inferences
about the situation the same way as we can. Under
this assumption we assume that the base-rate j esti-
mated by the IDS, its estimated operating condition
(Pr4, Pp) selected during the evaluation, the original
_ROC curve (obtained from D) and the cost function
C(1, A) are public values (i.e. known to the intruder).

We model the capability of an adaptive intruder by
defining some confidence bounds. We assume an
intruder can deviate p — &, p + 6, from the expected p
value. Based on our confidence in the detector algo-
rithm and how hard we expect it to be for an intruder
to evade the detector, we define o and 3 as bounds
to the amount of variation we can expect during the
IDS operation from the false alarms and the detection
rate (respectively) we expected, i.e. variation from
(Pra, Pp) [87].

The intruder also has access to an oracle
Feature(-, ) that simulates an event to input into the
IDS. Feature(0,() outputs a feature vector modeling
the normal behavior of the system that will raise an
alarm with probability ¢ (or a crafted malicious
feature to only raise alarms in the case Feature(0,1)).
And Feature(1,() outputs the feature vector of an
intrusion that will raise an alarm with probability ¢.

Definition 1. A (6, o, B)—intruder is an algorithm J that
can select its frequency of intrusions p1 from the interval
6 = [p — 6., p + 8,]. If it decides to attempt an intrusion,

then with probability p, € [0, 4], it creates an attack
feature x that will go undetected by the IDS (otherwise
this intrusion is detected with probability Pp). If it does
not attempt an intrusion, with probability p3 € [0, o it
createsa feature x that will raise a false alarmin the IDS.
If 6, = pand 6§, = 1 — p we say that J has the ability to
make a chosen-intrusion rate attack.

We now formalize what it means for an evaluation
scheme to be robust; i.e. how confident we are that the
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IDS will behave during operation similarly to what we
assumed in the evaluation.

4.2.1. Robust Expected Cost Evaluation

We start with the general decision theoretic frame-
work of evaluating the expected cost (per input)
E[C(1,4)] for an IDS.

Definition 2. An evaluation method that claims the
expected cost of an DS is at most r is robust against a
(6, a, B)—intruder if the expected cost of IDS during
the attack (E*®#[C[I, 4)]) is no larger than 7, i.e.

E>*8[C[L,A)} = C(i,a)

xPr((I,x) —3(6,2,8); A —IDS(X): I=i,A=a]<r

An IDS is better than others if its expected value
under the worst performance is smaller than the
expected value under the worst performance of other
IDSs. Several important questions can be raised by the
above framework. In particular we are interested in
finding the least upper bound r such that we can claim
the evaluation of IDS to be robust. Another impor-
tant question is how can we design an evaluation of
IDS satisfying this least upper bound? Solutions to
these questions are partially based on game theory.
We have [22]

Theorem 2. Given an initial estimate of the base-rate p,
an initial ROC curve obtained from D, and constant
costs C(I, A), the least upper bound r such that the
expected cost evaluation of ZDS is robust is given by

r=R(0, B3,)(1 - p°) + R(1, )}’ (19)

where
R(0, P2,) = [C(0,0)(1 - P},) + C(0, 1)} (20)
is the expected cost of the DS under no intrusion and
R(1, P}) = [C(1,00(1 - P) + C(1,1)P]] (21)

is the expected cost of the ZDS under an intrusion,
and p°, Pz, and P are the solution to a zero-sum
game between the intruder (the maximizer) and the
IDS (the minimizer), with a simple and constructive
solution.

The proof of this Theorem is very straight-
forward [22].

We have analyzed a practical example in [22] for
minimizing the cost of a chosen intrusion rate attack,
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that shows the generality of Theorem 2 and also pre-
sents a compelling scenario type where a probabilistic
IDS makes sense. The example considers an ad hoc
network scenario similar to [16,58,94] where nodes
monitor and distribute reputation values of other
nodes’ behavior at the routing layer. The monitoring
nodes report seifish actions (e.g. nodes that agree to
forward packets in order to be accepted in the net-
work, but then fail to do so) or attacks (e.g. nodes that
modify routing information before forwarding it).
There is a network operator considering implementing
a watchdog monitoring scheme to check the com-
pliance of nodes forwarding packets as in [58]. The
operator then plans an evaluation period of the
method where trusted nodes are the watchdogs
reporting the misbehavior of other nodes. Since the
detection of misbehaving nodes is not perfect, during
the evaluation period the network operator is going to
measure the consistency of reports given by several
watchdogs and decide if the watchdog system is worth
keeping or not. See [22] for details.

4.2.2. Robust IDOC Evaluation

We have also analyzed the robustness of the evalua-
tion with IDOC curves. It is easy to see that the worst
attacker for the evaluation is an intruder J that selects
pr=p—6,pp=caandp; =4

Corollary 3. For any point (PPV, Pp) corresponding
to p in the IDOC curve, a (6, a, 8) — intruder can
decrease the detection rate and the positive predictive
value to the pair (PPVH® B,ﬁ‘f,), where P8 =
Pp(1 — 3) and
PP V'.’:._ a, g S . P;Jp = Plfé

Pop+ Pg,(1—p) + 6P, — 6P}

(22)

5. Distributed Trust Dynamics

In this section we investigate the dynamics of trust
‘spreading’ in autonomic networks. We find, surpris-
ingly, that several of the analytical formulations
appear similar to recent results and formulations for
collaborative control and control of formations
[2,45,64]. On the other hand, our results for these
dynamic trust problems have analogs for collabora-
tive control problems that are not found in the control
literature; pointing promising research directions.
We model an autonomous network as a directed
graph G(V, E), in which nodes are the entities/peers in
the network and links represent trust relations. We
call the graph G the trust graph, in order to distinguish

S s s
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it from the physical graph, in which nodes are con-
nected if they are one hop away in terms of physical
transmissions. Suppose that |V] = ¥ and nodes are
labeled with indices ¥ = {1, ..., N}.

In a distributed environment, there is no centralized
system to manage trustworthiness of entities. How-
ever, entities may still rate each other based on their
previous interactions. For example, when node i
requests files from node j, i may rate j based on whe-
ther j replies to his requests and the quality of these
files. A directed link from node i to node j in G,
denoted as (i,/), corresponds to the direct trust relation
that entity i/ has on entity j and the weight on the link
represents the degree of confidence / has on j, denoted
as ¢;j: Vx V— [-1,1]. ¢; = 1 represents completely
positive confidence i has on j, and ¢; = —1 represents
completely negative confidence. ¢; = 0 means totally
uncertain. Trust relations are asymmetric, so generally
cij # cji. Assume nodes’ opinions are fixed for the sake
of simplicity. We define the neighbor set of node i as

Ni={jl(i,j) or (j,i) € E} C V\ {i},
which is the set of nodes that are directly connected to i.

Nodes in the network are assumed to be either
GOOD or BAD, denoted by t; = 1 or — 1 for node i.
The vector T =1, ...,ty] is called the real trust
vector in order to distinguish it from the estimated
trust vector below. Mathematically speaking, trust
evaluation is to estimate the trustworthiness of nodes.
Let s; be the estimated trust value of node i and vector
S = [s1, ..., sw] be the estimated trust vector. If 5; = 1,
we call node i trusted, which is a subjective concept,
while #; = 1 means node i is a good node, which is an
existing but unknown fact. The evaluation result is the
estimate s; rather than the real trust value ;.

Without centralized trusted authority, confidence
values may not be able to represent true states of the
target even from good nodes. For example, in a net-
work with active attackers, the target node that used
to be good may be compromised by bad nodes, or
because of communication constraints — the past
experience may not completely represent the current
behavior of the target. So ¢; is modeled as a random
variable depending on the real trust values of i and j.
The conditional probability Pr{c;|t;, ¢;] represents the
probability of the c-value being equal to ¢;; given ¢; and
. Trivially, if (i,j))¢ E, Pric; =0, =1. We
assume that all c-values are independent with each
other, i.e.,

Pr[c,~,-, Ckl|fi, Ly Ui t/] = Pr[c,~j|t,-, tj] . Pr[cultk, I/],

where 7, j, k,/ may not be distinct.
For a homogeneous distributed network, all nodes
are equal. There is no reason to specialize any
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particular node. Therefore, trust evaluation should
take all available trust information into account.
Suppose node i is the target of trust evaluation. A
natural approach is to aggregate all its neighbors’
opinions. This is called a local voting rule (local
policy), in which votes are neighbors’ c-values on the
target. However, a rule using naive summation is not a
good estimate, because of the following reasons:

1. Trustworthiness of voters: Opinions from nodes
with high (estimated) trust values are more cred-
ible, so they should carry larger weights. So the
voting rule should be a weighted sum.

2. Conflicting opinions between the target and voters:
Suppose j is one of the voters of target i and their
opinions on each other are conflicting, say ¢; = 1,
while ¢; = —1. In order to mitigate the effect of
such conflicting votes, we use effective votes, with

. L {224
Cii = ¢ji + acy (23)

s

where a is a constant. For simplicity we set a = 1.

Based on the above arguments, the local voting rule is
si = féusli € Ni) (24)

where f: R — [—1,1]. The trust value s; depends on
trust values of j’s neighbors and their votes on j.
Notice that s; is also evaluated at the same time, and
so are j°s neighbors. The whole evaluation therefore
evolves as local interactions iterate throughout the
network and Eq. (24) becomes

sitk + 1) = f(éus;(k)|j € N;). (25)

Thus trust evaluation is a dynamic process which

evolves with time.
Our interest is to study the evolution of the esti-

mated trust vector S and its values at equilibrium. The
motivation for trust management is to be able to
detect bad nodes and trust good nodes. It is important
to investigate whether S can correctly estimate the
trust vector T at steady state.

5.1. A Stochastic Threshold Rule

Guided by the voting rule in Eq. (25), we have
designed [48] a specific evaluation rule for analysis.
The target node is either trusted or distrusted as
decided by the threshold rule

1, ifmik)>n
stk +1) ={ o < o (26)
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where

mi(k) =Y &isi(k) (27)

JEN

is the weighted sum of the votes from i’s neighbors.

However, as we have discussed, uncertainty of
opinions by peers is inevitable for autonomous net-
works. Thus we introduce randomness into our rule.
Obviously, if the weighted sum m; is large, s; will take
value 1 with high probability and vice versa. If m; is
right on the threshold 7, it should choose 1 or — 1 with
equal probability. So our stochastic threshold rule is
defined as:

Prsi(k + 1) = 1|mi(k)] = S (28)
Zi(k)
e-blmi(k)-n)
Prlsi(k + 1) = —1im;(k)] = —Z (29)
where Z;(k) is the normalization factor
Zi(k) = ebmik)=n) . e=blm(k)=m) (30)

and b >0 is a constant representing the degree of
certainty. A small b represents a highly uncertain
scenario. By placing the value of s;(k + 1) into the right
hand sides of both Eqs (28) and (29), the stochastic
voting rule can be combined into one formula

ebsile+1)(mi(k)—n)
Z(k)

Our evaluation rule is essentially an updating rule.
In the autonomous environment, it is very difficult to
achieve synchrony. Thus the system should only use
asynchronous updates. The probability that node i is
chosen as the target is ¢;, and Y, ., ¢ = |.

Prlsi(k + 1)lm(k)] = (31)

5.1.1. Convergence

We have from [48]

Theorem 4.

For the stochastic voting rule defined by Eq. (31)
and using random asynchronous updates, if
b€ (0,00) and g; > 0,Vi € V, we have that

(a) the voting rule converges to the steady state with
a unique stationary disgx;ibution;
(b) the distribution 7g = # is the unique stationary

distribution.

Having derived the stationary distribution, we are
able to compute the probability of correct estimation.
Let vector SS be equal to the vector S at steady state.
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Then the probability of correct estimation, including
trusting good nodes and detecting bad nodes, is [48)

Peorreer = {Expected # of SS; = T}

e[ U=

where ||SS — T1|; = 3", |SS: — Til.
The stationary distribution
ebU(S)
Z
is called Gibbs distribution. The Gibbs distribution is

closely related to the local interactions of our voting
rule.

TS =

5.1.2. Markov Random Field

Re-write Eq. (31) with a small modification: replace m;
with Sj(k),j €N

Pr(si(k + 1)|S(k)] = Pr[si(k + 1)|s;(k).j € N].
(32)

Equation (32) in fact presents a Markov type
property, i.e., the probability of the estimated trust
value for a certain node i, s;, given the estimated trust
values of all the other nodes in the network, is the
same as the probability of s;, given only the estimated
trust values of the neighbors of i. As opposed to a
Markov chain, which has the Markov property with
respect to time, Eq. (32) displays the Markov property
in space. A distribution with such a property is called
a Markov random field (MRF) [51]. The well-known
Hammersley-Clifford theorem [51] proves the
equivalence between a MRF on a graph and the Gibbs
distribution.

5.2. Trust at Steady State

We have investigated properties of the estimated trust
values when the voting rule reaches the steady state.
At first, we introduce an important model that models
local interactions of magnets in physics — the Ising
model.

5.2.1. Ising Model and Spin Glasses

The Ising model [92] describes the interaction of
magnetic moments or ‘spins’ of particles, where some
particles seek to align with one another (ferro-
magnetism), while others try to anti-align (anti-
ferromagnetism). In the Ising model, s; is the
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orientation of the spin at particle i. 5;=1 or —1
indicates the spin at i is ‘up’ or ‘down’ respectively.
A Hamiltonian, or energy, for a configuration S is
given by

H(S) = — ZJ,'J‘S,‘S/‘ - MHZS,‘. (33)

0y); i

The first term represents the interaction between
spins. The second term represents the effect of the
external (applied) magnetic field. Then the probability
of configuration S is

e~ BH(S)

Pris] = —,
where T is the temperature and k is the Boltzmann
constant. In the Ising model, the local interaction
‘strengths’ J;'s are all equal to a constant J, which is
either 1 or — 1. In recent years, an extension of the
Ising model called the Edwards-Anderson model of
spin glasses is used to study local interactions with
independently random J; [63], which correspond to
the ¢; in our voting rule.

(34)

5.2.2. Virtuous Network

Now let us go back to our discussion of trust at steady
state. We start with the simplest case: a virtuous
network, where all nodes are good and they always
have full confidence on their neighbors, so 7 =1,
Vie V and c; = 1,V(i,j) € E. Then the stationary
distribution 7 is exactly the same as the one in the
Ising model with

1 mH
b—m and =—7c7;. (35)
Since all nodes are good with 1; = 1 and S§; is either 1
or — 1, the probability of correct estimation can be

written as

E[(SS)]+ N
Peorrect = ‘—zjv_,

where (SS) = 3,; SS;. In the terminology of phy-
sics, (S'S) is called the total magnetization. It is known
that when the external field H > 0, E[(SS)] is positive
and when H < 0, it is negative. According to (35), the
threshold 7 >0 corresponds to H <0, thus
E[(SS)] <0 and Pcorect < 0.5. Similarly when 7 is
negative, Poorrect > 0.5.

We used simulations to study the value of Peorrect
with respect to parameters n and b. The network
topology for all the simulations is a two-dimensional
lattice with periodic boundary. The number of nodes

J.S. Baras

P

Correct Probability P
o € <
2

——n= 1
0af
03}
0.2f
01t
% 02 YRR R DM I 12

Degree of Certainty b
Fig. 8. P, vs. bwithn < Oand 7y > 0.

0 02 04 06 (X} 1 1.2
Degree of Certainty b

Fig. 9. Peorrect Vs. b with p = 0.

is 100 and each takes four nearest nodes as neigh-
bors. We chose the lattice because most theoretical
results for the Ising model are for the 2-D lattice. In
Sec. V-B.3, we discuss the effect of network topology.

Figures 8 and 9 represent the probability of correct
estimation as a function of b for n being negative,
positive or zero. For n > 0 (the rule is chosen to be
conservative) the probability of correct estimation is
less than half. On the other hand, forp =0orn < 0, if
the value b is properly chosen (b > 0.6), Pcorrect is close
to 1. Therefore, the threshold 7 must be non-positive.

The other interesting property is the phase transi-
tion phenomenon observed in Fig. 9 when b is in
[0.4,0.5]. Phase transitions have been extensively stu-
died by physicists in the Ising model. If we look closer
into the interval when b < 0.4, the estimated trust
value of each node is changing all the time and looks
like random jumping. When b is above the critical
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Fig. 10. P, vs. b with link errors p...7 = 0.

value, all values converge steadily to 1. We call the
first interval the random phase, the second the
deterministic phase.

The discovery of phase transitions in our voting rule
is quite surprising given that the rule itself is very
simple. More importantly, the fact that a small change
in the parameter might result in a totally opposite
performance of our voting rule proves the necessity of
doing careful analysis before applying any distributed
algorithms.

As discussed, due to uncertainty and incomplete-
ness of trust evidence, c¢; should be modeled as a
random variable rather than being always 1. Let’s
assume c; € {—1,0, 1} and define the probability that
a good node has an incorrect opinion on its neighbors
as p,, then we have

pe = Pr[c; # tj|t; = 1]for all i good.
Thus in a virtuous network, the distribution of ¢y is

Pr(cj=1)=1-p,; Pr(cy=-1)=p.. (36)

We again investigate the phase transition. As shown
in Fig. 10, the phase transition still happens when
n = 0. However, as p, increases, the wrong votes with
value — 1 gradually destabilize the votes of value 1.
Thus it is harder to keep s;’s equal to 1, which means
that b, becomes larger and the system more probably
stays in the random phase given a high link error p,.
When p, is large enough (p, = 0.15), as shown, the
system always stays in random phase.

In [63), the authors theoretically studied phase
transitions between random and deterministic phases,
and introduced the replica symmetry method to solve
them analytically. Based on this method, very good
approximations of values, such as E[(SS)] and E[SS?],
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can be derived. The mathematical manipulation of the
replica symmetry method is beyond the scope of this
paper, but it is definitely a very good direction
for future research. Explicit expressions for these
values will provide even better guide for network
management.

5.2.3. Network Topology

We have shown [9-11,46] that network topology has
significant influence on trust evaluation. The network
model we used is the small-world model, which has its
roots in social systems [59]. In the past five years, there
has been substantial research on the small-world model
in various complex networks, such as Internet and
biological systems [91]. In [17], it was shown that the
PGP certificate graph has the small-world property.

Several small-world models have been proposed. In
our work we used the small-world model proposed by
Watts and Strogatz in [91] (WS model), because it is
relatively simple but retains the fundamental proper-
ties of practical networks. In the WS model, we start
from a ring lattice with N = 100 nodes and degree of
each node k = 4. Each edge is rewired at random so as
to create shortcuts with the percentage of shortcuts
being the parameter P,,. This construction models the
graph transition between regular lattices (Pn, = 0)
and chaotic random graphs (P,, = 1).

Our simulation results are shown in Fig. 11, with
different shortcut percentages P,,. We observe that
the performance improves as the model changes from
regular lattices to random graphs. For instance, as
b=04, P =0.55 for regular lattices, while
Peorrect = 0.85 for random graphs. In particular, the
most obvious improvement happens when P,
increase from 0.01 to 0.1, which corresponds to the
small-world topology. Therefore, a few shortcuts in
the network greatly improve the performance of the
trust evaluation rule.

Clearly the network topology has great influence on
the system performance. As future research, it is
interesting to study our trust evaluation rule under
real trust network topologies, and to investigate what
kind of network topology has the best performance in
terms of trust evaluation.

Although from a certain perspective stochastic
policies (or voting rules) may be the most appropriate
for the uncertain environment of wireless autonomous
networks, deterministic policies are also employed.
They lead to an even more transparent similarity with
problems recently considered in formation control
{45]. There are several choices for such deterministic
policies or voting rules. For instance, it can be the
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Fig. 11. The effect of network topology. P,, is the percentage of

shortcuts in WS small world model. The network with P, € [0.01,

0.1] has the small world property. p, = 0.1.

average, maximum or minimum of all votes. A rule we
have used [9-11,46)], updates the weighted average
of all neighbor votes followed by a threshold rule
on the steady state of trust values (defined as s; =
lim, . si(n)). This rule dependents on a system
parameter n as follows:

trusted, ifs; > 7

Node i is{ . .
neutral, ifs; <n
It can be interpreted as ‘local majority vote’.

In [9,11,46] we investigated the dynamics of ‘trust
spreading’ and in particular the time it takes to reach
the steady state, in other words how fast the trust
values converge. Using Perron-Frobenius theory [15],
we investigated and answered the question: what kind
of networks or which network topology induces faster
convergence? Small world models have two prominent
properties: high clustering coefficient and small aver-
age graph distance between node pairs. The latter is
the reason for faster convergence [9,11,46]. Our
examples demonstrate [9,11,46], that even the addition
of just 1% of the total edges, as shortcuts, induces the
convergence time to drop from 5000 rounds to 500
rounds — a ten-fold decrease! Thus trust is established
much faster in a small-world network than in a regular
lattice.

6. Cooperative Games in Networks

We have investigated cooperative games [32,35,75] in
networks in order to establish fundamental principles
for node collaboration in autonomous networks
[9,11,47,49]. Nodes play cooperative games with their
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neighbors iteratively. At each time step, two neigh-
boring nodes only play the game once. Cooperative
games [35] are normally represented in characteristic
function form which is a finite set N = {1, ..., N}, the
set of players, and a function (characteristic function)
v: 2¥ — R defined on all subsets (coalitions) of N with
v(@) = 0. We denote such a game as ' = (N, v). Define
S, a subset of N, as a coalition if all nodes in §
cooperate. Then v(S) is interpreted as the maximum
utility (payoff) S can get without the cooperation of
the rest of the players N\ S. In order to simplify our
analysis, we assumed the payoff only depends on the
interacting two parties. Suppose x;; is the payoff of i
from the game between i and j. Since games are played
on networks, x; # 0 only if i and j are neighbors.

The characteristic function of our cooperative
game is the summation of the payoffs from all
cooperative pairs

IOEDIE” (37)

i,jes

Based on this model, we have investigated stable
solutions for enforcing cooperation among nodes, and
proved two efficient methods: negotiation and trust
[9,11,47,48].

The main concern in cooperative games [35] is how
the total payoff from a partial or complete coopera-
tion of the players is divided among the players. A
payoff allocation is a vector x = (x;);cy in RY, where
each component x; is interpreted as the payoff allo-
cated to player i. We say that an allocation x is feasible
for a coalition Siff . ¢ xi < v(S). When we think of a
reasonable and stable payoff, the first thing that
comes to mind is a payoff that would give each coa-
lition at least as much as the coalition could enforce
itself without the support of the rest of the players. In
this case, players couldn’t get better payoffs if they
form separated coalitions than from the grand coali-
tion N. The set of all these payoff allocations of the
game I' = (N, v) is called its core, denoted C(T'), and is
the set of all n-vectors x satisfying:

x(S) > v(S) VSCN, (38)

x(N) = v(N), (39)

where x(S) = Y, gxiforall SC N.

Trust is a useful incentive for encouraging nodes to
collaborate. Nodes who refrain from cooperation get
lower trust value and will be eventually penalized
because other nodes tend to only cooperate with
highly trusted ones. The trust values of each node will
eventually influence its payoff. Let's assume, for
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node i, the loss of not cooperating with node j is a
nondecreasing function of xj;, because the more j
loses, the more effort f takes to reduce the trust value
of i. Denote the loss for i being noncooperative with J
as Iy = f{x;) and f{0) = 0. For simplicity, assume the
characteristic function is a linear combination of the
original payoff and the loss, which is shown as

V(S) =D xy— 3 flxi) (40)

i,j€S i€S, ¢S
The new game v is denoted as I'(N, V).

Theorem 5. If Vi,j, x;+ f(x;) >0, C(I') £ 0 and
X; = Y jen Xjj is a point in C(I").

For the proof we refer to [11]. Thus we have showed
that by introducing a trust mechanism, all nodes col-
laborate with their neighbors without any negotiation.
We further investigated the evolution of this iterated
cooperative game in [11]. We designed a game evolu-
tion algorithm, where nodes decide to cooperate with
their neighbors based on their payoffs and the trust-
worthiness of their neighbors at the previous time
instant. We showed that under certain simple condi-
tions on the forgiveness of nodes, the iterated game
converges to Nash equilibrium [11]. These results are
examples of constrained cooperative games, or con-
strained coalitional games, [32,75], which provide an
excellent framework for investigating the fundamental
tradeoffs between the benefits of cooperation vs. the
cost of cooperation in autonomic networks; see our
work in [47,49].

We have also performed simulation experiments
with our evolution algorithm. In the simulations, we
didn’t assume the condition that Vi, x; > 0, instead the
percentage of negative links is the simulation para-
meter. We can report that without this condition, our
iterated game with the trust scheme can still achieve
very good performance. Figure 12 shows that coop-
eration is highly promoted under the trust mechanism.

7. Semiring-Based Trust Evaluation Metrics

In this section we view the trust inference problem as
a generalized shortest path problem on a weighted
directed graph G(V, E) (trust graph) [85). The vertices
of the graph are the users/entities in the network. A
weighted edge from vertex i to vertex j corresponds to
the opinion that entity i, also referred to as the issuer,
has about entity j, also referred to as the target. The
weight function is /(i,j) : ¥V x ¥—S, where S is the
opinion space.

Each opinion consists of two numbers: the rrust
value, and the confidence value. The former corresponds
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Fig. 12. Percentage of cooperation among nodes in steady states vs.
initial percentage of non-cooperative links.

to the issuer’s estimate of the target’s trustworthiness.
For example, a high trust value may mean that the
target is one of the good users, or that the target is able
to give high quality location information, or that a
digital certificate issued for the target’s public key is
believed to be correct. On the other hand, the con-
fidence value corresponds to the accuracy of the trust
value assignment. A high confidence value means that
the target has passed a large number of tests that the
issuer has set, or that the issuer has interacted with the
target for a long time, and no evidence of malicious
behavior has appeared.

Nodes assign their opinions based on local obser-
vations. For example, each node may be equipped
with a mechanism that monitors neighbors for evi-
dence of malicious behavior, as in [58]. Alternatively,
two users may come in close contact and visually
identify each other, or exchange public keys, as sug-
gested in [18]. In any case, the input to the system is
local: however, extant pieces of evidence based on,
e.g., previous interactions with no longer neighboring
nodes can also be taken into account for the final
decision. This would come into play when two nodes
that have met in the past need now to make a trust
decision for each other. Of course, the confidence
value for such evidence would diminish over time. One
consequence of the locality of evidence gathering is
that the trust graph initially overlaps with the physical
topology graph: The nodes are obviously the same,
and the edges are also the same if the trust weights are
not taken into account. As nodes move, opinions for
old neighbors are preserved, so the trust graph will
have more edges than the topology graph. As time
goes by, these old opinions fade away, and so do the
corresponding edges.
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In the framework described [81,84,85], two versions
of the trust inference problem can be formalized. The
first is finding the trust-confidence value that a source
node A should assign to a destination node B, based
on the intermediate nodes’ trust-confidence values.
Viewed as a generalized shortest path problem, it
amounts to finding the generalized distance between
nodes A and B. The second is finding the most trusted
path between nodes A and B. That is, find a sequ-
ence of nodes {vo = A, v, ..., v = B) : (vi,vi+1) € E,
0 < i < k — | that has the highest aggregate trust value
among all trust paths starting at A and ending at B.

The core of our approach is the two operators used
to combine opinions: One operator (denoted ®)
combines opinions along a path, i.e. A’s opinion for B
is combined with B’s opinion for C into one indirect
opinion that A should have for C, based on B’s
recommendation. The other operator (denoted &)
combines opinions across paths, i.e. A’s indirect opi-
nion for X through path p; is combined with A’s
indirect opinion for X through path p; into one
aggregate opinion. Then, these operators can be used
in a general framework for solving path problems in
graphs, provided they satisfy certain mathematical
properties, i.e. form an algebraic structure called a
semiring.

7.1. Semirings for Trust

For a more complete survey of the issues briefly
exposed here, see Rote [72].

A semiring is an algebraic structure (S, @©,®),
where S is a set, and &, ® are binary operators with
the following properties (a, b,c € S):

e @ is commutative, associative, with a neutral ele-
ment ©® € S.

e ® is associative, with a neutral element ® € S, and
© as an absorbing element.

e ® distributes over @.

A semiring (S, @, ®) with a partial order relation <
that is monotone with respect to both operators is
called an ordered semiring (S, &, ® , X):

a<bandd <b=add b ¥
anda®d <b¥b

Based on intuitive concepts about trust establish-
ment, we can expect the binary operators to have
certain properties in addition to those required by the
semiring structure.

Since an opinion should deteriorate along a path,
we require the following for the ® operator (a,b € S):

a®b=<ab
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where < is the partial order relation.

Regarding aggregation across paths with the &
operator, we generally expect that opinion quality will
improve, since we have multiple opinions. If the opi-
nions disagree, the more confident one will weigh
heavier. Similar to the ® operator, we require that the
@ operator satisfies (a,b € S):

a®b>ab

7.1.1. Path Semiring

In our first semiring [81,85], the opinion space is
S=1[0,1] x [0,1]. Our choices for the ® and &
operators are as follows:

(tiks cik) ® (tujs Ckj) = (tictij» CikChj) (41)

(@) i >

iy

(ﬁ‘,cﬁ‘)@(ﬁ,t‘?): (’T’CZZ) lfcf;'<c52
() ifd =c

(42)

where (#, c}') is the opinion that i has formed about j
along the path pi,and £ = max(f, u

Since both the trust and the conf[ dence values are in
the [0, 1] interval, they both decrease when aggregated
along a path. When opinions are aggregated across
paths, the one with the highest confidence prevails. If
the two opinions have equal confidences but different
trust values, we pick the one with the highest trust
value. We could have also picked the lowest trust
value; the choice depends on the desired semantics of
the application.

This semiring essentially computes the trust
distance along the most confident trust path to the

destination.

7.1.2. Distance Semiring

Our second proposal [81,85], the distance semiring, is
based on the Expectation semiring of Eisner [33], used
for speech/language processing:

(alybl) ® (a29 b2) = (alb2 + azbltble)
(a1,b1) ® (a2,b02) = (a1 + a2, b1 + by)

The opinion space is S = [0,00] x [0, 1]. Before
using this semiring, the pair (trust, confidence)= (¢, c)
is mapped to the weight (c/t, ¢). The motivation for
this mapping becomes clear when we describe its effect
on the results of the operators. The binary operators
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are then applied to this weight, and the result is
mapped back to a (trust, confidence) pair. For sim-
plicity, we only show the final result without the
intermediate mappings.

. : ; 1
(tik, cik) ® (trjs €j) — T I ikl
ety

(5.9)e(5.4) - |(52L g +q

T

So, when aggregating along a path, both the trust
and the confidence decrease. The component trust
values are combined like parallel resistors. When
aggregating across paths, the total trust value is the
weighted harmonic average of the components, with
weights their confidence values.

The algorithm of Mohri [60], computes the @-sum
of all path weights from a designated node s to all
other nodes in the trust graph G = (¥, E). This is an
extension to Dijkstra’s algorithm [29). The crucial
parameter of the topology is the number of paths from
the source to the other nodes [60). So, the more sparse
the network, the more efficient the algorithm. The
algorithm can be executed in a distributed fashion
with local data exchanges only.

Thus what we want to compute is the following
semiring-summation over all the paths p from s to d.

ta =P 2
p
We can break up these paths according to their last link:

g = @ tse @ wik,d)

keNy

where N, are the in-neighbors of d: the users that have a
direct opinion about d. If we now let d vary over the set
of all users, t,; becomes a vector, and we can write:

I=1w (43)

where W is the matrix of direct opinions. So, the result
of the trust computation for User s (s’s indirect opi-
nions about everybody else), is the eigenvector of W
associated with @ (the neutral element for ®, which in
our semiring is also the maximum element). So, we
have formulated the problem of computing indirect
opinions as an eigenvector problem. Perron-Frobe-
nius theory for semirings (see e.g. Baccelli, Cohen,
Olsder, and Quadrat [6, Thm 3.23)) tells us that if W is
irreducible (i.e. the graph is strongly connected, which
we assume here), then there exists exactly one eigen-
value, but possibly many eigenvectors. This eigen-
value ) is equal to the maximum mean circuit weight
of the graph.
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7.2. Attack Resistance

Suppose now that there exists an Attacker who wants
to manipulate the trust computation, i.e. cause User s
to compute false opinions about others. The Attacker
can change the opinion on a single edge, which would
amount to tricking a user into issuing a false opinion,
or creating a forged opinion [84]. We want to see what
is the maximum damage the Attacker can cause. This
is equivalent to asking what single entry change in the
matrix W causes the largest change in the eigenvector.
The Attacker causes W to become W™, so t becomes ¢*.
The damage is equal to ||t — *||, where || - || is a suit-
able (e.g. the L, or the L) norm.

In what follows [84] we limit our attention to a
particular pair s-d. We will examine which edge the
Attacker will attack, and characterize the resilience of
the s-d trust computation to such single edge attacks.

The problem just described is very similar to com-
putation of tolerances for edges of a network. In short,
if p* is an optimal path from s to d, the upper (lower)
tolerance of an edge e with respect to p* is the largest
(smallest) weight of edge e that preserves the optim-
ality of p*. The most vital edge is defined as the edge
that, if deleted, causes the greatest deterioration in the
optimal path weight. We have [84]

Theorem 6 (Semiring Tolerances). Let OPT* be the set
of @-optimal paths in G = (V, E). Instead of lower
and upper tolerances, a, and 3, now mean $-minimal
and @©-maximal values of an edge e € E that preserve
the &-optimality of some path in OPT".

1. If dp* € OPT* : e € p*, then

* a,= @ w(p) | @w(p*\ e). Moreover,
pis~d
w(e) — @
if 3p* € OPT* : e ¢ p*, then a, =@
e 3, =0.

2. If Zp* € OPT :e€ p*, then

e o, = ©. It suffices that 3p* € OPT" : e¢ p*.

ch=wiho| @ wo)
p:s~d
w(e) — @

The operator @ is the inverse of ®. Since we are
dealing with semirings, © may not always be defined,
as in the case of ® = min. In these cases, a=bQc

e L P A R e S e T N S R S S




128

means that a,b, and ¢ are such that the equality
a ® ¢ = b holds. Theorem 6 holds for the two specific
problems mentioned above.

The benefit of this generalization is that we can
directly apply it to semirings where & is max or min,
i.e. where there is some optimization involved. Our
path semiring is (&, ® , @, ®) = (max, -,0,1), so we
can directly apply Theorem 6. Lower tolerance is a,
upper tolerance is (..

1. If 3p* € OPT* : e € p*, then

w

° o, = ;v-é% (max,()—ow(p)). Moreover, if
Jp* € OPT* : e ¢ p*, then a, = 0.
L] ﬁe = 1.

2. If Fp* € OPT" : e € p*, then

o o, = 0. It suffices that Ip* € OPT* : ¢ ¢ p*.
* 3= Wﬁ%ﬁa

If the user d, for which s is computing the indirect
opinion, is a good user, then the Attacker will want to
reduce the computed opinion. In that case, the link to
be attacked is the one with the smallest lower toler-
ance a,. The attack will consist of setting the weight of
the edge at 0. If, on the other hand, 4 is a bad user,
then the Attacker will try to increase the computed
indirect opinion. So, he will attack the edge with the
largest upper tolerance, and set its weight to 1. For
detailed results see [84].

8. Cooperation and Reputations in
Autonomic Networks

With each network, there is an associated protocol
which is the way that the network is supposed to
operate. The users can choose between participating
in the operation of the network or not and, if yes, to
what degree (all the time? some of the time?). There
are usually pros and cons from the viewpoint of the
individual user, so, in general some will decide to
participate and some not. For example, in the case
of a wireless ad-hoc network, participation means
forwarding other users’ packets. The incentive is the
expectation the user has: Namely, that other users will
also forward his packets. The disincentive is that the
very action of transmitting data reduces a user’s
available energy, which is scarce in such networks.
Moreover, the user wastes his bandwidth, which he
could use to forward his own data.

Note that the benefit of cooperation is somewhat
more abstract, global, and indirect than the cost. So, it
could be argued that some of the Good users may
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behave selfishly, and as a result will not take very
seriously the incentive that a globally desirable out-
come presents. But we consider that users are either
Good or Bad, not selfish or unselfish. In particular,
all Good nodes behave equally unselfishly in the
sense that, in principle, they value the network
benefit more than their individual cost. This will be
further explained in the discussion on the user
model (Section 8.1), but it should not be taken to
mean that Good users unconditionally cooperate. If,
for instance, none of a Good user’s neighbors coop-
erate (e.g. they do not forward his packets), then the
Good user will stop cooperating despite being Good.

8.1. Malicious and Legitimate User Model

The network is modeled as an undirected graph
G = (V, L), where each node in V corresponds to one
user. An edge (i,j) € L means that there is a commu-
nication link between the users corresponding to nodes
i and j. The neighbors of user 7, denoted N, is the set:

N;={je V|(ij) € L}. (44)

We denote the set of Malicious (Bad) users by Vp,
and the set of Benign (Good) users by Fg. It holds that
Ve Ve =0and VU Vg = V. We will be using the
term type of a player for this property (being Good
or Bad).

Users have a choice [82,83,86] between two actions:
C (for Cooperate), and D (for Defect). When all users
choose their actions, each user receives a payoff that
depends on three things: His own action, his neigh-
bors’ actions, and his own type (but not his neighbors’
types). The payoff is decomposed as a sum of payofTs,
one for each link. Each term of the sum depends on
the player’s own action (which is the same for each
link that the player is part of), and the action and type
of his neighbor along that link. The payoff of user i is
denoted by R;(a;|¢;), when #'s action is a; and 's type is
t;. We extend and slightly abuse this notation to
denote by Ri(aaj|t;) the payoff for i when j is a
neighbor of i and ;s action is @;. So, the decomposition
of i’s payoff can be written as:

Ri(ailt) =Y Riaajt:) (45)
JEN;

We assume there are no links between any two Bad
users. The Bad users are supposed to be able to
communicate and coordinate perfectly; hence, there is
no need to restrict their interaction by modeling it in
these terms. Moreover, the Bad users know exactly
both the topology and the type of each user in the
network. Good users only know their local topology,

Bl i
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Bad
c D
Good € N-E E-N -E E
D 0,-E 0,0
Good
6! D
Good € N—-E, N-E -E 0 |
DY —o-% 0,0 |

Fig. 13. The two games that can take place on a link: Good vs. Bad
and Good vs. Good.

e.g., how many neighbors they have and what each
one of them plays, but not their types.

The payoffs are shown in table form in Fig. 13 for
the two pairs of types that can arise (Good versus
Good, and Good versus Bad). We consider [82,83,86]
that the game is played repeatedly with an infinite
horizon, and time is divided in rounds t = 1,2,3, ....
Actions and payoffs of round ¢ are denoted with a
superscript #: a} and R}. The objective of the players in
a repeated game is to maximize a function of the
sequence of payoffs that they accumulate over the
infinite course of the game. We have considered
[82,83,86] the average of the payoffs to be the payoff
for the whole game:

&
Ri=Jim 73 K

In repeated games, the players are allowed to have
full or partial memory of the past actions. Here, we
allow the Bad users to have all information about the
past (their own moves, as well as everybody else’s
moves since the first round). On the other hand, the
Good users follow a fictitious play process, that is,
they assume that each of their neighbors chooses his
actions according to a fixed probability distribution
(Bernoulli in this case, since there are only two actions
available: C and D). So, at each round they are
choosing the action that maximizes their payoff given
the estimates they have for each of their neighbors’
strategies. We denote by g; the estimated probability
that j will play C in round 7 + 1, based on ;s actions in
rounds 1, ...,¢.

Assume that ¢ rounds have been completed, and
Good user i is contemplating his move in round ¢ + 1.
His expected payoff for each of the two actions is [82]

ER(CIG)=N-) _qj~INi|-E
2y (46)
ER;(D|G) = 0.
So, in order to decide what to play, user i has to
compare the expected payoff that each action will
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bring. Action C will be chosen if and only if
ER;(C|G) > ER;(D|G), i.e. iff

E
g; 2 |Nil<- (47)

8.2. Searching for a Nash Equilibrium

In game theory, the solution concept we are dealing
with most frequently is the Nash Equilibrium. In our
case, we have already restricted the Good players’
strategies to fictitious play, as shown in Eq. (47), so
the Nash Equilibrium will be restricted in this sense.
More formally, the Nash Equilibrium in our case
would be a vector § € [0,1]"", where g; will be the
frequency with which user i plays C. The subvector §g
corresponding to the Good users will contain only 0Os
and Is, according to whether Eq. (47) is false or true.
For example, if Eq. (47) is false for user i, then the
element of § will be zero. The subvector §p cor-
responding to the Bad users will contain values in [0,1]
such that any other value in element i would not
increase the payoff of Bad user i. The payoff of Bad
user i when he is playing C with frequency g; is [82]:

Ri(qi|B) = (E— Ng;)|{j € N; : g; = 1}| (48)

Note that since a Bad user only has Good neighbors,
and Good users only play always C or always D, the g;
(j € N,) will all be either 0 or 1.

Let us look at the case of a single Bad player in the
whole network. Since no other Bad players exist, the
choice of the Bad user will only affect his own payoff.
We will see with what frequency he has to play C in
order to maximize his payoff, in a tree topology where
he is at the root.

Assume that the Bad user — labeled user 0 — has k
neighbors, labeled 1, ..., k. We also assume that all
the Good users will start by playing C, and will only
change to D if they are forced by the Bad user.
Applying Eq. (47) for each neighbor, we see that each
expects to see a different sum of frequencies from his
own neighbors in order to keep playing C. User i
expects to see a sum of frequencies that is at least
£|Ny|. Since all of /s neighbors except user 0 are
Good, they will at least start by playing C, so user i
will see a sum of frequencies equal to [N — 1+ go
(go is the frequency with which the Bad user 0 is
playing C). So, in order to make user i/ continue
playing C, the Bad user should play C with frequency

- e ; " \
g0 2 ZINl = (IN| - )= 1= NIl -3) =1,
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which is decreasing with | V|, since E < N. We call this
quantity the threshold t;:

Definition 3. The threshold of a Good user with b Bad
neighbors and g Good neighbors is the total frequency
of Cs that his Bad neighbors need to play, so that he
keeps playing C assuming that all his Good neighbors
play C.

Without loss of generality, we assume that the Bad
user’s neighbors are labeled in increasing order of
;i) <t <...<ty. By choosing go =t;, the Bad
user guarantees that his neighbors 1, ..., j will play C,
and the rest D. His payoff as a function of ¢ is
Ro(4|B) = J(E — Nt)).

The aim of the Bad user is to find the value of ¢; that
maximizes the payoff. For two values of ¢, say # and
tm With / < m, the payoff comparison boils down to:

Ry(t/|B) > Ro(tm|B) > I(E~ Nt;) > m(E— Nty,)
I E

/
Stm>—4+(1-—)<
m m

N (50)

When the Bad user chooses a value for gy, some of
his neighbors will play C and some D. The ones who
play D may cause their own neighbors to start playing
D, and so on. However, the Ds cannot, by propagat-
ing, influence other neighbors of the Bad user: a
consequence of the tree topology.

What happens when there are multiple Bad users in
a general topology? We will examine the circum-
stances under which the maximization of the total sum
of Bad users’ payoff is achieved through the local
maximization of each Bad user’s payoff. This local
maximization is done as we have just described in
Eq. (50). We call ‘Uncoupled Case’ the situation

described by these circumstances.

Definition 4. The rolerance of a Good user is the lar-
gest number of his one-hop neighbors that can play D,
before he starts playing D himself.

The tolerance of a Good user is a function of £. To
compute the tolerance of user i, assume that n of his

neighbors play D, and |N;| — n play C. From Eq. (47),

for user i to play C the following needs to hold:
: e O i E 2
| N n>|Nj|—<< n<|N, '] = - (51)
* 'N N

The tolerance is the largest integer n for which this
equation holds, i.e., nmax = || Ni|(1 — £)].

All we have to do is to make sure that Good players
who start playing D do not cause, recursively, ‘too
many’ other Good users to play D so that the payofTs of
other Bad users is affected. This will happen if and only
if the nodes that play D because of a Bad user B, are
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separated by at least two nodes (three hops) from the
nodes that play D because of any other Bad user. In
other words, there needs to be a layer of nodes at least
two nodes deep that have large enough tolerances so
that they will not start playing D themselves. Since, for
a fixed ﬁ the tolerance of a user depends only on the
number of his neighbors, nodes with a high degree that
are connected to each other would provide the highest
resistance to playing D. In graph theoretic terms, the
greatest ‘aggregate’ tolerance is achieved, for a given
number of nodes, when the nodes are connected in a
clique. For further details we refer to [82].
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