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CONTINUOUS AND DISCRETE INVERSE
CONDUCTIVITY PROBLEMS

JOHN BARAS, CARLOS BERENSTEIN, and FRANKLIN GAVILANEZ

ABsTRACT. Tomography using CT scans and MRI scans is now well-known
as a medical diagnostic tool which allows for detection of tumors and other
abnormalities in a noninvasive way, providing very detailed images of the in-
side of the body using low dosage X-rays and magnetic fields. T hey have both
also been used for determination of material defects in moderate size objects.
In medical and other applications they complement conventional tomography.
There are many situations where one wants to monitor the electrical conduc-
tivity of different portions of an object, for instance, to find out whether a
metal object, possibly large, has invisible cracks. This kind of tomography,
usually called Electrical Impedance Tomography or EIT, has also medical ap-
plications like monitoring of blood flow. While CT and MRI are related to
Euclidean geometry, EIT is closely related to hyperbolic gcometry. A question
that has arisen in the recent past is whether there is similar “tomographic”
method to monitor the “health” of networks. Our objective is to explain how
EIT ideas can in fact effectively be used in this context.

1. Introduction and preliminaries

Networks have become ubiquitous in present society and thus it has become
important to avoid and detect disruptions. In particular, it is important to prevent
malicious intruders from disrupting them. To achieve this sufficiently early, it
is essential to count on a mathematical model that can allow early detection of
attacks to the network. The mathematical tool that we consider to accomplish
the early detection of disruptions is based on the use of tomographic ideas. One
of the questions we are considering is how to find out whether an attack against
the network by traffic overload is taking place by monitoring traffic only at the
periphery of the network (input-output map), and hence, the use of a tomographic
approach.
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5 with some new results on this last subject. The key ingredient is the attempt to
understand what happens in a network from “boundary measurements”, that is, to
determine whether all the nodes and routers are working or not and also measure
congestion in the links between nodes by means of introducing test packets (ICMP
packets) in the “external” nodes, that is, the routers. The question of finding out
whether there are nodes that are in working order is a classical question in graph
theory. For networks, it is also interesting to try to predict future problems due to
congestion. (Note that nodes could fail to work for other reasons than congestion
on the links starting at a given node.) This requires to monitor also traffic inten-
sity, also known as load, congestion, etc., in different contexts. There is another
analogy to mathematical tomography that arose independently and maybe closer
to the consideration of this question in the context of electrical networks. Curtis
and Morrow have done very interesting work in this context, both theoretical and
in simulations, see, for instance, {20] and [19]. Another analogy in the same di-
rection arises when we consider very large networks, as the internet, which could
be considered as the discretization of an underlying continuous model. In this way,
we can sce the analogy with the well-known inverse conductivity problem and we
could try to profit from the large body of mathematical research in this area. The
analogy with this particular inverse problem indicates that if one were to pursue
this “abstract” approach the “correct” geometry is closer to be hyperbolic than to
be Euclidean (7). On the other hand, as of this moment, we have found that those
tomographic analogies are more useful for providing directions of research and meth-
ods to consider these problems than providing an exact correspondence between the
two phenomena. It is in this context that [9] modelled “internet tomography” as an
inverse Dirichlet-to-Neumann problem for a graph with weights. In this situation,
one can prove that characteristics of the graph, namely, its connectivity and the
traffic along links can be uniquely determined by boundary-value measurements as
shown in [9] which is the natural analogue of the continuous inverse conductivity
problem.

Among the questions that arise naturally using the inverse conductivity prob-
lem as a guiding model there are a number of questions that have been previously
addressed using other points of view. Namely, the problems already addressed in
[17] for internet tomography are:

1. Link-level inference, in other words link-level parameter estimation based on
end-to-end path-level traffic measurements. Examples of this are unicast inference
of link loss rates, unicast inference of link delay distributions, topology identifica-
tion, loss rates by using multicast probing and so on.

2. Path-level inference (origin-destination tomography OD) in other words
sender-receiver path-level traffic intensity estimation based on link-level traffic mea-
surements. One example of this is time-varying OD traffic matrix estimation.

We would like to conclude by thanking the editors and the referee for his useful
comments.

2. The Radon transform in R?

Let w € S!, then w = (cos6.sin @), and take p € R. The locus of equation
T - w = p represents the line [ that is perpendicular to the line r passing through
the origin and forming an angle 6 with the real line R. If B is the intersection of [
and r, the euclidean distance d (signed) from B = pw to the origin is equal to p.
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One can similarly define the Radon transform in R™ and verify that the prop-
erties (2.5) and (2.6) extend to this case. In particular for the Laplacian A in
R™,
0*Rf(w,p)

op?
where, for each direction w € S™~! the right hand side is the Laplace operator in
dimension 1. Note that in general

(2.7) R(Af) =

0?Rf(w.p)

op?
As a consequence, if the function f depends also on time, and (J,, represents the
wave operator in n dimensions we conclude that

RO.f =0:Rf.

therefore, the Radon transform in n dimensions is localizable if and only if the
wave equation is localizable. Fixing w € S™~!, one can express this identity by

. . . 2,

saying that the Radon transform interwines the wave operator OJ,, = A — %7 in
. . . 2 2, . .

n—dimensions with the wave operator (0; = z%f - 3%5 in 1—space dimension. It

follows that the Radon transform can not be localized in even dimensions [10].
In spite of this observation one can obtain an almost localization of the Radon
transform in R2. The key elements is the use of wavelets as it will be described
in the next section. Meanwhile, for the sake of completeness we remind the reader
of the standard inversion formula for the Radon transform in R?. It depends on
the following identity, usually called the Fourier slice theorem. Namely, writing the
Fourier transform Fy(f) of a nice function f in R? in polar coordinates (s,w) we
have

R(Af)(w,p) = (@} + - +uw})

(2.8) flx)e ™ Tdy = / Rf(w.p)e **Pdp, xeR?
R2 —o0

or, in a more concise form,

Fy(f) = F(Rf)
where, clearly, F; stands for the 2-dimensional Fourier transform and F stands for
the 1-dimensional Fourier transform in the variable p which provides one standard
inversion formula for the Radon transform
(2.9) f = F; 'F(Rf)
There is another inversion formula that has a number of advantages for us, and
we proceed to explain it now. To simplify we work in X = S(R?), the Schwartz
space of functions f and ¥ = S(S! x R) the Schwartz space of functions g. Let
fi, f2€ X and g1, 92 € Y, and (f1, f2)y . (91, 92), the inner products in X and Y’
respectively, then because of the lincarity of the operator R, we write the equation
that defines R*, the adjoint operator of R

(2.10) (Rf,9)y = (f.R"g)x
The explicit expression for R*g is given by

(2.11) / glw,w - r)dw = g
J 81
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following [8], given a “mother” wavelet ¥ € Ly(R) N Li(R) and f € Ly(R), we
define the wavelet transform of f as

) , e — t—b_dt
(3.3) Wy fla,b) = f) ¥(——)—= =< f. D, Oy(t) >,
J o a "Va
b,a € R, a > 0, where, for a function g and b € R we let g,(t) = g(t — b).
One requires that the “mother” wavelet ¥ to be oscillatory, i.e. ff; V(r)dr =
0. In fact, one assumes stronger condition

]

e kb(a]‘h
(3.4) Cy = ——dg < 00,

= 1<

called the admissibility condition. The eldl‘lliu‘%il')ilit'..\' condition is satistied when W
has several vanishing moments,i.e., for 0 < k <

/ 2% U(z)de =0

The functions D, ¥, are called the wavelets
The function f can be reconstructed from its wavelet transform by means of
the “resolution identity” formula

'II = r‘;1 / / 24 ||{ ’Ir) h( ;'-'I-z i)raqj-’;[rjdf

where C'y < 00 since ¥ € L{(R).We refer to [27] for the general theory of wavelets.
Proposition 1 explains how to use wavelets to obtain (almost) localization.

PROPOSITION 1. [10] Let n be an even integer, and h € L3(R) a function with

compact support such that for some integer m > 0 h is n+m-1 times differentiable
and satisfies
~ (k)
1. v7h (v) € Li(R)NLa(R) for 0< j <m, 0€< k< m+n—1
2. 0 \x t Ih(t)dt = 0 for 0<j < m+1, ie., h has m+1 vanishing moments

-n—m-+1

I " "h(t) = ot

)as |t| — oo

and

t n+m~11 l—nh c Lz(]R)

The fact that I '~"h(t) = o(|t|""™") as |t| — oo tells us that I 1-"h
decays as [t| """ and therefore, it does a good localization job.

For practical purposes, the continuos wavelet transform, CWT, is discretized
and the discrete wavelet transform, DWT, is obtained. In order to discretize it,
consider m,n € Z and the values a,b that appear in Wy f(a,b) are restricted to
only discrete values a = a', b = nb,al’, a, > 1, b, > 1 fixed. (The fact that
a, > 1, b, > 1 it rcally does not matter because m,n can be negative). The
discrete wavelet transform DWT of f is defined as

(33) W) =™ [ 0¥, o)
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PROPOSITION 3. Let ¥ be a separable 2-dimensional wavelet, i.e.,

U(z) = U(x))V%(x3), == (x1,22)

where for i=1,2 ’\I/(’y)’ < Ci(1 + |9))7! for all v € R. Defining the family of the

one-dimensional functions {p,}.est by

5o (1) = 5 1B () W2 (wa). = (n2)
le p,= Fl_l(pt.). Then for every f € L(R?) N Ly(R?),

(We f)(a.x) =a"1/? /3 (W, R.f)(a.x w)dw

The proposition shows that the wavelet transform of a function f(r) given any
mother wavelet and at any scale can be obtained by backprojecting the wavelets
transform of the Radon transform of f using wavelets that vary with each angle,
the argument of w, but which are admissible for each angle, i.e. Cy < oc.

4. The hyperbolic Radon transform and EIT

In this section we discuss the Radon transform on the hyperbolic plane, state
some formulae analogous to the ones that were given in section 2 to invert the
Radon transform. The backprojection inversion formula is one of them, and later
we will see how the hyperbolic Radon transform is related to electric impedance
tomography (EIT).

In [6] and [7] it is shown that the hyperbolic Radon transform is involved in
the problem of reconstructing the conductivity distribution on a plate by using
electrical impedance tomography EIT.

4.1. The hyperbolic Radon transform. Let D be the unit disk of the
complex plane, i.e. D = {z € C/ |z| < 1}. In D, a Riemannian structure is defined
through the hyperbolic metric of arc-length ds given by

with dz the Euclidean distance in R*, and th !I"-E"""-"-gi'- distanc

d(z,w) = arcsin h ( |z — wl )

(1—J2)1/2(1 — |w|*)1/2

The set of lines that are diameters of D, and the set of intersections between the Eu-
clidean circles and D such that the resultant lines (intersections) are perpendicular
to the boundary 0D of D are the geodesics or h-lines for the metric (4.1).

If z € D is expressed in polar coordinates by (w,r) where w = z/| 2], r =
d(z,0), then the metric (4.1) becomes

ds? = dr? + sinh? r du?
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where dm(w) is the measure for the hyperbolic area which in polar coordinates is
given by
dm = sinh rdrdw

Recall the formula for R* R can be written as

2
RRf =],

The analogous result for the hyperbolic Radon transform Ry is given by
1

wsinht

In [7] and [8] it is shown that by letting f S(t) = cotht — 1, we obtain

(4.5) RyRyf =k« f, where k(t) =

(4.6) ;—ﬂAH S*y RYyRy =1,

the analogue to the backprojection inversion formula given before.
The Fourier transform in the hyperbolic disk D for a radial function k is given
by

~

k(M) = 277/ k(t)P;x—1/2(cosht)sinhtdt, for A€ R
0

where P,(r) is the Legendre function if index v. If m is another radial function
then

————

(kxm)(A) = E(A)m())

as we know it, [8]. It follows that as ;(A) # 0 VX € R then the operator Ry, which
takes f to k xy f, is injective.

4.2. Electrical impedance tomography (EIT). EIT has a number of ap-
plications to medicine and non-destructive evaluation. For instance, to determine
the existence and lengths of internal cracks in the wings of an airplane. These
applications are related to the inverse problem which is formulated now.

Let D the unit disk in R? and 3 an strictly positive function defined on D which
is unknown and represents the conductivity distribution inside the disk. When
currents are introduced at the boundary 8D, let ¥ be a given integrable function
representing such currents and such that the average of the values of ¥ on 8D is
zero

Yds =0
oD
and consider the boundary problem with Neumann conditions
div(Bgrad u) =0, in D
B =¥, on 9D

where ¥ is given and n is the outer unit normal vector on 8D. This problem has
a unique solution u where the uniqueness of u is up to an additive constant. The
function u is the potential distribution on D so grad u is the electrical field. The
variation of u on dD has to correspond to the known values of ¥ on 9D, then, if s
represents the tangent vector to 9D, it follows that the tangential derivative of u,
g—';, depends linearly on ¥. So, for ¥ given and 3, the unknown conductivity, there
exists a solution u. This defines a mapping

(4.7)
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dU satisfies
A(BU) = —{grad 63, grad U), in D
g—g = —~(83)¥, on 8D
and since ¥ represents the input of the currents and they can be arbitrarily chosen
with the only constraint
/ Yds =0
8D

then the input ¥, can be well approximated by linear combination of dipoles where
a dipole at a point w € 8D is given by —7r6%6w, & the Dirac delta at w. It follows
that the problem (4.9) for the dipole (input) —w%éw at w becomes

{ AU, =0, in D

Uy _ 8 ;
Fu = —m5.0w, on 0D

and the solution U,, of (4.10) has level curves which are arcs of circles that pass
through w and are perpendicular to @D. Therefore, the level curves of U, are
exactly the geodesics given by the hyperbolic metric. At this point, the hyperbolic
Radon transform is involved in the problem and can be used to solve it.

In (7] is shown that the linearized problem can in fact be described explicitly
in the context of hyperbolic gcometry using Ry and a radial convolution operator
with kernel k. Let k& be given by

_cosh™?(t) — 3cosh™*(¢)

(4.10)

k(t) =
(t) -
then, as the boundary data function u = a(gg) defined on the space of the geodesics

in D, the relation between §3 and y can be shown to be
Ru(k xy 68) = p
and because of the backprojection operator, one obtains
RyRy(k xy 03) = Ryp
hence

(4.11) = An(S u (Rigw) = ko 68

Computing the hyperbolic Fourier transform of k. k, which can be done exactly,
it can be seen that %()\) # 0, VA € R, and consequently, the convolution operator
with kernel or symbol k, k*y is invertible. Formula (4.11) requires to invert the
convolution operator of symbol k to compute §3. Barber and Brown [2] proposed
an approximate inversion and Santosa and Vogelius [32] shows that the inversion
formula suggested by [2] is a generalized radon transform.

To numerically implement the reconstruction of §3 it is necessary to invert
the geodesic Radon transform and perform a deconvolution. The difficulty of nu-
merically implementing (4.11) lies in the fact that it is complicated to numerically
implement a two-dimensional non-Euclidean convolution on the hyperbolic space.
In [26], Lissianoi and Ponomarev focus on the problem of numerically inverting the
geodesic Radon transform by developing an algorithm, and the problem regarding
the deconvolution is also considered there. For this purpose, they consider the
inversion formula (4.6) and use it to derive an inversion formula for the geodesic
Radon transform that it is more suitable for computations. The interesting open
problem here is to be able to define a class of “discrete hyperbolic wavelets” that
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only one neighboring node which is the interior node that has unit distance from
p- If a line segment ! connects a pair of neighboring nodes p and q in intV or if
it connects a boundary node p to its neighboring interior node q is called edge or
conductor and denoted pgq. In the case in which p is on the boundary, the edge is
called a boundary edge. The set of edges is denoted by E, and usually the graph
G is denoted by G(V, E).

Let w a non-negative real-valued function on E, the value w(pq) is called the
conductance of pg and 1/w(pq), the resistance of pq, and w is the conductivity (w is
also called a weight). A function u: V — R gives a current across each conductor
pg by Ohm’s law, I = w(pq)(u(p) — u(g)) (I the current). The function u is called
w-harmonic if for each interior node p,

> wipg)(u(g) — u(p)) =0

gEN(p)

then the sum of the currents flowing out of each interior node is zero, and this
is Kirkhoff's law. Let & a function defined at the boundary nodes, the network
will acquire a unique w-harmonic function u with u(p) = ®(p) for each p € 4G in
other words, ® induces u and u is called the potential induced by ®. Considering a
conductor pq then the potential drop across this conductor is Au(pg) = u(p) —u(q).
The potential function u determines a current Ig(p) through each boundary node
p, by Is(p) = w(pq)(u(p) — u(q) , ¢ being the interior neighbor of p. As in the
continuous case, for each conductivity w on E, the linear map A, from boundary
functions to boundary functions is defined by A,® = I3 where the boundary func-
tion @ is called Dirichlet data, the boundary current Is is called Neumann data,
and the map A, is called the Dirichlet-to-Neumann map.

The problem to consider is to recover the conductivity w from A_, which is
analogous to the the inverse problem in the continuous case. The two basic problems
are the connectivity and conductivity of the network. Note that the connectivity of
the network or the situation where the network remains connected but some edges
disappear is a topological problem, the configuration of the graph has changed. For
detailed theory about electrical networks, planar graphs, recovering of a graph and
harmonic functions, we refer to [18] and the work of Curtis and Morrow [19].

The discrete or finite nature of graphs makes working on graphs basically easier
than investigating these problems in the continuous case, although it gives rise to
several disadvantages. For example, solutions of the Laplace equation for graphs
have neither the local uniqueness property nor is their uniqueness guaranteed by the
Cauchy data, contrary to the continuous case where they are the most important
mathematical tools used to study the inverse conductivity problem and related
problems [9]. The inverse problem that we study is to identify the connectivity of
the nodes and the conductivity on the edges between each adjacent pair of nodes.

Given a network with a pattern of traffic measured as the “usual” load between
adjacent nodes (e.g., number of messages) one can associate to it a Laplace operator
denoted A,,, where the weight w is a sequence of values representing the usual loads
between every pair of adjacent nodes in the network.

We define the degree d,,x of a vertex in the weighted graph G with weight w
by

d,r = Z w(z,y)

yeV
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whenever fi(x) # fi(y) and fo(z) # f2(y) .

Note that

{ r:J 2) =®(z), z€ I8
is known as the Neumann boundary value problem NBVP. In [9] it is shown that
the NBVP has a unique solution up to an additive constant.

The second conclusion of the theorem shows not only whether or not each pair
of nodes is connected by a link, but also how nice the link is. Moreover, the proof
gives an algorithm to detect if the weights change on the edges.

The conditions w; < wy (monotonicity condition) and fG fjdw, = K (the nor-
malization condition) are essential for the uniqueness of the result. We know that
the NBVP has a unique solution up to an additive constant; therefore, the Dirichlet
data f|,s, z € 9S is well-defined up to an additive constant. Here we have dis-
cussed the inverse conductivity problem on the network (graph) S with nonempty
boundary, which consists in recovering the conductivity (connectivity or weight) w
of the graph by using the Dirichlet-to-Neumann map with one boundary measure-
ment. In order to deal with this inverse problem, we need at least to know or be
given the boundary data such as f(zx), gfﬁ(z) for z € 0S5 and w near the bound-

ary. So it is natural to assume that f |, 8—6-% and w| _ are known (given or
- ot S %88

'65 & S
measured). But even though we are given all these data on the boundary, we are
not guaranteed, in general, to be able to identify the conductivity w uniquely. For
more details and counterexample, see [9).

There are many problems to be answered, for instance what happens if the
number of nodes is not finite? What is the hyperbolic version of the discrete case?.
If we allow to consider also w = 0 then the presence of zero weights tells us that the
conductivity on the edge ( a particular one) is either down or the nodes connected to
that edge “disappear” in the sense that the edge length becomes infinite and this is
because uniqueness is not true. We still need to get stronger results to determine the
configuration of a network (connectivity). Let us add that very recently Bensoussan
and Menaldi [3] have given a slightly different proof of theorem 4 relying on the
fact that A, is a positive operator.
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