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Abstract

We consider the nonlinear filtering problem dz = f(z)dt +
Vedw, dy = h(z)dt + y/edv, and obtain lim._o elog ¢°(z,t) =
—W/{(z,t) for unnormalised conditional densities ¢¢(z,t) using
PDE methods. Here, W(z,t) is the value function for a deter-
ministic optimal control problem arising in Mortensen’s deter-
ministic estimation, and is the unique viscosity solution of a
Hamilton—Jacobi-Bellman equation.

Introduction

An important problem in system theory is the construction of
observers for nonlinear control systems. Baras, Bensoussan and
James [1] have studied a method for constructing an observer
as a limit of nonlinear filters for a family of associated filtering

problems (2), parameterised by € > 0. It is of interest then-

to study the asymptotic behaviour of the corresponding unnor-
malised conditional densities ¢*(z,t) as ¢ — 0, via the Zakai
equation (3). We obtain the asymptotic formula

qe(I,t) — e—%(W(z,t)+o(l))’ (1)

as € — 0, where W(z,t) is the value function corresponding to
a deterministic optimal control problem, namely that arising in

deterministic estimation.
Our method is inspired by the work of Fleming and Mitter

[4], and Evans and Ishii [3]. A logarithmic transformation is
applied to the robust form of the Zakai equation, yielding a
Hamilton-Jacobi equation in the limit. A related Hamilton-
Jacobi equation is interpreted as the Bellman equation for the
optimal control problem arising in deterministic estimation, of
which W (z,t) is the unique viscosity solution. In particular,
W (z,t) is not assumed to be smooth.

This problem has been studied by Hijab [5] using differ-
ent methods. Hijab also obtained a large deviation principle
for conditional measures on C([0,T}; R"}. An extension of his

result is presented in James and Baras [6], which includes com-

plete proofs of the results discussed in the present paper.

Problem Formulation

We consider a family of diffusion processes in IR"™ with real
valued observations:

daf(t) = J(z(1))dt + Vedw(t), =(0) = 55  (2)
dy(t) = h(z*(t))dt + Vedv(t), y°(0) = 0.

Here w, v are independent Wiener processes independent of
the initial conditions z§, which have (unnormalised) densities
@é(z) = C.e~+5(2) where lim, ,gelogC, = 0 and Sy > O is
smooth and bounded. As e — 0 the trajectories of (2) converge
in probability to the trajectory of a corresponding deterministic
system. We assume throughout the following: f, h are bounded
C® functions with bounded derivatives of orders 1 and 2.

The Zakas equation for an unnormalised conditional density
g(z,t) is

di(e,t) = Alglet) + ThEEE W, ()
¢°(z,0) = g5(z),

where A{ is the formal adjoint of the diffusion operator. Defin-
ing

P(@f) = exp (~2y(Oh(2) (a0, (9

the robust form of the Zakai equation is

%p‘(z, t)—- %Apc(xa t)+ Dpf (z,t)g"(z, t)+ %Vc (2, t)pe(z’ 0) =0,
e )
p(z,t) = g5(z).

Note that (5) is a linear parabolic PDE and the coefficient
V¢ depends on the observation path t ~— y(t). We shall omit the
e-dependence of y, and view (5) as a functional of the observa-
tion path y € Q¢ = C([0,T], R"; y(0) = 0). This transforma-
tion provides a convenient choice of a version of the conditional
density, and under our assumptions we can recover the unnor-

malised density ¢‘(z,t) from the solution of (5).
Following Fleming and Mitter 4], who considered filtering
problems with € = 1, we apply the logarithmic transformation

S¢(z,t) = —elogp(z,t). (6)
Then S¢(z,t) satisfles
2.5z,1) — %AS‘(:, t) + H(z,t,DS*(z,t)) =0, (7)

§¢(z,0) = Sy(z),

where
¢ p 1
Heé(z,t,\) = Ag*(z,t) + 3 [ X P =Ve(,t). (8)
¥

Equation (7) is a nonlinear parabolic PDE. Formally letting
€ — 0 we obtain a Hamilton-Jacobi equation

£S(z,t) + H(z,t,DS(z,t)) = 0, (9)

S(z,0) = So(z),



where
1
H(z,t,3) = Ago(z,t) + 5 | A I ~V(z,1), (10)

Note that ¢¢ — go, V¢ — V, and H* — H uniformly
on compact subsets. We shall interpret solutions of (9) in the
viscosity sense. If we define

W(z,t) = S(z,t) —y(t)h(z), vy € Qo, (11)

then, for y € NoN C*, W(z,t) satisfies a Hamilton-Jacobi equa-
tion, which is presented as the Bellman equation for the deter-
ministic estimation control problem below.

Deterministic Estimation

We begin by reviewing Mortensen’s method [5] of deterministic
minimum energy estimation. Given an observation record Y, =
{y(s), 0 <s<t}, 0<t LT, of the deterministic system

f(z) + v, z(0) = =0, (12)
h(z) + v, y(0) = 0,

we wish to estimate the state at time ¢, the initial condition z,
being unknown. Define

Ji(zo,u) = So(zo) +AtL(x(s),u(s),s)ds, (13)
where
Looeo 1 v
L(z,u,s) = 3 Ju*+ Eh(:c) = y(s)h(z). (14)

We now minimise J; over pairs (zo,u). The deterministic or
minimum energy estimate Z(t) given Y, is defined to be the
endpoint of the optimal trajectory s — z*(s), 0 < s <, corre-
sponding to a minimum energy pair (zg,u*) : Z(t) = z*(t).

We use dynamic programming to study this problem. Define
a value function

W(z,t) = (iﬁi){],(zo,u) : 2(0) = 2o, z(t) = z}. (15)

By using standard methods, we see that W(z,t) is continuous
and formally satisfies the Bellman equation

2W(z,t) + H(z,t,DW(z,t)) = O, (16)
W(z,0) = So(z),
where

H(z,t,)) = max {A(f(2) +v) - L(z,%,t)}. (17)

To obtain £(t), one minimises W (z,t) over z. In fact, using
the definition of viscosity solutions in Crandall, Evans and Lions
(2], we can prove:

Theorem The value function W (z,t) defined by (15) is the
untque viscosity solution of the Hamilton-Jacobi-Bellman equa-
tion (16). In addition, the function S(z,t) defined by (6) is the
unique viscosity solution of the Hamilton-Jacobi equation (9).

Some Estimates

Let S¢(z,t) be the solution of (7). The following estimates are
used to prove that S¢ — S.

Theorem For every compact subset Q C IR™ x [0,T], there
ezists €g > 0 and K > 0 such that for 0 < € < ¢ we have

| S¢(z,t) | < K, forall (z,t) € Q, (18)
| DS¢(z,t) | < K, forall (z,t) € Q. (19)

To prove (18), we use a comparison theorem which depends
on the maximum principle for linear parabolic PDE. The gra-
dient estimate (19) uses a variant of the techniques presented
in Evans and Ishii [3], as suggested to us by L. C. Evans.

Main Result

We are now in a position to state and prove our main result.

Theorem Under the above assumptions, we have
gi_r.%elog ¢(z,t) = —W(z,t) (20}

uniformly on compact subsets of R™ x [0,T), where W(z,t) is
defined by (11).

Proof: From the above estimates and the Arzela—Ascoli the-
orem, there is a subsequence ¢, — 0 such that S converges
uniformly on compact subsets to a continuous function S. By
the “vanishing viscosity” theorem (3], Sisa viscosity solution
of (9). By uniqueness, S =S. In fact, S* - S as € — 0.

From this we have

limelog¢*(z,t) = —(S(z,t) - y(t)h(z))

uniformly on compact subsets, for y € 3. Using the definition
(11) of W(z,t) completes the proof.
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