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This thesis concerns the problem of designing distributed algorithms for achiev-

ing efficient and fair bandwidth allocations in a resource constrained network. This

problem is fundamental to the design of transmission protocols for communication

networks, since the fluid models of popular protocols such as TCP and Proportional

Fair Controller can be seen as distributed algorithms which solve the network flow

optimization problems corresponding to some fairness criteria. There exist classical

dual algorithm and primal/dual algorithm due to the convexity and the decom-

posability of the optimization problem. However, the main obstacle is the possible

instability of these algorithms caused by transmission delays. We use customized

Lyapunov-Krasovskii functionals to obtain the stability conditions for these algo-

rithms in networks with heterogeneous time-varying delays. There are two main

features of our results. The first is that these stability conditions can be enforced

by a small amount of information exchange among relevant users and links. The

second is that these stability conditions only depend on the upper bound of delays,

not on the rate of delay variations. We further our discussion on scalable algorithms



with minimum information to maintain stability. We present a design methodology

for such algorithms and prove the global stability of our scalable controllers by the

use of Zames-Falb multipliers. Next we use this method to design the first scalable

and globally stable algorithm for the joint multipath routing and flow optimization

problem. We achieve this by adding additional delays to different paths for all users.

Lastly we discuss the joint single path routing and flow optimization problem, which

is a NP hard problem. We show bounded price of anarchy for combined flow and

routing game for simple networks and show for many-user networks, simple Nash

algorithm leads to approximate optimum of the problem.
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Chapter 1

Introduction

One of the most distintive features of the Internet is the fact that it operates

in a distributed way on agreed protocols which are not administrated by a central

authority. This network “agnostic” feature contributes to its fast growth and easy

implementation, and at the same time it poses many practical design challenges such

as how to achieve efficient transmission rate allocations across the entire network.

The prevalent data transmission protocol, TCP, operates on a purely distributed

way. The only network information it depends on is the round-trip delay of its own

session. It works well in a low bandwidth, small delay network with little help from

the intermediate routers. But with the increase of network bandwidths and round-

trip delays, more sophisticated router algorithms are needed to prevent TCP flow

instability. These router algorithms are no longer network agnostic and they require

network specific tune-ups in order to work. In this thesis our main theme is that

we can still achieve the distributedness of the protocols and at the same time reach

the efficient allocations and keep the network stable. The responsibility to achieving

all these falls mainly onto end-to-end protocols, not router algorithms, although in

some sense they are dual to each other. The reason is that there is information

asymmetry between the users and the routers, for example, the utility information

is only available to the users, and the efficiency is defined on user properties. The
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main part of the thesis consists of 5 chapters and below is an overview of each

chapter.

1.1 Overview of Preliminary Results

In Chapter 2 we start with the overview of network traffic models which all

the later chapters will be built upon. Network traffic consists of streams of packets

transmitted by sources during discrete time steps by some clocking mechanism of

their transmission protocols. A direct study of network flow properties by packet

models is in general hard and limited to simple networks such as a single source/link

network. Just as fluid dynamics in which the basic objects are flows rather than

molecules, the use of fluid model in network traffic studies has been widely adopted.

Especially, in the area of network protocol design and dynamic study, simple de-

terminstic continuous time fluid models are predominantly used. We will examine

in this chapter the “building blocks” of these fluid models under popular network

transmission protocols such as TCP and Proportional Fair Controller. Further,

we distinguish the window update scheme and the rate update scheme, since TCP

protocols use “windows” to control the sending rate. The derivations of these con-

tinuous time fluid models from the original discrete models by direct differentiation

method and by many-flow asymptotics are described. It is then observed that the

fluid models obtained from direct differentiation method are usually “mean-field”

approximations of the ones by many-flow asymptotics. In the last section of the

chapter we provide a brief overview of network flow optimization problems and we
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decribe the dynamics of fluid models as the solution algorithms to specific optimiza-

tion problems.

In Chapter 3 we specifically focus on three main types of fluid dynamics related

to general network optimization problems, that is, primal algorithm, dual algorithm,

and primal/dual algorithm. These algorithms have been discussed extensively in the

literature for their stability conditions, either in delay-free network, or in networks

with heterogeneous fixed delays. By customized Lyapunov-Krasovskii functionals,

we obtained the delay-dependent stability conditions for networks with heteroge-

neous time varying delays and showed that due to the special structure of these

algorithms, our stability conditions do not depend on the rate of changes of the

delays. Another nice feature of our stability conditions is that they are relative easy

to enforce in a large network and we give implementation guidelines to set the pa-

rameters of these algorithms by coordinations with sources and their relevant links.

Stability regions in terms of maximally allowed delay bounds are compared between

our conditions and the conditions obtained by Small-Gain type methods and we

show that our conditions are better. In the end of the chapter we discuss briefly

about the global stability property of scalable algorithm whose local stability con-

dition only depends on simple measurements, such as the round-trip delay and the

number of bottleneck links en route. We only focus on a single source/link network

and show that the global stability condition is not far from the local condition. But

to extend this result to a general network is technically difficult.

In Chapter 4 we continue to explore the protocol design problem to solve

the network optimization problem. Since we have seen that it is difficult to match
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the global stability condition to the local stability condition, even though there

exist locally scalable distributed algorithms for general networks, we seek to build a

scalable algorithm which also has the global stability property. Firstly we set up our

design principles which the target algorithms must abide. Under these principles

the algorithm, along with its parameters, must be truly distributed and it does

not depend on any global variables. We then establish the structural properties

of the algorithms with these principles. Guided by these structural properties, we

first design a scalable algorithm which meets the design principles locally. Then by

relying on Zames-Falb multiplier method, we successfully prove that this algorithm

has a scalable global stability property as well.

In Chapter 5 we extend the design methodology to the combined multipath

routing and flow control problem. The problem itself is an extension of the regular

network flow optimization problem where all the users can now use a pool of available

routes for data transmission. The increase of the network capacity can be substantial

since it has been shown in the literature that the upper limit for the flow session

stability, the minimum cut condition, can be reached by multipath routing. For

the optimization point of view the introduction of multipath routing changes the

strict convex programming problem into a nonstrict convex programming problem.

This change causes the dual programming to become nonsmooth and the original

algorithms, based on dual gradient method, fail to achieve rate convergence even in

a delay-free network. Based on our scalable algorithm of the last chapter, we build

the first stable scalable multipath algorithm for general networks with heterogeneous

delays.
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In Chapter 6 we consider the problem of the combined single path routing and

flow control problem. This problem is drastically different from all the optimization

problems discussed before, since now the problem is a nonconvex problem and it

has been proved that it is NP-hard to solve. Therefore we shift our focus from the

protocol design to the properties of the optimal solution, but still our study has an

implication of distributed solution algorithm. We notice that in reality most large

networks have far more number of users than that of bottleneck links, and it can

be shown that by allowing a proportionally small number of users to use multipath

routing, while keeping the rest majority to use single path routing, the resulting

solution achieves mulitpath optimality. Therefore it is conceptually plausible that

in many-user region local algorithm can achieve solutions arbitrarily close to the

optimal solution. To show this is indeed correct, we focus on the solutions brought

out by the simplest local algorithm, the Nash algorithm. We first examine a special

type of network, which is the one used to prove the NP-hardness of the problem. We

showed that the Nash equilibrium exists and the Nash algorithm always converges.

It is then shown that the price of anarchy, that is the gap between the worst Nash

equilibrium and the social optimal, is bounded when the number of users goes to

infinity. For general networks, it is not known whether there exists Nash equilibrium.

But we introduce the concept of approximate Nash equilibrium and we show its

existence given sufficiently large number of users. Then we prove that approximate

Nash equilibrium will be arbitrary close to the social optimal when the number of

users is sufficiently large.
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Chapter 2

Flow Control Models: From Packet Models to Fluid Models

The basic element of a network flow is a packet. A full description of network

flow control models based on packets often involves complex random dynamical

structures which are hard to analyze directly in usual cases. Therefore model sim-

plification is a necessary first step for the purpose of studying flow behaviors and

designing flow control protocols. Fluid models, which assume flow packets are in-

finitely divisible, are widely used for its intuitiveness and simplicity. In addition,

fluid models can “smooth” out the internal randomness of the flow dynamics in

regular settings and give us deterministic model in the end. Therefore we will be

only dealing with fluid models in the subsequent chapters. It is then important to

understand the assumptions and the consequences of various fluid models as oppose

to the real network flows in different flow control protocols. We will focus our dis-

cussion on the fluid models of two popular protocols, TCP/Reno and proportional

fair controller, and two types updating schemes, packet update and window update.

The network setting is a simple single source/link network, although it is straight-

forward to extend the fluid model to general networks. Also we ignore the effect of

random uncontrolled flows, since we do not consider them in this thesis. There are

two methods of establishing fluid models, one being direct differentiation and the

other many-flows asymptotics. We will present both methods for the derivations.
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2.1 Fluid Models by Direct Differentiation

2.1.1 Flow Controlled by TCP/Reno

TCP/Reno is the most widely used TCP congestion control protocol and the

core of its congestion avoidance mechanism, additive increase and multiplicative

decrease, is used in many other versions of TCP. The source maintains a congestion

window during the entire life of the flow and the window size is equal to the number

of its packets on the fly in the network. The window is adjusted whenever an

acknowledgement (ACK) packet is received from the network for the flow. The

ACK packet is sent by the receiver of the flow whenever it receives an packet (or a

fixed number of packets). The flow is controlled by the early congestion notification

(ECN) bit carried by the flow packet and the ACK packet, which is set by some

AQM scheme at intermediate bottleneck routers. The window adjustment scheme

in the congestion avoidance phase can be described as

W [n+ 1] =







W [n] + 1
W [n]

, when receives ACK without ECN mark,

W [n]
2
, otherwise,

(2.1)

where Wn is the window size measured in minimum segment (packet) size at time

step n. It should be noted that we only model the congestion avoidance phase here

since the stability of the rate of a particular flow makes sense only for long flows

and the congestion avoidance phase is predominant in those long flow traffic. It can

be observed that the window size increase by 1 for every window of packets sent

without ECN bit and decrease by half if there is ECN.

We consider two update schemes. The first is to update the rate immediately
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when an ACK packet is received, which we call the packet update scheme. The other

is to update the rate only after the ACK packets for the whole window are received,

which we call the window update scheme. The TCP/Reno protocol uses window

update scheme, since the window size for flow control only uses the integer part of

W [n] in (2.1) and the flow rate remains constant in the window. Nevertheless fluid

models based on packet update scheme is much widely used in the literature due to

the simplicity in its final form.

First we derive the fluid model under the packet update scheme. We denote

the rate of the flow at time t by x(t). From Little’s Law we can approximate the

relation between w(t) and x(t) by

w(t) = τx(t).

Therefore we can substitute w(t) by τx(t). From fluid approximation, there are

x(t−τ)∆ feedback packets returning to the sender from time t−∆ to t, where x(t−τ)

is the sending rate at t− τ and τ is the fixed round-trip time. The assumption for

the round-trip time being fixed is approximately true when the size of the bottleneck

buffer is small compared to the delay-throughput product. Among these feedback

packets, we assume the dropping probability is p, then there are px(t− τ)∆ packets

that have been lost. So based on (2.1) the rate x(t) becomes,

τx(t) = τx(t− ∆) +
1 − p

x(t)τ
x(t− τ)∆ − p

2
τx(t)x(t − τ)∆.

Let ∆ → 0, the above equation converges to the following differential form,

ẋ(t) =
x(t− τ)

x(t)

(
1 − p

τ 2
− 1

2
x(t)2p

)

. (2.2)
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Thus we obtain the basic dynamic equation description of TCP Reno. The queue

dynamics with fluid approximation can be expressed as

ḃ(t) =
[
x(t− τ f ) − C

]+

b(t)
, (2.3)

where b(t) is the bottleneck queue size, τ f is the forward propagation delay and C

is the bandwidth of the bottleneck. The form [u]+v takes the value u if v > 0 and

max{u, 0} if v = 0. For a general AQM based on queue size, the marking probability

can be described as

p(t) = h(b(t− τ b)) (2.4)

where h : R+ → [0, 1] and τ b is the backward propagation delay (so τ = τ f +

τ b). Equations (2.2), (2.3), and (2.4) constitute the fluid approximation of a single

source/link TCP Reno system. This is a functional differential equation (FDE)

model and we will base all of our future discussions upon this kind of models.

For the window update scheme, the source receives the ACKs for the whole

window of sent packets every round-trip time τ , since the window size is exactly the

number of sent packets that have not been ACKed. Therefore the time instances at

which flow rate is updated constitutes a discrete sequence {· · · , t − 2τ, t − τ, t, t +

τ, t + 2τ, · · · } for some t. The rate process then is a piecewise constance cadlag

process, which remains constant between the updating instances. According to the

AIMD rule (2.1), the mean rate process xt(·), with the subscription denoting the
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time instance to update, can be described as

xt(T ) =







xt(T
−) + 1

τ
(1 − p(T )) − 1

2
xt(T

−)pt(T ), T = t+ kτ,

xt(t+ kτ), t+ kτ < T < t+ (k + 1)τ.

(2.5)

The marking probability pt(T ) is different from the instantaneous marking

probability in the packet update scheme. This is the accumulative probability for

the flow sent during the time interval [T − 2τ, T − τ). Therefore it is a function of

round-trip time τ and let us denote it by pt(T, τ). From the fluid assumption, the

probability of marking is increased by xt(T − 2τ)h(b(T − τ b))(1 − pt(T, τ))∆ if the

round-trip time is increased by ∆. That is

pt(T, τ + ∆) = pt(T, τ) + xt(T − 2τ)h(b(T − τ b))(1 − pt(T, τ))∆.

By taking ∆ → 0, we have

∂pt(T, τ)

∂τ
= xt(T − 2τ)h(b(T − τ b))(1 − pt(T, τ)).

Notice xt(T − 2τ) is constant and pt(T, 0) = 0, we can solve the above equation as

pt(T, τ) = 1 − exp

(

−xt(T − 2τ)

∫ T−τb

T−τ−τb

h(b(s))ds

)

The mean flow rate process in (2.5) depends on t, the time instance for updat-

ing. We can treat flow streams with the same updating sequence as streams in the

same class. It is beneficial to improve on this model by considering fluid model for

aggregated flow streams of the same source-destination pair and taking into account

that the flow streams usually have different updating instances. In addition, the

previous single stream model (2.5) can be considered as a special case of the general
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model. Let there be a continuum of streams with different updating instances, uni-

formly distributed over the interval [0, τ). That is, for a fixed time origin 0, there

are ∆/τ streams whose updating instance lies within the interval [t, t+ ∆). We can

rewrite (2.5) to represent flow rates of streams in different classes as follows,

x(t) = x(t− τ) +
1

τ
−
(

1

τ
+

1

2
x(t− τ)

)

p(t), (2.6)

where the marking probability p(t) is

p(t) = 1 − exp

(

−x(t− 2τ)

∫ t−τb

t−τ−τb

h(b(s))ds

)

. (2.7)

Note in (2.6) x(t) is equivalent to xθ(t), the rate of class θ flow with t = θ + kτ

for some k. Recall that the flow rate for each class of flows keeps constant between

updates, then the aggregate flow rate x̄(t) can be expressed by

x̄(t) =
1

τ

∫ t

t−τ

x(s)ds. (2.8)

Or in the differential equation form,

˙̄x(t) =
1 − p(t)

τ 2
− 1

2τ
x(t− τ)p(t). (2.9)

The single flow case, or equivalently synchronized flows case, can be viewed by

setting the initial condition of x(t) in (2.6) by

x(t) =
δ(t)

τ
, ∀t < τ.

Or if represented by x̄(t)

x̄(t) =







0, t < 0,

1
τ2 , t ∈ [0, τ).
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The resulting x̄(t) is again a piecewise constant cadlag process.

As we can see now, although the fluid equation (2.9) for the window update

scheme is similar to the equation (2.2) for the packet update scheme, there are two

marked differences. First, the fluid rate for the window update scheme takes an

explicit form of “averaging” of a window of individual rates, which to some extent

resembles the definition of the window size in TCP/Reno protocol. Second, the

marking probability which controls the flow rates is accumulative over a round-

trip time in the window update scheme, rather than instantaneous as in the packet

update scheme. This results in a more complex but more representative fluid model

for the TCP/Reno dynamics.

2.1.2 Flow Controlled by Proportional Fairness Controller

The Proportional Fairness (PF) flow control protocol achieves the weighted

proportional fair allocation of equilibrium flow rates in a network [1]. The definition

of weighted proportional fairness is deferred to the next section. Here we only focus

on the fluid model of flow rates controller by the PF protocol. Like in the TCP/Reno

case, the sending rate is controlled by ECN bits in the received ACK packets. The

source increments the sending rate by the same amount w∆ every fixed interval ∆

and decrease the rate proportional to the number of ACK packets with ECN bit

marked.

In the packet update scheme, the rate is updated once there is a new ACK

packet coming in. For the purpose of fluid approximation, we assume that the
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rate increase is w∆ for any arbitrary small ∆. Again there are x(t− τ)∆ feedback

ACK packets from time t − ∆ to t, among which there are x(t − τ)p(t)∆ packets

whose ECN is marked. Denote the proportional factor of rate decrease caused by

ECN marking by β. By taking ∆ → 0, we obtain directly the fluid model for PF

controlled flow with packet update scheme,

ẋ(t) = w − βx(t− τ)p(t). (2.10)

Here the instantaneous marking probability is the same as that in (2.4) and the

bottleneck queue dynamics in (2.3) still applies here.

For the window update scheme, suppose as in TCP/Reno there is a sliding

window controlling the packet sending schedule for the PF controller. Then the

source only updates its flow rate every round-trip time τ . But it is important to

note that TCP/Reno and PF take the feedback signal, viz. ECN marking, in a very

different way: TCP/Reno takes the probability of the occurrence of ECN marking

while PF takes the number of ECN markings. For the flow stream in class t, the

number of ECN markings during [T − τ, T ) can be approximated in the fluid model

by

xt(T − 2τ)

∫ T−τb

T−τ−τb

h(b(s))ds.

Therefore the rate process of each class of flow stream can be described as (compared

to (2.6)

x(t) = x(t− τ) + wτ − βx(t− 2τ)

∫ t−τb

t−τ−τb

h(b(s))ds. (2.11)

Using the same idea as in the case of TCP/Reno, we establish the fluid model

with rate process x̄(·) (2.8) for the aggregate flow consisted of a continuum of dif-
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ferent classes of flows. Its differential equation form can be expressed by

˙̄x(t) = w − β
x(t− 2τ)

τ

∫ t−τb

t−τ−τb

h(b(s))ds. (2.12)

2.2 Fluid Model by Many-Flows Asymptotics

In this section we frequently use the concept of weak convergence [2, 3]. Let B

denote a metric space, which can be either a Euclidean space R
k or a functional space

for example continuous function space C[0, T ] and cadlag function spaceD[0, T ], and

denote B as the σ-algebra on B induced by this metric. For a sequence of probability

measures {Pn} defined on (B,B) to converge weakly to another probability measure

P defined on (B,B), written as Pn ⇒ P , the following limit has to hold,

∫

B

f(x)dPn(x) →
∫

B

f(x)dP (x), n→ ∞

for any bounded and continuous real-valued function f(·) on B. Let Xn and X

be the random variables (random processes) associated with Pn and P . We can

also say Xn converge weakly to X in this case and express this as Xn ⇒ X. An

important concept in proving the weak convergence of probability measures is the

tightness [2]. A probability measure sequence {Pn} on (B,B) is tight if for every

positive ǫ there exists a compact set K ⊂ B such that Pn(K) > 1 − ǫ for all n. By

the Prohorov Theorem, if {Pn} on (B,B) is tight, then each subsequence of {Pn}

contains a further subsequence that converges weakly to some probability measure

on (B,B).
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2.2.1 Flow Controlled by TCP/Reno

The deduction of fluid models in the previous section is based on the assump-

tion that the network flow is continuous in time and thus infinitely divisible. In

this subsection we are interested in a more constructive way to derive fluid models,

based on a macroscopic view of discrete flows aggregation. In other words we offer

a more careful argument for a continuous time fluid model of a single bottleneck

TCP/AQM system without assuming flow continuity a priori, in which the random

nature of packet marking at the bottleneck queue is considered. We try to establish

the link between the many-flows region asymptotics of TCP/AQM system and de-

terministic FDE model. This is similar to the works by [4, 5, 6, 7]. In [4] an ODE

limit is obtained through a stochastic approximation based model while the round-

trip delay is unaccounted for in the final ODE, while in [5] only deterministic queue

based marking is considered. More accurate models for TCP/AQM are considered

in [6] and [7] but in their models rates are updated synchronously among all sources.

Therefore their final asymptotic fluid models are discrete at update intervals.

In all the flow control schemes studied in this section we consider a sequence

of systems indexed by N , in which the Nth system consists of N identical flows

accessing a common bottleneck link. The link capacity in the Nth system is scaled

as NC packets per second. The round trip delays for all the systems are the same τ ,

with the forward delay τ f and the backward delay τ b. Without loss of generality we

assume they are all integers. This can be seen asN replications of the single flow/link

TCP/AQM system. We consider a slotted time system and the time interval for
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each slot is 1/N seconds for the Nth system. For any process z(N)[·] considered in

the system, its continuous time version is piecewise constant and defined as

z(N)(t) , z(N)[⌊Nt⌋].

We denote the rate of flow i, the aggregated number of packets received at

bottleneck, and the bottleneck queue size of the Nth system by x
(N)
i , y(N), and

b̃(N), respectively. The packet model for each flow i is as follows. At each time

slot l let {0, 1}-valued series x̃
(N)
i [l] denote whether there is a packet sent by flow

i, x̃
(N)
i [l] = 1, or not, x̃

(N)
i [l] = 0. Again we use a model of probabilistic sending

scheme, that is,

x̃
(N)
i [l] = 1(η

(N)
i,l ≤ x

(N)
i [l]/N),

where η
(N)
i,l is an independent random variable distributed uniformly over [0, 1]. As

usual we use the notation 1A as indication function of the occurrence of event A. This

modeling assumption is made purely from technical reasons. Although a real TCP

flow sends packets in a uniform fashion, the assumption of probabilistic sending

nevertheless maintains the same mean flow rate and more importantly it greatly

simplifies the subsequent analysis, since the packet arrival process at the bottleneck

queue can be regarded as a Poisson process with varying rate.

For the packet update scheme, the rate is updated every time an ACK of the

previously sent packet is received at the source. That is at time slot l+1, if there is

an arrival ACK without its ECN marked, the rate is incremented by 1/(x
(N)
i [l]τ 2).

Otherwise, the rate reduces to its half. Put these together we have for individual

16



flow the updating rule,

x
(N)
i [l+1] = x

(N)
i [l]+

(

1 − 1(ξ
(N)
i,l < p(N)[l])

x
(N)
i [l]τ 2

− 1

2
x

(N)
i [l]1(ξ

(N)
i,l < p(N)[l])

)

x̃
(N)
i [l−Nτ ].

Here similar to η
(N)
i,l , the random variable ξ

(N)
i,k is also independent and uniform dis-

tributed over [0, 1]. The value p(N)[l] is the packet marking probability experienced

by the packet associated with the ACK received at time l, which can be expressed

by as in (2.4)

p(N)[l] = h(N)(b̃(N)[l −Nτ b]),

where the marking function h(N) : R+ → [0, 1] of the Nth system satisfies the

following scaling

h(N)(b̃(N)) = h(b̃(N)/N).

By the definition the aggregated number of arrival packets at the bottleneck

queue is

y(N)[l] =
N∑

i=1

x̃
(N)
i [l −Nτ f ].

So the queue dynamics can be expressed by

b̃(N)[l] = b̃(N)[l − 1] + (y(N)[l] − C)+

b̃(N)[l−1]
.

The many-flow asymptotics is concerned with the following processes x̄(N)[·]

and b̄(N)[·], which are defined as

x̄(N)[l] ,
1

N

N∑

i=1

x
(N)
i [l],

b̄(N)[l] ,
1

N
b̃(N).
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Then it follows from the updating rule and queue dynamics,

x̄(N)[l + 1] = x̄(N)[l]

+
1

N

N∑

i=1

(

1 − 1(ξ
(N)
i,l < p(N)[l])

x
(N)
i [l]τ 2

− 1

2
x

(N)
i [l]1(ξ

(N)
i,l < p(N)[l])

)

x̃
(N)
i [l −Nτ ]

, x̄(N)[l] +
1

N
G(N)[l],

b̄(N)[l] = b̄(N)[l − 1] +
1

N

(
N∑

i=1

x̃
(N)
i [l −Nτ f ] − C

)+

b̄(N)[l−1]

, b̄(N)[l − 1] +
1

N
F (N)[l].

Without loss of generality, we assume that at time slot 0 x
(N)
i [l] ≡ x0, −Nτ ≤

l ≤ 0 for all N and i = 1, · · · , N . To show the weak convergence of the above

discrete time stochastic system to a particular continuous time differential system,

the first step is to show that the random sequences {x(N)
i [·]} and {b̄(N)[·]} are tight.

From its discrete time dynamics, it is obvious that the solution value of x
(N)
i [·] is

positive. We use the similar truncation technique as in [3] section 2.3 such that

we may assume x
(N)
i [·] ∈ [1/K,K] for some arbitrary large K in the subsequent

deduction. Denote F (N)
l the σ-algebra measurable by {x(N)

i [k], b̄(N)[k], 0 ≤ k ≤ l}.

By the update rule, we have

P (N){|x(N)
i [l + 1] − x

(N)
i [l]| 6= 0|F (N)

l } =
1

N
x

(N)
i [l −Nτ ]

where P (N) is the probability measure of the Nth system. In addition by the trun-

cation assumption each rate jump is uniformly bounded. Therefore, by the use of

Theorem 15.2 in [2], we reach the conclusion that {x(N)
i [·]} and {b̄(N)[·]} are tight in

D[0,∞). By the Prohorov Theorem, it is then sufficient to work with an arbitrary

weakly convergent subsequence and without loss of generality we also index this
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subsequence by N . That is, we can suppose that {x(N)
i (·), b̄(N)(·)} ⇒ {xi(·), b̄(·)}.

We will use the martingale method [3] to derive the asymptotic limit. The

idea is to get the infinitesimal operator A for the continuous time limit process

from averaging and then obtain the limit process as the solution to the martingale

problem with operator A. The limit process for b̄(N)(·) can be obtained directly

from the fluid limit result by [8]

˙̄b(t) = (x̄(t− τ f ) − C)+
b̄(t)
. (2.13)

Consequently, the continuous time version of marking probability p(t) can be ex-

pressed as

p(t) = h(b̄(t− τ b)). (2.14)

Let us now consider the limit process xi(·). For each i, consider any bounded

continuously differentiable function f(·), one has

E(N)[f(x
(N)
i [l + 1]|F (N)

l ] − f(x
(N)
i [l])

=
1

N
x

(N)
i [l −Nτ ]







(1 − p(N)[l])
(

f
(

x
(N)
i [l] + (x

(N)
i [l]τ 2)−1

)

− f(x
(N)
i [l])

)

+p(N)[l]
(

f
(

x
(N)
i [l]/2

)

− f(x
(N)
i [l])

)







+ o(N−1).

Therefore for arbitrary k, t, s, and s1 < · · · < sk < t < t+ s and any bounded and

continuous function g(·),

Eg(x
(N)
i (sj), j ≤ k)

×











f(x
(N)
i (t+ s)) − f(x

(N)
i (t))

− 1
N

∑(t+s)N
l=tN x

(N)
i [l −Nτ ]







(1 − p(N)[l])
(

f
(

x
(N)
i [l] + (x

(N)
i [l]τ 2)−1

)

− f(x
(N)
i [l])

)

+p(N)[l]
(

f
(

x
(N)
i [l]/2

)

− f(x
(N)
i [l])

)

















=o(N−1).
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Since b̄(N)(·) ⇒ b̄(·), p(N)(·) ⇒ p(·), then one has the following

Eg(xi(sj), j ≤ k)

×











f(xi(t+ s)) − f(xi(t))

−
∫ t+s

t
xi(r − τ)







(1 − p(r)) (f (xi(r) + (xi(r)τ
2)−1) − f(xi(r)))

+p(r) (f(xi(r)/2) − f(xi(r)))






dr











=0.

Define the operator A by

Af(x(t)) = x(t− τ)







(1 − p(t)) (f (x(t) + (x(t)τ 2)−1) − f(x(t)))

+p(t) (f(x(t)/2) − f(x(t)))






,

then by arbitrariness of f(·), g(·), si, s, and t we conclude that xi(·) solves the

martingale problem associated with operator A with initial condition xi(t) = x0,

−τ ≤ t ≤ 0. It is easy to see that the martingale problem has unique solution. Since

we already know that any subsequence of {x(N)
i (·)} contains a further subsequence

that weakly converges, it follows that x
(N)
i (·) ⇒ xi(·) uniquely, where

dxi(t) =

(
1 − 1(ξ(t) < p(t))

xi(t)τ 2
− 1

2
xi(t)1(ξ(t) < p(t))

)

dNxi(t−τ)(t) (2.15)

where Nλ(t) is a Poisson process with rate λ and ξ(t) is an independent random

process whose marginal distribution is uniform over [0, 1]. Notice that the equa-

tion (2.15) does not depend on particular i, therefore it is the limit process of all

individual flows.

Lastly from the Law of Large Numbers, we obtain

G(t) = Et

[(
1 − p(t)

x(t)τ 2
− 1

2
x(t)p(t)

)

x(t− τ)

]

(2.16)
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so the limit process x̄(·) solves the following equation

˙̄x(t) = G(t) (2.17)

or equivalently x̄(t) = Et[x(t)].

Now let us consider the window update scheme. Recall that we derive the

fluid model from taking the aggregate flow from a continuum of flow classes in the

previous section. Here we model a finite set of flows with different update times for

each system N . Although in reality each flow in the system can be started at random,

for the ease of exposition, we suppose that in the Nth system the flow i starts at

iτ/N seconds so all the flows are evenly distributed. From the previous description,

each flow only updates its rate every round-trip time τ . For notational simplicity

we denote the kth update for flow i takes place at time step t
(N)
i [k] , (i + kN)τ .

Therefore we have for individual flow the updating rule,

x
(N)
i [l] =







x
(N)
i [l −Nτ ] + 1

τ
1(ξ

(N)
i,k > p

(N)
i [k])

−1
2
x

(N)
i [l −Nτ ]1(ξ

(N)
i,k ≤ p

(N)
i [k]), l = t

(N)
i [k],

x
(N)
i [l − 1], otherwise,

where ξ
(N)
i,k is an independent random variable which is uniformly distributed over

[0, 1], and p
(N)
i [k] is the packets marking probability experienced by flow i for the

packets sent during the time steps from t
(N)
i [k− 2] to t

(N)
i [k− 1]− 1, similar to ξ

(N)
i,k ,

The packet marking event d(N)[l] can be defined as

d(N)[l] = 1(ζ
(N)
l ≤ h(b̃(N)[l]/N))

where ζ
(N)
l is a [0, 1] uniformly distributed random variable, similar to ξ

(N)
i,k and η

(N)
i,l .
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Therefore the packets marking probability p
(N)
i [k] can then be expressed as

p
(N)
i [k] = Pr

(
Nτ−1⋃

j=0

{

x̃
(N)
i [t

(N)
i [k − 2] + j]d(N)[t

(N)
i [k − 2] +Nτ f + j] = 1

}
)

= 1 − Pr

(
Nτ−1⋂

j=0

{

x̃
(N)
i [t

(N)
i [k − 2] + j]d(N)[t

(N)
i [k − 2] +Nτ f + j] = 0

}
)

From the queueing dynamics the packet sent event at time l x̃
(N)
i [l] affects the

bottleneck queue length b̃(N)[l+Nτ f +j] for j > 0. Thus the marking event d(N)[l+

Nτ f+j] is not independent from the packet sent event x̃
(N)
i [l], which makes the above

probability hard to compute. But thanks to the scaling of the marking function h(N),

we can have “approximate” independence of these two random sequences for large

N . More precisely, denote

x̃
(N)
i,k ,

Nτ−1∑

j=0

x̃
(N)
i [t

(N)
i [k] + j]

which is a binomially distributed random variable and it converges weakly to an

exponentially distribted random variable x̃i,k. Consider now a sequence of mark-

ing event d̃(N)[·] which is independent of x̃i[·] and the resulting packets marking

probability p̃
(N)
i . Since the length of the bottleneck queue can be varied due to the

randomness of x̃
(N)
i [l] by at most x̃

(N)
i,k , we have

|p(N)
i [k] − p̃

(N)
i [k]|

≤

∣
∣
∣
∣
∣
∣
∣
∣

∏Nτ−1
j=0

(

1 − Pr(x̃
(N)
i [t

(N)
i [k − 2] + j] = 0)Pr(d̃(N)[t

(N)
i [k − 2] +Nτ f + j] = 0)

)

−∏Nτ−1
j=0

(

1 − Pr(x̃
(N)
i [t

(N)
i [k − 2] + j] = 0)Pr(ζ(·)(N) ≥ h((b̃(N)(·) + x̃

(N)
i,k )/N)

)

∣
∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
∣

∏Nτ−1
j=0

(

1 − 1
N
x

(N)
i [t

(N)
i [k − 2]]h(b̃(N)[t

(N)
i [k − 2] +Nτ f + j]/N)

)

−∏Nτ−1
j=0

(

1 − 1
N
x

(N)
i [t

(N)
i [k − 2]](h(b̃(N)[t

(N)
i [k − 2] +Nτ f + j]/N) + h′x̃

(N)
i,k /N)

)

∣
∣
∣
∣
∣
∣
∣
∣

.
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From the boundedness of p
(N)
i [k] it is easy to see that p

(N)
i [k] → p̃

(N)
i [k] almost

surely. So hereafter we only have to compute the limit of p̃
(N)
i [k].

Let us define a sequence of functionals HN : D[0, τ ] → R by

HN (z) ,

Nτ−1∏

j=0

(

1 − 1

N

∫ (j+1)τ
N

jτ

N

z(s)ds

)

.

So p̃
(N)
i [k] = 1 −HN(x

(N)
i [k − 2]h(b̃(N)(·))). It is known that for any bounded z(·),

HN(z) converges uniformly to

H(z) , exp

(

−
∫ τ

0

z(s)ds

)

.

Then by the Dominated Convergence Theorem, the following limit holds,

E
[

HN(x
(N)
i [k − 2]h(b̃(N)(·)/N)) −H(x

(N)
i [k − 2]h(b̃(N)(·)/N))

]

→ 0.

Next suppose that the weak convergence b̃(N)(t)/N ⇒ b̃(t) and x
(N)
i [t

(N)
i [k − 2]] ⇒

xi[k−2] hold for some random process b̃(t) and random variable xi. Then by Theo-

rem 5.5 of [2] and the boundedness ofH ,H(x
(N)
i [k−2]h(b̃(N)/N)) ⇒ H(xi[k−2]h(b̃)),

and consequently E[H(x
(N)
i [k − 2]h(b̃(N)/N))] → E[H(xi[k − 2]h(b̃))]. Putting all

these together, we have

p
(N)
i [k] ⇒ 1 − exp

(

−xi[k − 2]

∫ kτ−τb

(k−1)τ−τb

h(b̃(s))ds

)

, N → ∞.

Same as in the packet update scheme let us consider the process x(N) and b(N)

which are defined as

x̄(N)[l] =
1

N

N∑

i=1

x
(N)
i [l],

b̄(N)[l] =
1

N
b̃(N).
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It is from the definition that

x̄(N)[t
(N)
i [k]] = x̄(N)[t

(N)
i−1 [k]]

+
1

N

(
1

τ
1(ξ

(N)
i,k > p

(N)
i [k]) − 1

2
x

(N)
i [t

(N)
i [k − 1]]1(ξ

(N)
i,k ≤ p

(N)
i [k])

)

, x̄(N)[t
(N)
i−1 [k]] +

1

N
G(N)[t

(N)
i [k]],

b̄(N)[l] = b̄(N)[l − 1] +
1

N

(
N∑

i=1

1(η
(N)
i,l ≤ x

(N)
i [l −Nτ f ]/N) − C

)+

b̄(N)[l−1]

, b̄(N)[l − 1] +
1

N
F (N)[l].

With the same reasoning as in the packet update scheme we can suppose that

{x(N)
i (·), b̄(N)(·)} ⇒ {xi(·), b̄(·)} and the situation is simpler than the case of packet

update scheme. It is straightforward to show that the limit process xi(·) can be rep-

resented by the random process x(t), which solves the following stochastic functional

difference equation:

x(t) = x(t− τ) + 1
τ
1(ξ(t) > p(t)) − 1

2
x(t− τ)1(ξ(t) ≤ p(t)). (2.18)

with the initial condition

x(θ) =
1

τ
, 0 ≤ θ < τ.

Here ξ(t) is a time independent random variable, uniformly distributed on [0, 1].

The continuous time version of dropping probability p(t) is defined as

p(t) = 1 − exp

(

−x(t− 2τ)

∫ t−τb

t−τ−τb

h(b̄(s))

)

, (2.19)

Then by the Law of Large Numbers, we obtain

G(t) =
1

τ
− Et

[(
1

τ
+

1

2
x(t− τ)

)

p(t)

]

. (2.20)
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Therefore it can be shown that the limit process x̄(·) solves the following equation

˙̄x(t) =
1

τ
G(t), (2.21)

and the limit rate x̄(·) is

x̄(t) =
1

τ
Et

[∫ t

t−τ

x(s)ds

]

.

2.2.2 Flow Controlled by Proportional Fairness Controller

The many-flows asymptotics of the flows controlled by PF controller can be

derived by the same techniques used in the previous subsection. Here we present the

discrete models for both update schemes and associated limit fluid models directly.

As in the case of TCP/Reno systems, we consider a sequence of single source/link

systems, each with N flows equipped with probabilistic sending scheme. The time

for the Nth system is again slotted with the duration of 1/N seconds. We use the

same notations for the (limit) rate process, (limit) queue process, and etc as the last

subsection.

In the packet update scheme for PF controlled flows, the rate updating rule

can be expressed by

x
(N)
i [l + 1] = x

(N)
i [l] +

1

N
w − βx̃

(N)
i [l −Nτ ]1(ξ

(N)
i,l < p(N)[l]),

where the marking probability is

p(N)[l] = h(b̃(N)[l −Nτ b]/N).

Then in the many-flows limit we have the same queue dynamics as in (2.13).
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The flow limit satisfies the following equation

˙̄x(t) = w − βx̄(t− τ)h(b̄(t− τ b)). (2.22)

For PF controlled flows with the window update scheme, the rate update rule

follows the representation below,

x
(N)
i [l] =







x
(N)
i [l −Nτ ] + wτ

− 1
τ

∑Nτ
j=1 x̃

(N)
i [l − 2Nτ + j]d(N)[l −N(τ + τ b) + j], l = t

(N)
i [k],

x
(N)
i [l − 1], otherwise,

Again using the same methodology, one concludes that the limit process x̄(·) solves

the differential equation (2.21) with a different G(t) as below,

G(t) = wτ − 1

2
Et[x(t− 2τ)]

∫ t−τb

t−τ−τb

h(b̄(s))ds. (2.23)

The result of this section can be summarized in Table 2.1. As we can see, a

general rule of thumb is that the fluid models obtained through direct differentia-

tion with the assumption of deterministic continuous flow are in the sense of “mean

field approximation” of the fluid models obtained by many-flows asymptotics, which

takes the randomness of packet traffic and packet marking into account. That is, the

simplifications of fluid model dynamics by replacing E[f(x)] by f(E(x)) and treat-

ing x(t) independent of x(t−τ) are made. Therefore for all the protocols and update

schemes we considered in this section, only PF flow with packet update scheme has

the same fluid model representation by both direct differentiation and many-flows

asymptotics method, since in this case the flow dynamics is linear. Although fluid

models by many-flows asymptotics are precise, studying their dynamical proper-

ties, or even calculating their equilibrium points, is a complicated task since their
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fluid dynamics explicitly rely on (high) moments of state variables evolved by some

stochastic equations (e.g. (2.15), (2.18), etc). Hence in the subsequent discussions,

we follow a common practice that focuses entirely on the fluid models based on the

direct differentiation method. This approach has been used successfully on study

of the equilibrium and dynamical properties of congestion controlled networks and

has been shown to describe the system very accurately [9, 10, 11, 12, 13]. We

run simulations for TCP/Reno flows with the window update scheme for 200 flows

and 2000 flows in a single source/link network with proportional marking function

h(b) = 0.02q. The paths of their corresponding mean flow rates with comparison

to what is predicted by the direct differentiation method is presented in Figure 2.1.

As we can see, in this case the fluid model by the direct differentiation method is a

close match to the real model.

Table 2.1: Fluid Models for TCP/Reno and Proportional Fairness Controller

TCP/Reno PF Controller
Packet Up-
date

Window Up-
date

Packet Up-
date

Window Up-
date

Direct Differentia-
tion

(2.2), (2.3),
(2.4)

(2.3), (2.6),
(2.7), (2.9)

(2.3), (2.4),
(2.10)

(2.3), (2.11),
(2.12)

Many-Flows Asymp-
totics

(2.13), (2.15),
(2.14), (2.16),
(2.17)

(2.13), (2.18),
(2.19), (2.20),
(2.21)

(2.13), (2.22) (2.13), (2.21),
(2.23)
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Figure 2.1: TCP/Reno flow rates in a single source/link network with proportional
marking. The update scheme is window based. The round-trip delay is 2 seconds
and the link bandwidth is 10 packets/second. Plotted are simulated paths with 200
flows, 2000 flows, and the fluid model derived from direct differential method (see
equations (2.3), (2.6), (2.7), (2.8), (2.9))

2.3 Network of Congestion Controlled Flows and Flow Optimization

The fluid model of the previous section can be readily extended to the network

case. We consider a N -user L-bottleneck-link network (Fig. 2.2). By bottleneck

links we mean those links whose aggregate traffic rates are equal to their bandwidths

in equilibrium. We suppose that the bottleneck links are known a priori and all other

non-bottleneck links are “transparent” to user traffics. So from now on we refer to

bottleneck links simply as “links”. Each user has a single fixed path, consisting of one

or more links, to send traffic. If a user has multiple sessions of traffic simultaneously
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then we “split” the user into multiple users. So we hereafter use user, flow and

traffic on this single path interchangeably (notice flow used in this paper is different

from that in multicommodity-flow problem). Each flow is indexed by a number in

[N ] , {1, . . . , N} and each link is indexed by a number in [L] , {1, . . . , L}. We use

a L×N 0-1 routing matrix R to describe this flow/link relationship. That is Rji = 1

if the flow i passes the link j and Rji = 0 otherwise. We denote the bandwidth of

link j by cj > 0.

Sour
eControl LinkControl
R y 2 RL

q 2 RN

N Sour
es x 2 RN L Links

RT p 2 RL
Figure 2.2: Network of Elastic Traffic

Assuming all the flows follow TCP/Reno protocol with the packet update

scheme, we can write the flow dynamics according to (2.2), (2.3), and (2.4) as

below, 





ẋi(t) = xi(t−τi)
xi(t)

(
1
τ2
i

−
(

1
τ2
i

+ 1
2
xi(t)

2
)

qi(t)
)

ḃj(t) = (yj(t) − cj)
+
bj
.

Here the aggregated rate yj(·) and the aggregate marking probability qi(·) can be
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expressed as

yj(t) =
N∑

i=1

Rjixi(t− τ fij),

qi(t) =

N∑

j=1

Rjihj(bj(t− τ bij)).

Similarly, for the TCP/Reno flows with the window update scheme, their

dynamics (see (2.3), (2.6), (2.7), and (2.9)) can be expressed as,







xi(t) = xi(t− τi) + 1
τi
−
(

1
τi

+ 1
2
xi(t− τi)

)

qi(t),

ḃj(t) = (yj(t) − cj)
+
bj
.

Different than those in the packet update scheme, the aggregate rate and marking

probability are of the following form,

yj(t) =
N∑

i=1

Rji
1

τi

∫ t−τf
ij

t−τi−τ
f
ij

xi(s)ds,

qi(t) = 1 − exp

(

−xi(t− 2τi)

N∑

j=1

Rji

∫ t−τb
ij

t−τi−τb
ij

hj(bj(s))ds

)

.

It is worth to remark that the aggregate marking probability for an individual

packet is a multiplication of the marking probabilities exercised by the intermediate

bottleneck links which the packet passes, assuming the marking events are indepen-

dent from each other. But in the fluid model we only concern events occurred in

infinitesimal durations. Therefore the aggregate marking probability appears in an

additive form. This is precise to the extent of the mean field approximation and no

assumption of “small” marking probability is needed for this to be valid.

We are interested in the equilibrium rate of the network flow system. From the

network dynamic equations, the equilibrium rates x∗i and queue lengths b∗j satisfies
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the following equations in the packet update scheme:






(
1
τ2
i

+ 1
2
x∗2i

)
∑N

j=1Rjihj(b
∗
j ) = 1

τ2
i

,

∑N
i=1Rjix

∗
i = cj, ∀j s.t. b∗j > 0.

and in the window update scheme:






(
1
τi

+ 1
2
x∗i

)(

1 − exp
(

−τix̄i
∑N

j=1Rjihj(b
∗
j )
))

= 1
τi
,

∑N
i=1Rjix

∗
i = cj , ∀j s.t. b∗j > 0.

Then the equilibrium rates for both update schemes depend on the aggregated

feedback value of marking probabilities in the follow way,

Packet Update Scheme:
1

1 + 1
2
τ 2
i x

∗2
i

, F1(x̄i) =

N∑

j=1

Rjihj(b
∗
j)

Window Update Scheme:
1

τix∗i
ln

(
2

τ x̄i
+ 1

)

, F2(x̄i) =

N∑

j=1

Rjihj(b
∗
j ).

In order to characterize the above equilibrium rates, consider the utility func-

tions defined as follows,

Packet Update Scheme: Ui(x) ,

∫

F1(x)dx =

√
2

τi
arctan

τix√
2

Window Update Scheme: Ui(x) ,

∫

F2(x)dx =
1

τi
Li2

(

− 2

τix

)

where the function Li2(x) : (∞, 1] → R is dilogarithm function which is defined

as Li2(x) ,
∑∞

k=1 x
k/k2. It can be verified immediately that the utility functions

Ui(·) in both update schemes are strictly monotonically increasing concave functions.

Kelly formulated the network flow optimization problem as below [1]

P = maxxi≥0

∑N
i=1 Ui(xi)

s.t.
∑N

i=1Rjixi ≤ cj , ∀j ∈ [L].

(2.24)
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for appropriately chosen utility functions Ui(·). The corresponding dual optimization

problem is

D = min
pj≥0

L∑

j=1

max
xi≥0

(

Ui(xi) − xi

L∑

j=1

Rjipj

)

+
L∑

j=1

pjcj, (2.25)

where {pj} is a vector of Lagrange dual variable.

Since we have strictly monotonic objective function defined on an nonempty

convex compact set in the primal optimization problem (2.24), there exists a unique

solution to this problem, which we denote as {x∗′i }. By the concavity of the primal

objective function and Slater’s condition, strong duality holds, that is, P = D. The

solution to the dual problem {p∗′j } satisfies the first order condition

U ′
i(x

∗′

i ) =
∑L

j=1Rjip
∗′

j ,

p∗
′

j (
∑N

i=1Rjix
∗′

i − cj) = 0.

(2.26)

Back to the TCP/Reno system, from the definition and the assumption that

the feasible rates are all above 1/τi, it is true that U ′
i(x

∗′

i ) ∈ [0, 1]. Therefore for all j,

p∗
′

j ∈ (0, 1) holds. If we define x̄i = x̄′i, ∀i and hj(b
∗
j) = p̄j, ∀j′, then the equilibrium

equations hold and we have just shown the existence of the equilibrium rates and

queue sizes. Conversely, from the strong duality any {x̄i} and {p̄j} that satisfies

the first order condition (2.26) constitutes the optimal solution to the primal (2.24)

and dual (2.25) problem, which is unique. Therefore we have unique equilibrium

rates and queue sizes for both packet and window update schemes with TCP/Reno

controller. Similar arguments can be shown to hold for the case of PF controller, in

which the utility function is Ui(x) = w
β

log x.

Since the primal optimization problem (2.24) possesses a separable structure

in both the objective function and the constraints, the dual problem (2.25) has a
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nice interpretation of decentralized optimization. The value of Ui(xi) indicates the

benefit the source receives by sending its flow at rate xi and the dual variable pj

can be interpreted as the unit price charged by accessing link j. Then the dual

optimization (2.25) can be viewed that each source selects its transmission rate xi

such that its profit Ui(xi) − xi
∑L

j=1Rjipj is maximized.

Remark 2.1 It is worth to note that this model of network flow optimization is

a special case of the classical pure exchange economy (I, E), in which I is a finite

set of consumers and a map E : I → R
L+1
+ × P assigns to each consumer i ∈

I an initial endowment e(i) ∈ R
L+1
+ and a preference relation �i∈ P. In our

context each network user corresponds to a consumer and each link corresponds

to a commodity, and the additional (L + 1)th commodity is the “numeraire”, upon

which all the other commodities are evaluated. The initial endowment is such that

∑

i∈I ej(i) = cj for all j = 1, · · · , L. The preference relation �i on R
L+1
+ is a subset

of R
L+1
+ ×R

L+1
+ . In the network flow optimization, for any two consumption vectors

(x1, m1) and (x2, m2), where xk ∈ R
L
+ is the bandwidth allocation and mk is the

numeraire, we have (x1, m1) �i (x2, m2) if and only if Ui(minj:Rji=1 x
1
j ) + m1 ≥

Ui(minj:Rji=1 x
2
j ) +m2. The Pareto optimal of the economy is exact the solution (in

terms of effective bandwidth allocation) of the network optimization problem (2.24),

and the dual solution with the price concept is exactly the competitive equilibrium

(or Walrasian equilibrium) of the economy. A direct consequence of the competitive

equilibrium is that the equilibrium is fair in the sense of envy-freeness of the “net

trade” [14] (another popular interpretation of fairness only considers a special type
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of utility functions [15]). That is, given the Pareto optimal solution, the allocations

of user i1 and i2 are such that (x(i1), m(i1)) �i1 (x(i2), m(i2)) − e(i2) + e(i1) and

(x(i2), m(i2)) �i2 (x(i1), m(i1)) − e(i1) + e(i2). In other words, no one desires to

replace his own change of allocation with somebody else’s. Special to our network

flow optimization problem, an important feature of the preference relation is that it

is quasi-linear. Consequently, the bandwidth allocation part does not depend on the

initial individual endowment of numeraire and bandwidths, as long as the aggregate

endowment is fixed. Therefore the bandwidth part of any core allocations is the same

as the competitive equilibrium, since we have unique Pareto optimum in terms of

effective bandwidths and any core allocation is a Pareto optimum. That is to say,

no coalition of a subset of all network users can achieve better utilities for all its

members than those of competitive equilibrium. This is a rather strong property

since this kind of core equivalence is usually only achieved in large economies [16].

In the network algorithms, different utility functions represents different con-

gestion control protocols, as we have already seen in the case of TCP/Reno and

proportional fairness controller. It is shown in [17] that any link marking algorithms

which satisfy
N∑

i=1

Rjix
∗
i ≤ cj with equality if pj > 0

solve the network optimization problem in equilibrium. AQMs such as RED, PI,

RED, droptail, and etc all satisfy this condition. Therefore TCP/AQM protocols

can be seen as decentralized primal-dual algorithms to solve the global network

optimization problem. In the subsequent chapters we will base all of our protocol
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studies and designs on this optimization framework.
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Chapter 3

Stability Results for Networks with Time Varying Delays - Classical

Source/Link Controllers

3.1 Introduction

Recently there have been extensive studies [18, 19, 20, 21, 22] in the stability

problem of distributed algorithms for network with elastic traffic, whose values are

not given a prior but depend on the availability of network bandwidth. This problem

stems from a series of research on Internet congestion control [23] and router design.

The objective of Internet congestion control [23] is to allocate network bandwidth

among Internet users in a fair and efficient way. It is known that the equilibrium

value of bandwidth allocation is the solution to a centralized utility maximization

problem of a whole network [1, 17]. To solve the network optimization problem, de-

centralized algorithms can be designed from the dualization of the original problem:

source rates (“primal variables”) are decoupled from each other at each link con-

straint by introducing congestion signals or prices (“dual variables”) such as packet

dropping probabilities. Each user updates its rate according to the aggregate con-

gestion prices along the links that its traffic traverses and in the meantime each

link adjusts its price by its aggragte rate of arriving traffic. Together the user and

link dynamics drive the system to the rate and price equilibrium without knowing
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their actual values in prior if the dynamics converge. This summarizes the common

structure of some distributed algorithms for network with elastic traffic, including

widely implemented TCP/AQM (Transmission Control Protocol with Active Queue

Management) system. Therefore the ability of these algorithms to converge from

any initial values is required for implementation. Without stability user traffic rates

will never reach the optimal equilibrium and will oscillate which may cause link

under-utilization and frequent packet drops.

The system of network with elastic traffic is a nonlinear system with heteroge-

neous delays. Early studies on the stability of network with elastic traffic focus on

either linearized version of the algorithm [18, 10] by frequency domain approach or

delay-free case [21] by Lyapunov-based methods. Since the system does not know

its equilibrium values in prior it usually can not be guaranteed that the system

operates in a region near equilibrium. Therefore the stability condition from the

analysis of the linearized version can only give us limited information about the

dynamic behavior of the network. The analysis of the effect of delays in the network

is important since their existence may bring instability of the network (so we are

only interested in network with delay-dependent stability, which is different from

delay-independent stability studied in [20]). In fact all three types of distributed

algorithms studied in this paper are globally stable in a delay-free situation. In addi-

tion, delays in the network are usually not known exactly and they are time-varying

in nature because part of delays are caused by queuing latencies at routers which

change frequently according to their congestion levels. Another desirable feature of

the distributed algorithm is that the stability condition can be satisfied with net-
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work information that can be accessed by users and links. This is important for the

implementation of the algorithm since to avoid extra communication costs we wish

each user or link collects relevant information only from their “local” measurements

and different users or links do not cooperate with each other. Therefore in this

paper we intend to analyze the global stability conditions of three types of popular

distributed algorithm for network with elastic traffic and time-varying delaysand

also show that these conditions can be satisfied by each user and link individually

so that the system-wide stability is ensured.

Our approach to the stability problem of network system with heterogenous

delays is to use Lyapunov-Krasovskii method, which relies on Lyapunov-Krasovskii

functional instead of Lyapunov function in the analysis of delay free systems. It is

one of the most general methods in analyzing delay system and it can be shown

that the results from Small-Gain Theorem [19] (which is equivalent to Lyapunov-

Razumikhin method) can be obtained by Lyapunov-Krasovskii method and im-

proved by a better choice of Lyapunov-Krasovskii functional. Generally, for systems

with time-varying delays, stability conditions obtained by Lyapunov-Razumikhin

method have advantage over those by Lyapunov-Krasovskii method where the for-

mer does not depend on the time-derivative of delays but the latter does. However,

due to the special structure of the system of network with elastic traffic, our results

based on Lyapunov-Krasovskii method are independent of the time-derivative of

delays, which is desirable for the implementation of the algorithms since the delays

in the network can be “jittery”.

In Section 3.2 we present our network model in detail and introduce three
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popular distributed algorithms for network with elastic traffic to study in detail. We

discuss previous results and methods on the stability problem and make comparisons

in Section 3.3. In Section 3.4 we present our main results on stability conditions

by Lyapunov-Krasovskii method for each algorithm in subsections. Because of the

“distributed” structure of the stability conditions we discuss the implementation

issues in Section 3.5 and finally conclude in Section 3.6.

3.2 Network Model

It is known that fair bandwidth allocation can be understood as a solution to

network optimization problem of some user utility function. The network optimiza-

tion problem can be written as follows,

maxx>0

∑N
i=1 Ui(xi) (3.1)

s.t. Rx ≤ c

where xi is the allocated rate of flow i and Ui(·) is the utility function of user i,

which is a non-decreasing concave function. Here the designated utility function of

an individual user reflects the system-wise fairness requirement [15], not individual

user preference per se as in the game theoretic framework [24]. In some situations

we need the conditions on maximally allowed transmission rate for each user to

ensure global stability. This is done by contraining the maximum derivative of

individual utility by constant ηi for each user i as U ′′
i (x) ≤ −ηi < 0, ∀x ≥ 0. The

constraints of this optimization problem are simply bandwidth limitations. In the

case of TCP, the approximate utility function is −1/(τ 2x) where τ is the round-trip
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time. Network optimization of this particular utility function can be interpreted as a

weighted minimum transmission time problem. A salient feature of this optimization

problem is that by dualization the primal variable xis in the link constraints can be

decoupled by the equivalent optimization

minp>0

∑N
i=1 maxx>0

(

Ui(xi) − xi
∑L

j=1Rjipj

)

+
∑L

j=1 cjpj (3.2)

where pj is the dual variable, which we interpret as “price”, at link j. Then by

gradient method there exist algorithms to solve the optimization problem completely

in a distributed way where the exchange of state variables between users and links

is by aggregate price qi at each user i and by aggregate rate yj at each link j. Hence

the algorithms do not require extra communications to obtain information about

network congestion conditions and user decisions.

Before presenting the distributed algorithms we must specify the network de-

lays. We denote at time t at link j the delay from user i to link j as τ fij(t). In other

words if a packet of flow i leaves user i at time t − τ fij(t) then it arrives at link j

at time t. Similarly we denote at time t at user i the delay from link j to user i as

τ bij(t). Therefore the round-trip delay at time t seen by user i is τ bij(t)+ τ fij(t−τ bij(t))

for any link j on the path of flow i. In some cases we omit forward delays τ fij since

bottleneck links often appear at the network entrance point and thus constitute a

small portion of the totally round-trip delay. In general we have the network model

as follows,
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Network model:






qi(t) =
∑L

j=1Rjipj(t− τ bij), ∀i ∈ [N ]

yj(t) =
∑N

i=1Rjixi(t− τ fij), ∀j ∈ [L].

(3.3)

There are different approaches to apply the gradient method to solve the net-

work optimization problem. In [1] a distributed algorithm based on primal optimiza-

tion problem (3.1) is proposed. Each source uses first-order dynamics to update his

flow rate and each link uses static penalty function to prevent aggregate flow to

exceed his bandwidth capacity. We call it “primal law” algorithm and it has the

follow form:







ẋi = Ki(U
′(xi) − qi)

+
xi
, ∀i ∈ [N ]

pj = hj(yj), ∀j ∈ [L].

(3.4)

where Ki > 0 for each user i and hj : R+ → R+ is an increasing function for each

link j with derivative bounded by constant ξj as 0 < h′j(x) ≤ ξj, ∀x ≥ 0. The

equilibrium can be close to the optimal solution of (3.1) by appropriately chosen

penalty functions hj(·)s. But this algorithm does not reflect the queuing dynamics

taking place in the actual network. Also in [1] a gradient method on the dual

variables pjs result in a different distributed algorithm. Now each link uses first-

order dynamics to update its price, just like the dynamis of queue accumulation and

depletion, and each user uses static function to solve individual utility maximization

as in the dual problem (3.2). This is in turn called “dual law” algorithm and it can

be written as
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





xi = U ′−1(qi), ∀i ∈ [N ]

ṗj = Γj(yj − cj)
+
pj
, ∀j ∈ [L].

(3.5)

where Γj > 0 for each link j. In addition, better convergence speed can be achieved

by using first-order dynamics in both user and link update laws. This is the same

as Lagrangian method for convex programming in [25] and TCP/AQM systems can

be modelled in this framework. We call it “primal/dual law” algorithm and it has

the form below 





ẋi = Ki(U
′
i(xi) − qi), ∀i ∈ [N ]

ṗj = Γj(yj − cj), ∀j ∈ [L].

(3.6)

3.3 Literature Review

The major difficulty of stability analysis of these distributed flow control algo-

rithms lies in system nonlinearity and existence of delay. Initial studies often focuses

on linearized systems [18, 17, 12, 26, 10] and their results lead to the understanding

and the design of control algorithms such as RED [12], PI [26], scalable controller

[9], etc. But as we know that the analysis of a linearized system only guarantees

the local behavior of the system, global behavior can be qualitatively different from

local behavior even though the delay-free system is globally asymptotically stable

as manifested by a result implied in [27]:

Proposition 3.1 Consider a scalar delay differential equation

ẋ(t) = −δx(t) + w(x(t− h)), δ > 0.

Then for every α ≥ 0 there exists a smooth strictly decreasing, bounded below func-
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tion w with −w′(0) = α and w(0) = 0, and such that the above equation has a

nontrivial periodic solution which is hyperbolic, stable, and exponential attracting

with asymptotic phase (so the trivial solution of the equation may not be not globally

stable although it is locally stable).

Therefore existing results on distributed algorithms in which both the local

stability with time delays and global stability without time delays [1, 21] hold do

not guarantee the stability of global behavior of network system with time delays.

Desirable properties from local analysis, such as in scalable controller where stability

can be maintained independent of network, need further investigation in the global

region. Indeed, recent studies [22, 28] only verify the network-dependent global sta-

bility condition for scalable controller. We will briefly discuss two main approaches

used in the literature for the study of global stability of distributed algorithms on

network flows.

Extended from Lyapunov-based method in stability analysis of delay-free sys-

tems, two main approaches for dealing with the stability of time delay systems have

been widely used in the past. The first is based on Lyapunov-Krasovskii functionals

and the second is based on Razumikhin Theorem. The first method requires the

construction of a nonnegative functional with decreasing values along the solution

trajectory but the second method only asks for a nonnegative function whose value

decreases at some special moments. The theorems related to these two methods can

be stated as follows [29],

Theorem 3.1 (Lyapunov-Krasovksii Stability Theorem) Consider the delay
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differential equation of the following form,

ẋ(t) = f(t, xt), (3.7)

where we define the function xt ∈ C(, C([−τ, 0],Rn)) by xt(θ) = x(t+θ), θ ∈ [−τ, 0]

and for any φ ∈ C define its norm by ‖φ‖ = supθ∈[−τ,0] |φ(θ)|.

Suppose that the functional f : R × C → R
n takes bounded sets of R × C into

bounded sets of R
n, and u, v, w : R+ → R+ are continuous nondecreasing functions

with u(s), v(s), w(s) > 0 for s 6= 0 and u(0) = v(0) = 0. If there exists a continuous

functional V : R × C → R such that

(i) u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|),

(ii) V̇ (t, φ) ≤ −w(|φ(0)|),

then the solution x = 0 of the equation (3.7) is uniformly asymptotically stable.

Theorem 3.2 (Lyapunov-Razumikhin Stability Theorem) Suppose functions

f, u, v, w satify the same conditions as in the statement of Theorem 3.1. Assume

that there exists a continuous function V : R × R
n → R such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ R, x ∈ R
n,

and there is a continuous nondecreasing function r : R+ → R+, r(s) > s, such that

V̇ (t, φ(0)) ≤ −w(‖φ(0)‖) if V (t+ θ, φ(θ)) < r(V (t, φ(0)), ∀θ ∈ [−τ, 0]

then the solution x = 0 of the equation (3.7) is uniformly asymptotically stable.
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Due to relative simplicty of constructing functions over functionals, Lyapunov-

Razumikhin method or its equivalence has been applied to the stability analysis of

network flow algorithms. Deb and Srikant [30] used this method to study single

source/link network with Kelly’s primal algorithm. Fan et al [19] used ISS Small-

Gain Theorem, which is equivalent to Razumikhin method [31], to study both primal

and dual algorithm in general networks. There are several kinds of conservativeness

when we adopt Razumikhin method to obtain stability conditions. First is due to

the crude estimate of the worst case of delayed dynamics to ensure the decrease

of Lyapunov-Razumikhin function over some critical moments. This deficiency is

actually shared by some most common selections of Lyapunov-Krasovksii functional

and it is difficult to improve. For example if the single source update law is the

following

ẋ(t) = k

(

w − 1

xU ′(x)
x(t− τ)p(x(t− τ))

)

with U(x) = − 1
axa and p =

(
x
C

)b
for some positive constants a, b, and C. Then Deb

and Srikant’s result shows that the system is globally asymptotically stable when

τ ≤ ck−1Ma−bla+1 where M and l are upper and lower bound of rate x and c is

some constant independent of M and l when M is large and l is small. However

by contracting mapping method [20] the system is globally asymptotically stable

for arbitrary large τ if a < b + 1. Second cause of conservativeness brought by

the application of Razumikhin method for the analysis of general networks is due

to the fact that the calculation of the critical moments {t ∈ R+ : V (t + θ, φ(θ)) <

r(V (t, φ(0)), ∀θ ∈ [−τ, 0]} when the value of Razumikhin function decreases requires
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collective knowledge of states. Therefore 1) it is hard for a distributed algorithm

to meet the stability conditions depending on global information; 2) the stability

conditions themselves become overly restrictive since any users and links, even with

“good” delay parameters, have to comply with the global stability requirement.

In contrast a carefully constructed Lyapunov-Krasovskii functional decouples the

system dynamics during the analysis so that the stability of the dynamics of each

user or link can be satisfied individually with the improvement of stability region.

We can even design Lyapunov-Krasovskii functional (see Appendix A) to proved the

global stability of rate controlled networks described by Ranjan and La [20, 32], in

which the stability results are obtained by the analysis of solution trajectory. This

is one of the major themes we explore in Section 3.4. There we also prove that our

estimate of stability region is better than those obtained in [19] by the equivalence

of Razumikhin method.

Ranjan and La [20, 32] have shown a family of distributed algorithms which

possess a remarkable feature of delay-independent stability. In their algorithms, the

network is asymptotically stable when the delays can be arbitrarily large and time

varying. The idea is that the dynamics of the algorithms can be considered as con-

traction mappings so that the future trajectories are confined within initial invariant

region. However their algorithms do not really solve the optimization problem (3.1).

That is, the final equilibrium point is not the solution to the optimization problem

unless the network knows exact information of users, such as user utilities and num-

ber of users, etc, which is not a desirable requirement for distributed algorithms.

Let us illustrate this point briefly. Suppose we have a bottleneck link dynamics G
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with bandwidth c > 0 such that the system with one or more users accessing the

bottleneck link converges to a unique solution of some optimization problem if the

users’ utility functions belong to a class of utility functions. Specifically for a single

user/link system consider a primal/dual algorithm with rate x and price q as below

ẋ(t) = α−1F (αx(t), αx(t− T ), q(t− T )) (3.8)

q̇(t) = G(x(t), q(t)),

where α is a weight parameter in user’s utility function. For n identical users

accessing the bottleneck link the system is as follows,

ẋi(t) = F (xi(t), xi(t− T ), q(t− T )), i ∈ [n] (3.9)

q̇(t) = G

(
∑

i

xi(t), q(t)

)

.

We assume that the both of above systems are globally asymptotically stable for

all 0 ≤ α ≤ 1 and n ≥ 1 with arbitrarily large T in some invariant regions from

the argument of contraction mapping. Suppose that the equilibrium points of both

systems achieve the unique optimal solution of corresponding optimization problems.

We try to show this is false. First let us consider the single user system (3.8). Denote

the invariant region of the system with parameter α by Ix(α) × Iq(α). By common

techniques of contraction mapping, there exist a function Fα : Ix(α)×Iq(α) → Ix(α)

and G : Ix(α) → Iq(α) such that F (αFα(x, q), αx, q) ≡ 0 and G(x,G(x)) ≡ 0.

Additionally it requires that for any I1 × I2 ⊆ Ix(α) × Iq(α), Fα(I1, I2) × G(I1) ⊂

I1 × I2. From the assumption the equilibirum x is the bottleneck bandwidth c for

all feasible α. By definition F1(x, q) = α−1Fα(αx, q). So we have F(αc,G(c)) =
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αc. Since it holds for all 0 ≤ α ≤ 1 one concludes that F(x,G(c)) = x for all

0 ≤ x ≤ x̄ for some constant x̄. Returning back to the multiple users system (3.9),

one immediately sees that any point with
∑

i xi = c is an equilibrium point of the

equations. Therefore the solution violates the uniqueness condition. So one must

seek different constructions of distributed algorithms to solve network optimization

problems, especially of types (3.5,3.6) which achieve the exact intended solution

when in equilibrium.

Our construction of Lyapuonv-Krasovskii functional is similar to some canon-

ical form for linear delay systems. It is known that for delay-dependent stability of

linear delay system of the following

ẋ(t) = Ax(t) + Adx(t− τ), (3.10)

we can transform it into the form below

ẋ(t) = (A+ Ad)x(t) − Ad

∫ t

t−τ

ẋ(s)ds

and then use the Lyapunov-Krasovskii functional for some positive definite matrices

P , R,

V (xt) = xT (t)Px(t) +

∫ 0

−τ

∫ t

t+θ

ẋT (s)ATdRAdẋ(s)dsdθ.

The upperbound of the derivative of the functional along the trajectory is estimated

by completing the squares. This type of transformation and Lyapunov-Krasovskii

functional can be adapted to the case of time-varying delays as well. But usually

the stability requires the delays to have uniformly bounded derivatives d < 1 [33]. It

turns out that the stability of our system with time-varying delays does not depend
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on the time derivatives of delays. Let us intuitively illustrate this point by the

following observation,

Proposition 3.2 Suppose the delay τ in (3.10) is uniformly bounded function of

time 0 < τ(t) < τ̄ , ∀t ≥ 0 and the matrices A and Ad in (3.10) are symmetric

matrices. Then the solution x = 0 of the equation (3.10) is asymptotically stable if

A+ Ad ≤ 0 and 





− 2
τ̄

+Q Ad

Ad −Q






< 0

for some positive definite matrix Q.

Proof: Define the Lyapunov-Krasovskii functional V (φ) as

V (φ) = −φ(0)T (A+ Ad)φ(0) +

∫ 0

−τ̄

∫ 0

θ

φ̇(s)TQφ̇(s)dsdθ.

Then the derivative of V along the solution trajectory of (3.10) is

V̇ (xt) = −2ẋT (t)ẋ(t) − 2ẋT (t)Ad

∫ 0

−τ(t)

ẋ(s)ds+ τ̄ ẋT (t)Qẋ(t) −
∫ 0

−τ̄

ẋT (s)Qẋ(s)ds

≤ −2ẋT (t)ẋ(t) + τ̄ ẋT (t)AdQ
−1Adẋ(t) +

∫ 0

−τ̄

ẋT (s)Qẋ(s)ds

+τ̄ ẋT (t)Qẋ(t) −
∫ 0

−τ̄

ẋT (s)Qẋ(s)ds

≤ −ẋT (t)(2 − τ̄(AdQ
−1Ad +Q))ẋ(t).

Then by Shur’s complement we have the conclusion.

As we see in the proof it is the symmetry of matrix A and Ad that leads to the

stability condition independent of time derivative of delay. Such structural property

exists in all our algorithms. For example the linearized version of the primal law
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algorithm (3.4) can be written as below

ẋ(t) = Υx(t) −RTΞRx(t− τ(t))

for some diagonal matrix Υ and Ξ if all delays are the same. Therefore we expect

that our stability conditions do not depend on the time derivative of delays as well

and we will show that it is indeed correct in the next section.

3.4 Stability Results

In this section we give our main results on three distributed algorithms. In all

situations we denote equilibrium rate of flow i, equilibrium rate of aggregate flows

at link j, equilibrium congestion at link j, equilibrium aggregate congestion at user

i by x∗i , y
∗
j , p

∗
j , and q∗i , respectively. Also we assume delay functions τ fij(t) and τ bij(t)

are all bounded above by τ̄ fij and τ̄ bij .

3.4.1 Primal Control Law

A sufficient condition can be derived by Lyapunov-Krasovskii functional Wp

of the following form,

Wp(φ) = −
N∑

i=1

∫ φi(0)

x∗i

(U ′
i(u) − q∗i )du+

L∑

j=1

∫ ψj

y∗j

(hj(u) − p∗j)du

+
N∑

i=1

L∑

j=1

N∑

n=1

ξj
2
RjiRjn

∫ 0

−τ̄f
ij−τ̄

b
nj

∫ 0

θ

φ̇n(ζ)
2dζdθ

for any φ ∈ C([−τ̄ , 0],RN) and ψj =
∑N

i=1Rjiφi(0), ∀j ∈ [L]. From the monotonicity

of U ′
i(·) and hj(·) it is straightforward that the above functional is nonnegative.
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Define ŷj(t) =
∑N

i=1Rjixi(t). The derivative of the first two parts of Wp(xt) along

the solution trajectory is

−
N∑

i=1

Ki(U
′
i(xi) − qi)(U

′
i(xi) − q∗i ) +

L∑

j=1

(hj(ŷj) − p∗j)

N∑

n=1

RjnKn(U
′
n(xn) − qn)

= −
N∑

i=1

Ki(U
′
i(xi) − qi)(U

′
i(xi) − q∗i ) +

N∑

n=1

Kn(U
′
n(xn) − qn)(

L∑

j=1

Rjnhj(ŷj) − q∗n)

= −
N∑

i=1

Ki(U
′
i(xi) − qi)

2 −
N∑

i=1

Ki(U
′
i(xi) − qi)

(
L∑

j=1

Rjihj(ŷj) − qi

)

≤ −
N∑

i=1

Ki(U
′
i(xi) − qi)

2 +

N∑

i=1

|ẋi|
L∑

j=1

Rji

N∑

n=1

Rjnξj

∫ 0

−τb
ij(t)−τ

f
nj (t−τb

ij (t))

|ẋn(t+ θ)|dθ

≤ −
N∑

i=1

Ki(U
′
i(xi) − qi)

2 +
N∑

i=1

L∑

j=1

N∑

n=1

ξj
2
RjiRjn

(

(τ̄ bij + τ̄ fnj)ẋ
2
i +

∫ 0

−τ̄b
ij−τ̄

f
nj

ẋn(t+ θ)2dθ

)

.

Here we use the assumption that 0 ≤ h′j(y) ≤ ξ holds uniformly. The derivative of

the third part is as following,

N∑

i=1

L∑

j=1

N∑

n=1

ξj
2
RjiRjn

(

(τ̄ bij + τ̄ fnj)ẋn(t)
2 +

∫ 0

−τ̄b
ij−τ̄

f
nj

ẋn(t+ θ)2dθ

)

.

By adding them up we arrive at the following inequality,

Ẇp(xt) ≤ −
N∑

i=1

(

K−1
i −

L∑

j=1

N∑

n=1

ξjRjiRjn(τ̄
b
ij + τ̄ fnj)

)

ẋi(t)
2.

Therefore we have the following theorem,

Theorem 3.3 If the network optimization problem uses primal control law (3.4),

then the optimal solution is globally asymptotically stable if the following inequality

is satisfied for every i ∈ [N ]

L∑

j=1

N∑

n=1

ξjRjiRjn(τ̄
b
ij + τ̄ fnj) < K−1

i .
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It is instructive to compare the results obtained by this Lyapunov-Krasovskii

functional appraoch to the ones obtained by ISS small-gain theorem in [19]. Since it

is well known that the system is ISS is equivalent to the existence of ISS-Lyapunov

functions [34] and ISS small-gain theorems can also be proved by judicious construc-

tion of Lyapunov functions [35, 36], it follows then that the Lyapunov-Krasovskii

approach gives better stability regions as those obtained in [19]. In the case of

primal control law, [19] gives the global stability condition

√
2LNτ̄‖R‖2K̄(η1η

−1
2 K̄K−1 + 1)ξ(K̄K−1η−1

2 ‖R‖2
2ξ + 1) < 1

where η1 and η2 are constants such that −η1 ≤ U ′′
i (x) ≤ −η2 < 0, ∀i ∈ [N ], and

we define τ̄ = maxi τi, K̄ = maxiKi, and K = miniKi. It is easy to see that the

stability region of τ̄ is contained in

2
√

2LN‖R‖2K̄ξτ̄ < 1.

While the stability region obtained from Theorem 3.3 does not depend on η1 and

η2, it contains the region

K̄ξ‖RTR‖∞τ̄ < 1.

So in order to see whether the Lyapunov-Krasovskii approach gives better estimate

of the stability region, it is sufficient to show

2
√

2LN‖R‖2 ≥ ‖RTR‖∞.

In fact we have the following Proposition,

Proposition 3.3 For any L×N 0-1 matrix R, the following inequality holds

√
LN‖R‖2 ≥ ‖RTR‖∞.
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Proof: Define N × L all 1 matrix Φ. Since ‖Φ‖2 =
√
LN we have

√
LN‖R‖2 = ‖Φ‖2‖R‖2 ≥ ‖ΦR‖2.

Note ΦR is a N × N matrix with all row vectors the same. Let us write its row

vector as [a1, . . . , aN ] and it is easy to see that
∑N

i=1 ai = number of 1’s in R. Since

we have ‖ΦR‖2 =
√

ρ(ΦRRTΦT ) where ρ(A) denotes the spectral radius of matrix

A, and the components of the matrix ΦRRTΦT are all
∑N

i=1 a
2
i , it follows

‖ΦR‖2 =

√
√
√
√N

N∑

i=1

a2
i ≥

N∑

i=1

ai ≥ ‖RTR‖∞.

Therefore we see that the Lyapunov-Krasovskii functional based method indeed

gives better estimate than the ISS small-gain theorem in the primal control law.

3.4.2 Dual Control Law

We will also use a sufficient global stability condition by Lyapunov-Krasovskii

functional approach. Define functional Wd as,

Wd(φ) = −
N∑

i=1

∫ ψi

q∗i

(U ′−1
i (u) − x∗i )du+

L∑

j=1

N∑

i=1

L∑

l=1

1

2ηi
RjiRli

∫ 0

−τ̄f
ij−τ̄

b
il

∫ 0

θ

φ̇j(ζ)
2dζdθ

for any φ ∈ C([−τ̄ , 0],RL) and ψi =
∑L

j=1Rjiφj(0), ∀i ∈ [N ]. Again it is easy to see

that Wd is nonnegative from the monotonicity of U ′
i(·). For notational simplicity we

define q̂i(t) =
∑L

j=1Rjipj(t). Then similar to the case of primal control law, we take
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the derivative of Wd(pt) along the solution trajectory and the first part becomes

−
N∑

i=1

(U ′−1
i (q̂i(t)) − x∗i )

L∑

j=1

RjiΓj

N∑

n=1

Rjn(U
′−1
l (ql(t− τ fnj)) − x∗n)

= −
L∑

j=1

Γj

N∑

i=1

Rji(U
′−1
i (q̂i(t)) − x∗i )

N∑

n=1

Rjn(U
′−1
n (ql(t− τ fnj)) − x∗n)

= −
L∑

j=1

Γj

(
N∑

i=1

RjiU
′−1
i (qi(t− τ fij)) − ci

)2

−
L∑

j=1

Γj

N∑

i=1

Rji(U
′−1
i (qi(t− τ fij)) − U ′−1

i (q̂i(t)))

N∑

n=1

Rjn(U
′−1
n (qn(t− τ fnj)) − x∗n)

≤ −
L∑

j=1

Γ−1
j ṗj(t)

2 +
L∑

j=1

|ṗj(t)|
N∑

i=1

η−1
i Rji

L∑

l=1

Rli

∫ 0

−τf
ij(t)−τ

b
il

(t−τf
ij (t))

|ṗl(t+ θ)|dθ

≤ −
L∑

j=1

Γ−1
j ṗj(t)

2 +
L∑

j=1

N∑

i=1

L∑

l=1

(2ηi)
−1RjiRli

×
(

(τ̄ fij + τ̄ bil)ṗj(t)
2 +

∫ 0

−τ̄f
ij−τ̄

b
il

ṗl(t+ θ)2dθ

)

. (3.11)

The derivative of the second part becomes

L∑

j=1

N∑

i=1

L∑

l=1

(2ηi)
−1RjiRli

(

(τ̄ fij + τ̄ bil)ṗj(t)
2 −

∫ 0

−τ̄f
ij−τ̄

b
il

ṗj(t+ θ)2dθ

)

.

Add these two together and we obtain the following inequality

Ẇd(pt) ≤ −
L∑

j=1

(

Γ−1
j −

N∑

i=1

L∑

l=1

η−1
i RjiRli(τ̄

f
ij + τ̄ bil)

)

ṗl(t)
2.

Therefore we conclude with the following theorem with regard to the global stability

of dual control law,

Theorem 3.4 If the dual control law (3.5) is used for solving the network opti-

mization problem, then the optimal solution is globally asymptotically stable if the

following inequality is satisfied for every j ∈ [L]

N∑

i=1

L∑

l=1

η−1
i RjiRli(τ̄

f
ij + τ̄ bil) < Γ−1

j
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Again the result by ISS Small-Gain Theorem in [19] shows that the network

with dual law algorithm and fixed uncertain delays is globally asymptotically stable

if the following condition holds

√
2LNτ̄ Γ̄‖R‖2

(

η−1
2 +

η1Γ̄‖R‖2
2

η2
2Γσ(R)2

)

< 1 (3.12)

where Γ̄ = maxj Γj , Γ = minj Γj, and σ(R) is the smallest singular value of routing

matrix R. As in the case of primal law algorithm, Theorem 3.4 gives the maximum

delay bound which is equivalent to

η−1
2 Γ̄‖RTR‖∞τ̄ < 1.

But from Proposition 3.3 we know that the stability region of τ̄ from the above

inequality strictly contains that by the following inequality

√
2LNη−1

2 Γ̄τ̄ < 1

which in turn strictly contains the stability region from the condition (3.12). Hence

our result from Lyapunov-Krasovksii method yields better estimate of stability re-

gion.

3.4.3 Primal/Dual Control Law

Here we assume the forward delay τ fij are constants throughout the time. Since

bottleneck links are usually concentrated at the network entrance points so the

forward delays are mostly due to propagation latencies. We define our Lyapunov-

55



Krasovskii functional as

Wpd(φ, ψ) =
N∑

i=1

∫ φi

x∗i

u− x∗i
Ki

du+
L∑

j=1

∫ ψj

p∗j

v − p∗j
Γj

dv

+
L∑

j=1

Γj
2

N∑

i=1

N∑

n=1

RjiRjn

√
√
√
√
τ̄ bnj + τ̄ fij

τ̄ bij + τ̄ fnj

∫ 0

−τ̄b
ij−τ̄

f
nj

∫ 0

θ

(φn(ζ) − x∗n)
2dζdθ,

where φ ∈ C([−τ̄ , 0],RN) and ψ ∈ R
L. For a particular solution of the primal/dual

system, we define auxilary state variables zi(t) =
∫ t

−∞
(xi(s)− x∗i )ds for i ∈ [N ] and

define p̂j(t) = Γj
∑N

i=1Rjizi(t). It is then easy to see that żi(t) = xi(t) − x∗i . Take

the derivative of Wpd(xt, p̂(t)) along the trajectory and the first two parts become

N∑

i=1

(xi − x∗i )(U
′
i(xi) − qi) +

L∑

j=1

(p̂j − p∗j )
N∑

i=1

Rji(xi − x∗i )

=

N∑

i=1

(xi − x∗i )(U
′
i(xi) − q∗i ) +

N∑

i=1

(xi − x∗i )

L∑

j=1

Rji(p̂j(t) − pj(t− τ bij(t)))

=

N∑

i=1

(xi − x∗i )(U
′
i(xi) − q∗i ) +

N∑

i=1

(xi − x∗i )

L∑

j=1

RjiΓj

N∑

n=1

Rjn

∫ 0

−τb
ij(t)−τ

f
nj

(xn(t+ θ) − x∗n)dθ

≤
N∑

i=1

(xi − x∗i )(U
′
i(xi) − q∗i )

+
L∑

j=1

Γj

N∑

i=1

N∑

n=1

RjiRjn

∫ 0

−τb
ij(t)−τ

f
nj

|xi(t) − x∗i (t)||xn(t+ θ) − x∗n|dθ

≤
N∑

i=1

(xi − x∗i )(U
′
i(xi) − q∗i ) +

L∑

j=1

Γj
2

N∑

i=1

N∑

n=1

RjiRjn

√

(τ̄ bij + τ̄ fnj)(τ̄
b
nj + τ̄ fij)(xi(t) − x∗i )

2

+

L∑

j=1

Γj
2

N∑

i=1

N∑

n=1

RjiRjn

√
√
√
√
τ̄ bnj + τ̄ fij

τ̄ bij + τ̄ fnj

∫ 0

−τ̄b
ij−τ̄

f
nj

(xn(t+ θ) − x∗n)
2dθ.
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After adding the derivative of the third part we obtain

Ẇpd(xt, p̂(t)) ≤
N∑

i=1

(xi − x∗i )(U
′
i(xi) − q∗i )

+

L∑

j=1

Γj

N∑

i=1

N∑

n=1

RjiRjn

√

(τ̄ bij + τ̄ fnj)(τ̄
b
nj + τ̄ fij)(xi − x∗i )

2

≤ −
N∑

i=1

ηi(xi − x∗i )
2 +

N∑

i=1

L∑

j=1

N∑

n=1

ΓjRjiRjn

√

(τ̄ bij + τ̄ fnj)(τ̄
b
nj + τ̄ fij)(xi − x∗i )

2.

Therefore we conclude with the following global stability criterion

Theorem 3.5 If the primal/dual control law (3.6) is used for solving the network

optimization problem, then the optimal solution is globally asymptotically stable if

the following inequality is satisfied for every i ∈ [N ]

L∑

j=1

N∑

n=1

ΓjRjiRjn

√

(τ̄ bij + τ̄ fnj)(τ̄
b
nj + τ̄ fij) < ηi.

3.5 Implementation Issues

The implementation of a distributed algorithm over the network requires each

user and link to set their parameters by information easily available to them so that

the resulting algorithm leads the system to the optimal equilibrium state eventu-

ally. Although our stability conditions are distributed in nature, for example in the

primal law algorithm the stability is achieved when all of individual user’s stability

conditions are satisfied, there are still some measurement issues to consider. A ma-

jor obstacle is how to measure the packet forward delays, since it is impossible that

every network users and link routers have their clocks in synchronization and even

their local times may be different due to geographic diversity. Therefore we make an
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assumption that the main component of packet forward delays is between bottleneck

routers and we neglect the delays between user hosts and their edge routers. The

delays between bottleneck routers can be measured in a much slow time scale by

messaging between nearby routers and accumulated in a routing table as a metric.

Therefore we obtain an estimate of forward delays for each bottleneck routers. Now

we discuss the implementation of each of distributed algorithms:

1. Primal Control Law: The stability condition in Theorem 3.3 can be written

as
L∑

j=1

ξjRji

N∑

n=1

Rjnτ̄
b
ij +

L∑

j=1

ξjRji

N∑

n=1

Rjnτ̄
f
nj < K−1

i

for every user i. For each link let us set ξj = (
∑N

n=1Rjn)
−1ξ for some globally

known constant ξ. In other words we set the penalty function hj(x) of each link

j to be of the form h(x)/
∑N

n=1Rjn for some positive function h(x) with 0 <

h′(x) < ξ. Here
∑N

n=1Rjn is exactly the number of flows entering link j. Also

from our assumption each router j has the estimate of
∑N

n=1Rjnτ̄
f
nj/
∑N

n=1Rjn

which is the average forward delay. Here is how the algorithm is implemented.

Each packet of flow i has two field, one records the number of bottleneck links

it passes and the other records the cumulative average forward delay. When

entering a bottleneck link each field is updated accordingly. Upon receipt of

the packet the receiver sends back the acknowledgement packet with these two

fields. The user i then adjust Ki so that

Ki < (τ̄iξ× number of links passed by i+ξ× cumulative average forward delay)−1

and global stability can then be guaranteed.
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2. Dual Control Law: In this situation the routers do not have to estimate the

forward delays since the stability condition in Theorem 3.4 only involves the

delay term τ̄ fij + τ̄ bil, which is bounded by 3
2
τ̄i and can be estimated by user

i. Therefore each user i adapts his ηi to be 3
2
τ̄
∑L

l=1Rliη for some globally

known constant η. This can be achieved by either changing his maximum

transmission rate or changing his utility function as in the case of scalable

controller [9]. The parameter
∑L

l=1Rli is the number of links flow i passes and

can be estimated in the same way as the case of primal law algorithms. Then

each link j only needs to set his scaling parameter Γj so that

Γj <
η

number of flows entering link j

to ensure global stability.

3. Primal/Dual Control Law: The stability condition stated in Theorem 3.5 can

be relaxed into the form below for easy implementation,

L∑

j=1

N∑

n=1

ΓjRjiRjn(τ̄i + τ̄n) < 2ηi,

since

√

(τ̄ bij + τ̄ fnj)(τ̄
b
nj + τ̄ fij) <=

1

2
(τ̄ bij + τ̄ fnj + τ̄ bnj + τ̄ fij) =

1

2
(τ̄i + τ̄n).

To implement the primal/dual algorithm over the network, each user i must

report to each router its flow passes his maximum round-trip time τ̄i. This can

be done by either piggybagging the information along the data packet or by

special control messages which can be sent in a much slow time scale. As in the
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case of primal law algorithm, the scaling parameter Γj for each link j is set to

be Γ/
∑N

n=1Rjn for some globally known constant Γ. Again each packet of flow

i uses two special field to record the number of links the flow traverses
∑L

j=1Rji

and the cumulative average round-trip time
∑L

j=1Rji

∑N
n=1Rjnτ̄n/

∑N
n=1Rjn.

Then user i has to ensure the minimum derivative of his utility function ηi to

satisfy

ηi >
1

2
Γ(τ̄i + cumulative average round-trip time )

by either restricting his maximally allowed transmission rate or changing his

utility function. Thus the global stability can be achieved.

3.6 Discussion and Conclusion

We have systematically presented analytic methodology and results on the

stability of distributed algorithms of network with elastic traffic with time-varying

delays. Different methods of stability analysis have been compared and we show

that our constructions of Lyapunov-Krasovskii functional yields better results in

terms of stability region. Additionally as our results show that the global stability

of the whole network system is achieved by separate conditions for individual users

or links, we can design the implementations of these algorithms with parameters

which can be set adaptively in a distributed way for changing network conditions.

We have mentioned the conservativeness caused by over-estimate of worst case

dynamics in Lyapunov-based method is difficult to overcome. In some situations,

the necessary stability condition of a single source/link network does not restrict
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the maximum transmission rate, while our results do. A simple example is Low’s

scalable controller [9] where the single source/link network uses dual control law

and the single user has utility function U(x) = τ̄x
α

(log x̂
x
+1) with the maximum rate

x̂, the maximum delay τ̄ and some parameter α. The system dynamics obey the

following equation

x(t) = x̂e−
αp(t−τ(t))

τ̄ ,

ṗ(t) =
x(t) − c

c
,

with usual notations p as link price and c as link capacity. By simple manipulation

the above equations are equivalent to

˙̃p(t) = e−
αp̃(t−τ(t))

τ̄ − 1, (3.13)

where we define p̃ = p−p∗. It is worth mentioning that the global stability conditions

of this system obtained in [37, 28] actually depend on the maximum rate x̂ and the

network capacity c since their analysis are based on sector nonlinearity. Howerver a

simple usage of contraction mapping leads to a better sufficient condition of α < 1 for

the global stability as follows. Suppose initially p̃(θ) ∈ [−m0,M0], for −τ̄ ≤ θ ≤ 0

and −m0 ≤ −1 < 0 ≤ τ̄(exp(αm0/τ̄) − 1) ≤ M0. Suppose that p̃ achieves the next

maximum M1 at time t1. Then there exists a time instance s1 < t1 closest to t1

such that p̃(s1) = 0 and t1 − s1 = τ(t1) ≤ τ̄ . Therefore M1 =
∫ t1
s1

˙̃p(ξ − τ(ξ))dξ ≤

τ̄(exp(αm0/τ̄)−1). Similarly the next minimum satisfies m1 ≤ τ̄(exp(−αM0/τ̄)−1).

By defining function fα(x) , τ̄(exp(−αx/τ̄ ) − 1) we can get recursive relations

Mn+1 ≤ fα(mn) and mn+1 ≤ fα(Mn). Since 0 is the only fixed point of fα ◦ fα and
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it is locally stable when α < 1, by Sharkovsky’s Theorem the fixed point of fα is

globally stable if α < 1. So the set [−mn,Mn] converges to zero and we reach the

global stability of (3.13). Although this condition is not the best we can get since we

bounded the dynamics in a very coarse way, but the result is still appealing because

of its independence of network parameters. It means that the efficiency of a stable

network is not hampered by its scale.

A recent more careful study [38] of the solution trajecory of scalar FDE renders

the following result:

Theorem 3.6 (Liz, Tkachenko, and Trofimchuk) Consider the following scalar

functional differential equation

ẋ(t) = f(t, xt) (3.14)

where f : R × C → R is a continuous functional, where C , C([−1, 0],R). Suppose

x(t) ≡ 0 is the unique equilibrium of the equation. Also the following generalized

Yorke condition holds for either −3/2 ≤ a < 0 and b > 0 or −3/2 < a < 0 and

b = 0:

aM(φ)

1 + bM(φ)
≤ f(t, φ) ≤ −aM(−φ)

1 − bM(−φ)

where the first inequality holds for all φ ∈ C and the second inequality holds for all

φ ∈ C such that mins∈[−1,0] φ(s) > −1. The functional M : C → R is defined as

M(φ) , max{0,maxs∈[−1,0] φ(s)}. Then all the solutions of (3.14) converges to 0 as

t→ ∞.

It should be noted that the 3/2 bound is the best attainable for general f(t, xt),

since for linear functional f(t, xt) = −ax(t− τ(t)) it is demonstrated in [39] that for
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a = 3/2 there exists τ(t) with 0 ≤ τ(t) ≤ 1 such that the solution is nonconverging

and periodically varying.

A simple application of Theorem 3.14 to the scalable controller network (3.13)

gives an improved bound α ≤ 3/2 for global stability. In addition, one can solve

the global stability problem for scalable controller with the window update scheme,

in which the rate update takes place every round-trip time and the fluid model is

viewed as an aggregate of flows with different updating time instances. This can be

understood as the source maintains a window of received packets for estimating the

marking probability. See Section 2.1.1 for details. By exactly the same reasoning as

the case of TCP/Reno, the fluid model can be written as an FDE with distributed

delays as follows,

˙̃p(t) =
1

τ(t)

∫ t

t−τ(t)

exp

(

− α

τ̄τ(s)

∫ s

s−τ(s)

p̃(θ)dθ

)

ds− 1 , fp(t, p̃t),

where we suppose that 0 < τ ≤ τ(t) ≤ τ̄ for all t and p̃t ∈ C([−2τ̄ , 0],R). Let us only

consider the case where −pm = −mins∈[−2τ,0] p̃t(s) < 0 < pM = maxs∈[−2τ,0] p̃t(s),

then we have

exp
(

−α
τ̄
pM

)

− 1 ≤ fp(t, p̃t) ≤ exp
(α

τ̄
pm

)

− 1.

The upper and lower bound of fp(·, ·) is the same as in the packet update model

(3.13). Then the result of Theorem 3.14 can be directly applied and the stability

bound of the system is α ∈ [0, 3/4].

Although we have quite strong result on the global stability for the single

source/link network with time-varying delay, unlike delay-independent stability in

[20], the method of contraction mapping based on solution trajectory for the study
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of delay-dependent stability quickly becomes unmanageable when the system dimen-

sion, i.e. the number of bottleneck links in the case of source controller, becomes

greater than 1. In the next chapter, we will introduce new suite of protocols whose

parameters only depend on local measurements and which achieve global stability

for arbitrary networks.
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Chapter 4

Design of Scalable and Distributed Control Laws

4.1 Introduction

The design objective of congestion control algorithms of TCP type over the

Internet [23] is to achieve efficient and fair usage of bandwidth for each user with

limited information on the user’s network environment. The necessity of the re-

quirement for limited (or local) information is a natural consequence of the size of

the system we deal with. By limited information we mean only information which

can be measured or obtained by each user directly through her interaction only with

the part of the network relevant to her flow. For example TCP operates explicitly

on the knowledge of the losses of user’s packets, which can be seen as a congestion

message sent by the intermediate routers, and implicitly on the round-trip delay

of each user’s flow through a self-clock mechanism, which is a direct measurement

by the end user. On the other hand efficiency and fairness are design goals which

depend on various combinations of different flows, which are definitely non-local to

each user per se. However, by adopting an optimization framework to interpret the

efficient and fair bandwidth allocation [1, 17, 15], one can immediately reformu-

late the original large coupled problem into smaller decoupled problems via duality.

In essence, each user tries to maximize her own utility function (induced by the

fairness requirement) which is a function of her flow rate (primal variables of the
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optimization problem). At the same time congestion messages generated at each

router by Active Queue Management (AQM) can be seen as dual variables (or La-

grange multipliers for the bandwidth constraints). Then the distributed algorithm

is executed between all users and routers in the network through the exchange of

primal and dual variables. The original design goal is translated into the ability of

the distributed algorithm to reach the global optimal point eventually.

Given the separable nature of the network optimization problem in our con-

text, an immediate candidate for distributed algorithms comes from dual gradient

methods [25, 17], in which the dual variables are updated based on a gradient

approach and the primal variables are obtained directly by solving the first-order

optimality condition. This is generally termed “dual law” since only the calculation

of the dual variables has dynamics. A variant of the dual law algorithm, in which

primal variables are also updated according to a certain kind of dynamics, is called

“primal/dual law” and this actually corresponds to the Lagrangian method in the

theory of optimization [25]. The only equilibrium point of these two algorithms is

the solution of the global optimization problem. In reality TCP with AQM, which

has a pure integrator term, can be modelled as a primal/dual law algorithm. Fur-

thermore, there is a class of “primal law” algorithms, which can model AQM with

arbitrary random dropping functions, but in a strict sense those algorithms do not

solve the network optimization problem, since their equilibrium points are not guar-

anteed to be the optimal solution, although they can be arbitrarily close to the

optima [1].

A major cause of problems in the aforementioned distributed algorithms is the
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existence of delays in the network. Information obtained from the network in order

to update primal or dual variables is usually subject to delays due to the time spent

on computation, propagation, and queues. This information staleness is one of the

major destabilizing factors for the algorithm dynamics and it is well known that

TCP/AQM algorithms do not scale with large delay and bandwidth: they either

result in low utilization of the network resources or display perpetual fluctuations of

flow rates. Many research efforts have been devoted to this issue. First results on a

scalable control law were proposed by Low and Paganini et al for a particular utility

function [9], and subsequently they extended their result for general utility func-

tions [40]. But both protocols are only verified (validated) for a linearized situation

by Vinnicombe’s results on TCP/AQM network control with heterogeneous delays

[10]; however the global behavior results of their scalable control law are restricted

to a single source/link network [37]. General approaches of global stability analy-

sis include Lyapunov-Krasovskii methods, Lyapunov-Razumikhin methods [29], and

contraction mapping methods. Stability conditions for the primal law and dual law

algorithms are obtained by Fan et al [19] by employing a Razumikhin equivalent

method, but their condition requires global information about the network. A con-

traction mapping method is used by Ranjan et al [20] to analyze a class of congestion

control algorithms which enjoys stability with arbitrary large delays.

Our work intends to design a scalable and distributed control algorithm for

the network flow optimization problem such that the algorithm has global stability

and only requires local information for both users and routers. Specifically each

user only needs to know the number of bottlenecks his flow traverses, the round-trip
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delay, and the aggregate congestion of his flow, and each router only needs to know

the number of flows and the aggregate flow it has. In this way such a controller has

a nice plug-and-play property which is desirable for actual implementation. The

paper is organized as follows. In Section 4.2 we will present the network model and

problem formulation. We will put forward our design principles there. In Section

4.3 the general properties that valid controllers must have are discussed based on

some of our design principles. The scalable controller is then designed in Section

4.4 and its global stability is proved. Final discussion and conclusions are given in

Section 4.5.

4.2 Problem Formulation

The network considered in this paper is similar to the one in [40] and consists

of N users and L bottleneck links (all those links whose bandwidths are fully utilized

at equilibrium). We use the notation [n] for the set {1, · · · , n} and the operator | · |

for set cardinality. Therefore we have for the user set [N ] and for the bottleneck

link set [L]. In reality network links other than bottleneck links may have effects on

the dynamics of network flows. But for simplicity we only consider those bottleneck

links, which we abbreviate as “links” hereafter. Each user i has a fixed flow path

ri ⊂ [L] to send a file with infinite length. In other words we only consider persistent

flows. Also each router at link j has a set fj ⊂ [N ] of accessing flows. The routing
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matrix R ∈ {0, 1}L×N is defined as

Rji ,







1, j ∈ ri,

0, j /∈ ri.

We denote by xi the flow rate of user i and by pj the congestion information

on link j. Due to the packet forward delay incurred during the transmission of flow

packets, the aggregate flow rate seen by the router at link j at time t is

yj(t) =
∑

i∈fj

xi(t− τ fij) = Rj·











x1(t− τ f1j)

...

xN (t− τ fNj











(4.1)

where τ fij is the forward delay from user i on link j. Accordingly, the aggregate

congestion information received by each user i at time t is

qi(t) =
∑

j∈rj

pi(t− τ bij) = [p1(t− τ bi1), · · · , pL(t− τ biL)]R·i (4.2)

where τ bij is the backward delay from link j to user i. For reasons of fast computation

and small communication cost, routers cannot differentiate individual flows and

users cannot differentiate congestion levels of individual links. All they have access

to are aggregate information and we will show that these are actually sufficient for

our purposes.

An important assumption made now is that both forward delays and backward

delays are time invariant, which is a valid approximation when routers have small

buffers compared to the product of bandwidth and propagation delays. Then the

observation that τ bij ≥ τ fij usually holds if the reverse route is symmetric with respect
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to the forward route. We also use the following definition

τi , τ fij + τ bij , ∀j ∈ ri, (4.3)

which is the round-trip delay of flow i. Again it consumes extra communication bits

to accumulate information about forward delays and backward delays separately,

and in contrast it is straightforward for each user to measure the round-trip delay.

Therefore it is much more desirable to design algorithms whose parameters depend

not on the forward/backward delays separately but only on the round-trip delays.

As mentioned in Section 4.1 the problem of efficient and fair allocation of

network bandwidths can be cast into the problem of network optimization over

flows. This optimization problem is a classical convex programming problem with

linear constraints:

maxxi≥0

∑

i∈[N ] Ui(xi)

s.t. Rx ≤ c.

(4.4)

where each function Ui : R+ → R, which is understood as the utility function as-

sociated with user i, is a strictly concave, continuously differentiable nondecreasing

function and c is a L-dimensional vector whose jth component represents the band-

width of link j. As usual we assume that U ′
i(x) → ∞ as x→ 0. The relation between

the role of utility functions and fairness criteria has been clarified by [1, 15]: it turns

out that many practical concepts of fairness are equivalent to the right selection of

utility functions. As a consequence of our assumptions the network optimization

problem (4.4) has a unique solution at which all the constraints are satisfied with

equality, i.e. we attain efficient usage of network resources. We use the notation

·∗ to denote the equilibrium value from (or induced by) the network optimization

70



problem, for example p∗j is the equilibrium congestion information on link j.

The standard approach to solve this global optimization problem (4.4) in a

distributed manner is to solve the dual problem instead:

min
pj≥0

∑

i∈[N ]

max
xi≥0

(Ui(xi) − xiR·ip) + pT c. (4.5)

This process decouples the coupling of the primal variables through the constraints

of the original optimization problem and turns it into many small maximization

problems, each of which can be handled by users with local information. The main

algorithms derived from the gradient method and the Lagrangian method can be

written in general form as shown below,

Dual Law:







xi(t) = U ′−1
i (qi(t)),

ṗj(t) = Γj(yj(t) − cj).

(4.6)

Primal/Dual Law:







ẋi(t) = Ki(U
′
i(x(t)) − qi(t)),

ṗj(t) = Γj(yj(t) − cj).

(4.7)

It is known that without delays both algorithms (4.6) and (4.7) converge to the

optimal solution with any positive coefficients Kis and Γjs [17]. When there are de-

lays involved, global stability analysis of both algorithms in a heterogeneous network

reveals that the stability condition depends on those coefficients in a complicated

way. Although decentralized protocols exist in order to satisfy these stability con-

ditions, they require extra communication costs and most importantly users have

to reveal their own utility functions. This is illustrated by the following simple

example:

Example 4.1 A single source/link network uses the following primal/dual algo-
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rithm for its flow control

ẋ(t) = K(U ′(x) − p(t− τ)),

ṗ(t) = Γ(x− c).

By simple analysis it is required that −U ′′(c) > 2τΓ/π for the existence of a coef-

ficient K so that the system is locally stable. In order to set the right Γ the router

has to know the user’s utility function. But it is clearly undesirable to transmit a

function across the communication links, not to mention security reasons. When

the user knows only her U(·) and the link knows its c, no one can calculate U ′′(c).

Therefore we propose the following necessary design principles for our algo-

rithms in order to meet the needs of real-world networks

1. Equilibrium of the algorithm should solve the optimization problem (4.4);

2. The input and the parameters of user and link controllers should be obtained

from local information only. For an individual user the local information is that

which is accrued along the path of his flow, and for an individual link the local

information is that which is aggregated from its accessing flows. Additionally

each user’s utility function should be only known to himself and each link’s

bandwidth should also be kept to itself.

3. The dynamics of the algorithm are globally asymptotically stable given het-

erogeneous delays.

The scalable control laws by Paganini et al [40] satisfy Principles 1)-2) and

partially 3) since only linear stability is verified for their algorithm. Their algorithm
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takes the following form in which ζi is an auxilary state variable at the user i’s side:

τiζ̇i = βi(U
′
i(xi) − qi),

xi = x̄ie
ζi−

αiqi
|ri|τi ,

ṗj = c−1
j (yj − cj).

(4.8)

Strictly speaking their protocol is not completely decentralized as defined in

Principle 2), because their controller parameters depend on a global variable τ̄ , which

is the delay upper-bound of the whole network. Specifically in order to achieve linear

stability, the following condition has to be satisfied,

βi|ri|
αi

τ̄ < η

for some constant η. Although this restriction might not seem to be significant, the

future growth of the network may potentially require a global reset of user control

coefficients and furthermore the existence of this condition on a global variable may

intuitively result in slow performance due to its conservativeness. Therefore we aim

at designing algorithms strictly satisfying the proposed Principles 1)-3).

4.3 General Properties of Controllers

Before we start to design a specific distributed algorithm which satisfies all

the principles introduced in the previous section, we first want to understand the

structural implications of controllers based on Principles 1) and 2. The reason for

investigating these principles first is that to some extent they reflect the “static”

characteristics our controller must possess, while Principle 3) is more relevant to

its “dynamical” characteristics. It is quite difficult to make a statement about the
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general properties of such controllers since the controller space is a very large func-

tional space. Therefore we resort to focus on the linearized version of both user and

link controllers and the results from the linearized controllers will give us necessary

conditions as well as design guidance for the full-blown nonlinear controllers in the

next section. For our purpose we only consider controllers which allow a unique

euilibrium state in this section.

Again consider a single user/link network with the round-trip delay τ and let

F (s)(G(s)) be the transfer function of the user (link) controller with congestion

message as the input (output) signal and flow rate as the output (input) signal.

Suppose both F (s) and G(s) are proper rational functions. Here we made another

assumption that the user (link) dynamics do not explicitly depend on her delayed

value of flow rate (congestion message). This is a valid assumption since in our

problem formulation delays do not bring any benefits to our goals. Then the open

loop gain of the system is e−τsG(s)F (s). First we give the condition for the user

controller:

Proposition 4.1 Assume that the user dynamics (by themselves) do not involve

any delays. Then the transfer function F (s) of the linearized user controller is a

valid user controller for the optimization problem if and only if it is stable and

F (0) = ξ−1 where ξ = −U ′′(x∗).

Proof: By definition we have δx(s) = F (s)δq(s) where δx = x − x∗ and

δq = q − q∗. Since in equilibrium U ′(x∗) = q∗, we have U ′(x∗ + δx) = U ′(x∗) +

U ′′(x∗)δx = q∗−δq. Hence we conclude that F (0) = ξ−1 is a necessary condition for
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F (s) to be valid. We shall show that the condition is also sufficient. Without loss

of generality assume that the user controller is strictly proper and has the following

form

F (s) =
a1s

n−1 + a2s
n−2 + · · ·+ an−1s + an

sn + b1sn−1 + · · ·+ bn−1s+ ξan
.

Here a1, · · · , an and b1, · · · , bn−1 can be functions of ξ. It is well known that this

transfer function can be realized in a controller canonical form [41]











ż1

...

żn











=















−b1 · · · −bn−1 −ξan

1 0 · · · 0

0
. . . 0

...

0 · · · 1 0

























z1

...

zn











−[an, 0, · · · , 0]T δq

δx = a1
an
z1 + · · ·+ an−1

an
zn−1 + zn.

This is a local version of the following nonlinear dynamics:

ż1 = −b1(−U ′′(zn))z1 − · · · − bn−1(−U ′′(zn))zn−1

+an(−U ′′(zn))(U
′(zn) − q),

żk = zk−1, 2 ≤ k ≤ n,

x = a1(−U ′′(zn))
an(−U ′′(zn))

z1 + · · ·+ an−1(−U ′′(zn))
an(−U ′′(zn))

zn−1 + zn

The result then can be easily verified from the fact that the equilibrium of the system

when the input is q∗ is indeed yk = 0, 1 ≤ k ≤ n− 1 and x = yn = x∗.

As an illustration of this proposition we can observe the correspondence be-

tween previously proposed valid user controllers and their linearized forms in Table

4.1.

Now we turn to the properties of valid link controllers.
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Table 4.1: User Controllers and Their Transfer Functions

User Controller Transfer Function

x = U ′−1(q) 1/ξ

ẋ = K(U ′(x) − q) K/(s+Kξ)

user controller by Paganini et al (4.8) K(s+ v)/(s+Kvξ)

Proposition 4.2 Assume that, like the user dynamics, the link dynamics by them-

selves do not involve any delays. Then the transfer function G(s) of the linearized

link controller is a valid link controller for the optimization problem if and only if

it is stable and G(s) = H(s)/s in an irreducible form where H(s) is some rational

transfer function.

Proof: First we verify the sufficiency part. Suppose the equilibrium point with

F (s) in Proposition 4.1 andG(s) given under the current form is the optimal solution

of the network optimization problem. From the definition we have δp(s) = G(s)δy(s)

where δp = p−p∗ and δy = y−y∗. The link controller can be realized in the following

form,

u̇ = y − c

v̇ = Av +Bu

p = Cv +Du

where (A,B,C,D) is a realization of the transfer function H(s). Since G(s) contains

a pure integrator, the only input that achieves the internal stability is δy = 0, or in

the realized system y∗ = c. Along with the source controller we have the equations
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for the equilibrium state

U ′(x∗) = q∗ = p∗

y∗ = x∗ = c

By the KKT conditions this equilibrium point is the optimal solution of the network

optimization problem.

Next we show that this integrator form is also necessary. First since only

the link knows its own bandwidth c and the equilibrium point has to be y∗ = c for

optimality, only the link controller can enforce the input δy to be zero at equilibrium.

Suppose the link controller is realized as shown below,

ż = Az +Bδy

δp = Cz +Dδy.

The previous argument is equivalent to the condition rankA < rank[A,B]. It is

sufficient to check the situation when (A,C) is observable (since (A,C) has to be

detectable for stabilization, therefore the unobservable modes are asymptotically

stable themselves regardless of input, so we only focus on the observable part). By

a similarity transformation we can write the system in canonical observer form [41]
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as follows

A =















0 0 · · · 0

1 · · · 0 a1

0
. . . 0 a2

0 · · · 1 an−1















,

B = [b1, · · · , bn]T ,

C = [0, · · · , 0, 1].

Here A1n = 0 and b1 6= 0 due to the rank condition. Then it is straightforward to

see that G(s) must have a pure integrator term.

Remark 4.1 The structural properties of valid user and link controllers indicated

in the previous two propositions suggest that delay independent stability [20] may

not be achievable given our design principles. To see this let us observe now that the

open loop gain of a single user/link network can be written as e−τsH(s)F (s)/s where

F (0) = ξ−1 and H(0) = h for some nonzero h. If the system is delay independent

stable, then the Nyquist curve of its open loop gain should intersect the x-axis at

points greater than -1 regardless of the value of τ . But it is easy to see that for suf-

ficiently large τ , the Nyquist curve intersects the x-axis at the frequency ω ≈ π
2τ

and

the intersection point is approximatedly −2h
πξ
τ which can be made arbitrary smaller

than -1. Therefore in order to achieve stability one must design the controllers based

on the size of delays.
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4.4 Design of Scalable Controller

We first focus on the design of scalable controllers for a single user/link network

based on previous discussions and then extend the design to arbitrary networks with

heterogeneous delays.

4.4.1 The Case of Single User/Link Network

As in previous sections we denote by c the link bandwidth and by τ = τ f + τ b

the round-trip delay. Similar to the user controller in Paganini et al’s algorithm

(4.8), we can choose the transfer function of our user controller to be

F (s) =
s+ k/τ

τs + ξk/τ
(4.9)

and our link controller to be

G(s) =
1

s
. (4.10)

Here ξ is defined as −U ′′(c) as in Proposition 4.1 and k is some constant. First by

direct calculation we have

Lemma 4.1 The single user/link network with the user controller given by (4.9)

and the link controller (4.10) is linearly asymptotically stable for arbitrary τ and c

if 0 < k ≤ k0 ≈ 0.5474. Here k0 , ω0/ tanω0 where ω0 ∈ (0, π/2) is the solution of

the equation ω sinω = 1.
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From the proof of Proposition 4.1 we can realize our algorithm from its lin-

earized form as follows:

ż = k
τ2 (U

′(x) − p(t− τ b)),

x = z − p(t−τb)
τ

,

ṗ = x(t− τ f ) − c.

(4.11)

Remark 4.2 It is worth discussing the initial dynamics of the above system. Since

there is no guarantee at the beginning from x = z − p(t− τ b)/τ such that x is kept

positive, we have to resort to other means. A feasible solution to the initial dynamics

is as follows, 





x(t) = z − p(t− τ b)/τ, if z > p(t− τ b)/τ,

ẋ(t) = −αx(t), otherwise,

for any positive constant α. Since from our dynamics (4.11) p(t) is a continuous

function of time, it is easy to see that once x(t) > 0, it stays positive thereafter. So

the dynamics of x will be of the form ẋ = −αx for at most a finite time duration

at the beginning of the algorithm. This period can be regarded as a “probing” phase

of the flow dynamics. Therefore it is sufficient for us to consider only the dynamics

(4.11) thereafter.

The global stability of the system (4.11) can be studied from the observation

that the system is actually of Lur’e type [42] by rewriting it into an equivalent form

as follows

ẋ = − k
τ2 (p(t− τ b) − p∗) − 1

τ
(x(t− τ) − x∗) + k

τ2u,

ṗ = x(t− τ f ) − c,

u = U ′(x) − p∗.

80



Taking u as the input signal and x as the output signal, the transfer function from

u to x is

L(s) =
k

τ 2

(

s+
k + τs

τ 2s
e−τs

)−1

,

while the mapping from x to u is a (0,∞)-sector nonlinear mapping. In order to

obtain nonlinear stability of (4.11) by Popov’s criterion [43, 44] it remains to show

that there exists η ∈ R such that (1 + ηs)L(s) is positive real.

Lemma 4.2 (1 + τs/2)L(s) is positive real when 0 < k ≤ 1/2.

Proof: By Lemma 4.1 we only need to check whether ℜ(1 + τiω/2)L(iω) ≥ 0

and this in turn is equivalent to whether ℜ(1 + τiω/2)−1L(iω)−1 ≥ 0. Hence the

proof reduces to showing that

1

2
θ(θ2 − k cos θ − θ sin θ) − k sin θ + θ cos θ ≥ 0 (4.12)

where θ , ωτ .

When k = 1/2 the above inequality (4.12) becomes

1

2
θ(θ2 − 1

2
cos θ − θ sin θ) − 1

2
sin θ + θ cos θ ≥ 0 (4.13)

which is correct by checking it with numerical means.

If 0 ≤ θ ≤ θ0 ≈ 2.2889, in which θ0 is the smallest positive solution of the

equation θ cos θ + 2 sin θ = 0, we have

1

2
θ cos θ + sin θ ≥ 0.

But the left hand side of the above inequality is exactly the difference of the left

hand sides of the inequalities (4.12) and (4.13) times 1
2
− k. Thus the inequality
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(4.12) holds for 0 ≤ θ ≤ θ0. Now consider the situation when θ > θ0. In this case

the left hand side of (4.12) is lower bounded by

1

2
θ(θ2 − 1

2
− θ) − θ − 1

2
.

One can directly check that this cubic polynomial achieves its minimum over θ ≥ θ0

at θ = θ0, and that the minimum is positive. Therefore we conclude that the

inequality (4.12) holds for all θ and (1 + τs/2)L(s) is positive real.

Then from Lemma 4.2 and Popov’s criterion we immediately have:

Proposition 4.3 With the initial dynamics discussed in Remark 4.2, the system

(4.11) is globally asymptotically stable for arbitrary values of τ and c if k ∈ (0, 1/2].

So we obtain a scalable controller which satisfies all the design principles in

Section 4.2 for a single user/link network.

4.4.2 The Case of General Network

A direct extension of the user and link controllers (4.9-4.10) from the previous

subsection to the situation of a general network with heterogeneous delays is

Fi(s) =
s + k/τi

τi|ri|s+ ξik/τi
(4.14)

for user i and

Gj(s) =
1

|fj |s
(4.15)

for link j.

Define a L×N matrix-valued function R̂(s) on the frequency domain by

R̂ji(s) = Rjie
−τf

ijs
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then the relation between the flow rate vector x and the aggregate rate vector y

(4.1) can be written as

y(s) = R̂(s)x(s).

From the definition of the round-trip delays (4.3), the relation between the

congestion message vector p and the aggregate congestion vector q (4.2) can be

equivalently expressed by

q(s) = diag({e−τis})R̂H(s)p(s).

where R̂H is the Hermitian of R̂.

Therefore combining these equations the open loop gain of the network system

with tentative controllers (4.14-4.15) is given as follows

L(s) = diag
({

s+k/τi
τi|ri|s+ξik/τi

e−τis
})

×R̂H(s) diag
({

1
|fj |s

})

R̂(s).

It would be desirable that this natural extension from the single user/link

network (4.14-4.15) simply gives us stabilizing controllers for general networks. To

examine this we need to study the eigenloci of the matrix L(s), per the Generalized

Nyquist Theorem [45]. Recall an elegant result by Vinnicombe [10]:

Lemma 4.3 (Vinnicombe) Assume Λ = diag({λi}) and M = MT ≥ 0 are N×N

matrices. Then the eigenvalues of ΛM σ(ΛM) ∈ ρ(M)c̄o({0, λ1, · · · , λN}). Here

ρ(·) denotes the spectral radius and c̄o(·) denotes the convex hull.

Note that

σ(L(s)) = σ (diag({li(s)})M(s)) ,
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where we define

li(s) ,
s+ k/τi

s(τis+ ξik/(τi|ri|))
e−τis,

M(s) , diag({|ri|−1/2})R̂H(s) diag({|fj|−1})

×R̂(s) diag({|ri|−1/2}). (4.16)

We first calculate the upper bound of the spectral radius ρ(M(iω)) of M(iω):

ρ(M(iω))

= ρ(diag({|ri|−1})R̂H(iω) diag({|fj|−1})R̂(iω))

≤ sup
i,ω

∑

j,n

|ri|−1|R̂ji(iω)||fj|−1|R̂jn(iω)|

= 1

from the definitions of |ri| and |fj|. Therefore a sufficient condition for linear stability

is

−1 /∈ c̄o({0, l1(iω), · · · , lN(iω)})

by Lemma 4.3 and the Generalized Nyquist Theorem. Since the Nyquist curves

li(iω) with arbitrary τi and ξi are bounded by a single curve l(θ) on the Nyquist

plane:

l(θ) , −iθ + k

θ2
e−iθ,

we only need to check whether

−1 /∈ c̄o(0 ∪ {l(θ), ∀θ ≥ 0}).

However since ∠l(θ) → −180◦ with θ → 0 and part of the curve l(θ) lies on

the second quadrant of the Nyquist plane, the convex hull of curve l(θ) contains
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-1. Therefore we cannot guarantee linear stability with controllers (4.14-4.15) from

Lemma 4.3. In fact, we are able to construct a 7-user 5-link network with controllers

(4.14-4.15) such that its flow dynamics is linearly unstable. Consider a network with

its routing matrix R as

R =



















0 1 0 1 0 1 0

1 1 1 0 1 0 1

0 0 1 0 0 0 1

1 1 1 0 1 0 0

0 0 1 1 0 0 1



















,

the round-trip time vector τ for each source as

τ = [0.0483, 0.1155, 0.0340, 0.7009, 0.0612, 0.9030, 0.6545]T,

and the forward delay matrix τ f as

τ f =



















0 0.0781 0 0.4485 0 0.6293 0

0.0351 0.1105 0.0145 0 0.0013 0 0.2750

0 0 0.0013 0 0 0 0.1688

0.0358 0.0086 0.0192 0 0.0466 0 0

0 0 0.0310 0.6816 0 0 0.4043



















.

We set the factor k = 0.54 in (4.14) for the source controller, which satisfies the

condition in Lemma 4.1 for the linear stability of a single source/link network.

The resulting Nyquist plot of the open loop system is shown in Figure 4.1. It can

be observed that -1 is encircled by one of its eigenloci. Therefore we have linear

instability of the network flow control system. This is the main reason why the

controllers (4.8) proposed by Paganini et al have to rely on a global variable τ̄ .
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Figure 4.1: Nyquist plot of a 7-user 5-link network with source and link controllers
specified in (4.14-4.15).

To this end we consider a class of source controller which is a generalization

of (4.14) as follows,

Ti(s) =
s+ a(τi)

b(τi)|ri|s+ a(τi)ξi
, (4.17)

where a(·) and b(·) are both functions from R
+ to R

+. We prove below that the

above source controller with

a(τ) =
1

4(1 + τ)
, b(τ) = 4(τ 2 + 1), (4.18)

along with our original link controller (4.15), provide a pair of valid stabilizing linear

controllers for our optimization problem (4.4). In fact we can prove a slightly strong

result,

Lemma 4.4 The flow dynamics of a network with heterogeneous delays where each
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user controller is given by (4.17), in which the functions a(·) and b(·) both satisfy

a(τ) ≤ min{τ, 1}
2τ

, ∀τ ≥ 0

b(τ) ≥ 2τ max{τ, 1}, ∀τ ≥ 0,

and each link controller is given by (4.15) are linearly asymptotically stable.

Proof: See Appendix B.

Clearly the condition of the above lemma holds for both functions a(·) and

b(·) set in (4.18), the linear stability of the network follows immediately.

By Proposition 4.1 one can realize the linear controllers (4.17) and (4.15) by

żi = 1
16(1+τi)(1+τ2

i )|ri|
(U ′

i(xi) − qi),

xi = z − qi
4(1+τ2

i
|ri|
,

ṗj =
yj−cj
|fj |

.

(4.19)

We also assume that for the above system we adopt initial dynamics similar to that

in Remark 4.2, so that after an initial phase the system stays in the correct region

of xi > 0 with the above dynamics forever.

We proceed to show the global stability by using multiplier method. Like in

the single user/link network, take the nonlinear feedback controllers of the form

ui(xi) =
1

16(1 + τi)(1 + τ 2
i )|ri|

(U ′
i(xi) − q∗i ),

then the output transfer function of (4.19) becomes

W (s)−1 ,

(

sI + diag

({
s+ 1

4(τi+1)

4(1 + τ 2
i )|ri|s

e−τis

})

R̂(s)H diag({|fj|−1})R̂(s)

)−1

.
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Unlike the single user/link network, we will use a stronger class of multipliers than

the Popov multiplier. Since the utility functions Ui(·) are concave, U ′
i(·)s are mono-

tone functions and so are the feedback ontrollers ui(·) with respect to xi. Therefore

we should be able to use Zames-Falb multiplier [46] to prove the nonlinear stability

of the system. We select the following multiplier

M(s)−1 , diag

({
s + 1

4(τi+1)

4(1 + τ 2
i )|ri|((τi + 1)s+ 1)

})

.

We argue that the multiplier M(s)−1 is indeed a Zames-Falb multiplier. This can

be observed directly from the fact that the zero of each diagonal entry of M(s)−1,

−1/(4(τi + 1)), is less than the pole, −1/(τi + 1), in absolute value.

In order to prove global nonlinear system of the system (4.19), it is sufficient

to show that

W (s)−1M(s)−1 + (M(s)−1)H(W (s)−1)H ≥ 0, ∀s = iω.

Since

W−1M−1 + (M−1)H(W−1)H = W−1M−1(MW +WHMH)(M−1)H(W−1)H ,

it is sufficient to show the following holds true for all s = iω,

N(s) +N(s)H , M(s)W (s) +W (s)HM(s)H ≥ 0.

Lemma 4.5 The matrix-valued function N(s) defined above satisfies N(s)+N(s)H ≥

0 for all s = iω.

Before we prove Lemma 4.5, let us first discuss how to make a rank 1 matrix

to become positive definite by adding a diagonal matrix. It is known that the n×n
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matrix A , diag({ai})11T is nonnegative if and only if ai ≡ a for any i. Since for

any vector v, we have

vH(A+ AH)v = 2ℜ
(
∑

i

vi

)∗(
∑

i

aivi

)

which is clearly not a sum of squares unless ai ≡ a. For reasons to be clear later, we

are interested in adding a diagonal matrix D = diag({di}) where di depends only

on ai, so that A+D is positive definite. We have the following result

Lemma 4.6 For any {di}, if there exists a real constant c, such that

di ≥
1

2

(

cai −
n− 2

2c

)∗(

cai −
n− 2

2c

)

+
n− 1

2c2
−ℜai, ∀i = 1, · · · , n,

then the n× n matrix D + A = diag({di}) + diag({ai})11T is positive definite.

Proof: It suffices to prove positive definiteness of D + A when

di =
1

2

(

cai −
n− 2

2c

)∗(

cai −
n− 2

2c

)

+
n− 1

2c2
− ℜai, ∀i = 1, · · · , n.

For any vector v, let us compute the quadratic form,

vH(D + A+ AH +DH)v

=
n∑

i=1

(2di + 2ℜai)v∗i vi +
n∑

i,j=1,
i6=j

(a∗i + aj)v
∗
i vj

=

n∑

i=1

(∣
∣
∣
∣
cai −

n− 2

2c

∣
∣
∣
∣

2

+
n− 1

c2

)

v∗i vi +

n∑

i,j=1,
i6=j

(a∗i + aj)v
∗
i vj

=

n∑

i=1

(∣
∣
∣
∣
cai −

n− 2

2c

∣
∣
∣
∣

2

+
n− 1

c2

)

v∗i vi +

n∑

i,j=1,
i6=j

((ca∗i v
∗
i )(vj/c) + (v∗i /c)(cajvj))

=

n∑

i=1

∣
∣
∣
∣
∣

(

cai −
n− 2

2c

)

vi +
∑

j 6=i

vj
c

∣
∣
∣
∣
∣

2

≥0.
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Therefore D + A is positive definite and we reach the conclusion.

The value of di given in the above lemma still depends on the size of the matrix

A. It is useful to obtain a size independent di such that D + A remains positive

definite. For this purpose we have to scale the entries of A down proportional to its

size n. We have the following corollary of Lemma 4.6

Corollary 4.1 Define n× n matrix An , 1
n

diag({ai})11T . For any {di} such that

di ≥
1

2
|ai|2 − ℜai +

1

2
, ∀i = 1, · · · , n,

the matrix D + An = diag({di}) + An is positive definite.

Proof: According to Lemma 4.6 we only have to show that there exist a real

constant c(n) such that

n

2
|ai|2 − nℜai +

n

2
≥ 1

2

∣
∣
∣
∣
cai −

n− 2

2c

∣
∣
∣
∣

2

+
n− 1

2c2
− 2ℜai,

for all ai and n. Subtract the right-hand side from the left-hand side of the above

inequality, we have

LHS − RHS =
n− c2

2
|ai|2 −

n

2
ℜai +

n

2
− n2

4c2
=
n

2
(|ai|2 − 2ℜai + 1) ≥ 0

where in the second equality we replace c by
√

n/2. Therefore our conclusion holds.

Now we are ready to prove Lemma 4.5. We will use the condition given by

Corollary 4.1 as a distributed test for the positive definiteness of a class of matrices

which can be represented by the sum of a diagonal matrix and a rank 1 matrix.
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Proof: [Proof of Lemma 4.5] From the definition we have

N(s) = diag

({

16(1 + τi)(1 + τ 2
i )|ri|

s((1 + τi)s+ 1)

4(1 + τi)s+ 1

})

+ diag

({
e−τis((1 + τi)s+ 1)

s

})

R̂(s)H diag({f−1
j })R̂(s).

For each link j, we define

Nj(s) , diag

({

16(1 + τi)(1 + τ 2
i )
s((1 + τi)s+ 1)

4(1 + τi)s+ 1
Rji

})

+ diag

({
e−τis((1 + τi)s+ 1)

s
Rji

})

R̂(s)Hj·f
−1
j R̂(s)j·.

Apparently N(s) =
∑

j Nj(s). The plan is to show Nj(s)+Nj(s)
H ≥ 0 and then by

the argument that the sum of positive Hermitians remains positive, we will reach

the conclusion of the lemma.

For convenience we define

dji , 16(1 + τi)(1 + τ 2
i )
s((1 + τi)s+ 1)

4(1 + τi)s+ 1
Rji,

aji ,
e−τis((1 + τi)s+ 1)

s
Rji.

Next we show that Nj(s) +Nj(s)
H ≥ 0 is equivalent to Ñj(s) + Ñj(s)

H ≥ 0 where

Ñj(s) is defined by

Ñj(s) , diag({dji}) + diag({aji})(Rj·)
Tf−1

j Rj·.

This is because Nj(s) +Nj(s)
H ≥ 0 if and only if vH(Nj(s) +Nj(s)

H)v ≥ 0 for all

v such that vHv = 1. Or equivalently

∑

i

(dji + d∗ji + aji + a∗ji)v
∗
i vi +

∑

i6=k

f−1
j (aji + a∗ki)e

τf
ijsv∗i e

−τf
kj
svk ≥ 0.
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If we define ṽi , vie
−τf

ijs, we still have ṽH ṽ = 1 and the left-hand side of the above

inequality becomes

∑

i

(dji + d∗ji + aji + a∗ji)ṽ
∗
i ṽi +

∑

i6=k

f−1
j (aji + a∗ki)ṽ

∗
i ṽk

which is exactly ṽH(Ñj(s)+ Ñj(s)
H)ṽ. Therefore we only need to focus on the proof

of Ñj(s) + Ñj(s)
H ≥ 0.

Since the matrices diag({dji}) and diag({aji}) are essentially of size |fj|, by

Corollary 4.1 we only need to prove the following inequality,

dji + d∗ji ≥ a∗jiaji − aji − a∗ji + 1. (4.20)

The left-hand side of the above inequality (4.20) is

f(ω) ,
96(1 + τi)

2(1 + τ 2
i )ω

2

1 + 16(1 + τi)2ω2

and the right-hand side of the above inequality (4.20) is

g(ω) , 1 + (1 + τi)
2 − 2(1 + τi) cos τiω + 2

1 − cos τiω − τiω sin τiω

ω2
.

The maximally achievable value of g(·) is (1 + τi)
2 + τ 2

i , while the value of f(·) is

greater than 3(τi+1)2 when ω ≥ (4(1+ τi))
−1. Therefore the inequality (4.20) holds

for ω ≥ (4(1 + τi))
−1. Now let us look at the interval ω ∈ [0, (4(1 + τi))

−1]. The

maximum derivative of ω of g(ω) is 0.62τ 3
i +2τi(1+ τi), where 0.62 is the maximum

of

d

dθ

(

2
1 − cos θ − θ sin θ

θ2

)

= 2
2(cos θ + θ sin θ − 2) − θ2 cos θ

θ3
.

But the minimum derivative of ω of f(ω) is 6(1+τ 2
i )(1+τi), which is clearly greater

than 0.62τ 3
i + 2τi(1 + τi) for all positive τi. Therefore the inequality 4.20 holds. By

previous discussions N(s) is positive definite.
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Now by similar arguments as [46, 43, 44] we finally reach the conclusion:

Theorem 4.1 Along with the initial dynamics introduced in Remark 4.2, the net-

work optimization algorithm given by (4.19) is globally asymptotically stable and

thus satisfies all the design principles proposed in Section 4.2.

4.5 Conclusions

We have succeeded in designing a scalable and distributed algorithm for the

network optimization problem as promised at the beginning of the paper. We be-

lieve that our definition of the problem reflects the real meaning of the plug-and-play

property for the network flow control problem and to the authors’ knowledge our

algorithm is the first to achieve this goal: to obtain efficient and fair bandwidth

allocation for a network with the presence of delays and with minimum extra com-

munication cost. We also believe that our approach presents a design methodol-

ogy from which people can create various algorithms to meet different performance

requirements while still maintaining the basic plug-and-play property, and our al-

gorithm is just the simplest one in this class. Still many basic questions must be

solved. For example we have not yet dealt with the case of time-varying delay. Also

our analysis is based on fluid models of flow control mechanisms so it is interesting

to see how to design real communication protocols based on our algorithm. We will

address these questions in our future research.
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Chapter 5

Design of Scalable Control Laws for Combined Routing and Flow

Control - The Case of Multiple Path Routing

5.1 Introduction

In previous chapters we have discussed in detail the network congestion control

mechanisms under the framework of network optimization in the sense of welfare

maximization, which was proposed initially by Kelly et al [1]. We have emphasized

our study on the stability of the various congestion control protocols, a dynamical

property which indicates whether the rates of network flows will converge to the fair

allocated rates set by the network welfare maximization problem. Especially, we

have focused on the congestion control algorithms that are truely distributed, in a

sense that for any source or link, all the parameters associated with its controller can

be obtained via minimum interations with other components of the network. This

localization feature of the congestion controllers, along with the decoupling property

of the network optimization, enables each source and link to act independently of

each other in a large complex network to achieve global efficiency.

In many situations the network efficiency achieved by this mechanism can still

be improved considerably by choosing the right paths for network flows. So far we

have only considered the situation where each user has a single fixed path to send his
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packets from source to destination. But in many situations there are multiple paths

available for the source/destination pair and a single path is selected from them by

routing protocols which may not take into consideration of network congestions. For

example, the prevalent interdomain routing protocol BGP is mainly policy based

and the resulting route selection does not necessarily align with the status of link

congestion: it can choose a low bandwidth link for a source/destination pair even

though a high bandwidth link is available. In fact, this can potentially reduce the

connection-level stability region of the network [47]. Therefore it is important to

do combined routing and congestion control to fully utilize the existing network

resources.

There have been much research efforts for designing adaptive routing protocols

which adapt the route selection iteratively to a changing network to achieve better

performance. But most of them is “open-loop” in a sense that the decision of the

routing protocol is based on the measurements of bandwidth usage over a long

duration of time and the resulting route change takes place in a much slower time

scale than the actual congestion dynamics. But the problem is essentially “closed-

loop”, since the routing decision is based on the link congestion level and conversely

the link congestion depends on the flows routed by the protocol. A routing protocol

with time-scale separation will likely lead to route/rate instability. Therefore we

consider combined routing and congestion control protocols in which the routing

decision and the congestion control occur in the same time-scale. Specifically, we

consider the situation when each user can distribute his flow over his available paths

simultaneously. This is termed multi-path routing in literature. We assume that for
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each user, his available paths are known to him at the beginning of the transmission

and the intermediate routers are capable of forwarding these multi-path packets

using source routing. It is envisaged in [48] that the multipath routing can be

implemented using IPv6 in a multi-homing environment with stepping-stone routers.

Our contribution in this chapter is to design scalable combined routing and

congestion control algorithm, which is a direct application of the design techniques

introduced in Chapter 4. Specifically our algorithm has the property of true decen-

tralization just as the case of single flow algorithm in Chapter 4. Additionally it

guarantees the global stability of the network instead of local stability obtained in

[49, 50, 51]. Our algorithm also provides an interesting but sensible example that

delay terms are artificially introduced in the control loop in order to achieve stability.

The organization of the chapter follows like this. We introduce our network model

in Section 5.2 and summarize the previous studies related to the subject in Section

5.3. The main result is in Section 5.4 and we conclude the Chapter in Section 5.5.

5.2 Network Model

The network model studied in this chapter is similar to those in the previ-

ous chapters. We consider a network with N users and L bottleneck links whose

bandwidth will be fully utilized at equilibrium. Each user is associated with a

source/destination pair between which he intends to transmit his packets. Again we

only consider flows with infinite lenghs. Different than the scenarios described in

previous chapters, now each user may have more than one paths to send his traffic.
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By path we mean concatenation of a set of links from source to destination. We

assume that the available paths are known to each user in the beginning and the

network is set up so that the user can send his traffic through all his available paths

at the same time. Denote the number of paths for user i by Mi and the number of

all paths by M =
∑

iMi. Then each path is indexed from 1 to M and we associate

each user i with set of available paths denoted by mi. For convenience, we order

path indices by user indices, that is, mi = {∑i−1
l=1 Ml + 1, · · · ,∑i

l=1Ml}. We can

also represent the user/path relation by a N ×M 0-1 matrix H , called multipath

matrix, as follows,

Hil ,







1, i ∈ mi,

0, i /∈ mi.

From our path index rule, the matrix H is of the following form,

H =











1TM1
0 0

0
. . . 0

0 0 1TMN











,

where we denote M dimensional all 1 column vector as 1M . In the case of single

path routing H is an identity matrix. Each path l consists of a set rl ⊂ [L] of

bottleneck links and each link j is accessed by a set fj ⊂ [M ] of paths. We do not

require the available paths for a single user to be disjoint from each other. The

routing matrix R is a M × L 0-1 matrix with usual definition. Similar to previous

chapters, we use the notations of xl, ql, yj, pj, and cj to denote the flow rate of path

l, aggregate feedback congestion information of path l, aggregate arriving rate at

link j, the congestion information at link j, and the bandwidth of link j respectively.
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Again we assume for each path i and link j, there is a forward propagation delay τ flj

and backward propagation delay τ blj , if Rjl = 1. All delays are assumed to be fixed.

The relations between xl and yj, pj and ql can all be represented by (4.1) and (4.2).

The total transmission rate for user i is denoted by zi which satisfies the following

equation

zi(t) =

M∑

l=1

Hilxl(t), ∀i ∈ [N ].

We are concerned with the following network optimization problem for com-

bined routing and congestion control,

maxxi≥0

∑

i∈[N ] Ui(zi)

s.t. Hx = z,

Rx ≤ c.

(5.1)

The utility function Ui : R
+ → R is a strictly concave, continuously differentiable

nondecreasing function. As usual we assume that U ′
i(x) → ∞ as x → 0. An

important difference between the above optimization problem (5.1) and the single

path network optimization problem (3.1) is that we no longer have strict concavity in

the objective function, although Ui remains strictly concave for all i, as in (3.1). One

immediate consequence of this property is that we may not have unique solutions:

Proposition 5.1 The solution to the network optimization problem (5.1) associated

with combined routing and congestion control is unique if and only if the (N+L)×M

matrix 





H

R






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has full column rank. In addition, all optimal solutions have the same user rates

{zi}.

Proof: By the rate constraints it follows directly that the feasible set for {zi}

is a polyhedron in R
N
+ . Since the utility function Ui is a strictly concave function of

zi for every i, the optimization problem (5.1) admits a unique optimal solution {z∗i }.

Then from the rate constraints the optimal path rates {x∗l } satisfies the following

linear equations: 





H

R






x∗ =







z∗

c






,

which has unique solution if and only if the coefficient matrix has full column rank.

In addition to the non-uniqueness of the equilibrium rates, a major difficulty

in deriving distributed algorithm for solving (5.1) is that the dual problem is no

longer differentiable. This is the issue we will discuss in detail in the next section

and we will present our design of algorithms to overcome this problem in Section

5.4.

5.3 Literature Overview

Recall the original design of decentralized algorithms in solving single path

optimization problem (3.1) by [1, 17] is based on two indispensible properties of the

original problem, separability and strict concavity, so that each user is allowed to

use gradient method to solve his dual problem independently. The combined routing

and flow control problem presented in (5.1) inherits the seperability property and it
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is Kelly et al [1] who presented the first decentralized algorithm to solve a related

optimization problem. The dual optimization problem associated with our original

problem is

min
pj≥0

max
xl≥0

∑

i∈[N ]



Ui




∑

l∈[M ]

Hilxl



−
∑

l∈mi

∑

j∈[L]

Rjlxlpj



 +
∑

j∈[L]

pjcj . (5.2)

Using the same gradient method as in the case of single path flow control, one can

propose immediately [52] the following decentralized algorithm to solve (5.2) and

equivalently (5.1):

Dual Law:







xl = argmaxxl:l∈mi
≥0

(

Ui
(∑

l∈mi
xl
)
− xl

∑

j∈[J ]Rjlpj

)

, ∀l ∈ [M ],

ṗj = Γj

(
∑

l∈[M ]Rjlxl − cj

)

, ∀j ∈ [L].

and

Primal/Dual Law:







ẋl = Kl(Ui:l∈mi
(zi:l∈mi

) − ql), ∀l ∈ [M ],

ṗj = Γj(yj − cj), ∀j ∈ [L].

However, a close examination of the dual objective function

L(p) , max
xl≥0




∑

i∈[N ]

Ui




∑

l∈[M ]

Hilxl



−
∑

j∈[L]

Rjlxlpj



 +
∑

j∈[L]

pjcj

reveals that L(p) is not everywhere differentiable. This can be shown as follows.

Define the function Vi : R+ → R by Vi(p) , maxx≥0 Ui(x)−px. Then Vi is a strictly

convex nonincreasing function. It can be computed directly that the dual objective

function is

L(p) =
∑

i∈[N ]

Vi



min
l∈mi

∑

j∈[L]

Rjlpj



−
∑

j∈[L]

pjcj.

Since min{x, y} is nondifferentiable at x = y, L(p) is also nondifferentiable when

there exist i such that

∃l′, l′′ ∈ mi, l
′ 6= l′′,

∑

j∈[L]

Rjl′pj =
∑

j∈[L]

Rjl′′pj = min
l∈mi

∑

j∈[L]

Rjlpj.
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That is, −p is not the gradient of L(p) but only belongs to its subgradient at these

values of p. This comes with no surprise since according to Danskin’s Theorem [53]

the dual objective function is differentiability if and only if the primal objective

function is strictly concave. A direct consequence is that even in a delay-free envi-

ronment, the flow dynamics of the dual algorithm tend to “chatter” forever, even

though the total rates of all the users converge to the solution of (5.1), since every

user only sends all of his traffic to the least congested path and this in turn causes

that path to become the most congested and so on. The primal/dual algorithm

for the system without delay does not converge either. This can be observed by

considering a Lyapunov function P as

P (x, p) ,
∑

l∈[M ]

(2Kl)
−1(xl − x∗l )

2 +
∑

j∈[L]

(2Γj)
−1(pj − p∗j)

2.

Taking the time derivative of the solution path given by the primal/dual algorithm,

one gets

Ṗ (x, p) =
∑

l∈[M ]

(xl − x∗l )



U ′
i:l∈mi

(
∑

n∈mi

xn

)

−
∑

j∈[L]

Rjlp
∗
l



 .

Define the set Ω , {(x, p) :
∑

lHilxl =
∑

lHilx
∗
l }. By the concavity of Ui, Ṗ (x, p) ≤

0 for all {xl} and {pj} and the equality holds only when (x, p) ∈ Ω. Therefore

Ω ∩ {P (x, p) = C} is an invariant set for the primal/dual algorithm for some C.

By LaSalle’s Invariance Principle the algorithm will eventually result in a periodic

solution.

In the delay-free system, there have been mainly two decentralized approaches

[54, 55] designed to address this issue of dual nondifferentiability. The first approach
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[54] is based on subgradient methods for maximizing nondifferentiable functions dis-

cussed in detail by [56]. Essentially the algorithm is a primal update algorithm with

diminishing gains and binary feedback signals indicating the congestion levels of

intermediate links. The use of diminishing gains ensures automatically the conver-

gence of the algorithm at the price of slow convergence 1. Another weak point of

this method is that it is unsuitable for dynamically changing network conditions.

Since once the network is changed, for example a new user initiates a file transfer,

all other users have to reset their gains so that a new network equilibrium can be

found. The second approach [55] avoids this shortcoming by utilizing the method

of proximal optimization [57]. The idea is to transform the original nonstrictly con-

cave maximization problem (5.1) successively to a strictly concave maximization

problem which can be solved by decentralized methods. The resulting decentralized

algorithm effectively adds auxilliary state variables to the algorithm associated with

the original optimization problem. Take the primal/dual algorithm for example,

the new algorithm takes the form of the following with auxilliary variables {ul} for

every path,







ẋl = Kl(Ui:l∈mi
(zi:l∈mi

) − (xl − vl) − ql), ∀l ∈ [M ],

v̇l = αl(xl − vl), ∀l ∈ [M ],

ṗj = Γj(yj − cj), ∀j ∈ [L].

Let us see how the new algorithm stabilizes the system. Define the Lyapunov func-

1It is generally possible to have exponentially diminishing gains to achieve exponential conver-

gence [56]. But the condition for this is hard to be satisfied in a decentralized setting.
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tion P̂ by

P̂ (x, v, p) ,
∑

l∈[M ]

(2Kl)
−1(xl − x∗l )

2 +
∑

l∈[M ]

(2αl)
−1(vl − x∗l )

2 +
∑

j∈[L]

(2Γj)
−1(pj − p∗j )

2.

Then its time derivative over the solution trajectory is

˙̂
P (x, v, p) =

∑

l∈[M ]

(xl − x∗l ))



U ′
i:l∈mi

(
∑

n∈mi

xn

)

−
∑

j∈[L]

Rjlp
∗
l



−
∑

l∈[M ]

(xl − vl)
2.

One can see that
˙̂
P (x, v, p) ≤ 0 for all {xl}, {vl}, and {pj} and the equality holds

only when (x, v, p) ∈ Ω × {vl = xl, ∀l} , Ω′. But this time the largest invariant set

in Ω′ is nothing but (x∗, x∗, p∗). Therefore again by LaSalle’s Invariance Principle

the algorithm converges to the equilibrium solution. The success of the introduction

of auxilliary state variables for the design of a stabilizing controller indicates that it

is necessary to use controllers with more states than a simple primal/dual controller

to achieve our goal. This is our starting point to design scalable controllers for

combined routing and flow control problem in a network with heterogeneous delays.

It is also beneficial to review the decentralized algorithms for the multipath

optimization problem presented in the following form, which is distinct from (5.1),

maxxi≥0

∑

i∈[N ] Ui(zi) −
∑

j∈[L]

∫
fj(yj)dyj

s.t. Hx = z,

Rx = y.

(5.3)

Here fj is a convex increasing function which represents the congestion cost at link

j. The dual of this optimization problem is

min
pj

max
xi≥0




∑

i∈[N ]

Ui




∑

l∈[M ]

Hilxl



−
∑

j∈[L]

Rjlxlpj



 +




∑

j∈[L]

pjyj −
∫

fj(yj)dyj



 .
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Therefore analogous to the single path flow control problem (3.4), (3.5, (3.6), the

primal algorithm and the primal/dual algorithm to solve (5.3) can be written in the

following form:

Primal Law:







ẋl = Kl(Ui:l∈mi
(zi:l∈mi

) − ql), ∀l ∈ [M ],

pj = fj(yj), ∀j ∈ [L].

Primal/Dual Law:







ẋl = Kl(Ui:l∈mi
(zi:l∈mi

) − ql), ∀l ∈ [M ],

ṗj = Γj(fj(yj) − pj), ∀j ∈ [L].

Global stability results for these algorithms have only been obtained for the delay-

free case [51]. In [49, 50] authors presented decentralized algorithms which achieve

local stability with delays in the network. A particularly interesting approach used

in [50] to obtain per flow decentralization is to use delayed utility function instead.

This idea of artificially adding delay in the system equation resembles our method.

However all the decentralizing primal/dual algorithms require the end user to know

the exact forms of cost function pj of relevant links, which is not desirable in real

implementations. More importantly, since the optimization problem 5.1 is equivalent

to the problem (5.3) when the link cost function pj takes the limit of fj(y) =

max{0, y−c
δ
} as δ → 0, then none of the stability conditions of any algorithms

presented in [49, 50] remain valid in that limit. It can be expected that primal/dual

algorithms fail to converge for our optimization problem (5.1).
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5.4 Main Result

The main techniques used to derive our scalable controller for the combined

routing and flow control problem follow closely from the design of scalable controllers

for single path flow problem presented in Chapter 4. We use the notation of ξi ,

−U ′′
i (z∗i ), the negative second derivative of utility function of user i at his equilibrium

total rate z∗i . Recall that the linear version of our scalable decentralized control law

for single path flow control takes the form (4.17), (4.18) for the source controller

Fi(s) =
s+ 1

4(1+τi)

4(τ 2
i + 1)|ri|s+ ξi

4(1+τi)

,

and the link controller

Gj(s) =
1

|fj|s
.

The flow rate vector x and the link price vector p satisfy

x = diag({Fi})q,

p = diag({Gj})y.

The corresponding nonlinear dynamics can be written as






v̇i = 1
16(1+τi)(1+τ2

i )|ri|
(U ′

i(xi) − qi),

xi = vi − qi
4(1+τ2

i )|ri|
,

ṗj =
yj−cj
|fj |

.

In our design of scalable controllers for the combined routing and flow control

problem, we make the following important assumption,

Assumption 5.1 For every user i, the round-trip time of every available path τl

with l ∈ mi is equal to each other. That is, τl:l∈mi
≡ τi for some τi.
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We want to remark that first this is not a constraining requirement for a network

with heterogeneous delays from an algorithm design point of view. When the round-

trip times of available paths of a source are different from each other, the source can

hold the feedback signals ql that have arrived early until the feedback signals from

all the paths are available for him to process. As we can see later, this “artificial”

introduction of delays in the control loop greatly simplifies the analysis of stability.

Secondly, in reality the user may not need to add much delays to make all the

round-trip times of his paths to be equal, since it has been shown that for the

purpose of reliable transmission, it is necessary that all paths have the same delay

in a multipath congestion control protocol. So this assumption can be regarded as

a consequence of reliable transmission.

Therefore we propose our scalable controller for the combined routing and flow

control problem, which is similar to the case of single path flow control, as follows,






v̇l:l∈mi
= 1

16(1+τi)(1+τ2
i )|ri|

(U ′
i(zi) − ql),

xl:l∈mi
= vl − ql

4(1+τ2
i )|ri|

,

ṗj =
yj−cj
|fj |

.

(5.4)

Here |ri| is defined as

|ri| , max
l:l∈mi

|rl|.

It can be observed in (5.4) that the path rate controllers of the same user are the

exactly the same.

We use the following notation for the repeated array in the subsequent analysis:

{ai}ni
, {a1, · · · , a1
︸ ︷︷ ︸

n1

, a2, · · · , a2
︸ ︷︷ ︸

n2

, · · · }.
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The linearization of scalable controller (5.4) is

sxl:l∈mi
= − 1

16(1 + τi)(1 + τ 2
i )|ri|

(ξizi + ql) −
sql

4(1 + τ 2
i )|ri|

.

By straightforward computations with z = Hx we get the open loop gain L(s) of

the system as follows,

L(s) =

(

I + diag

({
ξi

16(1 + τi)(1 + τ 2
i )|ri|s

}

Mi

)

HTH

)−1

× diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

R̂(s)H diag({f−1
j })R̂(s).

For notational convenience let us denote

li ,
ξi

16(1 + τi)(1 + τ 2
i )|ri|

, ∀i ∈ [N ].

Then the first product term of L(s) is

(
I + diag

(
{li/s}Mi

)
HTH

)−1
= I − diag

({
li

liMi + s

}

Mi

)

HTH. (5.5)

Below we show how we reach this equality. Since from the definition,

HTH =











1M11
T
M1

0

. . .

0 1MN
1TMN











,

therefore the following equalities holds,

diag({ai}Mi
)HTH = HTH diag({ai}Mi

), ∀{ai}

HTHHTH = diag({Mi}Mi
)HTH.
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Hence we have

(I + diag({li/s}Mi
)HTH)

(

I − diag

({
li

liMi + s

}

Mi

)

HTH

)

=I + diag

({
li
s
− li
liMi + s

}

Mi

)

HTH − diag({li/s}Mi
)HTH diag

({
li

liMi + s

}

Mi

)

HTH

=I + diag

({
l2iMi

s(liMi + s

}

Mi

)

HTH − diag

({
l2i

s(liMi + s)

}

Mi

)

diag({Mi}Mi
)HTH

=I,

which shows that (5.5) holds.

Next selectMi×Mi unitary matrixQi such that the first row ofQi is [M
−1/2
i , · · · ,M−1/2

i ].

Define M ×M unitary matrix Q by

Q ,











Q1 0

. . .

0 QN











.

Then

diag

({
li

liMi + s

}

Mi

)

HTH = QT diag














liMi

liMi + s
, 0, · · · , 0
︸ ︷︷ ︸

Mi−1













Q.

Therefore we have

I − diag

({
li

liMi + s

}

Mi

)

HTH = QT diag














s

liMi + s
, 1, · · · , 1
︸ ︷︷ ︸

Mi−1













Q.

Combining (5.5) and the above equation, the open loop gain L(s) can be

expressed as

L(s) = QT diag














s

liMi + s
, 1, · · · , 1
︸ ︷︷ ︸

Mi−1













Q

× diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

R̂(s)H diag({f−1
j })R̂(s),
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and the spectra of L(s) is equal to

σ(L(s)) = σ









diag













 s
liMi+s

, 1, · · · , 1
︸ ︷︷ ︸

Mi−1













Q diag

({
s+ 1

4(1+τi)

4(1+τ2
i )|ri|s2

e−τis
}

Mi

)

×R̂(s)H diag({f−1
j })R̂(s)QT









.

Since the unitary matrix Q has the same block structure as

diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

,

therefore we have

Q diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

=











Q1

s+ 1
4(1+τ1)

4(1+τ2
1 )|r1|s2

e−τ1sI 0

. . .

0 QN

s+ 1
4(1+τN )

4(1+τ2
N

)|rN |s2
e−τN sI











= diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

Q.

So we show that the spetra of the open loop gain L(s) consists of exactly the

eigenvalues of the following form,

diag














s

liMi + s
, 1, · · · , 1
︸ ︷︷ ︸

Mi













 diag

({
s+ 1

4(1+τi)

4(1 + τ 2
i )|ri|s2

e−τis

}

Mi

)

×QR̂(s)H diag({f−1
j })R̂(s).

Since the first two terms are diagonal and the last five terms constitute a Hermitian

matrix, a direct application of Lemma 4.3 by Vinnicombe and Lemma 4.4 yields the

following conclusion,

Lemma 5.1 If Assumption 5.1 holds, the combined routing and flow control algo-

rithm (5.4) has linear stability for a network with heterogenous delays.
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Now we are going to establish the global stability of the proposed algorithm,

following the same method applied to the single path flow control problem in Chapter

4. We take the nonlinear feedback controller of the form

ul:l∈mi
(xl) =

1

16(1 + τi)(1 + τ 2
i )|ri|

(U ′
i(zi) − q∗i ),

as inputs to the linear system with user total rates as system output. Then the

output transfer function can be expressed by

W (s)−1 = H

(

sI + diag

({
s+ 1

4(τi+1)

4(1 + τ 2
i )|ri|s

e−τis

}

Mi

)

R̂(s)H diag({f−1
j })R̂(s)

)

HT

, HŴ (s)−1HT .

As in the single path case, we introduce a Zames-Falb multiplier

M(s)−1 = diag

({
s + 1

4(τi+1)

4(1 + τ 2
i )|ri|((τi + 1)s+ 1)

})

and notice that

HTM(s)−1 = M̂(s)−1HT

where

M̂(s)−1 = diag

({
s + 1

4(τi+1)

4(1 + τ 2
i )|ri|((τi + 1)s+ 1)

}

Mi

)

.

Therefore

W (s)−1M(s)−1+(M(s)−1)H(W (s)−1)H = H(Ŵ (s)−1M̂(s)−1+(M̂(s)−1)H(Ŵ (s)−1)H)HT .

By Lemma 4.5 it holds that Ŵ (s)−1M̂(s)−1 + (M̂(s)−1)H(Ŵ (s)−1)H ≥ 0 for all

s = iω. Therefore by Lemma 5.1, concavity of Uis and applications of monotone

multipliers described by [46, 43, 44] we have the following result
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Theorem 5.1 Assume the initial dynamics follows Remark 4.2 and Assumption

5.1 holds, the combined routing and flow control algorithm given by (5.4) is globally

asymptotically stable for any networks with heterogeneous delays.

5.5 Conclusion

We base our design of the combined multipath routing and flow control prob-

lem on the design methodology from the last chapter and provide the first scalable

algorithm for the problem which achieves the global stability for general networks.

One issue with our algorithm is that the solution may eventually have negative trans-

mission rates on individual routes for some user, even though his total transmissin

rate remains positive. It is certainly valid to impose the positivity constraint on the

rate update, but then we no longer have the classical Lur’e system so we cannot

apply Zames-Falb theorem directly to prove the system stability. Further more work

needs to be done to convert the continuous-time algorithm to an implementable one

in real systems.
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Chapter 6

Combined Routing and Flow Control - The Case of Single Path

Routing

6.1 Introduction

In the last chapter we presented a scalable combined routing and flow con-

trol algorithm which enables network users to improve their flow efficiency over

fixed routing transmission by using multiple network routes at the same time. This

certainly gives the maximally possible size of the flow from a source to a destina-

tion, since the resulting capacity of the network transmissions achieves the max-flow

min-cut bound [48]. However, such simultaneous routing and flow control solution

requires special network routers to forward multipathed packets, as well as differ-

ent type of end-to-end protocol to handle out-of-order packets. Given the current

network infrastructure we are left with the option of combined single path routing

and flow control. That is, although each user has more than one routes to send his

traffic, he can only utilize the “best” one. This is in analogy with the unsplittable

flow problem in the context of network flow maximization and in some sense closer

to the original meaning of “routing”, to decide along which path to send traffic, than

the simultaneous routing and flow control problem discussed in the last chapter.

Specifically, we use the same network model as in the last chapter in which
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there are N users and L bottleneck links. Each user i has a set of paths mi with

cardinality Mi available to send his traffic. The total number of paths is M =

∑N
l=1Ml. Recall we index all the paths by the order of users so thatmi = {∑i−1

l=1 Ml+

1, · · · ,∑i
l=1Ml}. We do not require the available paths for a single user to be disjoint

from each other. As usual we use the notation xl, cj , zi to represent the flow rate of

path l, the bandwidth of link j, and the flow rate of user i, respectively, as well as

M ×L 0-1 matrix R as the routing matrix of the network to indicate the path/link

relation. Distinct from the simultaneous routing and flow control problem, now each

user cannot simply take the aggregation of traffic flows of all his available paths.

Instead the effective user flow rate takes the following form

zi(t) = max
l∈mi

xl(t).

Therefore the network optimization problem for combined single path routing and

congestion control can be written as,

maxxl≥0

∑

i∈[N ] Ui(zi)

s.t. zi = maxl∈mi
xl, ∀i ∈ [N ],

Rx ≤ c.

(6.1)

The only difference between the above formulation and the multipath routing and

flow control problem (5.1) is the effective user flow rate zi. Using maximum instead

of sum over path rates introduces nonconcavity into this problem, and consequently

strong duality, which is fundamental to all the algorithms derived in previous chap-

ters, does not hold any more. Therefore in this chapter we are not mainly concerned

of distributed algorithms to solve the corresponding optimization problem, instead
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we will focus on studying the properties of (6.1).

This problem is first studied Wang, et al [58]. As the unsplittable flow problem,

the problem of combined single path routing and flow control is NP hard, which

means in the worst case scenario it is unlikely to have an effecient algorithm to

obtain the optimal solution. For expository purpose, we briefly describe a special

type of network by which Wang, et al in [58] showed the NP hardness. The network

is shown in Figure 6.1. There are N+3 nodes in the network, among which there is 1

server node, 2 intermediate router nodes, and N edge router nodes from which users

can access the network. Each edge router i has two identical links with bandwidth ci

to each of the intermediate routers. And each intermediate router has one direct link

to the server with bandwidth equal to the half of the sum of its incoming bandwidths

from all the edge routers, that is, 1
2

∑N
i=1 ci. Assume each user wants to establish

a link to the server and then each edge router has to decide which one of the two

outgoing links it should select. It is straightforward to see that solving the network

optimization (6.1) is equivalent to solving the number partitioning problem, that is

to minimize |∑i∈S ci−
∑

i/∈S ci| over all possible sets S. The latter is known as one

of the NP-complete problems [59]. Therefore the combined single path routing and

flow control problem is NP-hard.

Although the above result presents a somewhat pessimistic perspective for

complete algorithmic solution of general (6.1), we can nonetheless proceed to in

the following directions which are still relevant to the real world scenario. First,

since the exact optimal solution may be difficult to obtain, user may be content

with a good approximation close to the true optimum. Second, the above NP-
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Figure 6.1: A Simple Network
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hardness proof relies on the assumption that the network size, i.e. the number of

links, grows at a similar speed as the number of users. In reality there are much

more network users than network links so that it does not deviate from the reality

much to only consider the number of users grow while keeping the number of links

fixed. In the case of the network in Figure 6.1 this is in fact similar to the scenario

considered by Mertens [60] in his treatment of the number partitioning problem.

He showed that when the ratio of the number resolution and the problem size is

below a certain threshold, the number partitioning problem becomes easy to solve.

Third, an important concern is whether the algorithm is local or not and how the

algorithm uses local information. This is because improper use of local information,

for example path selection decisions purely based on aggregate link prices, generally

leads to route instability, as shown in [58].

Based on the above three observations, we will focus ourselves first on a sim-

plistic local algorithm - Nash dynamics and see how it performs when the number

of users grows large. For exactly the same network in Figure 6.1 we will show the

route stability and bounded price of anarchy, that is, the gap between the result

by simple Nash dynamics and the global optimal is small on average. Next we will

show in Section 6.3 that in general networks all the Nash equilibrium solutions are

close to the optimal solution when the number of users is sufficiently large. The

final discussion is in Section 6.4.
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6.2 Price of Anarchy - A Case Study

We consider the following type of noncooperative routing game with its nor-

mal form representation ([N ], {mi}, {Vi}). The set of players [N ] = {1, · · · , N}

coincides with the set of users in the combined single path routing and flow control

optimization problem (6.1). Each player/user i has a finite number of strategies -

its available routes - mi. A pure strategy profile is then represented by a N -tuple

σ = (σ1, · · · , σN) where σi ∈ mi is the strategy chosen by player i. The set of pure

strategy profile is denoted by Σ. Player i’s payoff function Vi : Σ → R is defined by

Vi(σ) = Ui(zi(σ)) where zi(σ) is the optimal rate of player i in the following network

optimal flow problem,

maxxl≥0

∑

i∈[N ] Ui(zi)

s.t. zi = xσi
, σi ∈ mi, ∀i ∈ [N ],

Rx ≤ c.

(6.2)

Since the strategy set Σ is finite, there exists a pure strategy profile such that

the resulting aggregate payoff in the above game achieves the maximum among all

the possible strategies. This particular routing strategy is one of the Pareto optima

of the game and along with the associated optimal flow rates, they are exactly the

optimal solution of combined single path routing and flow control problem (6.1).

To arrive at this pareto optimum of the game requires global coordination among

players in general. An alternative way is to look at a solution concept of the game

in which only local interaction is needed. A simple and also most well-known such

solution is the Nash equilibrium of the game, which is defined as a set of strategy

117



σNE such that

Vi(σ
NE) ≥ Vi(σi, σ

NE
−i ), ∀σi ∈ mi and i ∈ [N ].

Here σNE−i denotes the (N−1)-tuple (σNE1 , · · · , σNEi−1 , σ
NE
i+1 , · · · , σNEN ). We denote the

set of Nash equilibria of the routing game by ΣNE . The route update procedure

to reach the Nash equilibrium can be described as follows. At each discrete time

step t only a randomly selected player p(t) switches its route to achieve a better

resulting flow rate after the flow control mechanism is stabilized. This is known as

Nash dynamics. Since this is a finite game, it is well known that there may not

exist pure Nash equilibrium in general, and if that is the case, the prescribed route

update procedure will never finish. We show below that in our routing game for the

special network in Figure 6.1, this routing instability will never occur.

Proposition 6.1 The routing game (N, {mi}, {Vi}) for the network in Figure 6.1

has pure Nash equilibrium and consequently every Nash dynamics of the network

converges after a finite number of steps.

Proof: Let us define the set of strategy profile Σ = {0, 1}N where 0 represents

the left route and 1 represents the right route. Recall we use the notations σi(t)

and zi(t) for the route selection and actual bandwidth assigned to client i at the

step t, respectively. Also define P 0(t) = {i ∈ [N ] : σi(t−) = 0} and P 1(t) = {i ∈

[N ] : σi(t−) = 1}. Since every Nash dynamics can be decomposed into “rounds”,

during which the chosen players select the same route, let us denote Tk as the set of

the time steps spent at round k. It follows as long as there is routing instability, or
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equivalently there are infinitely many rounds, the following holds,

cp(tk) >
∑

i∈P 0(tk)

ci − c̄,

where tk = maxTk and we assume without loss of generality hereafter the switch

of route at round k is from left to right. This is because p(tk) is the last player in

round k to change to his route from left to right.

We will prove that cp(tk) is strictly decreasing in k therefore we conclude the

number of round is finite. From the condition of changing route, we know that

zp(tk)(tk) < zp(tk)(tk + 1).

But in the round k + 1, we know that

c̄−
∑

i∈P 0(tk+1−1)

ci ≤ c̄−
∑

i∈P 0(tk+1)

ci,

since at tk+1 − 1 there are more players choosing the left route than at tk + 1, and

∑

i∈P 1(tk+1−1)

ci − c̄ ≤
∑

i∈P 1(tk+1)

ci − c̄,

since for the same reason there are less players choosing the right route than at

tk + 1.

Therefore ∀i ∈ σ1,tk+1−1, zi(tk+1 − 1) ≥ zi(tk + 1). But on the other hand, the

left route offers less “free” bandwidth than the beginning of this round k + 1, thus

any player i ∈ P 1(tk+1 − 1) ∩ {j : cj ≥ cp(tk)} will not have bandwidth gain when

switching over to the left route. Thus we conclude cp(tk+1) < cp(tk) and the stability

follows.
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Therefore in contrast to the NP-hardness of the “social optimum solution”

for the network in Figure 6.1, we have shown above that there always exist Nash

equilibrium which can be reached in finite time by a simple local algorithm. It

is natural to ask how far the Nash solution is from the network optimum. So

next we should be concerned with ourselves the problem of the price of anarchy

of this routing game, which measures this gap of the aggregate utility between the

worst case Nash equilibrium and the social optimum. It is important to note that

our routing game is significantly different from those studied in [61, 62, 63], since

each player’s strategy has non-negligible effects over other players’ payoff and each

player’s payoff is not an explicit function of aggregate strategies. We adopt the

definition of the price of anarchy as the difference, rather than the ratio as in most

literatures, of the aggregated utility function of the worst case Nash equilibrium to

the global optimal value. We will first study the case when each user has logarithm

utility function, which corresponds to the proportional fairness allocation of network

resources. Then we will consider more general utility functions which correspond to

the α proportional fairness.

For N players in the network in Figure 6.1, without loss of generality we

assume that 0 < c1 ≤ c2 ≤ · · · ≤ cN . Every strategy profile σ corresponds to a

routing matrix R(σ) and the rate allocations of the players are the solution to the

following optimization problem,

max
zi≥0

N∑

i=1

log zi, s.t. R(σ)z ≤ c,

where c is an appropriate column vector of link bandwidths.
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It is easy to show that the solution satisfies the following property.

1. If
∑

i∈P 0 ci ≤ c̄, zi = ci, ∀i ∈ σ0. Same applies to P 1.

2. If
∑

i∈P 0 ci > c̄,

zi = min

{

ci,max
k<i

c̄−∑j∈P 0,j<k cj

|{j ∈ P 0, j ≥ k}|

}

, (6.3)

∀i ∈ P 0. Same applies to P 1.

Suppose we fix the optimal aggregated utility function as

N∑

i=1

log ci = 0,

or
N∏

i=1

ci = 1.

Here the “optimum” includes the situation when multipath routing is allowed.

Therefore, our problem becomes,

min
σ∈ΣNE

J0 = max
z

N∑

i=1

log zi, s.t. R(σ)z ≤ c,
N∏

i=1

ci = 1. (6.4)

Recall ΣNE is the set of pure Nash equilibrium profiles.

Proposition 6.2 The optimization problem (6.4) achieves its lower bound -1 when

N → ∞.

Proof: For any Nash equilibrium profile σ define {p0
1, · · · , p0

N1
} , P 0 and

{P 1
1 , · · · , P 1

N2
} , P 1 where N1 +N2 = N . The players in each set are ordered such

that c01 ≤ · · · ≤ c0N1
and c11 ≤ · · · ≤ c1N1

. Without loss of generality assume

N2∑

i=1

c1i > c̄.
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There exists an integer k1, 0 ≤ k1 ≤ N1, for the player set P0 such that when a

player in P1 changes his route to the left for larger bandwidth, there will be k1 players

in P0 that change their bandwidth due to the rule (6.3). It is easy to see that these

k1 players are the ones with the largest bandwidths in P0. Define s0
1 ,

∑N1−k1
i=1 c0i

and s0
2 ,

∑N1

i=N1−k1+1 c
0
i . From the rule (6.3), the following inequality is satisfied,

s0
1 − c0N1−k1

+ (k1 + 2)c0N1−k1
≤ c̄ ≤ s0

1 + (k1 + 1)c0N1−k1+1.

But by definition s0
1 ≤ (N1 − k1)c

0
N1−k1

and s0
2 ≥ k1c

0
N1−k1+1, we have,

N1 + 1

N1 − k1
s0
1 ≤ c̄ ≤ s0

1 +
k1 + 1

k1
s0
2. (6.5)

Also there exists an integer k2, 0 ≤ k2 < N2, such that there are k2 players in

P1 whose allocated bandwidths are equal to their maximally possible bandwidths.

It is straightforward to see that such k2 players are the ones with the smallest

bandwidths in P1. Define s1
1 ,

∑k2
i=1 c

1
i and s1

2 ,
∑N2

i=k2+1 c
1
i . Again from the rule

(6.3), the following inequality holds,

s1
1 − c1k2 + (N2 − k2 + 1)c1k2 ≤ c̄.

By definition s1
1 ≤ k2c

1
k2

, therefore,

N2

k2
s1
1 ≤ c̄. (6.6)

Since the current strategy profile σ is a Nash equilibrium, we have the following

inequality from the allocation rule (6.3),

c̄− s1
1

N2 − k2

≥ c̄− s0
1

k1 + 1
(6.7)
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From (6.5) there exists δ1 ≥ 0 such that

s0
1 =

N1 − k1

N1 + 1
(c̄− δ0). (6.8)

Again from (6.5) we have

s0
2 =

k1

N1 + 1
c̄+

N1 − k1

N1 + 1

k1

k1 + 1
δ0.

Add the above two equations together,

s0
1 + s0

2 =
N1

N1 + 1
c̄− N1 − k1

N1 + 1

1

k1 + 1
δ0.

But since s0
1 + s0

2 + s1
1 + s1

2 = 2c̄, we have

s1
1 + s1

2 =
N1 + 2

N1 + 1
c̄+

N1 − k1

N1 + 1

1

k1 + 1
δ0.

From (6.6) there exists δ1 ≥ 1 such that

s1
1 =

k2

N2
c̄− δ1. (6.9)

Hence

s1
2 =

N1 + 2

N1 + 1
c̄− k2

N2
c̄+

N1 − k1

N1 + 1

1

k1 + 1
δ0 + δ1.

We can have δ2 ≥ 0 such that

s0
1 − s1

1 =
N2 − k2 − k1 − 1

N2 − k2

(c̄− c11) + δ2,

or equivalently,

s0
1 =

N2 − k1 − 1

N2
c̄− k1 + 1

N2 − k2
δ1 + δ2

from the Nash equilibrium condition (6.7). Together with (6.8), it follows,

(
1

N2

− 1

N1 + 1

)

c̄+
1

N2 − k2

δ1 − δ2 =
N1 − k1

N1 + 1
δ0.
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Therefore

s1
2 =

N2 − k2 + 1

N2
c̄+

1

N2 − k2
δ1 − δ2 (6.10)

We return back to the optimization problem (6.4). It is clear that the final

rates zis from the current strategy profile σ satisfy

zi =







ci, pi /∈ {p1
k2+1, · · · , p1

N2
},

(c̄− s1
1)/(N2 − k2), otherwise.

Therefore we have

exp(J0) =
∏

pi /∈{p1k2+1,··· ,p
1
N2

}

ci

(
c̄− s1

1

N2 − k2

)N2−k2

=

(
N2∏

i=k2+1

c1i

)−1(
c̄− s1

1

N2 − k2

)N2−k2

.

The second inequality is due to the bandwidth constraint. But the above is equal

to
(

N2∏

i=k2+1

c1i

)−1( N2−k2
N2

c̄+ δ1

N2 − k2

)N2−k2

=

(
s12

N2−k2

)N2−k2

∏N2

i=k2+1 c
1
i

(
N2−k2
N2

c̄+ δ1

s1
2

)N2−k2

≥
(

N2−k2
N2

c̄+ δ1

s1
2

)N2−k2

The inequality is due to the fact that arithmetic average is greater than geometric

average with equality when all the summands are equal to each other. Substitute

s1
2 with that in (6.10), it follows

(
N2−k2
N2

c̄+ δ1

s1
2

)N2−k2

=

(
N2−k2
N2

c̄+ δ1
N2−k2+1

N2
c̄+ 1

N2−k2
δ1 − δ2

)N2−k2

≥
(

N2 − k2

N2 − k2 + 1

)N2−k2

.
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The inequality becomes equality when δ1 = δ2 = 0. Since it always holds

(
N

N + 1

)N

ց e−1, N → ∞,

we conclude that J0 ≥ −1. A concrete example to achieve this bound is that there

are 2N − 1 players and among those N players on the right route have bandwidths

λ(N + 1)/N2 and N − 1 players on the left route have bandwidths λ/N , where λ

is the appropriate scaling constant so that the bandwidth constraint holds. The

bound is achieved when N → ∞.

We can generalize the result on logarithm utility function to power utility

function, whose optimal solution corresponds to α proportional fairness. To this

end, the network optimization problem is

min
zi≥0

N∑

i=1

−z−γi s.t. R(σ)z ≤ b,

where R(σ) is the routing matrix corresponding to the strategy σ. The same as in

the logarithm utility case, we try to obtain the value of worst case Nash equilibrium

in the condition of fixed optimum value of multipath routing. That is the value of

cis must satisfy
N∑

i=1

−c−γi = −1.

Therefore the selfish routing problem of the network in Figure 6.1 for the power

utility functions can be expressed as the following minimization problem,

min
σ∈ΣNE

Jγ = max
z

N∑

i=1

−z−γi , s.t. R(σ)z ≤ c,

N∑

i=1

−c−γi = −1. (6.11)

Following the steps in the case of logarithm utility function, we obtain for a
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specific Nash equilibrium strategy σ, the aggregate utility in (6.11)

Jγ =
∑

pi /∈{p1k2+1,··· ,p
1
N2

}

−c−γi − (N2 − k2)

(
c̄− s1

1

N2 − k2

)−γ

= − 1 +

N2−k2∑

i=1

(c1i )
−γ − (N2 − k2)

(
N2−k2
N2

c̄+ δ1

N2 − k2

)−γ

≥− 1 + (N2 − k2)
γ+1(s1

2)
−γ − (N2 − k2)

γ+1

(
N2 − k2

N2
c̄+ δ1

)−γ

= − 1 − (N2 − k2)
γ+1

((
N2 − k2

N2
c̄+ δ1

)−γ

−
(
N2 − k2 + 1

N2
c̄+

1

N2 − k2
δ1 − δ2

)−γ
)

.

Here we use the relations (6.9) and (6.10). In addition, the inequality follows from

the following result
∑N

i=1 xi
N

≥
(∑N

i=1 x
−γ
i

N

)−1/γ

for all xi > 0 and the equality holds if and only if xi ≡ x, ∀i.

Again based on the above inequality result, as well as the definition of s0
1, s

0
2,

s1
1, and s1

2, we have the following inequalities,

kγ+1
2

(
k2

N2
c̄− δ1

)−γ

= kγ+1
2 (s1

1)
−γ ≤

k2∑

i=1

(c1i )
−γ,

(N2 − k2)
γ+1

(
N2 − k2 + 1

N2
c̄+

1

N2 − k2
δ1 − δ2

)−γ

= (N2 − k2)
γ+1(s1

2)
−γ

≤
N2∑

i=k2+1

(c1i )
−γ ,

Nγ+1
1

(
N2 − 1

N2

c̄+
N2 − k2 − 1

N2 − k2

δ1 + δ2

)−γ

= Nγ+1
1 (s0

1 + s0
2)

−γ ≤
N1∑

i=1

(c0i )
−γ.

Add the above together,

c̄−γ ≤







kγ+1
2

(
k2
N2

− δ′1

)−γ

+ (N2 − k2)
γ+1
(
N2−k2+1

N2
+ 1

N2−k2
δ′1 − δ′2

)−γ

+Nγ+1
1

(
N2−1
N2

+ N2−k2−1
N2−k2

δ′1 + δ′2

)−γ







−1

,
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where we define δ′i = δ/c̄ for i = 1, 2. Hence

Jγ ≥− 1 − (N2 − k2)
γ+1

(
N2−k2
N2

+ δ′1

)−γ

−
(
N2−k2+1

N2
+ 1

N2−k2
δ′1 − δ′2

)−γ







kγ+1
2

(
k2
N2

− δ′1

)−γ

+ (N2 − k2)
γ+1
(
N2−k2+1

N2
+ 1

N2−k2
δ′1 − δ′2

)−γ

+Nγ+1
1

(
N2−1
N2

+ N2−k2−1
N2−k2

δ′1 + δ′2

)−γ







≥− 1 −
1 −

(
N2−k2
N2−k2+1

)γ

k2
N2−k2

+
(

N2−k2
N2−k2+1

)γ

+ N1

N2−k2

(
N1

N2−1

)γ .

The second inequality holds when δ′1 = δ′2 = 0. By detailed calculations it can be

shown that the right hand side of the above inequality reaches its minimum when

k2 = 0 and N1 = N2 − 1 if N is odd and N1 = N2 if N is even. That is, the lower

bound of the aggregate utility Jγ in the case of odd N is

Jγ ≥ −1 −
1 −

(
N+1
N+3

)γ

1 − 2
N+1

+
(
N+1
N+3

)γ

It is worth to notice that for large N , the lower bound can be approximated by

−1 − γ/N . Therefore now the utility loss due to selfish routing becomes zero when

the number of players grows to infinity, as oppose to the case of logarithm utility.

Therefore we conclude that

Proposition 6.3 The optimal value of the problem (6.11) converges to -1 when

N → ∞. Therefore the price of anarchy of the routing game with power utility is

arbitrarily small for sufficiently large number of players.

We extend the network in Figure 6.1 to the one with multiple links to the server

instead of just two. The network consists ofN+M+1 nodes, where there are N edge

router nodes, M intermediate router nodes, and one server nodes. Each edge router
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node has links to every intermediate router nodes and all those links have the same

bandwidth. Each intermediate router node has a direct link to the server. So there

are altogether (N +1)M links and each edge router has M different choices of route

to the server. Again we denote the link bandwidth between client i and a router

as ci. The link bandwidth between a router and the server is c̄ =
∑N

i=1 ci/M . Now

the strategy set Σ = {1, · · · ,M}N . This is similar to multi-processor scheduling

problem, which is an extension to the number partitioning problem. We will show

that the Nash dynamics also converges in this case.

Proposition 6.4 The routing game (N, {mi}, {Vi}) defined for the extended net-

work has pure Nash equilibrium and consequently every Nash dynamics of the net-

work converges after a finite number of steps.

Proof: Clearly, the approach we use for the 2-link scenario can not be directly

applied here. This is because the variable we considered in that case (the bandwidth

of the last changing client in a round) is not monotonically decreasing due to the fact

that we have more than two routing options for every player. So now we design a

new bounded variable which is strictly increasing for each step in the Nash dynamics

and therefore the convergence follows. From (6.7) we know that when a server link

does not match the aggregated incoming bandwidths, or
∑

i∈P j ci > c̄, the allocated

bandwidth zi for the player i, i ∈ P j , {i ∈ [N ] : σi = j}, is

zi =







ci, i < kj

c̄−
P

l∈Pj,l<kj
cl

|{l∈P j ,l≥kj}|
, i ≥ kj ,
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where

kj = min{i : ci ≥
b̄−∑l∈P j ,l<kj

cl

|{l ∈ P j, l ≥ kj}|
, i ∈ P j}.

In other words, those players whose bandwidth is less than a certain threshold

are able to keep their bandwidth but the clients with higher bandwidth than that

threshold have to divide the remaining bandwidth of the server link by equal shares.

We try to look at the following variable for the player i at the route j which we

define as yji ,

yji ,
c̄−∑l∈P j ,l<i cl

|{l ∈ P j, l ≥ i}| .

This variable can be interpreted as the worst projected allocated bandwidth for the

player i had the player i and all the players with higher bandwidth not joined the

route j. We show that for the route j, yji achieves maximum at i = kj. Without

loss of generality, we assume that both the player i and i + 1 use the router j. We

have,

yji > yji+1 ⇔
c̄−∑l∈P j ,l<i cl

|{l ∈ P j, l ≥ i}| >
c̄−∑l∈P j ,l<i+1 cl

|{l ∈ P j, l ≥ i+ 1}|

⇔
(
|{l ∈ P j, l ≥ i}| − |{l ∈ P j, l ≥ i+ 1}|

) ∑

l∈P j ,l<i

cl + |{l ∈ P j, l ≥ i}|ci

>
(
|{l ∈ P j, l ≥ i}| − |{l ∈ P j, l ≥ i+ 1}|

)
c̄

⇔
∑

l∈P j ,l<i

cl + |{l ∈ P j, l ≥ i}|ci > c̄

⇔ ci >
c̄−∑l∈P j ,l<i cl

|{l ∈ P j, l ≥ i}| .

So it follows directly that the yji peaks at kj and yjkj
is the allocated bandwidth for

players i ≥ kj . If the server link can contain the aggregated incoming bandwidths,

yji has the maximum at the player of the largest bandwidth. Define yj = maxi∈P j yji .
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We can write the allocated bandwidth for the player i using the route j (without

the condition whether
∑

i∈P j ci > c̄) as

zi = min{ci, yj}. (6.12)

Now we define a vector y(n) = [y(1), · · · , y(M)] which is a list of the lexicograph-

ically orderd yj’s at the nth step of the Nash dynamics and y(i) is the ith smallest

yj’s. Certainly yn is bounded. We will show that it is strictly increasing at each Nash

step. Consider that at the nth step player i switches his route from j to k. Since it

is a Nash step, we have that zi(n−1) < zi(n). But from (6.12) zi(n−1) = yj(n−1)

and zi(n) = min{ci, yk(n)}. Therefore yj(n − 1) < min{ci, yk(n)} ≤ yk(n). Also

after the removal of player i in the route j, it is obvious that yj(n − 1) < yj(n).

Therefore min{yj(n− 1), yk(n− 1)} < min{yj(n), yk(n)} which concludes that y(n)

is strictly increasing. So we conclude that the Nash dynamics converge.

To conclude this section we will demonstrate that the utility loss of the routing

game for this extended network is greater than the case of 2 server links, although

we will not derive the precise lower bounds. We can show that it is at least 1 −M

when the logarithm utility function is used. Assume that the number of players N

is a multiple of M . The link bandwidth for players 1, · · · , n(1 − 1/M) is

(

1 +
M2

N −M

)− 1
M

and the link bandwidth for players N(1 − 1/M) + 1, · · · , n is

(

1 +
M2

N −M

)M−1
M

.

The routing strategy for those N players is as follows. We group players (k −
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1)N/M + 1, · · · , kN/M to the server link k for k = 1, · · · ,M . It is easy to show

that this routing scheme results in a Nash equilibrium. In this case, the aggregate

utility function becomes

−N

M
log

(

1 +
M(M − 1)

N

)

which converges to the minimum of 1 −M when N → ∞. In the case of γ pro-

portional fairness utility functions, we can also construct a Nash equilibrium which

offers worse utility lower bound than that of the network of 2 server links. Suppose

we have N = Mr players and each server link serves r players. There are M −K

over-provisioned server links and K under-provisioned server links. As in the loga-

rithm utility situation, in order to have Nash equilibrium, the link bandwidth c1 of

any players who use the over-provisioned server links must satisfy c1 ≥ (r − 1)/rc̄.

Therefore we let

c1 =

(

(M −K)r +Kr

(

1 +
M

K(1 − r)

)−γ
)1/γ

and let the link bandwidth of any players who use the under-provisioned server links

be

c2 =

(

1 +
M

K(r − 1)

)

c1.

We obtain the utility loss as

−
M −K +K

(
r
r−1

)−γ

M −K +K
(

1 + M
K(r−1)

)−γ .

It attains minimum when K = 1 and r ∼ λγ as γ → ∞ where γ is the real root of

the equation

λ
M

M−1 +
M

M − 1
λ

1
M−1 − 1 = 0.

131



The maximum utility loss is then

1 + (M − 1)λ

1 + (M − 1)λ
M

M−1

.

6.3 Nash Equilibrium and Optimality - Asymptotic Results

We have shown in the previous section that for a special type of network,

the value of Nash equilibrium solutions of the routing game are asymptotically

close to the optimal value of combined single routing and flow control problem. In

this section our intention is to show that in some sense this argument is valid for

general networks when the number of users become large compared to the number of

bottleneck links. This formulation of the problem in the many users region instead

of many links region is motivated by the fact that in the real world there are usually

much more users than bottleneck links in the Internet.

It is well known that Nash equilibrium causes efficiency loss in exchange econ-

omy as oppose to the competitive equilibrium where each player acts like price-taker.

It is plausible that in large economies this price-taking behavior is justifiable, since

each player’s ability to influence the price formation and consequently his gain to

deviate from his true demand is diminished when the number of players becomes

large. This limit behavior of Nash equilibrium, either in a continuum economy or in

an asymptotic sequence of economies, has been studied extensively (see for example,

[64, 65, 66] and references therein) and many indicate the convergence to the com-

petitive equilibrium. However, there are also many situations (see for example [67])

which show that in some economies the competitive equilibrium is not an asymptotic
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limit of any Nash equilibria, or even in a continuum setting Nash equilibrium can be

far away from the competitive equilibrium. Note that our network flow optimization

problem is a special type of pure exchange economy and the competitive equilibrium

corresponds to the optimal (price-taking) solution. It is demonstrated as well in [24]

that for a particular network setting, the aggregate utility of a Nash equilirium is

3/4 of the optimal solution when the number of users goes infinite. Nonetheless, we

will show that Nash equilibrium of our routing game (6.2) converges to the optimal

solution in the many players region.

First we will motivate our intuition by showing the relation between the com-

bined single path routing and flow control problem (6.1) and the multipath rout-

ing and flow control problem (5.1). Recall the definition of the conjugate func-

tion f ∗ : X∗ → R of f : X → R as f ∗(y) = infx∈X{〈x, y〉 − f(x)}, where

X and X∗ is a pair of dual vector spaces defined by a bilinear operator 〈·, ·〉.

Then the bipolar function f ∗∗ of f is the conjugate of the conjugate of f , that

is, f ∗∗(x) = infy∈X∗{〈x, y〉 − f ∗(y)}. The following theorem by Falk states that the

dual of a nonconvex optimization with linear constraints is equivalent to the “convex

envelope” of the primal optimization,

Theorem 6.1 ([68]) For a compact set X and f : X → R a lower semicontinuous

function over X, consider the optimization problem

(P ) max f(x), subject to Ax ≤ b, x ∈ X,

with its dual problem

(P ∗) min
y≥0

max
x∈X

f(x) − yTAx+ yT b.
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The dual problem P ∗ is also the dual problem associated with the following problem

(P ′) max f ∗∗(x), subject to Ax ≤ b, x ∈ X.

Here f ∗∗ is the bipolar function of f . Further, if the Slater condition is satisfied,

then the strong duality between P ′ and P ∗ holds in which the maximum value of P ′

is equal to the minimum value of P ∗.

The above theorem can be applied immediately to the combined single path

and flow control problem (6.1. The only thing left to be calculated is the bipolar

function of fi(x1, · · · , xMi
) , Ui(max{x1, · · · , xMi

}),

f ∗
i (y1, · · · , yMi

) = inf
x1,··· ,xMi

{
Mi∑

j=1

xjyj − Ui(max{x1, · · · , xMi
})
}

=U∗
i (min{y1, · · · , yMi

}),

and

f ∗∗
i (x1, · · · , xMi

) = inf
y1,··· ,yMi

{
Mi∑

j=1

xjyj − U∗
i (min{y1, · · · , yMi

})
}

=Ui

(
Mi∑

j=1

xj

)

.

The above derivation uses the assumption that Ui(·) is a concave increasing function.

Notice this utility function is exactly the utility function used in the combined

multipath routing and flow control problem (5.1), therefore we conclude,

Proposition 6.5 The dual problem of the combined single path routing and flow

control optimization (6.1) is equivalent to the combined multipath routing and flow

control optimization (5.1). Therefore the duality gap is nonzero if and only if the

optimal value of (5.1) is strictly larger than that of (6.1).
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So the duality gap of the nonconvex optimization problem (6.1) can be inter-

preted as the “social” inefficiency caused by restricting every player to use only one

path to route his traffic. It is then interesting to see what the minimum relaxation

of this restriction one should make in order to eliminate this gap. We will show that

one only needs to make negligible modifications of this single path rule to achieve

multipath optimality in the many-player region. The derivation relies on a theorem

by Shapley and Folkman (see [69] Appendix I) whose statement is as follows,

Theorem 6.2 (Shapley-Folkman) Given a finite family of sets Xi ⊂ R
m, i ∈ I,

for any x ∈ co
∑

i∈I Xi, there exists a subset I(x) ⊂ I, whose cardinality |I(x)| ≤ m,

such that x ∈ co
∑

i∈I(x)Xi +
∑

i∈I\I(x)Xi.

Intuitively, the Shapley-Folkman Theorem says that the sum of a large number

of nonconvex sets in a finite dimensional space is close to a convex set. Let us

proceed to see the implication of this “smoothing” effect on our problem. First let

us introduce an indicator function χl : R → {0,−∞} for each link l such that

χl(y) =







0, y ≥ −cl,

−∞, y < −cl.

We will consider the following perturbed function

Φ(x1, · · · , xM ; d1, · · · , dL) ,

N∑

i=1

Ui(max
j∈mi

xj) +

L∑

l=1

χl

(

dl −
M∑

j=1

Rljxj

)

,

and the perturbed maximization problem

V (d1, · · · , dL) = max
{xi}∈R

M
+

Φ(x1, · · · , xM ; d1, · · · , dL).
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It is clear that the optimal value of the combined single path routing and flow

control optimization (6.1) is the same as V (0, · · · , 0). For notational convenience

define N + L functions gi : R
M+L → R ∪ {−∞} as follows,

gi({xi}) ,







Ui(maxj∈Mi
xj), 1 ≤ i ≤ N,

χi−N (xi), N + 1 ≤ i ≤ N + L.

Also define a L× (M + L) 0-1 matrix E such that

M+L∑

j=1

Eljxj =
M∑

j=1

Rljxj + xN+l.

Then we can rewrite the optimization problem for V (d1, · · · , dL) as

V (d1, · · · , dL) = max
{xi}∈R

M+L
+

{
N∑

i=1

gi({xj∈mi
}) :

M∑

j=1

Rljxj + xM+l = dl

}

= max
{xi}∈R

M+L
+

{

α : (d1, · · · , dL, α) =

N+L∑

i=1

(
∑

j∈mi

E·jxj , αi

)

,

(
∑

j∈mi

E·ixi, αi

)

∈Wi

}

,

where the set Wi ∈ R
L+1 is defined by

Wi ,

{

(y, α) : y =
∑

j∈mi

E·jxj , α ≤ gi({xj∈mi
})
}

.

Define hypograph of a function f as hypo f , {(x, y) : y ≤ f(x)}. Since for

any function f its bipolar f ∗∗ satisfies hypo f ∗∗ = c̄o hypo f , where co is the convex

hull, it follows

graphV ∗∗ ⊂ c̄o graphV ⊂ c̄o

N+L∑

i=1

Wi.

Since the dual optimal is finite in our network optimization problem, by the upper-

semicontinuity of the sets Wi, each of the set coWi is closed, and we have

(0, · · · , 0, V ∗∗(0, · · · , 0)) ∈ co

N+L∑

i=1

Wi = co

N+L∑

i=1

{(
∑

j∈mi

E·jxj , gi({xj∈mi
})
)}

.
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So (0, · · · , 0, V ∗∗(0, · · · , 0)) is in the sum of N + L convex sets. By the Shapley-

Folkman Theorem 6.2, there exists an index set I with cardinality at most L + 1

such that

(0, · · · , 0, V ∗∗(0, · · · , 0)) ∈
∑

i/∈I

Wi + co
∑

i∈I

Wi.

Equivalently, there exist x̃is for i /∈ I and two |I|×(L+2) matrices, {x̃ij} and {γij},

such that

∑

i/∈I

Elix̃i +
∑

i∈I

Eli

L+2∑

j=1

γijx̃ij = 0, ∀l ∈ [L],

∑

i/∈I

gi(x̃i) +
∑

i∈I

L+2∑

j=1

γijgi(x̃ij) = V ∗∗(0, · · · , 0).

Here γij ≥ 0 and
∑

j γij = 1 by the representation of the convex hull from the

Caratheodory theorem. Denote x̃i =
∑

j γijx̃ij for i ∈ I, we have

L+2∑

j=1

γijgi(x̃ij) ≤ g∗∗(x̃i).

Therefore we obtain

∑

i/∈I

Elix̃i +
∑

i∈I

Elix̃i = 0, l ∈ [L],

∑

i/∈I

gi(x̃i) +
∑

i∈I

g∗∗i (x̃i) ≥ V ∗∗(0, · · · , 0).

But the above really is

V ∗∗(0, · · · , 0) ≤ Ṽ , max
xl≥0

∑

i∈[N ]

Ui(zi)

s.t. zi = max
l∈mi

xl, ∀i ∈ I,

zi =
∑

l∈mi

xl, ∀i ∈ [N ] \ I,

Rx ≤ c.
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It is straightforward to see that the above non-strict inequality should be equality,

that is, V ∗∗(0, · · · , 0) = Ṽ . Therefore we have the following conclusion

Proposition 6.6 The combined single path routing and flow control problem (6.1)

can achieve the same efficiency as the combined multipath routing and flow control

problem (5.1) by allowing at most L + 1 users to use multipath routing to transmit

their traffic.

Hence in the many-user region, the percentage of users that needs to be

changed in order to transform the hard problem (6.1) into the easy problem (5.1)

is vanishingly small given the fixed number of links. Also we can now see that the

reason for the problem (6.1) to be difficult to solve for the network on Figure 6.1 is

that there are at least as many bottleneck links as the number of users. Therefore,

intuitively, in the many-user region, the problem of combined single path routing

and flow control becomes close to its multipath counterpart and thus easier to solve.

However for this section we will not discuss the exact solution of the problem (6.1)

in the many-user region. Instead we will show below that in the many-user asymp-

totics, the approximate Nash equilibrium should be able to achieve the approximate

optimal solution.

We have shown in the last section that for the network on Figure 6.1 or its

extension there exists pure Nash equilibrium for our routing game ([N ], {mi}, {Vi}).

But whether a pure Nash equilibrium of the routing game exists for a general

network is an open problem. To circumvent this issue we introduce a more gen-

eral ǫ-Nash equilibrium: a strategy σ ∈ Σ is a ǫ-Nash equilibrium if and only
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if Vi(s, σ−i) ≤ Vi(σ) + ǫ for all s ∈ mi and all i ∈ [N ]. Recall the notation

σ−i = (σ1, · · · , σi−1, σi+1, · · · , σN). We denote the set of ǫ-Nash equilibria by ΣNE(ǫ).

Clearly ΣNE = ΣNE(0) and ΣNE(ǫ) ⊂ ΣNE(ǫ′) if ǫ ≤ ǫ′.

Now we construct a concrete example of many-user network. Here we use the

term “network” for the network topology along with users’ characteristics, that is,

their utility functions and their available routes. Denote U as the set of concave

strictly increasing functions defined on R+ and M as the set of all possible routes in

a given network topology. For simplicity we consider the following “type sequence”

of users for the network topology. There is a finite set [T ] of types and each t ∈ [T ]

corresponds to a utility/strategy set pair (Ut(·), mt) ∈ U × 2M . Denote the Nth

network by NN and its consists of nN ∈ [N,N + T ) users, among whom there

are ⌈wtN⌉ users of type t for each t ∈ T . Here wt > 0 can be considered as the

percentage of type t users in the entire population and we have
∑

t∈T wt = 1. In

addition, the bandwidth of each link l of NN is equal to Ncl. The type sequence

method offers a simple model similar to the real world scenario and its use is popular

as the first step towards the study of the limiting behavior of large number of users

in economic theory (see for example in the case of core equivalence [16]).

We will use a parametric dependence theorem by Wets frequently in the rest

of this section. First let us introduce the concept of “uniform level boundedness”. A

function f : R
n×R

m → R with values f(x, u) is level-bounded in x locally uniformly

in u if for each ū ∈ R
m and α ∈ R there is a neighborhood V of ū along with a

bounded set B ⊂ R
n such that {x : f(x, u) ≥ α} ⊂ B for all u ∈ V . Now the

theorem is stated as follows
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Theorem 6.3 (Theorem 1.17 of [70]) Consider

p(u) = sup
x
f(x, u), P (u) = argmax

x
f(x, u),

in the case of a proper, upper semicontinuous function f : R
n × R

m → R ∪ {±∞}

such that f(x, u) is level-bounded in x locally uniformly in u. Then

(a) The function p is proper and upper semicontinuous on R, and for p to be con-

tinuous at a point ū relative to a set U containing ū, a sufficient condition is

the existence of some x̄ ∈ P (ū) such that f(x̄, u) is continuous in u at ū relative

to U .

(b) If xn ∈ P (un), and if un → ū ∈ dom p in such a way that p(un) → p(ū), then

the sequence {xn} is bounded, and all its cluster points lies in P (ū).

In the network NN , for type t users we introduce a Mt-dim vector {vNt,τ}

in which vNt,τ represents the number of type t users chooing the τth route within

mt. Apparently
∑

τ v
N
t,τ = ⌈wtN⌉ and all these vNt,τ users will have the same rate

allocation. Therefore each {vNt,τ} corresponds to an equivalent class of strategy

profile σ in the sense of rate distribution. For a fixed {vNt,τ} the combined single

path routing and flow control problem for the network NN can be written as

max
x≥0

∑

t∈[T ]

Mt∑

τ=1

vNt,τUt(xt,τ )

s.t.
∑

t∈[T ]

Mt∑

τ=1

Rl
t,τv

N
t,τxt,τ ≤ Ncl, ∀l ∈ [L].

Here R is the routing matrix of the network which is invariant in N . Define v̄t,τ ,

vNt,τ/N to be the scaled down version of vt,τ . Further denote the finite set V̄N to be
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all the possible {v̄t,τ} in which each component can be expressed by v̄t,τ = vt,τ/N for

some vNt,τ for all t and τ . Then the “scaled down” version of the above optimization

problem can be rewritten as

V ({v̄t,τ}) , maxx≥0

∑

t∈[T ]

∑Mt

τ=1 v̄t,τUt(xt,τ )

s.t.
∑

t∈[T ]

∑Mt

τ=1R
l
t,τ v̄t,τxt,τ ≤ cl, ∀l ∈ [L].

(6.13)

Note that for NN ,
∑

τ v̄t,τ = nN/N ∈ [wt, wt + L/N). The dual problem of the

above optimization is

V ∗({v̄t,τ}) , min
p≥0

D(p, {v̄t,τ}) −
L∑

l=1

clpl,

where

D(p, {v̄t,τ}) , max
x≥0

∑

t∈[T ]

Mt∑

τ=1

v̄t,τ

(

Ut(xt,τ ) −
L∑

l=1

Rl
t,τxt,τp

l

)

.

Since Ut ∈ U , v̄t,τ

(

Ut(xt,τ ) −
∑L

l=1R
l
t,τxt,τ

)

is everywhere continuous for xt,τ ∈ R+.

Therefore by Theorem 6.3 D(p, {v̄t,τ}) is everywhere continuous for p ∈ R
L
+. Since

for any {v̄t,τ}, the optimal solution p({v̄t,τ}) is unique. Then again by Theorem 6.3,

p({v̄t,τ}) is continuous for all {v̄t,τ}.

We consider the multipath version of the problem,

maxx≥0

∑

t∈[T ]wtUt(zt)

s.t.
∑

t∈[T ]

∑Mt

τ=1R
l
t,τwtxt,τ ≤ cl, ∀l ∈ [L],

zt =
∑Mt

τ=1 xt,τ .

c (6.14)

Denote the solution of the above multipath optimization to be z∗t and x∗t,τ (if there

are multiple solutions, we just pick one of them) and the solution to its dual problem

to be p∗l (it is unique acccording to Proposition 5.1). Define v̄∗t,τ , wtx
∗
t,τ/z

∗
t and the
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aggregate price along the route q∗t,τ ,
∑

lR
l
t,τp

∗
l . From optimality we have for fixed

t, q∗t,τ = q∗t,τ ′ if v̄∗t,τ > 0 and v̄∗t,τ ′ > 0 and q∗t,τ ≤ q∗t,τ ′ if v̄∗t,τ > 0 and v̄∗t,τ ′ = 0. Further,

xt,τ = z∗t if v̄∗t,τ > 0 and xt,τ = 0 if v̄∗t,τ = 0 is the optimal solution of (6.13) with

parameters v̄t,τ = v̄∗t,τ , and along with v̄∗t,τ , the multipath solution is the optimal

solution of maxV ({v̄t,τ}) with the constraint
∑

τ v̄t,τ = wt for all t ∈ [T ].

Define {v̄∗Nt,τ } to be the closest element in V̄N to {v̄∗t,τ} in l∞. We argue that for

any ǫ > 0, there exists an integer N(ǫ), such that for any N > N(ǫ), any strategy

profile corresponds to {v̄∗Nt,τ } is a ǫ-Nash equilibrium. To see this, first notice that

we have

U ′
t(z

∗
t ) = q∗t,τ , ∀τ ∈ mt, such that x∗t,τ > 0.

Since Ut ∈ U , for fixed ǫ, there exists η(ǫ) > 0, such that for any 0 ≤ η < η(ǫ),

|Ut(z∗t ) − Ut(U
′−1
t (q))| < ǫ/2 for all |q − q∗t,τ | < η. Next recall from the above

discussion p({v̄t,τ}) is continuous, then there exists δ(η) > 0, such that for any

0 ≤ δ < δ(η),

‖p({v̄∗t,τ}) − p({v̄t,τ})‖∞ < η/L, ∀‖{v̄∗t,τ} − {v̄t,τ}‖ < δ.

We know that from our construction there exists N(δ) such that for all N > N(δ)

‖{v̄∗Nt,τ } − {v̄∗t,τ}‖∞ < δ,

and

‖{v̄∗Nt,τ }′ − {v̄∗t,τ}‖∞ < δ,

where {v̄∗Nt,τ }′ is the route distribution when a single user changes his strategy from

that in {v̄∗Nt,τ } while the rest of users keep the same strategies. Suppose the user
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changes his strategy from τ to τ ′ in mt. Then we can readily conclude that

‖p({v̄∗Nt,τ }) − p({v̄∗t,τ})‖∞ < η/L,

and

‖p({v̄∗Nt,τ }′) − p({v̄∗t,τ})‖∞ < η/L.

Define qt,τ ,
∑L

l=1R
l
t,τpl({v̄∗Nt,τ }) and q′t,τ ,

∑L
l=1R

l
t,τpl({v̄∗Nt,τ }′). Then for every t

and τ ,

|q∗t,τ − qt,τ | < η,

and

|q∗t,τ − q′t,τ | < η.

Therefore we have

Ut(U
′−1
t (qt,τ )) ≥ Ut(z

∗
t ) − ǫ/2 ≥ Ut(U

′−1
t (q∗t,τ ′)) − ǫ/2 ≥ Ut(U

′−1
t (q′t,τ ′)) − ǫ.

Since t and τ is arbitrary, we conclude that {v̄∗Nt,τ } is a ǫ-Nash equilibrium and we

have the following proposition,

Proposition 6.7 For any ǫ > 0, there exists an integer N(ǫ) such that for any

N > N(ǫ) there exists ǫ-Nash equilibrium of the routing game of NN .

We use the notation R++ for the open set of strictly positive real numbers.

We will need the following fact before studying the property of ǫ-Nash equilibrium

of the routing game,

Proposition 6.8 For any ǫ > 0, there exists a compact set K ⊂ R
T
++ such that for

all N , qNt,τ ({v̄Nt,τ}) ∈ K where {v̄Nt,τ} is any ǫ-Nash equilibrium distribution of N .
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Proof: Suppose there does not exist suchK. We will only consider the situation

where there exists a sequence of ǫ-Nash equilibrium {v̄Nt,τ} such that its corresponding

mint,τ q
N
t,τ ({v̄Nt,τ}) → 0 as N → ∞. Since there are only finite number of ts and τs,

there exists a subsequence such that lim infN→∞ qNt,τ = 0 for a fixed pair (t, τ) and we

will identify the subsequence as the original sequence for convenience. We now argue

that there exists an integer N(ǫ), such that for all N > N(ǫ), {v̄Nt,τ} is not an ǫ-Nash

equilibrium and thus follows contradiction. It is easy to see with the bandwidth

constraint, there exists τ ′ ∈ mt such that qNt,τ ′ → qt,τ ′ > 0. Let us consider one

type t user choosing route τ ′ to switch to route τ . Denoting the route distribution

after this switch by {v̄Nt,τ}′ and corresponding aggregate price by q′Nt,τ . Then for N

sufficiently large by the continuity argument q′Nt,τ ≈ qNt,τ ≪ qNt,τ ′ ≈ q′Nt,τ ′ and therefore

Ut(U
′−1
t (q′Nt,τ )) ≫ Ut(U

′−1
t (qNt,τ ′)) so the conclusion follows.

Now we state the main result of this section,

Theorem 6.4 For any δ > 0, there exists a ǫ(δ) > 0 such that for any 0 < ǫ < ǫ(δ)

there is a N(ǫ, δ) and for all N > N(ǫ, δ) any ǫ-Nash equilibrium utilities UN
t,τ s for

NN satisfies maxt,τ |UN
t,τ − UN∗

t,τ | ≤ δ. Here UN∗
t,τ is the optimal utility for the type t

user using route τ .

Proof: It suffices to show that the argument maxt,τ |UN
t,τ −U∗

t,τ | < δ where U∗
t,τ

is the optimal utility of the multipath version (6.14), since UN∗
t,τ converges to U∗

t,τ

when N → ∞. Suppose the statement does not hold. That is, for any ε > 0, and

any N > 0, there exists n > N and 0 < ǫ < ε such that maxt,τ |Un
t,τ − U∗

t,τ | > δ

for a ǫ-Nash equilibrium {v̄Nt,τ}. Therefore we can have two infinite sequences {ǫn}
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and {Nn}, such that ǫn > ǫn+1 and Nn+1 > Nn for all n, ǫn → 0 and Nn → ∞ as

n → ∞, |UNn

t,τ − U∗
t,τ | > δ where UNn

t,τ corresponds to a ǫn-Nash equilibrium {v̄Nn

t,τ }

of NNn
for a fixed (t, τ) (since we can always take subsequence due to finiteness of

t and τ). By Proposition 6.8, all the aggregate price qNn

t,τ of ǫn-Nash equilibrium

belongs to a compact set K. Then by uniform continuity of a continuous function

over a compact set, there exists an infinite sequence {ηn} such that ηn > ηn+1 > 0

for all n, ηn → 0 as n → ∞, and 1) |qNn

t,τ − qNn

t,τ ′ | < ηn for all τ, τ ′ ∈ mt such that

v̄Nn

t,τ > 0 and v̄Nn

t,τ ′ > 0, and 2) qNn

t,τ < qNn

t,τ ′ − ηn for all τ, τ ′ ∈ mt such that v̄Nn

t,τ > 0

and v̄Nn

t,τ = 0. Since v̄Nn

t,τ also belongs to a compact set, we can assume by taking

subsequence if necessary that v̄Nn

t,τ → v̄t,τ as n → ∞ for all t and τ . Therefore in

asymptotics we have the Nash equilibrium strategy v̄t,τ with 1) qt,τ = qt,τ ′ for all

τ, τ ′ ∈ mt such that v̄t,τ > 0 and v̄t,τ ′ > 0, and 2) qt,τ ≤ qt,τ ′ for all τ, τ ′ ∈ mt

such that v̄t,τ > 0 and v̄t,τ = 0. However, we still have |Ut,τ − U∗
t,τ | > δ. This is in

contradiction with the fact that only the optimal solution of the multipath problem

(6.14) has this property with the aggregate prices.

Therefore we conclude that the simplistic local routing algorithm, Nash dy-

namics, leads to the optimal solution of the combined single path routing and flow

control problem (6.1) when the number of users becomes sufficiently large in a gen-

eral network.

145



6.4 Discussion

Our focus on the combined single path routing and flow control problem in

this section is mostly on the descriptive side. That is, we have shown that approxi-

mate Nash equilibria are sufficiently close to the social optimal in many-user region,

although we have not provided a precise rate or bound of this convergence. It is

intuitive from Proposition 6.6 that it will be helpful if we can exactly find those L+1

users who causes the difference between the mulitpath problem and the single path

problem. But since the Shapley-Folkman theorem is nonconstructive, it is difficult

to go in that direction. It is unknown whether the computational complexity of

the combined single path routing and flow control problem for a fixed number of

bottleneck links is still NP hard. These are topics for future study.
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Appendix A

Lyapunov-Krasovskii Functional for Delay-Independent Rate

Controlled Network

For the network optimization problem

maxxi≥0

∑N
i=1 Ui(xi) −

∑L
j=1

∫ yj

0
pj(y)dy

s.t.
∑N

i=1Rjixi = yj, ∀j ∈ [L],

(A.1)

Ranjan and La [20, 32] demonstrated the global delay-independent stability condi-

tion for the primal algorithm

ẋi(t) = ki

(

xi(t)U
′
i(xi(t)) − xi(t− τi)

∑L
j=1Rjipj(y(t− τ bij)

)

,

y(t) =
∑N

j=1Rjixi(t− τ fij).

(A.2)

In particular, for the power utility Ui(x) = −1/(aix
ai) and the power marking

function pj(x) = xbj , the result shows that the primal algorithm is globally stable if

for every i, ai > max{bj|Rji = 1}+1. Their method is based on contraction mapping

by bounding the solution trajectory. In the section we introduce an alternative way

by using Lyapunov-Krasovskii method to reach the same result.

The approach for designing the Lyapunov-Krasovskii functional is first we

search for a Lyapunov-Razumikhin function for the system and then rely on the

equivalence relation between Lyapunov-Razumikhin function and ISS small gain

property pointed out by [31] to obtain the final Lyapunov-Krasovskii functional.
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First let us consider the simple single source/link version of the above algorithm,

ẋ(t) = k

(
1

x(t)a
− x(t− τ)b+1

)

. (A.3)

By changing of the variable y = log x we have

ẏ(t) = ke−y(t)(e−ay(t) − e(b+1)y(t−τ)).

Consider the function V (y) = y2/2, then the following always holds when a > b+ 1

d

dt
V (y) ≤ ky(t)e−y(t)(e−ay(t) − e−(b+1)qy(t)) ≤ 0

for all y(t − τ) such that q2V (y) ≤ V (y(t − τ)) and q ∈ (0, 1). Therefore V (y)

is a Lyapunov-Razumikhin function and by Theorem 3.2 the system is globally

asymptotically stable. The way of changing the state variable from x to y can be

extended to the general utility/marking functions. To this end let us consider a

single source/link version of (A.2)

ẋ(t) = k(x(t)U ′(x(t)) − x(t− τ)p(x(t− τ))). (A.4)

By changing of the variable with y(t) = f(x(t)) , x(t)U ′(x) and denoting F (y) ,

f−1(y)p(f−1(y)), the above system dynamics can be written as

ẏ(t) = k(y(t))(y(t) − F (y(t− τ))),

where k(y) is the according scaling function which is nonnegative. From the results

of [20], if the mapping F has only one unique fixed point which is globally attracting,

then the system is delay-independent stable. We are going to show that this can

also be done by Razumikhin approach. Let us denote the globally attracting fixed
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point of F as ȳ, and define the following functions Fl(y) , F (y) for all y ∈ (0, ȳ)

and Fr(y) , F (y) for all y ∈ [ȳ,∞). By global attraction of F we know that

F−1
r (y) > Fl(y) for all y ∈ (0, ȳ). Then there exist a monotonically decreasing

function ψ(y) defined on (0, ȳ) such that F−1
r (y) > ψ(y) > Fl(y) for all y ∈ (0, ȳ)

and ψ(ȳ) = ȳ and ψ(ȳ)′ = −1. Next define the extension of ψ(y) as φ(y) such that

φ(y) = ψ−1(y) for y ∈ (ȳ,∞). Therefore we have φ(y) > Fl(y) for y ∈ (0, ȳ) and

φ(y) < Fr(y) for y ∈ [ȳ,∞). Define function h : R → R
+ a strictly monotonically

increasing function which satisfies h(0) = 0, limu→−∞ h(u) = −ȳ, limu→∞ h(u) = ∞,

and φ(h(u) + ȳ) = h(−u) + ȳ. Such h always exists given the construction of φ.

Therefore by changing of variable again with y = h(u(t)) + ȳ we arrive at

u̇(t) = l(u(t))(h(u(t)) + ȳ − F (h(u(t− τ)) + ȳ))

where l(u) is an appropriate scaling function which is nonnegative. Consider the

case when |u(t)| > |u(t−τ)|. From the previous discussion the following inequalities

hold

h(u) > Fl(h(−u) + ȳ) − ȳ ≥ F (h(v) + ȳ) − ȳ, ∀u > 0, |u| > |v|,

h(u) < Fr(h(−u) + ȳ) − ȳ ≤ F (h(v) + ȳ) − ȳ, ∀u < 0, |u| > |v|.

Therefore it can be verified directly that the function V (u) = u2/2 is a Lyapunov-

Razumikhin function and by Theorem 3.2 the global stability follows. We just

demonstrated that the global delay-independent stability of any scalar system de-

scribed in [20] can be shown using Razumikhin type argument.

Now that we have the Lyapunov-Razumikhin function for the system (A.4),

we should be able to derive the Lyapunov-Krasovskii functional from the links be-
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tween ISS small gain property, dissaptive form, and Lyapunov-Razumikhin function.

Consider a system with input as follows,

ẋ(t) = f(x, u)

where the state variable x ∈ R
n, the input variable u ∈ R

m, and f : R
n×R

m → R
n.

Recall that a smooth function V : R
n → R

+ is an ISS Lyapunov function is there

exist K∞-functions α1, α2, and K-functions α3 and χ such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|)

for any ξ ∈ R
n and ∇V (ξ) · f(ξ, µ) ≤ −α3(|ξ|) for any ξ ∈ R

n and any µ ∈ R
m

such that |ξ| ≥ χ(|µ|). It is known [34] that the system is ISS with ISS gain γ if

and only if there exist an ISS Lyapunov function and the gain can be represented

by γ = α−1
1 ◦ α2 ◦ χ. Also from [34] previous ISS Lyapunov function exists if and

only if there exist a smooth function U : R
n → R

+ and K∞-functions α1, α2, α, and

σ such that

α1(|ξ|) ≤ U(ξ) ≤ α2(|ξ|)

for any ξ ∈ R
n and ∇U(ξ) · f(ξ, µ) ≤ −α(|ξ|) + σ(|µ|). Here the corresponding

ISS gain γ = α−1
1 ◦ α2 ◦ α−1 ◦ σ. This second representation is of dissipative form

and it is easy to use this form to derive Lyapunov function from the small-gain

stability. Since the system (A.4) is proved to be stable by Lyapunov-Razumikhin

type arguments, it is equivalent to say that the system is ISS with an appropriate

gain if we take the delayed term as input. For illustrative purposes, let us again

consider the case of (A.3). We argue that in the coordinate y = log x, the system
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is ISS with gain (b + 1)/a. To see this, define V (x) = x2/2 as a ISS-Lyapunov

candidate for the system with input u in the place of the delayed term,

ẋ = ke−x(e−ax − e(b+1)u).

We have immediately

d

dt
V (x) = ke−xy(e−ax − e(b+1)u) ≤ 0

if |x| ≥ b+1
a
|u|. So ISS holds with the ISS gain as γ = (b + 1)/a. Since the delayed

term can be viewed as ISS with unity gain, by an argument of small-gain theorem the

stability follows immediately. In order to construct Lyapunov-Krasovskii functional,

we need to use the dissipative representation of the ISS system. In other words, it is

necessary to obtain K∞ functions α and σ. Let us denote g(x) , U ′(x) and assume

α(0) = σ(0) = 0. Then it follows directly that these conditions have to be satisfied:

1. α(|x|) ≤ −g(x)f(x, 0).

2. σ(|u|) ≥ maxx{g(x)f(x, u) + α(|x|)}

3. α(|γx|) ≥ σ(|x|).

In our system (A.3), g(x)f(x, u) is positive only when x ∈ (0,− b+1
a
u) if u < 0

or x ∈ (− b+1
a
u, 0) if u > 0. In order to let the third inequality to hold, the maximum

value of the right-hand side of the second inequality has to be achieved at x = − b+1
a
u.

Equivalently,

d

dx
g(x)f(x, u)

∣
∣
∣
∣
u=− a

b+1
x

+
d

dx
α(|x|) = 0,
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which is the same as

d

dx
α(|x|) = −g(x) d

dx
f(x, u)

∣
∣
∣
∣
u=− a

b+1
x

.

In the system (A.3), this equality can be rewritten as

d

dx
= ah(x)eax

where h(x) = kg(x)e−x. The first condition gives

α(x) ≤ h(x)(1 − e−ax).

Let us write α(x) = h(x)β(x)(1 − e−ax) where 0 ≤ β(x) ≤ 1, ∀x ∈ R. Then we

obtain

d

dx
α(x) =

aα(x)

(eax − 1)β(x)

But α(x) ≡ α(−x). Therefore

aα(x)

(eax − 1)β(x)
≡ −aα(−x)

(e−ax − 1)β(−x) ,

or eaxβ(x) ≡ β(−x). For simplicity define β(x) = 1, ∀x < 0 and β(x) = e−ax,

∀x ≥ 0. We can then solve the above equation by

α(x) = ea|x| − 1.

Therefore we obtain the dissipative form for the system (A.3) in the changed coor-

dinate and the Lyapunov-Krasovskii functional W ′(·) can be shown easily from the

dissipative form as

W ′(xt) = U(xt(0)) +

∫ 0

−τ

(exp((b+ 1)|xt(s)|)) ds
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where

U(x) =







(2a+ 1)−1k−1(exp((2a+ 1)x) − 1), x ≥ 0,

k−1(1 − exp(x)), x < 0.

In the original coordinate, the Lyapunov-Krasovskii functional is

W (xt) =

∫ 0

−τ

(
xt(s)

(b+1)sgn(xt(s)−1) − 1
)
ds+







(2a+ 1)−1k−1 (x2a+1 − 1) , x ≥ 1,

k−1(1 − x), x < 1.

From the above single source/link system. we can also build a Lyapunov-

Krasovskii functional for the network system. For example, consider two rate con-

trolled flows with one bottleneck link. Its system dynamics is

ẋ1(t) = x1(t)
−a1 − x1(t− τ)(x1(t− τ) + x2(t− τ))b,

ẋ2(t) = x2(t)
−a2 − x2(t− τ)(x1(t− τ) + x2(t− τ))b.

We can use the following Lyapunov-Krasovskii functional

W =
x̄1

x̄1 + x̄2
(W1(x1) + V1(x1t, x2t)) +

x̄2

x̄1 + x̄2
(W2(x2) + V2(x1t, x2t))

where the intermediate functions are defined as

Wj(x) ,







(2aj + 1)−1x̄
aj+1
j

((
xj

x̄j

)2aj+1

− 1

)

, xj ≥ x̄j ,

x̄
aj+1
j

(

1 − xj

x̄j

)

, xj < x̄j .

j = 1, 2.

and

Vj(x1t, x2t) =

∫ 0

−τ

((
xj(s)

x̄j

)sgn(xj(s)−x̄j
(
x1(s) + x2(s)

x̄1 + x̄2

)bsgn(x1(s)+x2(s)−x̄1−x̄2)

− 1

)

ds,

j = 1, 2.
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Appendix B

Proof of Lemma 4.4

Following the discussion in Section 4.4.2 it is sufficient to check whether

−1 /∈ c̄o(0 ∪ {g(iω, τ), ∀τ ≥ 0})

holds for every ω ≥ 0. Here we define

g(s, τ) ,
e−τs

τ 2s2

τs+ 1
2
min{τ, 1}

2 max{τ, 1} .

The proof then breaks into the examination of the 3 parts of the curve g(iω, τ)

on the Nyquist plane for any fixed ω. First we study the part of the curve after

it crosses the real axis for the first time. Then we study the situation of the curve

before it crosses the real axis, where the cases when τ ≤ 1 and τ > 1 are studied

separately.

First by direct calculation we obtain that for fixed ω the first intersection of

g(iω, τ) with the real axis takes place at τ0 = ω1/ω if ω < ω1, where ω1 ≈ 1.1656

is the solution of the equation 2ω = tanω, and τ0 = (arctan 2ω)/ω if ω ≥ ω1. The

location of the intersection is

−1/(2ωτ0 sinωτ0 max{τ0, 1})

≥ −1/(2ω1 sinω1) ≈ −0.4668.

The maximum value of imaginary part attained by the curve g(iω, τ) max{τ, 1} with

fixed ω is obtained by maximizing

Img(iω, τ) max{τ, 1} =
sinωτ

4ω2τ 2
− cosωτ

2ωτ
.
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By numerical calculation the maximum value is vmax ≈ 0.1824 when ωτ ≈ 2.5288.

We can then show that the part of the curve g(iω, τ) at which τ ≥ τ0, or equivalently

the part after passing the real axis, lies below the affine line L defined by Imz =

ω(Rez+1), since the slope of the line passing through -1 under which our curve lies

is less than

vmax�
1− 1

2ω1 sin ω1

�
max{τ,1}

< vmax�
1− 1

2ω1 sin ω1

�
ω1
ω

≈ 0.2964ω.

Therefore the argument is valid.

Now let us inspect the part of the curve before passing the real axis. There

are 2 situations. When τ ≤ 1 the curve can be written as

g(iω, τ) = −e
−iτω

τ 2ω2

iτω + τ/2

2
= −e

−iτω

τω

(

i
1

2
+

1

4ω

)

.

We will show that in this situation the curve lies below L. By some manipulations

this is equivalent to the following inequality

2τω3 > (ω2 + 1) sin τω − 1

2
cos τω.

One can verify that

h1(ω) , 2τω3 − (ω2 + 1) sin τω +
1

2
cos τω

is the integral of the following

h′1(ω) = 6τω2 − τω2 cos τω − τ−1
2

cos τω

−(τ/2 + 2)ω sin τω

with respect to ω. The above is greater than zero for τ ∈ [0, 1] since

h′1(ω) > 5τω2 − (τ/2 + 2)ω sin τω >
5

2
ω(τω − sin τω) > 0.
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Since h1(0) = 1/2 > 0, h1(ω) = h1(0) +
∫ ω

0
h′1(u)du > 0. We then conclude that

when τ ∈ [0, 1] the curve lies below the line L.

In the other situation when τ > 1 the curve can be expressed as

g(iω, τ) = −e
−iτω

τ 2ω2

iτω + 1/2

2τ
.

We will just consider the curve

g̃(iω, τ) = −e
−iτω

τ 2ω2

iτω + 1/2

2
.

since the curve g̃ lies above the curve g. Again by using the simplifying notation

θ = τω > ω and after some algebraic manipulations, it suffices to show the validity

of the following inequality

4ωθ2 > ω(2θ sin θ + cos θ) + (sin θ − 2θ cos θ).

It is actually sufficient to check the above inequality when θ = ω. So we will only

need to show

4θ3 > (2θ2 + 1) sin θ − θ cos θ.

Similarly to the situation when τ ≤ 1, we define a function

h2(θ) , 4θ3 − (2θ2 + 1) sin θ + θ cos θ.

Its derivative is

h′2(θ) = 12θ2 − 2θ2 cos θ − 5θ sin θ.

But

h′2(θ) > 10θ2 − 5θ sin θ > 5θ(θ − sin θ) > 0,
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and by h2(0) = 0, one obtains h2(θ) = h2(0) +
∫ θ

0
h′2(u)du > 0. Therefore we have

shown that the curve g̃ lies below the line L when τ > 1.

Combining all these results we have confirmed that for any fixed ω, the curve

g(iω, τ) lies below the line L for all τ ≥ 0 and therefore the convex hull of g(iω, τ)

and 0 cannot contain the point -1 on the Nyquist plane.
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