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Collaborative/cooperative control of a large group of autonomous vehicles has been
received great attentions in recent years. With the rapid advances in sensing, communica-
tion, computation, and actuation capabilities, it is extremely appealing to control a large
group of unmanned autonomous vehicles (UAVS) to perform dangerous or explorative
tasks in various hazardous, unknown or remote environments. Possibilities of a broad
range of applications by utilizing UAV swarms have been explored, for example, auto-
mated highway systems, mobile sensor networks in ocean resources exploration, space-

craft interferometry, satellite formations and robotic border patrol.



In such applications, traditional centralized control schemes are always prohibited
primarily due to the high communication cost and the high computation cost in a large
network of vehicles. In turn, the decentralized/distributed control schemes are preferred
to achieve the trade off between the performance and the communication/compuation
cost. In past decades, numerous decentralized/distributed control algorithms have been
proposed in the literature. Among them, one approach, called bio-inspired approach, is
extremely interesting and promising, which "borrows” algorithms from nature by observ-
ing and understanding social animal’s swarming behaviors.

In this dissertation, we study a decentralized artificial potential function (APF)
based approach which mimics bacteria foraging process. The deterministic potential
based approach, however, suffers from the local minima entrapment dilemma, which mo-
tivate us to fix the "flaw” that is naturally embedded. We propose an innovative decen-
tralized stochastic approach based on the Markov Random Filed (MRF) theory, which
traditionally used in statistical mechanics and in image processing. By modeling the local
interactions as Gibbs potentials, the movements of vehicles are then decided using Gibbs
sampler based simulated annealing (SA) algorithm.

A two-step sampling scheme is proposed to coordinate vehicle networks: in the first
sampling step a vehicle is picked through a properly designed, configuration-dependent
proposal distribution, and in the second sampling step the vehicle makes a move using
the local characteristics of the Gibbs distribution. Convergence to the configuration(s) of
global minimal potential is established theoretically and confirmed with simulations. In
order to reduce the communication cost and the delay in the two-step sampling, a fully

parallel sampling algorithm is studied and analyzed accordingly.



In practice the stochastic nature of the proposed algorithm might lead to high trav-
eling cost and long maneuver time. To mitigate this problem, a hybrid algorithm is devel-
oped by combining the Gibbs sampler-based method with the deterministic gradient-flow
method to gain the advantages of both approaches.

We also study the robustness of the Gibbs sampler based algorithm. The conver-
gence properties are investigated under different types sensor errors inchutljegerror
andrandom-error Some error bounds are derived to guarantee the convergence of the
stochastic algorithm.

In order to integrate the Gibbs sampler based path planning algorithm in applica-
tions,a two-level scheme is proposed by combining high-level path planing and low-level
vehicle motion control. The high-level path planing module mainly addresses the path
generation. The low-level motion control module aims to follow the desired path by con-
sidering vehicle dynamics. A model predictive based (MPC) based motion control for
car-like nonholonomic UAVs is investigated. Multiple control objectives, e.g., minimiz-
ing tracking error, avoiding actuator/state saturation, and minimizing control effort, are
easily encoded in the objective function. Two numerical optimization approaches, gra-
dient descendent approach and dynamic programming approach, are studied to strike the

balance between computation time and complexity.
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Chapter 1

Introduction

With the rapid advances in sensing, communication, computation, and actuation ca-
pabilities, it is extremely appealing to cooperatively/coordinatively control a large number
of unmanned autonomous vehicles (UAVS) to perform dangerous or explorative tasks in
various hazardous, unknown or remote environments. Originally driven by the need for
saving labor costs and protecting personnel loss from dangerous environments and like,
the applications of UAVs have been potentially extended to a broad range both in military
and industry including, e.g., automated highway systems, mobile sensor networks, ocean
resources exploration, spacecraft interferometry, satellite formations, robotic border pa-
trol and search-and-rescue operations [1, 2].

In such applications, the number of autonomous vehicles involved can be very large,
ranging from hundreds to thousands, which forbids the centralized control approaches
to be applied. The primary reason is that the communication cost and computation
cost usually increase exponentially with the size of UAV swarms. Therefore, decentral-
ized/distributed control approaches are especially appealing considering the large scale
of the vehicle networks and the bandwidth constraint on the communication [3, 4, 5, 6].
The main advantages of such approaches are flexible, scalable, robust and cost-effective.
The flexibility lies in the fact that the distributed/decentralized algorithm is easy to mi-

grate to different size of UAV networks. The scalability is due to fact that the commu-



Fig. 1.1: Ocean resource exploration by autonomous underwater vehicles

nication cost and computation cost only increase linearly with swarm size. The decen-
tralized/distributed approach depends primarily on local information, which reduces the
requirement of sophisticated sensing and data processing capabilities. Therefore, cost-
effective sensors and actuators are usually preferred to reduce the total system cost. For
example, resource exploration and information gathering in oceans, Mars, or polluted
areas (by chemical or radioactive materials) can often be accomplished more efficiently
by groups of low-cost mobile vehicles (Fig. 1.1) than a single sophisticated and expen-
sive one. Moreover, the robustness implies that the UAV networks performance will not
degenerate too much with the loss of few UAVs.

On the other hand, due to the limited capabilities of autonomous vehicles, coordi-
nation and cooperation is necessary to accomplish group mission more effectively and
efficiently. However the more frequent collaboration among vehicles, the more commu-
nication bandwidth and power consumed, which may not be afforded in the networked

control systems (multi-agent systems). This brings out the fundamental tradeoff between



the system performance and resource constraints in such systems.

In this dissertation, we study distributed coordination control methodologies for
UAV swarms. The aforementioned communication, sensing and actuation constraints
present theoretical challenges in designing a fully distributed algorithm for achieving
group objectives. Recently, bio-inspired approaches have been receiving growing atten-
tions to addressed these problems. By mimicking the coordination/collaboration mecha-
nisms in social animals, e.g., ant colony optimization, social potential, which lead to many
amazing and interesting collective behaviors, people have been trying to use them in con-
trolling artificial systems, like UAV networks/swarms. A brief review can be found in the
next chapter. However, due to the lack of fully understanding the underline mechanisms,
sometimes the “borrowed” schemes may fail when directly applying them to artificial
systems.

In our research work, inspired from bacteria foraging process, we investigate an
artificial potential function (APF) based approach for coordinating UAV swarms in a bat-
tle field scenario. The deterministic potential descent approach, however, suffers from
the local minima entrapment dilemma, which motivate us to fix the “flaw” that is nat-
urally embedded. The details can be found in chapter 3. The solution is inspired from
Markov Random Field (MRF), a wellknown model used to describe phase transition in
ferromagnetic material. We systemically studied the approach in this dissertation.

In the design of applications involving UAV swarm networks, a two level hierarchi-
cal/layered design is usually adopted. The high level module generates paths for vehicle
swarms. Vehicles are usually treated as point masses moving in 2D or 3D mission space.
Issues like information flow, collaborative decision making are considered in this layer.

3



The aforementioned potential based approach belongs to this category.

The lower level module deals with vehicle dynamics. Given desired reference tra-
jectory generated from high level module, the low level module is responsible for the
trajectory tracking, actuator saturation, and many other practical concerns. In this dis-
sertation, a Model Predictive Control (MPC) based approach is proposed to address the
multiple objectives oriented trajectory tracking control. We now outline the contributions

of this dissertation.

1.1 Contributions of the Dissertation

In this dissertation, although we begin our study of the collaboration of vehicle
swarms from a military based example, a battle field scenario, our approach can be gener-
ally applied in a broad range of applications such as formation control, ocean exploration,
and etc..

The battle field scenario is of interest to study because several typical interactions
involving robot collaboration coexist in one framework. In this scenario, the environments
(mission space) are unknown. There are possible obstacles and static/moving threats in
the mission space. With at most one target places designated, the mission goal is to
maneuver the vehicles to cover the target areas while avoiding obstacles, moving threats

and collisions with other vehicles.



1.1.1 Innovative decentralized collaborative control of vehicle swarms

based on MRF and SA

As aforementioned, inspired by the emergent collective behaviors demonstrated in
nature, e.g., bacteria foraging, APF approaches are usually used in collaborative system
design [7, 8, 9, 10, 11]. The local interactions between individual agents and environ-
ments, as well as group tasks, such as target reach, obstacle avoidance, and collision
avoidance, can be easily encoded in potential functions. Vehicle then follow the negative
gradient flow of potentials. Despite the simple and elegant nature of the APF approach,
it suffers from the dilemma that system dynamics could be entrapped in the local minima
due to the nonconvexity of the potential function [12].Researchers attempted to address
this problem by designing potential functions that have no other local minima [13, 14], or
by escaping from local minima using ad hoc techniques, e.g., random walk [15], virtual
obstacles [16], and virtual local targets [17].

Inspired by the Ising model in statistical physics, we propose a novel, systematic
approach to coordinate an autonomous swarm based on the theory of Markov random
fields (MRFs) and Gibbs sampling, a tool that has been traditionally used in statistical
mechanics, image processing and computer vision [18, 19, 20], and data analysis and
clustering [21, 22]. In this approach, a swarm is modeled as an MRF on a graph, where
the (mobile) vehicles and their communication/sensing links constitute the vertices and
the edges [23] of the graph, respectively. As in the APF approach, global objectives and
constraints (e.g., obstacles) are reflected through the design of potential functions - in

this case, Gibbs potentials. The movement of vehicles is then decided using simulated



annealing (SA) based on the Gibbs sampler. The dynamic graph associated with the
evolution of vehicle networks, however, presents significant challenges in convergence
analysis since classical MRF theory does not apply directly.

In this dissertation, we systematically studied convergence of the novel stochastic
approach. Local minima entrapment problem can be generally solved with appropriate
cooling schedule. We also study the robustness of the stochastic algorithm in the presence
of sensor uncertainty. Moreover, we investigate a fully distributed parallel algorithm and
its convergence for saving sampling time.

In practice the stochastic nature of the proposed algorithm might lead to high trav-
eling cost and long maneuvering time. To mitigate this problem, a hybrid algorithm is
developed by combining the Gibbs sampler-based method with the deterministic gradient-
flow method to gain the advantages of both approaches. A vehicle switches between the
two schemes to achieve a sound tradeoff between efficiency and optimality. Analysis
is performed on the choice of switching parameters. The impact of vehicle memory on

performance enhancement is also investigated.

1.1.2 Multiple objectives oriented motion control based on MPC approach

As mentioned earlier, in this dissertation, a two-level based scheme is proposed to
control UAV/robot swarms. The potential based stochastic algorithm belongs to high-
level path planning algorithm. Point mass model is considered to represent UAV instead
of real dynamic and kinematic model. Way-points are generated to lead vehicle networks

to the global objective. Moving real UAV/robot to follow desired way-points are consid-



ered as the low-level motion control module.

In the low-level module, we proposed a model predictive based (MPC) based mo-
tion control for (but not limited for) car-like nonholonomic UAVs. This approach is ap-
pealing because it can easily accommodate multiple control objectives, e.g., minimizing
tracking error, avoiding actuator/state saturation, and minimizing control effort, in an ele-
gant and compact way. By applying well-known Pontryagin Maximum Principle (PMP),

a gradient based approach is first proposed to solve the sub-optimal control problem. The
computation cost and delay, however, presents difficulties in real-time control. A dy-
namic programming based approach is then constructed by assuming that the actuator has

limited control options. Extensive simulations confirms our analysis.

1.2 Organization of the Dissertation

In Chapter 2 we provide a literature review of current understanding the collec-
tive behaviors existed in nature and how they affect engineering design in multiple agent
system. The deterministic APF based approach and its limitation is introduced chapter
3. In chapter 4, we concentrate on the novel stochastic algorithm based on MRF and
SA. Chapter 5 deals with the convergence analysis of the fully distributed Gibbs sampler
based algorithm. In chapter 6, a hybrid scheme is proposed to improve the system per-
formance. The impact of memory is also discussed. The robustness analysis considering
sensor uncertainty is discussed in chapter 7. We study the low-level motion control based

on MPC approach in chapter 8. Conclusions and future work are provided in chapter 9.



Chapter 2
Literature Review

2.1 Understanding the swarming behavior in nature

For centuries, swarming or aggregation behaviors in wild nature have been noticed
by people. The swarm behaviors exist in many spices, ranging from small organisms
as simple as bacteria to large mammals like whales [24, 25]. For example, at the end
of every autumn, canada geese fly in a V-formation in loose groups when they migrate
from north to south (see figure 2.1). Many kinds of social animals, like birds, beasts and
fishes, easily organize themselves in a large orderly group and move as a single organism
without a central commander. Some social insects, such as ants and bees, cooperate
to forage food in places far away from their home and to build sophisticated giant hives
comparing to their tiny size without advanced communication technology (e.g., language)
and computation tools (e.g., brain). Biologists have spent a long time to understand the
underline mechanism of these swarming behaviors. Although good progresses have been
made in the past decades, most of them are still mysteries for us.

To understand the nature of the aggregation behavior, the first thing needed to be
studied is the motives that drive these animals aggregate in groups? In [26], Barakh
pointed out that aggregation is actually an evolutionarily advantageous state. First of all,
it is believed that forming a group may increase the chances of survival of newborns and

juveniles from being eaten by predators, such that the reproduction of the species can be



Fig. 2.1: Geese migrate from north to south in a V-formation

continued. Secondly, aggregation also helps to find food because a large group of animals
has more capability of “sensing” and “searching” than a single one. Other benefits include
energetic saving for flying or swimming by certain relative position among neighbors (e.g.
group of wild geese in V-shape), and reproduction success by mating aggregation. These
facts may explain some aspects of aggregation. In many other cases, however, it is hard
to find functional purposes associated with aggregation patterns. Additional background
can be found in [27, 28, 29] and references there in.

Another importantissue is how individual members coordinate with each other such
that the whole group exhibits emergent collective behaviors. For decades, many mathe-
matical models were proposed by biologists to get insight of the nature of swarming
behaviors [27]. Most of these models are focusing on spatial approaches, where the space

is direct or indirect considered in the model, others are non-spatial approaches [30]. In



spatial approaches, there are mainly three different approaches have been used for the
analysis of swarm dynamics [27, 31].

The first one is based on a statistical model, which use the “Eulerian” framework to
describe the mean-field density of swarm. In this model, each member of the swarm is not
treated a single identity. The swarm is described as density in spatial space by a patrtial
differential equation which is based on a diffusion approximation of the random motion
[32]. Recent works in [33] extended the approach by integrate non-local interactions,
such as visual or auditory sensing, in the model. Although many analytical results can
be produced, this approach is limited to large, dense swarms with no big discontinuities
[27].

The second spatial approach is based on individual-based path generation, where
“Lagrangian” equations are used to describe motion of individual members in the swarm
[32, 30]. In this model, all interactions among individuals are modeled as attraction and
repulsion forces. An attractive feature of this approach is that all interplays between mem-
bers in the swarm can be modeled as potential functions, and the motion of each individual
follow the negative gradient of the potential surface. By constructing a Lyapunov function
associated with the potentials, it is straightforward to show that the minimizer correspond
to the stable state of the swarm system. The common understanding from this approach
is that aggregation is caused by the long-range attraction and the short-range repulsion,
although the form of attraction/repulsion functions can be varies [34, 35]. For example, in
[35], Mogilner suggested a model where attraction and repulsion terms were exponentials
with different magnitudes. Using this model, the author also derived the individual dis-
tance of a large group, which revealed a condition on the attraction and repulsion to avoid

10



collapse of the swarm. Despite the simple and elegant nature, this approaches are hard to
characterize all kinds of interactions among swarms. For example, ants use hormone to
construct trail such that food can be carried to home. This process is called “chemotaxis”,
in which individual responses directly to distribution of chemicals that are laid out by
other individuals. Some phenomenon like bifurcation is hard explained by only using the
“lagrangian” framework.

The third spatial approach uses behavior based model, where no explicit mathemati-
cal equations are prescribed. All interactions among individual members are described by
some behavior rules. In 1986, it is known that Crag Reynolds wrote a small computer pro-
gram that simulate the flocking of organisms by letting a number of identical ones follow
simple rules. In this model [36], named “boids”, three simple steering rules are used: sep-
aration (avoid local crowding), alignment (match the heading of neighbors), and cohesion
(move towards the average of local flockmates). The simulation based approaches can
create real-like animations of flock animals which have successful application in movie
industry, for example “The lion king” and “Batman Return” [37].

In parallel to Reynolds work, physicist vicsek proposed a similar rule based model
to study collective behaviors in self-propelling particles (SPP)[38]. In his simulation,
orientation consensus behaviors were observed by a nearest neighbor rules. In vicsek’s
model, each particle has constant spegdand tries to align the orientation to the local
average velocity. Phase transition can be observed by numerical results even in the noise
environments. Other works that study the motion and related transport phenomena in non-
equilibrium process of multi-particles system can be found in [39, 40, 41, 42, 43, 44, 45].

Although this approach provides eyeball attractive appealing, it is hard to analyze

11



and thus to get insight of the nature of the emergent collective behavior due the lack
of mathematical description. Nonetheless, there are still some successes in analyze the
behavior based swarming effects, e.g., consensus and flocking. In [39], Toner and Tu
analyzed the vicsek model using a continuous “hydrodynamic” model. In [6], they ana-
lyzed the “boids” model. By Investigating the algebraic graph theoretical properties of the
underlying interconnection graph, they showed the relationship between stability of the
flocking motion and the graph connectivity. The robustness of the local control law was
also discussed for to arbitrary switching of the network topology provided the network
are connected all the time.

Their works were extended later on in [5, 46], they showed that consensus can be
achieved even if the network topology is not connected all the time. The main results are
follows: if there exist a connected spanning tree in the union of network topology over
finite time interval, the nearest neighbor rule guarantees the consensus convergence. In
[47], Olfati further study the flocking behavior of “boids” model.

In the non-spatial approaches, space is not a factor to describe the swarm dynamics
[27, 48]. They actually treat the group size as a primary factor to described the swarming
behavior. In [27], it was argued that group size is determined by the balance of payoffs to
individual members, i.e. the size of group affects the individual benefits. It was believed
that there is a theoretically optimum group si¥eat which point the average benefits of
group members are maximal compare to loner, and the equilibrium or the critical group
sizen happens when average benefits are equal to the loner. When the group size is over
critical group sizen, the whole swarm is then divided into small ones. In [48], the authors
used a continuous model to describe the distribution of animals group size. They focused

12



on a fixed size group divided into groups of various dynamic sizes.

All these approaches gain success in explaining or demonstrating collective behav-
iors of the swarm in some aspects. None of them, however, can explain them all. For
example, the “Eulerian” framework unveils the density evolving of a whole swarm sys-
tem, but hard to bridge the individual to collective level. On the contrary, “lagrangian”
framework concentrates on individual behavior. This approach can easily describe the
motion of each member in the swarm, but is hard to analyze the transformation of the
collective behavior in group level. Excellent background on mathematical modeling and

approaches comparison can be found in [32] and references there in.

2.2 Bio-inspired Design of collaborative control system

In the previous section, different models were proposed by biologists and physicists
to analyze and to unveil the underline mechanism of the swarming behaviors. Inspired
by this, people try to integrate those results into engineering design, in particular, appli-
cations of robot/UAV swarms, which is discussed in the last chapter. In the literature,
there are mainly four approaches have been reported: artificial potential, behavior, virtual

structure, and leader/follower.

2.2.1 Artificial potential approach

The artificial potential function-based approach has been explored for path plan-
ning and control of robotic manipulators and mobile robots over the past two decades

[49, 50, 51]. Models involving in the approach often use potential functions to describe
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the relationship between individual agents and environments. And the motion of each
individual is determined by the negative gradient flow of the potential functions. This ap-
proaches mimic the collective behaviors demonstrated in large social insects or bacterial,
i.e. the bacteria foraging process, where social potential was used to modeling swarm
aggregation and cohesion [52].

In [3], Olfati-Saber used structure potential function to achieve collision-free, dis-
tributed formation stabilization of autonomous swarms. By imposing constraints on the
formation graph to eliminate ambiguities, the potential function was designed in a way
which leads autonomous swarms to a unique formation. The state feedback control law
were used to control the motions of swarms, and the local formation stability and bounded
feedback stability was then established by constructing corresponding lyapunov function.
Similar results can be found in [7, 53], where structure potential are constructed by intro-
duce virtual leader. Without eliminating the ambiguities, the formation of swarms in their
model may converge to one of many possible formations.

Besides to the formation control, the artificial potential approach is also used in
path planning of autonomous swarms [54]. In [9], the authors demonstrated a interesting
application in battle field scenario, where static obstacles and moving threats coexist in
the same environment. By following the gradient flow of potential functions, which was
described by a weighted sum of sub-potentials reflecting the objectives or constraints, the
swarm vehicles demonstrated fascinating collective behavior to reach the target without
being collided with obstacles and catched by moving threats. Despite the simple, local,
and elegant nature of the potential-based approach, this approach suffers from the problem

that the system dynamics could be trapped at the local minima of potential functions [12].
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To avoid this situation, Ge [54] suggested to adjust the coefficients of repulsive potential
according to the minimum distance between robot and target position, thus the local min-
imum can be eliminate. Kinet. al. [11] proposed a similar method to get around local
minimum by adjusting the ratio between weighting coefficients of sub-potentials. Al-
though these improvements can solve the problem in some special situations, for general

case, it is still unsolved.

2.2.2 Behavior-based approach

Behavior-based method is another important approach originating form swarm be-
havior of creatures, e.g., Reynolds “boids” model[36]. By designing a set of actions or
behaviors for each element in the group, it hopes that desired group behavior emerges as
a result. In [55], Miller proposed behavior-controlled diagram to control micro-rovers to
execute various tasks, like grabbing rocks. The advantage of behavior-based approaches
are robust, flexible, computational efficient and communication-cost effective. However,
itis hard to decompose desired group behavior to element individual behavior. To address
the problem, Parker proposed a mixed strategy that combine local behavior control and
global knowledge in terms of cumulative position error and time to control robots main-
tain a line formation when they are navigating past waypoints to a final destination [56].
And the results showed that system performance improved by considering global knowl-
edge. In [57], Balch and Arkin extended the Park’s work, and showed that the unit-center
reference techniques provides better performance than the leader-referenced approach in

Park’s paper. Though simulations in these papers showed success of the behavior based
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approach, it is hard to systemically study because the approaches lack of analysis-basis.

2.2.3 Leader/Follower approach

In leader/follower approach, the leader’s motion is prescribed. The other agents in
the swarm robotics are followers which track the motion of leader or subset of neigh-
bor agents with some offset. This approach can be also traced back to the V-formation
demonstrated in geese migration. Variants of the approach are proposed in many papers
to improve the performance and study the convergence property, which include multi-
ple leaders, chain topologies, tree topologies and network topologies, and thus induced
various information flow among the autonomous swarms.

In [58], a vision-based formation control of nonholonomic robots were proposed.
By specifying the desired formation in the image plane, the control problem is translated
into a distributed leader/follower formation control. By using nonlinear feedback tracking
controller for each follower agent, the formation input-to-state stability were established.

In [59],Wang studied the approach for formations keeping and relative attitude alignment
based on nearest neighbor tracking. Different topologies of the approaches, like nearest
neighbor tracking, barycenter tracking, etc., are compared in this paper. Some advanced
extension, for example, actuator saturation and adaptive control, were reported in [60].

In [61], the leader/follower model is described by a double-graph model, where
one graph is used to describe the leader states flow, and the other one is used to describe
neighbors states flow. Experiment and simulation shows that the system performance is

improved by increasing the communication cost (the amount information need to trans-
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mitted through the network). The mesh stability of the interconnected multi-vehicles
system are established in this paper as long as the formation topology is acyclic.

Unlike traditional leader/follwer model, in [62], Fax and Murray assume all agents
are identical and no leaders are explicit designated. The communication interconnection
between vehicles forms a directed graph. By using tools from algebraic graph theory,
a Nyquist criterion is proved, which states how the eigenvalues of the graph Laplacian
matrix determine formation stability give the communication topology.

Besides to aforementioned approaches, several other approaches have been stud-
ied in formation control and path planning. In [63, 64], they used the virtual structure
approach for formation control, where the formation is describe by a single rigid body.
The translation from the virtual structure motion to individual motion needs centralized
mechanism which limit the applications of the method. Justh used the planar Frenet-
Serret framework for multi-UAVs formation with constant speed [65]. In [66], a dynamic
programming approach was used to find near-optimal search path in the presence of un-
certainty and moving constraints. In [67], a receding horizon approach is proposed for

multi-vehicle cooperatively visit multi-target.
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Chapter 3

Problem formulation and an APF based approach

As many applications have been introduced in chapter 1, UAV swarms are poten-
tially able to perform various dangerous or complicated missions in remote or poisonously
environments. For example, in defense applications, missions like hostage rescue, surveil-
lance and ground mines clearance can be performed by a group of UAV swarms to help
reduce human losses. In these types of applications, the full information of environments
are usually unknown. Moreover, limited sensing capabilities, computation power, bat-
tery power are often required for UAVs in order to reduce the manufacturing cost. On
the other hand, UAV swarms can exchange information through wireless communication
, €.9., Radio Frequence (RF) communication, shortwave communication. However, en-
vironment conditions (e.g., severe weather), and large number agents in UAV networks
introduce communication error and delay. Hence, decentralized approaches which require
only local information are especially appealing.

Inspired by the emergent collective behaviors demonstrated in insects, bacteria, and
even human being, the decentralized coordination mechanisms existing in nature have
been received great interests. As has been discussed in the last chapter, the collective
behaviors are often involved with so called “social potential” [52]. Borrowed from here,
the Artificial Potential Function (APF) approach has been adopted and explored in col-

laborative control design over the past two decades, for example, mobile robot networks
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path planning and control of robotic manipulators, see e.g., [49, 50, 51] and the references
therein. In this approach, the interaction between individual agents and environments, as
well as group tasks are often encoded in the potential function. The potential functions
should be designed such that desired configurations of multiple robotics correspond to the
global minimizer of the ensemble potential functions.

In this chapter, a APF based decentralized approach is investigated to collabora-
tively control UAV swarms to achieve group tasks in a battle field scenario. The mission
goal is to let the UAV swarms autonomously explore their ways to a predetermined target
area while avoiding unknown obstacles and moving threats. To address multiple objec-
tives instantaneously, a linear combination of individual potential components is used,
where each individual potential term reflects one single objective or constraint, e.g., co-
herence among inter vehicles, obstacle avoidance, collision avoidance, and etc.

The potential functions are constructed such that only local information is involved,
which guarantees that the potential function can be evaluated locally. There are usually
two sources for getting local information. One is the information captured by the sensors
(e.g., camera, sonar) on the UAV. For example, the distance been UAV and obstacles.
The other one is through the communication link among neighboring UAVs. They could
share the information they have in their memories. With potential function encoded in the
UAV, at every time instant each vehicle evaluates its potential function profile with local
information and decides its velocity by following the negative gradient flow.

Despite the simple and elegant nature of the APF approach, it suffers from the
dilemma that system dynamics could be entrapped in the local minima due to the non-
convexity of the potential surface. A novel approach based on the Markov Random Field
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(MRF) and Simulated Annealing (SA) is then proposed to solve the problem and studied

systemically in the remainder of the dissertation.

3.1 Problem setup: A battle field scenario

The problem setup follows [9]. Consider a kinematic path planning problem in an
unknown 2D space (the extension to 3D space is straightforward), which is called mission
space hereafter. There are N vehicles moving on the ground. For simplicity, we assume

all vehicle are identical, and has point mass first order kinematic equation, i.e.,
pk(t) :Uk(t), k=1,..N, (3.1)

wherepg(t) = (X(t),yk(t)) is the location of vehiclé at time instant, andu(t) is the
control input.

Each vehicle carries multiple sensors (e.g, camera, sonar) for exploring local sur-
rounding area within the sensing ran@e Two vehicle are neighbors if they are within
interaction distanc&;, whereR; < Rs. There is a desired inter-vehicle distarrgefor
several reasons: staying too close leads to small area of coverage, good chance of col-
lision, and easy targeting by the enemy fire, while staying too far apart leads to loss of
communication and coordination.

The mission scenario is shown in figure 3.1. There are several unknown obstacles
distributed in the mission space. For simplicity, we first assume that obstacles are of
circular or eclipse shape. More complicated shape of obstacles may lead vehicle swarms
fail to accomplish group tasks with simply APF approach. Depdtas the centroid of the
obstacld, andRP as the radius. It is also assumed that each vehicle has the knowledge of
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Fig. 3.1: A battle field scenario

target area location. The target area is also of the circular shape which locapg@dacks
guarded by moving threats surrounding outside. The moving threats with predetermined
trajectoryp™(t) will destroy vehicle if the distance between them is within is raRge

Let 7/(t) be the set of vehicles that are alivet aand. #(t) be the neighboring set

of the vehicle k defined by

M) ={je VM) 1] #k [p(t) —pi(t)] <R}

The mission task has two folds: first, generate collision-free paths such that multiple
vehicle could reach to the target area without being trapped by obstacles. second, enter

into the target area without being killed by moving threats and cover the target area.
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3.2 APF Approach based Decentralized control of UAV swarms

To accomplish the mission tasks, a linear combination of multiple potential function
terms are designed to accommodate multiple objectives and constraints. In particularly,

the potential function for vehiclkis of the following form

Ik = AgI%(pk, P%) + Andl (P> PH) 4+ A0d2 (P, P°) + Amd (P, P(1)),  (3.2)

whereJE,JQ,JE,JQ" are potential terms accounting for target attraction, inter-vehicles co-
hesion, obstacle avoidance and moving threats avoidagca, Ao, Am are corresponding
coefficients. The design of the coefficients is also very challenging.

As aforementioned, the desired configurat@nof the vehicle swarms attains the
global minimum potential values, i.el(p*) = miny(J), whered = 5, Ji is thetotal po-
tential value The control objective can then be precisely described as follows: find de-
centralized control inputi(t), such thatp(t) — p* as timet — . The gradient descent

approach is commonly used for the controller design, i.e.,

7}
U = —d—pk\]k (33)

Each component in (3.2) is described in the follows.

e Target attraction potentiaf

The target attraction potential is used to lead vehicles move towards the target. A
frequently used form is? = f(||pk(t) — p?||), wheref(-) is a strictly increasing
function with respect td px(t) — p%||. When vehicle is far away from the target, the

target potential has high value, and vice versus. In a free space, if there is no other
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Fig. 3.2: The inter-vehicle potential function

terms in the potential function (3.2), by taking the velocity as the negative gradient

of JE only, the vehiclek moves directly to the target.

e inter-vehicle potential,

The inter-vehicle potential maintains the desired distagdeetween neighboring

vehicle with the following form

=3 falrj),

jeM()

wherer jx = ||pk(t) — pj(t)||. When two vehicle are too close to each otfgg <
ro), the potential functiorfy(rjk) tends to infinity agjx — o, and is strictly deceas-
ing on(0,rg]. When two vehicle are far away to each otkgg > ro), the potential
function fn(rjx) is strictly increasing otiro, Rs] and holding constant ojfRs, ). A

typical inter-vehicle potentials(rjx) is shown in figure 3.2

e The obstacle potentidf
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The obstacle potential prevents vehicle from being entrapped by obstacles. When
vehicle is moving towards the obstacle, the potential function approaches to infinity,

and is strictly decreasing d, Rs]. An example satisfying the property is

1
X=
?

whererp is the shortest distance between vehicle and obstacle surface.

e The moving threats avoidance potentlgl

The moving threats are modeled as moving points. #&gtbe the set of moving

threats within the detection range of vehikle)" is expressed as

I = fm(ricm; )
J'EZ//k ]

whererym, = [|pk — pmj | is the distance between vehidkeand moving threats
m;. fm(-) is @ monotone decreasing function @, Rs|, and constant ofRs, ).
Moreover,fm(+) goes to infinity asxm, approaches tBe. The design of the moving

threats potential function is similar as the obstacle potential function.

3.3 Local minimum entrapment dilemma and existing solutions

As mentioned in the last chapter, the potential based approach provide people an
extremely simple and elegant way to understand the collective behaviors demonstrated in
nature, e.g., insects swarming behavior, bacteria foraging. Inspired from nature, people
utilize this approach in designing artificial multiple agent system, e.g., multiple UAV sys-

tem, mobile sensor network. In [9], extensive simulation results demonstrate the success
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of the APF based approach in the application of a battle field scenario. However, the sta-
bility analysis via the celebrated Lyapunov stability theory shows that the gradient decent
approach may lead to local minima such that the group mission fails, i.e., the final config-
uration of the vehicle swarms may not be the desired one. Unless one design the potential
function very carefully such that only one minimum exists on the potential surface, there

is no guarantee that the gradient decent approach can lead the vehicle swarms to achieve

desired configuration.

A

Proposition 3.3.1 The autonomous system (3.3) is locally stable Aet{p* = (p], ..., p{) :
dipk‘Jk |p-= 0,V k} be the equilibria set. Starting from arbitrary initial conditigoy. The

final configurationp., = ®(po) € &. If the potential surface is strictly convex, i.e., equi-
librium set has only one stable equilibrium, the system asymptotically reach to the global

minimizer.

Proof. LetJ = z,’;‘zle. It is straightforward to verify thal is a valid candidate lyapunov

function. With control designed using gradient decent in (3.3), we have

d
a =

~
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By applying lyapunov stability theorem [68], one concludes that the system (3.3) is locally
stable.

& defines a limiting set. By applying the lasalle’s theorem [68], the system ap-
proaches to the limiting sef as time tends to infinity. If the potential functiahis
strictly convex, it is straightforward to show that the global minimized of the unique
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component ing’. Thus, the gradient decent approach is guaranteed to lead the system to
the global minimizer]

In the proposition 3.3.1, one can see that the final configurgtiodepends on the
initial configurationpg if the the potential surfacé is non-convex. To substantiate the
fact, simulations in the next section show that in the battle field scenario UAV swarms
could fail to reach the designated target given the existence of a non-convex shape obsta-
cle. To address the problem, several approaches in the literature were proposed.

As stated in the proposition 3.3.1, one way to avoid local minimum entrapment is
through design potential function such that it is strictly convex. For example, in [14], a
harmonic function was proposed to construct potential function which is free from local
minima. In [13], Volpe and Khosla proposed to use superquadric function to eliminate
local minima.

Another popular way to solve the problem comes from heuristic point of view. In
[16], virtual obstacles were proposed the push the vehicle away from the local minima due
to the nonconvex obstacles. In [17], an approach involving virtual local targets were used
to lead the vehicle move out from obstacles. Unlike introducing additional virtual obsta-
cles or targets, a probabilistic method approach was introduced in [15]. In this approach,
when vehicles get trapped, they would explore all possible directions with equal proba-
bilities. After certain time interval, the vehicles switch back to gradient decent approach.
Despite the success demonstrated in simulation, these heuristic approaches usually are
lack of rigorous analysis.

Recently, Chang proposed a new solution that combines the gyroscopic force and

the gradient decent approach [69]. In this approach, the control infauteach vehicle
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consists of three parts as follows:

u:Fp+Fd+Fg,

WhereF, andFq are forces coming from the gradient flow and the damping force respec-
tively, the other ternk is the gyroscopic force, which is orthogonal to the gradient decent
direction. When the vehicle was trapped by the obstacles, the gyroscopic force drive the
vehicle move around the obstacle to get out from local minima.

All these approach can only solve the local minima entrapment problem in some
special cases, e.g., hon-convex shape obstacles. There is no general way in the past re-
search that could guarantee the final configuration approaches to the desired the config-
uration. This motivate us to solve the general problem. In the next chapter, a general

solution is proposed and systemically studied to solve this problem.

3.4 Simulation Results

In [9], extensive simulations demonstrated the success of using the APF approach.
By designing weighting coefficients of potential function components, in a battle field
scenario, simulations showed that vehicles networks successfully enter into target area
without being captured by the moving threats.

In this section, two simulations are conducted to show that UAV swarms fail to
accomplish group task if the designed APF is nonconvex and has multiple local minima.

(1) a battle field scenario

In this example, a similar battle filed scenario as in [9] is used for demonstrating
the fact. For simplicity, we do not assume that moving threats are circulating around the
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Fig. 3.3: Snap shots of vehicle swarms that are trapped by nonconvex shape obstacles

target area. Instead of circular obstacles, we introduce a non-convex shape of obstacle. In
the simulation, there are 20 vehicles on a-488 area (see Fig. 3.1). The target is located
atthe corner (43,43) with radil = 5, and two overlapped circular obstacles with radius
5 are centered at (17, 23) and (23, 17), respectively. Initially the vehicles are randomly
distributed close to the other corner which is opposite to the target. The parameters used
are: Ag = 10, Ao = 1, An = 0.2, Rn = v/2, Ry = 61/2. The mission goal is completed if
all vehicles reach and gather in the target area. In addition, it is desired that vehicles have
more neighbors.

The snapshots of the UAV swarms using the APF based approach is shown in figure
3.3. Clearly, due to the nonconvex shape of the obstacle, a part of vehicle networks are

trapped, which makes the group task failed.
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(2) Grid formation

The goal is to have the vehicles to form certain structure by simply define the inter-
vehicle distance. In the simulation, 6 vehicle are moving on the 5 by 5 ground. Each
vehicle can detect the distance with other vehicles. The desired inter-vehicle distance is
set to berg. For simplicity, the inter-vehicle potential functidij(-) for any two neigh-

boring vehiclei and j has the following form,

fa(pi. Pj) = (/[ Pi — pj || —r0)* (3.5)

Since only one term shows up in the APF, the coefficignis set to be 1. In the sim-
ulations, two equilibrium configurations are observed. See figure 3.4 and 3.5,where a
hexagon-like configuration, and a star shape configuration were observed due to the dif-
ferent initial condition. The simulations confirm that the APF approach can only lead to

local minima.
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Chapter 4

A Novel Gibbs Sampling Based Approach

To address the local minima entrapment dilemma existed in the gradient descent
approach, In this chapter, a novel, systematic approach is proposed based on the theory
of Markov random fields (MRFs) and Gibbs sampling, a tool that has been traditionally
used in statistical mechanics, image processing and computer vision [18, 19, 20], and
data analysis and clustering [21, 22]. A discrete-time path planning setting is considered,
where vehicles are allowed to move on a discretized grid in a two-dimensional space
(three-dimensional case can be easily extended). We focus on the high-level coordination
and planning problem in this chapter, and thus the vehicle dynamics is not included in the
analysis. In chapter 8, a model predictive control (MPC) based motion control approach
is proposed for car-like wheeled vehicle’s dynamics during the low-level vehicle control
in executing the planned trajectory.

In the new approach, a swarm is modeled as a MRF on a graph, where the (mobile)
vehicles and their communication/sensing links constitute the vertices and the edges [23]
of the graph, respectively. As in the APF approach, global objectives and constraints (e.g.,
obstacles) are reflected through the design of potential functions - in this case, Gibbs po-
tentials. The movement of vehicles is then decided using simulated annealing based on
the Gibbs sampler. The dynamic graph associated with the evolution of vehicle networks,

however, presents significant challenges in convergence analysis since classical MRF the-

31



ory does not apply directly.

In this chapter, we first present analysis on the single-vehicle case before embarking
on the more general multi-vehicle case. The aforementioned dynamic graph now degen-
erates to a single vertex and the analysis is much simplified. The purpose of studying the
single-vehicle case is two-fold. Firstly, this is of interest in its own right by showing the
convergence to the optimal location despite the existence of local minima, a clear advan-
tage over the traditional gradient-flow method. Secondly, some analytical techniques and
results for the single-vehicle case, e.g., the convergence bound and the impact of potential
function design on convergence speed, also apply to the multi-vehicle case. Therefore,
they provide insight into the latter case.

To deal with the self-organization of multiple vehicles, a two-step sampling scheme
is proposed: in the first sampling step a vehicle is picked through a properly designed,
configuration-dependempiroposal distribution, and in the second sampling step the vehi-
cle makes a move using the local characteristics of the Gibbs distribution. It is shown
that simulated annealing with such a two-step scheme leads to convergence to the con-
figuration(s) of minimal potential. This scheme requires mostly local interactions among
vehicles except a global communication mechanism for notifying the newly selected ve-
hicle. Such a mechanism could be provided, e.g., by a dedicated base station, or by
individual vehicles with short-time, long-range communication capabilities.

The remainder of the chapter is organized as follows. Section 4.1 reviews basic
mathematical background of MRF, Gibbs sampler and simulated annealing approach. The
problem formulation and system modeling is addressed in section 4.2. The single-vehicle

case is treated in section 4.3, while the multi-vehicle case studied in Section 4.4. Section
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4.5 substantiates the convergence analysis with extensive simulation results.

4.1 Mathematical Background

4.1.1 Markov Random Field (MRF)

One can refer to, e.g., [20, 70], for a more comprehensive review of MRFsS Let
be a finite set of cardinalitg, with elements denoted ks/and calledsites and let/A\ be
a finite set called thphase spaceA random fieldon Swith phases im\ is a collection
X = {Xs}scs of random variableXs with values inA. A configurationof the system is
X = {Xs,S € S} wherexs € A\, Vs. The product spac? is called theconfiguration space

A neighborhood systeon Sis a family 4" = {_4#5}scs, where#s C S andvse S,
1. s¢ A5
2. re Agifandonly ifse 4.

s is called theneighborhoodf sites. The coupl€S,.+") is called agraphor atopology
, WhereSis the set ofverticesand. /" definesedges Sites andt are linked by a edge if
and only if they are neighbors, i.¢.€ 5.

The random fieldX is called aMarkov random fieldMRF) with respect to the

neighborhood system?” if, Vse S

M(X=x)>0, VYxeA°

M(Xs = Xg| X =X, 1 # ) =M (Xs = Xg| X =X, 1 € A5),

i.e., the conditional probabilities associated with the joint probability distributiof arfe
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local in character and they obey the spatial Markovian relationshiplodad character-

istic of the MRF at sitesis defined by the condition distribution functiar¥(x):
(X)) = M(Xs = Xs|Xr = X, 1 € M%)

The family { °(x) } s is called thdocal specificatiorof the MRF

The probability distributionTon a finite configuration spa@e® is said to satisfy the
positive conditiorif for any sites, 1(xs) = 0 implies 11(xs, Xss) = 0, whereS\ s denotes
the compliment o6in S. The positive condition guarantees the uniqueness of the MRF

given the local specification specified.

4.1.2 Gibbs random field and Cliques

A random fieldX is aGibbs random fieldf and only if its joint probability distrib-

ution is of the form:

U(x)
T

,Vxe N,

Z

whereT is the temperature variable (widely used in simulated annealing algorithms),
U(x) is the Gibbs potential (or energy) of the configuratiorandZ is the normalizing

constant, called thpartition function

_UX
Z:;e T,
XEN9

The Gibbs field originally comes from physics, where it was introduced by Gibbs
(1902). It was interesting for physics because the probability distribution of the special
MRF is interpreted through energy and potential function which is useful in describing
the local interaction of particles. In their study, the notiorlafueplays a important role,
which used to refer a small group of people who know each other.
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A subsetc C Sis called aclique with respect to a topologyS,./") if every pair
of distinct sites(s,t) in c are neighbors, except for single-site cligys$. With cliques
defined, one can then construct potential functigh$x) associated with each clique
to describe the local interaction among neighboring nodes iA Gibbs potentialon
configuration spacéS w.r.t. (S .#) is a collection{W¢(x)}ccs of functions We(x) :

N3 — Rsuch that
1. W¢(x) = 0if cis not a clique
2. forallx,x € AS, and allc C S, x(c) = X () = Wc(X) = We(X)

The value ol¥¢(x) depends only on the local configuration on cliguevhich guarantees
the local nature of the Gibbs Field.

One then considers the following very useful class of potential functions

U(x) = Zg‘l’c(x),

which is a sum of clique potential8.(x) over all possible clique®’. A classical exam-

ple, usually referred alsing Mode] was introduced by Ising (1925) for understanding

gualitatively the phenomenon of phase transition in ferromagnetic materials. One can

refer to A for details.

By the Hammersley-Clifford theorem [71], a Gibbs random field defined by a Gibbs

distribution leads to an MRF with a consistent set of conditional probabilities; and con-

versely, for any MRF with a consistent set of conditional probabilities, there exists an

equivalent Gibbs distribution expressed in terms of local potentials.
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4.1.3 Gibbs Sampler

Consider a random field that changes randomly with time, which defines a stochas-
tic process{Xn(S),s € Stn>o. At each time instan, the stateX, is a random field take
values inA\S. The stochastic proce$X,} in called adynamic random field

One then interested to generate a finite state Markov chain whose stationary distri-
bution equals to a marginal distribution of a given random field. Suppose a homogenous
Markov chain is irreducible and aperiodic, the fundamental Perron-Frobinius theorem
shows that there exist an unique stationary distribution. This implies that from any initial
distribution, the state distribution at tinmewill converges to the stationary distribution.
The transition mechanism of the Markov chain is calleshenpling algorithmor asim-
ulation algorithm There are two major sampling algorithms in literature: Metropolis
sampler, and Gibbs sampler. The latter is adopted in our approach.

The Gibbs samplebelongs to the class dflarkov Chain Monte CarldMCMC)
methods, which sample Markov chains leading to stationary distributions. The algorithm
updates the configuration by visiting each site sequentially or with a strictly positive prob-
ability distribution @s,s€ S) on S, and sampling from the local conditional distributions
of a Gibbs field. Picking an deterministic enumeration schem&fersy,...,Sg, which

is called avisiting schemethe Gibbs sampler (basic version) works as following:
e Step 1. Pick an initial configuratione A°

e Step 2. Update the configuration by visiting each site .sy in turn specified
by the visiting scheme. When visiting, hold fixed the values a;, | # i, and

changexs to z € A with probability distributionP(z) defined through the local
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characteristics:

N(zr € As)

@=5h@Eren)
ZeN

e Step 3. Repeat step 2.

Note that in the above procedure the evaluatiofl () is in general easy thanks to the
local nature of potential functions. By incorporating the Gibbs distribution, it can be
easily proved that the local sampling distribution in step 2 only depend on the clique

potentials associated with current visiting ste

exp(— Y We(Xs=12))

P B CECy
7S a3 Wae=2))
ZeN CEC,

where%és denotes the set of cliques associated withsiteet Ps(x) = 5 Wc(x) be the
(VS

potential function associated with site s, the above formula can be simplified as following:

_ exp(—Ps(xg = 2))
TS el s 7))

(4.1)
From the definition ofPg(x), it is straightforward to show thabs(x) depends only the
value on sites and its neighbors site e 45, i.e., ®5(X) = Ps(y) wheneverxs = ys, and
Xr =VYr,Vr € s

Step 2 essentially defines the transition probabilities for a random field-valued
Markov chainX(n). The convergence of the Markov chain defined by Gibbs sampler
was studied by D. Geman and S. Geman in the context of image processing [72]. By
denoting one sequential visit to all sites asveeep it can be shown that as the number

of sweeps goes to infinity, the distributionX{n) converges to the Gibbs distributidh

Furthermore, with an appropriate cooling schedule, simulated annealing using the Gibbs
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sampler yields a uniform distribution on the space of configurations corresponding to the
minimum energyJ (x). Thus the global objectives could be achieved through appropriate

design of the Gibbs potential function.

4.1.4 Simulated Annealing approach

Both the gradient descent and the simulated annealing (SA) approach are popular
optimization methods that numerically solve the linear and nonlinear optimization prob-
lem. As discussed in the last chapter, the gradient descent approach belongs to local
optimization techniques. By taking steps proportional to the negative of the gradient flow,
this approach always end up with local minimizer if the corresponding potential function
iS not convex.

The SA approach, on the other hand, numerically searches global optimizer given
a function in a large search space, e.g., combinatorial optimization problem. It was S.
Kirkpatrick, et. al. who first proposed SA approach in 1983 [73]. Then V. Cerny inde-
pendently invented a similar approach in 1985[74]. The approach is inspired from the
annealing procedure in metallurgy, a technique involving heating and slowly cooling of a
material to get better mechanical performance. Inside the material, the annealing proce-
dure results in larger size of crystals which have lower internal force.

By mimicking this physical process, the SA approach iteratively replace the current
solution by randomly pick a local solution. The probability of making transition from
current statex to a candidate staté depends on a potential function differenti(X) —

U (X)) and a temperatur€. For example, in the Boltzmann annealing (BA) algorithm,
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the transition probability is expressed as follows.

1, if UX)<U(®Xx);

e T, ifUKX)>U(X)
By gradually deceasing the temperature, the method asymptotically approaches to the
global minimizer.

The rationale behind the approach lies in that, at each temperature, the transition
probability corresponds to the solution of a entropy maximization problem constrained
by the averaged energy under certain value. Using the lagrange multiplier, the solution
can be solved by minimizing the lagrange= BEp(U (x)) + S(p), whereS(p) is the
entropy, ang3 = 1/T. Instead of greedily search the global minimizer along the negative
gradient flow in the gradient descent approach, the random sampling in the SA approach
minimizes a linear combination of the averaged energy and the entropy. As mentioned in
the previous section, [18] proved that with logarithm cooling schedule, the SA approach
converges to the global minimizer as temperature goes to zero.

Although the SA approach have been theoretical proved and practically applied
in solving many optimization problems, it frequently suffers from the long computation
time. To address the problem, studies on accelerating cooling schedule and parallel sam-
pling have been visited by many researchers. One may refer to [75] for more detailed

reviews of the SA approach.
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4.2 Modeling vehicle swarms as MRF

Consider a 2D mission space (the extension to 3D space is straightforward), which
is discretized into a lattice of cells. For ease of presentation, each cell is assumed to be
square with unit dimensions. One could of course define cells of other geometries (e.g.,
hexagons) and of other dimensions (related to the coarseness of the grid) depending on the
problems at hand. Label each cell with its coordindtey, wherel <i <N;,1< j <N,
for N;,N> > 0. There is a set of vehicles (anobile nodesSindexed bys=1,--- ,0 on
the mission space. To be precise, each vehicle (netkepassumed to be a point mass
located at the center of some céil, js), and the position of vehicls is taken to be
ps = (is, js). At most one vehicle is allowed to stay in each cell at any time instant.

The distance between two cell$,, ja) and (ip, jp), is defined to be thé, norm,

in specific,Ré V/(ia—ip)2+ (ja— jb)2. There might be multiplebstaclesn the space,
where an obstacle is defined to be a set of adjacent cells that are inaccessible to vehicles.

For instance, a “circular” obstacle centeredidt j°) with radiusR° can be defined as

e {(i,}): /(i—i°24+(j— j°)2 < R°}. The accessible areds the set of cells in the
mission space that are not occupied by obstaclesadeessible-area grapban then be
induced by letting each cell in the accessible area be a vertex and connecting neighboring
cells with edges. The mission space®nectedf the associated accessible-area graph

is connected, which will be assumed hereafter. There can be at motirgeeareain

the space. A target area is a set of adjacent cells that represent desirable destinations of
mobile nodes. A “circular” target area can be defined similarly as a “circular” obstacle.

An example scenario is shown in Fig. 4.2.
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Fig. 4.1: An example mission scenario.

In this thesis, all nodes are assumed to be identical. Each nodeskasiag range
Rs: it can sense whether a cell within distariRgis occupied by some node or obstacle.
Communication between two nodes that are within a distané® f regarded as local.

The moving decision of each nodadlepends on other nodes located within distaRce
(R <Ry), called theinteraction range These nodes form the sef of neighborsof node
s. A node can travel at mo&y, (Rn < Rg), calledmoving rangewithin one move.

The neighborhood system defined earlier naturally leads to a dynamic graph, where
each vehicle represents a vertex of the graph and the neighborhood relation prescribes the
edges between vehicles. An MRF can then be defined on the graph, where each vehicle
s is a site and the associated phase spaces the set of all cells located within the
moving rangeRy, from locationps and not occupied by obstacles or other vehicles. The
configuration space of the MRF is denoted&s

The Gibbs potentidll (x) = 3 W¢(x), whereW¢(x) is the clique potential and may

ce?
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Fig. 4.2: lllustration of the sensing rang®, the interaction rang&;, and the moving
rangeRy. Note since the mission space is a discretized grid, a cell is taken to be within a
disk if its center is.

include different types of potential functions. To characterize the constraints and objec-
tives as we mentioned earlier, the Gibbs potential can be formulated as a sum of three

kinds of clique potentials. To be specific,

U(x) = /\gzvgw\o zsngw\n Y W (4.2)
se sc (styens
q)s(X) - )\gwg-l‘)\owg-i‘)\n Z LIJ?S,I)’ (43)
teAs

whereWwd, W9, andLIJE‘SJ) account for the attraction from the target area, the repelling from
obstacles, and the pulling force from neighbors, respectively. (@ngindicates a pair of

sitess andt are neighbors of each otheXg, Ao, An are the weighting coefficients for ad-
justing the potential surface. Note that the design of these constants is also a challenging
and important issue as it may directly impact the nodes behavior and the convergence rate

of the algorithm [9, 76]. The movement of each vehicle is then determined by the Gibbs
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sampler-based simulated annealing. Without loss of generality, it is assumed that there
is one circular target area centeredodtand there ar& (possibly overlapping) circular

obstacles centered pt¥, 1 < k < K. The following potential functions are used:

X = |ps—pY
(0] K 1
=9y —0 (4.4)
S = 2=
— L ifA£D
n - 22y Ts o]
A, if #s=0

whereJ? tends to be smaller when sigehas more neighborsA > 0 is a relative large

constant and it represents the penalty for having no neighbors.

Two major differences exist between a classical MRF introduced before and the

MRF defined for the vehicle networks:

1. Inaclassical MRF, the neighborhootf depends only osand not orxs. However,

for autonomous vehicles/s also depends on the phase

2. The phase spadeis the same for eachand is time-invariant for a classical MRF.

However, the phase space in vehicle networks is site-dependent and time-varying.

Due to these differences, classical MRF theory cannot be adopted directly to ana-
lyze the convergence behavior of the path planning algorithm, although simulations re-
sults in [77] showed a great success of the stochastic algorithm that lead autonomous

swarms to the global objective without getting trapped by local minima.
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4.3 Gibbs sampling based algorithm for Single Vehicle

4.3.1 Gibbs sampling based algorithm

For single vehicle case, the gibbs potentials only consist of clique potentials asso-

ciated with singleton, namely obstacle potential, and target attraction potential, i.e.,

So the mission goal is to reach the target area while avoiding the obstacles.
Starting from arbitrary initial positiomo, the vehicle make moves according to the

following algorithm

e Step 1. Pick an cooling scheduién) = m, where c is a coefficient for adjusting

the cooling rate. Let n=1.

e Step 2. At each time instamt the vehicle moves from current locatieg(n) to
candidate locatioz € A (empty cells within the moving range) with probability

distributionP(z) defined through the local characteristics:

e—q)s(z)
P(2) = W,
ZeN

e Step 3. Let n=n+1. Repeat step 2.

In the next subsection, analysis is provided to show that the vehicle will reach to the

target for sure given arbitrary shape of obstacles provided the accessible area is connected.
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4.3.2 Convergence Analysis

For the single-vehicle case, the MRF has only one site and the individual potential
@4 consists of only first two terms of (4.2), which makes the analysis simpler. It can be
shown that the Markov chain of the MRF defined by the Gibbs sampler converges to a
stationary distributiol as time tends to infinity for a fixed temperatdreBy choosing
an appropriate cooling schedule, the vehicle approaches the configuration(s) of minimum
potential. This is made precise by the following theorems. The proofs of the theorems are

adapted from some results on classical MRFs [20].

Theorem 4.3.1 Assume that the accessible area is connected. For a fixed tempefature
let Pr be the kernel of the homogeneous Markov ch&in) defined by the Gibbs sampler.

ThenX(n) has a unique stationary distributidn:

U u(@
T

€ S e T
Pz—Px||<Rm
(%) = —— o , (45)
T
whereZy is the partition function, defined as:
U(x) U(2)
Zr = Z((e‘f 2 e 1)
X€ l| Pz—Px[| <Rm
Furthermore, starting from any distribution
lim vP" =M. (4.6)

N—oo

Proof. Since the MRF has only one site, the Markov kerReldefined by Gibbs

sampler is:
ﬁ if][py — Px|| < Rm
Pr(X,y) = lIp-#xi<Rm : (4.7)
0 if||py — Px|| > Rm
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Due to the connectivity of the accessible area, there exists at least one path between
any two configurationg andy (i.e., a sequence of movég, x;,---,y}), and the shortest
path is bounded by moves for some finite. This implies thaPr has astrictly positive
powerP}, i.e., ther-step Markov chain reaches each state with positive probability from
any state. Hence the Markov chain is ergodic and it has a unique invariant distribution
M1, which implies (4.6). One can verify that (4.5) is a stationary distributioriPfor’]

Due to the limited moving range,sweeps will be performed for each temperature
T(n) in the simulated annealing to guarantee the convergence.

For a Markov kerneP, define itscontractioncoefficientc(P) by

c(P) = (1/2)max[P(x,) — P(y, )|,

whereP(x, -) denotes the vector of conditional distributiops|x). The following lemma

[20] will be useful in the proof of Theorem 4.3.2.

Lemma 4.3.1 Let u and v be probability distributions, an& andQ be Markov kernels.

Then

[HP —VP|[1 < c(P)[|u— V],
c(PQ) < c(P)c(Q),

c(P) <1— |X|min{(P(x,y) : X,y € X},

and for a primitiveP,

c(P") — 0asn— o,

whereX is the state space of the Markov chain dXd denotes its cardinality.
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Theorem 4.3.2 Assume that the accessible area is connected{Tét)},>1 be a cool-

ing schedule decreasing to 0 such that eventually

T(n) >

> (4.8)

whereA = rr;(@\xﬂu(x) —U®W)|: Ipx— pyll < Rn}l, andt is as defined in the proof of

Theorem 4.3.1. L&D, = P{(n). Then from any initial distributiorv,

r!im VQ1---Qn = Mo, (4.9)

wherell is the distribution (4.5) evaluated dt= 0. LetM be the set of configurations

achieving the minimum &f (x). Assume thatpx — py|| > Rm, ¥X,y € M,x#Y. Then

mr ifxeM
lim vQ1...Qn = (4.10)
0 otherwise
Proof. Definemy = min{U(2) : ||pz— px|| < Rm}. Then, if||py — px|| < Rm,
e_U(y)Tfmx A
Pr(x,y) = T > Nt (4.11)
ST
Il Pz~ Px|| <Rm

where|A| is the upper-bound on the cardinality of the phase space.QFerPf, from

Lemma4.3.1,

oQ = L1-IXIminQixy) < 1 [X|(minPr (xy))"

< 1-7eT, (4.12)

whereA = |X|-|A|~T < 1. Then

16000 < [1(1-Ae™) < 1Ak
DI (Qk) k|:|I( ) k:|( )
< e_kZiAklg(iﬁ)A (4.13)

LIn this paper]| - || denotes the Euclidean norm, alhd|; denotes the 1-norm.
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where the third inequality holds because
(1-2)<e?%Vvze (0,1),

and the last one follows by

In(ni-!) < |n(n+1)—|n(i):i(|n(1+k)—|nk)
k=l

= S In(l+kH< Tkt
k: k=l

>
>

With some abuse of notatiofilt ) will be written asly, to simplify the expres-

sions. Fori < n, one has

chgr-ign—‘r1mH1
= H(VQ]."'Qi—l_rlm)Qi.--Qn+I—|ooQi...Qn—r|00||1

< (vQ1-Qi-1 — Meo) [16(Qi-.Qn) + [|MeoQi--Qn — Mool |1

k=n-1
< 26(QiQn) + M = Mofla+ [IMn=Mofla+ 5 (M= Migalls,  (4.14)
k=i

where the last inequality is established by Dobrushin’s theorem [20]. From (4.13), the first
term of the last inequality approaches Onas> . By Theorem (4.3.1), the second and
third terms also approach 0 g& — . To show that the fourth term vanishesias o,
lemma 7.2.1 in [20] can be applied to prove the result. The only condition need to be in-

. . .. . U U
vestigated is the monotonicity and boundness of the denomnmt@@( > e*#)

[ Pz—Px/| <Rm
of (4.5) with temperature T, which is straightforward to verify. This completes the proof

of (4.9).

48



Let m denote the (global) minimal value of Gibbs potentidk). Then

_U(x)-m _U(@@-m
e T e T
[[Pz—Px/| <Rm
7T|'(X) - _U(y)—m _U(z-m
2 (e T > e 1)
yex [IPz—Pyl[<Rm

If U(x) orU(y) is a minimum then the respective exponential equals to 1 no mat-
ter what temperature T may be. The other exponentials decrease to 0 as T tends to O.
Eq. (4.10) then follows from (4.9) anifbx — py|| > Rm, VX,y e M. O

Note one can easily characteridg, when more than one minimizers 0f(x) are
located within a distance d®,. Theorem 4.3.2 establishes that under the algorithm, a

vehicle can reach the target ultimately bitrarily shapedobstacles.

4.3.3 Convergence rate and Gibbs potential design

In Theorem 4.3.2 a condition on the cooling schediu{a) is specified to guaran-
tee convergence. In the condition the maximal energy differénamong neighboring
configurations plays an important role. It is of interested to study how to improve the con-
vergence speed by appropriately designing the potential functions. The study here will be

focused on the single-vehicle case.
Proposition 4.3.1 For the single-vehicle case, the convergence speed is characterized by
__2Am_
IVQ1...Qn — M || = O(n™ 2m+Aar) (4.15)
wherem = min(U (y) —m), andm, A, A, andr are defined as in Theorem 4.3.2.

Y#Xm

Proof. From (4.14),

VQ1...Qn — MNw|| is bounded by four terms. From (4.13), the first
term is bounded by,‘;)A. The other three terms basically have same convergence speeds
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because of the monotonicity of the stationary distribufity{x). For largei, the third
term is dominated by
Maer—Mills < [Mapa = Moof[1 4 M = Mool

< 2| — Mool

U)—m mini

[ inimi — 0 ._m
I& If xis not a minimizer o, e 10 < e @ =i~w@. Then

TakeT (i)

Mk (X) = Mo (X) 1
U(x)—m U(z-m
e T Z e T
_ [ Pz—Px/| <Rm
3T 5 e
yex [Pz py[|<Rm

Ali—5r -

= T o0

Similarly, it can be shown that for a minimizeyrthe distance converges at the order

O(i~4") too. And s0 is|M; — Ma||1. Then a bound foffvQy...Qn — Me|| is

(rl])A +const i~ 4t (4.16)

This becomes optimal for

~

2M. s om
i* = (const —)*"iar .n**ar
( AT)

A
m

3. 2m
= const-n**ar.

Eq. (4.15) then follows by plugging into (4.16).]

Proposition 4.3.1 shows that the potential surface (in partic@a%f:%) de-
termines the convergence speed of the algorithm. It is thus natural @ ase design
indicator. Simulation has been conducted to verify the above analysis. In the simulation a
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Fig. 4.3: Convergences. design parameter - comparison of simulation results with analy-

sis.

similar scenario as in Fig. 4.2 is used but with a 10 by 10 grid. Two overlapping circular
obstacles are located in the middle of the field, which forms a non-convex shape. A single
vehicle starts from one corner, and wants to reach the target area at the other corner. The
potential functions used aréd = || ps— pY|, J9 = ém, wherep? and p° denote

the centers of the target area and of the obstadigs varied from 0.05 to 100 whil@,

is fixed to 1. For each pair of coefficients, the algorithm iskus 10,000steps, and the
number of timesv that the vehicle visited target during the last 100 steps is counted. The
empirical distance is then given ByIn — MNwl|[1 = 2(1 —w/100). Comparison with the
numerically calculated design indicatgreveals good agreement with the bound (4.15)

(Fig. 4.3).
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4.4 A Novel Gibbs sampling algorithm for multi-vehicle system

In the previous section, preliminary results show the global convergence of single
vehicle case. However, it is still not clear about the convergence of the general case of
multi-vehicles with limited moving/sensing range. In this section, a novel distributed
stochastic algorithm is presented. The algorithm requires only limited sensing, com-
munication, and moving ranges for vehicles, and a mechanism for minimal full-range
information transfer. Such a mechanism could be provided, e.g., by a dedicated base sta-
tion, or by individual vehicles with short-time, long-range communication capabilities. It
is shown that the algorithm, with primarily local interactions, leads to globally optimal

vehicle configurations represented by the global minima of Gibbs potentials.

4.4.1 A novel decentralized algorithm

The algorithm uses a randomized sequence for updating the nodes, and a key idea
involved is theconfiguration-and-temperature-dependpriposal distributiorisy (). In

particular, given a configurationand a temperaturg,

U(2
Sz € T
GX(g) = — £/ - (4.17)

>5eS Yzeax<)€ T

In (4.17).47(s) denotes the set afneighbors of configuratior within one move

A
Na(8) ={z: 256 = Xg\s, 1= Xsl| < Rm},

whereS\s denotes the set of all nodes except
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Since forze AX(s), U(z) —U (x) = Ps(z) — Ps(X), (4.17) can be rewritten as

_U@-uW
2zemx9€ T
U@ UK
28 Yzeaxe)€ T
_ Ps(2)—Ps(x)
2 ze4%(s) € T
— 050 _Os( °
>8 Yze4X(e) €

Gi(s) -

Note that, from (4.2), each nogevould be able to evalua@¥ (s) = 5 ey € T

if Rs> R +Rm.
In sampling nodss is first randomly selected with probabilit; (s), and therxs is

updated according to its local characteristics wkgg is kept fixed:

CDs(Xs:| ’XS\S)
e T
P(xs=1) = (4.18)

q)s(XS:VﬁXS\S) ’

dlecs, € T

whereC;, is the set of candidate locations noslean take, i.e.| € C5, is not occupied
by any obstacle or other nodes, alfxd — || < Rn. One can verify that there exists a
smallest integer, such that after steps of sampling, any configurati@rmas a positive
probability of becoming any other configuratign

The self-organization algorithm works as follows. Pick an appropriate cooling
schedul€T (n) with T(n) — 0 asn — . Pick a sufficiently larg&\Nmax. For each temper-
atureT (n), run T steps of sampling as described above (this will be calleelannealing

step. To be specific:

e Step 1. Initialization. Start with an arbitrary configuration(0) and letn = 1,
— i i 0)
k = 1. Pick an arbitrary nods(0). Have all nodes to evaluate and sdhﬁ(l)(s)

to s(0). Nodes(0) calculates the proposal distributi@y ;o (s) according to
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(4.17),namely,

0
&0 DT
T(1)\S) = X(0) ;o
Zs’ DT(l)(S/)

Node s(0) then selects a nodg (1) 2 for updating by sampling the distribution

G4 (s), and it sends the vectQDﬁ((Ol)) (s),s€ S} tost(1);

e Step 2. Updating the selected nodeNodes‘(n) updates its location by sampling

its local characteristics (see (4.18)). Denote the new configuratigh{is

e Step 3. Selecting the next node.Note that the neighborhoodis of a nodes
changesonly if nodes‘(n) was in.#s before its updating or is currently infs.
For either case, the distance between ssi¢lenoting the set of such nodes as
%(n)) ands¥(n) is now no greater thaR; + Ry, < Rs and they can communicate
locally. The nodes(n) thus collects and updaté)é?k((r%) (s) for nodes in#¥(n). Let
k=k+1 If k=T, letk=0andn=n+1. The current node evaluates and samples
new proposal distribution, selects the next node to be updated, and communicates
the updatee[DT(n)(s)} to the next node (the superscriptdfis omitted when it is

clear from the context);
e Step 4.1f n < Nmax g0 to Step 2; otherwise quit.

Remark 4.4.1 Long-range (over a distance greater th&) communication is only re-
quired for initialization and for transferring D} (s)} to the newly selected node at each
step. Sincg D3 (s)} is just ao-dimensional vector, information exchange in the algo-

rithm is primarily at the local level. The (minimal) global communication can be achieved

2In the notatiork¥(n) or (n), n indexes the annealing temperature, whilgrom 1 to 1) indexes the

sampling step within a fixed temperature.
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through, e.qg., fixed base stations, or individual vehicles with short-time, long-range trans-

mission capabilities.

4.4.2 Convergence Analysis

Let Pr denote the Markov kernel defined by the random update scheme (4.17) and

(4.18), i.e.,

Pr(x,y) = Pr(X(n+1) = yjX(n) =X)

- szé(s) -1y € A (9) U

_VU@ _ Uy
_ 2seS2zemx9€ T € .
= U

o @ U(2)
>ses Zze//x ()€ T Yz X9 € T

€M X(S))
= ZS 3 (Z) (4.19)
zs’es Zze

Let 7 be the integer as selected in Section 4.4.1, an@{et Pf.

Theorem 4.4.1 The Markov kerne@Qt has a unique stationary distributidiit with

_UX® _U@
T YseSdze X9 € T

Mt (x) = 7 :

(4.20)

u U@ . . .
whereZr = zye*# > seSYze 4Y(s) e is the partition function.
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Proof. First one can show thdiy is a stationary distribution dPr. From (4.19) and

(5.2),

> N(Y)Pr(y.x)
y

_Uly) _ V@@
e T Zs"eSZze{/VrX(s”)e ' _

_ ; =
e 1(x e A3(9))
zéz s Zae ) Al

U

& T 5ye s seslixe AX(9))
— z

x) U@

T 2seSdzenx(s)€ T

— = — Mt ().

SinceQr = Py, Mt is also a stationary distribution fa@r. Due to the choice of,
Qr(x,y) > 0, ¥x,y. Thus from the Perron-Frobenius theorédg, has a unique stationary
distribution, which id1y. [

Let A be themaximal local oscillatiorof the potentialJ:

A maxmax |U (x) —U
axmax U (x) U )]

where X = Uses A (9).

Theorem 4.4.2Let{T(n)} be a cooling schedule decreasing to 0 such that eventually,

TA
T(n) > —.
(>_Inn

LetQ, = PTT(n), and let.# be the set of global minima &f(-). Then for any initial

distributionv,

lim Q1+ Qn — Ve, (4.21)
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wherev,, is the distribution (5.2) evaluated at= 0. In particular,

Z Voo (X) = 1. (4.22)
xeH

Proof. Let ay = minye 4xU(2). Fory € 4, from (4.19),
_U(y)—ax A
e T eT

_U@-ax Z O—|3b)/‘|’
29eS dze )€ T

Pr(x,y) =

where| Z"| denotes the cardinality of the configuration sp&te ForQr = Pf > 0,

_ I8
eT

. > i / L —
TNQrixy) 2 (, min PreGY))" 2 oz

Let C(Qr) denotes theontraction coefficienf20] of Qr, i.e.,

1
> mX3x||QT(x, ) =Qr (Y, )l

>

C(Qr)
Using Lemma 4.2.3 of [20], one has

C(Qr) <1-|2minQr(xy) <1-Ae ¥,

whereA = % < 1. This impliesC(Qy) < 1-Ae ™. The claim (5.4 can then be
proved following the proof of Theorem 3.2 in [76]. AYn) — O, Mty (x) — O, for all
x ¢ ./, as one can verify from (5.2). Eq. (5.5) thus follows.

From Theorem 5.1.1, the distributed algorithm can achieve global objectives pro-

vided that the global minimizers &f(-) correspond to the desired configurations.

4.4.3 Convergence rate of the novel algorithm

In section 4.4, we mentioned that the algorithm is a special case of single site MRF.
The convergence rate bound can then be followed by the proposition 4.3.1.
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Letm=miny ,U(x)—m, i.e., the minimal potential difference between other con-
figurations and the global minimizers. The following result characterizes the convergence

speed of the distributed algorithm:

Proposition 4.4.1 Consider the distributed self-organization algorithm with a cooling

scheduleT (n) = %. Then the following estimate holds for any initial distributien

IVQ1+++Qn M| = O(n™ 204 ) = O(n9), (4.23)
whereA , 1, andA are as defined in Theorem 5.1.1, aing % is called the indicator

of convergence speed in this proposal

4.5 Simulation results

Simulation was conducted to verify the analysis. The emphasis was on scenarios
involving inter-vehicle interactions (e.g., formation control). Two examples are presented,
one on clustering and the other on formation control. Other objectives or constraints, such
as target-approaching and obstacle avoidance, can be easily incorporated, as was done in

the single-vehicle case.

Clustering

The goal is to cluster all the nodes without specifying a specific target area. This is
more challenging than the case of having an explicit target, as the latter provides persistent
attraction from a fixed location. The potential function used was:

c

T
s i oxl<r 1% =%l

U(x) =
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wherec > 0 is some constant. Clearly, the more neighbors each node has and the closer
they are, the lower the potentibl. Simulation was performed for 50 nodes on a 30

by 30 grid, and the following parameters were us&j:= 4v/2+ ¢ (¢ > 0 and very
small),Rn = 2v/2+ €, Rs= R, + R (this was also the case for all other simulation results
presented in this sectiorg = 2, annealing schedul®(n) = Wllnn’ andt = 50.

Fig. 4.4 shows the snapshots of the network evolution. The algorithm'’s ability to

overcome local minima is evident from the figure: the nodes initially evolved into two

separated (farther thaRs) sub-clusters, and yet they merged into one cluster after 500

annealing steps.
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Fig. 4.4: Snapshots of clustering operation. (a) Initial configuration; (b) after 100 anneal-

ing steps; (c) after 400 annealing steps; (d) after 500 annealing steps.
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Formation

The goal is to have the nodes to form (square) lattice structures with a desired inter-

vehicle distanc®yes The potential function used was:
Ux = S ol —xdl — Reed® —C2),
r#s, [[% —xs[| <R

wherec; > 0, ¢ > 0, anda > 0. A proper choice ot; encourages nodes to have more
neighbors. The powesr shapes the potential function. In particular, fék, — Xs|| —
Ryed < 1, smallera leads to larger potential difference from the global minimum.

Simulation was first conducted for 9 nodes on an 8 by 8 grid. Parameter used were:
R =2vV2—¢& Rn=Vv2+¢,Ryes= 2, ¢1 = 10, ¢, = 1.05, a = 0.02, T(n) = 41}, and
T = 20. The desired configuration (global minimizer@j is shown in Fig. 4.5 (modulo
vehicle permutation and formation translation on the grid). Simulated annealing was per-
formed for10* steps. Empirical distributions with respect to configuration potentials were
calculated based on the average of every 2500 steps (Fig. 4.6). The trend of convergence
to the configuration of the lowest potential is clear from Fig. 4.6. One can further calculate
the error||v, — N ||1, wherev, is the empirical distribution of configurations (again mod-
ulo vehicle permutation and network translation). In particulgiis only calculated for
n=100Q2000300Q---, and for a configuratior, v,(X) equals the relative frequency
of x between thgn— 1000)-th and then-th sampling steps. From Theorem 5.1,

satisfies:

1if xis desired
I_Ioo (X) —

0 otherwise
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Therefore,
[V =Mool = 1= vn(X") +[0— (1= vn(X)| = 2(1 = vn(X")), (4.24)

wherex* denotes the desired formation. The evolutiofjef— N« ||1 is shown in Fig. 4.7.

It is of interest to investigate the robustness of the proposed scheme with respect to
the discretization level (i.e., coarseness) of the grid. For this purpose, the same mission
space was discretized into a 16 by 16 grid with cell size of 0.5, and simulation was per-
formed based on the new lattice. All mission-related parameters were kept the same as in
the 8 by 8 case. In particular, the exclusion condition (one cell cannot contain more than
one vehicle) on the 8 by 8 grid was properly translated into a condition for the new grid.
Five simulation runs were performed for both discretization schemes, and each was run
for 10* annealing steps. For each simulation, the evolutiofvaf- My ||; was calculated
according to (4.24) and the total annealing time was recorded. Fig. 4.8 compares the per-
formance under the two discretization schemes, wiete- N |1 and the annealing time
were averaged over the five runs for each case. The results indicate that the convergence
to the desired formation can be achieved under both discretization schemes, while it takes
longer computational time for the finer discretization.

Simulation was also performed for a group of 20 vehicles on a 15 by 15 grid, and
Fig. 4.9 shows the snapshots after different annealing steps. One can see that the group

achieves an almost optimal configuration after 2000 steps.
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Fig. 4.5: The desired formation for 9 vehicles on an 8 by 8 grid.
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Fig. 4.6: Evolution of the empirical distribution of configuration potentials.
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Fig. 4.8: Comparison of annealing schemes with different discretization levels.
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Fig. 4.9: Snapshots of formation operation. (a) Initial configuration; (b) after 1000 an-

nealing steps; (c) after 2000 annealing steps; (d) after 3000 annealing steps.
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4.6 Summary

In this chapter, a stochastic algorithm was presented for coordination of autonomous
swarms. The algorithm was based on the Gibbs sampler with a random visiting scheme.
The specific choice of the proposal distribution results in Gibbs-type distributions for
vehicle configurations, leading to the convergence of the algorithm.

The gibbs sampling based stochastic algorithm belongs to a reactive coordination
approach. At each time instance, vehicles only need current state information, including
its own and neighbors’ location, and the distance to the obstacles, to do gibbs sampling.
The algorithm do not require to have the full information of the environments or history
data. Therefore, the data processing time for making decision can be greatly reduced,
which is very beneficial in real-time control.

Moreover, since the algorithm do not require UAV use memories storing the envi-
ronments information, e.g., obstacle position and shapes, trajectory history, and maps, the
limited memory spaces can and save as well as the manufacturing cost.

The random visiting scheme entails long-range communication for notifying newly
selected nodes although such information exchange is minimal. A deterministic sequen-
tial visiting scheme would eliminate this requirement; however, the convergence behavior
would be unclear since the stationary distribution for edls no longer of the Gibbs-
type.

However, to guarantee that vehicle swarms achieve the group mission goal, long
maneuvering time have to be paid. This is primarily due to the stochastic nature of the

algorithm. This problem is addressed in the next two chapters. Two different approaches
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are investigated to improve the efficiency and the performance comparing with the origi-
nal approach. Substantial improvements are observed via extensive simulations.

In this chapter, the coordination schemes presented are meant for high-level path
planning. They should be combined with low-level planning and control modules in im-
plementation. Since vehicles move on a discrete lattice, the choice of discretization level
becomes an important problem. From the simulation results, a practical and efficient strat-
egy is to use the coarsest discretization that is compatible with the problem setup (e.g.,
the minimum inter-vehicle separation). The cell geometry is another factor in discretiza-
tion. In this paper the mission space was discretized into a lattice with square cells. One
could use cells of other geometries without changing the algorithm (except the numbering

scheme for cells) to implement, e.g., triangular or hexagonal formations.
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Chapter 5

Parallel Gibbs Sampling Approach

In the last chapter, a novel Gibbs sampling based stochastic approach was proposed
to coordinate vehicle networks to perform group tasks. Theoretical studies have shown
that, with a special sequential sampling scheme, it was possible to achieve global goals
despite the presence of local minima of potentials, which is further confirmed with simu-
lations [76, 78]. However, to maintain global indices in a large vehicle networks, which
is crucial for sequential sampling, is difficult when there exist node failures. Moreover,
the nature of sequential sampling lead to long executing time which presents difficulties
in practice.

The above problems can be solved using parallel sampling [77], i.e., each node in
the vehicle swarms does the local Gibbs sampling in parallel. Parallel sampling tech-
niques have been studied for many years in order to accelerate the slow convergence rate
of sequential simulated annealing algorithm [79]. It is usually required that nodes update
their locations at the same time clock (synchronously). However, the synchronization in-
curs the communication cost and the delay which degrade the performance. This can be
solved by using the asynchronous parallel sampling, i.e., each vehicle takes its own clock
to do the local sampling. Extensive simulations suggest that global goals (by this, we
mean self-organization of autonomous swarms) can be achieved by the parallel sampling

algorithm, whereas it has to be noted that the parallel simulation annealing algorithm
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might not lead to the global minimizer.

In this chapter, we firstly investigated the convergence properties of a synchronous
parallel sampling algorithm. In the study of the asynchronous parallel algorithm, the fact
that “time-varying” number of active nodes presents challenges. Fortunately, by apply-
ing partial parallel model in [80], the asynchronous algorithm could be described by a
homogeneous Markov chain. The convergence of asynchronous parallel algorithm then
follows. Finally, a special example based on a battle field scenario was investigated. Suf-
ficient conditions that guarantee the optimality of the parallel sampling algorithm were

analyzed.

5.1 Synchronous parallel sampling algorithm

The problem formulation can be found in the last chapter. To trade space with time,
one may refer to section 4.2 for detail. Basically, in the synchronous parallel sampling
algorithm, vehicle swarms make their moves by sampling their local potential function
profile in parallel at the same time clock ticks. In particular, using the synchronous paral-

lel sampling algorithm, vehicles update their locations as follows:

e Step 1. Pick a cooling schedul€-) and the total numbeX of annealing steps. Let

annealing step n=1,;

e Step 2. Conduct location updates for nddiaroughSin parallel at the same time

clock, where nods, 1 < s< S performs following:
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- Determine the sdts of candidate locations for the next move:

Ls=Asn{(i,§) 1 /(i —i9)2+ (j — )2 < R},
where/\s represents the set of cells not occupied by other vehicles or obstacles;

- When two neighboring vehiclegs < s') have their candidate locations conflicted,
i.e.,,LsNLy # 0. The vehicle with lower index updates its candidate locations to

LsNLS. Repeat this procedure untiéNLy = 0, for all s#s.

- Each vehicles evaluate potential function for evehe L,
®s(xs =1,X(S\s) = x(S\s))

where S\s denotes the complement sfin S And update the location of each

vehiclesin parallel by sampling the local distribution
expl(— Ps(Xs=! ,XT(?r\];S):X(S\S)) )

p(2) = — — .
5 exp(— 2o l,x%s) X(Si9)y

I’eLg
e Step 3. Len=n+1. If n= N, stop; otherwise go to Step 2.
For a fixed temperatur€, the underline mathematical model of the synchronous

parallel sampling algorithm is a homogenous Markov chain defined by

Pr(x(n+1)[x(n))

= rL( P(Xs = Xs(N+1)[X 4 = X 45(N)))

Ps(xs=%s(N+1) X =X 4c(N))
T(n)

—_— eﬁ
- |_L  Ps(xs=lx jg=X 45 (M)
ES z e T(n)

leLs(x())

R

(5.1)

where|[xs(n+1) —Xs(n)[| < Rmforall s€ S ®g(xs=Xs(N+1),X 4(5 = X 4(5)(N)) is the
local energy which could be evaluated by vehiigith only local information.
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Proposition 5.1.1 For a fixed temperaturd, the homogeneous Markov chain (5.1) has

a unique invariant distributio1t. From any initial distributionvg

lim VoP—P =Tt (5.2)

n—oo

Sketch of Proof. Due to the connectivity of the accessible area, there exists at least
one path between any two configurationsandy (i.e., a sequence of multiple moves
{X,x1,---,Y}), and the shortest path is boundediynoves for some finite. This im-
plies thatPr has astrictly positive powelP, i.e., thet-step Markov chain reaches each
state with positive probability from any state. The irreducibility and aperiodicity of the
kernel then follows. Hence the Markov chain is ergodic and has a unique invariant distri-
butionly for a fixed temperatur& [81]. J

Picking an appropriate cooling scheddlén) andr, the simulated annealing algo-

rithm yields unique distributiofl.. This is made precise by the following theorem.

Theorem 5.1.1LetU(x,y) : X x X — R be an induced energy function defined on the

cligue potentials

. > ¥ WelYs Xss), whenye A4 M(x);
U(x,y) = 53 (5.3)

0, 0.W..
where/™M(x) = {z€ X : Vs, ||zs— X|| < Rm}. LetA be:

~ A ~ ~
A= max |U(xy) —U(x2)|.
max 10(cy)~Ux2)

LetT(n) be a cooling schedule decreasing to 0 such that eventually,

TA
T(n) > —.
(n) = Inn
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LetQn= PTT . Then for any initial distributiorv,

(n)

lim vQ1---Qn — Me, (5.4)

Nn—oo
wherell is the limit distribution of (5.2) a3 tends to zero. In particular,
#TOI‘IT(X) = Mo (X). (5.5)

Proof. Let ayx = minyc _ymy) U(x,y). From (5.1), we have

exp(——lj (X%)’ax) _ et
(

3, om0 <

PI'(X’y) =

where|.#™M(x)| denotes the cardinality of the configuration spa¢é"(x). Following

analogous arguments to those in the proof of Theorem 4.2 in [76] , one can show

—1A

C(Qn) S 1_)\e_m7

wherec(Q,) denotes the contraction coefficient@f, andA = % Similarly, one

can prove the claim (5.4)]

Remark 5.1.1 For the parallel sampling algorithm, the explicit expression of invariant
distribution (5.2) is generally lacking. It is hard to analytically study the equilibrium
properties. Here, we just have some brief discussions.

Let QO be the set of limiting configuration(s) which is defined by
QO 2 {X: Mw(x) > O}. (5.6)

Let QL be the set of all the local minima tf. Then we hav&® c QL. If the potential

functionU is “well behaved”, i.e.,{x* : U(x*) = minyU (x)} C Q°, there is a positive
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chance that the parallel annealing algorithm leads the final configuratiox tas tem-
perature tends to zero, which is confirmed by extensive simulations in[77]. In section 5.3,

we analytically studied the limiting configurations with a special example.

5.2 Asynchronous parallel sampling algorithm

The asynchronous parallel sampling algorithm works similar as the synchronous
version, except each vehickemakes moves independently by following its own time
clockt® = {t3,t5,...}. Thus, at one time instancg there are only a part of vehicles make
a move. The transition probability from configuratism) to x(n+ 1) can be written

down as follows

Pr(x(n+1)[x(n))

= (P (% = Xs(N+1)[X () = X 1()(N)))-

s.nets

(5.7)

Clearly this formulation leads to a inhomogeneous Markov chain. In general, ainhomoge-
neous Markov chain may not have unique stationary distribution. This presents challenges
in convergence analysis. To deal with the difficulty, we adopt the partial parallel model in
[80] and model the asynchronous parallel algorithm as a hieratical Markov chain.

Lett = sLEJStS denote the set of updating time for all vehicles. Cledry,a countable

set. For each time instante t, each vehiclshas a probabilityps to make a move, which

is defined by



where|tS| and |t| denote the cardinality df andt respectively. For synchronous
case,ps = 1; whereas, for asynchronous o@ie< ps < 1. Then, the associated Markov

chain kernePr can be expressed as

Pr(x(n+1)[x(n))
= |'L((1— Ps) Lxg(nt1)=xs(n) + PsPr (X(N+1)[x(n)))
S
(5.8)
Since the kernel (5.8) defines a homogeneous Markov chain, followed by proposi-
tion 5.1.1, the Markov chain has unique stationary distribufigrfor a fixed temperature.
Then, by using similar argument in theorem 5.1.1, with an appropriate cooling schedule,

the asynchronous parallel annealing algorithm converges to a unique distribugion

wherell, = limT_e 7.

5.3 Equilibrium Analysis of the synchronous parallel algorithm in an ex-

ample

In this section, an expliciflt is derived for a particular example based on a battle
field scenario in section 4.2. Sufficient conditions that guarantee the optimality of the

parallel sampling algorithm are studied.

Proposition 5.3.1 For the synchronous Markov chain kernel of (5.1), supposedilfaty)
defined in (5.3) has a symmetric form, ild(x,y) = U(y,x) for all x,y € X. For a fixed
temperaturel, the synchronous Markov chain has a unique stationary distributlen
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given by .
> exp(-U(x,2)/T)
My (x) = == - (5.9)
Z Z eXH—U (y7 Z)/T)

yeXze. /M(x)

proof. The existence and uniqueness of stationary distribution are followed by proposition

5.1.1. The markov chain kernel (5.1) can be rewritten as

exp(— U (_>r<7y)

5 exp(—U2)
ze /" M(x) T

Pr(xy) = (5.10)

(5.9) can then be verified due to the fact the balance equation fulfilled;l+.ex) *
Pr(x,y) =Mt (y)*Pr(y,x)0
In general, the symmetry of energy functiﬁr(x,y) does not hold. However, in
some special cases, one can construct a symmetric energy function for the same parallel

Markov chain kernel.

Theorem 5.3.1 Suppose that the Markov Random Field defined in section 4.2 only con-
sists of singleton and pairwise cliques, and the neighborhood system is time-invariant,
then there exist a symmetrization potential functibwhich defines the same parallel

Markov chain kernel defined by in (5.10). In specific,

U(x,y) =U(x,y) + X;P{S} (x) (5.11)
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Proof. We first show the symmetry &f .

Uy = Uxy)+ st{s}(xs)

= ZLPC(VSaXS\s + Z;P{s} Xs)

= ;w{st} Ys, Xt) + Z;P{s} Ys) + ZS‘P{s} Xs)
— S Wen(eY)+ S Wie () + S Wig (vs)
; (st} (Xs S; (s} (Xs) SGZ (s1(¥Ys

= U(y,x)+ Z;'P{s} (ys) = U (y,%)

Because the difference betwdél(\x, y) andU (x,y) depends only on configuration
X, the two potential functions actually defines the same Markov chain kernel. In precise,

for any two configurationg andy, we have

exp(~U (x,y)/T)
> exp-U(x2)/T)

ze /" M(x) )
exp(-0(xy)/T~ 3 W5 (9/T)
> exa-U(x2)/T~ 3 ¥ig()/T)

ze N/ M(x)
_ e Uxy/m)
5> exp-U(x2)/T)

ze N/ M(x)

Pr(xy) =

Let H(x) be the induced energy from the invariant distributiofy,) of the Markov chain

kernelQr ). In specific,

H(X)=—In ( > exp(—U(x,z))) (5.12)
zeA/"M(x)

Pick an appropriate cooling scheddlén) as in theorem 5.1.1, one could conclude
that the asymptotic configuration(8P of the parallel sampling algorithm are the min-
imizer of H(x). In the next, one would like to study wheth@P minimize the original
configuration energyl (x).
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With the Gibbs potential function defined in (4.4), the induced energy function

U (x,y) satisfies the following inequality

U(xy) =Y Anllys—x|
;t nijlys
+ ZS(/\g(JS’(X) +3(Y)) +20(I5(x) +I5(¥)))
se
< D An(llys = sl + [xs =%l
;t S S S
+ ZS(/\g(Jé’(X) +(Y)) +A0(I5(x) +I5(¥)))
ES
< ;Aan+U(X>+U(y>
t
< Rn+2U(x)+A (5.13)
whereA = max, _,m |U(x) —U(y)| is themaximal local oscillatiorof the potential).
And Cl - ZS;ét )\n

From (5.12) and (5.13), we have
H(X) < . (2U(X) +Cc1Rn+A) (5.14)

where.Z =max|In|.#™(x)|. Letx* be the minimizer ob) (x), i.e.,x* = argmirl (x).
xeZ

Minimize both side of (5.14), we have

mig?lfl (X) < A (2U (X*) 4 c1Rm+A) (5.15)
XE 4
Similarly, using the facxs — x| < Rm—+[lys— /|, it can be shown that

H(x) > .2 (2U(x) — c1Rn — )

where.#Z = minkIn|4™(x)|.

Lemma 5.3.1 Let the seA = {x: H(x) < .Z (2U (x*) +c1Rn+A)}, and the seB = {x:

U(X)—U(X") < Z(ciRn+4)}. ThenB D A

AN
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Proof. Vx € B, we have

H(x) > 4 (2U(X)—ciRn—A4)

> M (2U(X')+Cc1Rn+4)

which impliesx € A. S0,B C A, which is equivalent té\ C B. [J
From the lemma, one could conclude that the minimizel 6f) lies in a ballQ®
with radiusc; Ry + A from minimizer ofU (x). In section 5.1, we hav@? is a subset of

local minimaQ'. With lemma 5.3.1, we have
Q% c (Q-NQB) (5.16)

If (Q-NQB) = {x*}, the parallel algorithm minimizes the original potential func-
tion U and desired configuration(s) can be achieved. For many applications, goal config-
urations might not restrict to ones with minimum energy. If all configurations contained

in (Q-N QB) are desired, parallel algorithm then achieves the global goals for sure.

5.4 Simulation Results

In [77], several examples on vehicle formation control using parallel sampling al-
gorithm, e.g., line formation, clustering. In this section, simulations with the battle field
scenario were conducted to verify the analysis result in the previous sections. The simula-
tions suggest that the parallel sampling algorithm successfully lead the vehicle networks
to the target area without being trapped by the obstacles.

In the simulation there are 50 vehicles on ax488 area (see Fig. 3.1). The target
is located at the corner (43,43) with radigg= 5, and two overlapped circular obstacles
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with radius 5 are centered at (17, 23) and (23, 17), respectively. Initially the vehicles
are randomly distributed close to the other corner which is opposite to the target. The
parameters used argy =5, Ao = 1, An = 0.2, Rn = /2, Rs= 61/2. The cooling schedule

100

is setto qu, wheren is the number of annealing iterations. Simulated annealing was

performed forl000steps. Figure 5.1 shows the snapshots after different annealing steps.

One can see that the whole group reaches target after 750 steps.
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Fig. 5.1: Snapshots of formation operation. (a) Initial configuration; (b) after 250 anneal-
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ing steps; (c) after 500 annealing steps; (d) after 750 annealing steps.
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Chapter 6

Performance improvement through a hybrid scheme

Analysis and simulations in chapter 4 and 5 have shown that simulated annealing
with the Gibbs sampler can lead to the achievement of global objectives with limited
moving capabilities and communication ranges [77, 76]. However, high traveling cost
arising from the stochastic nature of the algorithm presents a barrier to its application in
practice.

In this chapter a hybrid approach is proposed, which combines the advantages of
the deterministic gradient-flow method and the stochastic simulated annealing method.
The algorithm works as follows. Each vehicle in a swarm makes its own decision to
switch between the two methods: with initial choice of the gradient-flow scheme, a ve-
hicle switches to simulated annealing when it determines that it gets trapped by some
obstacles. After a certain numbirof annealing steps, it switches back to the gradient-
flow scheme to save the traveling time and cost. A notion of memory is introduced to
further improve the performance. Each vehicle records the “dangerous” locations where
it has been trapped before, and adaptively takes this information into account when mak-

ing moving decisions.
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6.1 A Hybrid control algorithm

In the application of the battle field scenario, the gradient-flow method alone pro-
vides fast march toward the target in the absence of obstacles but it may get vehicles
trapped in non-target areas. On the other hand, the Gibbs sampler-based simulated an-
nealing complements the gradient method in that it could move vehicles out of otherwise
trapping areas, but one has to pay the cost associated with probabilistic exploration -
longer execution times and traveling distance. The hybrid control scheme aims to com-
bine advantages of both schemes while avoiding their disadvantages.

To demonstrate the idea, a battle field scenario is used for simulations. The problem
setup can be referred to section 4.2. And the mission goal is to maneuver multi-vehicles to
cover target area while avoiding obstacles and collide with other vehicles. For simplicity,
itis assumed that there is one circular target area centepfgdand there ar& (possibly
overlapping) circular obstacles centeregt 1 < k < K. To achieve such objective, the

following Clique potential functions in (4.2) are used.

W = [ps—p
0] K 1
w -y - 6.1)
S = 2 pe— ¥
L ifAAD
yno— 22y Tsp]
A, it Hc=0

whereW{ tends to be smaller when sisehas more neighborsA > 0 is a relative large
constant and it represents the penalty for having no neighbors.

In the proposed scheme vehicles make moving decisions simultaneously and hence
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the scheme is fully parallel and scalable. The algorithm works as follows:

e Step 1. Each vehicle starts with the gradient-flow method (see below for more detall

on the implementation of the gradient-flow method) and goes to Step 2;

e Step 2. If ford consecutive time instants a vehicle cannot move under the gradi-
ent method and its location is not within the target area, then it is considered to
be trapped. The vehicle then switches to the simulated annealing method with a

predetermined cooling schedule (see below for more detail) and goes to Step 3;

e Step 3. After performing simulated annealing fdrtime instants, the vehicle

switches to the gradient method and goes to Step 2.

In the case of a conflict (multiple nodes contend for one spot), a uniform sampling
is performed, and the winner will take the spot while the other contenders will stay put for
the current time instant. Note that the resolution of conflict can be achiegatly since
Rs > 2Ry, and potentially contending nodes are within the local communication range. In

the simulation the algorithm will stop if

ug=S Ilps— Pl <, (6.2)
2

whereug is an indicator measuring how far the vehicles, as a whole, are away from the
target area.

Implementation of the gradient-flow scheme and the simulated annealing scheme is
provided next for completeness.

1). The gradient-flow scheme
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In the gradient-flow method the velocities of vehicles follow the (negative) gradient

flows of their potential surfaces. To be specific, at each time instant,

e Step 1. A vehicles determine the seis of candidate locations for the next move,
i.e., the set of cells with the distané®, and not occupied by other vehicles or

obstacles;

e Step 2. For eache A, evaluate potential functios(X(S\s) = X(S\s),xs = 1),

whereS\s denotes the complementoin S,

e Step 3. Update the location of vehidéy taking

Xs = argmin®g(X(S\s) = x(S\s),xs =1).
leNs

2). Gibbs sampler-based simulated annealing

Unlike the gradient-flow scheme, in simulated annealing each vehicle updates its
next location by sampling a probability distribution. First a cooling schedyl® is
determined (how to choose a cooling schedule for best convergence performance is itself

a vast subject and is beyond the scope of this paper).

e Step 1. Len=1,

e Step 2. The vehicledetermines the sé\s of candidate locations for the next move

as in the gradient-flow method;

e Step 3. For eache A, the vehicle evaluates the Gibbs potential functiayl ) =

Ds(X(S\s) = x(S\s),xs =), and calculates the probability distribution

_ dJs((I))
e T(n
S e T
zeNs

N
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e Step 4. Updates to | € Ag with probabilityP(xs =1);

e Step 5. Lein=n+1, and repeat Step 2 to step 5.

6.2 Qualitative Analysis of switching parameters

In the hybrid algorithm there are two key parameters that determine the performance
of the systemd andN. d is the waiting time that triggers a vehicle to switch from the
deterministic approach to the stochastic one, ldnd used to determine the duration for

stochastic exploration.

6.2.1 Waiting timed

Whend is smaller, it's more likely for a vehicle to make a wrong decision and
switch to simulated annealing. In particular, a vehicle may be "trapped” temporarily due
to the presence of its neighbors. Premature switching to stochastic exploration adds to the
traveling cost. On the other handdifs too large, it will also be a waste of time if indeed
the current cell is a trapping spot.

This tradeoff is verified through simulation. In the simulation there were 20 vehicles
on a 48x 48 grid (see Fig. 4.2). The target is located at the corner (43,43) with radius
Ry = 5, and two overlapped circular obstacles with radius 5 are centered at (17, 23) and
(23, 17), respectively. Initially the vehicles are randomly distributed close to the other
corner which is opposite to the target. The parameters usedgre5, Ao = 1, A = 0.2,

Rm = V2, Rs= 6v/2. The cooling schedule is set to tﬂ%‘%, wheren is the number

of annealing iterations. The stopping criterier= 200 (for the distance indicataug) is
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Fig. 6.1: Average traveling time versus the switching paraneeraiting time).

chosen. So at the end of each simulation, the average distance between the target and
vehicles is about/10which is less than the target radidg. While fixing the duratiorN
to be 100, the switch waiting timeis increased from 2 to 100. For eadhl0 simulation
runs were performed and the traveling times were averaged. Fig. 6.1 shows the average
traveling time versus the switch waiting tirde

In the figure, agl is very small {d = 2), vehicles take about 950 steps to arrive the
target. Then the traveling time drops to 800 wlakis between 4 and 18. After that, ds
becomes larger and is comparable to stochastic exploration duNititre performance

is dramatically degraded. Clearly, a modermthould be chosen for the best efficiency.

6.2.2 DuratiorN

Duration timeN for stochastic perturbation is another key parameter. Intuitively
a very smallN may not provide a trapped vehicle enough opportunities to get out; and

a very bigN will kill the time-saving advantage offered by the gradient-flow algorithm.
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Therefore, it is of interest to study how the duration tilhaffects performance analyti-
cally.

A simplifying assumption is adopted to make the analysis tractable. Considering
that each vehicle makes its own moving decision, one might approximate the multi-
vehicle system as a collection of independent single vehicles. Furthermore, it is assumed
that the time spent on the gradient-flow method is much shorter than the time spent on the
stochastic approach, and can be neglected. To justify the latter assumption, it has been
found in simulation that a vehicle takes 40-50 times more steps to get the target using
the stochastic approach than using the gradient-flow approach in the absence of obstacles.
Define thereachablearea to be the set of cells from which a vehicle can reach the tar-
get area under the gradient-flow method, anduieachablearea to be its complement.
Starting from the unreachable area with the gradient method, a vehicle will be trapped
and switch to the simulated annealing. For the duraMoof stochastic exploration, let
P(N) be the probability that a vehicle will move to the reachable area Bfftsteps of
simulated annealing with the Gibbs sampler. Then the expected time for the vehicle to

reach the target is approximately

Trotal = ik- N-P(N)(1— p(N))k—l
k=1

— N-P(N)L 6.3)

where the vehicle is assumed to start from the unreachable area, oth§gyyise O.
The key question then becomes how to evaliité). In section??a bound (4.15)
is derived to reflect the convergence rate of the probability distributige= vQ; - Qp.

From sectior??we know, by designing the potential function such that the target location
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has the lowest potentidl]., has mass 1 in the target area. Since the target belongs to the

reachable area, the probabilRyN) satisfies the following inequality:

P(N) > P(vehicle reaches target

1 _ 2
> 1—§const-N 2M+ALT (6.4)

Combining (6.3) and (6.4), one obtains

N
Tiotal < IV (6.5)
1— const: N~ 2haar

Eq. (6.5) clearly indicates that an optim¥lexists to minimize the bound on(N). This
analysis has confirmed by simulation. Same simulation scenario and parameters were
used earlier except that the waiting tirdefor switching was 8 and the duratid for
stochastic exploration was varies from 20 to 600. Fig. 6.2 shows the average traveling

time versusN, and one can see that a choiceNobetween 60 and 200 would achieve
good time-efficiency.

Remark 6.2.1 The hybrid control scheme proposed is essentially a kind of stochastic
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relaxation algorithm. However, simulated annealing based on the Gibbs sampler provides
advantages over many other stochastic perturbation methods.

Take the single vehicle case as one example. One can show that the probability
of a vehicle getting trapped again aftBr annealing steps goes to zero ldgjoes to in-
finity. This is not the case with just any stochastic scheme. Take a random walk-type
perturbation scheme as an example. As the nurhbef random walks goes to infinity,
the distribution of the vehicle approaches the stationary distribution of the Markov chain
defined by the random walk. In general there will be positive masses falling in the un-
reachable area. This implies that there is no guarantee for the vehicle to reach the target

no matter how many steps are used for the random perturbation.

6.3 The impact of memory

In this section the notion of memory is introduced to further enhance the hybrid
control scheme. The idea is to record the trapping spots and reduce the probability of
repeatedly being trapped at the same spots. Each vehicle keeps trackisk tlegelof
dangerous cells, and accordingly modify its potential surface to lower the probability of

accessing high-risk regions. To be specific, the enhanced algorithm works as follows:

e Step 1. Initialize the algorithm, set parameateN, and the cooling schedulg(n),

and let all vehicles initially choose the gradient-flow method,;

e Step 2. When a vehickedetermines that it has been trapped atgbl obstacles, it
increases the risk Ievaj by 1 (the default risk level for every location is 1). Then
the vehicle switches to simulated annealing withk 1,
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e Step 3. At each annealing step, vehigtietermines the ség; of candidate location
for its next move. For € Lg, it evaluates the Gibbs potential functidg(X(S\s) =
X(S\s),Xs = 1), which is simply denoted a®s(1). Then vehicles will take | with

the probability

e Step 4. Increasa by 1 and repeat Step 3 untilreachedN. The vehicles then

switches back to the gradient-flow algorithm and goes to Step 2;

e Step 5. The algorithm stops if the aggregate distance indigatee.

6.4 Simulation Results

To compare the performance with the original hybrid control scheme, simulation
has been performed with the same setup as in the previous section. The waiting time was
set to bed = 6 and the duratioMN varied from 30 to 600. As seen in Fig. 6.3, the hybrid
control scheme with memory always achieves better performance than the original one
for all N.

Summary

In this chapter, a hybrid algorithm was developed in an attempt to improve the ef-
ficiency of the Gibbs sampling based stochastic algorihntm. Some analysis was provided
to gain insight into the algorithm. The algorithm is heuristic in nature and treats each ve-
hicle independently, and thus one cannot expect to get analytical convergence results for

the network as a whole. In some sense the hybrid control scheme offers stochastic pertur-

88



14001

-~
o
o

Traveling time to reach target for all vehicles

600¢

500

[ = = I

o = N w

S o o =}

=) S =) =)
T T T

©o

o

o
T

@

o

=)
T

—6— without memory
-0- with memory

e h-D-d

. . . )
40 60 80 100 200 400 600
Duration N for stochastic exploration

Fig. 6.3: Averaged traveling time under the hybrid scheme with memory, in comparison

with that under the memoryless scheme.

bation to the deterministic gradient-flow method; however, it has advantages over random

walk-type perturbation schemes [15]. Take the single-vehicle case as an example. One

can show that the probability of a vehicle getting trapped again Aft@nnealing steps

goes to zero abl goes to infinity. For a random-walk perturbation scheme, however, as

the numbeN of random walks goes to infinity, the configuration distribution approaches

the stationary distribution of the Markov chain defined by the random walk, and there is

no guarantee for the vehicle to reach the target no matter how many steps are used.
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Chapter 7
Robustness of the Gibbs sampling approach in the presence of sensor

errors

The Gibbs sampler based stochastic algorithm proposed in the previous chapters
have been demonstrated great success in controlling UAVs networks. However, an under-
line assumption in our previous studies was that the potential function can be precisely
evaluated. In practice, the potential values have to be calculated via sensor measurements.
In many applications, e.g., the battle field scenario, cost-effective sensors are preferred to
reduce the total expense. As a result, sensor uncertainties introduce noises to Gibbs poten-
tial evaluations. It is then of interests to study the robustness of the annealing algorithm.
In the past, this issue have been studied for the annealing algorithm based on the classical
MREF. In [82], Grover presented an analysis of the impact of fiseetye-erroron equi-
librium properties. Later on, Gelfand and Mitter studied the effects of state-independent
Gaussian noise. They showed that in certain conditions, slowly decreasidgm-error
will not affect the limiting configurations [83, 84]. Greening studied the impact of er-
rors for the metropolis annealing algorithm in VLSI applications[85]. By assuming the
errors as the AWGN, a explicit expression of equilibrium distribution was derived for the
underline Markov chain. Convergence rate was also investigated in his dissertation. In
this chapter, we studied the impact of both fixadge-errorand boundedandom-error

on the annealing algorithm proposed in [78]. In our analysis, unlike previous studies, we
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Fig. 7.1: The diagram of the general robotics system

do not require the random-error follows Gaussian distribution. Sufficient conditions that
guarantee the convergence to the global minimizer were analyzed. Simulations are further

confirmed the analysis results.

7.1 Sensors and Sensor Errors

In robotics applications, sensors play important roles in understanding/exploring
environment and handling the environment uncertainty. The diagram of the general ro-
botics system is depictedx in figure 7.1,

In the diagram, sensors are firstly used to capture the measurements from surround-
ing environment, e.g., the UAV’s location, the distance between the UAV and obstacles,
the environment photos taken by cameras, and etc. The measurements are then fed into
certain data processing module to acquire necessary information for decision making.
This module may consist of but not limited to noise filtration, image processing and un-
derstanding, data fusion, and etc. The decision making module uses the processed data

to compute the control command for achieving certain tasks and send back to robotics
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actuators. For example, both the gradient descent approach, and the gibbs sampler based
approach belongs to this category.

There are different types of sensors have been developed in the robotics field in the
past few decades. From their functions, sensors can be divided into two categories: inter-
nal sensors and external sensors. Internal sensors are mainly used to measure and monitor
the internal states of a robot, e.g. velocity, acceleration, temperature, pressure, balance,
attitude, and etc., so that low level controller can be designed for UAV maneuvering. It
also help to detect and avoid failure situations, e.g., actuator saturation, unstable mode.
Most internal sensors are non-contact. They include but not limited to synchros, resolves,
proximity, accelerometers, compasses, optic encoders. Both synchros and resolves are
used to measure angular position. compasses generate global coordinates. Optic encoders
are used for measuring and controlling motor speed and acceleration.

External sensors, on the other hand, are responsible for acquire information from
environments as aforementioned. For example, GPS is usually used to get vehicle’s posi-
tion; camera can be used to get the shape of obstacles; sonar can be used to measure the
distance between vehicle and obstacles. There are even odor sensors have been recently
developed to detect the chemical ingredients and densities.

As discussed before, in multiple UAVs applications, failure or even loss of certain
amount of UAVs is tolerable because of the dangerous working conditions. Therefore,
cost-effective sensors are preferred to reduce the total cost of a single UAV. As a result,
sensor noises and uncertainties may introduce fairly large errors into the system. Itis then
of interest to study the robustness of the Gibbs sample based algorithm.

The sensor error considered in the thesis fall into two categaidesje-errorand
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random-error A potential function is said to hasnge-errorsif the difference between
the nominal potential valué (x) and the observed oné(x) is confined to a fixed range,
and does not change with time. Thenge-erroris usually caused by the system error
of defected sensors. On the contrary, we consider that the potential fubktiorhas
random-errorsif the difference between the (x) andU (x) is an independent random
variable, which is denoted &x). Therandom-errorintroduces time-varying potential

evaluation.

7.2 Convergence analysis in the presence of sensor errors

In this section, we study the impact of sensor errors on the convergence properties

of the annealing algorithm in the subsection 4.4.

7.2.1 Gibbs potential with range-error

When sensors carried by vehicles haarge-error, the observed potentil(x) of

a configuratiorx can be expressed as

A

U (x) = U (x) +e(x), (7.1)

wheree(x) is a finite constant. We assuree< e(x) < g, wheree ande are the upper

bound and lower bound of range error respectively. The observed potémba:katisfies
U +e<U(x) <U(x) +g, (7.2)

Since therange-erroris time-invariant, the Gibbs sampler defines a homogeneous
Markov chain at a fixed temperatufe By directly applying theorem 4.4.1, one could
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conclude that there exist a unique equilibrium distributigrat temperaturd,

v

U(x)
3 € T JseSdzeaie€ T
fir(x) = =R

(7.3)

Proposition 7.2.1 Let M+ (x) denote the equilibrium distribution in (5.2). Let the maxi-

mum oscillation of range erroAe = &—e. Then,
e T Mr(x) <Mr(x) <eT MNy(x) (7.4)

Moreover,

Iy — Nl <e™ -1, (7.5)

where|| - | stands forL; norm in this paper.

Proof. Pick any configuratiorx € 2°. For each configuratioy € {xU .4/™(x)}, let
U (y) = U (y) +e. For any other configurationg' (€ {xU.#™(x)}°), letU (X) =U () +&.

Then, we have

U(xT)+g Z Z eﬁU(%Hg
seS 2 ye A/ M(x

M (x) < S0, (x) 7

whereZr (U) denotes the partition function by taking Gibbs poterifiék). Clearly,
Zr(U) > Z7 (U +®).

Then,

_2 _UX uy)
A < € T€ T YssS)yesrmx€ T
Zr(U +¥)

2 UK u(y)

€ TEe T Ysesyyesmx€ T
e TZr(U)

= e T TH(X)= eﬁrﬁ(x).
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The converse arguments supplies the lower bound. Then, By inequality (7.4)

~ 20e _2De
My =M1l < max{|leT My —Nr|,|le" T Ny —Nt|l}

20\
— eT —1.

The last equality holds becausd® —1>1—e 1.0

Proposition 7.2.1 unveils the basic impact of range-error on the equilibrium distri-
bution for a fixed temperaturé. Moreover, pick an appropriate cooling schedule as in
theorem 5.1.1, i.e., logarithm cooling rate, it can be shown that the SA algorithm leads to
limiting configurations with minimum energy &f (x). If the global minimizer otJ (x)
minimizes the nominal Gibbs potentlalx), the range-error does not affect limiting con-

figurations. A sufficient condition is formally stated in the following proposition.

Proposition 7.2.2 For the Gibbs potential with range-error, the simulated annealing al-
gorithm leads to the global minimize¢ of the nominal Gibbs potentidl (x), if the
following condition satisfies:

1
Ae S EAU7 (76)

wherelyy is the minimum potential difference with global minimizer, i.e.,

Ay= min |U(X)—U(x)|.
U Xegg}gﬂl () —U (x|

Proof. Let configuratiorx be any configuration other than the global minimizgrn.e. x #

X € 2. By equation (7.2), we have

U(X) < UKX)+Ae<U(X)—Ay +De

IA

U(x) —Ae < U (X).
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One then concludes that minimizes potential functiotd (x) O
If the maximum oscillation of range-error is too large, the simulated annealing al-

gorithm may not be able to lead the limiting configurations to global minimizer.

7.2.2 Gibbs potential with random-error

In the previous section, the potential eregk) is assumed to be a fixed value for
each configuratiox. In practice, the potential error due to sensor noise usually varies
with time, i.e., the Gibbs potential haandom-errors For the ease of analysis, let the
random-errorZy be an independent random variable associated with each configuration

x. The observed Gibbs potentldlwith random-error can then be expressed as

~

U (X7 ZX) =U (X> + ZX7 (77)
whereZ, follows a probability distributiorf;,

Proposition 7.2.3 LetZ = {Zx : x € 2"} be the vector of random-error. The Gibbs sam-
pler with random-error define a homogenous Markov chain at a fixed temperature with

kernel matrix satisfies
Pr =Ez(Pr(2)). (7.8)

wherePr (z) is the kernel matrix with fixed range-errar Moreover, there exist a unique
equilibrium distribution’ 1 at a fixed temperatur&. Starting from any initial distribution
v,

lim [[v2(Fr)"—fir]| =0 (7.9)

Nn—oo
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Proof. For any two configurations,y € 27, the transition probabilityj(x, y) satisfies

prixy) = [prixyz=21(@dz (7.10)

One could then conclude (7.8) holds. Given any fixed range-erme know the kernel
matrix Pr (z) is primitive, i.e., the markov chain is irreducible and aperiodic. Sktcis a
superposition oPr (), the primitivity of Pr is obvious. The uniqueness and existence of
the equilibrium distribution then follow accordingly. The final statement is followed by
the ergodicity of the primitive Markov chaifl

Unfortunately, the lacking of the explicit form of the stationary distribution for the
Markov chainPr presents challenges to analyze the robustness of the SA algorithm under
therandom-error To simplify the analysis, we assume that thedom-errorhas only
limited support. Similar idea for analyzimgnge-errorin the previous subsection can

then be applied.

Proposition 7.2.4 Assume that the random-erraris bounded, i.ez <z <z Vx. Let
A, =7—1z LetC(Pr) be the contraction coefficient of a Markov kerfel(see [20]). The

equilibrium distribution 11 satisfies the following inequality:
(7.11)

Proof. By assumption, sincg is bounded, given ange Z, it is easy to show that, for all

X,y € 2, the matrixPr (Z = z) satisfies

20z
T

e TPr(xY) <Pr(xylZ=2) <eTPr(xy), (7.12)
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wherePr = Pr(Z = 0) is the Markov chain kernel matrix with nominal Gibbs potential.

Then

1A =N = ||ArPr —MrPr +NrPr —MyPr|
< ||fiT =N7|[C(Pr) + NPr — NPy |
~ ~ 207
< At =N7CPr)+(eT —1).

This is equivalent to

20z
T

At —N7[(1-C(Fr)) <eT -1

The inequality (7.11) then follows]
Clearly, as the maximum oscillation of random-erfgrtends to zero, the distribu-

tion v = v2(Pr)" tends to approach the nominal equilibrium distribution.

Proposition 7.2.5 Pick an appropriate cooling schedulgn) such thatimp_.. T(n) =0
and the Markov chairPr converges as temperature tends to zero. Asstyne %AU.

Then, From any initial distributiow

lim vﬂﬁr(i) = Mo, (7.13)

n—oo

i.e., the limiting configurations tends to global minimizers of nominal potebt{a)
Proof. Since the Markov chain kernel matri{ﬁr(i)} Is primitive, by picking an
appropriate logarithm cooling scheduked;, T (n) = c/log(n)), the simulated annealing
algorithm converges to a limiting distributid, i.., iMp e v 11 Pr(j) = Mw, where
Me = limt_goll7. In the next, one will show the limiting distributidf., actually equals

rloo.
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Let M+t (z) denote the equilibrium distribution of the Markov chain kerRe(z).

For anyw € Z, one has

My (W)Br — I'IT(W)/ZPr(z)f(z)dz

:/Z(rlT(w)—I'IT(z))Pr(z)f(z)dz-i-/ZI'IT(z)f(z)dz

Let M be the mean of1(z) with respect to the probability distributiofi(z). In
specific, = ,,Nt(2)f(z)dz LetAn, = [, [,(M7(w)—T1(2))(Pr(z) — Pr(w))f(z)dz

Integrating the both sides of (7.14) with respecitmne then has

ﬁTﬁ:/WnT(w)ﬁrdw
= [ o) [Pr@(nrw) - N1 (@) f@dzcw
+ [ 1w [nr(@1@dzdw
= S [ - M @)Pr@) 1)t wdzdw
- /W /Z(nT<w>—m(z))&(w)f(z)f(w)dzdw}
+ /Wf(w)l'_Iwa

1

— o, 4T (7.14)

The primitivity of P implies thatlimp,_.. MtP" = 7. Assuming(l — Fr) ! exist,

with (7.14), the left hand side of the above equation can be rewritten as

n
— . 1 o —
NP = ZléAnTp+l+nT
i=

1 - - —
= Sbn (1 -AN)(I - Pr) 1+ Ny

As n tends towo, the equilibrium distribution can then be explicitly expressed as

~ 1 ~ ~ —
Ar = S8n. (1 = FF)( —Pr) 4Ny (7.15)
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By proposition 7.2.2, one hdsnt_,olM1(z) = Mo Vz, sincel; < %AU. Then, we
have
lim An, = 0, and lim Mt = M.
TpoT =Y o T
Take the limit of T for equation (7.15), and plug in the above equations. The final con-

clusion then follows:

- /1 o x g =
Ao = Tlano(éAnT(l—PT)(l—Pr) +r|T)

The result shows that if the bound of thendom-erroris constrained b 2“, an

appropriated cooling schedule leads to global minimizers.

7.3 Simulation Results

Simulation was conducted to verify the robustness analysis in the previous section.
A formation control example involving inter-vehicle interactions are used to demonstrate
the impact of the sensor error on the convergence of the Gibbs sampler based approach.
Other objectives or constraints, such as target-approaching and obstacle avoidance, can
be similarly analyzed.

The goal of the simulation is to have the nodes to form (square) lattice structures

with a desired inter-vehicle distan&ges The potential function used was:

U(x) = > C(/[% —Xs|| — Raed” —C2),
r#s, % —Xs||[ <R

wherec; > 0, ¢, > 0, anda > 0. A proper choice ot, encourages nodes to have more
neighbors. The powesr shapes the potential function. In particular, fék, — Xs|| —
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Ryed < 1, smallera leads to larger potential difference from the global minimum.

In the simulation, 9 nodes were initially randomly placed on an 8 by 8 grid (see
Fig. 7.2 (a)). Parameters used weR:= 4v/2 — &, Rn = 2v2+ &€, Ryes= 2, ¢1 = 10,
c; =105 a =002 T(n) = Wllnn’ andt = 20. The desired configuration (global
minimizer of U) is shown in Fig. 7.2 (b) (modulo vehicle permutation and formation
translation on the grid). Simulated annealing was performed@steps.

The sensor error was modeled as additive ngjsas in (7.7). Uniform distribution
was selected fozZy. Other distributions can be studied accordingly. The potential differ-
ence of the example was calculated td¥pe= 11. So the potential error bourd, should
less tharb.5 in order to guarantee the convergence. In the simulation, we compared with
3 different cases: noise-fre&; = 5, andA; = 30. Moreover, for comparison, we studied
cases where the sensor error is modeled as additive white gaussian noise (AWGN). Due
to the lack of analytical results, numerical studies were provided instead. Two different
variancesg = 1 and 5, are used in the simulation respectively.

To demonstrate the trend of convergence to the lowest potential, one can calculate
the error||v, — MNw||1 @s metric, wherey, is the empirical distribution of configurations

(again modulo vehicle permutation and network translation), and

1if xis desired
Moo (X) =
0 otherwise

Therefore,
[Va—Meoll2 = 1= vn(X") +[0— (1 — vn(X")| = 2(1 - vn(X")),

wherex* denotes the desired formation. The evolution af — M ||; for different poten-
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tial error bound are shown in Fig. 7.3, whexgx*) is calculated as the relative frequency
of samplingx® in 1000 annealing steps. The plot suggests that when the potential error
boundA; < %AU , the convergence trend is roughly same as the noise-free case. On the
other hand, when; is relative large, the convergence trend is barely observed.

With the sensor random-error being modeled as AWGN, similar convergence prop-
erties were observed in simulations. As one knows, for normal distribl@®#A% sam-
ples lie in[—30,+30], which is roughly comparable to the former cases wh= 60.
Hence, the case = 1 should be comparable with the casg= 5, and the case =5
corresponds to the cagg = 30. In the simulation, it was observed that the convergence
rate ofg = 1 is slightly faster than the cagle = 5 with uniform distribution. Similar
results can be observed by comparing cases 5 andA; = 30. The reason is due to

the bell shape of the normal distribution, where probability densities concentrate at the

center.
8 8
7 * * 7
6 6 * * «
5 x  * 5
4 *x 4 * * *
3 * 3
2 * 2 * * *
1 1

Fig. 7.2: The initial and desired configuration for 9 vehicles. (a) Initial configuration; (b)

desired configuration
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Fig. 7.3: Comparation of the evolution (¥, — N1 for different sensor noise.
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Chapter 8
MPC based motion control of Car-like autonomous vehicles

8.1 Introduction

In this thesis, a two layer hierarchical scheme is adopted in the collaborative UAV
swarms control system design (see figure 8.1). In the system diagram, it can be seen
that the Gibbs sampler based stochastic algorithm proposed in previous chapters be-
longs to the high level path planning module. It generates a sequence of way-points
{pi(n),n=1,...,N} for each UAV/roboti. The sequence of way-points are then used to
generate smooth continuous curfes(t) } which pass the way-poirg;(n) at timet(n).

The continuous curvéx;(t)} for UAV/robot i is usually called aeference trajectory

One can imagingx;(t)} as theimageof the discretgath { pj(n)} on the continuous mis-

sion space. The goal of lower-level system in figure 8.1 is to design controllers such that
UAVs/robots can follow theeference trajectories

In practice, however, dynamic and kinematic constraints, e.g., nonholonomic con-
straints, prohibit autonomous vehicles from following arbitreaference trajectoriesSo
thereference trajectorjrave to be generated by solving the vehicles’ dynamic and kine-
matic differential equations, which is considered in the low level motion control design.
Moreover, in the high-level path planning module, local collision avoidance, small ob-
stacle/moving threat avoidance, as well as input/state saturation are not fully addressed.

In this chapter, a Nonlinear Model Predictive Control (NMPC) approach based low-level
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Fig. 8.1: Gibbs sampler based collaborative control diagram

motion controller is proposed to address all aforementioned requirements. The low-cost,
robust and multi-objectives oriented control scheme was then verified through simula-
tions.

The remaining of this chapter is organized as follows. In section 8.2, the kinematic
model of car-like vehicle and controllability is first studied. Section 8.3 discusses the
generation of admissibkeference trajectoryvith nonholonomic constraints for a car-like
vehicle. Finally, the design and implementation of a NMPC based approach is addressed

in section 8.4.

8.2 Kinematic model of car-like vehicle and controllability analysis

The kinematic and dynamic models of wheeled mobile robots have been consid-
erably studied in the robotics control communities in past decades. The main feature

of the kinematic model is the presence of nonholonomic constraints due tolling
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without slippingconstraint between the wheels and the ground. The nonholonomic con-
straints impose many difficulties in control design. In particular, Brockett have shown that
a linearized nonholonomic model has deficiency in controllability and there is no time-
invariant linear control to guarantee the tracking error convergence zero [86]. To illustrate
the nonholonomic constraints, we first look at the simplest wheeled mobile robot model,
unicycle, as shown in figure 8.2. The configuration of the unicgete(x,y, 8) consists of
generalized coordinates: position coordingtey) at which the wheel of unicycle con-
tact with ground, and the angk measuring the wheel orientation with respect to the x
axis. All possible configurations form configuration space are denot€d-a¢q}. Due

to therolling without slippingconstraints, the generalized velocity variakdes [X,y, 9]

satisfy the following equation:

[sin@ cos@ 0} y | =0 (8.1)

6

This equation is usually called the nonholonomic constraint equation. In general case, the

constraint can be written as
C(@)g=0, (8.2)

whereC(q) is the constraint matrix. The nonholonomic constraints restrict general veloc-
ities g living in the null space of the constraint mat€Xq).

For unicycle model, by considering the nonholonomic constraint equation (8.1), the
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Fig. 8.2: The unicycle model

kinematic model can be expressed as

X cos6 O
V
y | =1 sing 0 (8.3)
. W
?] 0 1

wherev andw are two control inputs, linear velocity and angular velocity respectively.

The unicycle is the simplest wheel-base robot model, which is only of conceptual
interest in studies. In practice, people frequently adopt car-like mobile robot in ground
UAV applications due to the relative lower cost and the convenience for applications.
There are two types of car-like mobile robot: front-wheel driving vehicle and rear-wheel
driving vehicle. They basically share similar structure of kinematic model.

The configuration of the rear-wheel driving vehicle is shown in fig 8.3. In this
model, the generalized coordinatgs- (x,y, 0, @), where(x,y) are the cartesian coordi-
nates of the center point of the rear axtjs the heading angle of the car body with
respect to the x axis, anglis the steering angle. In figure 8.3is the distance between
the front axle and the rear axle.

In the kinematic model of car-like vehicle, four nonholonomic constraints must be
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Fig. 8.3: The rear-wheel driving car model

satisfied with each one associated with one wheel. (kglys,) and (x,ys) be coor-
dinates of the center point of the right front wheel and the left front wheel respectively.
Assuming the two wheels are parallel, the nonholonomic constraints for the front wheels

can be expressed as

Xfr SIN(0+ @) —ysrcog0+ @) =0
Xt SIN(8 + @) —y; cog 0 + @) = 0. (8.4)
Denote(Xs,Ys) as the coordinate of the front axle center point. Sikce Xg; + X
andys = yir + s, the two nonholonomic constraints are linearly dependent. So, they can

be simplified as one constraint. Same procedure can be used to reduce the nonholonomic

constraints of rear wheels. Therefore, four nonholonomic constraints are boiled down two
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nonholonomic constraints. In specific,

Xt Sin(8 + @) —yscog 6+ @) =0

xsing —ycosf = 0. (8.5)

Considering the rigid body constraints, the center of front &xjeys) satisfies

X¢ cosO X
= I+ (8.6)
i sinf y
The first nonholonomic constraint of (8.5) can be rewritten with only general configura-

tion g involved.

xsin(6 + @) —ycog 6 + @) — 61 cosh = 0 (8.7)

Assume that control inpwt w are linear velocity and steering velocity respectively,

the kinematic model of rear-driving vehicle can be expressed as

X cos6 O
y sin6 0 %
= (8.8)
6 tang/l O | | w
® 0o 1

One can easily verify that (8.8) satisfies the nonholonomic constraints (8.5) and
(8.7). Note that whemp = =7, the model becomes singular. This corresponds to the
situation where the front wheel heading is orthogonal to the longitudinal axis of the car.
In practice, we should restrict the range of steering apgteprevent the singularity case.

The kinematic front-wheel driving vehicle can be obtained similarly with linear
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veloctiy |v| = /%% +y?2

X cosfcosp O
y sinBcosp O %
= (8.9)
6 sing/l 0| | w
@ 0 1

Remark 8.2.1 In the previous study, the kinematic model of car-like vehicle is simplified

as a bicycle kinematic model. In practice, the kinematic model with wheel coordinates
should be used to address the presence of actuators and sensors on the wheel axle, as well
as tire deformation. Nevertheless, the kinematic model discussed in this section contains
main feature of vehicle kinematics and is feasible for illustrate the control design in the

rest sections.

Without loss of generality, in the rest of this section, we only consider the motion
control design for the rear-driving vehicle model. We first investigate the controllability

of the wheeled car. We start the analysis by rewriting the system equation (8.8) as

d=01(a)v+92(0)w, (8.10)

wheregi(q) = [cosf sin@ tang/l 0T, g2(q) =[0 0 0 1. Clearly, the kinematic
model (8.10) is a driftless, nonlinear system. The driftless means that any configuration
g € Qis an equilibrium point provided zero input. Given the initial conditigty) = qo €

Q and admissible control inpuit) € % on |tp,t], the unique solution of (8.10) is denoted

asq(t,to, go, u), or simplyq(t).

Definition 8.2.1 A system is controllable if for every two configuratignag, € Q, there
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exist a finite tim& > 0 and an admissible contral: [0, T] € % such thaig(T,0,q1,u) =

02

Following the nonlinear control theory in Isdori’s book [87], thie algebra rank
conditionis a very powerful tool used to test the controllability of a driftless nonlinear

system. In this case, one just need to check if the general controllable form is of full rank.

In specific,
rank{g1, 92, (91, 92], [91, (91, 82]], [92, [91, Q2] -] = 4- (8.11)
Observing that
[ 0 ] [ __sinB ]
co2 0l
oG 0 0 cog 0l
O3 = (01,02 = &91 - ﬂ92 andlgr,ga) = | % |, (8.12)
aq Jq 1 0
cog ¢l
0 0

one can conclude that the rank condition of the controllable form is indeed full rank, and

thus the controllability holds.

8.3 Trajectory Generation for car-like autonomous vehicle

In this section, we study the generation of the continuedsrence trajectoryor
car-like vehicle given predetermined way-point sequences in the free space. One of the
most interesting problem in the literature is the shortest path problem, which usually
associated with the time-optimal trajectory. However, nonholonomic constrains of the

car-like vehicle present difficulties in solving such kind of problems.
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In 1957 [88], Dubin studied the shortest trajectory problem for a very simple model,

the unicycle model with constant linear velocity 1, i.e.,

(
X = cosf
y=sinf
0=w

\

with configurationg = [x,y, 8] € R? x St, and control inputo. The goal is to find the time-
optimal trajectory to connect the initial configuratigmand the terminal configuraticop
with input constraint$w| < 1.

Although this problem was initial proposed by A. A. Markov in 1989, Dubins was
the first one who studied the problem in detail [89]. After then, similar problems have
been studied in [90], [91].

Dubins showed that the optimal trajectories are concatenations of at most 3 pieces
of basic elements. The basic elements include a line segrhp@in¢l an arc@) with
radius 1. Moreover, he showed that there are only seven combinations are allowed to
ensure optimality of the generated trajectory. Precisely, they must be of the forms in
L,C,L-C,C-C,C—-L,C-C—-C,C—L—-C. Forexample, the forrh—C—L is excluded
from optimal trajectory. Moreover, for the case®@f C — C, he showed that the middle
arc should be lie ir{rT, 271), and total length of three arcs should less tBan A typical
example of the optimal trajectory for dubins’ car is shown in figure 8.4, where a C-L-
C type trajectory is used to connect the initial and terminal configurations. In [92], the
shortest path synthesis for dubins’ car are studied completely.

However, in the dubins’ optimal trajectory, there may exist discontinuous curva-
ture at the connection point of two successive pieces, line-arc or arc-arc (with opposite
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Concatenation point

Fig. 8.4: An example of the optimal trajectory for dubins’ car

direction of rotation). To follow (exactly) such trajectory a car-like vehicle would be con-
strained to stop at the end of each connection point. To deal with the problem, Sussmann
[89] studied a generalization problem by controlling the angular acceleration in stead of

the angular velocity, which is the equivalent model of the car-like vehicle, i.e.,

/

X = cosf
y=sinf
0=w

w=u

\

where the control input is bounded€ umay), and the curvature of the state trajectaryg
[—Kmax Kmax 1S bounded. The goal is to find the time-optimal trajectory in the feasible
configuration spac€ € R? x S' x [—Kmax Kmad. He showed that the optimal trajectory
consists of line segments, arcs and clothoids.

A clothoid, also known as a Cornu spiral, is a curve parameterized by two Fresnel
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integrals(S(t),C(t)). In the canonical clothoid (Cl), thet) andy(t) coordinates can be

expressed as:

X(t) = /Otcos(BTTZ)dr (8.13)
t 2
y(t) = /Osin(BTT)dr (8.14)

Along a clothoid curve, the curvature depends linearly on the arc length and varies con-
tinuously from—co to +o0. For the clothoid defined in (8.13), it corresponds to the state
trajectory(x(t),y(t)) of system (8.13) with control input equals to constBntBecause

the curvature along the reference trajectory should be bounded, only a part of the clothoid
can be utilized in the optimal path generation.

Moreover, Sussmann showed that along the time-optimal trajectory for system (8.13),
the number of basic elements (L, C, and Cl) cannot be bound above. In some extreme
case, there may exist a time-optimal trajectory that involves with infinite chattering [89],
which is not allowed in practice.

A practical way addressing the problem is to study a sub-optimal problem by re-
stricting the maximum number of basic elements. The analytical study of the Sub-optimal
Continuous-Curvature (SCC) trajectory planning can be found in [93]. In the SCC trajec-
tory, there exist at most 9 pieces of basic elements. For each dubins’ optimal trajectory
there is a corresponding sub-optimal trajectory. For example, the C-L-C in dubins’ model
may become CI-C-CI-L-CI-C-Cl in the sub-optimal trajectory. The curvature profile in
this example is shown in figure 8.5. By replacing the ArandC in the left plot with
curve 1-2-3 and 5-6-7 in the right plot, the curvature profile is continuous.

The key part of this approach is to replace any arc segment in dubins’ optimal
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Fig. 8.5: Curvature profile for (a) Dubins’ optimal trajectory, and (b) SCC trajectory

trajectory with acontinuous-curve-turnin precise, the arc is replaced by a CI-C-Cl com-
bination, where the start and end point has curvature equals to 0 [93].

In general, the local sub-optimal trajectory planner works as follows. First generate
the dubins’ optimal trajectory using the synthesis approach in [92]. For each arc segment,
replace it by a curve consisting of CI-C-ClI. A typical sub-optimal trajectory is shown in
figure 8.6.

In [94], they further compared the dubins’s optimal trajectory and the SCC trajec-
tory. In their extensive simulation results, they showed that the total length of the SCC
trajectory is only about 1.1 times longer than the dubins’ optimal trajectory. In the rest of
this chapter, we assume that the reference trajectgtyis generated by the sub-optimal
method. The corresponding reference control input are linear vela¢ityand steering

velocity .
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Concatenation point

Fig. 8.6: An example of the sub-optimal trajectory

8.4 Model Predictive Control (MPC) based trajectory tracking control

8.4.1 Review of Model Predictive Control

The Model Predictive Control (MPC) approach is an advanced method of the process
control that integrates optimal control, stochastic control and multivariable control ap-
proaches. The MPC approach has been considerably developed and widely used from
chemical industries, oil refineries to food process industries since late seventies [95]. One
of the most important advantages of MPC lies in that it can easily used to handle the non-
linear system control with input/output constraints, e.g., actuator saturation, which are
frequently encountered in practice [96]. The main idea of MPC approach is to choose
the control action by repeatedly solving online an optimal control problem. The general
framework of MPC approach is depicted in figure 8.7.

First, a model is used to predict the process output at future time instants (hori-
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Fig. 8.7: Diagram of Model Predictive Control (MPC)

zon) given the current states and the candidate optimal future control input sequences.
The proposed optimal future control sequences are then generated by optimizer minimiz-
ing the cost function (the cost is incurred by future errors and control input) subject to
(input/output/state) constraints. Finally, a receding strategy, which involves recursively
solving a finite horizon optimal control at each time instant, is used for control purpose.
More precisely, in discrete time the model predictive control approach can be for-

mulated as follows:

yt) = g(x(t),u(t)), (8.15)

where,u(t) is the control input, anei(t) is the noise or disturbance. At time t, Given a

control input sequencel N and initial statex(t) at time instant t, for a finite time
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horizonH =t,...,t + N, the output{y, }{*N can be calculate by the predict model (8.15).
Let us define a cost/objective function Zgx N, {yi N, {u ) involving the fu-
ture state trajectory, output trajectory and control effort. The optimal control unpist

generated by minimizing the cost function, i.e.,

{u™ = arg, r?tipNJ({xk}E*N, ™, fudt™). (8.16)
Uk st

From time instant to t + 1, the optimal control inputs{uﬁ}{“ are then applied to the
process or the plant. At time instart- 7, a new time horizo® = {t+71,...,t + N+ 1}

is generated {u; }ITM7 is calculated by solving similar finite horizon optimal control
problem as (8.16) givex(t + 1) as initial state and the predictive model (8.18)x }I?T

are then used for control during time intervdl+ 7,...,t +27}. One can imagine the
finite horizon as a window with size N moving along the time axis. The cursively solving
finite horizon optimal control problem with si2¢and applied the optimal control during
first tau step is essentially the core of MPC strategy. For this particular reason, MPC is

also called Receding Horizon Predictive Control (RHPC).

8.4.2 Gradient Descent based MPC approach

In this section, we propose to use a MPC approach for solving low-level trajectory
tracking problem of a car-like autonomous vehicle. The stabilization and tracking control
of nonholonomic vehicle has been addressed by many people in the past decades. The
challenge is explicitly demonstrate by Brockett in [86], that is nonholonomic systems
cannot be stabilized via smooth time-invariant state feedback. To address the problem,

time-varying feedback control approaches were proposed by many researchers, for ex-
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amples, approaches based on Control Lyapunov Function (CLF) [97][98], and adaptive
control approach [99][100].

As mentioned in section 8.1, the low level motion control module has to simul-
taneously handle multiple objectives, such as bounded tracking error, collision avoid-
ance, local obstacle avoidance, input/state saturation, and etc. However, aforementioned
approaches fail to solve our problem since they usually only address stability and zero
tracking error in the controller design. Inspired by [101], we proposed a Nonlinear Model
Predictive Control (NMPC) based approach for the multi-objective oriented motion con-
trol of car-like vehicle.

Most commercially available MPC approaches were developed based on linear
model and frequently demonstrated poor performance due to the high nonlinearity of the
plant. This has motivated people to develop NMPC approach, where a nonlinear model
was used to describe the plant more precisely. While the NMPC approach offers poten-
tial for improved the performance, it also imposes challenges in theoretical study and
practical implementation, which are usually associated with the on-line solving nonlinear
optimization problem at each sampling period to generate optimal control sequence. To
solve the nonlinear optimization problem, the Maximum Principle can be used to derive
a set of necessary conditions for optimal control sequehcEnfortunately, it is hard to
get explicit solutions from the necessary conditions in general. Gradient descent approach
can then be used to numerically compute the optimal control.

In the next, we briefly describe the approach for a continuous time nonlinear system,
and then apply the approach to solve our problem. we start to illustrate the approach by
investigating a general finite horizon optimal control problem. The goal of the problem is
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to find the optimal control input*(t) € %, t € [to,t¢], such that

minimized = Y(q(ts))+ tfL(q(t),u(t),t)dt

fo

subjecttog = f(q(t),u(t),t) (8.17)
d(to) = do
where the first termp(q(ts)) is the terminal cost, and the second term is the running

cost. By introducing the costate vectd(t), the Maximum Principle indicates that the

optimal control should satisfies the following conditions ( the derivation can be found in

appendix):
Lu+ATfy = O (8.18)
Ly+ATfq+AT = 0 (8.19)
Yo(ck,) —AT(t) = 0O (8.20)

wherely, Lq are denoted as the partial derivativelofespect tau andq respectively.
Similar for f, and fq. One can find that the costate propagates backward time with ini-
tial conditionA T (tr) = q(, ), whereas the state propagates forwards time. This fact
presents challenges to solve the optimal contfdl) analytically. A numerical method

was then proposed using the gradient descent method. It is outlined as follows:

1. For a givertp, pick a control history©(t). Leti = 0.
2. Propagate = f(q,u,t) forward in time to create a state trajectory.

3. Evaluate\ T (t) = (), and solve backward™ usingAT = Ly +AT
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4. Update control inpui*! = u' 4 &, with &, = —K(Ly+ AT ), where K is a positive

scalar.
5. Calculatedd = J(u'*1) — J(u'). If 83 > 0, reduce K and go back to step 4.
6. Leti =i+ 1, and go back to step 2 until the solution converges.

The numerical method is widely used for solving optimal control problem in com-
plex system. The major difficulties of the approach is the computation cost. In order to
speed the solution converges, one should carefully select appropriate control trajectory to
start the iteration. Once the optimal solution is available, one can then plug the nonlinear
optimizer in the general MPC framework in the last section to get the NMPC approach.

The NMPC can easily handle multi-objectives oriented tracking control by jointly
encoding individual objectives in in the objective functidnin our problem, the follow-

ing form could be used:
11
J= U, +/t (“thtk+ustsc+ouu+quo_f_chC)dt? (8.21)
0

whereJK, J5¢ JU J°, andJC are the objective/potential functions account for tracking
performance, state saturation, control effort and saturation, obstacle avoidance, and col-
lision avoidance respectivelytk, iS¢ Y, u°, and u¢ are weighting coefficients for each
objectives. The design of the potential functions as well as weighting coefficient are chal-
lenging in order to get robust performance. In our problem, the potential function are

designed in the following forms:

e Tracking performancé'
Assume that the desired trajectorygigt) = {[xq(t),Ya(t), 84(t), @ (t)] }. The quadratic
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form of tracking error can be a good candidate, i.e.,

M= (q—04)"Q(a—da),

whereQ is a positive diagonal matrix, which determines the relative importance of

tracking error for different states.

Terminal costx,

Similar as tracking performancegy, is selected as:
3= (chy —aia(tr))" Qo(0k, — daltr)).

Input/state saturatiod

As aforementioned, when the steering angle- +¢/2, the kinematic model of
rear-wheel vehicle will degenerate. This enforce the the steering angle must live in
the safe rangé- phis®, phi*®|, wherephi®dis a positive scalar. The saturation cost
could be

J°¢ = max0,|g| - ¢**)?,

Control effortJ"

We use quadratic form to represent control effort:
JU=u"Ru
Obstacle avoidancé® A repulsive potential function is used for avoid obstacles.

Assume the closest point on the obstacle surface to the vehicleCay®). J° is

proposed of following form

P+ =y
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where(x,y) is location of vehicle.

e Collision avoidancd®

o_ 1
7= ; max(\/(x—xi)2+ (y_yj)z_ Rsafeg)7

where Rsate is the safety range anelis a small scalar used to preveift from

infinite or negative.

It is straightforward to extend the approach to discrete time nonlinear system in
order to implement this approach to low-cost digital controller, one may refer to [101] to

get the details.

8.4.3 Dynamic Programming based NMPC approach

In the last section, a gradient descent approach was proposed to solve the nonlinear
finite horizon optimal control problem in the NMPC approach. It has to be noted that the
convergence of the gradient descent approach is not guaranteed. Without carefully se-
lecting the weighting coefficients in objective function, as well as initial control sequence
and step size of control updates, this approach may lead to unstable performance, which
brings out a lot of troubles in the controller design. The other difficulty of the gradient
descent approach is that the computation time in different sampling period may varies a
lot which may cause instability due to the maximum delay by computation.

To address these problems, a dynamic programming (DP) based approach is pro-
posed. It is well known that the Dynamic Programming approach suffers from "curse
of dimensionality” in general. However, since we usually assume that autonomous ve-
hicles have only limited actuation capability, by reducing the size of admissible control
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input, the DP approach can be used to solve the finite horizon optimal problem (8.22) in
a reasonable time.

For discrete time case, the finite horizon optimal problem (8.22) can be rewritten as

follows
N-1
minimizeJ = @(q(N))+ > L(a(k),u(k))
K=0
subject tag 1 = g(a(K), u(k)) (8.22)

d0) = do.

We assume that the control inpuk) € % takes only discrete values. Dengt |
be cardinality of admissible control. The optimal control sequence can be recursively

solved by the following DP algorithm:

1. Initially, let Jo(go) = O.

2. For k=0,...,N-1, we have

Jera(ak+1)) = ggli(gl(L(Q(k), u(k)) + X (a(k))),

whereq(k+1) = g(q(k),u(k)).

3. Find the optimal control sequence associated with the optimal cost:

J*=min(y(q(N)) +In(a(N))).
a(N)

The advantages to use the DP algorithm lie in two folds. First, the DP algorithm do
not require that the objective functidr{q(k),u(k)) and system dynamiaxq(k), u(k))

differentiable. Second, it guarantees the finite convergence time which is very important
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to in real-time control applications. However, we have to admit the "curse of dimen-
sionality” of the DP algorithm prohibits the approach from being used in more complex

system.

8.5 Simulation results

In this section, the performance of the proposed NMPC based low-level vehicle con-
trol is demonstrated in three simulation examples. In all simulations, the distgriase (
tween front axle and rear axle is set to be 0.8. The steering applies in[—pi/4, pi/4].

The saturation range of control inpyiw are:v € [0,5] andw € [—1,1].

8.5.1 Free-space Way-point Navigation

In this scenario, a single vehicle moving in a free space is considered. In the sim-
ulation, the reference trajectory is a SCC trajectory consisting of 7 pieces basic elements

(ClI, C, L). Starting at origirn{0, 0), the reference linear velocity is constant 1. As shown
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Fig. 8.8: The reference steering control input for free space trajectory tracking

in figure 8.8, the reference steering velodiy(t) is set to be follows

(

05 0<t<1
0, 1<t <2
—05, 2<t<3;
0, 3<t <5
—-0.5, 5<t<6;
0, 6<t<7,

05 7<t<8;

0, t>8.
\
In the simulations using gradient descent MPC approach, the selected weighting

coefficient areut® = 20 ,S¢ = 300,u{ = 5,u° = 0. The horizon time for each sampling

period is set to be 0.3s, and the step ${zare initially set to be 1-e3. In the DP based
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Fig. 8.9: Free space trajectory tracking with MPC based approach

NMPC approach, the sampling period is set to be the same as the one in the gradient
approach. The linear velocity input is set to be constant 1. The steering input can only take
three values: -2.5, 0, and 2.5. Simulations results shows that both approaches demonstrate

an excellent tracking performance 8.9.

Moreover, we compared the trajectory tracking ekpaix(t) — x: (t))2+ (y(t) — yr ()2,
and heading angle tracking erré(t) — 6, (t) in figure 8.10. The trajectory tracking er-
rors for both approaches are bounded below 0.005. The DP based approach shows larger
heading angle deviation than gradient descent approach. The main reason is due to the
limited steering control capability.

We further compared the range of computation time at each sampling period. The
range for gradient based MPC approach is about (0, 1.5) second, which is much larger

than the sampling period 0.3 second. The range for DP based approach is roughly around
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Fig. 8.10: Comparison of free space tracking error for two MPC based approaches

0.02 second. Although the coding efficiency of Matlab may greatly affect the computation

time, the large variation of computation cost potentially present barriers to apply gradient

based MPC approach in real-time control.

8.5.2 Trajectory tracking with obstacle avoidance

In the high-level path planning module,
the size of autonomous vehicle. In order to avoid small obstacles within vehicle’s local
sensing range, low-level controllers are designed to deal with the problem. For simplicity,
we assume obstacles have circular or eclipse shaped. General shapes of obstacles can be
approximated by an eclipse envelope. In the simulation, the reference trajectory start at

origin (0,0). The linear velocity; is constant 1.
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Fig. 8.11: Comparison of local obstacle avoidance for two MPC based approaches

set to be follows

A circular obstacle is located along the reference trajectory with cenf@:t.5) and
radius0.5. Figure 8.11 shows that both approach successfully avoid from hitting towards
the obstacle. The vehicle trajectory with DP based MPC approach has larger deviation

from reference trajectory than that with gradient descent approach. The primary reason is

reference
- MPCGD
- - MPCDP

\

1, 0<t<O05;
0, 05<t<2;
-1 2<t<25;
0, t>25.

due to the limited steering control capability.

129




MPCDP
— MPCGD

oL

-3 L L L L L L L I I |
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8.5.3 Multiple vehicle tracking with collision avoidance

In this simulation, two vehicles’ heading directions are initially opposite to each
other. We assume that the two vehicle are planning to move the other’s location. So they
are supposed to collide in the mid of their ways. By adding the collision avoidance poten-
tial function component in the objective function, simulations show that both approaches
yield good performance in avoiding collision (see figure 8.12 ). The dashed curves are
vehicles’ trajectories with DP based MPC approach. Similar as previous simulations, the
limited actuator’s capability results in large deviation from reference trajectory comparing
with the gradient based approach.

As discussed previously, A typical case that two vehicles colliding into each other
happens when vehickemoves from cell at southwest to cell at northeast, and at the same

time vehicleB moves from cell at northwest to cell at southeast (or similar permutation).
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Fig. 8.13: An example of local collision avoidance with DP based MPC approach

We simulate the scenario using the DP based MPC approach. Two vehicle are initially
sitting at(0,0) and(0, 6) with orientationpi/4 and— pi/4 respectively. Without collision
avoidance control, they will collide &8, 3). Figure 8.13 shows our DP based approach

achieves collision avoidance successfully.

Remark 8.5.1 The MPC approach demonstrates great advantages in low-level autonomous
vehicle control design. The main advantage of using MPC control lies in that it can easily
accommodate several control objectives in a fairly simple framework. Comparing with
the gradient descent, the DP based approach offers a lower computational cost and more
robust performance. However, the DP based approach suffers from "curse of dimension-

ality”, which limit its applications.
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Chapter 9

Conclusions

This dissertation concentrates on the collaborative control of UAV swarms with
communication, sensing, and actuation constraints. In particular, we addressed a funda-
mental dilemma existed in the artificial potential function (APF) approach, that is when
the potential function is nonconvex, the system dynamics could be trapped in local min-
ima.

In this dissertation, a novel distributed stochastic approach is proposed to solve the
local minima entrapment problem. By modeling vehicle networks as a dynamic Markov
random field (MRF), Gibbs sampler based simulated annealing approach is proposed to
coordinate vehicles’ motion. Similar as the APF approach, this approach belongs to po-
tential based approach which mimics the bacteria foraging in nature. All interactions
among vehicles and environments are encoded as Gibbs potential. Comparing with the
APF approach, however, our approach provides a more general framework by adding the
annealing process. The APF approach in fact is only a special case of the Gibbs sampler
based approach with temperature fixed at zero all the time. By tuning the cooling schedul-
ing, the system can achieve different convergence rate. Theoretical studies and extensive
simulation results have been conducted to to validate the novel approach. We have shown
that by choosing appropriate cooling schedule, this stochastic approach is guaranteed to

lead the vehicle networks to achieve group objects/tasks. Two examples, a battle field
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scenario and formation control, were used in the simulation. But it is easy to extend our
approach to many applications we mentioned the first chapter.

Although our approach provide a general solution to complement the APF ap-
proach, the stochastic nature and sequential sampling introduce long traveling time and
maneuvering cost to UAV networks which present barriers to apply our approach in prac-
tice. Two approaches are proposed in this dissertation to reduce the execution time and
improve the performance.

Firstly, a fully distributed parallel sampling algorithm was investigated to reduce
the delay caused by the sequential sampling. Generally, it is hard to show that fully
parallel sampling algorithm lead to the same global minimizer as the sequential counter-
part. Fortunately, in some special cases, we proved that the parallel algorithm will lead to
quasi-desired configurations.

Secondly, we proposed a hybrid scheme that combines the advantages of both the
stochastic exploration algorithm and the deterministic gradient decent method. The hy-
brid scheme switches between two approaches to achieve both fast maneuvering and free
of entrapment. There are two key parameters, switch waitingdieued the duration for
stochastic perturbatioN, that significantly affect the system performance. Some pre-
liminary analysis on how to optimally select the parameters are provided. Convex trends
of performance change are observed through simulations. By implementing memories
to vehicles, an improved hybrid scheme is also proposed. In this scheme, vehicles use
memory to online learn "dangerous” locations and reduce the probability to reach those
locations again. In nature, the improvement is to reconstruct the potential surface by es-
timating the local minimum gradually. Simulation results have shown that the improved
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scheme achieves better performance than the original one.

The robustness of our approach is also addressed in the dissertation. We study the
convergence properties of the stochastic approach under different types sensor errors in-
cludingrange-errorandrandom-error It is shown that under moderate sensor noise, i.e.,
the sensor noise is bounded by half of the minimum potential difference, the convergence
properties of our proposed algorithm are conserved.

We further investigated the low-level motion control to deal with nonholonomic
constraints in car-like UAV model. The proposed MPC based approach have shown its
advantages to easily accommodate multiple objectives and constraints, e.g., minimizing
tracking error, avoiding actuator/state saturation, local obstacle and collision avoidance.
We compared two approaches, gradient descent based approach and dynamic program-
ming based approach. Both of them have advantages and disadvantages. For car-like
vehicle with limit control input, the dynamic programming based approach is more pre-
ferred.

There are several possible directions to extend the work reported in this dissertation.

In the modeling of vehicle networks as MRF, only singleton and pairwised cliques
are considered in this dissertation to describe the interactions between vehicles and envi-
ronments. One interesting direction is to study more complicated forms of cliques, which
might lead to more interesting collective behaviors. Another way to generate appealing
emergent aggregative behaviors is via potential function design, in this dissertation and
[77], we have cooked several examples with potential applications. In practice, it is of
interest to study a set of element collective behaviors and associated artificial potential
functions (APFs), which could be used to construct an APF component library. Based
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on this, one could then study the synthesis of basic collective behaviors. For example,
in this dissertation, a linear combination of basic APF components is proposed for group
task synthesis. As we have previously discussed, the design of weighting coefficients is
a challenging and important issue as it may directly impact the nodes behavior and the
convergence rate of the algorithm. So this is could be a future direction to improve the
algorithm performance.

Although in the theoretical study of convergence properties of the stochastic algo-
rithm, the logarithm rate cooling schedule is used which only leads to a polynomial con-
vergence rate. In practice, however, many fast cooling schedule have been used in general
simulated annealing algorithm with good performance [20]. One could then "borrow” the
existing cooling schedules to accelerate the convergence rate in the future study. More-
over, it is of interest to estimate the convergence rate. With more accurate convergence
rate estimation, one could theoretically determine the optimal switch parameters in the
hybrid control scheme.

In the hybrid scheme, there are several possible directions for the future study. First
of all, the switching algorithm can be treated as a extreme case of cooling schedule, i.e.,
the temperature follows a non-continuous curve. One could easily extend the switching
pattern by combining several different rate of cooling schedule. One could also try adap-
tively decreasing or increasing cooling schedule to achieve optimal performance. The
second direction is to study the selection of switching parameters. In the dissertation,
we only provide a preliminary study for off-line parameters selection. One could design
a online adaptive scheme to determine best switch parameters based on previous expe-

rience. The last but not the least is to extend the use of memories. There are several
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possible ways along this direction. Firstly, one could share the memory information with
neighbors to accelerate the learning speed. Secondly, collaboratively map building can be
used to enable vehicle networks have more knowledge of environments than "risk” level

map, and thus may potentially lead to better performance.
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Appendix A

Appendix: Ising Model

In this appendix, we provide a classical example, Ising model ,to illustrate several
basic concepts in Markov Random Field and Gibbs Field.

Thelsing Modelwas introduced by Ising (1925) for understanding qualitatively the
phenomenon of phase transition in ferromagnetic materials. In the Ising’s finite model, the
ferromagnetic materials are modeled as a large 2D magnetic particles array. Each particle
has two phases: pointing upward and downward. The attraction/replusion force between
two (spatial) adjacent particles induces magnetic potential energy. The spatial structure
and the local interactions can then be modeled as a Markov Random Field (MRF), where
the sites is described as a 2D lattices, iS= Z2, and the phase spade= {+1,—1}.

The neighborhood system is depicted as in figure A.1, where each node has at most 8
neighboring nodes. There are two types of cliques in this model: singleton and pairwise

clique. The Gibbs potential is

Wig () = (9,

Wiar) (00 = —2X(E(S),

where{s,t} is a pairwise clique, witls € . 1; k is the Boltzmann constarty is the exter-

nal magnetic field, and J is the internal energy of an element dipole. The potential/energy
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Fig. A.1: Neighborhoods and cliques in Ising model: (a) neighborhoods fos,sit®

cligues associated with sige

function for the whole lattice is therefore

U(x) = _% S;_‘-; {sZt} X(S)(9)

Let the marginal distributionr{) of the magnetic lattices in the Ising model be

which is usually calledsibbs distribution By the celebrated Hammersley-Clifford the-
orem [71], if the distributiorvt for the ising model with respect to the topolo¢f; . 4")
satisfy positive condition, there is an unique corresponding Markov random field with

local characteristics as follows:

et (SteseX(t)+H)X(9)
etk (StessXO+H) | g k(SteseX®+H)

m(X) =

The converse part of the theorem shows the for any MRF with a consistent set of con-

ditional probabilities, there exists an equivalent Gibbs distribution expressed in terms of
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local potentials.

Appendix B

Appendix: Continuous-time finite horizon optimal control

In this section, we present a quick review of using the Pontrjagin Maximum Princi-
ple (PMP) to solve the finite horizon optimal control problem. The goal of the problem is
to find the optimal control input*(t) € %, wheret € [to, tf], such that

maximize = (q(ts)) + ¥ L(q(t),u(t),t)dt

to

subjecttog = f(q(t),u(t),t) (B.1)

dto) = Qo

where the first term in objective functiahis the terminal cost, and the second term is
the running cost. To derive a general solution, one can use the method of calculus of
variations. The first step is to augment the cost by adding the costate xéttor

ts

I=y@t))+ [ (L+AT(f—g)dt (B.2)

to
Along the optimal trajectory the variation dfshould be vanished, which follows the fact

thatJ is continuous irg, u, andt. The variationdJ can be expressed as
ts
3= Wedqty) +/ (Lgd0+ Ludu+ ATfqd0q+ ATfudu—ATa))dt  (B.3)
to

The last term can be integrated by parts, namely

8 (I
/ _ATgdt= —AT(t1)3q(tr) + AT (t0)q(to) + / ATSqdt.
t fo

0
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Then,

59= (e )3atr) AT (t0)30(tr) + AT (0)30lt0)+ | ((Lu+ATR)AH(Lg AT Fq +AT) 3
(8.4

To make sure the variation dfvanishes, the following condition should be satisfied.

Lu+ATf, = 0O (B.5)
Lg+ATfq+AT = 0 (B.6)
Yo(ok,) —AT(tr) = 0O (B.7)

In general, to solve the optimal control analytically from above conditions is difficult.
One can used gradient methods to numerically compute the optimal control input. When
the system is linear, and the objective function has quadratic form, the three conditions are

boiled down to riccati equation. Efficient softwares can be found to solve the equation.
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