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Collaborative/cooperative control of a large group of autonomous vehicles has been

received great attentions in recent years. With the rapid advances in sensing, communica-

tion, computation, and actuation capabilities, it is extremely appealing to control a large

group of unmanned autonomous vehicles (UAVs) to perform dangerous or explorative

tasks in various hazardous, unknown or remote environments. Possibilities of a broad

range of applications by utilizing UAV swarms have been explored, for example, auto-

mated highway systems, mobile sensor networks in ocean resources exploration, space-

craft interferometry, satellite formations and robotic border patrol.



In such applications, traditional centralized control schemes are always prohibited

primarily due to the high communication cost and the high computation cost in a large

network of vehicles. In turn, the decentralized/distributed control schemes are preferred

to achieve the trade off between the performance and the communication/compuation

cost. In past decades, numerous decentralized/distributed control algorithms have been

proposed in the literature. Among them, one approach, called bio-inspired approach, is

extremely interesting and promising, which ”borrows” algorithms from nature by observ-

ing and understanding social animal’s swarming behaviors.

In this dissertation, we study a decentralized artificial potential function (APF)

based approach which mimics bacteria foraging process. The deterministic potential

based approach, however, suffers from the local minima entrapment dilemma, which mo-

tivate us to fix the ”flaw” that is naturally embedded. We propose an innovative decen-

tralized stochastic approach based on the Markov Random Filed (MRF) theory, which

traditionally used in statistical mechanics and in image processing. By modeling the local

interactions as Gibbs potentials, the movements of vehicles are then decided using Gibbs

sampler based simulated annealing (SA) algorithm.

A two-step sampling scheme is proposed to coordinate vehicle networks: in the first

sampling step a vehicle is picked through a properly designed, configuration-dependent

proposal distribution, and in the second sampling step the vehicle makes a move using

the local characteristics of the Gibbs distribution. Convergence to the configuration(s) of

global minimal potential is established theoretically and confirmed with simulations. In

order to reduce the communication cost and the delay in the two-step sampling, a fully

parallel sampling algorithm is studied and analyzed accordingly.



In practice the stochastic nature of the proposed algorithm might lead to high trav-

eling cost and long maneuver time. To mitigate this problem, a hybrid algorithm is devel-

oped by combining the Gibbs sampler-based method with the deterministic gradient-flow

method to gain the advantages of both approaches.

We also study the robustness of the Gibbs sampler based algorithm. The conver-

gence properties are investigated under different types sensor errors includingrange-error

and random-error. Some error bounds are derived to guarantee the convergence of the

stochastic algorithm.

In order to integrate the Gibbs sampler based path planning algorithm in applica-

tions,a two-level scheme is proposed by combining high-level path planing and low-level

vehicle motion control. The high-level path planing module mainly addresses the path

generation. The low-level motion control module aims to follow the desired path by con-

sidering vehicle dynamics. A model predictive based (MPC) based motion control for

car-like nonholonomic UAVs is investigated. Multiple control objectives, e.g., minimiz-

ing tracking error, avoiding actuator/state saturation, and minimizing control effort, are

easily encoded in the objective function. Two numerical optimization approaches, gra-

dient descendent approach and dynamic programming approach, are studied to strike the

balance between computation time and complexity.
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Chapter 1

Introduction

With the rapid advances in sensing, communication, computation, and actuation ca-

pabilities, it is extremely appealing to cooperatively/coordinatively control a large number

of unmanned autonomous vehicles (UAVs) to perform dangerous or explorative tasks in

various hazardous, unknown or remote environments. Originally driven by the need for

saving labor costs and protecting personnel loss from dangerous environments and like,

the applications of UAVs have been potentially extended to a broad range both in military

and industry including, e.g., automated highway systems, mobile sensor networks, ocean

resources exploration, spacecraft interferometry, satellite formations, robotic border pa-

trol and search-and-rescue operations [1, 2].

In such applications, the number of autonomous vehicles involved can be very large,

ranging from hundreds to thousands, which forbids the centralized control approaches

to be applied. The primary reason is that the communication cost and computation

cost usually increase exponentially with the size of UAV swarms. Therefore, decentral-

ized/distributed control approaches are especially appealing considering the large scale

of the vehicle networks and the bandwidth constraint on the communication [3, 4, 5, 6].

The main advantages of such approaches are flexible, scalable, robust and cost-effective.

The flexibility lies in the fact that the distributed/decentralized algorithm is easy to mi-

grate to different size of UAV networks. The scalability is due to fact that the commu-
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Fig. 1.1: Ocean resource exploration by autonomous underwater vehicles

nication cost and computation cost only increase linearly with swarm size. The decen-

tralized/distributed approach depends primarily on local information, which reduces the

requirement of sophisticated sensing and data processing capabilities. Therefore, cost-

effective sensors and actuators are usually preferred to reduce the total system cost. For

example, resource exploration and information gathering in oceans, Mars, or polluted

areas (by chemical or radioactive materials) can often be accomplished more efficiently

by groups of low-cost mobile vehicles (Fig. 1.1) than a single sophisticated and expen-

sive one. Moreover, the robustness implies that the UAV networks performance will not

degenerate too much with the loss of few UAVs.

On the other hand, due to the limited capabilities of autonomous vehicles, coordi-

nation and cooperation is necessary to accomplish group mission more effectively and

efficiently. However the more frequent collaboration among vehicles, the more commu-

nication bandwidth and power consumed, which may not be afforded in the networked

control systems (multi-agent systems). This brings out the fundamental tradeoff between
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the system performance and resource constraints in such systems.

In this dissertation, we study distributed coordination control methodologies for

UAV swarms. The aforementioned communication, sensing and actuation constraints

present theoretical challenges in designing a fully distributed algorithm for achieving

group objectives. Recently, bio-inspired approaches have been receiving growing atten-

tions to addressed these problems. By mimicking the coordination/collaboration mecha-

nisms in social animals, e.g., ant colony optimization, social potential, which lead to many

amazing and interesting collective behaviors, people have been trying to use them in con-

trolling artificial systems, like UAV networks/swarms. A brief review can be found in the

next chapter. However, due to the lack of fully understanding the underline mechanisms,

sometimes the “borrowed” schemes may fail when directly applying them to artificial

systems.

In our research work, inspired from bacteria foraging process, we investigate an

artificial potential function (APF) based approach for coordinating UAV swarms in a bat-

tle field scenario. The deterministic potential descent approach, however, suffers from

the local minima entrapment dilemma, which motivate us to fix the “flaw” that is nat-

urally embedded. The details can be found in chapter 3. The solution is inspired from

Markov Random Field (MRF), a wellknown model used to describe phase transition in

ferromagnetic material. We systemically studied the approach in this dissertation.

In the design of applications involving UAV swarm networks, a two level hierarchi-

cal/layered design is usually adopted. The high level module generates paths for vehicle

swarms. Vehicles are usually treated as point masses moving in 2D or 3D mission space.

Issues like information flow, collaborative decision making are considered in this layer.
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The aforementioned potential based approach belongs to this category.

The lower level module deals with vehicle dynamics. Given desired reference tra-

jectory generated from high level module, the low level module is responsible for the

trajectory tracking, actuator saturation, and many other practical concerns. In this dis-

sertation, a Model Predictive Control (MPC) based approach is proposed to address the

multiple objectives oriented trajectory tracking control. We now outline the contributions

of this dissertation.

1.1 Contributions of the Dissertation

In this dissertation, although we begin our study of the collaboration of vehicle

swarms from a military based example, a battle field scenario, our approach can be gener-

ally applied in a broad range of applications such as formation control, ocean exploration,

and etc..

The battle field scenario is of interest to study because several typical interactions

involving robot collaboration coexist in one framework. In this scenario, the environments

(mission space) are unknown. There are possible obstacles and static/moving threats in

the mission space. With at most one target places designated, the mission goal is to

maneuver the vehicles to cover the target areas while avoiding obstacles, moving threats

and collisions with other vehicles.
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1.1.1 Innovative decentralized collaborative control of vehicle swarms

based on MRF and SA

As aforementioned, inspired by the emergent collective behaviors demonstrated in

nature, e.g., bacteria foraging, APF approaches are usually used in collaborative system

design [7, 8, 9, 10, 11]. The local interactions between individual agents and environ-

ments, as well as group tasks, such as target reach, obstacle avoidance, and collision

avoidance, can be easily encoded in potential functions. Vehicle then follow the negative

gradient flow of potentials. Despite the simple and elegant nature of the APF approach,

it suffers from the dilemma that system dynamics could be entrapped in the local minima

due to the nonconvexity of the potential function [12].Researchers attempted to address

this problem by designing potential functions that have no other local minima [13, 14], or

by escaping from local minima using ad hoc techniques, e.g., random walk [15], virtual

obstacles [16], and virtual local targets [17].

Inspired by the Ising model in statistical physics, we propose a novel, systematic

approach to coordinate an autonomous swarm based on the theory of Markov random

fields (MRFs) and Gibbs sampling, a tool that has been traditionally used in statistical

mechanics, image processing and computer vision [18, 19, 20], and data analysis and

clustering [21, 22]. In this approach, a swarm is modeled as an MRF on a graph, where

the (mobile) vehicles and their communication/sensing links constitute the vertices and

the edges [23] of the graph, respectively. As in the APF approach, global objectives and

constraints (e.g., obstacles) are reflected through the design of potential functions - in

this case, Gibbs potentials. The movement of vehicles is then decided using simulated
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annealing (SA) based on the Gibbs sampler. The dynamic graph associated with the

evolution of vehicle networks, however, presents significant challenges in convergence

analysis since classical MRF theory does not apply directly.

In this dissertation, we systematically studied convergence of the novel stochastic

approach. Local minima entrapment problem can be generally solved with appropriate

cooling schedule. We also study the robustness of the stochastic algorithm in the presence

of sensor uncertainty. Moreover, we investigate a fully distributed parallel algorithm and

its convergence for saving sampling time.

In practice the stochastic nature of the proposed algorithm might lead to high trav-

eling cost and long maneuvering time. To mitigate this problem, a hybrid algorithm is

developed by combining the Gibbs sampler-based method with the deterministic gradient-

flow method to gain the advantages of both approaches. A vehicle switches between the

two schemes to achieve a sound tradeoff between efficiency and optimality. Analysis

is performed on the choice of switching parameters. The impact of vehicle memory on

performance enhancement is also investigated.

1.1.2 Multiple objectives oriented motion control based on MPC approach

As mentioned earlier, in this dissertation, a two-level based scheme is proposed to

control UAV/robot swarms. The potential based stochastic algorithm belongs to high-

level path planning algorithm. Point mass model is considered to represent UAV instead

of real dynamic and kinematic model. Way-points are generated to lead vehicle networks

to the global objective. Moving real UAV/robot to follow desired way-points are consid-
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ered as the low-level motion control module.

In the low-level module, we proposed a model predictive based (MPC) based mo-

tion control for (but not limited for) car-like nonholonomic UAVs. This approach is ap-

pealing because it can easily accommodate multiple control objectives, e.g., minimizing

tracking error, avoiding actuator/state saturation, and minimizing control effort, in an ele-

gant and compact way. By applying well-known Pontryagin Maximum Principle (PMP),

a gradient based approach is first proposed to solve the sub-optimal control problem. The

computation cost and delay, however, presents difficulties in real-time control. A dy-

namic programming based approach is then constructed by assuming that the actuator has

limited control options. Extensive simulations confirms our analysis.

1.2 Organization of the Dissertation

In Chapter 2 we provide a literature review of current understanding the collec-

tive behaviors existed in nature and how they affect engineering design in multiple agent

system. The deterministic APF based approach and its limitation is introduced chapter

3. In chapter 4, we concentrate on the novel stochastic algorithm based on MRF and

SA. Chapter 5 deals with the convergence analysis of the fully distributed Gibbs sampler

based algorithm. In chapter 6, a hybrid scheme is proposed to improve the system per-

formance. The impact of memory is also discussed. The robustness analysis considering

sensor uncertainty is discussed in chapter 7. We study the low-level motion control based

on MPC approach in chapter 8. Conclusions and future work are provided in chapter 9.
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Chapter 2

Literature Review

2.1 Understanding the swarming behavior in nature

For centuries, swarming or aggregation behaviors in wild nature have been noticed

by people. The swarm behaviors exist in many spices, ranging from small organisms

as simple as bacteria to large mammals like whales [24, 25]. For example, at the end

of every autumn, canada geese fly in a V-formation in loose groups when they migrate

from north to south (see figure 2.1). Many kinds of social animals, like birds, beasts and

fishes, easily organize themselves in a large orderly group and move as a single organism

without a central commander. Some social insects, such as ants and bees, cooperate

to forage food in places far away from their home and to build sophisticated giant hives

comparing to their tiny size without advanced communication technology (e.g., language)

and computation tools (e.g., brain). Biologists have spent a long time to understand the

underline mechanism of these swarming behaviors. Although good progresses have been

made in the past decades, most of them are still mysteries for us.

To understand the nature of the aggregation behavior, the first thing needed to be

studied is the motives that drive these animals aggregate in groups? In [26], Parrishet. al.

pointed out that aggregation is actually an evolutionarily advantageous state. First of all,

it is believed that forming a group may increase the chances of survival of newborns and

juveniles from being eaten by predators, such that the reproduction of the species can be
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Fig. 2.1: Geese migrate from north to south in a V-formation

continued. Secondly, aggregation also helps to find food because a large group of animals

has more capability of “sensing” and “searching” than a single one. Other benefits include

energetic saving for flying or swimming by certain relative position among neighbors (e.g.

group of wild geese in V-shape), and reproduction success by mating aggregation. These

facts may explain some aspects of aggregation. In many other cases, however, it is hard

to find functional purposes associated with aggregation patterns. Additional background

can be found in [27, 28, 29] and references there in.

Another important issue is how individual members coordinate with each other such

that the whole group exhibits emergent collective behaviors. For decades, many mathe-

matical models were proposed by biologists to get insight of the nature of swarming

behaviors [27]. Most of these models are focusing on spatial approaches, where the space

is direct or indirect considered in the model, others are non-spatial approaches [30]. In
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spatial approaches, there are mainly three different approaches have been used for the

analysis of swarm dynamics [27, 31].

The first one is based on a statistical model, which use the “Eulerian” framework to

describe the mean-field density of swarm. In this model, each member of the swarm is not

treated a single identity. The swarm is described as density in spatial space by a partial

differential equation which is based on a diffusion approximation of the random motion

[32]. Recent works in [33] extended the approach by integrate non-local interactions,

such as visual or auditory sensing, in the model. Although many analytical results can

be produced, this approach is limited to large, dense swarms with no big discontinuities

[27].

The second spatial approach is based on individual-based path generation, where

“Lagrangian” equations are used to describe motion of individual members in the swarm

[32, 30]. In this model, all interactions among individuals are modeled as attraction and

repulsion forces. An attractive feature of this approach is that all interplays between mem-

bers in the swarm can be modeled as potential functions, and the motion of each individual

follow the negative gradient of the potential surface. By constructing a Lyapunov function

associated with the potentials, it is straightforward to show that the minimizer correspond

to the stable state of the swarm system. The common understanding from this approach

is that aggregation is caused by the long-range attraction and the short-range repulsion,

although the form of attraction/repulsion functions can be varies [34, 35]. For example, in

[35], Mogilner suggested a model where attraction and repulsion terms were exponentials

with different magnitudes. Using this model, the author also derived the individual dis-

tance of a large group, which revealed a condition on the attraction and repulsion to avoid
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collapse of the swarm. Despite the simple and elegant nature, this approaches are hard to

characterize all kinds of interactions among swarms. For example, ants use hormone to

construct trail such that food can be carried to home. This process is called “chemotaxis”,

in which individual responses directly to distribution of chemicals that are laid out by

other individuals. Some phenomenon like bifurcation is hard explained by only using the

“lagrangian” framework.

The third spatial approach uses behavior based model, where no explicit mathemati-

cal equations are prescribed. All interactions among individual members are described by

some behavior rules. In 1986, it is known that Crag Reynolds wrote a small computer pro-

gram that simulate the flocking of organisms by letting a number of identical ones follow

simple rules. In this model [36], named “boids”, three simple steering rules are used: sep-

aration (avoid local crowding), alignment (match the heading of neighbors), and cohesion

(move towards the average of local flockmates). The simulation based approaches can

create real-like animations of flock animals which have successful application in movie

industry, for example “The lion king” and “Batman Return” [37].

In parallel to Reynolds work, physicist vicsek proposed a similar rule based model

to study collective behaviors in self-propelling particles (SPP)[38]. In his simulation,

orientation consensus behaviors were observed by a nearest neighbor rules. In vicsek’s

model, each particle has constant speedv0, and tries to align the orientation to the local

average velocity. Phase transition can be observed by numerical results even in the noise

environments. Other works that study the motion and related transport phenomena in non-

equilibrium process of multi-particles system can be found in [39, 40, 41, 42, 43, 44, 45].

Although this approach provides eyeball attractive appealing, it is hard to analyze
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and thus to get insight of the nature of the emergent collective behavior due the lack

of mathematical description. Nonetheless, there are still some successes in analyze the

behavior based swarming effects, e.g., consensus and flocking. In [39], Toner and Tu

analyzed the vicsek model using a continuous “hydrodynamic” model. In [6], they ana-

lyzed the “boids” model. By Investigating the algebraic graph theoretical properties of the

underlying interconnection graph, they showed the relationship between stability of the

flocking motion and the graph connectivity. The robustness of the local control law was

also discussed for to arbitrary switching of the network topology provided the network

are connected all the time.

Their works were extended later on in [5, 46], they showed that consensus can be

achieved even if the network topology is not connected all the time. The main results are

follows: if there exist a connected spanning tree in the union of network topology over

finite time interval, the nearest neighbor rule guarantees the consensus convergence. In

[47], Olfati further study the flocking behavior of “boids” model.

In the non-spatial approaches, space is not a factor to describe the swarm dynamics

[27, 48]. They actually treat the group size as a primary factor to described the swarming

behavior. In [27], it was argued that group size is determined by the balance of payoffs to

individual members, i.e. the size of group affects the individual benefits. It was believed

that there is a theoretically optimum group sizen∗, at which point the average benefits of

group members are maximal compare to loner, and the equilibrium or the critical group

sizen̄ happens when average benefits are equal to the loner. When the group size is over

critical group sizēn, the whole swarm is then divided into small ones. In [48], the authors

used a continuous model to describe the distribution of animals group size. They focused
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on a fixed size group divided into groups of various dynamic sizes.

All these approaches gain success in explaining or demonstrating collective behav-

iors of the swarm in some aspects. None of them, however, can explain them all. For

example, the “Eulerian” framework unveils the density evolving of a whole swarm sys-

tem, but hard to bridge the individual to collective level. On the contrary, “lagrangian”

framework concentrates on individual behavior. This approach can easily describe the

motion of each member in the swarm, but is hard to analyze the transformation of the

collective behavior in group level. Excellent background on mathematical modeling and

approaches comparison can be found in [32] and references there in.

2.2 Bio-inspired Design of collaborative control system

In the previous section, different models were proposed by biologists and physicists

to analyze and to unveil the underline mechanism of the swarming behaviors. Inspired

by this, people try to integrate those results into engineering design, in particular, appli-

cations of robot/UAV swarms, which is discussed in the last chapter. In the literature,

there are mainly four approaches have been reported: artificial potential, behavior, virtual

structure, and leader/follower.

2.2.1 Artificial potential approach

The artificial potential function-based approach has been explored for path plan-

ning and control of robotic manipulators and mobile robots over the past two decades

[49, 50, 51]. Models involving in the approach often use potential functions to describe
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the relationship between individual agents and environments. And the motion of each

individual is determined by the negative gradient flow of the potential functions. This ap-

proaches mimic the collective behaviors demonstrated in large social insects or bacterial,

i.e. the bacteria foraging process, where social potential was used to modeling swarm

aggregation and cohesion [52].

In [3], Olfati-Saber used structure potential function to achieve collision-free, dis-

tributed formation stabilization of autonomous swarms. By imposing constraints on the

formation graph to eliminate ambiguities, the potential function was designed in a way

which leads autonomous swarms to a unique formation. The state feedback control law

were used to control the motions of swarms, and the local formation stability and bounded

feedback stability was then established by constructing corresponding lyapunov function.

Similar results can be found in [7, 53], where structure potential are constructed by intro-

duce virtual leader. Without eliminating the ambiguities, the formation of swarms in their

model may converge to one of many possible formations.

Besides to the formation control, the artificial potential approach is also used in

path planning of autonomous swarms [54]. In [9], the authors demonstrated a interesting

application in battle field scenario, where static obstacles and moving threats coexist in

the same environment. By following the gradient flow of potential functions, which was

described by a weighted sum of sub-potentials reflecting the objectives or constraints, the

swarm vehicles demonstrated fascinating collective behavior to reach the target without

being collided with obstacles and catched by moving threats. Despite the simple, local,

and elegant nature of the potential-based approach, this approach suffers from the problem

that the system dynamics could be trapped at the local minima of potential functions [12].

14



To avoid this situation, Ge [54] suggested to adjust the coefficients of repulsive potential

according to the minimum distance between robot and target position, thus the local min-

imum can be eliminate. Kimet. al. [11] proposed a similar method to get around local

minimum by adjusting the ratio between weighting coefficients of sub-potentials. Al-

though these improvements can solve the problem in some special situations, for general

case, it is still unsolved.

2.2.2 Behavior-based approach

Behavior-based method is another important approach originating form swarm be-

havior of creatures, e.g., Reynolds “boids” model[36]. By designing a set of actions or

behaviors for each element in the group, it hopes that desired group behavior emerges as

a result. In [55], Miller proposed behavior-controlled diagram to control micro-rovers to

execute various tasks, like grabbing rocks. The advantage of behavior-based approaches

are robust, flexible, computational efficient and communication-cost effective. However,

it is hard to decompose desired group behavior to element individual behavior. To address

the problem, Parker proposed a mixed strategy that combine local behavior control and

global knowledge in terms of cumulative position error and time to control robots main-

tain a line formation when they are navigating past waypoints to a final destination [56].

And the results showed that system performance improved by considering global knowl-

edge. In [57], Balch and Arkin extended the Park’s work, and showed that the unit-center

reference techniques provides better performance than the leader-referenced approach in

Park’s paper. Though simulations in these papers showed success of the behavior based
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approach, it is hard to systemically study because the approaches lack of analysis-basis.

2.2.3 Leader/Follower approach

In leader/follower approach, the leader’s motion is prescribed. The other agents in

the swarm robotics are followers which track the motion of leader or subset of neigh-

bor agents with some offset. This approach can be also traced back to the V-formation

demonstrated in geese migration. Variants of the approach are proposed in many papers

to improve the performance and study the convergence property, which include multi-

ple leaders, chain topologies, tree topologies and network topologies, and thus induced

various information flow among the autonomous swarms.

In [58], a vision-based formation control of nonholonomic robots were proposed.

By specifying the desired formation in the image plane, the control problem is translated

into a distributed leader/follower formation control. By using nonlinear feedback tracking

controller for each follower agent, the formation input-to-state stability were established.

In [59],Wang studied the approach for formations keeping and relative attitude alignment

based on nearest neighbor tracking. Different topologies of the approaches, like nearest

neighbor tracking, barycenter tracking, etc., are compared in this paper. Some advanced

extension, for example, actuator saturation and adaptive control, were reported in [60].

In [61], the leader/follower model is described by a double-graph model, where

one graph is used to describe the leader states flow, and the other one is used to describe

neighbors states flow. Experiment and simulation shows that the system performance is

improved by increasing the communication cost (the amount information need to trans-
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mitted through the network). The mesh stability of the interconnected multi-vehicles

system are established in this paper as long as the formation topology is acyclic.

Unlike traditional leader/follwer model, in [62], Fax and Murray assume all agents

are identical and no leaders are explicit designated. The communication interconnection

between vehicles forms a directed graph. By using tools from algebraic graph theory,

a Nyquist criterion is proved, which states how the eigenvalues of the graph Laplacian

matrix determine formation stability give the communication topology.

Besides to aforementioned approaches, several other approaches have been stud-

ied in formation control and path planning. In [63, 64], they used the virtual structure

approach for formation control, where the formation is describe by a single rigid body.

The translation from the virtual structure motion to individual motion needs centralized

mechanism which limit the applications of the method. Justh used the planar Frenet-

Serret framework for multi-UAVs formation with constant speed [65]. In [66], a dynamic

programming approach was used to find near-optimal search path in the presence of un-

certainty and moving constraints. In [67], a receding horizon approach is proposed for

multi-vehicle cooperatively visit multi-target.

17



Chapter 3

Problem formulation and an APF based approach

As many applications have been introduced in chapter 1, UAV swarms are poten-

tially able to perform various dangerous or complicated missions in remote or poisonously

environments. For example, in defense applications, missions like hostage rescue, surveil-

lance and ground mines clearance can be performed by a group of UAV swarms to help

reduce human losses. In these types of applications, the full information of environments

are usually unknown. Moreover, limited sensing capabilities, computation power, bat-

tery power are often required for UAVs in order to reduce the manufacturing cost. On

the other hand, UAV swarms can exchange information through wireless communication

, e.g., Radio Frequence (RF) communication, shortwave communication. However, en-

vironment conditions (e.g., severe weather), and large number agents in UAV networks

introduce communication error and delay. Hence, decentralized approaches which require

only local information are especially appealing.

Inspired by the emergent collective behaviors demonstrated in insects, bacteria, and

even human being, the decentralized coordination mechanisms existing in nature have

been received great interests. As has been discussed in the last chapter, the collective

behaviors are often involved with so called “social potential” [52]. Borrowed from here,

the Artificial Potential Function (APF) approach has been adopted and explored in col-

laborative control design over the past two decades, for example, mobile robot networks
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path planning and control of robotic manipulators, see e.g., [49, 50, 51] and the references

therein. In this approach, the interaction between individual agents and environments, as

well as group tasks are often encoded in the potential function. The potential functions

should be designed such that desired configurations of multiple robotics correspond to the

global minimizer of the ensemble potential functions.

In this chapter, a APF based decentralized approach is investigated to collabora-

tively control UAV swarms to achieve group tasks in a battle field scenario. The mission

goal is to let the UAV swarms autonomously explore their ways to a predetermined target

area while avoiding unknown obstacles and moving threats. To address multiple objec-

tives instantaneously, a linear combination of individual potential components is used,

where each individual potential term reflects one single objective or constraint, e.g., co-

herence among inter vehicles, obstacle avoidance, collision avoidance, and etc.

The potential functions are constructed such that only local information is involved,

which guarantees that the potential function can be evaluated locally. There are usually

two sources for getting local information. One is the information captured by the sensors

(e.g., camera, sonar) on the UAV. For example, the distance been UAV and obstacles.

The other one is through the communication link among neighboring UAVs. They could

share the information they have in their memories. With potential function encoded in the

UAV, at every time instant each vehicle evaluates its potential function profile with local

information and decides its velocity by following the negative gradient flow.

Despite the simple and elegant nature of the APF approach, it suffers from the

dilemma that system dynamics could be entrapped in the local minima due to the non-

convexity of the potential surface. A novel approach based on the Markov Random Field
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(MRF) and Simulated Annealing (SA) is then proposed to solve the problem and studied

systemically in the remainder of the dissertation.

3.1 Problem setup: A battle field scenario

The problem setup follows [9]. Consider a kinematic path planning problem in an

unknown 2D space (the extension to 3D space is straightforward), which is called mission

space hereafter. There are N vehicles moving on the ground. For simplicity, we assume

all vehicle are identical, and has point mass first order kinematic equation, i.e.,

ṗk(t) = uk(t), k = 1, ...,N, (3.1)

wherepk(t) = (xk(t),yk(t)) is the location of vehiclek at time instantt, anduk(t) is the

control input.

Each vehicle carries multiple sensors (e.g, camera, sonar) for exploring local sur-

rounding area within the sensing rangeRs. Two vehicle are neighbors if they are within

interaction distanceRi , whereRi ≤ Rs. There is a desired inter-vehicle distancer0 for

several reasons: staying too close leads to small area of coverage, good chance of col-

lision, and easy targeting by the enemy fire, while staying too far apart leads to loss of

communication and coordination.

The mission scenario is shown in figure 3.1. There are several unknown obstacles

distributed in the mission space. For simplicity, we first assume that obstacles are of

circular or eclipse shape. More complicated shape of obstacles may lead vehicle swarms

fail to accomplish group tasks with simply APF approach. Denotepo
l as the centroid of the

obstaclel , andRo
l as the radius. It is also assumed that each vehicle has the knowledge of
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Fig. 3.1: A battle field scenario

target area location. The target area is also of the circular shape which located arepg and is

guarded by moving threats surrounding outside. The moving threats with predetermined

trajectorypm(t) will destroy vehicle if the distance between them is within is rangeRe.

Let V (t) be the set of vehicles that are alive att, andNk(t) be the neighboring set

of the vehicle k defined by

Nk(t) = { j ∈ V (t) : j 6= k,‖pk(t)− p j(t)‖ ≤ Ri}.

The mission task has two folds: first, generate collision-free paths such that multiple

vehicle could reach to the target area without being trapped by obstacles. second, enter

into the target area without being killed by moving threats and cover the target area.
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3.2 APF Approach based Decentralized control of UAV swarms

To accomplish the mission tasks, a linear combination of multiple potential function

terms are designed to accommodate multiple objectives and constraints. In particularly,

the potential function for vehiclek is of the following form

Jk = λgJg(pk, pg)+λnJn
k(pk, pNk)+λoJo

k(pk, po)+λmJm
k (pk, pm(t)), (3.2)

whereJg
k ,Jn

k ,Jo
k ,Jm

k are potential terms accounting for target attraction, inter-vehicles co-

hesion, obstacle avoidance and moving threats avoidance.λg,λn,λo,λm are corresponding

coefficients. The design of the coefficients is also very challenging.

As aforementioned, the desired configurationp∗ of the vehicle swarms attains the

global minimum potential values, i.e.,J(p∗) = minp(J), whereJ = ∑k Jk is thetotal po-

tential value. The control objective can then be precisely described as follows: find de-

centralized control inputuk(t), such thatp(t)→ p∗ as timet → ∞. The gradient descent

approach is commonly used for the controller design, i.e.,

uk =− ∂
∂ pk

Jk (3.3)

Each component in (3.2) is described in the follows.

• Target attraction potentialJg
k

The target attraction potential is used to lead vehicles move towards the target. A

frequently used form isJg
k = f (‖pk(t)− pg‖), where f (·) is a strictly increasing

function with respect to‖pk(t)− pg‖. When vehicle is far away from the target, the

target potential has high value, and vice versus. In a free space, if there is no other
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Fig. 3.2: The inter-vehicle potential function

terms in the potential function (3.2), by taking the velocity as the negative gradient

of Jg
k only, the vehiclek moves directly to the target.

• inter-vehicle potentialJn
k

The inter-vehicle potential maintains the desired distancer0 between neighboring

vehicle with the following form

Jn
k = ∑

j∈Nk(t)
fn(r jk),

wherer jk = ‖pk(t)− p j(t)‖. When two vehicle are too close to each other(r jk ≤

r0), the potential functionfn(r jk) tends to infinity asr jk →∞, and is strictly deceas-

ing on(0, r0]. When two vehicle are far away to each other(r jk ≥ r0), the potential

function fn(r jk) is strictly increasing on(r0,Rs] and holding constant on[Rs,∞). A

typical inter-vehicle potentialfn(r jk) is shown in figure 3.2

• The obstacle potentialJo
k

23



The obstacle potential prevents vehicle from being entrapped by obstacles. When

vehicle is moving towards the obstacle, the potential function approaches to infinity,

and is strictly decreasing on(0,Rs]. An example satisfying the property is

Jo
k =

1
ro
k

wherero
k is the shortest distance between vehicle and obstacle surface.

• The moving threats avoidance potentialJm
k

The moving threats are modeled as moving points. LetMk be the set of moving

threats within the detection range of vehiclek. Jm
k is expressed as

Jm
k = ∑

j∈Mk

fm(rk,mj ),

where rk,mj = ‖pk− pm
mj
‖ is the distance between vehiclek and moving threats

mj . fm(·) is a monotone decreasing function on[Re,Rs], and constant on(Rs,∞).

Moreover,fm(·) goes to infinity asrk,mj approaches toRe. The design of the moving

threats potential function is similar as the obstacle potential function.

3.3 Local minimum entrapment dilemma and existing solutions

As mentioned in the last chapter, the potential based approach provide people an

extremely simple and elegant way to understand the collective behaviors demonstrated in

nature, e.g., insects swarming behavior, bacteria foraging. Inspired from nature, people

utilize this approach in designing artificial multiple agent system, e.g., multiple UAV sys-

tem, mobile sensor network. In [9], extensive simulation results demonstrate the success
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of the APF based approach in the application of a battle field scenario. However, the sta-

bility analysis via the celebrated Lyapunov stability theory shows that the gradient decent

approach may lead to local minima such that the group mission fails, i.e., the final config-

uration of the vehicle swarms may not be the desired one. Unless one design the potential

function very carefully such that only one minimum exists on the potential surface, there

is no guarantee that the gradient decent approach can lead the vehicle swarms to achieve

desired configuration.

Proposition 3.3.1 The autonomous system (3.3) is locally stable. LetE = {p∗, (p∗1, ..., p∗N) :

∂
∂ pk

Jk |p∗= 0,∀ k} be the equilibria set. Starting from arbitrary initial conditionp0. The

final configurationp∞ = Φ(p0) ∈ E . If the potential surface is strictly convex, i.e., equi-

librium set has only one stable equilibrium, the system asymptotically reach to the global

minimizer.

Proof. Let J = ∑N
k=1Jk. It is straightforward to verify thatJ is a valid candidate lyapunov

function. With control designed using gradient decent in (3.3), we have

d
dt

J =
N

∑
k=1

∂
∂ pk

J · Ṗk

=
N

∑
k=1

−(
∂

∂ pk
Jk)2≤ 0 (3.4)

By applying lyapunov stability theorem [68], one concludes that the system (3.3) is locally

stable.

E defines a limiting set. By applying the lasalle’s theorem [68], the system ap-

proaches to the limiting setE as time tends to infinity. If the potential functionJ is

strictly convex, it is straightforward to show that the global minimizer ofJ is the unique
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component inE . Thus, the gradient decent approach is guaranteed to lead the system to

the global minimizer¤

In the proposition 3.3.1, one can see that the final configurationp∞ depends on the

initial configurationp0 if the the potential surfaceJ is non-convex. To substantiate the

fact, simulations in the next section show that in the battle field scenario UAV swarms

could fail to reach the designated target given the existence of a non-convex shape obsta-

cle. To address the problem, several approaches in the literature were proposed.

As stated in the proposition 3.3.1, one way to avoid local minimum entrapment is

through design potential function such that it is strictly convex. For example, in [14], a

harmonic function was proposed to construct potential function which is free from local

minima. In [13], Volpe and Khosla proposed to use superquadric function to eliminate

local minima.

Another popular way to solve the problem comes from heuristic point of view. In

[16], virtual obstacles were proposed the push the vehicle away from the local minima due

to the nonconvex obstacles. In [17], an approach involving virtual local targets were used

to lead the vehicle move out from obstacles. Unlike introducing additional virtual obsta-

cles or targets, a probabilistic method approach was introduced in [15]. In this approach,

when vehicles get trapped, they would explore all possible directions with equal proba-

bilities. After certain time interval, the vehicles switch back to gradient decent approach.

Despite the success demonstrated in simulation, these heuristic approaches usually are

lack of rigorous analysis.

Recently, Chang proposed a new solution that combines the gyroscopic force and

the gradient decent approach [69]. In this approach, the control inputu for each vehicle
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consists of three parts as follows:

u = Fp +Fd +Fg,

WhereFp andFd are forces coming from the gradient flow and the damping force respec-

tively, the other termFg is the gyroscopic force, which is orthogonal to the gradient decent

direction. When the vehicle was trapped by the obstacles, the gyroscopic force drive the

vehicle move around the obstacle to get out from local minima.

All these approach can only solve the local minima entrapment problem in some

special cases, e.g., non-convex shape obstacles. There is no general way in the past re-

search that could guarantee the final configuration approaches to the desired the config-

uration. This motivate us to solve the general problem. In the next chapter, a general

solution is proposed and systemically studied to solve this problem.

3.4 Simulation Results

In [9], extensive simulations demonstrated the success of using the APF approach.

By designing weighting coefficients of potential function components, in a battle field

scenario, simulations showed that vehicles networks successfully enter into target area

without being captured by the moving threats.

In this section, two simulations are conducted to show that UAV swarms fail to

accomplish group task if the designed APF is nonconvex and has multiple local minima.

(1) a battle field scenario

In this example, a similar battle filed scenario as in [9] is used for demonstrating

the fact. For simplicity, we do not assume that moving threats are circulating around the
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Fig. 3.3: Snap shots of vehicle swarms that are trapped by nonconvex shape obstacles

target area. Instead of circular obstacles, we introduce a non-convex shape of obstacle. In

the simulation, there are 20 vehicles on a 48× 48 area (see Fig. 3.1). The target is located

at the corner (43,43) with radiusRg = 5, and two overlapped circular obstacles with radius

5 are centered at (17, 23) and (23, 17), respectively. Initially the vehicles are randomly

distributed close to the other corner which is opposite to the target. The parameters used

are: λg = 10, λo = 1, λn = 0.2, Rm =
√

2, Rs = 6
√

2. The mission goal is completed if

all vehicles reach and gather in the target area. In addition, it is desired that vehicles have

more neighbors.

The snapshots of the UAV swarms using the APF based approach is shown in figure

3.3. Clearly, due to the nonconvex shape of the obstacle, a part of vehicle networks are

trapped, which makes the group task failed.
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(2) Grid formation

The goal is to have the vehicles to form certain structure by simply define the inter-

vehicle distance. In the simulation, 6 vehicle are moving on the 5 by 5 ground. Each

vehicle can detect the distance with other vehicles. The desired inter-vehicle distance is

set to ber0. For simplicity, the inter-vehicle potential functionfn(·) for any two neigh-

boring vehiclei and j has the following form,

fn(pi , p j) = (‖pi− p j‖− r0)2. (3.5)

Since only one term shows up in the APF, the coefficientλn is set to be 1. In the sim-

ulations, two equilibrium configurations are observed. See figure 3.4 and 3.5,where a

hexagon-like configuration, and a star shape configuration were observed due to the dif-

ferent initial condition. The simulations confirm that the APF approach can only lead to

local minima.
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Fig. 3.4: Snap shots for a hexagon-like equilibrium configuration
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30



Chapter 4

A Novel Gibbs Sampling Based Approach

To address the local minima entrapment dilemma existed in the gradient descent

approach, In this chapter, a novel, systematic approach is proposed based on the theory

of Markov random fields (MRFs) and Gibbs sampling, a tool that has been traditionally

used in statistical mechanics, image processing and computer vision [18, 19, 20], and

data analysis and clustering [21, 22]. A discrete-time path planning setting is considered,

where vehicles are allowed to move on a discretized grid in a two-dimensional space

(three-dimensional case can be easily extended). We focus on the high-level coordination

and planning problem in this chapter, and thus the vehicle dynamics is not included in the

analysis. In chapter 8, a model predictive control (MPC) based motion control approach

is proposed for car-like wheeled vehicle’s dynamics during the low-level vehicle control

in executing the planned trajectory.

In the new approach, a swarm is modeled as a MRF on a graph, where the (mobile)

vehicles and their communication/sensing links constitute the vertices and the edges [23]

of the graph, respectively. As in the APF approach, global objectives and constraints (e.g.,

obstacles) are reflected through the design of potential functions - in this case, Gibbs po-

tentials. The movement of vehicles is then decided using simulated annealing based on

the Gibbs sampler. The dynamic graph associated with the evolution of vehicle networks,

however, presents significant challenges in convergence analysis since classical MRF the-
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ory does not apply directly.

In this chapter, we first present analysis on the single-vehicle case before embarking

on the more general multi-vehicle case. The aforementioned dynamic graph now degen-

erates to a single vertex and the analysis is much simplified. The purpose of studying the

single-vehicle case is two-fold. Firstly, this is of interest in its own right by showing the

convergence to the optimal location despite the existence of local minima, a clear advan-

tage over the traditional gradient-flow method. Secondly, some analytical techniques and

results for the single-vehicle case, e.g., the convergence bound and the impact of potential

function design on convergence speed, also apply to the multi-vehicle case. Therefore,

they provide insight into the latter case.

To deal with the self-organization of multiple vehicles, a two-step sampling scheme

is proposed: in the first sampling step a vehicle is picked through a properly designed,

configuration-dependentproposal distribution, and in the second sampling step the vehi-

cle makes a move using the local characteristics of the Gibbs distribution. It is shown

that simulated annealing with such a two-step scheme leads to convergence to the con-

figuration(s) of minimal potential. This scheme requires mostly local interactions among

vehicles except a global communication mechanism for notifying the newly selected ve-

hicle. Such a mechanism could be provided, e.g., by a dedicated base station, or by

individual vehicles with short-time, long-range communication capabilities.

The remainder of the chapter is organized as follows. Section 4.1 reviews basic

mathematical background of MRF, Gibbs sampler and simulated annealing approach. The

problem formulation and system modeling is addressed in section 4.2. The single-vehicle

case is treated in section 4.3, while the multi-vehicle case studied in Section 4.4. Section
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4.5 substantiates the convergence analysis with extensive simulation results.

4.1 Mathematical Background

4.1.1 Markov Random Field (MRF)

One can refer to, e.g., [20, 70], for a more comprehensive review of MRFs. LetS

be a finite set of cardinalityσ , with elements denoted bys and calledsites, and letΛ be

a finite set called thephase space. A random fieldon Swith phases inΛ is a collection

X = {Xs}s∈S of random variablesXs with values inΛ. A configurationof the system is

x = {xs,s∈ S} wherexs∈ Λ, ∀s. The product spaceΛσ is called theconfiguration space.

A neighborhood systemonS is a familyN = {Ns}s∈S, whereNs⊂ S, and∀s∈ S,

1. s /∈Ns

2. r ∈Ns if and only if s∈Nr .

Ns is called theneighborhoodof sites. The couple(S,N ) is called agraphor atopology

, whereS is the set ofverticesandN definesedges. Sites andt are linked by a edge if

and only if they are neighbors, i.e.,t ∈Ns.

The random fieldX is called aMarkov random field(MRF) with respect to the

neighborhood systemN if, ∀s∈ S,

Π(X = x) > 0, ∀x∈ Λσ

Π(Xs = xs|Xr = xr , r 6= s) = Π(Xs = xs|Xr = xr , r ∈Ns),

i.e., the conditional probabilities associated with the joint probability distribution ofX are
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local in character and they obey the spatial Markovian relationship. Thelocal character-

istic of the MRF at sites is defined by the condition distribution functionπs(x):

πs(x) = Π(Xs = xs|Xr = xr , r ∈Ns)

The family{πs(x)}s∈S is called thelocal specificationof the MRF

The probability distributionπ on a finite configuration spaceΛS is said to satisfy the

positive conditionif for any sites, π(xs) = 0 impliesπ(xs,xS\s) = 0, whereS\s denotes

the compliment ofs in S. The positive condition guarantees the uniqueness of the MRF

given the local specification specified.

4.1.2 Gibbs random field and Cliques

A random fieldX is aGibbs random fieldif and only if its joint probability distrib-

ution is of the form:

Π(X = x) =
e−

U(x)
T

Z
,∀x∈ Λσ ,

whereT is the temperature variable (widely used in simulated annealing algorithms),

U(x) is the Gibbs potential (or energy) of the configurationx, andZ is the normalizing

constant, called thepartition function:

Z = ∑
x∈Λσ

e−
U(x)

T .

The Gibbs field originally comes from physics, where it was introduced by Gibbs

(1902). It was interesting for physics because the probability distribution of the special

MRF is interpreted through energy and potential function which is useful in describing

the local interaction of particles. In their study, the notion ofcliqueplays a important role,

which used to refer a small group of people who know each other.
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A subsetc⊂ S is called aclique with respect to a topology(S,N ) if every pair

of distinct sites(s, t) in c are neighbors, except for single-site cliques{s}. With cliques

defined, one can then construct potential functionsΨc(x) associated with each clique

to describe the local interaction among neighboring nodes inc. A Gibbs potentialon

configuration spaceΛS w.r.t. (S,N ) is a collection{Ψc(x)}c⊂S of functionsΨc(x) :

Λs→ R such that

1. Ψc(x) = 0 if c is not a clique

2. for all x,x′ ∈ ΛS, and allc⊂ S, x(c) = x′(c)⇒Ψc(x) = Ψc(x′)

The value ofΨc(x) depends only on the local configuration on cliquec, which guarantees

the local nature of the Gibbs Field.

One then considers the following very useful class of potential functions

U(x) = ∑
c∈C

Ψc(x),

which is a sum of clique potentialsΨc(x) over all possible cliquesC . A classical exam-

ple, usually referred asIsing Model, was introduced by Ising (1925) for understanding

qualitatively the phenomenon of phase transition in ferromagnetic materials. One can

refer to A for details.

By the Hammersley-Clifford theorem [71], a Gibbs random field defined by a Gibbs

distribution leads to an MRF with a consistent set of conditional probabilities; and con-

versely, for any MRF with a consistent set of conditional probabilities, there exists an

equivalent Gibbs distribution expressed in terms of local potentials.
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4.1.3 Gibbs Sampler

Consider a random field that changes randomly with time, which defines a stochas-

tic process{Xn(s),s∈ S}n≥0. At each time instantn, the stateXn is a random field take

values inΛS. The stochastic process{Xn} in called adynamic random field.

One then interested to generate a finite state Markov chain whose stationary distri-

bution equals to a marginal distribution of a given random field. Suppose a homogenous

Markov chain is irreducible and aperiodic, the fundamental Perron-Frobinius theorem

shows that there exist an unique stationary distribution. This implies that from any initial

distribution, the state distribution at timen will converges to the stationary distribution.

The transition mechanism of the Markov chain is called asampling algorithm, or asim-

ulation algorithm. There are two major sampling algorithms in literature: Metropolis

sampler, and Gibbs sampler. The latter is adopted in our approach.

The Gibbs samplerbelongs to the class ofMarkov Chain Monte Carlo(MCMC)

methods, which sample Markov chains leading to stationary distributions. The algorithm

updates the configuration by visiting each site sequentially or with a strictly positive prob-

ability distribution (qs,s∈ S) on S, and sampling from the local conditional distributions

of a Gibbs field. Picking an deterministic enumeration scheme forS= s1, . . . ,sσ , which

is called avisiting scheme, the Gibbs sampler (basic version) works as following:

• Step 1. Pick an initial configurationx∈ Λσ

• Step 2. Update the configuration by visiting each sites1 . . .sσ in turn specified

by the visiting scheme. When visitingsi , hold fixed the values atsj , j 6= i, and

changexsi to z∈ Λ with probability distributionP(z) defined through the local
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characteristics:

P(z) =
Π(z|r ∈Nsi)

∑
z′∈Λ

Π(z′|r ∈Nsi)
,

• Step 3. Repeat step 2.

Note that in the above procedure the evaluation ofΠ(z) is in general easy thanks to the

local nature of potential functions. By incorporating the Gibbs distribution, it can be

easily proved that the local sampling distribution in step 2 only depend on the clique

potentials associated with current visiting sitesi :

P(z) =

exp(− ∑
c∈Csi

Ψc(xs = z))

∑
z′∈Λ

exp(− ∑
c∈Csi

Ψc(xs = z′))
,

whereCsi denotes the set of cliques associated with sitesi . Let Φs(x) = ∑
c∈Cs

Ψc(x) be the

potential function associated with site s, the above formula can be simplified as following:

P(z) =
exp(−Φsi(xsi = z))

∑
z′∈Λ

exp(−Φsi(xsi = z′))
. (4.1)

From the definition ofΦs(x), it is straightforward to show thatΦs(x) depends only the

value on sites and its neighbors siter ∈Ns, i.e., Φs(x) = Φs(y) wheneverxs = ys, and

xr = yr ,∀r ∈Ns.

Step 2 essentially defines the transition probabilities for a random field-valued

Markov chainX(n). The convergence of the Markov chain defined by Gibbs sampler

was studied by D. Geman and S. Geman in the context of image processing [72]. By

denoting one sequential visit to all sites as asweep, it can be shown that as the number

of sweeps goes to infinity, the distribution ofX(n) converges to the Gibbs distributionΠ.

Furthermore, with an appropriate cooling schedule, simulated annealing using the Gibbs
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sampler yields a uniform distribution on the space of configurations corresponding to the

minimum energyU(x). Thus the global objectives could be achieved through appropriate

design of the Gibbs potential function.

4.1.4 Simulated Annealing approach

Both the gradient descent and the simulated annealing (SA) approach are popular

optimization methods that numerically solve the linear and nonlinear optimization prob-

lem. As discussed in the last chapter, the gradient descent approach belongs to local

optimization techniques. By taking steps proportional to the negative of the gradient flow,

this approach always end up with local minimizer if the corresponding potential function

is not convex.

The SA approach, on the other hand, numerically searches global optimizer given

a function in a large search space, e.g., combinatorial optimization problem. It was S.

Kirkpatrick, et. al. who first proposed SA approach in 1983 [73]. Then V. Cerny inde-

pendently invented a similar approach in 1985[74]. The approach is inspired from the

annealing procedure in metallurgy, a technique involving heating and slowly cooling of a

material to get better mechanical performance. Inside the material, the annealing proce-

dure results in larger size of crystals which have lower internal force.

By mimicking this physical process, the SA approach iteratively replace the current

solution by randomly pick a local solution. The probability of making transition from

current statex to a candidate statex′ depends on a potential function difference (U(x)−

U(x′)) and a temperatureT. For example, in the Boltzmann annealing (BA) algorithm,
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the transition probability is expressed as follows.

px→x′ =





1, i f U (x′) < U(x);

e−
U(x′)−U(x)

T , i f U (x′)≥U(x)

By gradually deceasing the temperature, the method asymptotically approaches to the

global minimizer.

The rationale behind the approach lies in that, at each temperature, the transition

probability corresponds to the solution of a entropy maximization problem constrained

by the averaged energy under certain value. Using the lagrange multiplier, the solution

can be solved by minimizing the lagrangeL = βEp(U(x)) + S(p), whereS(p) is the

entropy, andβ = 1/T. Instead of greedily search the global minimizer along the negative

gradient flow in the gradient descent approach, the random sampling in the SA approach

minimizes a linear combination of the averaged energy and the entropy. As mentioned in

the previous section, [18] proved that with logarithm cooling schedule, the SA approach

converges to the global minimizer as temperature goes to zero.

Although the SA approach have been theoretical proved and practically applied

in solving many optimization problems, it frequently suffers from the long computation

time. To address the problem, studies on accelerating cooling schedule and parallel sam-

pling have been visited by many researchers. One may refer to [75] for more detailed

reviews of the SA approach.
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4.2 Modeling vehicle swarms as MRF

Consider a 2D mission space (the extension to 3D space is straightforward), which

is discretized into a lattice of cells. For ease of presentation, each cell is assumed to be

square with unit dimensions. One could of course define cells of other geometries (e.g.,

hexagons) and of other dimensions (related to the coarseness of the grid) depending on the

problems at hand. Label each cell with its coordinates(i, j), where1≤ i ≤N1,1≤ j ≤N2,

for N1,N2 > 0. There is a set of vehicles (ormobile nodes) S indexed bys= 1, · · · ,σ on

the mission space. To be precise, each vehicle (node)s is assumed to be a point mass

located at the center of some cell(is, js), and the position of vehicles is taken to be

ps = (is, js). At most one vehicle is allowed to stay in each cell at any time instant.

The distance between two cells,(ia, ja) and(ib, jb), is defined to be theL2 norm,

in specific,R
4
=

√
(ia− ib)2 +( ja− jb)2. There might be multipleobstaclesin the space,

where an obstacle is defined to be a set of adjacent cells that are inaccessible to vehicles.

For instance, a “circular” obstacle centered at(io, jo) with radiusRo can be defined as

O
4
= {(i, j) :

√
(i− io)2 +( j− jo)2 ≤ Ro}. The accessible areais the set of cells in the

mission space that are not occupied by obstacles. Anaccessible-area graphcan then be

induced by letting each cell in the accessible area be a vertex and connecting neighboring

cells with edges. The mission space isconnectedif the associated accessible-area graph

is connected, which will be assumed hereafter. There can be at most onetarget areain

the space. A target area is a set of adjacent cells that represent desirable destinations of

mobile nodes. A “circular” target area can be defined similarly as a “circular” obstacle.

An example scenario is shown in Fig. 4.2.
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Fig. 4.1: An example mission scenario.

In this thesis, all nodes are assumed to be identical. Each node has asensing range

Rs: it can sense whether a cell within distanceRs is occupied by some node or obstacle.

Communication between two nodes that are within a distance ofRs is regarded as local.

The moving decision of each nodes depends on other nodes located within distanceRi

(Ri ≤Rs), called theinteraction range. These nodes form the setNs of neighborsof node

s. A node can travel at mostRm (Rm≤ Rs), calledmoving range, within one move.

The neighborhood system defined earlier naturally leads to a dynamic graph, where

each vehicle represents a vertex of the graph and the neighborhood relation prescribes the

edges between vehicles. An MRF can then be defined on the graph, where each vehicle

s is a site and the associated phase spaceΛs is the set of all cells located within the

moving rangeRm from locationps and not occupied by obstacles or other vehicles. The

configuration space of the MRF is denoted asX .

The Gibbs potentialU(x) = ∑
c∈C

Ψc(x), whereΨc(x) is the clique potential and may
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Fig. 4.2: Illustration of the sensing rangeRs, the interaction rangeRi , and the moving

rangeRm. Note since the mission space is a discretized grid, a cell is taken to be within a

disk if its center is.

include different types of potential functions. To characterize the constraints and objec-

tives as we mentioned earlier, the Gibbs potential can be formulated as a sum of three

kinds of clique potentials. To be specific,

U(x) = λg∑
s∈S

Ψg
s +λo∑

s∈S

Ψo
s +λn ∑

〈s,t〉∈N

Ψn
(s,t), (4.2)

Φs(x) = λgΨg
s +λoΨo

s +λn ∑
t∈Ns

Ψn
(s,t), (4.3)

whereΨg
s, Ψo

s, andΨn
(s,t) account for the attraction from the target area, the repelling from

obstacles, and the pulling force from neighbors, respectively. And〈s, t〉 indicates a pair of

sitess andt are neighbors of each other.λg,λo,λn are the weighting coefficients for ad-

justing the potential surface. Note that the design of these constants is also a challenging

and important issue as it may directly impact the nodes behavior and the convergence rate

of the algorithm [9, 76]. The movement of each vehicle is then determined by the Gibbs
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sampler-based simulated annealing. Without loss of generality, it is assumed that there

is one circular target area centered atpg, and there areK (possibly overlapping) circular

obstacles centered atpok, 1≤ k≤ K. The following potential functions are used:

Jg
s = ‖ps− pg‖

Jo
s =

K

∑
k=1

1
‖ps− pok‖ (4.4)

Jn
s =





1
∑

z∈Ns

1
‖ps−pz‖

, i f Ns 6= /0

∆, i f Ns = /0

whereJn
s tends to be smaller when sites has more neighbors.∆ > 0 is a relative large

constant and it represents the penalty for having no neighbors.

Two major differences exist between a classical MRF introduced before and the

MRF defined for the vehicle networks:

1. In a classical MRF, the neighborhoodNs depends only onsand not onxs. However,

for autonomous vehicles,Ns also depends on the phasexs;

2. The phase spaceΛ is the same for eachs and is time-invariant for a classical MRF.

However, the phase space in vehicle networks is site-dependent and time-varying.

Due to these differences, classical MRF theory cannot be adopted directly to ana-

lyze the convergence behavior of the path planning algorithm, although simulations re-

sults in [77] showed a great success of the stochastic algorithm that lead autonomous

swarms to the global objective without getting trapped by local minima.
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4.3 Gibbs sampling based algorithm for Single Vehicle

4.3.1 Gibbs sampling based algorithm

For single vehicle case, the gibbs potentials only consist of clique potentials asso-

ciated with singleton, namely obstacle potential, and target attraction potential, i.e.,

Φs(x) = λgΨg
s +λoΨo

s.

So the mission goal is to reach the target area while avoiding the obstacles.

Starting from arbitrary initial positionp0, the vehicle make moves according to the

following algorithm

• Step 1. Pick an cooling scheduleT(n) = c
log(n) , where c is a coefficient for adjusting

the cooling rate. Let n=1.

• Step 2. At each time instantn, the vehicle moves from current locationxs(n) to

candidate locationz∈ Λ (empty cells within the moving range) with probability

distributionP(z) defined through the local characteristics:

P(z) =
e−Φs(z)

∑
z′∈Λ

e−Φs(z′)
,

• Step 3. Let n=n+1. Repeat step 2.

In the next subsection, analysis is provided to show that the vehicle will reach to the

target for sure given arbitrary shape of obstacles provided the accessible area is connected.
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4.3.2 Convergence Analysis

For the single-vehicle case, the MRF has only one site and the individual potential

Φs consists of only first two terms of (4.2), which makes the analysis simpler. It can be

shown that the Markov chain of the MRF defined by the Gibbs sampler converges to a

stationary distributionΠT as time tends to infinity for a fixed temperatureT. By choosing

an appropriate cooling schedule, the vehicle approaches the configuration(s) of minimum

potential. This is made precise by the following theorems. The proofs of the theorems are

adapted from some results on classical MRFs [20].

Theorem 4.3.1 Assume that the accessible area is connected. For a fixed temperatureT,

let PT be the kernel of the homogeneous Markov chainX(n) defined by the Gibbs sampler.

ThenX(n) has a unique stationary distributionΠT :

πT(x) =

e−
U(x)

T ∑
‖pz−px‖≤Rm

e−
U(z)

T

ZT
, (4.5)

whereZT is the partition function, defined as:

ZT = ∑
x∈X

(e−
U(x)

T ∑
‖pz−px‖≤Rm

e−
U(z)

T )

Furthermore, starting from any distributionν

lim
n→∞

νPn = ΠT . (4.6)

Proof. Since the MRF has only one site, the Markov kernelPT defined by Gibbs

sampler is:

PT(x,y) =





e−
U(y)

T

∑
‖pz−px‖≤Rm

e−
U(z)

T

i f ‖py− px‖ ≤ Rm

0 i f ‖py− px‖> Rm

. (4.7)
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Due to the connectivity of the accessible area, there exists at least one path between

any two configurationsx andy (i.e., a sequence of moves{x,x1, · · · ,y}), and the shortest

path is bounded byτ moves for some finiteτ. This implies thatPT has astrictly positive

powerPτ
T , i.e., theτ-step Markov chain reaches each state with positive probability from

any state. Hence the Markov chain is ergodic and it has a unique invariant distribution

ΠT , which implies (4.6). One can verify that (4.5) is a stationary distribution forPT . ¤

Due to the limited moving range,τ sweeps will be performed for each temperature

T(n) in the simulated annealing to guarantee the convergence.

For a Markov kernelP, define itscontractioncoefficientc(P) by

c(P) = (1/2)max
x,y
‖P(x, ·)−P(y, ·)‖1,

whereP(x, ·) denotes the vector of conditional distributionsp(·|x). The following lemma

[20] will be useful in the proof of Theorem 4.3.2.

Lemma 4.3.1 Let µ andν be probability distributions, andP andQ be Markov kernels.

Then

‖µP−νP‖1≤ c(P)‖µ−ν‖1,

c(PQ)≤ c(P)c(Q),

c(P)≤ 1−|X|min{(P(x,y) : x,y∈ X},

and for a primitiveP,

c(Pn)→ 0 asn→ ∞,

whereX is the state space of the Markov chain and|X| denotes its cardinality.
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Theorem 4.3.2 Assume that the accessible area is connected. Let{T(n)}n≥1 be a cool-

ing schedule decreasing to 0 such that eventually

T(n)≥ τ∆
lnn

(4.8)

where∆ = max
x,y
{|U(x)−U(y)| : ‖px− py‖ ≤ Rm}1, and τ is as defined in the proof of

Theorem 4.3.1. LetQn = Pτ
T(n). Then from any initial distributionν ,

lim
n→∞

νQ1 · · ·Qn = Π∞, (4.9)

whereΠ∞ is the distribution (4.5) evaluated atT = 0. LetM be the set of configurations

achieving the minimum ofU(x). Assume that‖px− py‖> Rm, ∀x,y∈M,x 6= y. Then

lim
n→∞

νQ1...Qn =





1
|M| if x ∈ M

0 otherwise

. (4.10)

Proof. Definemx = min{U(z) : ‖pz− px‖ ≤ Rm}. Then, if‖py− px‖ ≤ Rm,

PT(x,y) =
e−

U(y)−mx
T

∑
‖pz−px‖≤Rm

e−
U(z)−mx

T

≥ |Λ|−1e
−∆
T (4.11)

where|Λ| is the upper-bound on the cardinality of the phase space. ForQ = Pτ
T , from

Lemma 4.3.1,

c(Q) ≤ 1−|X|min
x,y

Q(x,y)≤ 1−|X|(min
x,y

PT(x,y))τ

≤ 1−λe
−τ∆

T , (4.12)

whereλ = |X| · |Λ|−τ ≤ 1. Then

n

∏
k=i

c(Qk) ≤
n

∏
k=i

(1−λe
−τ∆
T(k) )≤

n

∏
k=i

(1−λk−1)

≤ e
−

n
∑

k=i
λk−1

≤ (
i
n
)λ (4.13)

1In this paper,‖ · ‖ denotes the Euclidean norm, and‖ · ‖1 denotes the 1-norm.
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where the third inequality holds because

(1−z)≤ e−z,∀z∈ (0,1),

and the last one follows by

ln(ni−1) < ln(n+1)− ln(i) =
n

∑
k=i

(ln(1+k)− lnk)

=
n

∑
k=i

ln(1+k−1)≤
n

∑
k=i

k−1.

With some abuse of notation,ΠT(n) will be written asΠn to simplify the expres-

sions. Fori ≤ n, one has

‖νQ1...Qn−Π∞‖1

= ‖(νQ1...Qi−1−Π∞)Qi ...Qn +Π∞Qi ...Qn−Π∞‖1

≤ ‖(νQ1...Qi−1−Π∞)‖1c(Qi ...Qn)+‖Π∞Qi ...Qn−Π∞‖1

≤ 2c(Qi ...Qn)+‖Πi−Π∞‖1 +‖Πn−Π∞‖1 +
k=n−1

∑
k=i

‖Πk−Πk+1‖1, (4.14)

where the last inequality is established by Dobrushin’s theorem [20]. From (4.13), the first

term of the last inequality approaches 0 asn→ ∞. By Theorem (4.3.1), the second and

third terms also approach 0 asi,n→ ∞. To show that the fourth term vanishes asi → ∞,

lemma 7.2.1 in [20] can be applied to prove the result. The only condition need to be in-

vestigated is the monotonicity and boundness of the denominator (e−
U(x)

T ∑
‖pz−px‖≤Rm

e−
U(z)

T )

of (4.5) with temperature T, which is straightforward to verify. This completes the proof

of (4.9).
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Let m denote the (global) minimal value of Gibbs potentialU(x). Then

πT(x) =

e−
U(x)−m

T ∑
‖pz−px‖≤Rm

e−
U(z)−m

T

∑
y∈X

(e−
U(y)−m

T ∑
‖pz−py‖≤Rm

e−
U(z)−m

T )

If U(x) or U(y) is a minimum then the respective exponential equals to 1 no mat-

ter what temperature T may be. The other exponentials decrease to 0 as T tends to 0.

Eq. (4.10) then follows from (4.9) and‖px− py‖> Rm, ∀x,y∈M. ¤

Note one can easily characterizeΠ∞ when more than one minimizers ofU(x) are

located within a distance ofRm. Theorem 4.3.2 establishes that under the algorithm, a

vehicle can reach the target ultimately forarbitrarily shapedobstacles.

4.3.3 Convergence rate and Gibbs potential design

In Theorem 4.3.2 a condition on the cooling scheduleT(n) is specified to guaran-

tee convergence. In the condition the maximal energy difference∆ among neighboring

configurations plays an important role. It is of interested to study how to improve the con-

vergence speed by appropriately designing the potential functions. The study here will be

focused on the single-vehicle case.

Proposition 4.3.1 For the single-vehicle case, the convergence speed is characterized by

‖νQ1...Qn−Π∞‖= O(n−
2λm̃

2m̃+λ∆τ ) (4.15)

wherem̃= min
y6=xm

(U(y)−m), andm, λ , ∆, andτ are defined as in Theorem 4.3.2.

Proof. From (4.14),‖νQ1...Qn−Π∞‖ is bounded by four terms. From (4.13), the first

term is bounded by( i
n)λ . The other three terms basically have same convergence speeds
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because of the monotonicity of the stationary distributionΠn(x). For largei, the third

term is dominated by

‖Πn+1−Πi‖1 ≤ ‖Πn+1−Π∞‖1 +‖Πi−Π∞‖1

≤ 2‖Πi−Π∞‖1.

TakeT(i) = τ∆
ln i . If x is not a minimizer ofU , e−

U(x)−m
T(i) ≤ e−

m̃ln i
τ∆ = i−

m̃
τ∆ . Then

‖Πk(x)−Π∞(x)‖1

=

e−
U(x)−m

T ∑
‖pz−px‖≤Rm

e−
U(z)−m

T

∑
y∈X

(e−
U(y)−m

T ∑
‖pz−py‖≤Rm

e−
U(z)−m

T )

≤ |Λ̄|i− 2m̃
∆τ

|M| = O(i−
2m̃
∆τ )

Similarly, it can be shown that for a minimizerx, the distance converges at the order

O(i−
2m̃
∆τ ) too. And so is‖Πi−Π∞‖1. Then a bound for‖νQ1...Qn−Π∞‖ is

(
i
n
)λ +const· i− 2m̃

∆τ (4.16)

This becomes optimal for

i∗ = (const· 2m̃
∆τ

)
1

λ+ 2m̃
λ∆τ ·n

λ
λ+ 2m̃

∆τ

= const·n
λ

λ+ 2m̃
∆τ .

Eq. (4.15) then follows by pluggingi∗ into (4.16).¤

Proposition 4.3.1 shows that the potential surface (in particular:g
4
= 2λm̃

2m̃+λ∆τ ) de-

termines the convergence speed of the algorithm. It is thus natural to useg as a design

indicator. Simulation has been conducted to verify the above analysis. In the simulation a
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Fig. 4.3: Convergencevs.design parameter - comparison of simulation results with analy-

sis.

similar scenario as in Fig. 4.2 is used but with a 10 by 10 grid. Two overlapping circular

obstacles are located in the middle of the field, which forms a non-convex shape. A single

vehicle starts from one corner, and wants to reach the target area at the other corner. The

potential functions used are:Jg
s = ‖ps− pg‖, Jo

s =
K
∑

k=1

1
‖ps−pok‖ , wherepg andpok denote

the centers of the target area and of the obstacles.λg is varied from 0.05 to 100 whileλo

is fixed to 1. For each pair of coefficients, the algorithm is runN = 10,000steps, and the

number of timesw that the vehicle visited target during the last 100 steps is counted. The

empirical distance is then given by‖ΠN−Π∞‖1 = 2(1−w/100). Comparison with the

numerically calculated design indicatorg reveals good agreement with the bound (4.15)

(Fig. 4.3).
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4.4 A Novel Gibbs sampling algorithm for multi-vehicle system

In the previous section, preliminary results show the global convergence of single

vehicle case. However, it is still not clear about the convergence of the general case of

multi-vehicles with limited moving/sensing range. In this section, a novel distributed

stochastic algorithm is presented. The algorithm requires only limited sensing, com-

munication, and moving ranges for vehicles, and a mechanism for minimal full-range

information transfer. Such a mechanism could be provided, e.g., by a dedicated base sta-

tion, or by individual vehicles with short-time, long-range communication capabilities. It

is shown that the algorithm, with primarily local interactions, leads to globally optimal

vehicle configurations represented by the global minima of Gibbs potentials.

4.4.1 A novel decentralized algorithm

The algorithm uses a randomized sequence for updating the nodes, and a key idea

involved is theconfiguration-and-temperature-dependentproposal distributionGx
T(s). In

particular, given a configurationx and a temperatureT,

Gx
T(s) =

∑z∈N x
m(s) e−

U(z)
T

∑s′∈S ∑z∈N x
m(s′) e−

U(z)
T

. (4.17)

In (4.17)N x
m(s) denotes the set ofs-neighbors of configurationx within one move:

N x
m(s)

4
= {z : zS\s = xS\s,‖zs−xs‖ ≤ Rm},

whereS\s denotes the set of all nodes excepts.
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Since forz∈N x
m(s), U(z)−U(x) = Φs(z)−Φs(x), (4.17) can be rewritten as

Gx
T(s) =

∑z∈N x
m(s) e−

U(z)−U(x)
T

∑s′ ∑z∈N x
m(s′) e−

U(z)−U(x)
T

=
∑z∈N x

m(s) e−
Φs(z)−Φs(x)

T

∑s′ ∑z∈N x
m(s′) e−

Φs(z)−Φs(x)
T

.

Note that, from (4.2), each nodeswould be able to evaluateDx
T(s) = ∑z∈N x

m(s) e−
Φs(z)−Φs(x)

T

if Rs≥ Ri +Rm.

In sampling nodes is first randomly selected with probabilityGx
T(s), and thenxs is

updated according to its local characteristics whilexS\s is kept fixed:

P(xs = l) =
e−

Φs(xs=l ,xS\s)
T

∑l ′∈Cs
m

e−
Φs(xs=l ′,xS\s)

T

, (4.18)

whereCs
m is the set of candidate locations nodes can take, i.e.,l ∈Cs

m is not occupied

by any obstacle or other nodes, and‖xs− l‖ ≤ Rm. One can verify that there exists a

smallest integerτ, such that afterτ steps of sampling, any configurationx has a positive

probability of becoming any other configurationy.

The self-organization algorithm works as follows. Pick an appropriate cooling

scheduleT(n) with T(n)→ 0 asn→ ∞. Pick a sufficiently largeNmax. For each temper-

atureT(n), runτ steps of sampling as described above (this will be calledone annealing

step). To be specific:

• Step 1. Initialization. Start with an arbitrary configurationx(0) and letn = 1,

k = 1. Pick an arbitrary nodes(0). Have all nodes to evaluate and sendDx(0)
T(1)(s)

to s(0). Nodes(0) calculates the proposal distributionGT(1)x(0)(s) according to
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(4.17),namely,

Gx(0)
T(1)(s) =

Dx(0)
T(1)(s)

∑s′ D
x(0)
T(1)(s

′)
.

Node s(0) then selects a nodes1(1) 2 for updating by sampling the distribution

Gx(0)
T(1)(s), and it sends the vector{Dx(0)

T(1)(s),s∈ S} to s1(1);

• Step 2. Updating the selected node.Nodesk(n) updates its location by sampling

its local characteristics (see (4.18)). Denote the new configuration asxk(n);

• Step 3. Selecting the next node.Note that the neighborhoodNs of a nodes

changesonly if nodesk(n) was in Ns before its updating or is currently inNs.

For either case, the distance between suchs (denoting the set of such nodes as

¯N k(n)) andsk(n) is now no greater thanRi +Rm≤ Rs and they can communicate

locally. The nodesk(n) thus collects and updatesDxk(n)
T(n) (s) for nodes in ¯N k(n). Let

k = k+1. If k = τ, let k = 0 andn= n+1. The current node evaluates and samples

new proposal distribution, selects the next node to be updated, and communicates

the updated{DT(n)(s)} to the next node (the superscript ofD is omitted when it is

clear from the context);

• Step 4.If n < Nmax, go to Step 2; otherwise quit.

Remark 4.4.1 Long-range (over a distance greater thanRs) communication is only re-

quired for initialization and for transferring{Dx
T(s)} to the newly selected node at each

step. Since{Dx
T(s)} is just aσ -dimensional vector, information exchange in the algo-

rithm is primarily at the local level. The (minimal) global communication can be achieved

2In the notationxk(n) or sk(n), n indexes the annealing temperature, whilek (from 1 toτ) indexes the

sampling step within a fixed temperature.
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through, e.g., fixed base stations, or individual vehicles with short-time, long-range trans-

mission capabilities.

4.4.2 Convergence Analysis

Let PT denote the Markov kernel defined by the random update scheme (4.17) and

(4.18), i.e.,

PT(x,y)
4
= Pr(X(n+1) = y|X(n) = x)

= ∑
s∈S

Gx
T(s) ·1(y∈N x

m(s))
e−

U(y)
T

∑z∈N x
m(s) e−

U(z)
T

=
∑s∈S∑z∈N x

m(s) e−
U(z)

T

∑s′∈S ∑z∈N x
m(s′) e−

U(z)
T

· e
−U(y)

T ·1(y∈N x
m(s))

∑z∈N x
m(s) e−

U(z)
T

= ∑
s∈S

e−
U(y)

T ·1(y∈N x
m(s))

∑s′∈S ∑z∈N x
m(s′) e−

U(z)
T

. (4.19)

Let τ be the integer as selected in Section 4.4.1, and letQT = Pτ
T .

Theorem 4.4.1 The Markov kernelQT has a unique stationary distributionΠT with

ΠT(x) =
e−

U(x)
T ∑s∈S∑z∈N x

m(s) e−
U(z)

T

ZT
, (4.20)

whereZT = ∑ye−
U(y)

T ∑s∈S∑z∈N y
m(s) e−

U(z)
T is the partition function.
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Proof. First one can show thatΠT is a stationary distribution ofPT . From (4.19) and

(5.2),

∑
y

Π(y)PT(y,x)

= ∑
y

e−
U(y)

T ∑s′′∈S∑z∈N y
m(s′′) e−

U(z)
T

ZT
·

∑
s∈S

e−
U(x)

T ·1(x∈N y
m(s))

∑s′∈S ∑z∈N y
m(s′) e−

U(z)
T

=
e−

U(x)
T ∑ye−

U(y)
T ∑s∈S1(x∈N y

m(s))
ZT

=
e−

U(x)
T ∑s∈S∑z∈N x

m(s) e−
U(z)

T

ZT
= ΠT(x).

SinceQT = Pτ
T , ΠT is also a stationary distribution forQT . Due to the choice ofτ,

QT(x,y) > 0, ∀x,y. Thus from the Perron-Frobenius theorem,QT has a unique stationary

distribution, which isΠT . ¤

Let ∆ be themaximal local oscillationof the potentialU :

∆ 4
= max

x
max
y∈N x

m

|U(x)−U(y)|,

whereN x
m = ∪s∈SN

x
m(s).

Theorem 4.4.2 Let{T(n)} be a cooling schedule decreasing to 0 such that eventually,

T(n)≥ τ∆
lnn

.

Let Qn = Pτ
T(n), and letM be the set of global minima ofU(·). Then for any initial

distributionν ,

lim
n→∞

νQ1 · · ·Qn→ ν∞, (4.21)
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whereν∞ is the distribution (5.2) evaluated atT = 0. In particular,

∑
x∈M

ν∞(x) = 1. (4.22)

Proof. Let αx = miny∈N x
m

U(z). Fory∈N x
m , from (4.19),

PT(x,y) =
e−

U(y)−αx
T

∑s′∈S ∑z∈N x
m(s′) e−

U(z)−αx
T

≥ e−
∆
T

σ |X | ,

where|X | denotes the cardinality of the configuration spaceX . ForQT = Pτ
T > 0,

min
x,y

QT(x,y)≥ ( min
x′,y′∈N x′

m

PT(x′,y′))τ ≥ e−
τ∆
T

(σ |X |)τ .

Let C(QT) denotes thecontraction coefficient[20] of QT , i.e.,

C(QT)
4
=

1
2

max
x,y

‖QT(x, ·)−QT(y, ·)‖1.

Using Lemma 4.2.3 of [20], one has

C(QT)≤ 1−|X |min
x,y

QT(x,y)≤ 1−λe−
τ∆
T ,

whereλ = |X |
(σ |X |)τ < 1. This impliesC(Qn) ≤ 1−λe−

−τ∆
T(n) . The claim (5.4 can then be

proved following the proof of Theorem 3.2 in [76]. AsT(n)→ 0, ΠT(n)(x)→ 0, for all

x /∈M , as one can verify from (5.2). Eq. (5.5) thus follows.¤

From Theorem 5.1.1, the distributed algorithm can achieve global objectives pro-

vided that the global minimizers ofU(·) correspond to the desired configurations.

4.4.3 Convergence rate of the novel algorithm

In section 4.4, we mentioned that the algorithm is a special case of single site MRF.

The convergence rate bound can then be followed by the proposition 4.3.1.
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Let m̃= minx/∈M U(x)−m, i.e., the minimal potential difference between other con-

figurations and the global minimizers. The following result characterizes the convergence

speed of the distributed algorithm:

Proposition 4.4.1 Consider the distributed self-organization algorithm with a cooling

scheduleT(n) = τ∆
lnn. Then the following estimate holds for any initial distributionν :

‖νQ1 · · ·Qn−Π∞‖= O(n−
2λm̃

2m̃+λ∆τ ) = O(n−g), (4.23)

whereλ ,τ, and∆ are as defined in Theorem 5.1.1, andg= 2λm̃
2m̃+λ∆τ is called the indicator

of convergence speed in this proposal

4.5 Simulation results

Simulation was conducted to verify the analysis. The emphasis was on scenarios

involving inter-vehicle interactions (e.g., formation control). Two examples are presented,

one on clustering and the other on formation control. Other objectives or constraints, such

as target-approaching and obstacle avoidance, can be easily incorporated, as was done in

the single-vehicle case.

Clustering

The goal is to cluster all the nodes without specifying a specific target area. This is

more challenging than the case of having an explicit target, as the latter provides persistent

attraction from a fixed location. The potential function used was:

U(x) = ∑
r 6=s,‖xr−xs‖≤Ri

− c
‖xr −xs‖ ,
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wherec > 0 is some constant. Clearly, the more neighbors each node has and the closer

they are, the lower the potentialU . Simulation was performed for 50 nodes on a 30

by 30 grid, and the following parameters were used:RI = 4
√

2+ ε (ε > 0 and very

small),Rm = 2
√

2+ε, Rs = RI +Rm (this was also the case for all other simulation results

presented in this section),c = 2, annealing scheduleT(n) = 1
0.08lnn, andτ = 50.

Fig. 4.4 shows the snapshots of the network evolution. The algorithm’s ability to

overcome local minima is evident from the figure: the nodes initially evolved into two

separated (farther thanRs) sub-clusters, and yet they merged into one cluster after 500

annealing steps.
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Fig. 4.4: Snapshots of clustering operation. (a) Initial configuration; (b) after 100 anneal-

ing steps; (c) after 400 annealing steps; (d) after 500 annealing steps.
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Formation

The goal is to have the nodes to form (square) lattice structures with a desired inter-

vehicle distanceRdes. The potential function used was:

U(x) = ∑
r 6=s,‖xr−xs‖≤Ri

c1(|‖xr −xs‖−Rdes|α −c2),

wherec1 > 0, c2 > 0, andα > 0. A proper choice ofc2 encourages nodes to have more

neighbors. The powerα shapes the potential function. In particular, for|‖xr − xs‖−

Rdes|< 1, smallerα leads to larger potential difference from the global minimum.

Simulation was first conducted for 9 nodes on an 8 by 8 grid. Parameter used were:

Ri = 2
√

2− ε, Rm =
√

2+ ε, Rdes= 2, c1 = 10, c2 = 1.05, α = 0.02, T(n) = 1
0.01lnn, and

τ = 20. The desired configuration (global minimizer ofU) is shown in Fig. 4.5 (modulo

vehicle permutation and formation translation on the grid). Simulated annealing was per-

formed for104 steps. Empirical distributions with respect to configuration potentials were

calculated based on the average of every 2500 steps (Fig. 4.6). The trend of convergence

to the configuration of the lowest potential is clear from Fig. 4.6. One can further calculate

the error‖νn−Π∞‖1, whereνn is the empirical distribution of configurations (again mod-

ulo vehicle permutation and network translation). In particular,νn is only calculated for

n = 1000,2000,3000, · · · , and for a configurationx, νn(x) equals the relative frequency

of x between the(n− 1000)-th and then-th sampling steps. From Theorem 5.1.1,Π∞

satisfies:

Π∞(x) =





1 if x is desired

0 otherwise

.
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Therefore,

‖νn−Π∞‖1 = 1−νn(x∗)+ |0− (1−νn(x∗)|= 2(1−νn(x∗)), (4.24)

wherex∗ denotes the desired formation. The evolution of‖νn−Π∞‖1 is shown in Fig. 4.7.

It is of interest to investigate the robustness of the proposed scheme with respect to

the discretization level (i.e., coarseness) of the grid. For this purpose, the same mission

space was discretized into a 16 by 16 grid with cell size of 0.5, and simulation was per-

formed based on the new lattice. All mission-related parameters were kept the same as in

the 8 by 8 case. In particular, the exclusion condition (one cell cannot contain more than

one vehicle) on the 8 by 8 grid was properly translated into a condition for the new grid.

Five simulation runs were performed for both discretization schemes, and each was run

for 104 annealing steps. For each simulation, the evolution of‖νn−Π∞‖1 was calculated

according to (4.24) and the total annealing time was recorded. Fig. 4.8 compares the per-

formance under the two discretization schemes, where‖νn−Π∞‖1 and the annealing time

were averaged over the five runs for each case. The results indicate that the convergence

to the desired formation can be achieved under both discretization schemes, while it takes

longer computational time for the finer discretization.

Simulation was also performed for a group of 20 vehicles on a 15 by 15 grid, and

Fig. 4.9 shows the snapshots after different annealing steps. One can see that the group

achieves an almost optimal configuration after 2000 steps.
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Fig. 4.5: The desired formation for 9 vehicles on an 8 by 8 grid.
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Fig. 4.7: Evolution of‖νn−Π∞‖1.
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Fig. 4.8: Comparison of annealing schemes with different discretization levels.
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Fig. 4.9: Snapshots of formation operation. (a) Initial configuration; (b) after 1000 an-

nealing steps; (c) after 2000 annealing steps; (d) after 3000 annealing steps.
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4.6 Summary

In this chapter, a stochastic algorithm was presented for coordination of autonomous

swarms. The algorithm was based on the Gibbs sampler with a random visiting scheme.

The specific choice of the proposal distribution results in Gibbs-type distributions for

vehicle configurations, leading to the convergence of the algorithm.

The gibbs sampling based stochastic algorithm belongs to a reactive coordination

approach. At each time instance, vehicles only need current state information, including

its own and neighbors’ location, and the distance to the obstacles, to do gibbs sampling.

The algorithm do not require to have the full information of the environments or history

data. Therefore, the data processing time for making decision can be greatly reduced,

which is very beneficial in real-time control.

Moreover, since the algorithm do not require UAV use memories storing the envi-

ronments information, e.g., obstacle position and shapes, trajectory history, and maps, the

limited memory spaces can and save as well as the manufacturing cost.

The random visiting scheme entails long-range communication for notifying newly

selected nodes although such information exchange is minimal. A deterministic sequen-

tial visiting scheme would eliminate this requirement; however, the convergence behavior

would be unclear since the stationary distribution for eachT is no longer of the Gibbs-

type.

However, to guarantee that vehicle swarms achieve the group mission goal, long

maneuvering time have to be paid. This is primarily due to the stochastic nature of the

algorithm. This problem is addressed in the next two chapters. Two different approaches
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are investigated to improve the efficiency and the performance comparing with the origi-

nal approach. Substantial improvements are observed via extensive simulations.

In this chapter, the coordination schemes presented are meant for high-level path

planning. They should be combined with low-level planning and control modules in im-

plementation. Since vehicles move on a discrete lattice, the choice of discretization level

becomes an important problem. From the simulation results, a practical and efficient strat-

egy is to use the coarsest discretization that is compatible with the problem setup (e.g.,

the minimum inter-vehicle separation). The cell geometry is another factor in discretiza-

tion. In this paper the mission space was discretized into a lattice with square cells. One

could use cells of other geometries without changing the algorithm (except the numbering

scheme for cells) to implement, e.g., triangular or hexagonal formations.
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Chapter 5

Parallel Gibbs Sampling Approach

In the last chapter, a novel Gibbs sampling based stochastic approach was proposed

to coordinate vehicle networks to perform group tasks. Theoretical studies have shown

that, with a special sequential sampling scheme, it was possible to achieve global goals

despite the presence of local minima of potentials, which is further confirmed with simu-

lations [76, 78]. However, to maintain global indices in a large vehicle networks, which

is crucial for sequential sampling, is difficult when there exist node failures. Moreover,

the nature of sequential sampling lead to long executing time which presents difficulties

in practice.

The above problems can be solved using parallel sampling [77], i.e., each node in

the vehicle swarms does the local Gibbs sampling in parallel. Parallel sampling tech-

niques have been studied for many years in order to accelerate the slow convergence rate

of sequential simulated annealing algorithm [79]. It is usually required that nodes update

their locations at the same time clock (synchronously). However, the synchronization in-

curs the communication cost and the delay which degrade the performance. This can be

solved by using the asynchronous parallel sampling, i.e., each vehicle takes its own clock

to do the local sampling. Extensive simulations suggest that global goals (by this, we

mean self-organization of autonomous swarms) can be achieved by the parallel sampling

algorithm, whereas it has to be noted that the parallel simulation annealing algorithm
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might not lead to the global minimizer.

In this chapter, we firstly investigated the convergence properties of a synchronous

parallel sampling algorithm. In the study of the asynchronous parallel algorithm, the fact

that “time-varying” number of active nodes presents challenges. Fortunately, by apply-

ing partial parallel model in [80], the asynchronous algorithm could be described by a

homogeneous Markov chain. The convergence of asynchronous parallel algorithm then

follows. Finally, a special example based on a battle field scenario was investigated. Suf-

ficient conditions that guarantee the optimality of the parallel sampling algorithm were

analyzed.

5.1 Synchronous parallel sampling algorithm

The problem formulation can be found in the last chapter. To trade space with time,

one may refer to section 4.2 for detail. Basically, in the synchronous parallel sampling

algorithm, vehicle swarms make their moves by sampling their local potential function

profile in parallel at the same time clock ticks. In particular, using the synchronous paral-

lel sampling algorithm, vehicles update their locations as follows:

• Step 1. Pick a cooling scheduleT(·) and the total numberN of annealing steps. Let

annealing step n=1;

• Step 2. Conduct location updates for node1 throughS in parallel at the same time

clock, where nodes,1≤ s≤ S, performs following:
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- Determine the setLs of candidate locations for the next move:

Ls = Λs∩{(i, j) :
√

(i− is)2 +( j− js)2≤ Rm},

whereΛs represents the set of cells not occupied by other vehicles or obstacles;

- When two neighboring vehicles(s< s′) have their candidate locations conflicted,

i.e., Ls∩Ls′ 6= /0. The vehicle with lower index updates its candidate locations to

Ls∩Lc
s′. Repeat this procedure untilLs∩Ls′ = /0, for all s 6= s′.

- Each vehicles evaluate potential function for everyl ∈ Ls,

Φs(xs = l ,X(S\s) = x(S\s))

whereS\s denotes the complement ofs in S. And update the location of each

vehicles in parallel by sampling the local distribution

p(z) =
exp(−Φs(xs=l ,X(S\s)=x(S\s))

T(n) )

∑
l ′∈Ls

exp(−Φs(xs=l ′,X(S\s)=x(S\s))
T(n) )

.

• Step 3. Letn = n+1. If n = N, stop; otherwise go to Step 2.

For a fixed temperatureT, the underline mathematical model of the synchronous

parallel sampling algorithm is a homogenous Markov chain defined by

PT(x(n+1)|x(n))

= ∏
s∈S

(p(xs = xs(n+1)|xNs = xNs(n)))

= ∏
s∈S

e−
Φs(xs=xs(n+1),xNs=xNs(n))

T(n)

∑
l∈Ls(x(n))

e−
Φs(xs=l ,xNs=xNs(n))

T(n)

(5.1)

where‖xs(n+1)−xs(n)‖ ≤Rm for all s∈ S. Φs(xs = xs(n+1),xN (s) = xN (s)(n)) is the

local energy which could be evaluated by vehicles with only local information.
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Proposition 5.1.1 For a fixed temperatureT, the homogeneous Markov chain (5.1) has

a unique invariant distributionΠT . From any initial distributionν0

lim
n→∞

ν0Pn
T = ΠT (5.2)

Sketch of Proof. Due to the connectivity of the accessible area, there exists at least

one path between any two configurationsx and y (i.e., a sequence of multiple moves

{x,x1, · · · ,y}), and the shortest path is bounded byτ moves for some finiteτ. This im-

plies thatPT has astrictly positive powerPτ
T , i.e., theτ-step Markov chain reaches each

state with positive probability from any state. The irreducibility and aperiodicity of the

kernel then follows. Hence the Markov chain is ergodic and has a unique invariant distri-

butionΠT for a fixed temperatureT [81]. ¤

Picking an appropriate cooling scheduleT(n) andτ, the simulated annealing algo-

rithm yields unique distributionΠ∞. This is made precise by the following theorem.

Theorem 5.1.1 Let Ũ(x,y) : X×X → R be an induced energy function defined on the

clique potentials

Ũ(x,y) =





∑
s∈S

∑
c3s

Ψc(ys,xS\s), wheny∈N m(x);

0, o.w..

(5.3)

whereN m(x) = {z∈ X : ∀s,‖zs−xs‖ ≤ Rm}. Let ∆̃ be:

∆̃ 4
= max

y,z∈N m(x)
|Ũ(x,y)−Ũ(x,z)|.

LetT(n) be a cooling schedule decreasing to 0 such that eventually,

T(n)≥ τ∆̃
lnn

.
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LetQn = Pτ
T(n). Then for any initial distributionν ,

lim
n→∞

νQ1 · · ·Qn→Π∞, (5.4)

whereΠ∞ is the limit distribution of (5.2) asT tends to zero. In particular,

lim
T→0

ΠT(x) = Π∞(x). (5.5)

Proof. Let αx = miny∈N m(x)Ũ(x,y). From (5.1), we have

PT(x,y) =
exp(−Ũ(x,y)−αx

T )

∑
z∈N m(x)

exp(−Ũ(x,z)−αx
T )

≤ e−
∆̃
T

|N m(x)| ,

where |N m(x)| denotes the cardinality of the configuration spaceN m(x). Following

analogous arguments to those in the proof of Theorem 4.2 in [76] , one can show

c(Qn)≤ 1−λe−
−τ∆̃
T(n) ,

wherec(Qn) denotes the contraction coefficient ofQn, andλ = |X |
|N m(x)|τ . Similarly, one

can prove the claim (5.4).¤

Remark 5.1.1 For the parallel sampling algorithm, the explicit expression of invariant

distribution (5.2) is generally lacking. It is hard to analytically study the equilibrium

properties. Here, we just have some brief discussions.

Let Ω0 be the set of limiting configuration(s) which is defined by

Ω0 4= {x : Π∞(x) > 0}. (5.6)

Let ΩL be the set of all the local minima ofU. Then we haveΩ0 ⊂ ΩL. If the potential

functionU is “well behaved”, i.e.,{x∗ : U(x∗) = minxU(x)} ⊂ Ω0, there is a positive
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chance that the parallel annealing algorithm leads the final configuration tox∗ as tem-

perature tends to zero, which is confirmed by extensive simulations in[77]. In section 5.3,

we analytically studied the limiting configurations with a special example.

5.2 Asynchronous parallel sampling algorithm

The asynchronous parallel sampling algorithm works similar as the synchronous

version, except each vehicles makes moves independently by following its own time

clock ts = {ts
1, t

s
2, ...}. Thus, at one time instancen, there are only a part of vehicles make

a move. The transition probability from configurationx(n) to x(n+ 1) can be written

down as follows

P̃T(x(n+1)|x(n))

= ∏
s:n∈ts

(pT(xs = xs(n+1)|xN (s) = xN (s)(n))).

(5.7)

Clearly this formulation leads to a inhomogeneous Markov chain. In general, a inhomoge-

neous Markov chain may not have unique stationary distribution. This presents challenges

in convergence analysis. To deal with the difficulty, we adopt the partial parallel model in

[80] and model the asynchronous parallel algorithm as a hieratical Markov chain.

Let t = ∪
s∈S

ts denote the set of updating time for all vehicles. Clearly,t is a countable

set. For each time instanceti ∈ t, each vehicleshas a probabilityps to make a move, which

is defined by

ps
4
= lim
|t|→∞

|ts|
|t| ,
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where|ts| and |t| denote the cardinality ofts andt respectively. For synchronous

case,ps≡ 1; whereas, for asynchronous one0 < ps < 1. Then, the associated Markov

chain kernelPT can be expressed as

P̃T(x(n+1)|x(n))

= ∏
s∈S

((1− ps)1xs(n+1)=xs(n) + psPT(x(n+1)|x(n)))

(5.8)

Since the kernel (5.8) defines a homogeneous Markov chain, followed by proposi-

tion 5.1.1, the Markov chain has unique stationary distributionΠ̃T for a fixed temperature.

Then, by using similar argument in theorem 5.1.1, with an appropriate cooling schedule,

the asynchronous parallel annealing algorithm converges to a unique distributionΠ̃∞,

whereΠ̃∞ = limT→∞ Π̃T .

5.3 Equilibrium Analysis of the synchronous parallel algorithm in an ex-

ample

In this section, an explicitΠT is derived for a particular example based on a battle

field scenario in section 4.2. Sufficient conditions that guarantee the optimality of the

parallel sampling algorithm are studied.

Proposition 5.3.1 For the synchronous Markov chain kernel of (5.1), suppose thatŨ(x,y)

defined in (5.3) has a symmetric form, i.e.,Ũ(x,y) = Ũ(y,x) for all x,y∈ X. For a fixed

temperatureT, the synchronous Markov chain has a unique stationary distributionΠT
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given by

ΠT(x) =
∑

z∈N m(x)
exp(−Ũ(x,z)/T)

∑
y∈X

∑
z∈N m(x)

exp(−Ũ(y,z)/T)
(5.9)

proof. The existence and uniqueness of stationary distribution are followed by proposition

5.1.1. The markov chain kernel (5.1) can be rewritten as

PT(x,y) =
exp(−Ũ(x,y)

T

∑
z∈N m(x)

exp(−Ũ(x,z)
T )

(5.10)

(5.9) can then be verified due to the fact the balance equation fulfilled, i.e.,ΠT(x) ∗

PT(x,y) = ΠT(y)∗PT(y,x)¤

In general, the symmetry of energy functionŨ(x,y) does not hold. However, in

some special cases, one can construct a symmetric energy function for the same parallel

Markov chain kernel.

Theorem 5.3.1 Suppose that the Markov Random Field defined in section 4.2 only con-

sists of singleton and pairwise cliques, and the neighborhood system is time-invariant,

then there exist a symmetrization potential functionÛ which defines the same parallel

Markov chain kernel defined bỹU in (5.10). In specific,

Û(x,y) = Ũ(x,y)+ ∑
s∈S

Ψ{s}(x) (5.11)
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Proof. We first show the symmetry of̂U .

Û(x,y) = Ũ(x,y)+ ∑
s∈S

Ψ{s}(xs)

= ∑
s∈S

∑
c3s

Ψc(ys,xS\s)+ ∑
s∈S

Ψ{s}(xs)

= ∑
s6=t

Ψ{s,t}(ys,xt)+ ∑
s∈S

Ψ{s}(ys)+ ∑
s∈S

Ψ{s}(xs)

= ∑
s6=t

Ψ{s,t}(xs,yt)+ ∑
s∈S

Ψ{s}(xs)+ ∑
s∈S

Ψ{s}(ys)

= Ũ(y,x)+ ∑
s∈S

Ψ{s}(ys) = Û(y,x)

Because the difference betweenÛ(x,y) andŨ(x,y) depends only on configuration

x, the two potential functions actually defines the same Markov chain kernel. In precise,

for any two configurationsx andy, we have

PT(x,y) =
exp(−Ũ(x,y)/T)

∑
z∈N m(x)

exp(−Ũ(x,z)/T)

=
exp(−Ũ(x,y)/T− ∑

s∈S
Ψ{s}(x)/T)

∑
z∈N m(x)

exp(−Ũ(x,z)/T− ∑
s∈S

Ψ{s}(x)/T)

=
exp(−Û(x,y)/T)

∑
z∈N m(x)

exp(−Û(x,z)/T)
¤

Let H̃(x) be the induced energy from the invariant distributionΠT(n) of the Markov chain

kernelQT(n). In specific,

H̃(x) =− ln

(
∑

z∈N m(x)
exp(−Û(x,z))

)
(5.12)

Pick an appropriate cooling scheduleT(n) as in theorem 5.1.1, one could conclude

that the asymptotic configuration(s)Ω0 of the parallel sampling algorithm are the min-

imizer of H̃(x). In the next, one would like to study whetherΩ0 minimize the original

configuration energyU(x).
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With the Gibbs potential function defined in (4.4), the induced energy function

Û(x,y) satisfies the following inequality

Û(x,y) = ∑
s6=t

λn‖ys−xt‖

+∑
s∈S

(λg(Jg
s(x)+Jg

s(y))+λo(Jo
s(x)+Jo

s(y)))

≤ ∑
s6=t

λn(‖ys−xs‖+‖xs−xt‖)

+∑
s∈S

(λg(Jg
s(x)+Jg

s(y))+λo(Jo
s(x)+Jo

s(y)))

≤ ∑
s6=t

λnRm+U(x)+U(y)

≤ c1Rm+2U(x)+∆ (5.13)

where∆ = maxy∈N m(x)|U(x)−U(y)| is themaximal local oscillationof the potentialU .

And c1 = ∑s6=t λn

From (5.12) and (5.13), we have

H̃(x)≤M (2U(x)+c1Rm+∆) (5.14)

whereM = maxx ln |N m(x)|. Letx∗ be the minimizer ofU(x), i.e.,x∗= argmin
x∈X

U(x).

Minimize both side of (5.14), we have

min
x∈X

H̃(x)≤M (2U(x∗)+c1Rm+∆) (5.15)

Similarly, using the fact‖xs−xt‖ ≤ Rm+‖ys−xt‖, it can be shown that

H̃(x)≥M (2U(x)−c1Rm−∆)

whereM = minx ln |N m(x)|.

Lemma 5.3.1 Let the setA= {x : H̃(x)≤M (2U(x∗)+c1Rm+∆)}, and the setB= {x :

U(x)−U(x∗) < M
M (c1Rm+∆)}. ThenB⊃ A
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Proof. ∀x∈ B̄, we have

H̃(x) ≥ M (2U(x)−c1Rm−∆)

> M (2U(x∗)+c1Rm+∆)

which impliesx∈ Ā. So,B̄⊂ Ā, which is equivalent toA⊂ B. ¤

From the lemma, one could conclude that the minimizer ofH̃(x) lies in a ballΩB

with radiusc1Rm+ ∆ from minimizer ofU(x). In section 5.1, we haveΩ0 is a subset of

local minimaΩL. With lemma 5.3.1, we have

Ω0⊂ (ΩL∩ΩB) (5.16)

If (ΩL∩ΩB) = {x∗}, the parallel algorithm minimizes the original potential func-

tion U and desired configuration(s) can be achieved. For many applications, goal config-

urations might not restrict to ones with minimum energy. If all configurations contained

in (ΩL∩ΩB) are desired, parallel algorithm then achieves the global goals for sure.

5.4 Simulation Results

In [77], several examples on vehicle formation control using parallel sampling al-

gorithm, e.g., line formation, clustering. In this section, simulations with the battle field

scenario were conducted to verify the analysis result in the previous sections. The simula-

tions suggest that the parallel sampling algorithm successfully lead the vehicle networks

to the target area without being trapped by the obstacles.

In the simulation there are 50 vehicles on a 48× 48 area (see Fig. 3.1). The target

is located at the corner (43,43) with radiusRg = 5, and two overlapped circular obstacles
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with radius 5 are centered at (17, 23) and (23, 17), respectively. Initially the vehicles

are randomly distributed close to the other corner which is opposite to the target. The

parameters used are:λg = 5, λo = 1, λn = 0.2, Rm =
√

2, Rs = 6
√

2. The cooling schedule

is set to be 100
log(n) , wheren is the number of annealing iterations. Simulated annealing was

performed for1000steps. Figure 5.1 shows the snapshots after different annealing steps.

One can see that the whole group reaches target after 750 steps.
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Fig. 5.1: Snapshots of formation operation. (a) Initial configuration; (b) after 250 anneal-

ing steps; (c) after 500 annealing steps; (d) after 750 annealing steps.
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Chapter 6

Performance improvement through a hybrid scheme

Analysis and simulations in chapter 4 and 5 have shown that simulated annealing

with the Gibbs sampler can lead to the achievement of global objectives with limited

moving capabilities and communication ranges [77, 76]. However, high traveling cost

arising from the stochastic nature of the algorithm presents a barrier to its application in

practice.

In this chapter a hybrid approach is proposed, which combines the advantages of

the deterministic gradient-flow method and the stochastic simulated annealing method.

The algorithm works as follows. Each vehicle in a swarm makes its own decision to

switch between the two methods: with initial choice of the gradient-flow scheme, a ve-

hicle switches to simulated annealing when it determines that it gets trapped by some

obstacles. After a certain numberN of annealing steps, it switches back to the gradient-

flow scheme to save the traveling time and cost. A notion of memory is introduced to

further improve the performance. Each vehicle records the “dangerous” locations where

it has been trapped before, and adaptively takes this information into account when mak-

ing moving decisions.
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6.1 A Hybrid control algorithm

In the application of the battle field scenario, the gradient-flow method alone pro-

vides fast march toward the target in the absence of obstacles but it may get vehicles

trapped in non-target areas. On the other hand, the Gibbs sampler-based simulated an-

nealing complements the gradient method in that it could move vehicles out of otherwise

trapping areas, but one has to pay the cost associated with probabilistic exploration -

longer execution times and traveling distance. The hybrid control scheme aims to com-

bine advantages of both schemes while avoiding their disadvantages.

To demonstrate the idea, a battle field scenario is used for simulations. The problem

setup can be referred to section 4.2. And the mission goal is to maneuver multi-vehicles to

cover target area while avoiding obstacles and collide with other vehicles. For simplicity,

it is assumed that there is one circular target area centered atpg, and there areK (possibly

overlapping) circular obstacles centered atpok, 1≤ k≤ K. To achieve such objective, the

following Clique potential functions in (4.2) are used.

Ψg
s = ‖ps− pg‖

Ψo
s =

K

∑
k=1

1
‖ps− pok‖ (6.1)

Ψn
s =





1
∑

z∈Ns

1
‖ps−pz‖

, i f Ns 6= /0

∆, i f Ns = /0

whereΨn
s tends to be smaller when sites has more neighbors.∆ > 0 is a relative large

constant and it represents the penalty for having no neighbors.

In the proposed scheme vehicles make moving decisions simultaneously and hence
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the scheme is fully parallel and scalable. The algorithm works as follows:

• Step 1. Each vehicle starts with the gradient-flow method (see below for more detail

on the implementation of the gradient-flow method) and goes to Step 2;

• Step 2. If ford consecutive time instants a vehicle cannot move under the gradi-

ent method and its location is not within the target area, then it is considered to

be trapped. The vehicle then switches to the simulated annealing method with a

predetermined cooling schedule (see below for more detail) and goes to Step 3;

• Step 3. After performing simulated annealing forN time instants, the vehicle

switches to the gradient method and goes to Step 2.

In the case of a conflict (multiple nodes contend for one spot), a uniform sampling

is performed, and the winner will take the spot while the other contenders will stay put for

the current time instant. Note that the resolution of conflict can be achievedlocally since

Rs≥ 2Rm and potentially contending nodes are within the local communication range. In

the simulation the algorithm will stop if

ug = ∑
s∈S

‖ps− pg‖2≤ ε, (6.2)

whereug is an indicator measuring how far the vehicles, as a whole, are away from the

target area.

Implementation of the gradient-flow scheme and the simulated annealing scheme is

provided next for completeness.

1). The gradient-flow scheme
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In the gradient-flow method the velocities of vehicles follow the (negative) gradient

flows of their potential surfaces. To be specific, at each time instant,

• Step 1. A vehicles determine the setΛs of candidate locations for the next move,

i.e., the set of cells with the distanceRm and not occupied by other vehicles or

obstacles;

• Step 2. For eachl ∈ Λs, evaluate potential functionΦs(X(S\s) = x(S\s),xs = l),

whereS\s denotes the complement ofs in S;

• Step 3. Update the location of vehiclesby taking

xs = arg
l∈Λs

minΦs(X(S\s) = x(S\s),xs = l).

2). Gibbs sampler-based simulated annealing

Unlike the gradient-flow scheme, in simulated annealing each vehicle updates its

next location by sampling a probability distribution. First a cooling scheduleT(n) is

determined (how to choose a cooling schedule for best convergence performance is itself

a vast subject and is beyond the scope of this paper).

• Step 1. Letn = 1;

• Step 2. The vehiclesdetermines the setΛs of candidate locations for the next move

as in the gradient-flow method;

• Step 3. For eachl ∈ Λs, the vehicle evaluates the Gibbs potential functionΦs(l) =

Φs(X(S\s) = x(S\s),xs = l), and calculates the probability distribution

P(xs = l) =
e−

Φs(l)
T(n)

∑
z∈Λs

e−
Φs(z)
T(n)

;
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• Step 4. Updatexs to l ∈ Λs with probabilityP(xs = l);

• Step 5. Letn = n+1, and repeat Step 2 to step 5.

6.2 Qualitative Analysis of switching parameters

In the hybrid algorithm there are two key parameters that determine the performance

of the system:d andN. d is the waiting time that triggers a vehicle to switch from the

deterministic approach to the stochastic one, andN is used to determine the duration for

stochastic exploration.

6.2.1 Waiting timed

When d is smaller, it’s more likely for a vehicle to make a wrong decision and

switch to simulated annealing. In particular, a vehicle may be ”trapped” temporarily due

to the presence of its neighbors. Premature switching to stochastic exploration adds to the

traveling cost. On the other hand, ifd is too large, it will also be a waste of time if indeed

the current cell is a trapping spot.

This tradeoff is verified through simulation. In the simulation there were 20 vehicles

on a 48× 48 grid (see Fig. 4.2). The target is located at the corner (43,43) with radius

Rg = 5, and two overlapped circular obstacles with radius 5 are centered at (17, 23) and

(23, 17), respectively. Initially the vehicles are randomly distributed close to the other

corner which is opposite to the target. The parameters used are:λg = 5, λo = 1, λn = 0.2,

Rm =
√

2, Rs = 6
√

2. The cooling schedule is set to be100
log(n) , wheren is the number

of annealing iterations. The stopping criterionε = 200(for the distance indicatorug) is

83



2 4 6 8 10 20 40 60 80 100

900

1000

1100

1200

1300

1400

1500

1600

1700

Waiting time d for switching to stochastic approach

T
ra

ve
lin

g 
tim

e 
to

 r
ea

ch
 ta

rg
et

 fo
r 

al
l v

eh
ic

le
s

Fig. 6.1: Average traveling time versus the switching parameterd (waiting time).

chosen. So at the end of each simulation, the average distance between the target and

vehicles is about
√

10which is less than the target radiusRg. While fixing the durationN

to be 100, the switch waiting timed is increased from 2 to 100. For eachd, 10 simulation

runs were performed and the traveling times were averaged. Fig. 6.1 shows the average

traveling time versus the switch waiting timed.

In the figure, asd is very small (d = 2), vehicles take about 950 steps to arrive the

target. Then the traveling time drops to 800 whend is between 4 and 18. After that, asd

becomes larger and is comparable to stochastic exploration durationN, the performance

is dramatically degraded. Clearly, a moderated should be chosen for the best efficiency.

6.2.2 DurationN

Duration timeN for stochastic perturbation is another key parameter. Intuitively

a very smallN may not provide a trapped vehicle enough opportunities to get out; and

a very bigN will kill the time-saving advantage offered by the gradient-flow algorithm.
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Therefore, it is of interest to study how the duration timeN affects performance analyti-

cally.

A simplifying assumption is adopted to make the analysis tractable. Considering

that each vehicle makes its own moving decision, one might approximate the multi-

vehicle system as a collection of independent single vehicles. Furthermore, it is assumed

that the time spent on the gradient-flow method is much shorter than the time spent on the

stochastic approach, and can be neglected. To justify the latter assumption, it has been

found in simulation that a vehicle takes 40-50 times more steps to get the target using

the stochastic approach than using the gradient-flow approach in the absence of obstacles.

Define thereachablearea to be the set of cells from which a vehicle can reach the tar-

get area under the gradient-flow method, and theunreachablearea to be its complement.

Starting from the unreachable area with the gradient method, a vehicle will be trapped

and switch to the simulated annealing. For the durationN of stochastic exploration, let

P(N) be the probability that a vehicle will move to the reachable area afterN steps of

simulated annealing with the Gibbs sampler. Then the expected time for the vehicle to

reach the target is approximately

Ttotal =
∞

∑
k=1

k ·N ·P(N)(1−P(N))k−1

= N ·P(N)−1, (6.3)

where the vehicle is assumed to start from the unreachable area, otherwiseTtotal = 0.

The key question then becomes how to evaluateP(N). In section??a bound (4.15)

is derived to reflect the convergence rate of the probability distributionΠn = νQ1 ·Qn.

From section??we know, by designing the potential function such that the target location
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Fig. 6.2: Average traveling time versus the durationN for stochastic exploration.

has the lowest potential,Π∞ has mass 1 in the target area. Since the target belongs to the

reachable area, the probabilityP(N) satisfies the following inequality:

P(N) ≥ P(vehicle reaches target)

≥ 1− 1
2

const·N− 2λm̃
2m̃+λ∆τ . (6.4)

Combining (6.3) and (6.4), one obtains

Ttotal ≤
N

1− 1
2const·N− 2λm̃

2m̃+λ∆τ
. (6.5)

Eq. (6.5) clearly indicates that an optimalN exists to minimize the bound onT(N). This

analysis has confirmed by simulation. Same simulation scenario and parameters were

used earlier except that the waiting timed for switching was 8 and the durationN for

stochastic exploration was varies from 20 to 600. Fig. 6.2 shows the average traveling

time versusN, and one can see that a choice ofN between 60 and 200 would achieve

good time-efficiency.

Remark 6.2.1 The hybrid control scheme proposed is essentially a kind of stochastic

86



relaxation algorithm. However, simulated annealing based on the Gibbs sampler provides

advantages over many other stochastic perturbation methods.

Take the single vehicle case as one example. One can show that the probability

of a vehicle getting trapped again afterN annealing steps goes to zero asN goes to in-

finity. This is not the case with just any stochastic scheme. Take a random walk-type

perturbation scheme as an example. As the numberN of random walks goes to infinity,

the distribution of the vehicle approaches the stationary distribution of the Markov chain

defined by the random walk. In general there will be positive masses falling in the un-

reachable area. This implies that there is no guarantee for the vehicle to reach the target

no matter how many steps are used for the random perturbation.

6.3 The impact of memory

In this section the notion of memory is introduced to further enhance the hybrid

control scheme. The idea is to record the trapping spots and reduce the probability of

repeatedly being trapped at the same spots. Each vehicle keeps track of therisk levelof

dangerous cells, and accordingly modify its potential surface to lower the probability of

accessing high-risk regions. To be specific, the enhanced algorithm works as follows:

• Step 1. Initialize the algorithm, set parameterd, N, and the cooling scheduleT(n),

and let all vehicles initially choose the gradient-flow method;

• Step 2. When a vehiclesdetermines that it has been trapped at celly by obstacles, it

increases the risk levelRs
y by 1 (the default risk level for every location is 1). Then

the vehicle switches to simulated annealing withn = 1;

87



• Step 3. At each annealing step, vehiclesdetermines the setLs of candidate location

for its next move. Forl ∈ Ls, it evaluates the Gibbs potential functionΦs(X(S\s) =

x(S\s),xs = l), which is simply denoted asΦs(l). Then vehicles will take l with

the probability

P(xs = l) =
e−

Φs(l)
T(n) /Rs

l

∑
z∈Ls

e−
Φs(z)
T(n) /Rs

z

;

• Step 4. Increasen by 1 and repeat Step 3 untiln reachesN. The vehicles then

switches back to the gradient-flow algorithm and goes to Step 2;

• Step 5. The algorithm stops if the aggregate distance indicateug≤ ε.

6.4 Simulation Results

To compare the performance with the original hybrid control scheme, simulation

has been performed with the same setup as in the previous section. The waiting time was

set to bed = 6 and the durationN varied from 30 to 600. As seen in Fig. 6.3, the hybrid

control scheme with memory always achieves better performance than the original one

for all N.

Summary

In this chapter, a hybrid algorithm was developed in an attempt to improve the ef-

ficiency of the Gibbs sampling based stochastic algorihtm. Some analysis was provided

to gain insight into the algorithm. The algorithm is heuristic in nature and treats each ve-

hicle independently, and thus one cannot expect to get analytical convergence results for

the network as a whole. In some sense the hybrid control scheme offers stochastic pertur-
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Fig. 6.3: Averaged traveling time under the hybrid scheme with memory, in comparison

with that under the memoryless scheme.

bation to the deterministic gradient-flow method; however, it has advantages over random

walk-type perturbation schemes [15]. Take the single-vehicle case as an example. One

can show that the probability of a vehicle getting trapped again afterN annealing steps

goes to zero asN goes to infinity. For a random-walk perturbation scheme, however, as

the numberN of random walks goes to infinity, the configuration distribution approaches

the stationary distribution of the Markov chain defined by the random walk, and there is

no guarantee for the vehicle to reach the target no matter how many steps are used.
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Chapter 7

Robustness of the Gibbs sampling approach in the presence of sensor

errors

The Gibbs sampler based stochastic algorithm proposed in the previous chapters

have been demonstrated great success in controlling UAVs networks. However, an under-

line assumption in our previous studies was that the potential function can be precisely

evaluated. In practice, the potential values have to be calculated via sensor measurements.

In many applications, e.g., the battle field scenario, cost-effective sensors are preferred to

reduce the total expense. As a result, sensor uncertainties introduce noises to Gibbs poten-

tial evaluations. It is then of interests to study the robustness of the annealing algorithm.

In the past, this issue have been studied for the annealing algorithm based on the classical

MRF. In [82], Grover presented an analysis of the impact of fixedrange-erroron equi-

librium properties. Later on, Gelfand and Mitter studied the effects of state-independent

Gaussian noise. They showed that in certain conditions, slowly decreasingrandom-error

will not affect the limiting configurations [83, 84]. Greening studied the impact of er-

rors for the metropolis annealing algorithm in VLSI applications[85]. By assuming the

errors as the AWGN, a explicit expression of equilibrium distribution was derived for the

underline Markov chain. Convergence rate was also investigated in his dissertation. In

this chapter, we studied the impact of both fixedrange-errorand boundedrandom-error

on the annealing algorithm proposed in [78]. In our analysis, unlike previous studies, we
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Fig. 7.1: The diagram of the general robotics system

do not require the random-error follows Gaussian distribution. Sufficient conditions that

guarantee the convergence to the global minimizer were analyzed. Simulations are further

confirmed the analysis results.

7.1 Sensors and Sensor Errors

In robotics applications, sensors play important roles in understanding/exploring

environment and handling the environment uncertainty. The diagram of the general ro-

botics system is depictedx in figure 7.1,

In the diagram, sensors are firstly used to capture the measurements from surround-

ing environment, e.g., the UAV’s location, the distance between the UAV and obstacles,

the environment photos taken by cameras, and etc. The measurements are then fed into

certain data processing module to acquire necessary information for decision making.

This module may consist of but not limited to noise filtration, image processing and un-

derstanding, data fusion, and etc. The decision making module uses the processed data

to compute the control command for achieving certain tasks and send back to robotics
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actuators. For example, both the gradient descent approach, and the gibbs sampler based

approach belongs to this category.

There are different types of sensors have been developed in the robotics field in the

past few decades. From their functions, sensors can be divided into two categories: inter-

nal sensors and external sensors. Internal sensors are mainly used to measure and monitor

the internal states of a robot, e.g. velocity, acceleration, temperature, pressure, balance,

attitude, and etc., so that low level controller can be designed for UAV maneuvering. It

also help to detect and avoid failure situations, e.g., actuator saturation, unstable mode.

Most internal sensors are non-contact. They include but not limited to synchros, resolves,

proximity, accelerometers, compasses, optic encoders. Both synchros and resolves are

used to measure angular position. compasses generate global coordinates. Optic encoders

are used for measuring and controlling motor speed and acceleration.

External sensors, on the other hand, are responsible for acquire information from

environments as aforementioned. For example, GPS is usually used to get vehicle’s posi-

tion; camera can be used to get the shape of obstacles; sonar can be used to measure the

distance between vehicle and obstacles. There are even odor sensors have been recently

developed to detect the chemical ingredients and densities.

As discussed before, in multiple UAVs applications, failure or even loss of certain

amount of UAVs is tolerable because of the dangerous working conditions. Therefore,

cost-effective sensors are preferred to reduce the total cost of a single UAV. As a result,

sensor noises and uncertainties may introduce fairly large errors into the system. It is then

of interest to study the robustness of the Gibbs sample based algorithm.

The sensor error considered in the thesis fall into two categories:range-errorand
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random-error. A potential function is said to hasrange-errorsif the difference between

the nominal potential valueU(x) and the observed onêU(x) is confined to a fixed range,

and does not change with time. Therange-error is usually caused by the system error

of defected sensors. On the contrary, we consider that the potential functionŨ(x) has

random-errorsif the difference between theU(x) andŨ(x) is an independent random

variable, which is denoted asZ(x). Therandom-errorintroduces time-varying potential

evaluation.

7.2 Convergence analysis in the presence of sensor errors

In this section, we study the impact of sensor errors on the convergence properties

of the annealing algorithm in the subsection 4.4.

7.2.1 Gibbs potential with range-error

When sensors carried by vehicles haverange-error, the observed potential̂U(x) of

a configurationx can be expressed as

Û(x) = U(x)+e(x), (7.1)

wheree(x) is a finite constant. We assumee≤ e(x) ≤ e, wheree ande are the upper

bound and lower bound of range error respectively. The observed potentialÛ(x) satisfies

U(x)+e≤ Û(x)≤U(x)+e, (7.2)

Since therange-error is time-invariant, the Gibbs sampler defines a homogeneous

Markov chain at a fixed temperatureT. By directly applying theorem 4.4.1, one could
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conclude that there exist a unique equilibrium distributionπ̂T at temperatureT,

Π̂T(x) =
e−

Û(x)
T ∑s∈S∑z∈N x

m(s) e−
Û(z)

T

ZT
. (7.3)

Proposition 7.2.1 Let ΠT(x) denote the equilibrium distribution in (5.2). Let the maxi-

mum oscillation of range error∆e = e−e. Then,

e−
2∆e
T ΠT(x)≤ Π̂T(x)≤ e

2∆e
T ΠT(x) (7.4)

Moreover,

‖Π̂T −ΠT‖ ≤ e
2∆e
T −1, (7.5)

where‖ · ‖ stands forL1 norm in this paper.

Proof. Pick any configurationx ∈ X . For each configurationy ∈ {x∪N m(x)}, let

U(y) =U(y)+e. For any other configurations (x′ ∈ {x∪N m(x)}c), letÛ(x′) =U(x′)+e.

Then, we have

Π̂T(x)≤ e−
U(x)+e

T ∑s∈S∑y∈N m(x) e−
U(y)+e

T

ZT(Û)
,

whereZT(Û) denotes the partition function by taking Gibbs potentialÛ(x). Clearly,

ZT(Û) > ZT(U +e).

Then,

Π̂T(x) ≤ e−
2e
T e−

U(x)
T ∑s∈S∑y∈N m(x) e−

U(y)
T

ZT(U +e)

=
e−

2e
T e−

U(x)
T ∑s∈S∑y∈N m(x) e−

U(y)
T

e−
2e
T ZT(U)

= e
2(e−e)

T πT(x) = e
2∆e
T πT(x).
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The converse arguments supplies the lower bound. Then, By inequality (7.4)

‖Π̂T −ΠT‖ ≤ max{‖e2∆e
T ΠT −ΠT‖ ,‖e− 2∆e

T ΠT −ΠT‖}

= e
2∆e
T −1.

The last equality holds becausee
2∆e
T −1 > 1−e−

2∆e
T . ¤

Proposition 7.2.1 unveils the basic impact of range-error on the equilibrium distri-

bution for a fixed temperatureT. Moreover, pick an appropriate cooling schedule as in

theorem 5.1.1, i.e., logarithm cooling rate, it can be shown that the SA algorithm leads to

limiting configurations with minimum energy of̂U(x). If the global minimizer ofÛ(x)

minimizes the nominal Gibbs potentialU(x), the range-error does not affect limiting con-

figurations. A sufficient condition is formally stated in the following proposition.

Proposition 7.2.2 For the Gibbs potential with range-error, the simulated annealing al-

gorithm leads to the global minimizerx∗ of the nominal Gibbs potentialU(x), if the

following condition satisfies:

∆e≤ 1
2

∆U , (7.6)

where∆U is the minimum potential difference with global minimizer, i.e.,

∆U = min
x∈X ,x6=x∗

|U(x)−U(x∗)|.

Proof. Let configurationx be any configuration other than the global minimizerx∗, i.e.,x 6=

x∗ ∈X . By equation (7.2), we have

Û(x∗) ≤ U(x∗)+∆e≤U(x)−∆U +∆e

≤ U(x)−∆e≤ Û(x).
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One then concludes thatx∗ minimizes potential function̂U(x) ¤

If the maximum oscillation of range-error is too large, the simulated annealing al-

gorithm may not be able to lead the limiting configurations to global minimizer.

7.2.2 Gibbs potential with random-error

In the previous section, the potential errore(x) is assumed to be a fixed value for

each configurationx. In practice, the potential error due to sensor noise usually varies

with time, i.e., the Gibbs potential hasrandom-errors. For the ease of analysis, let the

random-errorZx be an independent random variable associated with each configuration

x. The observed Gibbs potentialŨ with random-error can then be expressed as

Ũ(x,zx) = U(x)+Zx, (7.7)

whereZx follows a probability distributionfzx

Proposition 7.2.3 Let Z = {Zx : x∈X } be the vector of random-error. The Gibbs sam-

pler with random-error define a homogenous Markov chain at a fixed temperature with

kernel matrix satisfies

P̃T = EZ(PT(z)). (7.8)

wherePT(z) is the kernel matrix with fixed range-errorz. Moreover, there exist a unique

equilibrium distributionΠ̃T at a fixed temperatureT. Starting from any initial distribution

ν0
T ,

lim
n→∞

‖ν0
T(P̃T)n− Π̃T‖= 0 (7.9)
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Proof. For any two configurationsx,y∈X , the transition probabilitỹp(x,y) satisfies

p̃T(x,y) =
∫

pT(x,y|Z = z) f (z)dz. (7.10)

One could then conclude (7.8) holds. Given any fixed range-errorz, we know the kernel

matrixPT(z) is primitive, i.e., the markov chain is irreducible and aperiodic. SinceP̃T is a

superposition ofPT(z), the primitivity of P̃T is obvious. The uniqueness and existence of

the equilibrium distribution then follow accordingly. The final statement is followed by

the ergodicity of the primitive Markov chain.¤

Unfortunately, the lacking of the explicit form of the stationary distribution for the

Markov chainP̃T presents challenges to analyze the robustness of the SA algorithm under

the random-error. To simplify the analysis, we assume that therandom-errorhas only

limited support. Similar idea for analyzingrange-error in the previous subsection can

then be applied.

Proposition 7.2.4 Assume that the random-errorz is bounded, i.e.,z≤ zx ≤ z, ∀x. Let

∆z = z−z. LetC(PT) be the contraction coefficient of a Markov kernelPT (see [20]). The

equilibrium distributionΠ̃T satisfies the following inequality:

‖Π̃T −ΠT‖ ≤ e
2∆z
T −1

1−C(P̃T)
(7.11)

Proof. By assumption, sinceZ is bounded, given anyz∈ Z, it is easy to show that, for all

x,y∈X , the matrixPT(Z = z) satisfies

e−
2∆z
T PT(x,y)≤ PT(x,y|Z = z)≤ e

2∆z
T PT(x,y), (7.12)
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wherePT = PT(Z = 0) is the Markov chain kernel matrix with nominal Gibbs potential.

Then

‖Π̃T −ΠT‖ = ‖Π̃TP̃T −ΠTP̃T +ΠTP̃T −ΠTPT |

≤ ‖Π̃T −ΠT‖C(P̃T)+‖ΠTP̃T −ΠTPT |

≤ ‖Π̃T −ΠT‖C(P̃T)+(e
2∆z
T −1).

This is equivalent to

‖Π̃T −ΠT‖(1−C(P̃T))≤ e
2∆z
T −1.

The inequality (7.11) then follows.¤

Clearly, as the maximum oscillation of random-error∆z tends to zero, the distribu-

tion νn
T = ν0

T(P̃T)n tends to approach the nominal equilibrium distributionΠT .

Proposition 7.2.5 Pick an appropriate cooling scheduleT(n) such thatlimn→∞ T(n) = 0

and the Markov chainP̃T converges as temperature tends to zero. Assume∆z ≤ 1
2∆U .

Then, From any initial distributionν

lim
n→∞

ν
n

∏
i=1

P̃T(i) = Π∞, (7.13)

i.e., the limiting configurations tends to global minimizers of nominal potentialU(x)

Proof. Since the Markov chain kernel matrix{P̃T(i)} is primitive, by picking an

appropriate logarithm cooling schedule (e.g.,T(n) = c/log(n)), the simulated annealing

algorithm converges to a limiting distributioñΠ∞, i.e., limn→∞ ν ∏n
i=1 P̃T(i) = Π̃∞, where

Π̃∞ = limT→0Π̃T . In the next, one will show the limiting distributioñΠ∞ actually equals

Π∞.
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Let ΠT(z) denote the equilibrium distribution of the Markov chain kernelPT(z).

For anyw∈ Z, one has

ΠT(w)P̃T = ΠT(w)
∫

z
PT(z) f (z)dz

=
∫

z
(ΠT(w)−ΠT(z))PT(z) f (z)dz+

∫

z
ΠT(z) f (z)dz.

Let Π̄ be the mean ofΠ(z) with respect to the probability distributionf (z). In

specific,Π̄ =
∫

zΠT(z) f (z)dz. Let ∆ΠT =
∫

w

∫
z(ΠT(w)−ΠT(z))(PT(z)−PT(w)) f (z)dz.

Integrating the both sides of (7.14) with respect tow, one then has

Π̄TP̃ =
∫

w
ΠT(w)P̃Tdw

=
∫

w
f (w)

∫

z
PT(z)(ΠT(w)−ΠT(z)) f (z)dzdw

+
∫

w
f (w)

∫

z
ΠT(z) f (z)dzdw

=
1
2
{
∫

w

∫

z
(ΠT(w)−ΠT(z))PT(z) f (z) f (w)dzdw

−
∫

w

∫

z
(ΠT(w)−ΠT(z))PT(w) f (z) f (w)dzdw}

+
∫

w
f (w)Π̄Tdw

=
1
2

∆ΠT + Π̄T (7.14)

The primitivity of P̃ implies thatlimn→∞ Π̄TP̃n = Π̃T . Assuming(I − P̃T)−1 exist,

with (7.14), the left hand side of the above equation can be rewritten as

Π̄TP̃n =
n

∑
i=1

1
2

∆ΠT P̃i−1
T + Π̄T

=
1
2

∆ΠT (I − P̃n
T)(I − P̃T)−1 + Π̄T

As n tends to∞, the equilibrium distribution can then be explicitly expressed as

Π̃T =
1
2

∆ΠT (I − P̃∞
T )(I − P̃T)−1 + Π̄T (7.15)
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By proposition 7.2.2, one haslimT→0ΠT(z) = Π∞ ∀z, since∆z≤ 1
2∆U . Then, we

have

lim
T→0

∆ΠT = 0, and lim
T→0

Π̄T = Π∞.

Take the limit ofT for equation (7.15), and plug in the above equations. The final con-

clusion then follows:

Π̃∞ = lim
T→0

(
1
2

∆ΠT (I − P̃∞
T )(I − P̃T)−1 + Π̄T

)

= Π∞.¤

The result shows that if the bound of therandom-error is constrained by∆U
2 , an

appropriated cooling schedule leads to global minimizers.

7.3 Simulation Results

Simulation was conducted to verify the robustness analysis in the previous section.

A formation control example involving inter-vehicle interactions are used to demonstrate

the impact of the sensor error on the convergence of the Gibbs sampler based approach.

Other objectives or constraints, such as target-approaching and obstacle avoidance, can

be similarly analyzed.

The goal of the simulation is to have the nodes to form (square) lattice structures

with a desired inter-vehicle distanceRdes. The potential function used was:

U(x) = ∑
r 6=s,‖xr−xs‖≤Ri

c1(|‖xr −xs‖−Rdes|α −c2),

wherec1 > 0, c2 > 0, andα > 0. A proper choice ofc2 encourages nodes to have more

neighbors. The powerα shapes the potential function. In particular, for|‖xr − xs‖−
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Rdes|< 1, smallerα leads to larger potential difference from the global minimum.

In the simulation, 9 nodes were initially randomly placed on an 8 by 8 grid (see

Fig. 7.2 (a)). Parameters used were:Ri = 4
√

2− ε, Rm = 2
√

2+ ε, Rdes= 2, c1 = 10,

c2 = 1.05, α = 0.02, T(n) = 1
0.01lnn, and τ = 20. The desired configuration (global

minimizer of U) is shown in Fig. 7.2 (b) (modulo vehicle permutation and formation

translation on the grid). Simulated annealing was performed for104 steps.

The sensor error was modeled as additive noiseZx as in (7.7). Uniform distribution

was selected forZx. Other distributions can be studied accordingly. The potential differ-

ence of the example was calculated to be∆U = 11. So the potential error bound∆z should

less than5.5 in order to guarantee the convergence. In the simulation, we compared with

3 different cases: noise-free,∆z = 5, and∆z = 30. Moreover, for comparison, we studied

cases where the sensor error is modeled as additive white gaussian noise (AWGN). Due

to the lack of analytical results, numerical studies were provided instead. Two different

variances,σ = 1 and 5, are used in the simulation respectively.

To demonstrate the trend of convergence to the lowest potential, one can calculate

the error‖νn−Π∞‖1 as metric, whereνn is the empirical distribution of configurations

(again modulo vehicle permutation and network translation), and

Π∞(x) =





1 if x is desired

0 otherwise

.

Therefore,

‖νn−Π∞‖1 = 1−νn(x∗)+ |0− (1−νn(x∗)|= 2(1−νn(x∗)),

wherex∗ denotes the desired formation. The evolution of‖νn−Π∞‖1 for different poten-
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tial error bound are shown in Fig. 7.3 , whereνn(x∗) is calculated as the relative frequency

of samplingx∗ in 1000 annealing steps. The plot suggests that when the potential error

bound∆z≤ 1
2∆U , the convergence trend is roughly same as the noise-free case. On the

other hand, when∆z is relative large, the convergence trend is barely observed.

With the sensor random-error being modeled as AWGN, similar convergence prop-

erties were observed in simulations. As one knows, for normal distribution,99.7% sam-

ples lie in[−3σ ,+3σ ], which is roughly comparable to the former cases with∆z = 6σ .

Hence, the caseσ = 1 should be comparable with the case∆z = 5, and the caseσ = 5

corresponds to the case∆z = 30. In the simulation, it was observed that the convergence

rate ofσ = 1 is slightly faster than the case∆z = 5 with uniform distribution. Similar

results can be observed by comparing casesσ = 5 and∆z = 30. The reason is due to

the bell shape of the normal distribution, where probability densities concentrate at the

center.
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Fig. 7.2: The initial and desired configuration for 9 vehicles. (a) Initial configuration; (b)

desired configuration

102



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

||Π
 −

 Π
∞

|| 1

number of steps

∆
z
 = 0

∆
z
 = 5

∆
z
 = 30

σ = 1
σ = 5

Fig. 7.3: Comparation of the evolution of‖νn−Π∞‖1 for different sensor noise.

103



Chapter 8

MPC based motion control of Car-like autonomous vehicles

8.1 Introduction

In this thesis, a two layer hierarchical scheme is adopted in the collaborative UAV

swarms control system design (see figure 8.1). In the system diagram, it can be seen

that the Gibbs sampler based stochastic algorithm proposed in previous chapters be-

longs to the high level path planning module. It generates a sequence of way-points

{pi(n),n = 1, ...,N} for each UAV/roboti. The sequence of way-points are then used to

generate smooth continuous curves{xi(t)} which pass the way-pointpi(n) at timet(n).

The continuous curve{xi(t)} for UAV/robot i is usually called areference trajectory.

One can imagine{xi(t)} as theimageof the discretepath{pi(n)} on the continuous mis-

sion space. The goal of lower-level system in figure 8.1 is to design controllers such that

UAVs/robots can follow thereference trajectories.

In practice, however, dynamic and kinematic constraints, e.g., nonholonomic con-

straints, prohibit autonomous vehicles from following arbitraryreference trajectories. So

the reference trajectoryhave to be generated by solving the vehicles’ dynamic and kine-

matic differential equations, which is considered in the low level motion control design.

Moreover, in the high-level path planning module, local collision avoidance, small ob-

stacle/moving threat avoidance, as well as input/state saturation are not fully addressed.

In this chapter, a Nonlinear Model Predictive Control (NMPC) approach based low-level
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Fig. 8.1: Gibbs sampler based collaborative control diagram

motion controller is proposed to address all aforementioned requirements. The low-cost,

robust and multi-objectives oriented control scheme was then verified through simula-

tions.

The remaining of this chapter is organized as follows. In section 8.2, the kinematic

model of car-like vehicle and controllability is first studied. Section 8.3 discusses the

generation of admissiblereference trajectorywith nonholonomic constraints for a car-like

vehicle. Finally, the design and implementation of a NMPC based approach is addressed

in section 8.4.

8.2 Kinematic model of car-like vehicle and controllability analysis

The kinematic and dynamic models of wheeled mobile robots have been consid-

erably studied in the robotics control communities in past decades. The main feature

of the kinematic model is the presence of nonholonomic constraints due to therolling

105



without slippingconstraint between the wheels and the ground. The nonholonomic con-

straints impose many difficulties in control design. In particular, Brockett have shown that

a linearized nonholonomic model has deficiency in controllability and there is no time-

invariant linear control to guarantee the tracking error convergence zero [86]. To illustrate

the nonholonomic constraints, we first look at the simplest wheeled mobile robot model,

unicycle, as shown in figure 8.2. The configuration of the unicycleq= (x,y,θ) consists of

generalized coordinates: position coordinates(x,y) at which the wheel of unicycle con-

tact with ground, and the angleθ measuring the wheel orientation with respect to the x

axis. All possible configurations form configuration space are denoted asQ = {q}. Due

to therolling without slippingconstraints, the generalized velocity variablesq̇ = [ẋ, ẏ, θ̇ ]

satisfy the following equation:

[
sinθ cosθ 0

]




ẋ

ẏ

θ̇




= 0. (8.1)

This equation is usually called the nonholonomic constraint equation. In general case, the

constraint can be written as

C(q)q̇ = 0, (8.2)

whereC(q) is the constraint matrix. The nonholonomic constraints restrict general veloc-

ities q̇ living in the null space of the constraint matrixC(q).

For unicycle model, by considering the nonholonomic constraint equation (8.1), the
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x

y

Fig. 8.2: The unicycle model

kinematic model can be expressed as



ẋ

ẏ

θ̇




=




cosθ 0

sinθ 0

0 1







v

ω


 (8.3)

wherev andω are two control inputs, linear velocity and angular velocity respectively.

The unicycle is the simplest wheel-base robot model, which is only of conceptual

interest in studies. In practice, people frequently adopt car-like mobile robot in ground

UAV applications due to the relative lower cost and the convenience for applications.

There are two types of car-like mobile robot: front-wheel driving vehicle and rear-wheel

driving vehicle. They basically share similar structure of kinematic model.

The configuration of the rear-wheel driving vehicle is shown in fig 8.3. In this

model, the generalized coordinatesq = (x,y,θ ,φ), where(x,y) are the cartesian coordi-

nates of the center point of the rear axle,θ is the heading angle of the car body with

respect to the x axis, andφ is the steering angle. In figure 8.3,l is the distance between

the front axle and the rear axle.

In the kinematic model of car-like vehicle, four nonholonomic constraints must be
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Fig. 8.3: The rear-wheel driving car model

satisfied with each one associated with one wheel. Let(xf ryf r) and (xf l ,yf l ) be coor-

dinates of the center point of the right front wheel and the left front wheel respectively.

Assuming the two wheels are parallel, the nonholonomic constraints for the front wheels

can be expressed as

ẋf r sin(θ +φ)− ẏf r cos(θ +φ) = 0

ẋf l sin(θ +φ)− ẏf l cos(θ +φ) = 0. (8.4)

Denote(xf ,yf ) as the coordinate of the front axle center point. Sincexf = xf r +xf l

andyf = yf r +yf l , the two nonholonomic constraints are linearly dependent. So, they can

be simplified as one constraint. Same procedure can be used to reduce the nonholonomic

constraints of rear wheels. Therefore, four nonholonomic constraints are boiled down two
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nonholonomic constraints. In specific,

ẋf sin(θ +φ)− ẏf cos(θ +φ) = 0

ẋsinθ − ẏcosθ = 0. (8.5)

Considering the rigid body constraints, the center of front axle(xf ,yf ) satisfies




xf

yf


 =




cosθ

sinθ


 l +




x

y


 (8.6)

The first nonholonomic constraint of (8.5) can be rewritten with only general configura-

tion q involved.

ẋsin(θ +φ)− ẏcos(θ +φ)− θ̇ l cosθ = 0 (8.7)

Assume that control inputv, ω are linear velocity and steering velocity respectively,

the kinematic model of rear-driving vehicle can be expressed as



ẋ

ẏ

θ̇

φ̇




=




cosθ 0

sinθ 0

tanφ/l 0

0 1







v

ω


 (8.8)

One can easily verify that (8.8) satisfies the nonholonomic constraints (8.5) and

(8.7). Note that whenφ = ±π
2 , the model becomes singular. This corresponds to the

situation where the front wheel heading is orthogonal to the longitudinal axis of the car.

In practice, we should restrict the range of steering angleφ to prevent the singularity case.

The kinematic front-wheel driving vehicle can be obtained similarly with linear
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veloctiy |v|=
√

ẋ2
f + ẏ2

f




ẋ

ẏ

θ̇

φ̇




=




cosθ cosφ 0

sinθ cosφ 0

sinφ/l 0

0 1







v

ω


 (8.9)

Remark 8.2.1 In the previous study, the kinematic model of car-like vehicle is simplified

as a bicycle kinematic model. In practice, the kinematic model with wheel coordinates

should be used to address the presence of actuators and sensors on the wheel axle, as well

as tire deformation. Nevertheless, the kinematic model discussed in this section contains

main feature of vehicle kinematics and is feasible for illustrate the control design in the

rest sections.

Without loss of generality, in the rest of this section, we only consider the motion

control design for the rear-driving vehicle model. We first investigate the controllability

of the wheeled car. We start the analysis by rewriting the system equation (8.8) as

q̇ = g1(q)v+g2(q)ω, (8.10)

whereg1(q) = [cosθ sinθ tanφ/l 0]T , g2(q) = [0 0 0 1]T . Clearly, the kinematic

model (8.10) is a driftless, nonlinear system. The driftless means that any configuration

q∈Q is an equilibrium point provided zero input. Given the initial conditionq(t0) = q0∈

Q and admissible control inputu(t)∈U on [t0, t], the unique solution of (8.10) is denoted

asq(t, t0,q0,u), or simplyq(t).

Definition 8.2.1 A system is controllable if for every two configurationq1,q2 ∈ Q, there
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exist a finite timeT > 0 and an admissible controlu : [0,T] ∈U such thatq(T,0,q1,u) =

q2

Following the nonlinear control theory in Isdori’s book [87], theLie algebra rank

condition is a very powerful tool used to test the controllability of a driftless nonlinear

system. In this case, one just need to check if the general controllable form is of full rank.

In specific,

rank[g1,g2, [g1,g2], [g1, [g1,g2]], [g2, [g1,g2]], ...] = 4. (8.11)

Observing that

g3 , [g1,g2] =
∂g2

∂q
g1− ∂g1

∂q
g2




0

0

1
cos2 φ l

0




and [g1,g3] =




− sinθ
cos2 θ l

cosθ
cos2 θ l

0

0




, (8.12)

one can conclude that the rank condition of the controllable form is indeed full rank, and

thus the controllability holds.

8.3 Trajectory Generation for car-like autonomous vehicle

In this section, we study the generation of the continuousreference trajectoryfor

car-like vehicle given predetermined way-point sequences in the free space. One of the

most interesting problem in the literature is the shortest path problem, which usually

associated with the time-optimal trajectory. However, nonholonomic constrains of the

car-like vehicle present difficulties in solving such kind of problems.
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In 1957 [88], Dubin studied the shortest trajectory problem for a very simple model,

the unicycle model with constant linear velocity 1, i.e.,




ẋ = cosθ

ẏ = sinθ

θ̇ = ω

with configurationq= [x,y,θ ]∈R2×S1, and control inputω. The goal is to find the time-

optimal trajectory to connect the initial configurationq0 and the terminal configurationqt

with input constraints|ω| ≤ 1.

Although this problem was initial proposed by A. A. Markov in 1989, Dubins was

the first one who studied the problem in detail [89]. After then, similar problems have

been studied in [90], [91].

Dubins showed that the optimal trajectories are concatenations of at most 3 pieces

of basic elements. The basic elements include a line segment (L) and an arc (C) with

radius 1. Moreover, he showed that there are only seven combinations are allowed to

ensure optimality of the generated trajectory. Precisely, they must be of the forms in

L,C,L−C,C−C,C−L,C−C−C,C−L−C. For example, the formL−C−L is excluded

from optimal trajectory. Moreover, for the case ofC−C−C, he showed that the middle

arc should be lie in(π,2π), and total length of three arcs should less than2π. A typical

example of the optimal trajectory for dubins’ car is shown in figure 8.4, where a C-L-

C type trajectory is used to connect the initial and terminal configurations. In [92], the

shortest path synthesis for dubins’ car are studied completely.

However, in the dubins’ optimal trajectory, there may exist discontinuous curva-

ture at the connection point of two successive pieces, line-arc or arc-arc (with opposite
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Fig. 8.4: An example of the optimal trajectory for dubins’ car

direction of rotation). To follow (exactly) such trajectory a car-like vehicle would be con-

strained to stop at the end of each connection point. To deal with the problem, Sussmann

[89] studied a generalization problem by controlling the angular acceleration in stead of

the angular velocity, which is the equivalent model of the car-like vehicle, i.e.,




ẋ = cosθ

ẏ = sinθ

θ̇ = ω

ω̇ = u

where the control input is bounded (u< umax), and the curvature of the state trajectoryκ ∈

[−κmax,κmax] is bounded. The goal is to find the time-optimal trajectory in the feasible

configuration spaceC ∈ R2×S1× [−κmax,κmax]. He showed that the optimal trajectory

consists of line segments, arcs and clothoids.

A clothoid, also known as a Cornu spiral, is a curve parameterized by two Fresnel
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integrals(S(t),C(t)). In the canonical clothoid (Cl), thex(t) andy(t) coordinates can be

expressed as:

x(t) =
∫ t

0
cos(

Bτ2

2
)dτ (8.13)

y(t) =
∫ t

0
sin(

Bτ2

2
)dτ (8.14)

Along a clothoid curve, the curvature depends linearly on the arc length and varies con-

tinuously from−∞ to +∞. For the clothoid defined in (8.13), it corresponds to the state

trajectory(x(t),y(t)) of system (8.13) with control input equals to constantB. Because

the curvature along the reference trajectory should be bounded, only a part of the clothoid

can be utilized in the optimal path generation.

Moreover, Sussmann showed that along the time-optimal trajectory for system (8.13),

the number of basic elements (L, C, and Cl) cannot be bound above. In some extreme

case, there may exist a time-optimal trajectory that involves with infinite chattering [89],

which is not allowed in practice.

A practical way addressing the problem is to study a sub-optimal problem by re-

stricting the maximum number of basic elements. The analytical study of the Sub-optimal

Continuous-Curvature (SCC) trajectory planning can be found in [93]. In the SCC trajec-

tory, there exist at most 9 pieces of basic elements. For each dubins’ optimal trajectory

there is a corresponding sub-optimal trajectory. For example, the C-L-C in dubins’ model

may become Cl-C-Cl-L-Cl-C-Cl in the sub-optimal trajectory. The curvature profile in

this example is shown in figure 8.5. By replacing the arcA andC in the left plot with

curve 1-2-3 and 5-6-7 in the right plot, the curvature profile is continuous.

The key part of this approach is to replace any arc segment in dubins’ optimal
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Fig. 8.5: Curvature profile for (a) Dubins’ optimal trajectory, and (b) SCC trajectory

trajectory with acontinuous-curve-turn. In precise, the arc is replaced by a Cl-C-Cl com-

bination, where the start and end point has curvature equals to 0 [93].

In general, the local sub-optimal trajectory planner works as follows. First generate

the dubins’ optimal trajectory using the synthesis approach in [92]. For each arc segment,

replace it by a curve consisting of Cl-C-Cl. A typical sub-optimal trajectory is shown in

figure 8.6.

In [94], they further compared the dubins’s optimal trajectory and the SCC trajec-

tory. In their extensive simulation results, they showed that the total length of the SCC

trajectory is only about 1.1 times longer than the dubins’ optimal trajectory. In the rest of

this chapter, we assume that the reference trajectoryqr(t) is generated by the sub-optimal

method. The corresponding reference control input are linear velocityvr(t) and steering

velocity ωr .
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Fig. 8.6: An example of the sub-optimal trajectory

8.4 Model Predictive Control (MPC) based trajectory tracking control

8.4.1 Review of Model Predictive Control

The Model Predictive Control (MPC) approach is an advanced method of the process

control that integrates optimal control, stochastic control and multivariable control ap-

proaches. The MPC approach has been considerably developed and widely used from

chemical industries, oil refineries to food process industries since late seventies [95]. One

of the most important advantages of MPC lies in that it can easily used to handle the non-

linear system control with input/output constraints, e.g., actuator saturation, which are

frequently encountered in practice [96]. The main idea of MPC approach is to choose

the control action by repeatedly solving online an optimal control problem. The general

framework of MPC approach is depicted in figure 8.7.

First, a model is used to predict the process output at future time instants (hori-
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Fig. 8.7: Diagram of Model Predictive Control (MPC)

zon) given the current states and the candidate optimal future control input sequences.

The proposed optimal future control sequences are then generated by optimizer minimiz-

ing the cost function (the cost is incurred by future errors and control input) subject to

(input/output/state) constraints. Finally, a receding strategy, which involves recursively

solving a finite horizon optimal control at each time instant, is used for control purpose.

More precisely, in discrete time the model predictive control approach can be for-

mulated as follows:

x(t +1) = f (x(t),u(t),w(t))

y(t) = g(x(t),u(t)), (8.15)

where,u(t) is the control input, andw(t) is the noise or disturbance. At time t, Given a

control input sequences{uk}t+N
t and initial statex(t) at time instant t, for a finite time
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horizonH = t, ..., t +N, the output{yk}t+N
t can be calculate by the predict model (8.15).

Let us define a cost/objective function asJ({xk}t+N
t ,{yk}t+N

t ,{uk}t+N
t ) involving the fu-

ture state trajectory, output trajectory and control effort. The optimal control inputu∗ is

generated by minimizing the cost function, i.e.,

{u∗k}t+N
t = arg min

{uk}t+N
t

J({xk}t+N
t ,{yk}t+N

t ,{uk}t+N
t ). (8.16)

From time instantt to t + τ, the optimal control inputs{u∗k}t+τ
t are then applied to the

process or the plant. At time instantt + τ, a new time horizonT = {t + τ, ..., t +N + τ}

is generated.{u∗k}t+N+τ
t+τ is calculated by solving similar finite horizon optimal control

problem as (8.16) givenx(t + τ) as initial state and the predictive model (8.15).{u∗k}t+2τ
t+τ

are then used for control during time interval{t + τ, ..., t + 2τ}. One can imagine the

finite horizon as a window with size N moving along the time axis. The cursively solving

finite horizon optimal control problem with sizeN and applied the optimal control during

first tau step is essentially the core of MPC strategy. For this particular reason, MPC is

also called Receding Horizon Predictive Control (RHPC).

8.4.2 Gradient Descent based MPC approach

In this section, we propose to use a MPC approach for solving low-level trajectory

tracking problem of a car-like autonomous vehicle. The stabilization and tracking control

of nonholonomic vehicle has been addressed by many people in the past decades. The

challenge is explicitly demonstrate by Brockett in [86], that is nonholonomic systems

cannot be stabilized via smooth time-invariant state feedback. To address the problem,

time-varying feedback control approaches were proposed by many researchers, for ex-
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amples, approaches based on Control Lyapunov Function (CLF) [97][98], and adaptive

control approach [99][100].

As mentioned in section 8.1, the low level motion control module has to simul-

taneously handle multiple objectives, such as bounded tracking error, collision avoid-

ance, local obstacle avoidance, input/state saturation, and etc. However, aforementioned

approaches fail to solve our problem since they usually only address stability and zero

tracking error in the controller design. Inspired by [101], we proposed a Nonlinear Model

Predictive Control (NMPC) based approach for the multi-objective oriented motion con-

trol of car-like vehicle.

Most commercially available MPC approaches were developed based on linear

model and frequently demonstrated poor performance due to the high nonlinearity of the

plant. This has motivated people to develop NMPC approach, where a nonlinear model

was used to describe the plant more precisely. While the NMPC approach offers poten-

tial for improved the performance, it also imposes challenges in theoretical study and

practical implementation, which are usually associated with the on-line solving nonlinear

optimization problem at each sampling period to generate optimal control sequence. To

solve the nonlinear optimization problem, the Maximum Principle can be used to derive

a set of necessary conditions for optimal control sequenceu∗. Unfortunately, it is hard to

get explicit solutions from the necessary conditions in general. Gradient descent approach

can then be used to numerically compute the optimal control.

In the next, we briefly describe the approach for a continuous time nonlinear system,

and then apply the approach to solve our problem. we start to illustrate the approach by

investigating a general finite horizon optimal control problem. The goal of the problem is
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to find the optimal control inputu∗(t) ∈U , t ∈ [t0, t f ], such that

minimizeJ = ψ(q(t f ))+
∫ t f

t0
L(q(t),u(t), t)dt

subject toq̇ = f (q(t),u(t), t) (8.17)

q(t0) = q0

where the first termψ(q(t f )) is the terminal cost, and the second term is the running

cost. By introducing the costate vectorλ (t), the Maximum Principle indicates that the

optimal control should satisfies the following conditions ( the derivation can be found in

appendix):

Lu +λ T fu = 0 (8.18)

Lq +λ T fq + λ̇ T = 0 (8.19)

ψq(qt f )−λ T(t f ) = 0 (8.20)

whereLu, Lq are denoted as the partial derivative ofL respect tou andq respectively.

Similar for fu and fq. One can find that the costate propagates backward time with ini-

tial conditionλ T(t f ) = ψq(qt f ), whereas the state propagates forwards time. This fact

presents challenges to solve the optimal controlu∗(t) analytically. A numerical method

was then proposed using the gradient descent method. It is outlined as follows:

1. For a givenq0, pick a control historyu0(t). Let i = 0.

2. Propagatėq = f (q,u, t) forward in time to create a state trajectory.

3. Evaluateλ T(t f ) = ψq(qt f ), and solve backwardλ T usingλ̇ T = Lq +λ T fq
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4. Update control inputui+1 = ui +δu with δu =−K(Lu+λ T fu), where K is a positive

scalar.

5. CalculateδJ = J(ui+1)−J(ui). If δJ > 0, reduce K and go back to step 4.

6. Let i = i +1, and go back to step 2 until the solution converges.

The numerical method is widely used for solving optimal control problem in com-

plex system. The major difficulties of the approach is the computation cost. In order to

speed the solution converges, one should carefully select appropriate control trajectory to

start the iteration. Once the optimal solution is available, one can then plug the nonlinear

optimizer in the general MPC framework in the last section to get the NMPC approach.

The NMPC can easily handle multi-objectives oriented tracking control by jointly

encoding individual objectives in in the objective functionJ. In our problem, the follow-

ing form could be used:

J = ψt f +
∫ t f

t0
(µ tkJtk + µscJsc+ µuJu + µoJo + µcJc)dt, (8.21)

whereJtk, Jsc, Ju, Jo, andJc are the objective/potential functions account for tracking

performance, state saturation, control effort and saturation, obstacle avoidance, and col-

lision avoidance respectively.µ tk,µsc,µu,µo, andµc are weighting coefficients for each

objectives. The design of the potential functions as well as weighting coefficient are chal-

lenging in order to get robust performance. In our problem, the potential function are

designed in the following forms:

• Tracking performanceJtk

Assume that the desired trajectory isqd(t)= {[xd(t),yd(t),θd(t),φd(t)]}. The quadratic

121



form of tracking error can be a good candidate, i.e.,

Jtk = (q−qd)TQ(q−qd),

whereQ is a positive diagonal matrix, which determines the relative importance of

tracking error for different states.

• Terminal costψt f

Similar as tracking performance,ψt f is selected as:

Jtk = (qt f −qd(t f ))TQ0(qt f −qd(t f )),

• Input/state saturationJtk

As aforementioned, when the steering angleφ = ±φ/2, the kinematic model of

rear-wheel vehicle will degenerate. This enforce the the steering angle must live in

the safe range[−phisat, phisat], wherephisat is a positive scalar. The saturation cost

could be

Jsc = max(0, |φ |−φ sat)2,

• Control effortJu

We use quadratic form to represent control effort:

Ju = uTRu,

• Obstacle avoidanceJo A repulsive potential function is used for avoid obstacles.

Assume the closest point on the obstacle surface to the vehicle are(xo,yo). Jo is

proposed of following form

Jo =
1

(x−xo)2 +(y−yo)2 ,
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where(x,y) is location of vehicle.

• Collision avoidanceJc

Jo = ∑
j

1

max(
√

(x−x j)2 +(y−y j)2−Rsa f e,ε)
,

whereRsa f e is the safety range andε is a small scalar used to preventJo from

infinite or negative.

It is straightforward to extend the approach to discrete time nonlinear system in

order to implement this approach to low-cost digital controller, one may refer to [101] to

get the details.

8.4.3 Dynamic Programming based NMPC approach

In the last section, a gradient descent approach was proposed to solve the nonlinear

finite horizon optimal control problem in the NMPC approach. It has to be noted that the

convergence of the gradient descent approach is not guaranteed. Without carefully se-

lecting the weighting coefficients in objective function, as well as initial control sequence

and step size of control updates, this approach may lead to unstable performance, which

brings out a lot of troubles in the controller design. The other difficulty of the gradient

descent approach is that the computation time in different sampling period may varies a

lot which may cause instability due to the maximum delay by computation.

To address these problems, a dynamic programming (DP) based approach is pro-

posed. It is well known that the Dynamic Programming approach suffers from ”curse

of dimensionality” in general. However, since we usually assume that autonomous ve-

hicles have only limited actuation capability, by reducing the size of admissible control
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input, the DP approach can be used to solve the finite horizon optimal problem (8.22) in

a reasonable time.

For discrete time case, the finite horizon optimal problem (8.22) can be rewritten as

follows

minimizeJ = ψ(q(N))+
N−1

∑
k=0

L(q(k),u(k))

subject toqk+1 = g(q(k),u(k)) (8.22)

q(0) = q0.

We assume that the control inputu(k) ∈U takes only discrete values. Denote|U |

be cardinality of admissible control. The optimal control sequence can be recursively

solved by the following DP algorithm:

1. Initially, let J0(q0) = 0.

2. For k=0,...,N-1, we have

Jk+1(q(k+1)) = min
q(k)

(L(q(k),u(k))+J∗k(q(k))),

whereq(k+1) = g(q(k),u(k)).

3. Find the optimal control sequence associated with the optimal cost:

J∗ = min
q(N)

(ψ(q(N))+JN(q(N))).

The advantages to use the DP algorithm lie in two folds. First, the DP algorithm do

not require that the objective functionL(q(k),u(k)) and system dynamicsg(q(k),u(k))

differentiable. Second, it guarantees the finite convergence time which is very important
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to in real-time control applications. However, we have to admit the ”curse of dimen-

sionality” of the DP algorithm prohibits the approach from being used in more complex

system.

8.5 Simulation results

In this section, the performance of the proposed NMPC based low-level vehicle con-

trol is demonstrated in three simulation examples. In all simulations, the distance (l ) be-

tween front axle and rear axle is set to be 0.8. The steering angle (φ ) lies in [−pi/4, pi/4].

The saturation range of control inputv,ω are:v∈ [0,5] andω ∈ [−1,1].

8.5.1 Free-space Way-point Navigation

In this scenario, a single vehicle moving in a free space is considered. In the sim-

ulation, the reference trajectory is a SCC trajectory consisting of 7 pieces basic elements

(Cl, C, L). Starting at origin(0,0), the reference linear velocityvr is constant 1. As shown
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Fig. 8.8: The reference steering control input for free space trajectory tracking

in figure 8.8, the reference steering velocityωr(t) is set to be follows

ωr(t) =





0.5, 0≤ t ≤ 1

0, 1 < t ≤ 2;

−0.5, 2 < t ≤ 3;

0, 3 < t ≤ 5;

−0.5, 5 < t ≤ 6;

0, 6 < t ≤ 7;

0.5, 7 < t ≤ 8;

0, t > 8.

In the simulations using gradient descent MPC approach, the selected weighting

coefficient are:µ tk = 20 ,µsc = 300,µu = 5,µo = 0. The horizon time for each sampling

period is set to be 0.3s, and the step sizeK are initially set to be 1-e3. In the DP based
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Fig. 8.9: Free space trajectory tracking with MPC based approach

NMPC approach, the sampling period is set to be the same as the one in the gradient

approach. The linear velocity input is set to be constant 1. The steering input can only take

three values: -2.5, 0, and 2.5. Simulations results shows that both approaches demonstrate

an excellent tracking performance 8.9.

Moreover, we compared the trajectory tracking error
√

(x(t)−xr(t))2 +(y(t)−yr(t))2,

and heading angle tracking errorθ(t)− θr(t) in figure 8.10. The trajectory tracking er-

rors for both approaches are bounded below 0.005. The DP based approach shows larger

heading angle deviation than gradient descent approach. The main reason is due to the

limited steering control capability.

We further compared the range of computation time at each sampling period. The

range for gradient based MPC approach is about (0, 1.5) second, which is much larger

than the sampling period 0.3 second. The range for DP based approach is roughly around
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Fig. 8.10: Comparison of free space tracking error for two MPC based approaches

0.02 second. Although the coding efficiency of Matlab may greatly affect the computation

time, the large variation of computation cost potentially present barriers to apply gradient

based MPC approach in real-time control.

8.5.2 Trajectory tracking with obstacle avoidance

In the high-level path planning module, obstacles are assumed much larger than

the size of autonomous vehicle. In order to avoid small obstacles within vehicle’s local

sensing range, low-level controllers are designed to deal with the problem. For simplicity,

we assume obstacles have circular or eclipse shaped. General shapes of obstacles can be

approximated by an eclipse envelope. In the simulation, the reference trajectory start at

origin (0,0). The linear velocityvr is constant 1. The reference steering velocityωr(t) is
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Fig. 8.11: Comparison of local obstacle avoidance for two MPC based approaches

set to be follows

ωr(t) =





1, 0≤ t ≤ 0.5;

0, 0.5 < t ≤ 2;

−1, 2 < t ≤ 2.5;

0, t > 2.5.

A circular obstacle is located along the reference trajectory with center at(2.5,1.5) and

radius0.5. Figure 8.11 shows that both approach successfully avoid from hitting towards

the obstacle. The vehicle trajectory with DP based MPC approach has larger deviation

from reference trajectory than that with gradient descent approach. The primary reason is

due to the limited steering control capability.
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Fig. 8.12: Comparison of local collision avoidance for two MPC based approaches

8.5.3 Multiple vehicle tracking with collision avoidance

In this simulation, two vehicles’ heading directions are initially opposite to each

other. We assume that the two vehicle are planning to move the other’s location. So they

are supposed to collide in the mid of their ways. By adding the collision avoidance poten-

tial function component in the objective function, simulations show that both approaches

yield good performance in avoiding collision (see figure 8.12 ). The dashed curves are

vehicles’ trajectories with DP based MPC approach. Similar as previous simulations, the

limited actuator’s capability results in large deviation from reference trajectory comparing

with the gradient based approach.

As discussed previously, A typical case that two vehicles colliding into each other

happens when vehicleA moves from cell at southwest to cell at northeast, and at the same

time vehicleB moves from cell at northwest to cell at southeast (or similar permutation).
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We simulate the scenario using the DP based MPC approach. Two vehicle are initially

sitting at(0,0) and(0,6) with orientationpi/4 and−pi/4 respectively. Without collision

avoidance control, they will collide at(3,3). Figure 8.13 shows our DP based approach

achieves collision avoidance successfully.

Remark 8.5.1 The MPC approach demonstrates great advantages in low-level autonomous

vehicle control design. The main advantage of using MPC control lies in that it can easily

accommodate several control objectives in a fairly simple framework. Comparing with

the gradient descent, the DP based approach offers a lower computational cost and more

robust performance. However, the DP based approach suffers from ”curse of dimension-

ality”, which limit its applications.
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Chapter 9

Conclusions

This dissertation concentrates on the collaborative control of UAV swarms with

communication, sensing, and actuation constraints. In particular, we addressed a funda-

mental dilemma existed in the artificial potential function (APF) approach, that is when

the potential function is nonconvex, the system dynamics could be trapped in local min-

ima.

In this dissertation, a novel distributed stochastic approach is proposed to solve the

local minima entrapment problem. By modeling vehicle networks as a dynamic Markov

random field (MRF), Gibbs sampler based simulated annealing approach is proposed to

coordinate vehicles’ motion. Similar as the APF approach, this approach belongs to po-

tential based approach which mimics the bacteria foraging in nature. All interactions

among vehicles and environments are encoded as Gibbs potential. Comparing with the

APF approach, however, our approach provides a more general framework by adding the

annealing process. The APF approach in fact is only a special case of the Gibbs sampler

based approach with temperature fixed at zero all the time. By tuning the cooling schedul-

ing, the system can achieve different convergence rate. Theoretical studies and extensive

simulation results have been conducted to to validate the novel approach. We have shown

that by choosing appropriate cooling schedule, this stochastic approach is guaranteed to

lead the vehicle networks to achieve group objects/tasks. Two examples, a battle field
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scenario and formation control, were used in the simulation. But it is easy to extend our

approach to many applications we mentioned the first chapter.

Although our approach provide a general solution to complement the APF ap-

proach, the stochastic nature and sequential sampling introduce long traveling time and

maneuvering cost to UAV networks which present barriers to apply our approach in prac-

tice. Two approaches are proposed in this dissertation to reduce the execution time and

improve the performance.

Firstly, a fully distributed parallel sampling algorithm was investigated to reduce

the delay caused by the sequential sampling. Generally, it is hard to show that fully

parallel sampling algorithm lead to the same global minimizer as the sequential counter-

part. Fortunately, in some special cases, we proved that the parallel algorithm will lead to

quasi-desired configurations.

Secondly, we proposed a hybrid scheme that combines the advantages of both the

stochastic exploration algorithm and the deterministic gradient decent method. The hy-

brid scheme switches between two approaches to achieve both fast maneuvering and free

of entrapment. There are two key parameters, switch waiting timed and the duration for

stochastic perturbationN, that significantly affect the system performance. Some pre-

liminary analysis on how to optimally select the parameters are provided. Convex trends

of performance change are observed through simulations. By implementing memories

to vehicles, an improved hybrid scheme is also proposed. In this scheme, vehicles use

memory to online learn ”dangerous” locations and reduce the probability to reach those

locations again. In nature, the improvement is to reconstruct the potential surface by es-

timating the local minimum gradually. Simulation results have shown that the improved
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scheme achieves better performance than the original one.

The robustness of our approach is also addressed in the dissertation. We study the

convergence properties of the stochastic approach under different types sensor errors in-

cludingrange-errorandrandom-error. It is shown that under moderate sensor noise, i.e.,

the sensor noise is bounded by half of the minimum potential difference, the convergence

properties of our proposed algorithm are conserved.

We further investigated the low-level motion control to deal with nonholonomic

constraints in car-like UAV model. The proposed MPC based approach have shown its

advantages to easily accommodate multiple objectives and constraints, e.g., minimizing

tracking error, avoiding actuator/state saturation, local obstacle and collision avoidance.

We compared two approaches, gradient descent based approach and dynamic program-

ming based approach. Both of them have advantages and disadvantages. For car-like

vehicle with limit control input, the dynamic programming based approach is more pre-

ferred.

There are several possible directions to extend the work reported in this dissertation.

In the modeling of vehicle networks as MRF, only singleton and pairwised cliques

are considered in this dissertation to describe the interactions between vehicles and envi-

ronments. One interesting direction is to study more complicated forms of cliques, which

might lead to more interesting collective behaviors. Another way to generate appealing

emergent aggregative behaviors is via potential function design, in this dissertation and

[77], we have cooked several examples with potential applications. In practice, it is of

interest to study a set of element collective behaviors and associated artificial potential

functions (APFs), which could be used to construct an APF component library. Based
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on this, one could then study the synthesis of basic collective behaviors. For example,

in this dissertation, a linear combination of basic APF components is proposed for group

task synthesis. As we have previously discussed, the design of weighting coefficients is

a challenging and important issue as it may directly impact the nodes behavior and the

convergence rate of the algorithm. So this is could be a future direction to improve the

algorithm performance.

Although in the theoretical study of convergence properties of the stochastic algo-

rithm, the logarithm rate cooling schedule is used which only leads to a polynomial con-

vergence rate. In practice, however, many fast cooling schedule have been used in general

simulated annealing algorithm with good performance [20]. One could then ”borrow” the

existing cooling schedules to accelerate the convergence rate in the future study. More-

over, it is of interest to estimate the convergence rate. With more accurate convergence

rate estimation, one could theoretically determine the optimal switch parameters in the

hybrid control scheme.

In the hybrid scheme, there are several possible directions for the future study. First

of all, the switching algorithm can be treated as a extreme case of cooling schedule, i.e.,

the temperature follows a non-continuous curve. One could easily extend the switching

pattern by combining several different rate of cooling schedule. One could also try adap-

tively decreasing or increasing cooling schedule to achieve optimal performance. The

second direction is to study the selection of switching parameters. In the dissertation,

we only provide a preliminary study for off-line parameters selection. One could design

a online adaptive scheme to determine best switch parameters based on previous expe-

rience. The last but not the least is to extend the use of memories. There are several
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possible ways along this direction. Firstly, one could share the memory information with

neighbors to accelerate the learning speed. Secondly, collaboratively map building can be

used to enable vehicle networks have more knowledge of environments than ”risk” level

map, and thus may potentially lead to better performance.
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Appendix A

Appendix: Ising Model

In this appendix, we provide a classical example, Ising model ,to illustrate several

basic concepts in Markov Random Field and Gibbs Field.

TheIsing Modelwas introduced by Ising (1925) for understanding qualitatively the

phenomenon of phase transition in ferromagnetic materials. In the Ising’s finite model, the

ferromagnetic materials are modeled as a large 2D magnetic particles array. Each particle

has two phases: pointing upward and downward. The attraction/replusion force between

two (spatial) adjacent particles induces magnetic potential energy. The spatial structure

and the local interactions can then be modeled as a Markov Random Field (MRF), where

the sites is described as a 2D lattices, i.e.,S= Z2
m, and the phase spaceΛ = {+1,−1}.

The neighborhood system is depicted as in figure A.1, where each node has at most 8

neighboring nodes. There are two types of cliques in this model: singleton and pairwise

clique. The Gibbs potential is

Ψ{s}(x) =−H
k

x(s),

Ψ{s,t}(x) =−J
k

x(s)t(s),

where{s, t} is a pairwise clique, withs∈Ns; k is the Boltzmann constant;H is the exter-

nal magnetic field, and J is the internal energy of an element dipole. The potential/energy

137



s

(a) Neighborhoods for site s

s (1) singleton

s (2) Pairwise clique

ss

(3) (4)

(b) Cliques associated with site s

Fig. A.1: Neighborhoods and cliques in Ising model: (a) neighborhoods for sites, (b)

cliques associated with sites

function for the whole lattice is therefore

U(x) =−H
k ∑

s∈S

−J
k ∑
{s,t}

x(s)t(s)

Let the marginal distribution (π) of the magnetic lattices in the Ising model be

π(x) =
1
Z

e−U(x),

which is usually calledGibbs distribution. By the celebrated Hammersley-Clifford the-

orem [71], if the distributionπ for the ising model with respect to the topology(S,N )

satisfy positive condition, there is an unique corresponding Markov random field with

local characteristics as follows:

πs(x) =
e−

1
k (∑t∈Ns x(t)+H)x(s)

e+ 1
k (∑t∈Ns x(t)+H) +e−

1
k (∑t∈Ns x(t)+H)

.

The converse part of the theorem shows the for any MRF with a consistent set of con-

ditional probabilities, there exists an equivalent Gibbs distribution expressed in terms of
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local potentials.

Appendix B

Appendix: Continuous-time finite horizon optimal control

In this section, we present a quick review of using the Pontrjagin Maximum Princi-

ple (PMP) to solve the finite horizon optimal control problem. The goal of the problem is

to find the optimal control inputu∗(t) ∈U , wheret ∈ [t0, t f ], such that

maximizeJ = ψ(q(t f ))+
∫ t f

t0
L(q(t),u(t), t)dt

subject toq̇ = f (q(t),u(t), t) (B.1)

q(t0) = q0

where the first term in objective functionJ is the terminal cost, and the second term is

the running cost. To derive a general solution, one can use the method of calculus of

variations. The first step is to augment the cost by adding the costate vectorλ (t)

J = ψ(q(t f ))+
∫ t f

t0
(L+λ T( f − q̇))dt (B.2)

Along the optimal trajectory the variation ofJ should be vanished, which follows the fact

thatJ is continuous inq, u, andt. The variationδJ can be expressed as

J = ψqδq(t f )+
∫ t f

t0
(Lqδq+Luδu +λ T fqδq+λ T fuδu−λ T q̇))dt (B.3)

The last term can be integrated by parts, namely

∫ t f

t0
−λ T q̇dt =−λ T(t f )δq(t f )+λ T(t0)δq(t0)+

∫ t f

t0
λ̇ Tδqdt.
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Then,

δJ = ψq(qt f )δq(t f )−λ T(t f )δq(t f )+λ T(t0)δq(t0)+
∫ t f

t0
((Lu+λ T fu)δu+(Lq+λ T fq+ λ̇ T)δq))dt

(B.4)

To make sure the variation ofJ vanishes, the following condition should be satisfied.

Lu +λ T fu = 0 (B.5)

Lq +λ T fq + λ̇ T = 0 (B.6)

ψq(qt f )−λ T(t f ) = 0 (B.7)

In general, to solve the optimal control analytically from above conditions is difficult.

One can used gradient methods to numerically compute the optimal control input. When

the system is linear, and the objective function has quadratic form, the three conditions are

boiled down to riccati equation. Efficient softwares can be found to solve the equation.
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