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Securing group communications in resource constrained, infrastructure-less 

environments such as Mobile Ad Hoc Networks (MANETs) is a very challenging 

research direction in the area of wireless networking and security. This is true as 

MANETs are emerging as the desired environment for an increasing number of 

civilian, commercial and military applications, addressing an increasing number of 

users. Most of these applications are sensitive and require specific security 

guarantees. The inherent limitations of MANETs impose major difficulties in 

establishing a suitable secure group communications framework. Key Management 

(KM) is the operation that enables and supports the secure exchange of data and 

ensures the capability of members’ secure cooperation as a group. KM protocols 

provide a common symmetric group key to all group members, and ensure that only 

legitimate members have access to a valid group key at any instance.  

   Our work focuses on the design of efficient, robust, novel or improved group KM 

schemes, capable of distributed operation where key infrastructure components are 



 

absent or inaccessible, that accomplish the following: (a) better performance than this 

of existing schemes for similar environments, (b) successfully handle network 

dynamics and failures, in networks with large number of nodes. Our protocols address 

Flat or Hierarchical MANETs separately. Our solution for Flat MANETs involves the 

design of two new Octopus protocols, and the adaptation of the original to MANETs. 

We introduced algorithms for handling membership changes, disruptions and failures 

with low overhead for initial key establishment or steady state for all three protocols. 

In an effort to reduce their suboptimal performance when executed without 

topological considerations, underlying routing is integrated into the design by the 

definition of topology oriented communication schedules via lightweight heuristics. 

In addition, we integrated a lightweight leader election algorithm with the proposed 

protocols, used Elliptic Curve Cryptography to reduce certain costs further, and 

investigated the effects of a number of mobility models in the performance of our 

schemes. For Hierarchical MANETs, we designed a 2-level Hybrid scheme that 

supports various combinations of protocols to improve metrics of interest. This 

scheme exploits battlefield diversity, and links key distribution to network topology 

and nodes’ mobility.  
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Chapter 1: Introduction 

 

1.1. Introduction 

  Securing group communications in resource constrained, infrastructure-less environments 

such as Mobile Ad Hoc Networks (MANETs) has become one of the most challenging 

research directions in the areas of wireless network security. This is especially true as 

MANETs are emerging as the desired environment for an increasing number of civilian, 

commercial and military applications, such as audio and video conferencing, visual 

broadcasts, military command and control, emergency/disaster situations, interactive gaming, 

etc., addressing also an increasing number of users. Some of these group applications are 

quite sensitive regarding the nature (and purpose) of the data exchanged among participants, 

and thus require specific security guarantees. Hence, security is becoming an indispensable 

requirement of our modern life for all these applications. The inherent limitations of such 

dynamic and resource-constraint networks impose major difficulties in establishing a suitable 

secure group communications framework. Securing such applications may be multipurpose. 

In this work, we focus on providing security from the perspective of enabling and protecting 

the exchange of data among peers, so that the appropriate data reaches the intended recipients 

and only these recipients are able to “read” it. The security challenge for multicast is 

providing an effective method for controlling access to the group and its information that is as 

efficient as the underlying multicast. A simple and efficient way to protect the exchanged 

data is to encrypt and decrypt it with a common secret group key, shared by legitimate group 

members only. A secret key shared by all group members is suitable for multicast 

communications because it achieves efficient bandwidth usage (same data sent to all 
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receivers), lower computation cost (data is encrypted only once instead of multiple times), 

and better utilization of device and network resources as a consequence. 

  The Key Management (KM) operation enables and supports the secure exchange of data and 

ensures the capability of members’ secure cooperation as a group. More formally, the KM is 

the set of functions, protocols, and procedures for the management of cryptographic keys, 

security associations, policies, keying material, and other parameters pertaining to entities 

communicating within a group. The role of KM is to: (a) enforce access control on the group 

key and on the group communication, and (b) support the establishment and maintenance of 

key relationships between valid parties according to a security policy being enforced on the 

group. The main goal of KM protocols is to provide a common symmetric key or group key 

to all members of a group, and ensure that only legitimate members of a secure group have 

access to a valid group key at any time instance during the life of a session.  

 The KM encompasses three equally important services: (a) Key Generation (KG): it defines 

the entities and messages involved in the group key construction (i.e. logical algorithm), (b) 

Key Distribution (KD): it handles the distribution of private pieces of information or the 

group key to group members; Key Agreement (KA) is a subset of the broad KD function: it 

imposes that all group members contribute equally to the group key, interacting among 

themselves, following the given KG algorithm. Finally, (c) Entity Authentication (EA): it 

validates that it is indeed the owning entity that is using or deploying the owned identity in an 

interaction. The Group Authentication provides a weak form of message integrity in that the 

receivers can verify whether data has been modified by nonmembers in transit. 

   The KM schemes are built on top of the pre-existing multicast infrastructure, and it is 

obvious that the performance and behavior of the KM functions imposes an upper limit on the 

efficiency and scalability of the whole multicast communication system. Each function has its 

own merit towards the total cost and complexity of the multicast infrastructure. A situation 

such that the extra services that promote the security of group communications become also 
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their bottleneck is highly undesirable. It is obvious that the design of suitable algorithms for 

each of the three KM services is of paramount importance, and even more so for resource-

constrained, dynamic, and infrastructure-less environments, such as MANETs. All three 

functions are equally important for the desired operation of secure, integrated multicast 

communications system, and each one constitutes a broad and challenging research direction. 

In this thesis, we only focus on the study of efficient KG and KD or KA for the environment 

of interest. We assume that group members are already authenticated via some underlying 

mechanisms that appear as a black box to the user. Indeed, EA is a huge research problem 

that is usually studied or can be studied in isolation from the other two. On the other hand, 

KG and KD or KA, are studied together, as the KG logical algorithm usually determines how 

KD or KA is going to be executed. For simplicity, it is often the case that the design of KM 

protocols is mainly associated with these two functions. In this thesis we refer to KM 

protocols, implying the combined consideration of KG and KD and/or KA only.   

   The logical design of efficient KM protocols has been the main focus of the related research 

to-date. Such a consideration however, gives only a partial account on the feasibility and 

actual performance of a protocol in a real multi-hop network. This is because protocols have 

been evaluated only in terms of the logical KG algorithm in isolation from the underlying 

network functions that interact with the logical scheme and support its correct execution (i.e. 

routing). Logical networks are just abstractions of the physical networks, so they are free 

from various feasibility issues and extra sources of overhead associated with physical 

networks. Physical networks naturally bring about mobility, connectivity, routing, power, and 

other dynamic issues, which directly or indirectly affect the performance and behavior of KM 

protocols. Along these lines, most of the popular KD or KA schemes that exist currently in 

the bibliography have been developed for wire-line networks (e.g. internet). Wire-line 

networks in the general case provide stable infrastructure and infinite power to devices – 

assets that make the development of any infrastructure easier. In contrast to wire-line 
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networks, deploying security mechanisms in MANETs is difficult due to inherent 

characteristics of these networks. These characteristics are the major challenge for the design 

of suitable KM schemes and have even more severe impact on the operation of KA. Indeed, 

the same protocols that have been designed for wire-line or logical networks in general, might 

loose even their basic efficiency characteristics when applied to MANETs, or totally fail even 

under a limited number of parties. Another issue to consider is that mobility plays an 

important role in KM, as the mobility patterns of nodes cause many of the changes in group 

configurations, and triggers the operation of changing the group keys (re-keying). It is worth 

studying how nodes’ mobility models, speed, direction, transmission range, and other 

mobility related factors, can affect the performance of a KM scheme. 

   We are dealing with dynamic, infrastructure-less networks of limited bandwidth, unreliable 

channels where topology is changing fast. Network nodes have limited capacity, 

computational or transmission power. Connections are temporary (mobility changes, battery 

drainage, poor physical protection) and unreliable. These constraints turn most of the existing 

protocols inefficient in MANETs. Wire-line networks are capable of supporting an expensive 

KG protocol in terms of communication and computation overhead without affecting the 

power of nodes. In MANETs, the transmission and computational power are valuable 

resources for most wireless mobile nodes due to their power constraints or capacity 

limitations (e.g. laptops PDAs, cell-phones). Hence, it is crucial that the KM protocols 

addressing MANETs are as lightweight as possible. Similarly, efficient centralized schemes 

based on a single group leader are not feasible on large wire-less networks, as the energy 

resources of this leader are depleted all too fast. 

   Along with the continuous quest for the design of more efficient schemes than the existing 

ones, the need for the new KD or KA schemes to handle successfully and tolerate network 

dynamics and failures with low impact in a network with large number of nodes is now 

equally important. For example, upon failures and disruptions, it is often the case that a KA 
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protocol must restart the group key establishment process. Whenever this event occurs (may 

be too often), the underlying routing is invoked once again, a significant amount of relays 

become involved in the exchange of large KM messages, and considerable delay burdens the 

network. The overall performance of the protocols degrades even more because of the 

indirect impact of excessive routing on additional network layers (i.e. QoS deteriorates due to 

more collisions at the MAC layer, the bandwidth usage and the consumption of network 

resources increase undesirably). There exist a number of KM proposals that address 

MANETs as well. However, most of them make simplistic assumptions about the capabilities 

of network nodes, the nature of their connectivity, etc. Some present security vulnerabilities, 

others do not scale over a restricted network, etc. To our knowledge, there is no single work 

that addresses effectively all the issues KM protocols come against when implemented on a 

flat multi-hop, dynamic, wire-less, infrastructure-less, and resource constrained network.  

  From the above, two requirements emerge: (1) the design of efficient, scalable and robust 

KM protocols that address a general multi-hop MANET, (2) a fair and realistic performance 

evaluation of KM protocols considering the underlying physical network, and the most 

important associated network functions (i.e. routing). Considering these, our objectives in 

this dissertation are the following: to design novel or extend existing KM schemes to achieve: 

- Efficiency: they have better performance than existing (in wire-line or wire-less networks) 

w.r.t. the most significant metrics of interest (i.e. bandwidth, computation, latency, storage). 

- Scalability and Robustness: they handle successfully or tolerate the network dynamics 

(mobility, membership changes) and failures in a large network of O(100) members/nodes. 

- Security: the exchange of data is enabled and protected. 
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1.2. Contributions 

In this dissertation, we contribute towards the design of new KM protocols or the extension 

of existing ones so that the above attributes of efficiency, scalability, and robustness are 

addressed and improved. 

   In Chapter 2 we conducted a comprehensive investigation of all major categories of KM 

schemes (i.e. contributory, non-contributory, hybrid, or centralized, distributed, hierarchical). 

We studied the behavior and performance of protocols from each category in the resource 

constrained, dynamic and infrastructure-less MANETs. Our objectives were to determine 

which of these protocols make the best candidates for such networks, and extract a number of 

desirable features and performance attributes that should be taken into account when 

designing feasible KG algorithms. This was our motivation as far as the conceptual design of 

schemes based on 2d-Octopus, introduced by Becker et al. Our basic contribution at this point 

includes the adaptation of the original Octopus (O) to MANETs, and the modification of (O) 

for the design of two novel schemes (GDH.2-based modified Octopus MO and TGDH-based 

modified Octopus with Tree MOT) for MANETs. Our evaluation demonstrated the 

superiority of MOT: it outperforms (O), MO and other KA protocols, simultaneously 

maintaining features that make it a strong candidate for a dynamic environment with many 

limitations. At this point, the analysis and comparison of the schemes is done with respect to 

logical networks, only to measure the efficiency of their KG algorithms, as a first 

performance attribute. In our quest to improve the extended 2d-Octopus schemes, we 

identified and provided solutions for a number of issues that have their own, significant merit 

of interest, related to a number of KA schemes. As a fist step, we found that the evaluation of 

some protocols was incomplete particularly regarding their performance at steady state (re-

keyings due to membership changes). We completed such protocols by contributing either to 

the algorithmic level to define their behavior at steady state, or to the analytical level, or both.  
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 However, such an evaluation of protocols, based on the “abstract logical design” gives only 

partial account to their actual performance and behavior. In Chapter 3, our natural next step 

was the consideration of the underlying routing in the design and evaluation of KA or KD 

schemes. We re-evaluated the most significant KA schemes that emerged from our previous 

study (i.e. GDH.1, GDH.2, ING, BD, TGDH, and Hypercube) subject to the underlying 

routing without any topology considerations. The resulting degradation in the performance of 

all protocols triggered our next step. We introduced a number of new algorithms and 

techniques (lightweight heuristics for the manipulation of structures based on spanning trees), 

to efficiently merge the logical design of KA protocols with the underlying routing and 

topology of the network as well. The protocols were executed w.r.t. a newly defined 

topologically aware communications schedule, and this new feature alone resulted in the 

substantial improvement of one or more metrics of interest. Our basic objective was to 

improve the scheme used within our Octopus-based extensions, namely Hypercube, GDH.2, 

and TGDH, but also determine from the results of a comparative performance evaluation if 

there are more potential candidates to be incorporated in the Octopus schemes.  

  In Chapter 4, we focused on issues of robustness and fault-tolerance for all schemes studied, 

and in particular for the new topologically aware versions of the protocols that are even more 

sensitive to the dynamic changes. Dynamic changes (i.e. mobility, resources depletion, etc.) 

may cause network partition or merging, member or link failures. These changes are reflected 

on KM protocols as membership updates in the best case, and are handled by re-keyings if the 

protocols provide such algorithms. If such changes occur during the key establishment phase, 

it turns out that in most cases the protocol must start over. This is even more so with KA 

protocols, where members interact among themselves to produce the group key: dynamic 

changes have serious impact on the KG algorithm and on the connectivity of members and 

may cause the protocols to stall. So, in this section we investigate if we can do better: (a) for 

the Octopus schemes, in essence for the KA protocols they include, and (b) for all the KA 
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schemes studied, individually. We methodically studied the impact of a number of realistic 

scenarios of disruptions on the discussed schemes in a MANET, during key establishment or 

at steady state. For every protocol and each case, we introduced algorithms and techniques to 

go around the failures caused by network dynamics or remedy those with very low extra 

overhead. So, we have “enriched” KA protocols to be more robust to dynamic changes. In 

certain cases, we were able to extend certain protocols and modify their KG algorithm or 

communication regulation (Hypercube, TGDH), to make them stealthier to failures and 

dynamic changes. Hence, our contribution towards efficient, scalable, and robust KM 

protocols for MANETs is built step by step through Chapters 2, 3, 4.  

   In Chapter 5, we shifted the focus of our study from totally flat to hierarchical MANETs 

with a specific configuration that resembles typical scenarios encountered in civilian cases or 

most often in the battlefield. We designed a two-level hybrid KM scheme (2HH) that models 

these environmental variations and exploits the diversity of the battlefield. It uses a 

combination of protocols in the two levels to achieve improvement in one or more of the 

metrics of interest. We analytically explored how combinations of a wide range of protocols 

affect the metrics of interest for 2HH, starting from two diverse centralized protocols: GKMP 

and LKH, and expanding to many others. After a thorough analysis, we were able to provide 

theory and design a tool that automatically determines the most beneficial protocol 

combinations for 2HH, w.r.t. the metrics we want to improve, given the specific values or 

ranges of the network parameters. In addition, we looked into the effects of mobility at steady 

state of potentially any KM protocol through 2HH. For that, we simulated the impact of three 

mobility models (individual or group) on the connectivity among members on an arbitrary 

hierarchical protocol. We measured the frequency of member evictions from their original 

subgroup, given the mobility model and parameters. Then, conducting the required analysis, 

we worked to combine our results with the probability of evictions in 2HH, and provide this 

new metric as input to the 2HH theoretical and simulation tool. Our aim was to be able to 
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determine the exact variations in the re-keying (mainly) overhead (in bits or packets) 

resulting from varying basic mobility parameters.  

   Last but not least, still exploring ways to improve the efficiency of our schemes, in Chapter 

6 we investigate the efficiency of the implementation of KM protocols, and in particular 

Octopus-based schemes, under Elliptic Curve Cryptography (ECC). We substituted EC in 

protocols that were originally based on RSA or DH public key systems. Our aim was to gain 

insight on how all the metrics of interest are affected, and examine if further improvement in 

certain metrics can be achieved by this substitution. In particular, we substituted all DH-based 

with ECDH operations in the three Octopus-based schemes, and the RSA operations with 

EC-El Gamal in the centralized OFT. We conducted a comparative analytical evaluation of 

the EC-equivalents of the schemes vs. the original. As a result, we were able to determine 

which protocols and for which KM operations and metrics “gained” from this substitution. 

Indeed, the performance of all Octopus schemes was significantly improved in all aspects.  

Prototyping: We implemented (O) and MOT on a test-bed. Our implementation includes 

both the basic functionality of these protocols for the establishment of a multicast group key 

(including the group formation) and the response of the protocols in dynamic membership 

changes in the multicast group. The presentation of the protocols has been supported from a 

GUI and a user level multicast application which encrypts, transmits, receives and decrypts 

multicast data (i.e. pictures). The application encrypts and decrypts data by utilizing the 

established multicast group keys from the application of each one of the implemented 

protocols. The subgroups are dynamically generated, and the leaders are sensing the subgroup 

changes and re-keying is triggered. We demonstrated: (a) how participants of the secure 

group establish a common session key, (b) the dynamic addition and deletion of a member to 

the secure group, and (c) nodes that no longer belong to the secure group cannot receive the 

transmitted encrypted data. The protocols were implemented on Linux (kernel-2.4.18).  
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Chapter 2: Efficient Scalable Key Agreement Protocols for 

Secure Multicast Communications in MANETs 

 

2.1. Introduction 

  In this chapter we focus on the development and performance evaluation of efficient, robust 

and scalable Key Management (KM) protocols for multi-hop wire-less ad hoc networks. As a 

first step, we perform a comprehensive study of the characteristic and performance of a 

number of representative Key Generation (KG) protocols that exist in the literature. Towards 

this end, we classify KM protocols in major categories (i.e. contributory, non-contributory, 

hybrid, or centralized, distributed, hierarchical, etc.) Our objectives are: (a) to determine 

which of these protocols make the best candidates to apply in dynamic, infrastructure-less, 

resource-constraint networks, and (b) extract a number of desirable features and performance 

attributes that should be taken into account when designing KG algorithms feasible for the 

same environments. Towards this end, we identified, studied and provided solutions for a 

number of research issues that have their own, significant merit of interest. More specifically, 

we performed an analytical evaluation of some among the most popular contributory or Key 

Agreement (KA) protocols and a few centralized ones for the KM operations of initial key 

establishment (initialization) and re-keyings (steady state), with respect to the following 

metrics of interest: communication, computational, storage cost, number of rounds. We found 

that the evaluation of some protocols was incomplete particularly in terms of their 

performance at steady state (re-keyings due to membership changes). We completed the 

evaluation of such protocols by contributing either to the algorithmic level (KG) to define 
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their behavior at steady state, or to their performance analysis level, or both, whenever 

required. As an auxiliary step, we analytically estimated the bit-complexities of a number of 

cryptographic functions, essential for our analysis and integrated the results in the analytical 

cost functions of the discussed protocols. 

  As a next step, we present our main contribution towards secure, lightweight, scalable and 

efficient group communications for MANETs, which is based on 2d–Octopus hybrid KA 

scheme, introduced by Becker et al. in [1]. Our contribution includes the adaptation of the 

original Octopus (O) to MANETs, and the modification of the original Octopus (O) for the 

design of two novel schemes (GDH.2-based modified Octopus MO and TGDH-based 

modified Octopus with Tree MOT) for MANETs as well.  

  The introduction of (O) [1] is limited to an overview of the protocol operation for the initial 

group key establishment only. At this point, the analysis is conducted by considering only the 

efficiency of the KG function, isolated from the underlying network functions that are 

directly or indirectly involved. In other words, the analysis and comparison of the schemes is 

done only to measure the efficiency of the KG algorithm, as a first performance attribute. A 

limited analysis was presented only for the initial state. No algorithms that handle 

membership updates or failures at steady state are addressed in [1]. In this chapter, we 

complete the original work, by introducing efficient join and leave procedures, and we 

introduce the two extended schemes: MO and MOT. Furthermore, we provide analytical 

formulae for all KM operations with respect to all metrics of interest and we conduct a 

comparative performance evaluation of all Octopus schemes, including also a representative 

and very efficient centralized scheme - OFT. Although OFT has been designed for a wire-line 

network and is infeasible for the environment of interest, it is included in this comparison in 

order to gain insight on the extra overhead required to render KG protocols robust and 

scalable in MANETs. Through the overview, the analysis and the evaluation, the feasibility 

of Octopus schemes in MANETs will be shown. Moreover, the superiority of MOT will be 
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demonstrated: it outperforms (O), MO and other KA or even KD protocols. For example, 

MOT reduces the incurred communication overhead of (O) in half, “approaching” 

communication-wise the very efficient OFT, simultaneously maintaining features that make it 

a strong candidate for a dynamic environment with many limitations. Our main objectives in 

this chapter are that: (a) the extra communication, computation, storage costs and latency 

incurred to the network for the key establishment (initial deployment) and maintenance (re-

keying) of our security schemes is as low as possible, and (b) the scheme maintains an 

acceptable performance under a highly dynamic topology and an increasing number of users.  

  The Octopus protocols acquire some very alluring features which have motivated our 

interest to explore them: they introduce hierarchy through the partition of a large group to 2d 

subgroups of smaller size, each having their own subgroup leader (as opposed to a single 

group leader handling a large group). This way, they can tolerate network dynamics and be 

more scalable in the first place. Disruptions can be handled locally at first within the 

subgroup, and then reflected to the whole group via the execution of Hypercube among 

subgroup leaders. Hypercube is an efficient KA protocol with the property that it minimizes 

the amount of rounds (latency) required for the group key establishment. By further exploring 

the Octopus and Hypercube schemes, we found that this combination can lend itself to low 

cost re-keying algorithms, by modifying the execution of Hypercube appropriately. This has 

been the main reason for maintaining the Hypercube core intact in all Octopus versions we 

introduce. In addition, this scheme allows great flexibility as within each subgroup, a variety 

of novel or existing KA or KD can be potentially applied, depending on the performance 

metrics we wish to optimize, on the network specifications defined locally (i.e. density, etc). 

Later in this chapter, we are going to justify the selection of the two particular protocols: 

GDH.2 and TGDH for our extended Octopus-schemes. For example, GDH.2 may be 

substituted with GDH.1 as well, without significant change in the flow of the algorithm. 

GDH.1 may be preferable if the network does not support broadcasting. However, we would 
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still prefer to use GDH.2, mainly because only GDH.2 (and GDH.3) lends itself to more 

efficient construction algorithms that handle membership changes (addition/deletion).  

    In the course of this and the following two chapters, we will gradually: (a) show the 

feasibility of Octopus-based protocols and point out its more beneficial assets over other 

schemes, and (b) address its weaknesses and introduce new schemes and algorithms to 

eliminate them or go around them with low impact and cost.  

 
2.2 Previous Work 

  Securing multicast communications in MANETs has become one of the most challenging 

research directions in the areas of wireless networking and security. Some group applications 

are quite sensitive regarding the nature (and purpose) of the data exchanged among parties 

and require specific security guarantees. Securing such application may be multipurpose. The 

most significant requirement is this of enabling and protecting the exchange of data among 

peers. The security challenge for multicast is providing an effective method for controlling 

access to the group and its information that is as efficient as the underlying multicast. A 

simple and efficient way to protect the exchanged data is to encrypt and decrypt it with a 

common group key, shared by legitimate group members only. The purpose of KM is to 

enable and support the secure exchange of data in insecure environments, and ensure the 

capability of members’ secure cooperation as a group. The KM operation encompasses the 

three services reported in the introduction: KG, KD or KA, and EA.  

    For the scope of our work, we focus on ensuring that the proper data reaches the intended 

recipients and only these recipients are able to “read” it. The design of efficient, scalable, and 

robust algorithms and mechanisms for each of the above services, for resource-constrained, 

infrastructure-less environments, such as MANETs, is of paramount importance, since the 

performance of the corresponding KM functions imposes an upper limit on the efficiency and 

scalability of the whole secure group communication system. In this work we address only 
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the first two functions of KM, namely KG and KD or KA, as previously discussed. In the rest 

of this work, for simplicity, when we refer to KM, we will be implying only the latter 

functions. On the other hand, it is common that the topic of EA is addressed separately. 

Security and Performance attributes of KM: KM protocols in addition to efficiently 

accomplishing security for the secure group start-up, they must efficiently accomplish group 

re-key and maintenance at steady state. At steady state, a new group key is required in the 

following cases: (a) to handle membership updates (addition of new members or eviction of 

existing ones), and (b) periodically, to refresh keys that reach the end of their cryptographic 

lifetime. In (a), the re-key operation is needed to ensure that messages sent to the group 

cannot be accessed by a former member whose membership has been revoked (Forward Re-

key). It is often required that a member who joins be denied access to messages that were 

sent to the group prior to its membership (Backward Re-key). At any case, the group key 

should be generated and distributed in such a way that it becomes computationally infeasible 

for an adversary to recover it (Group Key Secrecy) or use it to recover subsequent or 

preceding group keys (Key Independence). Hence, the main security requirement of 

member addition is the secrecy of the preceding group keys with respect to both outsiders 

and subsequent group members, while this of member deletion is the secrecy of the 

subsequent group keys with respect to both outsiders and former group members: 

Forward (Backward) Secrecy: A passive adversary who knows a subset of group keys 

cannot discover subsequent (preceding) group keys.  

Adversarial Model: In this work we deal with passive adversaries, who are only allowed to 

eavesdrop on the entire communication along the network. We aim to show that our KG 

schemes are secure in the following sense: two or more parties are allowed to exchange 

information over an insecure channel and agree on a common group key, while it is 

computationally infeasible for a node that is not part of the group to recover the group key 

even after collecting all messages exchanged in the clear.  



 15

  There exist quite a few KM proposals for secure group communications in the literature. 

Most of them address wire-line networks and cannot operate as such in MANETs. Based on 

the diverse nature of KG, KD or KA algorithms, we classify them in two major categories: 

the contributory and the centralized schemes. 

Contributory: all members contribute equally (with partial shares) to the construction of the 

group key by interacting among themselves as follows: each node receives contributions from 

other nodes, and combines them with its own to compute the same group key. They are not 

robust to node failures (GDH.1.2.3, etc.) 

Non-contributory: a group leader alone generates and distributes the group key to members, 

which do not contribute to group KG. These are centralized protocols, with simple KG 

algorithm. They are robust to member failures, but the leader is a single point of failure 

(GKMP, CBT, LKH, OFT, ELK, etc.) 

   In distributed architectures the group key can be either generated in a contributory fashion 

or generated by one member. They simply do not have group controllers. Next, we provide a 

brief overview of existing work on KM, following these two categories.  

 
Contributory Schemes. 

Becker et al. [1], derived lower bounds for contributory KG systems for the gossip problem 

and proved them realistic for Diffie-Hellman (DH) based protocols. The DH protocol is used 

for two parties to agree on a common key. Becker et al. used the basic DH distribution 

extended to groups from the work of Steiner et al.[3]. Steiner et al. extended DH [4] to three 

protocols that support group operations: GDH.1, GDH.2, GDH.3. GDH.2 is the most 

efficient representative: it achieves minimization of the total number of message exchanges, 

and provides efficient algorithms for re-keying. Tree Group Diffie Hellman (TGDH) by 

Perrig [6] and Kim et al. [7], is a new hybrid, efficient protocol that blends binary key trees 

(where members are represented by the leaves in these trees) with DH key exchanges 
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(DHKEs). Becker in [1], introduced the Hypercube protocol as one requiring the minimum 

number of rounds. It is based on successive pair-wise DHKEs between different pairs of 

nodes in each round. The direction of the exchanges follows the dimension of a logical 

Hypercube. In [2], Asokan et al. added to Hypercube an algorithm to assist to its operation if 

failures occur during key establishment. This was an important step, as most contributory 

protocols are not designed to handle failures at all. Becker et al.[1] introduced the Octopus 

protocol that yields minimum number of total messages, and then presented the 2d-Octopus 

that combined Octopus with Hypercube to a very efficient protocol that worked for arbitrary 

number of nodes. Burmester et al. [9] proposed BD, a very efficient protocol that executes in 

three broadcast logical rounds. The drawback is the requirement of 2n broadcast messages. 

Ingemarsson et al. [8] introduced another DH-based scheme - ING - that requires all parties 

to be connected into a logical ring. We will analyze all these protocols in detail later in our 

work. Boyd [24] introduced another protocol for conference KA (CKA). The group key is 

generated with a function that combines the hashed contributions of all but one member, with 

the contribution of that one member. However, the non-hashed contribution must be 

encrypted with the public key of each of the rest of members, (and later decrypted from each 

member) and this makes CKA impractical. A distributed approach based on the Logical Key 

Hierarchy D-LKH is suggested by Rodeh et al. [25], in which sub-trees already sharing 

common keys with their members, agree on a mutual group key. The leader of one sub-tree 

communicates securely to the leader of the other sub-tree (they share a common key) its 

selection of a new key. Then, each sub-tree sends that key to its members, encrypted with the 

secret key known only to that sub-tree. The algorithm takes log2n rounds to complete. 

Another approach D-OFT using distributed LKH was proposed by Dondeti et al. [26]. This 

protocol uses OFT [10] without centralized entity. Every member is responsible for 

generating its own key and sending the blinded version of this key to its sibling. In one of the 

breakthrough advancement in KA protocols based on Elliptic Curves (ECs), Joux proposed a 
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single-round three party KA protocol that uses bilinear pairings. Barua et al. [27] presented a 

ternary KA protocol by extending the basic Joux’s protocol to multi-party setting with a proof 

of security against a passive adversary. From another perspective, a number of new or 

extended KA protocols have sprung from the design of secure and efficient authenticated 

group KA that has received much attention in current research. For example, Katz et al. [28] 

proposed a scalable, constant round (three), authenticated group KA protocol with forward 

secrecy. This protocol is a slight variant of BD, accompanied with a detailed proof of 

security. Li et al. [29] proposed a KA protocol based on secret sharing techniques. They use 

the well-known polynomial secret sharing to reconstruct a session key. Their work leads to a 

constant-round protocol which is also very costly.  

 
Non-contributory Schemes - Centralized Architectures. 

The proposed solutions are based on a simple key distribution center. The simplest and most 

fundamental such scheme is the Group Key Management Protocol (GKMP) [12], in which 

a group leader shares a secret key with each member and uses it to communicate the secret 

group key to the associated member. When a new member wants to join the group, the leader 

generates a new group key and encrypts it with the current group key. As all members know 

the group key, there is no solution for keeping the forward secrecy when a member leaves the 

group except to recreate an entirely new group without that member. Another proposal is the 

Logical Tree Hierarchy protocol (LKH) [11], where a key distribution center creates a tree 

of keys and distributes a hierarchy of key encryption keys (KEKs) for each member, 

associated with a leaf in the tree. Each group member is secretly given one of the keys at the 

bottom of the hierarchy and can decrypt the keys along its path from the leaf to the root. The 

key held by the root is the group key. A joining member is associated with a (new) leaf in the 

tree. All KEKs in the nodes from the new leaf’s parent in the path to the root should be 

changed. A re-key message is generated containing each of the new KEKs encrypted with the 
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KEKs of the node’s offspring. The size of the message produced is at most 2(log2n). 

Removing a member follows a similar process. Waldvogel et al. [30] proposed LKH+, which 

is a variation of LKH. Instead of generating fresh keys and sending them to members during a 

re-key, all keys affected by membership change are passed through a one-way function. 

Every member that already knew the old key can calculate the new one. An improvement of 

LKH is the One Way Function Tree (OFT), that minimizes the number of bits broadcast to 

members after a membership change, proposed by McGrew et al. [10]. This scheme reduces 

the size of the re-keying message from 2(log2n) to only (log2n). Here, a node’s KEK is 

generated, not distributed. The KEKs held by a node’s children are blinded with a one-way 

function and then mixed together with a mixing function. The result is the KEK held by that 

node. Each node receives its own key, and the blinded keys corresponding to each node in its 

sibling set. Canetti et al. [31] proposed a slightly different approach, known as One-way 

Function Chain Tree that achieves the same communication overhead. This scheme uses a 

pseudo-random generator instead of a one-way function to generate the new KEKs and is 

applied only on users’ removal. The pseudorandom generator doubles the size of its input. 

The process for the re-key is similar to OFT. Rafaeli et al. [32] presented a variation called 

efficient hierarchical binary tree (EHBT). Perrig et al. [13] proposed the Efficient Large-

group Key (ELK), which is similar to OFT in the sense that a parent node key is generated 

from its children keys. ELK uses pseudo-random functions to build and manipulate the keys 

in the tree and no multicast messages are sent during a join operation. When members are 

deleted, new keys have to be generated for those nodes in the path from the removed node to 

the root. ELK also introduces the idea of hints. A hint is smaller than a key update message, 

and can be used to recover possible lost re-key message updates. It is provided to improve the 

reliability of the re-key operation and it is conveyed in data messages.  

     
Decentralized Architectures.  
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   In the decentralized approach, a large group is split into smaller subgroups. Different 

controllers are used to manage each subgroup minimizing the problem of concentrating the 

work on a single entity. In this approach, more entities are allowed to fail before the whole 

group is affected. Among attributes that are important in order to evaluate the efficiency of 

these frameworks are: independence of keys, locality of the re-key operation, backward and 

forward secrecy, the existence of decentralized controllers, keys vs. data. 

 RFC1949 proposes the use of trees built by the Core Based Tree (CBT) multicast routing 

protocol to deliver keys to a multicast group. This scheme does not provide solution for 

forward secrecy other than to recreate an entirely new group without the leaving members. 

Mitra, in [34], proposed a Iolus, a framework with a hierarchy of agents: a Group Security 

Agent (GSA) manages each subgroup. The GSAs are grouped in a top-level group that is 

managed by a Group Security Controller (GSC). Iolus uses independent keys for each 

subgroup and the absence of a general group key means that subgroup membership changes 

are only treated locally. In addition, the system is fault-tolerant because if a GSA fails, only 

its subgroup is affected. Although Iolus is scalable, it has the drawback of affecting the data 

path. There is the need for translating the data that goes from one subgroup to another. Since 

the GSA has to manage the group and in addition perform the translations needed, it may 

become a bottleneck. Dondeti et al. proposed a dual-encryption protocol (DEP) to 

overcome the problem of trusting third parties [35]. They suggest a hierarchical sub-grouping 

of the members where a subgroup manager (SGM) controls each subgroup, by sharing three 

kinds of KEKs. The group key is encrypted with more than one of these KEKs each time, as 

in the “onion approach”. This protocol is effective but costly and also compromises forward 

secrecy. Setia et al. [36] proposed Kronos, an approach driven by periodic re-keys rather than 

membership changes. Each GSA independently generates the same group key and transmits it 

to its members at the end of a predetermined period. Hence, the GSAs must have their clocks 

synchronized and agree on a re-key period. Although Kronos does not use a GSC and the 
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GSAs can generate the new keys independently, it compromises the group security because 

new key is based on the previous one. DeCleene et al. [37] present an intra-region group KM 

protocol (IGKMP). IGKMP is divided in administratively scoped areas. There is a Domain 

Key Distributor (DKD) and many Area Key Distributors (AKDs), responsible for one area 

each. The group key is generated by the DKD and distributed to members through the AKDs. 

The DKD keeps track of all AKDs, and each AKD keeps track of the members in its area. 

The protocol presents the undesirable feature of allowing the whole group to be disrupted if 

the DKD is compromised, and if an AKD is unavailable no members in that area are able to 

access the group communication. Rafaeli et al. proposed Hydra [33], which is a 

decentralized scheme without a central subgroup controller. If one or more Hydra Servers 

(HSs) become unavailable, the rest won’t be affected. In order to have the group key 

distributed to all HSs a synchronized group KD protocol (SGKDP) is employed, that ensures 

that only a single valid HS generates the new group key at every time.  

 
Recent proposals for wire-less ad-hoc networks. 

  There are numerous recent proposals for wireless ad-hoc networks. Even these schemes, do 

not seem to scale well or handle successfully the dynamics of the network. Furthermore, 

some of these approaches rely on public key cryptography, which is very expensive for 

resource constrained nodes, or on threshold cryptography [16, 17, 18, 19], which results in 

high communication overhead. Protocols that utilize threshold cryptography cannot 

efficiently accommodate an increasing number of members, and have potential security 

vulnerabilities, mainly due to the mobility of nodes. A very different approach this of 

probabilistic key pre-distribution, by Eschenauer  et al. [20],  or Perrig et al.[21], which is a 

very lightweight method, designed for sensor networks, but presents certain security 

vulnerabilities, and requires essentially some basic infrastructure to handle mobility and 

membership changes (mainly revocations). Amir et al. [14, 15], focus on robust contributory 
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KA, and extend GDH protocols to be made fault-tolerant to asynchronous network events. 

However, their scheme is designed for the Internet, and also requires an underlying reliable 

group communication service and ordering of messages, so that preservation of virtual 

semantics is guaranteed. Lazos et al. [22] address the problem of minimizing the 

communication overhead (in terms of energy expenditure) for secure group communications 

in energy-constrained wireless ad hoc networks. A cross-layer algorithm is used to build an 

“energy-optimal” routing multicast tree that will be used by the source, on top of which a KD 

tree is constructed. Their clustering algorithms cannot be implemented without basic 

infrastructure. The network topology is static, and it is shown that the optimal solution of 

their formulation for KD over an optimal tree does not scale with the group size.  

    It can be seen that there is no unique solution that can achieve all performance 

requirements. While centralized KM schemes are easy to implement, they tend to impose an 

overhead on a single entity. Protocols based on hierarchical sub-grouping are harder to 

implement, and raise other issues, such as interfering with the data path or imposing security 

hazards on the group. Distributed KM, by design, is not scalable.  

 
2.3. Problem Statement: Octopus-based Schemes for MANETs 

In this section, we provide a brief overview of the operation of our proposed KM protocol for 

multicast communication in MANETs, describe the network model, and our assumptions. 

Finally, we contrast the two main KM protocol categories with respect to a number of 

attributes that play a key role for their feasibility in a MANET, point out the difficulty of 

designing a suitable KM protocol for the network of study, and justify our proposed solution. 

 
2.3.1. 2d – Octopus Protocol Operation. 

 Hierarchy is supported through the partition of a large KA group to 2d subgroups of smaller 

size. The KM operations are now applied per subgroup. In that fashion, each instance of the 

protocol operates on a smaller subset of nodes and as a consequence it can better capture its 
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dynamics. Topological changes are easier to monitor and tolerate. Hierarchy enhances also 

the robustness of the network, reduces the control overhead and the communication 

information, and favors the spatial reuse. Distributed schemes benefit from hierarchical 

frameworks that permit data manipulation in a localized manner. All operations in our 

schemes can be executed from subgroup members without the need for centralized entities, 

pre-existing information, or fixed infrastructure. We note here that the simple Octopus (d=2) 

has the property of minimizing the total number of messages required for the group key. 

First Step: Each subgroup agrees on its own subgroup key, and elects a subgroup leader to 

handle KA locally within its own subgroup. In MO and MOT, each subgroup executes a non-

centralized (GDH.2) or a hybrid (TGDH) subgroup KG protocol, as opposed to (O), where 

each subgroup executes a centralized scheme that resembles GKMP.  

Second Step: The subgroup leaders, representing their subgroups, interact among themselves 

and use the previously generated subgroup keys to agree on a global group key via another 

KA protocol, Hypercube, efficient in the number of rounds required for the group KG. 

Third Step: The subgroup leaders distribute securely the group key to their subgroup, using 

the KG algorithm designated by the subgroup protocols used during the first step.  

 
2.3.2. Network Model 

The entities of the secure multicast group are represented as the vertices V in a (not 

necessarily connected) logical graph G: {V, E}. An edge (u, v) is assigned between any two 

vertices u, v, that correspond to members that communicate according to the KG algorithm. 

This bi-directional edge represents a communication link, associated with a weight w(u, v) = 

1 (for logical graphs).  

Octopus-extensions: The n nodes deployed in the field are separated into 2d < n subgroups, 

where d is pre-selected. Each subgroup obtains a subgroup leader selected among the 

members. The subgroup leaders are either pre-defined or are the outcome of a leader election. 
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The subgroup leaders use link state information to transmit “advertising messages” to 

network nodes. Nodes that get multiple “advertising” signals and wish to subscribe to the 

group select as their subgroup leader the one whose signal prevails with respect to certain 

criteria (signal strength, relative direction or distance of two nodes, SNR etc.). The subgroup 

member notifies the leaders in the vicinity of its selection, and the designated leader 

subscribes this member to its subgroup members list. The subgroup leader probes its list at 

regular intervals in order to keep track of the membership changes. Therefore, the number of 

members in each subgroup depends on the network topology, density, etc.  

 
2.3.3.  Assumptions 

1. All entities participating to the secure group are assumed to be authenticated prior to the 

key establishment phase.  

2. No assumptions are made about secure routing. Our KG scheme, as any scheme that relies 

on non-secured routing, is susceptible to routing attacks. However, we rely on the redundancy 

of the routing to ensure that the exchanged messages are delivered in a timely manner.  

3. Members are randomly deployed within the network and have only local view of the 

network (initially at least). Through an underlying discovery process that uses link state 

information (“Hello” messages and leaders’ advertisements) members eventually obtain the 

required group membership information. 

4. We initially assume a pre-selection of subgroup leaders that covers the entire field. These 

leaders know the identities of the rest of subgroup leaders at deployment. 

5. As time progresses, the topology of the network changes and parts of the network may 

become unreachable. In these cases, either re-clustering or new leader election is required to 

accommodate the largest possible subset of group members and improve certain network 

metrics. As clustering is a broad and challenging research problem out of the scope of this 

work, we focus on the operation of Octopus-based protocols between two re-clustering 
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instances. Furthermore, we assume an underlying clustering mechanism that takes care of the 

initial separation of the original group to 2d subgroups. 

6. In this chapter the design and evaluation of all protocols is conducted at instances in 

between failures in the following sense: (a) no leader failures occur, (b) no member failures 

occur during the key establishment phase. At steady state, members’ failures are handled as 

evictions, without further affecting the configuration of the subgroups within the network. 

7. For the purpose of Octopus schemes, it is assumed that a sufficient number of nodes that 

acquire the appropriate processing and bandwidth capabilities to participate as tentative 

subgroup leaders can be found. 

 
2.3.4. Centralized vs. Contributory Schemes in MANETs: Octopus Solution 

Efficiency and Scalability: Centralized schemes can potentially provide simpler and more 

efficient key establishment. For example, in tree-based centralized protocols, in the event of a 

node failure, a new group key is computed, updating only a restricted number of keys.  

Trust: Contributory protocols are preferred when no previous common secrets exist among 

parties, and no single node is trusted to generate the group key alone and distribute it to the 

rest of the parties. Such a group key could be compromised more easily. 

Robustness: In a centralized scheme no node other than the leader itself constitutes a single 

point of failure, meaning that unless the leader fails, the group key can be established despite 

the failure of other members at any point during key establishment. This is the strongest asset 

of centralized protocols. Contributory protocols on the other hand are not robust to member 

failures. Members interact among themselves in complex predefined patterns and if a member 

does not respond when expected, the whole procedure comes to a standstill as all further 

actions depend now on the lost contribution and the process of the initial key establishment 

must start all over. Making contributory protocols stealthy to node failures is a very 

challenging problem. For example, the mechanism proposed to make Hypercube fault 
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tolerant in [2], as well our own fault-tolerant version of the same protocol for MANET are far 

more complex than the mechanism inherent in centralized structures. In the recent work [14, 

15], authors handle synchronization issues of GDH.2 and attribute robust characteristics to 

the scheme, by executing it on top of a secure routing tool. Still, the environment of 

deployment is the wire-line network. In a contributory protocol, the impact from the failure of 

any node (including a leader) is probably less severe than this of a group leader in a 

centralized protocol. This is because in the case of contributory protocols, it is easier to find 

another node that could undertake the role of a group leader. Even if the faulty leader can be 

replaced in a centralized protocol, the new leader will probably have to obtain secret keys 

with each one of the members before the group key establishment. For that, a linear number 

of asymmetric encryptions would be required, leading to considerable overhead in bandwidth 

and computation. In contributory protocols, failure of any member during group key 

establishment may result in restarting the initial key establishment phase, which is expensive. 

The overhead incurred on any single node is less than this incurred on the new leader of a 

centralized protocol. Moreover, the probability of such critical failures is much higher in a 

contributory protocol, since the latter will be affected by the failure of almost any member. 

Group Leader: In centralized protocols, a node powerful enough, to execute the heavy tasks 

of a group leader might not even exist. Nevertheless, a multitasking leader becomes a single 

point of failure. Such a leader, apart from coordinating and synchronizing keying events, 

must have the capability to generate a session key alone, encrypt it separately with the public 

key of each individual member, etc. Furthermore, in a wire-less ad-hoc network potential 

leaders are running the risk of becoming resource drained, increasing also the latency for the 

group key establishment. If the leader fails, the centralized protocol must first initiate a leader 

election process. Provided that a member capable of undertaking the role of a leader exists in 

the first place, then this new leader becomes overloaded with the following tasks among 

others: it must trigger the key establishment phase from scratch, and must synchronize and 
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coordinate its members. Every time a leader fails, the overhead to replace it and resume the 

KG is substantial. It would be preferred that either the leader addresses to a group of 

restricted size or that its role is rather coordinating, as in certain contributory schemes. 

Contributory protocols reflect the totally distributed nature of a group. The notion of a group 

leader usually exists in these protocols as well, but a leader in this case has a rather 

coordinating role, for which the required bandwidth and processing are less significant. From 

this perspective, contributory protocols appear more feasible than centralized, in a resource-

constrained, infrastructure-less environment. 

Conclusion: Based on these observations and comparisons, our motivation for proposing 

solutions based on Octopus schemes can be justified. The following features of Octopus 

schemes have motivated our interest to extend them: a) their hierarchical framework 

through which they can tolerate network dynamics and be more scalable, b) a subgroup 

leader handling a relatively small subgroup is a feasible option in MANETs, as opposed to a 

single leader in centralized schemes handling a very large group, c) disruptions are handled 

locally at first within the subgroup, and then reflected to the whole group via low cost re-

keying algorithms over Hypercube, d) flexibility: within each subgroup we can apply a 

variety of novel or existing contributory or centralized schemes. 

 
2.4. Key Agreement (KA) Schemes over a Logical Network Graph 

 In this section, we provide an overview and complexity analysis on protocols that are 

essential to our investigation and design of the extended Octopus protocols. We mostly focus 

on a number of KA protocols, but also provide an overview of a few centralized schemes (i.e. 

OFT, GKMP) that either help towards the analysis of certain KA schemes, or are used merely 

for performance evaluation purposes. Most of the protocols that we describe below are well 

documented in [3, 6, 7, 8, 9, 10, 12], so we provide a brief description here. However, the 

documentations for several of these protocols lack a comprehensive analytical evaluation of 
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crucial metrics associated with both the initial group key establishment phase and steady state 

(re-keyings). Our contribution with respect to the documented studied protocols lies also in 

completing the existing analysis and yielding additional results on their performance. This 

analysis has its own merit of interest as in our effort to design efficient Octopus-based 

schemes, we have further individually improved and extended a number of candidate 

schemes to meet some or all of our objectives (i.e. performance, robustness, scalability).  

 
Notation1:   We use similar notation as in [3], for reasons of consistency: 

n: number of participants in the protocol. 

Ni: random exponent generated by i-th group member Mi. 

q: order of algebraic group. 

a: exponentiation base; generator in the algebraic group of order q. 

G: cyclic group  

S: subset of {N1, N2,…, Nn}. 

( )SΠ : product of all elements is subset S. 

Kn: group key shared among n members, we assume Kn = K for simplicity. 

Notation2: All the exponentiations pertained to the GDH-based protocols are in fact modular 

exponentiations (MEs), i.e. H(X, q) = aX mod q. For simplicity, in all the subsequent sections, 

we refer to the MEs simply as exponentiations, and we write F(X) = aX.  

Notation3: Let B(x) = ax be the blinding of value x (ME of x under base a). 

Notation 4: Let ϕ (x) = ϕ n(x) = x mod n. 

Definition 2.1. A group consists of a set G together with a binary operation: G×G→G. We 

denote the binary operation between elements A and B as A*B (or AB). A group must satisfy 

the following axioms:  

1. Closure: If A and B are two elements in G, then the product AB is also in G.  

2. Associativity: For all A, B, C ∈  G: (AB)C = A(BC). 
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3. Identity: There is an identity element I such that IA = AI = A for every element A∈G.  

4. Inverse: There must be an inverse or reciprocal of each element. Therefore, the set must 

contain an element B = A-1 such that AA-1 = A-1A = I for each element of G. 

    If in addition, multiplication in G is commutative, that is, AB = BA, then the group is 

abelian. In a finite group, the number of elements is called group order. For n>1, gn 

represents multiplication of g with itself n times, and g0 is the identity element. If G = g for 

some g∈G, then G is cyclic with generator g. This means that every element in G is of the 

form gk for some integer k. All cyclic groups are abelian. A cyclic group is associative, 

closed under addition, and has unique inverses. The numbers from 0 to n-1 represent its 

elements, 0 is the identity element, and the inverse of i is represented by n-i. 

 
Definition 2.2. Discrete Logarithm Problem (DLP): Given an element g in a finite group G 

and another element h∈G, find an integer x such that gx = h.  

Like the factoring problem, DLP is believed to be difficult and also to be the hard direction of 

a one-way function. For this reason, it has been the basis of several public-key cryptosystems. 

The security of these systems rests on the assumption that DLs are hard to compute.  

 
2.4.1. Group Diffie Hellman Protocols (GDH) 

 GDH protocols are the natural extension of the original 2-party DH key exchange (DHKE) 

to n parties. Having proven the security of a generic protocol of this class, a number of secure 

protocols of this class can be derived. In [3], three new GDH protocols are introduced, each 

of which is optimal with respect to certain metrics of interest. The security of DH and of the 

various versions of the generic GDH relies on the hardness of DLP. 

DHKE: It allows two nodes to securely agree on the same secret key at the presence of 

“eavesdroppers” even though they exchange contributions in the clear. A DHKE for parties v, 

t with secret values rv, rt respectively includes the following steps: they both blind their secret 
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values and exchange them. In the end, party v possesses (rv, tra ), and party t possesses values 

(rt, vra ), respectively. Party v raises its own secret to the received value and generates the 

next secret value as follows: Kv =( )t vr ra = v tr ra . Similarly, party t generates the secret value 

Kt = ( ) tvr ra = Kv. So, through a DHKE the parties agree on the same secret value. 

 

 

 

Figure 2.1. Illustration of a pair-wise DH Key Exchange (DHKE). 
 
 
2.4.1.1 Overview and Cost Evaluation for Contributory GDH.1 

Initial Key Establishment: GDH.1 consists of two stages: upflow and downflow.  

Upflow Stage: 

 

 

 

 

Figure 2.2. Illustration of GDH.1 Upflow Stage. 
 
 
The purpose of this stage is to collect contributions from all members. Each member Mi 

receives a collection of intermediate values. The task of each member Mi on the upflow is to 

compute 1... iN Na by raising 1 1... iN Na − - the highest numbered incoming value – to the power of 

Ni, append it to the incoming flow and forward all to Mi+1. For example, M4 receives the set 

{ 1 1 2 31 2, , N N NN N Na a a } and forwards to M5 the set: { 1 1 2 3 1 2 3 41 2, , ,N N N N N N NN N Na a a a }. In the 

upflow stage, each member performs one ME and an upflow message between Mi and Mi+1 

contains i intermediate values. The final transaction in the upflow stage takes place when the 
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highest-numbered member Mn receives the upflow message and computes 

1 1...( )n nN N Na − which is the intended group key Kn.  

The formula of the upflow stage at round i is:  Mi { | [1, ]}{ | [1, ]}KN k ja j iΠ ∈→ ∈ →  Mi+1.  

Downflow: 

 

 

 

 

Figure 2.3. Illustration of GDH.1 Down-Flow Stage. 
 
 
After obtaining Kn, Mn initiates the downflow stage. In this stage, each Mi performs i MEs: 

one to compute Kn and (i-1) to provide intermediate values to subsequent (lower-indexed) 

group members.For example, assuming n=5, M4 receives a downflow message: 

{ 55 5 5 1 2 31 1 2, , , N N N NN N N N N Na a a a }. First, it uses the last intermediate value to compute Kn. 

Then, it raises all intermediate values to the power of N4 and forwards the resulting set: 

{ 5 5 5 54 1 4 1 2 1 2 4, , ,N N N N N N N N N N N Na a a a } to M3. In general, the size of a downflow message 

decreases on each link; a message between Mi+1 and Mi includes i intermediate values. The 

formula for the downflow at round (n-1+i) is:  Mn 
{ | [ , ]}{ | [1, ]}KN k i ja j iΠ ∉→ ∈ →Mn-i+1. 

The main drawback of GDH.1 is its relatively large number of rounds. At the same time, 

GDH.1 imposes no special communication requirements, i.e., no broadcasting or 

synchronization is necessary. 

 
Membership Changes: 

Member Addition: We assume that member Mn saves the contents of the upflow message 

(stage 1, round (n-1)). Mn generates a new exponent nN
�

and computes a new upflow message 

M1

M2

M3

M4

M5

M6

GK: 1 6( ... )N Nϕ

6 1 6 1 2 3 4 6{ ( ), ( ),..., ( )}N N N N N N N Nϕ ϕ ϕ 6 5 6 5 1 6 5 3 2 1{ ( ), ( ),..., ( )}N N N N N N N N N Nϕ ϕ ϕ

6 5 4 6 5 1 4 6 5 4 2 1{ ( ), ( ), ( )}N N N N N N N N N N N Nϕ ϕ ϕ

6 5 4 3 6 5 1 4 3{ ( ), ( )}N N N N N N N N Nϕ ϕ
6 5 4 3 2( )N N N N Nϕ

M1

M2

M3

M4

M5

M6

GK: 1 6( ... )N NϕGK: 1 6( ... )N Nϕ

6 1 6 1 2 3 4 6{ ( ), ( ),..., ( )}N N N N N N N Nϕ ϕ ϕ 6 5 6 5 1 6 5 3 2 1{ ( ), ( ),..., ( )}N N N N N N N N N Nϕ ϕ ϕ

6 5 4 6 5 1 4 6 5 4 2 1{ ( ), ( ), ( )}N N N N N N N N N N N Nϕ ϕ ϕ

6 5 4 3 6 5 1 4 3{ ( ), ( )}N N N N N N N N Nϕ ϕ
6 5 4 3 2( )N N N N Nϕ



 31

(using nN
�

, not Nn). For example, the new cardinal value now becomes: 1 1... nnN N Na −
�

. The new 

upflow message is sent to the new member Mn+1. Mn+1 generates its own exponent and 

computes the new key K = Kn+1 = 1 1 1... nn nN N N Na − +
�

.  Finally, as in the normal protocol Mn+1 

computes the new downflow message and sends it to member Mn, and so on and so forth. It is 

obvious that while this algorithm spares the need to re-run anew the upflow message, it 

burdens all members with repeating all the computations of the downflow stage of the initial 

group key establishment.  

Member Deletion: GDH.1 cannot handle the member deletion operation in a simple way, 

just by slightly modifying the flow of the original key establishment, as is the case for the 

member addition operation. Let Mp be the member slated for removal of the group, with 

p∈[1, n-1], p≠ n. Even if Mn plays still a special role by generating a new exponent nN
�

, the 

nature of the intermediate messages collected from the previous state, makes it impossible to 

exclude the contribution of Mp without excluding also other members from the group key. 

That means that Mp will be still capable of reconstructing the new group key, if it gets a few 

particular messages that are transmitted in the clear. Besides, the downflow is such that only 

Mp can contribute to the lower indexed member Mp-1 the intermediate messages this member 

requires. So, there is no straightforward algorithm to exclude Mp alone from the group key 

without disrupting the operation of the whole protocol or without the need to reconstruct a 

totally different group key and change the initial algorithm in a non-trivial way. In the event 

that Mn is to be removed from the group, Mn-1 assumes the special role of generating a new 

exponent, and then the downflow stage can be re-run as described for the initial case. So, in 

this case, Mn can be excluded successfully from the computation of the new group key in a 

very simple way. In general however, GDH.1 cannot handle this operation efficiently. 
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2.4.1.2 Overview and Cost Evaluation for Contributory GDH.2 

Initial Key Establishment: GDH.2 consists of two stages: upflow and downflow. 

Upflow Stage: 

 

 

 

Figure 2.4. Illustration of GDH.2 UpFlow Stage. 
 
 
The purpose of this stage is to collect contributions from all members. Member Mi receives a 

collection of intermediate values as illustrated in the scheme below. Each member Mi must 

compose i intermediate values (of i-1 exponents each), and one cardinal value containing i 

exponents and send them to Mi+1. For example, M4 receives:  { 1 2 3 1 3 3 21 2, , ,N N N N N N NN Na a a a } 

and outputs: { 11 2 3 4 1 2 3 3 4 3 2 41 2 4 ,, , ,N N N N N N N N N N N N NN N N aa a a a }. The cardinal value in this 

example is: 1 2 3 4N N N Na . By the time the upflow reaches Mn, the cardinal value becomes: 

1 1... nn NN Na − . Mn is thus the first group member to compute the key Kn.  

The upflow stage formula for round i is:  Mi 
{ | [1, ] }{ | [1, ]}KN k i k ja j iΠ ∈ ∧ ≠→ ∈ →  Mi+1.  

Downflow Stage: 

 

 

Figure 2.5. Illustration of GDH.2 DownFlow Stage. 
 
 
The highest-indexed member Mn plays a special role by having to broadcasts the intermediate 

values to all group members. Each member Mi raises a corresponding intermediate value to 
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its own secret value Ni and reconstructs the group key. For instance, M2 receives: 1 3 4N N Na , and 

computes the following group key: Kn= 1 3 4 2( )N N N Na = 1 2 3 4N N N Na . 

The formula of the broadcast stage is:  Mn 
{ | [1, ] }{ | [1, ]}KN k n k ia i nΠ ∈ ∧ ≠→ ∈ →  Mi. 

Observation: The main advantage of GDH.2 is the low number of protocol rounds (n). Also, 

GDH.2 involves the least overhead w.r.t. the communication infrastructure: each node sends 

one message and receives two (except M1 and Mn which receive only one message).  

Membership Changes 

Member Addition: We assume that member Mn saves the contents of the upflow message 

(stage 1, round (n-1)). Mn generates a new exponent nN
�

and computes a new upflow message 

(using nN
�

, not Nn). For example, the new cardinal value now becomes: 1 1... nnN N Na −
�

. The new 

upflow message is sent to the new member Mn+1. Mn+1 generates its own exponent and 

computes the new key K = Kn+1 = 1 1 1... nn nN N N Na − +
�

.  Finally, as in the normal protocol Mn+1 

computes n sub-keys of the form {
{ | [1, ] | [1, ]Nk k i k ja j n∏ ∈ ∧ ≠

∈ } and broadcasts to the other 

group members. This extension is straight-forward and requires only two additional rounds 

per each new member. The new key, Kn+1 is easily computable by all parties and retains the 

same secrecy properties as Kn. However, while all other members compute Kn+1 with a single 

ME, Mn is required to perform n MEs in addition to generating a new exponent.  

Member Deletion: The protocol extension is similar to this for the member addition. Let Mp 

be the member slated for removal of the group, with p∈[1, n-1], p≠ n. Mn plays a special role 

by generating a new exponent nN
�

. This time Mn computes a new set of (n-2) sub-keys: 

{
{ | [1, ] | [1, 1]Nk k i k ja j n∏ ∈ ∧ ≠

∈ − } and broadcasts them to all group members. Note that, 
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since 1 1 1 1....* * *.... * np p nN N N N Na − + −∗
�

is missing from the set of broadcasted sub-keys, the newly 

excluded Mp is unable to compute the new group key. In the event that Mn is to be removed 

from the group, Mn-1 assumes the special role as described above. 

   Since GDH.1 and GDH.2 both require (i+1) MEs from every Mi, the computational burden 

on every member increases as the group size grows. The same is true for message sizes. To 

address this concern, the authors of [3] have constructed GDH.3, which is different from 

GDH.1, GDH.2. We omit its description here to avoid redundancies. 

2.4.1.3. Performance Evaluation for GDH.1-2-3 over Logical Network 

GDH.1, GDH.2, and GDH.3 offer the following advantages (a proof outline is provided for 

each of the following claims [3]): no a priori ordering of members, no synchronization, 

small number of MEs, minimal total number of messages (GDH.2), minimal number of 

rounds for asynchronous operation (GDH.2), minimal number of messages sent/ 

received by each party (GDH.2), security level equivalent to 2-party DH, implementation 

simplicity: Just like 2-party DH, GDH.1, GDH.2, GDH.3 require only the ME operation and 

the random number generator for the protocol execution. 

 Rounds Mssgs Combined 
Message Size 

Exp/s per Mi Total 
Exp/s 

GDH.1 
 

2(n-1) 2(n-1) (n-1)n (i+1) for i<n, n for Mn ( 3)
2

n n+ -1 

GDH.2 n N 
2( 1)( 2) 1nn − + −

 

(i+1) for i<n, n for Mn ( 3)
2

n n+  -1 

GDH.3 n+1 2n-1 3(n-1) 4 for i<(n-1), 2 for Mn-1, n for 
Mn 

5n-6 

Table 2.1. Performance of GDH.1, GDH.2, GDH.3 over Logical networks for Initial state. 
 
  

2.4.2. Overview, Evaluation, and Extensions of Ingemarsson (ING) 

2.4.2.1. Overview and Cost Evaluation for Contributory Ingemarsson (ING) 

ING requires a synchronous start-up, requires that all parties are connected according to a 

logical ring, and completes in (n-1) rounds. In any given round, every participant raises the 
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previously-received intermediate key value to the power of its own random exponent and 

forwards the result to the next party. Hence, in every round, n message exchanges are being 

performed. After (n-1) rounds and n(n-1) message exchanges, everyone computes the same 

key Kn = 1 2 ... nN N Na . Since ING falls into the class of “natural” extensions of the 2-party DH 

protocol, it inherits the same security properties, and the proof of security presented in [1] for 

the generic GDH applies to ING as well. The following formula shows the algorithmic flow 

of ING for round k, where k∈[1, n-1]: Mi 
{ | [( )mod , ]}jN j i k n iaΠ ∈ −

→ →Mi+1.  

ING has the following characteristics: (a) Per member Computation (MEs): n, (b) Total 

Processing (MEs): n2, (c) Total # of Message Exchanges: n(n-1),  (d) Latency: (n-1). 

 

 

 

Figure 2.6. Illustration of ING Ring Protocol. 
 
 
2.4.2.2. Our Complementary Analysis of ING: Introduce Re-Keying Algorithms  

Member Additions/Deletions: ING does not lend itself to efficient construction of protocols 

for member additions or deletions. However, with careful inspection of the algorithmic flow 

and the intermediate values, some savings with respect to communication and computation 

can still be achieved.  

 

 

Figure 2.7. Illustration of Member Deletion Operation in ING Ring Protocol. 
 
Member Deletion: We illustrate our study with an example of a 5 member ring. Assume that 

member M3 is being evicted, and member M5 alters its exponent (from 5N  to 5N
�

) to preserve 
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exclude N5 or N3 from the previous group key or the intermediate values that the remaining 

members possess, and construct the new group key 5K ′= 1 2 4 5N N N Na ′ . Therefore, the main KG 

algorithm must be repeated for the new group key to be established. However, since the 

exponents N1, N2, and N4 remain the same, the message exchanges and computations for the 

rounds that involve only these exponents need not be repeated. The latency for the 

establishment of the new group key is still equal to the size of the ring (it is 3 rounds in this 

example), because there is at least one member for which all the intermediate values need to 

change. The idle rounds for each member can be thought of as “dummy” rounds. The new 

message exchanges and computations per round are depicted in the following table. It can be 

seen that both the communication exchanges and the computations can be reduced to half 

when we execute the algorithm for member deletion with savings.  

 The overall number of MEs now becomes: 
2

2

1

1
21 ( 3 4)

n

i
n i n n

−

=

− + = − +∑   

The overall number of message exchanges now becomes: 
2

2

1

1
2 ( 5 6)

n

i
i n n

−

=

= − +∑ .  

 Round 1 Round 2 Round 3 Group Key Computation 

M1 B( 5N
�

) B( 4 5N N
�

) B( 2 4 5N N N
�

) B( 1 2 4 5N N N N
�

) 
M2    --- B( 5 1N N

�
) B( 4 5 1N N N

�
) B( 1 2 4 5N N N N

�
) 

M4    ---       --- B( 5 1 2N N N
�

) B( 1 2 4 5N N N N
�

) 
M5    ---       ---       --- B( 1 2 4 5N N N N

�
) 

Table 2.2. New Message Exchanges for Member Deletion Operation in ING. 
 

 

 

 

Figure 2.8. Illustration of Member Deletion Operation in ING Ring Protocol. 
 

M1

M2

M3

M4

M5 M1

M2

M3

M4

M5

M1

M2
M3

M4

M5

M6

M1

M2
M3

M4

M5

M6



 37

Member Addition: The addition operation is executed in a similar manner. We illustrate our 

study with the 5 member ring as well. Assume that node M6 is added to the group, and 

assume further that member M5 alters its exponent (from 5N  to 5N
�

) to preserve the required 

property of backward secrecy. There is not a simple, straight-forward way to exclude N5 and 

add N6 in the previous intermediate values that the existing members possess, in order to 

construct the new group key 6K ′= 1 2 3 4 65N N N N N Na ′
. Hence, the main KG algorithm must be 

repeated for the new group key to be established. However, since the exponents N1, N2, N3 

and N4 remain the same, the message exchanges and computations for the rounds that involve 

only these exponents need not be repeated. The latency for the establishment of the new 

group key is still equal to the size of the ring (5 rounds in this example), because there is at 

least one member for which all the intermediate values need to change. The idle rounds for 

each member can be thought of as “dummy” rounds. The new message exchanges and 

computations per round are depicted in the following table (Table 2.3). 

The overall number of MEs now becomes: 2

1

1
2( 1) ( 1) ( 5 2)

n

i
n i n n

=

+ + + = + +∑ . 

The overall number of message exchanges now becomes: 2

1

1
2 ( 3 )

n

i
n i n n

=

+ = +∑ . 

 Round1 Round 2 Round 3 Round 4 Round 5 Group Key  

M1 B( 6N ) B( 5 6N N
�

) B( 4 5 6N N N
�

) B( 3 6...N N ) B( 2 6...N N ) B( 1 4 5 6...N N N N
�

) 
M2    --- B( 6 1N N ) B( 5 6 1N N N

�
) B( 4 1...N N ) B( 3 1...N N ) B( 1 4 5 6...N N N N

�
) 

M3    ---       --- B( 6 1 2N N N ) B( 5 2
ˆ ...N N ) B( 4 2...N N ) B( 1 4 5 6...N N N N

�
) 

M4    ---       ---       --- B( 6 3...N N ) B( 5 3
ˆ ...N N ) B( 1 4 5 6...N N N N

�
) 

M5    ---       ---       ---          --- B( 6 4...N N ) B( 1 4 5 6...N N N N
�

) 

M6 B( 5N
�

) B( 4 5N N
�

) B( 3 4 5N N N
�

) B( 2 5...N N
�

) B( 1 5...N N
�

) B( 1 4 5 6...N N N N
�

) 

Table 2.3.  Message Exchanges for Reduced Member Addition algorithm in ING. 
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2.4.3. Overview, Evaluation, and Extensions of Burmester/Desmedt (BD) 

2.4.3.1. Overview and Cost Evaluation for Contributory Burmester/Desmedt (BD) 

This scheme only requires 2 logical rounds and can be divided into three phases:  

(1) Member Mi generates its random exponent Ni and broadcasts zi = modiNa p , 

(2) Every member Mi computes and broadcasts Xi = 1
1

( ) modii
i

Nz
z p+
−

,  

(3) Member Mi can compute the key Kn = 1 2
1 1 2... modinN n n

i i i iz X X X p− −
− + − .  

The key defined by this scheme is different from the previous protocols, namely Kn 

=
1 2 2 3 1... nN N N N N Na + + +

. BD, as ING, is a totally symmetric protocol, as opposed to the GDH 

schemes. BD is superior to the rest of the contributory protocols discussed in terms of MEs 

since almost all operations (all but one) involve relatively small exponents (exponents of the 

order of O(n) – actually, the average exponent gets the value n/2 - as opposed to random 

exponents Ni∈G). This makes for big savings in computation. Similar is the case in terms of 

latency. BD requires only two rounds of simultaneous broadcasts as opposed to linear 

number of rounds in the other protocols.     

Observation 1: BD assumes that parties do n simultaneous broadcasts. This is not a feature 

available in most networks. So, it may be worthwhile to compare the other protocols with 

BD* - a version of BD without the simultaneous broadcast feature. Since BD* would require 

2n-1 rounds, it does not compare with the rest as favorably as plain BD. The extra rounds in 

BD* are due to nodes waiting for a chance to win the medium for transmission. This is in 

contrast to GDH.1/2/3 where rounds are mostly triggered by message arrival. Thus, a 

broadcast round in BD* is shorter than a round in GDH.1/2/3. Moreover, in most non-

specialized networks architectures a node cannot receive multiple messages simultaneously.  

Observation 2: In terms of total bandwidth overhead BD/BD* come out clear winners, 

with the least total amount of information exchanged. However, in terms of the messages 
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received and sent by each party, BD/BD* do not compare favorably to the rest of the 

protocols, as each party must receive (n-1) messages and must broadcast 2 messages.  

  BD has the following characteristics: (a) Latency (rounds): 2, (b) Combined message 

size: 2n, (c) MEs per member: (n+1), Total MEs: (n+1)n, (d) Divisions per member: 1.  

 
2.4.3.2. Our Complementary Analysis on BD (Membership Changes)  

Member Deletion: Let member Mn be removed from the group, and member Mn-1 changes its 

own exponent from Nn-1 to 1
ˆ

nN − , to preserve the property of forward secrecy. The protocol is 

re-run but not all three steps are triggered for all members: 

(1) Member Mn-1 generates the random exponent 1
ˆ

nN − and broadcasts 1ˆnz − = 1
ˆ

modnNa p− . 

(2) Only members: Mn-2, Mn-1, M1 compute and broadcast: 2
ˆ

nX − = 21
3

ˆ( ) modnn
n

Nz
z p−−
−

,  

1
ˆ

nX − = 11
2

ˆ
( ) modn

n
Nz

z p−
−

,  1X̂ = 12
1

( ) mod
n

Nz
z p
−

, respectively. 

(3) Member Mi ,  i<n, can compute the key Kn-1 = ( 1) 2 3
1 1 2... modin N n n

i i i iz X X X p− − −
− + − .  

Member Mn cannot compute the new key even if it gets all Xis , because it cannot derive the 

factor ( 1)
1

in N
iz −
−  (in essence the exponent Ni) for any other member than itself, which is 

however excluded from the new key, since it does not appear in the formula of the new group 

key Kn-1. Hence, forward secrecy is preserved. BD lends itself to a more efficient algorithm 

for member deletion than just starting over the key establishment. We present the analytical 

metrics of the algorithm below:  

(a) Latency (rounds): It remains the same, since at least one node has to go through all three 

steps. Hence, the protocol takes 2 rounds of message exchanges. 

(b) Combined message size: During the 1st step, only 1 message is broadcast. During the 2nd 

step, 3 messages from members Mn-2, Mn-1, M1 are broadcast. The combined message size is 4. 
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(c) MEs per member: During the 1st step, only member Mn-1 performs 1 ME. During the 2nd 

step, members Mn-2, Mn-1, and M1 perform 1 ME and 1 division each to compute the values 

they broadcast to the rest of members. During the 3d step, each member Mi computes Kn-1 

from Kn a. It is easy to see how Kn+1 can be computed from Kn, if we analyze the formulae of 

the two group keys as illustrated below:  

Kn+1 = ( 1) 2 3 1 2 3 4
1 1 2 1 1 2 3 2 modˆ ˆ... ˆ ...in N n n t t t t t

ii i n n i qz X X X X X XX X− − − − − − −
− + − − − , and 

Kn =   4
3

1 2 1 1 2 3
1 1 2 1 1 2 2 mod... ...i tnN n n t t t t t

i ni i n n i qz X X X X X X XX X −− − + − − −
− + − − − . 

Assuming that each member Mi stores each factor 1n j
i jX − −
+ used to compute Kn, it can easily 

compute Kn-1 as follows: (a) it derives the factor 1
1 1 2 mod( ... )iN

ii i n qz X X X −
− + − , by performing 

1 ME and (n-2-i) modular multiplications (MMs), and 1 modular division (MD), (b) it raises 

the newly computed Xis to the appropriate exponents designated by the protocol and 

multiplies them into the formula computed in (a), that is, it does 3 MEs and 3 MMs, (c) it 

multiplies the rest of Xis (as stored from the previous key establishment) into the combined 

formula computed in (b), that is, it performs (i-2) MMs. Hence, during the 3d step, each 

member performs 4 MEs, (n-1) MMs, and 1 MD. 

 Overall, all members except for Mn-2, Mn-1, M1, perform 4 MEs and 1 MD. Only members 

Mn-2, and M1 perform 5 MEs and 2 MDs, and only member Mn-1 performs 6 MEs and 2 MDs.  

(d) Total MEs: (n-4)×4+2×5+6 = n.  

(e) Divisions: (n-4)×1+3×2 = n+2.  

Member Addition: Let member Mn+1 be added to the group and generate its random 

exponent Nn+1. We further assume that member Mn changes its own exponent from Nn to ˆ
nN , 

to preserve backward secrecy. The protocol is re-run but not all three steps are triggered for 

all members, as we will see next: 
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(1) Members Mn and Mn+1 generate their random exponents ˆ
nN , Nn+1 and broadcast ˆnz  = 

ˆ modnNa p , and zn+1 = 1 modnNa p+ . 

(2) Only members: Mn-1, Mn, Mn+1, M1, compute and broadcast: Xn-1= 1
2

ˆ( ) modnn
n

N
z

z p−
−

, Xn= 

1
1

( ) modnn
n

z N
z p+
−

, Xn+1= 11
ˆ( ) modn
n

Nz
z p+ , X1= 12

1
( ) mod

n
Nz

z p
+

, respectively. The new 

member however will get al the rest of Xis used before except for Xn = 1
1

( ) modnn
n

z N
z p+
−

 

from member Mn (or any other member) through a simple unicast. 

(3) Any member Mi will compute the key:  

Kn+1 = 2
1

1 1
( 1) ... modi

n n
ii i

in Nz X X X p−
−

− +
+  = 2 11 2 3 1 1 1... ˆ ˆ

n n n n nN N N N N N N N NNa − + ++ ++ + +
mod p. 

However, member Mn+1 cannot compute the old key because it does not possess Xn and 

consequently, the exponent Nn would not appear in the formula of the old group key Kn.  

It can be seen that BD lends itself to a more efficient algorithm for member addition than just 

starting over the key establishment. We present the analytical metrics of the algorithm below:  

(a) Latency (rounds): It remains the same, since at least one node has to go through all three 

steps. Hence, the protocol takes 2 rounds of message exchanges. 

(b) Combined message size: During STEP 1, only 2 messages are broadcast. During STEP 2, 

4 messages from members Mn-1, Mn, Mn+1, M1 are broadcast, but one member unicasts all the 

rest of Xis to the new member (n messages). Hence, the combined messages size is (n+2). 

(c) MEs per member: During STEP 1, Mn and Mn+1 do 1 ME. During STEP 2, Mn-1, Mn, 

Mn+1, M1, do 1 ME and 1 division each to compute the values they broadcast to the rest of 

members. During STEP 3, each member Mi computes Kn+1 from Kn. It is easy to see how Kn+1 

is computed from Kn, if we analyze the formulae of the two group keys as illustrated below:  

Kn+1 = ( 1) 1 2 1 1 2 3
1 1 2 1 1 1 2 2 modˆ ˆ ˆ... ˆ ...in N n n t t t t t t

i ni i n n n i qz X X X X X X XX X+ − + + − − −
− + − − + − , and 
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Kn =   1 2 1 1 2 3
1 1 2 1 1 2 2 mod... ...inN n n t t t t t

i ni i n n i qz X X X X X XX X− − + − − −
− + − − − . 

Assuming that each member Mi stores each factor 1n j
i jX − −
+ used to compute Kn, it can easily 

compute Kn+1 as follows: (a) it derives the factor 1 1 2 mod...iN
ii i n qz X X X− + − , by 1 ME and (n-

2-i) MMs, (b) it raises the newly computed Xis to the appropriate exponents designated by the 

protocol and multiplies them into the formula computed in (a), that is, it does 4 MEs and 4 

MMs, (c) it multiplies the rest of Xis (as stored from the previous key establishment) into the 

combined formula computed in (b), that is, it performs (i-2) MMs. Hence, during the 3d step, 

each member performs 5 MEs and n MMs.  

Overall, all members except for Mn-1, Mn, Mn+1, M1, do 5 MEs. Only members Mn-1, and M1 

do 6 MEs and 1 MD, and only members Mn and Mn+1 do 7 MEs and 1 MD.  

(d) Total MEs: (n+1-4)×5+2×6+2×7 = 5n-11. 

(e) Divisions: 1 MD per member for members Mn-1, Mn, Mn+1, M1, namely 4 MDs overall.  

2.4.4. Overview, Evaluation, and Extensions for Hypercube Protocol 

2.4.4.1. Overview and Cost Evaluation for Contributory Hypercube Protocol 

Overview: Hypercube is designed with the objective to minimize the total number of simple 

rounds required for the establishment of the group key. In general, 2d parties agree upon a key 

within d simple rounds by performing pair-wise DHKEs on the edges of a logical d-

dimensional cube. 2-party DHKEs constitute the basic Hypercube module. Every member is 

involved in exactly one DHKE per round. Each member uses the intermediate secret key Ki-1 

generated at the end of its DHKE in round (i-1), to compute through the current DHKE, the 

intermediate secret key Ki for round i. During a DHKE at round i, each member processes Ki-1 

and sends its peer in the clear the value B(ϕ (Ki-1)).  

  We identify the 2d participants on the d-dimensional space GF(2)d and choose a basis b1,…, 

bd of GF(2)d. In every round, the participants communicate on a maximum number of parallel 
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edges of the d-dimensional cube (round i, direction bi). Furthermore, all parties share a 

common key at the end of this protocol because the vectors b1, …, bd, form a basis of the 

vector space GF(2)d. Now the protocol may be performed in d rounds as follows: 

1.In the first round, every participant v∈GF(2)d generates a random number rv and performs a 

DHKE with participant v+b1 using the values rv and rv+b1, respectively. 

2.In the i-th round, every participant v∈GF(2)d performs a DHKE with participant v+bi, 

where both parties use the value generated in round i-1 as the secret value for the DHKE.  

 

 

 

 

 

Figure 2.9. Illustration of Hypercube Protocol Operation with d=2. 
 
Hypercube Performance Characteristics: (a) Total Number of Messages: n×d, (b) Total 

Number of MEs: n×d, (c) Total Exchanges:  n×d/2, (d) Simple Rounds (every party 

sends and/or receives at most one message per round): d, (e) Synchronous Rounds (every 

party sends and/or receives arbitrarily many messages during a given round): d. 

 

 

 

 

Figure 2.10. Illustration of Hypercube Protocol Operation with d=2 
 
2.4.4.2. Our Complementary Analysis on Re-Keying Algorithms for Hypercube 

No efficient re-keying algorithms have been anticipated for the original Hypercube in the 

event of membership changes. Actually, membership changes are difficult to handle 
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compared to other KA protocols, because: (a) they have direct impact on multiple other 

members (i.e. up to d), and (b) they modify the number of members while the protocol 

requires that this number is a power of 2. In this section, we look into efficient re-keying 

algorithms in order to preserve the properties of forward or backward secrecy without re-

starting the protocol from scratch when membership changes occur. Below, we introduce our 

own re-keying algorithms for eviction and addition and we analytically evaluate both. 

Member Deletion: Through successive member deletions the number n of parties takes 

values in [2d-1, 2d). Even if 2d-1<n<2d Hypercube still requires d rounds and 2d message 

exchanges to compute a group key for its n parties. Hence, in order to keep Hypercube 

running, we must maintain the virtual d-cube of communications, despite the eviction of 

potentially multiple members. We re-establish the Hypercube structure as follows, ensuring 

that the pre-established schedule of communications does not change significantly: 

 Case 1: The absence of any of the initial 2d members – say B - can be accommodated by 

“replicating” its peer of the 1st round – say A - and placing it on the vertex previously 

occupied by the slated party B. Peer - A - substitutes B in all rounds, if Hypercube is executed 

anew. Node A may or may not generate a different blind value, depending on how we agree 

to construct the new group key. In every round, the nodes that were scheduled to perform a 

message exchange with B, communicate with A instead.  

 Case 2: If two peers of the 1st round – say A and B – are evicted simultaneously, then 

another pair of nodes of the 1st round logically splits – say C and D – to accommodate the 

evicted pair. Then, C remains on the edge occupied by C and D, logically replicating itself 

and replacing D, and D handles the edge previously occupied by A, B, as shown in case 1.  

 Generalized Case: If an i-cube of 2i peers formed during round i is evicted simultaneously, 

then another i-cube of nodes formed during round i as well logically splits to accommodate 

the evicted i-cube. The rest is handled as in cases 1, 2. If the number of remaining parties n 
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becomes a power of 2 again, so that n=2X, where X<d, then the communications schedule is 

reconfigured to X rounds only, and the performance of the scheme shifts back to the optimal.  

  To preserve forward secrecy, we want to remove the contribution of the evicted member 

from the intermediate keys, and consequently from the group key. From this perspective, a 

member that is no longer legitimate according to the group policy must not be able to 

compute any subsequent group keys, even if it still receives all the future blinded values or 

blinded keys (BKs) exchanged. We want the remaining members to compute a new group 

key so that: (a) B is unable to reconstruct it (forward secrecy), while (b) most of the messages 

already exchanged still remain valid for the new group key (re-use KM data to limit the re-

keying overhead). The extreme approach to exclude member B from the new group key is to 

start over Hypercube from scratch, and have the remaining members contribute new BKs.  

 

 

 

 

Figure 2.11. Illustration of Hypercube Re-Keying after eviction of member B (d=3). 
 
Our Approach – Reduced Hypercube Execution:  A reduced version of Hypercube re-

starts from round 1 as follows: The communication of messages in every round is one way 

instead of bi-directional. In every round, only the members whose previous intermediate 

values were “polluted” with the contribution of the evicted member become senders of new 

BKs to their peers (they re-use however the BKs sent previously from these peers). Their 

peers become only receivers of the new BKs. In any round, all members that become either 

senders or receivers of new intermediate values re-compute new BKs for the following round, 

and trigger the peers of the following round, and so on and so forth.  
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  “Polluted” are the parties whose exchanges during a given round have been affected by the 

secret value of the evicted member, namely the “polluted” members comprise the secret value 

of the evicted member in their exponents. We need to remove the contribution of the evicted 

member from all exponents, and re-do the computations in such a way that the evicted 

member cannot benefit from the intermediate key messages it may receive in the clear. If 

member B is evicted, member A substitutes it and generates a new secret value a’. At the end 

of round 1, member A generates the “un-polluted” BK: aa ′ , and will use this for round 2 (free 

from the contribution of member B). Only member A is affected from the eviction of B in 

round 1. In round 2, A keeps the value 
cdaa received during the same round of the previous 

key establishment by members C or D, but communicates the new BK aa ′ to both C and D. 

In round 3, members A, C, D keep the BK a
ef gha aa received during the previous key 

establishment by members E, F, G, H respectively, but each (A, C, D) communicates the new 

BK 
a cda aa ′

to those members (E, F, G, H). So, for the new key establishment after the 

eviction of a member, 2i-1-1 members (the “polluted” ones that got cleaned up before round i) 

communicate their newly computed BKs to the 2i-1 members as designated by their 

communication schedule during round i. Hence, through successive communication of the re-

computed BKs in one direction, a virtual cube of increasing size is restored per round (i-cube 

after round i). At the end, all members compute new group key. The evicted member, even 

though it may get all BKs sent, it is unable to derive the new group key. This approach yields 

the following performance characteristics: 

(a) Overall # MEs: All parties do 1 ME per round to re-compute their intermediate values, 

but only the members that become senders in each round (2i-1-1 members at round i) do 1 

more ME to compute the BKs they need to send out. Hence, the overall number of MEs (as 

opposed to n×d of the initial Hypercube) is: 
1

1(2 1) 2
i

d
i d

=

− − +∑ = 2× (2d-1)–(d-1) =2n-(d-1), 
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(b) Overall Bandwidth: Only 2i-1 members become senders of a single message at round i. 

Hence, the overall bandwidth becomes 1

1

2 2 1
i

d
i d−

=

= −∑  = n (as opposed to n×d if Hypercube 

starts all over), (c) Number of Rounds: d. 

Member Addition: Through successive member additions the number n of members takes 

values in (2d, 2d+1]. If 2d+1>n>2d executing Hypercube requires d+1 rounds and 2d+1 message 

exchanges. However, a reconfiguration of the schedule must take place, to accommodate the 

new member. Furthermore, we must also maintain the virtual (d+1)-cube of communications. 

One way to do that is to replicate members from the previous d-Cube to fill the empty spaces 

in the (d+1)-Cube produced by the addition of a number of members. This can be handled 

according to case1, case2, and the general case described for the case of member deletion. 

This means that most of the peers of the previous d-Cube must split and replicate themselves 

in order to fill the empty gaps so that a (d+1)-Cube is generated. It is obvious that this method 

is very inefficient in terms of communication and computation overhead, as well as the 

overhead and latency required for the reconfiguration of the communication schedule. This is 

even more so, if the number of the members added to the group is low. Hence, the original 

Hypercube as such does not lend itself for efficient algorithms for members’ addition.  

   However, the Octopus protocol, that we are going to introduce  later in this section, is an 

evolution of Hypercube, that provides a very flexible framework to execute member 

additions: 2d members become the vertices of a d-cube, and all the additional members, 

become members of the subgroup with leader any of the 2d Hypercube members. The same 

approach can be adopted for the case of member additions in Hypercube. Each additional 

member is attached to any of the previous 2d members that act as subgroup leaders. If the 

overall number of Hypercube members becomes a power of 2 again, then the communication 

schedule can be reconfigured and a virtual Hypercube can be restored. 
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   The property of the backward secrecy must be preserved in our re-keying scheme when a 

member addition ocurs. The subgroup of the added member(s) can apply any KG protocol 

and generate a subgroup key. The subgroup leader (Hypercube member) is responsible to 

generate the BK of that key, and participate to the Reduced Hypercube execution as 

previously described. The nature of a suitable subgroup protocol will be studied later in the 

context of Octopus schemes. For now, we can as well assume that the added member and its 

leader perform a simple DHKE: the leader participates to the exchange with a new secret 

value, so that backward secrecy is preserved. Let the newly added member J be attached to 

member A. After the DHKE, member A triggers Hypercube using the 

BK: '' a ja aa a
′

= .From this point, the case is handled similarly to the member deletion 

algorithm. Hence, through successive communication of the re-computed BKs in one 

direction, a virtual cube of increasing size is restored per round (i-cube after round i). At the 

end round, all members compute a new group key. 

This approach yields the following performance characteristics: (a) Overall number of MEs: 

All parties must do 1 ME per round to re-compute their intermediate values, but only the 

members that become senders in each round (2i-1-1 members at round i) do 1 extra ME to 

compute the BK they need to send out. Hence, the overall number of MEs (as opposed to 

n×d MEs of the initial Hypercube) is: 
1

1(2 1) 2
i

d
i d

=

− − +∑ +4 = 2× (2d+1) – (d-3) = 2n-(d-3), 

(b) Overall bandwidth: Only 2i-1 members become senders of a single message at round i. 

Hence, the overall bandwidth becomes: 1

1

2 2 2 1
i

d
i d−

=

+ = +∑  = n. (as opposed to n×d of the 

original Hypercube), (c) Number of Rounds: d+1, with the additional round being the 

DHKE between the subgroup leader and the newly added member.  
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2.4.5. Overview and Cost Evaluation of One-Way Function Tree (OFT) 

OFT uses one-way functions to compute a binary tree of keys. The keys are computed up the 

tree from the leaves to the root. This approach reduces re-keying broadcasts to about lg2n, n 

being the number of members of the group. The group leader maintains a binary tree, each 

node x of which is associated with two cryptographic keys, the un-blinded key kx and 

blinded key (BK) kx’ = g(kx), where g is a one-way function (e.g. hash function, i.e. MD5, 

SHA-1). The key is blinded in the sense that an adversary of limited computation may know 

kx’ and yet cannot find kx. Each member is associated with a leaf in the tree. The leader 

communicates securely via symmetric encryption with subsets of members after they have 

obtained their session key. Prior to this, it communicates asymmetrically a randomly chosen 

key to each member. Interior keys are defined by the rule: kx = ( ) ( )( ( ), ( ))left x right xf g k g k , where 

f is a mixing function (e.g. XOR), and left, right denote the left and right children of a node. 

The key associated with the root serves as the group key. System Invariant: Each member 

knows only the un-blinded node keys on the path from its node to the root, and the BKs of the 

siblings to the nodes that lie on its path to the root. This “path” of siblings is also denoted as 

co-path. Those BKs are computed and sent by the leader. Each member maintains the un-

blinded key associated with its leaf, and a list of all BKs of its co-path. This enables the 

member to compute the un-blinded keys along its path to the root, including the group key. If 

one BK changes and members get the new value, they re-compute the keys on their path and 

find the new group key. The addition of the one way function g to blind internal nodes gains 

an important functionality: each internal key is used as a communications subgroup key for 

the subgroup of all descendant members.  
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Figure 2.12. Illustration of centralized OFT Key Generation. 
 
Member Addition or Eviction: After a member is added (evicted), the keys along the path 

from its node to the root change (its sibling gets a new un-blinded key). Because of the 

system invariant the added (evicted) member only knows the BKs of the siblings to the path 

from its parent to the root. These BKs are insufficient to compute directly any un-blinded 

keys. The added (evicted) member does not know the un-blinded key that is on the sibling 

node, so it cannot compute any un-blinded node keys and cannot compute the old (new) 

group key. This way, the backward (forward) secrecy is preserved. The performance analysis 

of OFT is well documented in [10]. Here, we just quote the main results. 

Notation: We denote the cost for: (a) generating RSA random keys as Cr, (b) blinding a key 

as Cg, and (c) symmetrically encrypting a key as CSE, h as the tree height.  

OFT # Broadcast 
bits  

# Unicast bits Leader Computation Max Member 
Computation 

Initial 2nK or 3nK 0 2n(CSE+Cr)+nCr hCE 

Add  hK hK h(CSE+Cg)+2Cr H(CSE+Cg) 
Evict hK 0 h(CSE+2Cg)+Cr H(CSE+Cg) 

 Table 2.4. Analytical Evaluation of OFT 
 
We also provide the analytical evaluation results for two important centralized protocols, 

GKMP and LKH, to contrast with OFT. Overall, OFT presents superior performance. 

LKH, 
GKMP 

LKH 
Bcast  

GKMP 
Bcast  

LKH Leader 
Computation 

GKMP 
Leader 
Computation 

LKH Max 
Member 
Computation 

GKMP Max 
Member 
Computation 

Initial 2nK/3nK nK 2n(CSE+Cr) n(CSE+Cr) hCSE CSE 

Add  2hK nK h(2CSE+Cr) nCSE+Cr hCSE CSE 
Evict 2hK nK h(2CSE+Cr) nCSE hCSE CSE 

 Table 2.5. Analytical Evaluation of LKH, GKMP. 
 

2.4.6.1. Cost Evaluation for the Tree Group Diffie-Hellman protocol (TGDH) 

Overview: In TGDH binary key trees are combined with DHKEs. Any member should be 

ready to become "sponsor" and assume the duties of a leader. TGDH resembles OFT in its 

structure and its operation. The basic differences are the following: (a) any member can act as 

a leader, (b) a member knows all BKs of the tree in addition to the secret (un-blinded) keys 
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in its path from the leaf to the root, and (c) the merging function f is the 2-party DH, and the 

blinding function g is the ME. The secret key x of an internal node s results from a DHKE 

between offspring left(s) and right(s) with secret keys y and z. Then, x = ayz, and ax is the BK 

of node s. TGDH is a hybrid KA protocol: all members contribute equally to the group key, 

but only the sponsor undertakes the communication regulation. 

    

 

 

Figure 2.13. Illustration of hybrid TGDH Key Generation. 
 
2.4.6.2. Our Complementary Evaluation of the TGDH performance  

1. Performance of TGDH for centralized initialization 

The sponsor in TGDH is required only for communication regulation.  At any given tree 

level, a member communicates to the sponsor the BK computed for that level. The sponsor 

waits to collect the BKs for that level computed by all members. Then, it combines them 

together to a single broadcast to all members. Each member gets the broadcast, extracts the 

required BK, combines it with its own secret, and generates the secret key of the next level. 

This process is repeated until the root key is computed, and requires h = log2n steps. 

(a) Initial Sponsor Communication: n×h×K, (b) Initial Member Communication: h×K, 

(c) Total Initial Communication:{n×h×K, (2n-1)×K }+(n-1)×h×K = {(2 n-1)×h×K, 

(n× (2+h)-1-h) ×K}, (d) Initial Member/Sponsor Computation (MEs): 2× 2log n =2h (1 

ME to compute the secret key and 1 ME to blind it, at any tree level), (e) Add/Delete 

Member/Sponsor Computation: The new member does h MEs (using the BKs of its co-

path). The rest of members do 1 to (h-1) MEs, as not the same number of BKs changes for 

x’= g(x) =aX

x

y’= g(y) =aY

y

z=f(x, y)=aXY

Blinding function g: mod. exponentiation
Mixing function f: 2-party DHKE

x’= g(x) =aX

x

y’= g(y) =aY

y

z=f(x, y)=aXY

Blinding function g: mod. exponentiation
Mixing function f: 2-party DHKE
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each. In fact, n/2 members do only 1, n/4 members do 2, n/2h members do h MEs. In average, 

each member does: 
2l

1

1

og

2i

n h

n
n
i i

=

=

×∑ ≈2 MEs. 

2. Performance of TGDH for distributed initialization 

Initial Member/Sponsor Computation/Communication: Initially, every member becomes 

a “sponsor”: it computes and broadcasts to the group the BK of the internal that corresponds 

to a given level. For every successive tree level, the number of sponsors is reduced to half 

(i.e. at the 2nd level (n/2) members remain sponsors etc.). The sponsor that corresponds to an 

internal node broadcasts its BK to all members, computes the secret key of its parent node 

and blinds it. So, as long as a member is sponsor, it does 2 MEs and 1 broadcast at any level. 

(a) Total number of broadcast messages: 
2log

1
12

n h

i
i
n

=

=
−∑ = (2n-1)<2n, and hence total MEs<4n, 

(b) Per Sponsor/Member Communication: 2log n  = h broadcasts at maximum, (c) Per 

Sponsor/Member Processing: At maximum, each member does 2× 2log n = 2h MEs, (d) 

Initial Member/Sponsor Storage: Every member stores all (2n-1) BKs of the tree, and h 

keys for all the un-blinded keys in its path to the root. The values of the remaining metrics are 

extracted exactly as these of the centralized version. 

 
2.4.7. Overview and Cost Evaluation of the Original Octopus Protocol (O) 

Overview: Octopus uses a DH key computed in one round as a random input for the 

subsequent round. It is further assumed that there is a bijection from generator G into the field 

Zq from which the parties choose their random secrets. Four parties A, B, C, D generate a 

group key using only four exchanges. Parties A and B execute a DHKE generating key abα , 

and simultaneously parties C and D execute a DHKE generating key cdα . Then, the direction 

of DHKE changes, so that now A and C as well as B and D do a DHKE using as secret values 
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the keys generated in the first step. A(B) sends ( )abaφα  to C(D) while C(D) sends 

( )c daφα to A(B) so that  A and C (B and D) can generate the joint key 
( ) ( )cd aba aφ φα . 

Parties P1, P2,…, Pn generate a common group key by first dividing themselves into five 

groups. Four parties Pn-3, Pn-2, Pn-1, Pn take charge of the central control, denoted as A, B, C, 

D. The remaining parties distribute themselves into four groups: {Pi | i ∈  IA}, {Pi | i ∈  IB}, 

{Pi | i ∈  IC}, {Pi | i ∈  ID}, where IA, IB, IC, ID are pair-wise disjoint, possibly of equal size, 

and IA∪ IB∪  IC∪ ID = {1,…, n-4}. Now P1,…, Pn  generate a group key as follows: 

1.∀  X ∈  {A, B, C, D},∀ i ∈  IX, X generates joint key ki with Pi via a     DHKE. 

2. Parties A, B, C, D do the 4-party DHKE described above using the values: a=K(IA), 

b=K(IB), c=K(IC), d=K(ID), where K(J):= ( )i J ikφ∈∏  for J ⊆ {1,…, n-4}. Thereafter, A, B, C, 

D hold the joint and later group key K=
( )( )( ) ( )K I IK I I C DA Ba aaφ φ ∪∪

. 

3.  The step is described only for A. Parties B, C, D act accordingly. ∀ j ∈IA, A sends the 

following two values to Pj: ( \{ })B AK I I ja ∪  and 
( )( )K I IC Daaφ ∪

. Pj generate K now; first Pj 

calculates ( )( \{ }( ) jB A kK I I ja φ∪ = ( )BAK I Ia ∪  and then K= 
( ) ( )( ) ( )K I I K I IDC BAa aaφ φ∪ ∪

. 

 This protocol requires (n-4) exchanges to generate the DH keys ki, 4 exchanges for the KA 

between A, B, C, D and (n-4) messages to be sent from A, B, C, D to P1, P2,…, Pn-4. Hence it 

performs a minimum number of (2n-4) exchanges. 

 

 

 

 

Figure 2.14. Illustration of the Initial Key Establishment for Octopus Protocol (d=2) 
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Octopus  3n-4 2n-4 2× 4
4

n−⎡ ⎤⎢ ⎥ +2 4 - 

Table 2.6. Cost of Parameters in Octopus Protocol. 
 

 
2.4.8. 2d-Octopus Protocol 

Overview: The number of simple rounds can be minimized by generalizing the idea of the 4-

party KA described above. 2d parties can agree upon a key within d simple rounds by 

performing DHKEs on the edges of a d-dimensional cube (Hypercube). In order to formulate 

a protocol for an arbitrary number of participants (<>2d), that requires a low number of 

simple rounds, the idea of the Octopus protocol can be adopted again. In the 2d–Octopus the 

parties act as in the simple Octopus. However, 2d instead of four parties are distinguished to 

take charge of the central control, whereas the remaining (n-2d) ones divide into 2d groups. In 

steps 1 and 3, 2d parties manage communication with the rest and in step 2 these 2d parties 

execute Hypercube among themselves. We obtain the following complexities for 2d-Octopus: 

Total number of messages: During step 1 (n-2d) members perform a DHKE with their 

subgroup leader (2 messages). During step 2 Hypercube is executed among 2d subgroup 

leaders. During step3, each of the (n-2d) members receives a single message from its leader. 

Total number of Rounds: (d+2), (i.e. d for the Hypercube execution, 1 for the DHKEs of 

step 1, and 1 for the partial KD during step 3).  

Protocol Messages Exchanges Simple Rounds Syn. Rounds 
Hypercube  n×d n×  d/2 D D 
2d- Octopus 3× (n-2d) + 2d ×d 2×  (n-2d) +2d-1 ×d 2 2

2
d

d
n−⎡ ⎤⎢ ⎥ +d 2+d 

Table 2.7. Cost of Parameters in 2d - Octopus Protocol. 
 
2d–Octopus provides a tradeoff between the total number of messages/exchanges and the 

number of simple rounds. For d = 2 (Octopus) the number of exchanges is optimal, whereas 

the number of simple rounds is comparatively high. Becker introduced Octopus as one that 

requires minimum number of total messages and then derived the 2d-Octopus that combined 

Octopus with Hypercube to a very efficient scheme that works for arbitrary number of nodes. 
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2d-Octopus protocols provide a class of KD systems without broadcasting which matches the 

lower bound - 2log n - for the total number of synchronous rounds if n is a power of 2. 

 
2.5. Our Extensions of the Original 2d-Octopus on a Logical Network Graph    

 We are extending the original 2d-Octopus (O) scheme by (a) providing efficient re-keying 

algorithms to it, (b) providing detailed analysis of the overall performance of the protocol, 

and (c) making it feasible for MANETs. The design of the original scheme does not provide 

for members evictions/additions, failures, partitions and merges that may occur all too often 

in MANETs. We also designed two new 2d-Octopus based protocols, denoted as: 

(MO): GDH.2 modified 2d-Octopus (Modified Octopus MO), and  

(MOT): TGDH modified 2d-Octopus (Modified Octopus with Tree MOT). 

 We have derived the analytical formulae for Communication, Computation, Storage Costs, 

and Latency for all three Octopus-based schemes (O), MO, MOT, for the operation of initial 

key establishment and re-keying. We have also compared these protocols with the centralized 

OFT scheme. OFT is considered among the most efficient schemes with respect to the 

communication overhead incurred due to the re-keying operations at steady state. Even 

though schemes like OFT are not directly applicable to a large MANET, we want to compare 

our schemes with OFT to gain insight about the extra overhead required to render KM 

protocols scalable and applicable in such networks.  

   Our analytical evaluation has been conducted in between failures: leaders’ and members’ 

failures, as well as leader election schemes are not considered in the analysis conducted in 

this chapter. Such events and operations will be added to the basic framework gradually, as 

we progress our work in the following chapters. Through our description and analysis we 

have been able to demonstrate the superiority of the new protocol MOT over MO and (O), 

and the improvements compared to the original scheme (O). We derive MO and MOT by 

modifying the 1st and 3d steps of (O) accordingly, while maintaining the 2nd step, the core of 
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all Octopus-based protocols -Hypercube -, intact. The three Octopus-based steps can be 

considered independent modules that are executed sequentially. Therefore, in what follows, 

we give an overview of each step individually, for the cases of initial key establishment and 

re-keying at steady state, for all three protocols, and discuss on the security level provided for 

each step. As discussed, we study the initial and steady state of KM protocols on groups in 

between re-clustering instances. Membership changes, including leader failures, are handled 

by the generation of new subgroup and/or group keys.  

Why Octopus? In addition to the hierarchical structure of the Octopus which brings the 

discussed benefits of scalability, localization, etc., we were able to find that Octopus 

protocols lend themselves to simple and very efficient algorithms for handling membership 

changes, and failures. In particular, we have modified the core protocol of Octopus-based 

schemes - Hypercube - in such a way that: (a) the re-keying algorithms it executes 

substantially reduce the communication and computation costs incurred, compared to other 

schemes, (b) we integrate algorithms for handling any possible case of subgroup leader 

failures, including scenarios that allow leaders to resume, with low extra communication and 

computation cost. We also introduce an algorithm for handling failures that reduces the 

latency incurred in order to overcome these failures (Chapter 3, 4). Hypercube is not the most 

appropriate protocol to use within the subgroups. For the most efficient performance, 

Hypercube requires that the number of parties is a power of 2, and clearly the number of 

members within a subgroup depends must be flexible to accommodate membership changes 

and dynamic changes leading to failures. This number is also determined by factors such as 

the network configuration, the topology, the density of a region, etc. Therefore, the number of 

subgroup members cannot be controlled or pre-determined. In this case, other protocols may 

prove to be more efficient, such as centralized, or tree-based schemes, etc. that do not have 

requirements on the number of participants. On the other hand, within the subgroup, we may 

be interested in improving various and possibly different metrics. 
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2.5.1. Initial Key Establishment Operation for (O), MO, MOT  

1st STEP of Initial Key Establishment for (O), MO, MOT 

(O) includes only 2-party DHKEs between each member and the subgroup leader. Then, the 

subgroup leader combines all these contributions by multiplying them, and blinding the 

product. MO and MOT establish a subgroup key by applying GDH.2 and TGDH within each 

subgroup respectively. GDH.2 and TGDH are proven to be secure, as extensions of the 

generic GDH protocol, proven to be secure under the assumption that the DDH problem is 

hard. Therefore, during STEP 1 of MO and MOT, all members obtain their subgroup key in a 

secure way. Each of the 2d subgroups establishes the subgroup keys that will be used for 

initiating step 2. In (O), each member generates a common key with the subgroup leader via a 

2-party DHKE. Then, at a later instance (STEP 3), the subgroup leader will distribute 

individually to each member parts of the common group key that will be processed with the 

secret key between individual member and subgroup leader. This star-based scheme in the 

subgroup of (O) resembles GKMP, with the difference that here the subgroup key is built 

from contributions of all members, and is not arbitrarily selected by the leader. Membership 

changes in the subgroup of (O) are handled similarly to GKMP, not in a very efficient way in 

terms of communication and computation. Providing more efficient subgroup protocols to the 

original 2d-Octopus scheme has been a basic motivation for the design of MO and MOT. In 

MO and MOT, GDH.2 and TGDH are applied instead, to improve one or more of the metrics 

of interest, particularly after the protocol reaches steady state. The subgroup leader, which 

can be for example the first member to compute the GDH.2 subgroup key in MO or the 

TGDH sponsor in MOT, will participate to STEP 2, using a function of the newly derived 

subgroup key. In contrast to (O), subgroup members in MO or MOT get the subgroup key 

already from the 1st STEP. In (O), simple members do not get a subgroup key at any step of 

the protocol execution. They get the group key at the 3d STEP, as in MO and MOT. This is 
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yet another difference between the original protocol and our modified versions. A subgroup 

key can be used to handle and coordinate the subgroup in a localized manner, for exchange of 

local information within the subgroup, for handling dynamic changes within the subgroup. As 

we are going to prove with our analytical evaluation, the extra cost to generate a subgroup 

key in the 1st STEP of the protocol in MO and particularly in MOT is compensated at the 3d 

STEP, where the existence of subgroup keys facilitates the communication of the group key 

and lowers the associated cost for this operation. Furthermore, we are going to show that 

modifying the original (O) so that the subgroup members share a common subgroup key after 

the 1st STEP does not degrade the security level already provided in (O).  

2nd STEP of Initial Key Establishment for (O), MO, MOT 

This step is the same for all three protocols. The subgroup leaders only execute Hypercube, 

using as initial secret values the subgroup keys computed at the end of the 1st STEP. 

Hypercube is proven to be secure under the passive adversarial model. It reduces to a generic 

GDH protocol, which is secure under the assumption that the DLP is hard.  

 
3d  STEP of Initial Key Establishment for (O), MO, MOT 

The subgroup leader of each subgroup S securely distributes to its members parts of the group 

key that has been computed at the end of Hypercube, in a way that each member that collects 

the corresponding parts can itself reconstruct the actual group key. This step is quite different 

in MO and MOT, as opposed to the (O). We will present an overview for all three protocols 

(O), MO, MOT, focusing on any arbitrary subgroup SA. We denote the associated subgroup 

leader as A, and the associated subgroup key as K(A). K(A) is blinded and used by A to 

initiate Hypercube in step 2. Assume that A interacts with leader B during the 1st Hypercube 

round. Below, we demonstrate the resulting values computed at the end of the first few 

Hypercube rounds for the subgroup leaders involved in each round.  

1st round (A↔B):  
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 B→A: ( )ii B kφα ∈Π =
( )BK Ia = BKa = BH ,    A→B: 

( )ii A kφα ∈Π
=

( )AK Ia = AKa = AH , 

A, B do a DHKE and compute: BAK Ka ∪ = ( )BAK I Ia ∪ = , ( )ii A B kφα ∈Π
= ABKa = ABH .  

2nd round (A↔C):  

C→A: 
( )( )K I IDCaaφ

∪
=

( )CDHaφ
.                    A→C: 

( )( )K I IBAaaφ
∪

=
)( ABHaφ . 

A, C (previously interacted with B, D respectively), do a DHKE and compute:  

( )( )( ) ( )K I IK I I DB CAa aaφ φ ∪∪
= ( ) ( )KK CDABa aaϕ ϕ = ) ( )( AB CDH Ha φφ = HABCD.  

3d round (A↔E):  

E→A: 
)) ((( )

KK GJEF aaaa ϕϕφ =
)) ((( )EF GJHHaa ϕϕφ = ( )EFGJHaφ . 

A→E: 
)) ((( )

KK CDAB aaaa ϕϕφ =
)) ((( )AB CDHHaa ϕϕφ = ( )ABCDHaφ . 

A, E (previously interacted with C, G respectively), do a DHKE and compute:  

 

( ) ( )ABCD EFGJH Haϕ ϕ = HABCDEFGJ, etc. 

The remaining rounds continue in a similar way. The final value is computed from all 

subgroup leaders and is the same for all subgroup leaders participating to the Hypercube.  

Notation: Functionϕ : p
∗Z → qZ , maps the resulting values of a DHKE from p

∗Z , to an 

order q subgroup G∈ p
∗Z  for the next Hypercube round, e.g. x = )( ABaϕ , where x, A, B 

∈ qZ , and ABa ∈ p
∗Z . We selected function ϕ  as modulo q of a value: ϕ (x) = x mod q.  

 
Lemma 2.4.1. For this instance ofϕ , the following is true: )( ABaϕ = ϕ (ϕ ((ϕ ( a ))A)B).  

Proof: )( ABaϕ = 
_

( ... )
A B times

a a aϕ
×
× ×                                                                               (2.1),  

where a can also be expressed in terms of modulo q: a = t×q+ϕ (a)              (2.2). 
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Substituting (2.2) for value a in (1), we get:  

)( ABaϕ =ϕ ((t×q+ϕ (a))× (t×q+ϕ (a))×…× ( t×q+ϕ (a)))                        (2.3). 

)( ABaϕ =ϕ (q×F (q, t, ϕ (a)) + 
1

( )
A B

aϕ
×

∏ ),                                                    (2.4). 

F (q, t, ϕ (a)) is the factor of (2.3) divided by q. Clearly, ϕ (q×F (q, t, ϕ (a))) = 0  (2.5). 

So, )( ABaϕ =ϕ (
1

( )
A B

aϕ
×

∏ ) = ϕ ((ϕ ( a ))AB) = ϕ (((ϕ ( a ))A) B) = ϕ ((X)B), (2.6). 

where X = (ϕ ( a ))A can be expressed as in (2.2), in terms of modulo q: X= r×q+ϕ (X),  s.t. 

similarly to (2.4), (2.5), we obtain: )( ABaϕ = ϕ ((ϕ (X))B), =  ϕ ((ϕ ((ϕ ( a ))A))B) .  

                     
Using leader A as our example, we see that leader A must collect the following values during 

the first three Hypercube rounds: BH = BKa , ( )CDHaφ , ( )EFGJHaφ , etc., respectively. 

These values can be obtained from any node, but without knowing the proper initial secret 

(subgroup key KA for leader A), they are of no use. KA will be combined with the BK received 

at the 1st round, to construct the secret value of the 2nd round, and so on and so forth. At STEP 

3, leader A communicates to its members all the intermediate BKs received during all d 

Hypercube rounds. Then each member uses KA, shared with leader A at the end of STEP 1, to 

reconstruct the same intermediate values with A until it generates the group key itself.  

Leader 
A 

Prev. Rnd 
secret 

Value Sent Value 
Received 

Next Rnd Secret  Secret Processed 

Rnd #1 KA 
AH = AKa  BH = BKa  ABH = ABKa  ϕ ( ABH ) 

Rnd #2 ϕ ( ABH ) )( ABHaφ  ( )CDHaφ  HABCD= 
) ( )( AB CDH Ha φφ  

ϕ ( HABCD) 

Rnd #3 ϕ ( HABCD) ( )ABCDHaφ
 

( )EFGJHaφ
 

HABCDEFGJ = 
( ) ( )ABCD EFGJH Haϕ ϕ

 

ϕ ( HABCDEFGJ) 
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Table 2.8. Illustration of values pertaining to leader A in this Hypercube example. 
 

(O): The subgroup key owned only by subgroup leader A is computed as follows: K(A):= 

( )i A ikφ∈∏ , where ki is the private key that member i has established with A as a result of 

their DHKE during the 1st step. K(A) is blinded and used by A to initiate Hypercube at the 2nd 

step. The secret value computed by A and B at the end of the 1st round is: BAK Ka ∪ = 

( )BAK I Ia ∪ = , ( )ii A B kφα ∈Π
= ABKa = ABH . A subgroup member can use ABH  instead of the 

subgroup key, to successfully reconstruct the final group key. ABH  is secret and hence not 

communicated in the clear: leader A distributes ABH  partially to each member j∈SA, sending 

to it only the value Xj =
)),( ( ))/ ( jii A B k kφ φα ∈Π

= jya . Only leader A and member j hold the 

secret value ( )jkφ . Member j can then raise ( )jkφ to the base Xj and 

compute:
( )) ( )

), ( ))/ (
( j jkii A B k k φφ φ
α ∈Π

= ( )j
j

kX φ = , ( )ii A B kφα ∈Π
= ABH . The remaining values 

that A sends to its members are the same for all members (i.e. illustrated in Table 2.8). 

MO, MOT: The subgroup key K(A) = KA is the result of the subgroup KG protocol applied to 

all subgroup members, including leader A during the 1st STEP. K(A) is blinded and used by A 

to initiate the Hypercube. The secret value computed by A and B at the end of the 1st round is: 

BAK Ka ∪ = ABKa = ABH . A subgroup member must also compute ABH , in order to 

successfully reconstruct the final group key. Since ABH  is secret and therefore cannot be 

communicated to the subgroup members in the clear, leader A needs only to send the value it 

gets from leader B after the 1st Hypercube round: BH = BKa . So, each member gets from 

leader A the same value BH , and raises it to the power of the secret subgroup key, that is 

used as the exponent, to finally compute: ABH = ( ) AK
BH = ( )B AKKa = BAK Ka . The 

difference with (O) is that here leader A needs only communicate (broadcast) the same single 
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value to all its subgroup members. This approach results in the substantial reduction of the 

communication and computation cost for the 3d STEP. In the case of MO and MOT, leader A 

does not need to compute |SA| base values as is the case in (O). It simply forwards value BH  

received during the 1st Hypercube round. In fact, during the 3d STEP, each subgroup leader 

communicates to its subgroup members only the BKs received during the d Hypercube 

rounds. Subgroup members in MO and MOT need only perform d MEs to derive the group 

key. All members start with the same secret value – subgroup key – and since they all receive 

identical values from leader A, the resulting intermediate values are the same for all members.  

  An issue to be investigated is whether this essential difference in the design of (O), MO and 

MOT affects the level of security in MO or MOT, compared to (O).  In the following lemma 

we show that the deviations from (O) during the 1st and 3d STEP of MO, MOT do not 

deteriorate the security level previously achieved in (O).  

 
Lemma 2.2. The distribution of the group key from leader to subgroup members at the 3d 

STEP of MO or MOT protocols is not less secure that the corresponding operation in (O). 

Proof: It has been shown in (O) that the group KD from the subgroup leader A to its 

members satisfies our security objectives. In MO and MOT, GDH.2 and TGDH used for the 

establishment of the common subgroup key are proven to be secure against passive 

adversaries. What remains to be seen is whether the existence (3d STEP of MO, MOT) of a 

common subgroup key affects the overall security of the schemes. In MO and MOT, the 

leader A communicates the same d values to all its members. Each member does d successive 

MEs, to generate the group key. Since all members receive and compute the same values, 

they can be logically abstracted and viewed as one super-member. Under this perspective, 

the protocol can be simulated as if there is only one member j subscribed to the subgroup 

leader A. The subgroup key established at STEP 1 in MO and MOT can be simulated as the 

secret key established between member j and leader A at STEP 1 in (O). Again, based on the 
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hardness of DLP, an adversary can learn nothing about this secret key KA by obtaining AH , 

even if the same AH  is transmitted multiple times, as in MO and MOT. In contrast, the 

adversary in (O) gets more possibilities, as it may collect distinct versions of AH , combine 

them and attempt to solve DLP or the factorization problem to obtain either the group key, 

the subgroup key or a pair-wise secret if possible (which is still infeasible). It is obvious that 

in the case of MO or MOT it is even harder for an adversary to extract any kind of secret 

information from the exchange messages during the 3d step of the protocol. Thus, MO and 

MOT provide equal or better level of security than the original (O).  

  However, one may argue that sharing a subgroup key among all subgroup members from 

the 1st STEP in MO or MOT makes these protocols more vulnerable (e.g. to Byzantine 

attacks) compared to (O). In (O), an adversary may need to compromise most if not all nodes 

or learn the secret member-leader pair-wise keys of most subgroup members to generate the 

subgroup key after the 1st STEP. However, it only needs to obtain the pair-wise secret key of 

one member at any step to generate the group key. In MO and MOT, an adversary needs to 

compromise any subgroup member to learn initially the subgroup key, and subsequently 

generate the group key at the 3d STEP. Thus, in all three protocols, an adversary needs to 

capture any single subgroup member or obtain the pair-wise secret or subgroup key of any 

single subgroup member to be able to generate finally the group key. From this perspective, 

all three protocols present the same vulnerability. In this work we do not investigate attacks 

from malicious insiders. In (O), an adversary needs to capture the subgroup leader to obtain 

the subgroup key, whereas in MO or MOT, it could get the subgroup key from any subgroup 

member. Getting the subgroup key however, is just an intermediate step, not the ultimate 

goal. In all three protocols, an adversary can generate the group key by getting either any 

pair-wise secret (in (O)) or the subgroup key (in all cases) of a subgroup member.  
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2.5.2 Initial Group Key Establishment: Analytical Evaluation of (O), MO, MOT 

Before we proceed to the analytical evaluation of all three protocols, we illustrate in Table 2.9 

an approximate estimation of the bit-complexity of a number of cryptographic parameters, 

required for the analysis of the protocols. Their derivation is described in our appendix in 

detail. During this auxiliary step, some of the results are quoted from the existing literature, 

and others are derived in this work, as the corresponding existing results are either platform 

or hardware/software implementation driven, or do not provide the bit accuracy required for 

our purposes. We are interested in the bit-complexities of these parameters to complete our 

analytical evaluation and produce results that are as generic as possible. 

We provide estimation of the following parameters: public encryption/decryption CPE and 

CPD, symmetric encryption /decryption CSE
 and CSD, ME operation CE, hashing operation Cg, 

KG functions Cr, and Crr. We use the pseudo-random number generator Crr, to generate secret 

shares for all protocols. This is different and simpler from the one we use to generate random 

numbers for the RSA system, Cr.  

Crr                 K + 1.5 (1/k)×K3 , 1< k< log2K    pseudo- random number generation  

Cr 0.5×K4 + 0.35×K3 + 0.35×K2 ,     pseudo-random generation for primes (used 
for RSA keys) 

CPE 3.5×Ke×K2 + 2×Ke ×K          (RSA method, Common selections for Ke and Kd 
are: Ke=3,  Kd < K) 

CPD 
 (3.5/25)×Kd ×K2

  + (2/25)×Kd×K                         (RSA method) 

CSE , CSD CDES ×K,      35<CDES<60                                      (DES method) 

CE 3.5× l×K2 + 2× l×K          (Montgomery complexity for mod multiplications, l: 
bit-size of exponent) 

Cg 30×K 

Table 2.9. Bit-complexity of cryptographic parameters used in the protocols. 
 
STEP 1: Each Subgroup establishes its own Subgroup Key 

ORIGINAL OCTOPUS - (O):  
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The members of each subgroup run a hybrid KA protocol similar to this of GKMP. Each 

subgroup member is engaged in a 2-party DHKE with its leader. All (n-2d) members of all 

subgroups send one message to their leaders, and the leaders broadcast to members 2d 

messages in total. This is so because we assume that the leader sends the same share xa to it 

own members. Each member j of course creates its own secret share jλ , and the resulting 

secret key shared with its leader becomes: jy = jxa λ . Hence, all leaders (2d) and all members 

(n-2d) together contribute (n-2d+2d) = n communication messages for the initial DHKE 

between member-leader. Each leader performs ( ⎡ ⎤d
dn

2
2− +1) MEs and the member performs 2 

MEs. The leader stores the ⎡ ⎤d
dn

2
2−  partial keys shared with each member, and also 

multiplies those keys to generate the subgroup key it is will use at the 2nd step. In the original 

documentation of (O), these multiplications are non-modular. However, taking into 

consideration Lemma 2.1, the leader can equivalently compute directly (a) the modular 

values of the elements it sends to each member, and (b) the modular value of the subgroup 

key. That is, the leader computes directly the values: ( )( )AK Iaϕ  instead of K(IA), and 

( \{ ( )})( )jB AK I I ka ϕϕ ∪
instead of )( \{ ( )}jB AK I I ka ϕ∪

, for a given member j. The leader 

computes the partial key KA,B as: KA,B =
( ) ( )( ) ( )( )

K I K IA Ba aaϕ ϕ =
( )( )( )

BK IA Iaaϕ
∪

. Similarly, 

member j receives 
( \{ ( )})( )jB AK I I ka ϕϕ ∪

 and computes: 
( \{ ( )}) ( )(( ( )) )j jB AK I I k ka ϕ ϕϕ ϕ ∪

 = 

( \{ ( )}) { ( )}(( ( )j jB AK I I k ka ϕ ϕϕ ϕ ∪ ∪
= ( )( )B AK I Iaϕ ∪ , which is what member j must obtain in 

order to generate the final group key.  

We will now compute the processing cost incurred at the subgroup leader for both options: 

(a) follow the original Octopus protocol and perform non-modular multiplications, and (b) 

spare substantial processing cost, by computing the moduli of the designated values, as 

discussed above. We start by exploring option (a). The following two lemmas contribute to 
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the computation of the processing cost incurred by the leader to generate the intermediate 

subgroup key and the intermediate values at the end of STEP 1. 

Lemma 2.3. The processing cost for the non-modular multiplication of ⎡ ⎤d
dn

2
2−  elements of 

size K (in bits) each is approximately: M = ⎡ ⎤d
dn

2
2− ( ⎡ ⎤d

dn
2

2− - 1
2 ) 2K× . 

Proof: The leader must multiply x= ⎡ ⎤d
dn

2
2−  elements of length K. The product of these non-

modular multiplications is the subgroup key. The processing cost for this operation can be 

computed as follows: the x elements are pair-wise multiplied. The products of these 

multiplications have size 2×K bits and are pair-wise multiplied as well resulting in products 

of size 4×K bits, and so on and so forth. The processing cost for the non modular 

multiplication of two elements of bit size K each is approximately K2. As the number of 

elements after each round of multiplications is reduced to half, the total number of 

multiplication rounds is y = log2x. For example, at round j the number of multiplications is 

x/2j, and the size of each element is: 2j-1×K. The total processing cost is: 

 M = 1 2

1
(2 )

2
j

j
j

y x
K−

=
× ×∑ =

1 2
2

1

)(2

2

jy

j
j

Kx
−

=
× × ∑ = 2 2

1
2

y
j

j
Kx −

=
× ×∑ = 

0

2

2
2

y
j

j
K

x
=

× ×∑  

M = 2 1
)

2
(2 1yK

x +× × − = 2 2 2

2
xx K K× − × = 2 2( )

2
xx K− × = ⎡ ⎤d

dn
2

2− ( ⎡ ⎤d
dn

2
2− - 1

2 ) 2K× .                                            

The leader processes the subgroup key again before the beginning of the 3d STEP, to generate 

the partial contribution to be sent to each of the x subgroup members during STEP 3. Hence it 

stores another x values. These values are generated for each member by dividing the 

subgroup key computed only at the leader (bit size x×K) with the secret key that corresponds 

to the member in discussion (bit size K), erasing thus the contribution of that member from 

the subgroup key. A simple way to execute the division operation with multiplications and 

subtractions only and with less complexity, particularly in the number of subgroup members 
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is large, is to use the “divide and conquer algorithm”. Otherwise, the leader can re-do x 

multiplications of (x-1) shares to generate the shares of all x members. In the latter case, 

under the worst case scenario, the processing at the leader becomes: ⎡ ⎤d
dn

2
2− 3 2K× . 

 We now explore option (b). The leader does ⎡ ⎤d
dn

2
2−  MEs to compute the subgroup key, and 

⎡ ⎤d
dn

2
2− × ( ⎡ ⎤d

dn
2

2−  -1) MEs to compute the partial keys of all its subgroup members. 

Below, we summarize the most significant computation costs for the Initialization case at the 

1st step, under the worst case scenario (under option (a)): 

(a) Total Communication Cost: n×K bits, (b) Leader Computation Cost: Crr + 

( ⎡ ⎤d
dn

2
2− +1)×CE + ⎡ ⎤d

dn
2

2− 3 2K× , (c) Member Computation Cost: Crr + 2×CE, (d) Leader 

Storage Cost: ⎡ ⎤d
dn

2
2− ×K + ⎡ ⎤d

dn
2

2− × ( ⎡ ⎤d
dn

2
2− +1)×K  bits. 

MODIFIED OCTOPUS WITH GDH.2 - (MO) and TGDH – (MOT): 

The sponsor of TGDH for MOT, and the Mn member of GDH.2 for MO, becomes the sub-

group leader. In fact, any member of MO, and MOT may become subgroup leader and 

represent its subgroup during STEP 2 and 3, because all members obtain the subgroup key at 

the end of STEP 1. The required operations to derive the group key are exactly the same for 

these members in MO and MOT. We assume that each subgroup contains ⎡ ⎤d
n

2  members. 

GDH.2 related Costs for the 1st Step of the Initial Phase of MO. 

(a) Total message length for the 2d  leaders is: 2d-1 ×  ( ⎡ ⎤2
2d

n +3 ⎡ ⎤d
n

2 -4) ×K bits, (b) MEs 

per leader: ⎡ ⎤d
n

2 , with cost CE, (c) avg. MEs per member: ( ⎡ ⎤12 +d
n +1), with cost CE.  

TGDH related Costs for the 1st Step of the Initial Phase of MOT. 
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(a) Initial Sponsor Bandwidth: ( 2

1
12
d

h n

i
i

⎡ ⎤
⎢ ⎥⎢ ⎥

=
−∑ )×K = (2 ⎡ ⎤d

n
2 -1)×K, (b) Initial Member 

Bandwidth: h×K, (c) Total Initial Bandwidth: ( ⎡ ⎤d
n

2 × (2+h)-1-h) ×K, (d) Initial 

Member/Sponsor Computation Cost: Each member/sponsor does 2h MEs. 

 
STEP 2:  The subgroup leaders of (O), MO, and MOT execute Hypercube. 

This step is identical for all three protocols (O), MO, and MOT. For the initial derivation of 

the group key the 2d leaders perform Hypercube with initial values the blinded subgroup keys 

they have obtained from STEP 1. Hypercube requires d rounds, in each of which we have an 

exchange of 2d messages (2d-1 DH pairs/round). Each leader performs 2×d MEs in total. The 

combined message length is 2d ×d ×K bits. 

 
STEP3: Leaders of (O), MO, MOT, distribute the group key to their subgroup. 

In the example for the simple (O) the authors have used d = 2. For d > 2, STEP 3 should be 

modified as follows: each of the 2d subgroup leaders must communicate now d values to its 

group, in analogy to the two values derived for the case where d=2. For example if d=3, we 

have eight leaders noted as: A, B, C, D, E, F, G, H), and the following operations are executed: 

Keys derived after 1st round: ABa , CDa , EFa , GHa .                       

Keys derived after 2nd round: 
AB CDa aa , 

EF GHa aa  

Key derived after 3d round: 
AB CD EF GHa a a aa aa       (final group key). 

The subgroup leader A communicates the following d parts of the group key to its member j: 

(O): a
EF GHa aa , 

CDaa , 
/AB K ja ,                                   (MO), (MOT): a

EF GHa aa , 
CDaa , Ba .  

What differentiates (O) from MO and MOT, is the last value communicated to members by 

the subgroup leader. This value differs for every member in (O), but is the same for the 
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members the same subgroup in MO or MOT. The rest (d-1) values are the same for all 

members in the subgroups of all three protocols. The leader broadcast to its members the d 

values and the members do d MEs to compute the final group key. Each member raises the 

value that corresponds to the 1st Hypercube round the to the power of its own secret and gets 

the first outcome, then raises the value that corresponds to the 2nd Hypercube round to the 

first outcome, and computes the second outcome etc. It finally raises the dth part of the key 

that corresponds to the dth Hypercube round to the (d-1)th outcome and gets  the group key.  

Example: Member j execute MOT and obtains subgroup key X at the end of STEP 1. At the 

end of STEP 3, it receives from A the following values: Ba (outcome of 1st HCube round), 

CDaa (outcome of 2nd HCube round), a
EF GHa aa (outcome of 3d HCube round). Member j 

computes the group key through the following d MEs: 

1: ( Ba )X = aBX  ,        2. ( )a aCD XB
a = a aCD XB

a ,     3. ( )a
EF GH a aa a

CD XBaa = GK. 

(a) Leader Bandwidth for MO: (d-1+ ⎡ ⎤d
dn

2
2− )×K, (b) Leader Bandwidth for MOT: 

d×K, (c) Member Computation Cost for MO and MOT: d MEs with cost CE. 

 
2.5.3. Re-Keying Operations at Steady state for protocols: (O), MO, and MOT. 

STEP 1: Each Subgroup Re-Keys within its own Subgroup 

Each subgroup in (MO) or (MOT) handles member additions/evictions exactly as indicated 

by GDH.2 or TGDH protocols. The case of member additions/evictions has not been 

anticipated for (O), so we present our own algorithm for handling the membership changes at 

steady state. The key observation in the case of membership changes is to initially re-compute 

the subgroup key only for this subgroup in which the membership change has occurred. 

Hence, during STEP 1, only the subgroup(s) that have witnessed a membership change 

become active, initiate and execute STEP 1.  

ORIGINAL OCTOPUS - (O):  
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Important Security Constraint: The re-keying algorithms of GDH.2 or TGDH preserve the 

properties of forward and backward secrecy. It is essential that the hybrid star protocol used 

in the subgroups of (O) provides re-keying algorithms that ensure these properties. We 

modify the original hybrid star scheme to meet the security requirements, in a similar manner 

as most contributory schemes handle membership changes: another member of the same 

subgroup modifies its secret share and establishes a new DH key with its leader. So, the 

leader in the case of join (evict) performs two (one) DHKEs. Then, the leader must compute 

the new group key. Let member j be the one that modifies its shared key from Kj to Kj
/ with 

the leader in either case (addition or eviction). 

Addition: Let the new member m establish with the leader the shared key Km. The old 

subgroup key was: K= 1 2... ...j lK K K K
a , while the new subgroup key is: K’ = 

'
1 2... ... mj lK K K K K

a . The partial keys the members will receive from their leader will contain 

the secret exponent Kj
/ and/or the secret exponent Km. Hence, the new member won’t be able 

to derive the old key and backward secrecy will be preserved. Now, the leader must compute 

the new partial keys that will be communicated to its subgroup. Assuming that it has stored 

all partial keys that correspond to the previous subgroup key for each member individually, it 

is simple to compute the new partial keys. The subgroup leader computes K’ from K as 

follows, referring to cases (a) and (b) distinguished during the analysis of the initial key 

establishment operation: 

Case (a) (non-modular multiplications): We multiply the previous exponent by: 1 '
j mjK K K− ,  

Case (b) (modular multiplications): We do three successive MEs as follows: 
1 '

(( ) )
KK Kj j mK

−
. 

 The partial keys of members are computed in a similar fashion, i.e. for member j, the 

previous partial key stored is raised to Km, and for member m the previous subgroup key 

stored is raised to 1 '
j jK K− . 
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We now calculate the total computation cost incurred at the leader when either of the two 

versions (a), (b) is used. Let x= ⎡ ⎤d
dn

2
2− , for ease of the notation.  

Version (a):  

1) (x-1) multiplications of an element of size (x-1)K (the previous partial keys of members 

already stored), with an element of size 3K (with processing cost of approximately 2K2),  

2) 1 multiplication of an element of size xK (the previous subgroup key already stored) with 

an element of size 3K (with processing cost of approximately 2K2), 

3) 1 multiplication of an element of size (x-1)K (the previous partial key of member j already 

stored) with an element of size K, and  

4) 1 multiplication of an element of size xK (the partial key that corresponds to the new 

member m) with an element of size 2K, (with processing cost of approximately K2). 

In total, the processing cost incurred at the leader becomes: (x-1)[(x-1)3K2+2K2]+[3xK2 +2 

K2] +[(x-1)K2]+[2xK2+K2]=(3x2+2x+5)K2=(3( ⎡ ⎤d
dn

2
2− )2+2 ⎡ ⎤d

dn
2

2−  +5)K2. 

Subsequently, the total storage cost for the leader becomes: (x-1)[(x-1)K+3K]+[xK+3K]+[(x-

1)K+K]+[xK+2K]=(x2+4x+3)K=(( ⎡ ⎤d
dn

2
2− )2 +4 ⎡ ⎤d

dn
2

2− +3)K. 

Version (b):  

1) 3 MEs for (x-1) elements (the previous partial keys of members already stored),  

2) 3 MEs for 1 element (the previous subgroup key already stored), 

3) 1 ME for 1 element (the previous partial key of member j already stored) 

4) 2 MEs for 1 element (the partial key that corresponds to the new member m). 

The processing cost incurred at a leader becomes: (3(x-1)+3+1+2)CE = 3(x+1)CE =3 ⎡ ⎤d
n

2 CE. 

Subsequently, the total storage cost for the leader becomes: (x+2)K = ( ⎡ ⎤d
n

2 +1)K. 

For the case of member addition at STEP 1, we summarize the most significant costs: 
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(a) Leader Bandwidth: 2K, (b) Member Bandwidth: K (for two members), 0 for the rest, 

(c) Leader Computation: (3( ⎡ ⎤d
dn

2
2− )2+2 ⎡ ⎤d

dn
2

2− +5)K2+2CE   (version a), (3 ⎡ ⎤d
n

2 +2)CE 

(version b), (d) Member Computation: Crr+2CE (two members only), 0 for the rest, (e) 

Leader Storage: (( ⎡ ⎤d
dn

2
2− )2 +4 ⎡ ⎤d

dn
2

2− +3)K  (version a),  ( ⎡ ⎤d
n

2 +1)K  (version b). 

Deletion:  Let member l be the evicted one. 

The old subgroup key was: K= 1 2... ... tj lK K K K K
a , while the new subgroup key is: K’ 

=
'

1 2... ... mjK K K K
a . The subgroup members will receive new partial keys from their leader that 

contain the secret exponent Kj
/. Hence, the evicted member won’t be able to derive the new 

group key, and the forward secrecy will be preserved. Now, the subgroup leader must 

compute the new partial keys that will be communicated to its subgroup. Assuming that it has 

stored all partial keys that correspond to the previous subgroup key for each member, it is 

simple to compute the new partial keys. The subgroup leader computes K’ from K as follows:  

(a) It multiplies the previously stored exponent with 1 '
j jK K− , 

(b) It performs two MEs as follows:
1 '

( )
KK j jK

−

.  

For the computation of the partial keys of all members x≠ j, l the process is similar to this 

described for the subgroup key. For member j, no additional partial key needs to be sent.We 

calculate the total computation incurred at the leader when any of the two versions is used.  

Version (a):  

1) (x-1) multiplications of an element of size (x-1)K (the previous partial keys of members 

already stored), with an element of size 2K (with processing cost of approximately K2),  

2) 1 multiplication of an element of size xK (the previous subgroup key already stored) with 

an element of size 2K (with processing cost of approximately K2). 
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In total, the processing cost incurred at the leader becomes: (x-1)[(x-1)2K2+K2]+[2xK2+K2] = 

(2x2-x+2)K2 = (2( ⎡ ⎤d
dn

2
2− )2 - ⎡ ⎤d

dn
2

2− +2)K2. 

Subsequently, the total storage cost for the leader becomes: (x-1)[(x-1)K+2K] + [xK+2K] = 

(x2+x+1)K = (( ⎡ ⎤d
dn

2
2− )2 + ⎡ ⎤d

dn
2

2− +1)K. 

Version (b):  

1) 2 MEs for (x-1) elements (the previous partial keys of members already stored),  

2) 2 MEs for 1 element (the previous subgroup key already stored). 

The processing cost incurred at the leader becomes: (2(x-1)+2)CE = 2xCE =2 ⎡ ⎤d
dn

2
2− CE. 

Subsequently, the total storage cost for the leader becomes: xK = ⎡ ⎤d
dn

2
2− K. 

For member deletion case at STEP 1, we summarize the most significant costs incurred: 

(a) Leader Bandwidth: K, (b) Member Bandwidth: K (for one member only), 0 for the rest, 

(c) Leader Computation: (2( ⎡ ⎤d
dn

2
2− )2- ⎡ ⎤d

dn
2

2− +2)K2 +CE   (version a),   (2 ⎡ ⎤d
dn

2
2− +1)CE 

(version b), (d) Member Computation: Crr+2CE (one member only), 0 for the rest, (e) 

Leader Storage: (( ⎡ ⎤d
dn

2
2− )2 + ⎡ ⎤d

dn
2

2− +1)K  (version a),  ⎡ ⎤d
dn

2
2− K  (version b). 

 
Modified Octopus (MO), (MOT):  

The subgroup members handle membership changes exactly as indicated by GDH.2 or 

TGDH re-keying algorithms respectively. We summarize the main results for member 

addition/deletion in Table 2.10, and we omit the computations here to avoid redundancies. 

STEP 2: All subgroup leaders execute Hypercube (Re-keying version) 

We execute a “reduced Hypercube version”, to propagate to the whole group the membership 

changes that occurred in one or more subgroups. However, the subgroups that have witnessed 

no membership changes during this period, may participate with their old subgroup keys. 
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Security Aspect: The properties of backward and forward secrecy are not violated. This is 

so, because once the subgroup key of the subgroup that has witnessed a membership change 

is altered in a way that the backward and forward secrecy are preserved, the new group key 

established via Hypercube is such, that the evicted (new) member would require the new 

(old) subgroup key to reconstruct the new (old) group key. For example, assume that Octopus 

consists of four leaders, denoted as A, B, C, D, with subgroup keys KA, KB, KC, and KD 

respectively. These leaders execute Hypercube with d=2 at STEP 2, and produce the 

following group key K=
( )( ) ( )( )KA KB KC KDa aa . Assume now that a membership change occurs in 

the subgroup of leader A, and its current members compute a new subgroup key: KX. If 

Hypercube is executed minimally, that is, using the previous shares of the subgroups that 

witness no membership changes, the new group key becomes: K’=
( )( ) ( )( )KX KB KC KDa aa . The 

subgroup members of leader A, use the previously stored intermediate shares received during 

the previous execution of step 3, ( KBa ,
( )( )KC KDaa ) and combine them with their newly 

computed subgroup key KX to compute K’. It is obvious that a member that knows K cannot 

compute K’ without knowledge of KX (forward secrecy), and a member that knows K’ cannot 

compute K without knowledge of KA (backward secrecy). Hence, subgroups that do not 

experience membership changes can participate to subsequent executions of Hypercube with 

the same subgroup keys, without affecting the security level of the overall scheme.  

Performance Characteristics: Not all calculations need to be done anew during the 

Hypercube execution after re-keying. This is so, since at any round, those subgroup leaders 

for which the BKs to be communicated to their peers have not been modified during STEP 1 

or during the previous rounds, are already stored in their peers and need not be communicated 

to them again. During any given round, we distinguish the following cases for a leade: 

(a) it needs not send its BK to its peer and it does not receive an updated BK from it either. 

They both do 0 MEs and will use for the next round the stored BK of the previous execution. 
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(b) it needs not send its BK to its peer, but receives an updated BK from it. They both do 2 

MEs, 1e to compute the new secret key, and 1 to compute the updated BK for the next round.  

(c) it sends its BK to its peer, but does not receive an updated BK from it. They both do 2 

MEs, 1 to compute the new secret key, and 1 to compute the updated BK for the next round.  

(d) it sends its BK to its peer, and receives an updated BK from its peer. They both do 2 MEs, 

1 to compute the new secret key, and 1 to compute the updated BK for the next round.  

   In this case it can be seen that 2i-1 messages are transmitted per round: in the 1st round one 

leader with modified BK sends an update to its peer, in the 2nd round 2 leaders with modified 

content will send updates to its peers, and in general, the leaders with modified content are 

doubled in every round, and so are the updated messages. Each subgroup leader that either 

sends or receives an updated BK performs 2 MEs: 1 to compute the updated secret key of the 

subsequent round, and 1 to blind that secret key. In the 1st round, 2 members are active 

(senders or recipients of updated values), in the 2nd round, 4 members are active, in the ith 

round 2i members are active, and perform 2i+1 MEs, and so on and so forth.  

 

 

 

 

 

Figure 2.15. (a) Previous HCube, (b) A changes partial key (PK), (c) Rnd1: A sends PK to B, 
(d) Rnd2: Only A, B send PKs to C, D, (e) Rnd3: only A, B, C, D send PKs to E, F, G, H, (f) 
End of re-keying, group key created only with: 7 messages vs. 24, 14 MEs vs. 48. 
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=
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It is obvious that Hypercube is re-run with the minimum cost computed above, only if 

membership changes occur: (a) in one subgroup only, or (b) in two subgroups that happen to 

be peers during the 1st Hypercube round. If membership changes occur within multiple 

subgroups, then the resulting communication and computation cost to run Hypercube is 

higher, but also depends on the relative logical placement of these subgroups (i.e. in which 

Hypercube round they become peers). After two subgroups become peers in Hypercube, they 

are combined, as if the one peer is absorbed to the other, and they propagate the updated 

blinded information, as if the one peer was just activated by the other. Before that however, 

each subgroup updates its peers individually, resulting in a more expensive execution. 

Referring to the previous example, membership changes in the subgroups of A, B, G result in 

the following communication exchanges: 

Rnd1: A<->B, G->H (3), Rnd2: A->C, B->D, G->E, H->F (4), Rnd3: all subgroups 

participate (8). Hence, subgroups of A, B, G results in a total of 15 messages. 

Membership changes in the subgroups of A, C, G result in the following exchanges: 

Rnd1: A->B, C->D, G->H (3), Rnd2: A<->C, B<->D, G->E, H->F (6), Rnd3: all subgroups 

participate (8). Hence, subgroups of A, B, G results in a total of 17 messages. 

 
We will now compute the overall cost required for running Hypercube after re-keying, when 

re-keying occurs within X subgroups. In any given Hypercube round i, we denote as Ti(Z) the 

subset of peers that correspond to a given subset Z, where Ti is the mapping function of a 

node to its peer, according to the Hypercube schedule in round i. We start with the subset 

S=X, and after each Hypercube round j this subset is expanded as follows: S -> S ∪ Tj(S). In 

other words, after round j, the subset S will expand to include those peers of S during round j 

that do not already belong to S. The cardinality of S before each round j, represents the 

number of messages that will be communicated during round j, the overall number of 

messages communicated can be computed by adding the cardinality of S for every round. We 
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denote the instance of S before any given round j as Sj. Then, we compute the total 

communication cost as: 
1
| |

d

i
i

S
=
∑ , and the total number of MEs as: 2

1
| |

d

i
i

S
=
∑ .  

If before the start of round (k+1)<d, S includes all Hypercube parties 2d, then the remaining 

communication cost until round d is this of the original execution, that is: (d-k)×2d. To 

provide an upper limit for the above formulae, we assume that the subset S is doubled in 

every round (the pairings are not taken into account), until round k, after which |S| = 2d. That 

occurs if 2k×X ≥ 2d , while k<d, or if: k ≥ d-log2X. 

Then, 
1
| |

d

i
i

S
=
∑ ≤ 1

1
2i

k

i
X−

=
∑ + (d-k)×2d = (2k-1)X+(d-k)×2d ,    d-log2X≤ k≤d,      

without considering the pairings, that would reduce the resulting communication cost even 

further. The reduction in the communication cost reduction (from original Hypercube) is:  

d×2d - (2k-1)×X - (d-k)×2d  =  k×2d - (2k-1)X  = 2k× (2d-k×k-X) + X,  0 ≤ k<d. 

Indeed, for k=0, the reduction in the communication cost is 0, as expected. If we take the 

pairings into account, then we can provide a more stringent upper limit for the latter 

formulae. Assume that round 1 includes y1≤min{|S1|=X, 2d-1} peers (that is y1/2 pairs), round 

2 includes y2≤min{|S2|, 2d-1} peers, …, round (d-1) includes yd-1 ≤min{|Sd-1|, 2d-1 } peers, etc. 

Round 1: X messages are produced from the X leaders. Since there are y1/2 pairs in this 

round, expansion of one of the two peers for the subsequent rounds will include the other 

peer. For the next round we need to consider the expansion of X1 = (X- y1/2) leaders, to avoid 

the consideration of duplicate messages. The expansion includes 2×X1 = (2×X - y1) leaders.  

Round 2: The 2X1 leaders send messages to their peers of the current round (hence 2X1 

messages), and the expansion includes 2× (2×X1 - y2/2) = (4×X1 – y2) = 4×X-2×y1-y2. 
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Round i: The 2Xi-1 leaders send messages to their peers of the current round (2Xi-1 messages), 

and the expansion includes 2× (2×Xi-1 - yi/2) = (4×Xi-1 – yi) = 2i×X-2i-1×y1-2i-2×y2-… - yi. 

Working similarly, after the end of round d, the number of messages sent becomes:  

1
| |

d

i
i

S
=
∑ ≤ (2l-1)×X + (d-l)×2d – (2l-1-1)×y1 – (2l-2-1)×y2 - …. - yl-1,   (d-log2X)≤ k≤ l<d. 

The reduction in the communication cost (as opposed to the original Hypercube) is: 

 d×2d - ((2l-1)×X – (2l-1-1)×y1 – (2l-2-1)×y2 - …. - yl-1 +(d-l)×2d) = 2l× (2d-l× l-X) + X + (2l-1-

1)×y1 + (2l-2-1)×y2 + …. + yl-1   ≥   2l× (2d-l× l-X) + X + (2l-1-1)×y1.  

From the latter inequalities it is obvious that if pairings are considered, the reduction in the 

communication cost becomes even more significant. Hence, we have provided a formal 

algorithm that computes the associated costs for executing Hypercube after re-keying, 

for a general configuration, and we have shown how significant the overhead reduction due to 

our algorithm is, as opposed to executing the original protocol from scratch. Of course, the 

more the leaders that compute a new group key, the less the overhead reduction, which is 

expected. If (2d-1) or 2d leaders re-key, our algorithm converges to the original Hypercube.  

 
STEP 3: Subgroup leaders distribute the new group key to their members. 

Now, all subgroup leaders possess the same group key, and they are going to distribute it to 

their subgroup members at STEP 3. For d>2, STEP 3 is modified as follows: each of the 2d 

leaders communicates now to its subgroup only those partial BKs that have changed since the 

previous Hypercube execution. Hence, a leader may communicate 1 to d partial intermediate 

keys, as opposed to the d values communicated in the the initial group key establishment.  

Example with Re-Keying in 1 Subgroup Leader: For the case of d=3, we denote the eight 

leaders as: A, B, C, D, E, F, G, H. In this example we illustrate the operations performed and 

the values communicated during a re-keying operation for STEPS 2 and 3, when leader A 

witnesses membership changes and modifies its subgroup key from KA to X.  
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After round 1 the BKs derived and/or stored are: BXa , CDa , EFa , GHa  .                                        

After round 2 the BKs derived and/or stored are: 
XB CDa aa , 

XB CDa aa , 
EF GHa aa , 

EF GHa aa  . 

After round 3 the new group key derived is: 
XB CD EF GHa a a aa aa for all four pairs. 

Subgroup Leader A: After the end of the 3 rounds A has stored the following values: 

1: X, 2: Ba , 3: 
CDaa , 4: 

EF GHa aaa , 5: 
XB CD EF GHa a a aa aa . 

The intermediate values 2, 3, 4, remain unchanged from the previous time. The members of 

subgroup A will also use the same intermediate values they have stored from the previous 

time. We now show exactly where protocol (O) differentiates from MO, and MOT: 

(O): Leader A needs only communicate the following part of the group key, denoted as 1’, (in 

the place of values 1,2) to each member j:
/XB K ja . Each member raises its secret key (Kj) to 

(1’), and uses the outcome as the exponent to which (3) will be raised, the outcome will be 

used as the exponent to which value (4) will be raised, and the group key (5) will be 

generated. Hence, each member does 2 MEs in this example, or d in the case of a d-Cube.  

Communication Cost for Leader: ⎡ ⎤d
dn

2
2− ×K,  MEs for Members: d, with cost CE each. 

(MO), (MOT): Now, the members already have all the required intermediate values as well 

as the subgroup key X. Hence, leader A needs to communicate nothing to its subgroup at 

STEP 3. Each member will use (1) as the exponent to which (2) will be raised, the outcome 

will be used as the exponent to which value (3) will be raised, the outcome will be used as the 

exponent to which value (4) will be raised, and the group key (5) will be generated. Hence, 

each member performs 3 MEs in this example, or d in the case of a d-Cube.  

Total Communication Cost for Leader or Members: 0. 

Total MEs for Members: d, with cost CE each. 

Subgroup Leader B: After the end of the 3 rounds B has stored the following values: 
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1: β , 2: Xa , 3: 
CDaa , 4: 

EF GHa aaa , 5: 
XB CD EF GHa a a aa aa .  

The intermediate values (1), (3), (4), stored remain the same but for one: (2): Xa . Leader B 

will only need to communicate to its members messages related to this value, depending on 

which of the three protocols it executes. The members of subgroup B will also use some of 

the intermediate values they have stored from the previous time. We now show exactly where 

protocol (O) differentiates from MO, and MOT: 

(O): Leader B needs only communicate the following part of the group key, denoted as 1’, (in 

the place of values 1,2) to each member j:
/XB K ja . Each member will raise its secret key (Kj) 

to (1’), and use the outcome as the exponent to which (3) will be raised, the outcome will be 

used as the exponent to which value (4) will be raised, and the group key (5) will be 

generated. Hence, each member does 2 MEs in this example, or d in the case of a d-Cube.  

Total Communication for Leader: ⎡ ⎤d
dn

2
2− ×K. Total MEs for Members: d, with cost CE. 

(MO), (MOT): Members already possess all the required intermediate values but one: 

(2): Xa . Members also possess the subgroup key β . Hence, leader B needs to communicate 

(2) to its subgroup at step 3. Each member will use (1) as the exponent to which (2) will be 

raised, the outcome will be used as the exponent to which (3) will be raised, the outcome will 

be used as the exponent to which (4) will be raised, and the group key (5) will be generated. 

Hence, a member needs to perform 3 MEs in this example, or d MEs in the case of a d-Cube.  

Total Communication for Leader-Members: K, Total MEs for Members: d, with cost CE. 

 
Subgroup Leader F: After the three Hypercube rounds F has stored the following values: 

(1): f, (2): Eα , (3): 
GHaa , (4): 

EF GHa aaa , (5): 
XB CDa aaa , (6): a a

XB CD EF GHa a a a
a .  

Observe that all intermediate values stored remain the same but for one: (5):
XB CDa aaa . This is 

the only value that the leader needs to communicate to the members of its subgroup after the 
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derivation of the group key. Then, these members will be able to reconstruct the group key 

themselves by performing one ME. In this case, (O), MO, and MOT do not differentiate: 

(O), MO, MOT: Leader F needs only communicate the blinded intermediate value (5): 

XB CDa aaa  to all its members. Each member knows the secret value that corresponds to the 

intermediate BK (4), and will use that secret value as the exponent to which value (5) will be 

raised, and the group key (6) will be generated. Hence, a member does 1 ME in this example.  

Total Communication for Leader: K,     Total MEs for Members: 1, with cost CE each. 

 
Example Generalization: It can be seen that not all members do d MEs as in the initial case: 

members of 2d-1 leaders (i.e. E, F, G, H in this example) do only 1 ME, members of 2d-2 

leaders (i.e. C, D in this example) do 2 MEs, …, members of 2d-x leaders do x MEs, and so on 

and so forth. Members of the leader that witness membership changes and its 1st Hypercube 

round peer (i.e. A, B) do d MEs to reconstruct the new group key. In average, members of 

each participant do 2 MEs to reconstruct the new group key in the case of addition/deletion.  

  The leader in the subgroup of which a membership change occurred needs to communicate 

to its members no parts for MO or MOT, and one part only for (O). All the rest of the leaders 

need to communicate one intermediate BK as well for any of the three protocols (O), MO, 

MOT. So, the leader communicates only one value to the whole subgroup, the value each 

member requires to reconstruct the group key, which is the same for every member in the 

subgroup. We denote the number of members in each subgroup as x = ⎡ ⎤d
dn

2
2− . 

Total # MEs in (O), MO, MOT for all members: x 1

1
2 ( 1 )i

i

d
d i−

=
+ −∑ =x[(2d-1)× (d+1)- 1
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i
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x[(2d-1)× (d+1)-2d×d+ 1
2

1
2i

i

d

=
∑ ]=x[(2d-d-1)+(2d-1)]=x(2d+1-d-2)= ⎡ ⎤d

dn
2

2− (2d+1-d-2)=(n-2d)×2- ⎡ ⎤d
dn

2
2−  

× (d-2) , with cost CE each, as opposed to (n-2d)×d for the initial establishment. 

Note: 1
2

1
2i

i

d
i

=
×∑ = 2d ×d - (2d – 1) = 2d × (d-1) + 1. 

Total Communication Cost in (O) for all subgroup leaders: (2× ⎡ ⎤d
dn

2
2−  + (2d-2))×K, (as 

opposed to [(n-2d) + (2d× (d-1)]×K for the initial case).  

Total Communication Cost in MO, MOT for all subgroup leaders: (2d-1)×K, (as opposed 

to (2d×d)×K for the initial case). 

Multiple Subgroup Leaders Re-Keying Case: Assume now that X subgroup leaders witness 

membership changes within their subgroup and modify their subgroup key. From the subset 

of the X modified subgroup keys we want to compute how many and which intermediate BKs 

stored by the leaders at the end of Hypercube will be modified as well. Referring to the 

previous example, if the subgroup keys of leaders C, F are modified, the intermediate BKs 

that will be affected, stored at a subset of the leaders, will be those that contain any of the 

modified keys in any rounds: c (stored at leader C), f (stored at leader F), Ca (stored at leader 

D), Fa (stored at leader E), 
CDaa (stored at  leaders A, B), 

EFaa (stored at leaders G, H), 

AB CDa aaa (stored at leaders E, F, G, H), 
EF GHa aaa  (stored at leaders A, B, C, D). 

Notation 1: In any given round i, we denote as Ti a function that maps an element generated 

at round i to its peer element, according to Hypercube schedule in round i. Then, Xi+1 = Xi 

∪ Ti(Xi), where Xi+1 is the element generated for the subsequent round (i+1). Accordingly, 

Si+1=Si∪ Ti(Si), where Si+1 is the subset of elements in round (i+1), produced from the subset 

of elements Si in round i and their peers of round i, Ti(Si).  

Notation 2: For round i, we denote the peer element Ti(Xi) as “repeated” iff Ti(Xi)∈Si. We 

denote the number of “repeated” pairs of elements in round i as yi. Then, yi<|Si|, |Si| = |Ti(Si)|. 
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The modification of X subgroup keys (i.e. x1, x2, …, xx) that corresponds to 20 subgroup 

leaders each, results in: 

(1)The modification of X BKs received after the end of the 1st Hypercube round (i.e. 1xa , 

2xa ,…., xxa ), corresponding to 20 subgroup leader each. 

(2) The modification of X1 BKs received after the end of the 2nd Hypercube round that contain 

either 1 or 2 keys from {X}, i.e. 
kaX Yt

a , 
kaX Xt

a , etc., without repeating of course the same 

value twice: i.e. 
taX Xka and  

kaX Xt
a , which occurs only when we have “repeated” pairs of 

elements. In this case, if we have y1 repeated pairs, we need to remove y1 elements to avoid 

duplicates. Hence, X1 = X- y1, X1≤X. Each BK in X1 is stored in 21 leaders, and of course 

corresponds to 21 leaders. 

(3) The modification of X2 BKs received after the end of the 3d round that contain either 1 or 

2 elements from {X1}, so that X2 = X1 - y2, X2 ≤X1, using the same reasoning as before. Each 

BK in X2 is stored in 22 leaders, and of course corresponds to 22 leaders.  

(4) The modification of Xi-1 BKs received after the end of the ith round that contain either 1 or 

2 elements from {Xi-2}, so that Xi-1 = Xi-2 - yi-1, Xi-1 ≤  Xi-2, using the same reasoning as before. 

Each BK in Xi-1 is stored in 2i-1 leaders, and corresponds to 2i-1 leaders, and so on and so forth. 

(5) The modification of Xd-1 BKs received after the end of the dth round that contain either 1 

or 2 elements from {Xd-2}, so that Xd-1 = Xd-2 - yd-1, Xd-1 ≤  Xd-2, using the same reasoning as 

before. Each BK in Xd-1 is stored in 2d-1 leaders, and corresponds to 2d-1 leaders. 

The total number of BKs that will change for all subgroup leaders (TB) becomes:  

TB = X + 1

2
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Since values: X, y1, y2, …, yd-1 can all be pre-computed, TB can be determined precisely. 
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Following the same reasoning as in the previous example that deals with the modification in a 

single subgroup key, in terms of the total communication cost, protocol (O) differentiates 

from MO and MOT as follows: 

Communication in (O) for all leaders: (X 2
2

d
d

n−⎡ ⎤
⎢ ⎥ +(TB-X))×K = (X 2

2

1d
d

n− +⎡ ⎤
⎢ ⎥ +TB)×K, as 

opposed to [(n-2d) + (2d× (d-1)]×K (initial case).  

Communication in MO, MOT for all leaders: TB×K, as opposed to 2d×d×K (initial case).  

Now, we compute the total number of MEs done by all members in order to compute the 

group key at STEP 3, in the event that X subgroup leaders have modified their subgroup keys. 

Regarding the previous example that deals with the modification in a single subgroup key 

with d=3, we repeat the BKs stored at an arbitrary subgroup leader, for example F. After the 

three Hypercube rounds F has stored the following blinded values: 

(0): f, (1): Eα , (2): 
GHaa , (3): 

XB CDa aaa , (4): a a
XB CD EF GHa a a a

a (group key). 

As generalized earlier, if values (1), or (2), or (3) change, the leader must do 3, or 2, or 1 MEs 

respectively to reconstruct the group key. In addition to Notation 1, 2, we also use Notation 3. 

Notation 3: By S we denote the initial set of elements that correspond to the X updated 

subgroup keys. 

As discussed in the example illustrated, a member for which its subgroup key of is modified 

will perform d MEs to reconstruct the group key from the intermediate BKs either received or 

stored. In fact, the number of the ME for these members does not change even if they also 

receive updated intermediate BKs. From the previous example as well, we can claim the 

following invariant for our scheme: Invariant: The lowest intermediate value that is altered 

is the one that determines the number of MEs performed by a member.  

We will now compute the total number of MEs performed by the rest of the members for 

which one or more intermediate BKs (1), (2), …, (d) are updated. The members for which (1) 
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is updated will do d MEs, members for which (2) is the first value to be updated will do (d-1) 

MEs, etc. Hence, we want to compute how many members belong to each of the discussed 

categories, given that: (a) X subgroups modify their subgroup keys, (b) the schedule at every 

round i is known (Ti), and so is the subset of per round “repeated” elements {yi}.  

First intermediate updated value (1): We denote the set of elements that correspond to 

members for which the subgroup key does not change as S0 = {X0}, and the set of elements 

that correspond to the updated values (1) as S1 = {X1}. This case corresponds to a number -

N1- of subgroups for which the subgroup key does not change (the leaders of these elements - 

X0 - do not belong to S) but they receive peer value (1) from leaders that belong to S. We want 

to determine the number N1: We know that: {X1}∈X, {X0}∉X, and T1({X1})∉X. However, 

∃  y1 pairs of elements in S s.t.  T1({X})∈{X}, or |T1({X})∩ {X}| = y1 (X)≠ ∅ . Hence, since 

{X1}∈X and T1({X1})∉X, then: N1 = X-2y1(X). (y1 is multiplied by 2 because each “repeated” 

pair (A1, A2) implies that 2 “repeated” elements: A1, and A2 should be excluded from {X}). 

The corresponding number of members that belong to this category is in effect xN1. 

First intermediate updated value (2): We denote the set of elements that correspond to 

members (or subgroups) for which the subgroup key does not change as S0 = {X0}, the set of 

elements that correspond to the stored values (1) as S1 = {X1}, and the set of elements that 

correspond to the updated values (2) as S2 = {X2}, where X2 = (A1∪ A0), and (A1∪ A0)∈{X}, 

(either A1∈{X}, or A0∈{X}, or both A1, A0∈{X}). This case corresponds to a number of 

subgroups for which values (0) and (1) remain the same (the leaders of these elements that 

correspond to (0) and (1) do not belong to S) but they receive updated intermediate BKs (2). 

We want to determine the number of such elements N2: We know that: S2 includes{X}, but S0, 

S1∉{X}. From construction, observe that: ∀X2 ∈S2, ∃  X1∈S1 and X0 ∈S0, s.t. T2(X2) = (X1 

∪ X0). For example, in the case illustrated for the members of subgroup leader F when d=3, 

elements G and H s.t. (G ∪H)∈S2 compose value (2): 
GHaa . However T2 (G ∪H) = (E 
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∪ F). As shown before: (0): f, and (1): Eα . In other words, F ∈S0, and E∈S1. We are 

looking to find elements X2∈S2 ∈S s.t. T2(X2)∉S2. However, ∃  y2 pairs of elements in S2 s.t.  

T2({X})∈S2, or |T2({X})∩ {X}| = y2 (X)≠ ∅ . Hence, since {X2}∈X and T2 ({X2})∉X, 2y2
 

elements of S2 must be removed (for example each repeated pair (X1k∪ Ak, X1m∪ Am) is 

included 2 times in S2: once associated with element X1k, and once associated with element 

X1m). Furthermore, since we are trying to identify the distinct elements of S2, an additional 

number of y1 elements must be removed from S. As discussed in the previous case, each of 

the y1 elements contains a pair of the type (X1k, X0m). Even if ∃ t s.t. X2t = (X1k ∪ X0m) ∈S2, it 

is repeated two times, once associated with element X1k, and once associated with element 

X0m.For our intermediate computation, we only need to include this element once. Hence, the 

distinct values that belong to this category are: X-y1-2y2. However, each such value in S2 

consists of 2 unary elements, i.e. X2 = (X1 ∪ X0). From Hypercube symmetry, each such value 

is assigned to two subgroups, since it will be received from two members. In conclusion, N2 = 

2(X-y1-2y2). The number of members that belong to this category is now: xN2. 

First intermediate updated value (3): Working similarly, we compute: N3 = 22(X-y1-y2- 

2y3). This formula is extracted using exactly the same reasoning as in the previous two cases.  

First intermediate updated value (j): We compute: Nj = 2j-1(X-y1-y2-…- yj-1 -2yj).  

First intermediate updated value (d): We compute: Nd = 2d-1(X-y1-y2-…- yd-1 -2yd).  

Total number of MEs in (O), MO, MOT for all members:  
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2.6. Performance Evaluation and Comparative Evaluation Results 

Table 2.10, as well as Figures 2.16-2.19, illustrate some indicative comparison results of the 

three Octopus-based protocols vs. the very efficient centralized OFT scheme. The figures 

represent the costs of a number of metrics required to measure the performance of the 

discussed protocols vs. the group size, while the rest of the parameters remain constant. These 

costs represent the number of bits required for communication, computation, storage. For the 
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leader Add/Evict Computation, (O) is the worst, MO and mainly MOT performs much better 

when d is small. As for the Initial Communication, MO is the worst, MOT and (O) slightly 

outperform OFT. For the Addition/Eviction Communication (critical in MANETs), (O) is 

outperformed by MO, MOT, and MOT gets closer to OFT than any other protocol. 

 

 

 

 

 

 

 

Table 2.10. Analytical Performance Metrics for KA Protocols (O), MO, MOT 
 
 

 

 

 

Figure 2.17. Initial Communication Cost for (O), MO, MOT, OFT in terms of Group Size. 
MO is by far the worst. MOT along with (O) are the clear winners followed closely by OFT 
  

 

 

 
 
Figure 2.18. Member Addition Communication Cost for (O), MO, MOT, OFT in terms of 
Group Size. MO and (O) are by far the worst. MOT reduces overhead to almost half w.r.t. 
OFT. Similar is the graph for the Deletion Communication Cost. 
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Figure 2.19. Overall Initial Leader Computation for (O), MO, MOT, OFT w.r.t Group Size. 
OFT is by far the worst. MOT has the best performance overall, followed by MO, then (O).  
 

 

 

 
Figure 2.20. Member Addition Computation for (O), MO, MOT, OFT in terms of Group 
Size.(O) is by far the worst. MOT is the winner, while MO and OFT behave similarly. 
Similar is the graph for Member Deletion Computation when d=4. 
 

Initial Leader Computation: MOT presents the best overall performance, followed by (O), 

(MO), and finally OFT. The major performance difference between the Octopus schemes and 

OFT is due to the fact that OFT is centralized with one group leader operating on the entire 

group, as opposed to 2d leaders in Octopus schemes, each of which operates on a subset of the 

group. In addition, OFT uses RSA, a different cryptosystem for public key encryption. RSA 

is substantially more expensive than the DH scheme used by Octopus schemes. This is due to 

the expensive generation of RSA pairs of public/private keys. Furthermore, MOT is superior 

to the rest of the Octopus schemes, since TGDH that is used within the subgroup, is more 

efficient than the subgroup protocols used by (O) and MO. 

Addition/Deletion Leader Computation: MOT is the clear winner, while MO and OFT 

behave similarly. (O) presents the worst performance, due to the inefficient manner by which 

the subgroup leader manipulates the partial subgroup keys. 
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Initial Communication: MO presents by far the worst performance. MOT along with (O), 

are the clear winners followed closely by OFT. The poor performance of MO is due to the 

high communication cost incurred when GDH.2 is applied within the subgroups. 

Addition/Deletion Communication: MO and (O) present by far the worst performance. 

MOT reduces the resulting overhead to almost half from the perspective of OFT. This is a 

very significant result for a KA scheme, which is naturally more expensive w.r.t. re-keying 

communication cost, than a tree-based centralized scheme. On the other hand, re-keying due 

to membership changes occurs all too often in MANETs, hence reducing the resulting 

communication cost is of profound importance. 

From our discussions, analysis, and results, it can be seen than MOT is superior to the rest of 

Octopus based schemes. The subgroup protocol used for (O), tolerates subgroup member 

failures, but becomes very expensive and inefficient upon the event of a subgroup leader 

failure, since the leader stores a large amount of information. The subgroup protocol used for 

MO is more sensitive to membership changes, which may affect the connectivity of the 

subgroup in such a way, that a whole new reconfiguration of subgroup members might be 

necessary. TGDH is a hybrid contributory protocol with an efficient (for re-keying) binary 

tree structure, and is hence a combination of the previous two diverse categories of protocols. 

The subgroup leader is basically used for communication regulation and after each round of 

execution it stores exactly the same amount of information as the rest of the members. In this 

manner, TGDH is not as sensitive as GDH.2 to member changes or failures, and not as 

sensitive as the centralized subgroup protocol of (O), to leader failures. Hence, TGDH 

provides a more efficient solution for the subgroups. Its beneficial characteristics are reflected 

to the whole Octopus scheme, by substantially boosting its performance, and improving its 

characteristics of flexibility and robustness even further.   
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2.7. Summary and Conclusions 

   In this chapter, we have started with a comprehensive investigation on a number of existing 

or novel KM protocols. We have studied the performance of these protocols associated only 

with the generation and distribution as a first performance attribute. Our main objective has 

been to design a KM framework that is secure, efficient, scalable, and robust in a MANET. 

Towards this end, we studied the two major families of protocols (contributory and 

centralized), we have discussed their limitations and assessed their feasibility to a distributed, 

resource constraint, infrastructure-less environment. We provided our own extensions to a 

number of representative schemes from the literature (i.e. Hypercube, ING, BD, etc.), in an 

attempt to conduct a thorough and spherical evaluation of the discussed protocols. 

  Our main contribution was the design of two new protocols (MO, MOT), and the extension 

and adaptation of the original Octopus (O) to a distributed, resource-limited environment. 

We have shown that MOT is efficient, scalable, secure, and robust. Our performance 

evaluation demonstrated its superiority over the rest of Octopus-based schemes and many 

other KA protocols. The following features of Octopus schemes have motivated our interest 

to extend them: a) their hierarchical framework through which they can tolerate network 

dynamics and be more scalable, b) a subgroup leader handling a relatively small subgroup 

is feasible in MANETs, c) disruptions are handled locally at first within the subgroup, and 

then reflected to the whole group via very low cost re-keying over Hypercube.  

    The benefits of the discussed schemes are accompanied with a number of drawbacks or 

omissions. First of all, for a fair and spherical analysis of the discussed protocols, we must 

consider the effect of a multi-hop routing network on KM operations. Moreover: (a) 

Hypercube requires excessive routing, as any protocol that connects entities deployed within 

a large network with no proximity assumptions. An optimization of the underlying routing 

may improve the performance of the scheme, (b) Hypercube is very expensive to start over 

upon failures - hence we need to look into efficient ways of overcoming failures of 
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Hypercube members, (c) GDH.2 member failures affect the protocols: their impact is less 

significant due to their localized nature, but still, we need to look into efficient ways of 

overcoming such failures in GDH.2, and (d) GDH.2 and Hypercube are not centralized, hence 

in order to accomplish higher performance and robustness, their communications schedule 

must be efficient and topologically driven, and be included in the overall overhead produced 

by each scheme. In the following chapters we will build upon the basic scheme introduced in 

this chapter, addressing these issues, and providing solutions to each.  

 

2.8. Appendix: Bit Complexities of Cryptographic and Arithmetic Operations  

I. Modular Multiplication (MM) and Modular Squaring (MS) 

Modular Multiplication (MM) of two K-bit numbers: (2K2 + K) (Montgomery Method).  

Modular Squaring (MS) of a K-bit number: (1.5K2 + K) (Montgomery Method).  

In chapter 6 we conducted our analysis for the average case complexity, assuming that half of 

the bits of the binary representation of a number are 0. The results quoted here, follow the 

worst case scenario, and the bit complexities reported here are higher than those in chapter 6. 

 
II. Modular Exponentiation (ME) Cost: CE 

Let the bit size of the exponent be l, this of the modulo be K, and this of the base be K. Let 

the processing cost of a ME be denoted as CE (l, K). A ME is performed by looking at the bit 

pattern of the exponent as successive powers of 2, and then successively squaring the 

argument and multiplying with modulus as necessary [14, 15]. The upper bound in the total 

number of MSs required is the number of bits (l) of the exponent. Then, the ME reduces to a 

number of MMs (as many as the number of bits equal to 1 in the binary representation of the 

exponent, with l as upper bound). Hence, a ME reduces to l MSs and l MMs.   

Processing Cost of a ME: CE (l, K) = l× (2×K2+K) + l× (1.5K2+K) = l× (3.5×K2+2K). 

In the case that the exponent and the modulo have the same size, then CE(K)∼ O(K3). 
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III. Algorithms for finding large primes  

Theorem for Prime Numbers: By P(n) we denote the number of primes < n, given by: P(n) 

= loge
n

n . The density of primes D is thus: D = ( )dP N
dn = 1/logn - 1/log2n.  

We denote loge n = log n. For a large n, the second term is small and can be omitted. This 

suggests that primes be found by trial and error: Select a large (odd) integer, test it for 

primality. If the test fails change and try again. With 512-bit integers expect success in 

1
2 ×355=178 attempts. The average number of attempts is: E[T] = 1

2 ×
2log

log 2e

n
 = 0.7× log2 n. 

Rabin and Miller algorithm P for Primality Test: A Primality Test provides an 

efficient probabilistic algorithm for determining if a given number is prime. It is based on the 

properties of strong pseudo-primes. The following algorithm has been proposed by Rabin and 

Miller, and has been implemented by Knuth: Given an odd n, let n = 2r× s+1 with s odd. 

Then choose a random a: 1≤ a≤ (n-1). If as =1 mod n or a 2js = -1 mod n, where 0≤ j≤ r-1, 

then n passes the test. A prime will pass the test for all a. The test is very fast and requires no 

more than (1+O(1)) log2 n <2× log2 n MMs. A number that passes the test is not necessarily 

prime. Monier and Rabin have shown that a composite number passes the test for at most 1/4 

of the possible bases a. 

 

IV. Calculation of Random Key Generation Cost: Crr 

A popular secure pseudo-random number generator is the Blum-Blum-Shub (BBS): 

1. Compute the complexity for choosing x relatively prime to n: pick odd x<n, with length(x) 

= length(n) = K. find relative prime after 0.7× length(n) attempts in average (prime number 

theorem). This is done only the 1st time BBS is used.         

2. Calculate xj = x2
j-1 mod n. 

3. Take bj to be the least significant bit (LSB) of xj. 
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4. GOTO_2: compute new xj, take new bj. Repeat as many times as the bit length of our key. 

A way to speed up this slow operation is the following: after every multiplication extract the 

k LSBs of xj. As long as k≤ log2log2 n, the scheme is cryptographically secure. Step 2 requires 

an MS with cost (1.5K2+2K). We repeat step 2 for (K/k) times in order to derive K randomly 

generated bits. k is fixed so that k≤ log2K. The total cost for the generation of one key is: 

(K/(2× log2)) + (K/k) × (1.5K2+2K) < (K/k) ×1.5K2 + K. 

Hence, Crr = (K/k) ×1.5K2 + K = (1/k) ×1.5×K3+K, where 1≤ k≤  log2K. 

 
V. Calculation of the Blinding Function Cg 

Cg is the cost for the one-way function that blinds a key. It is suggested that it can be 

calculated with the use of the MD5 or the SHA method [41], [43]. We used MD5 to estimate 

the complexity of Cg. MD5 takes a message and turns to multiple to 512 bits. If the length of 

the key is K, then T= 512
K  is the number of times we need to multiply 512 bits, to construct 

the padded message that will be used in the procedure. MD5 makes four passes over each 16-

byte chunk of the message. Each pass has a slightly different method of mangling the 

message digest. Each stage computes a function based on the 512-bit message chunk and the 

message digest (128-bit quantity) to produce a new intermediate value for the message digest. 

At the end of the stage, each word of the mangled message digest is added to its pre-stage 

value to produce the post-stage value that becomes the pre-stage value for the next stage. The 

value of the message digest is the result of the output of the final block of the message. Every 

stage is repeated for all T 512-bits chunks, and in every stage a separate step is taken for each 

of the 16 words of the message. During every such step we have addition of 5 terms 

(including the previous blocks, the message digest and a constant). In two stages the message 

digest function has cost of 3×32 bits, and in the rest two the cost of the message digest 

function becomes 2×32 bits. The rest of the terms, as well as the output of the digest function 

is 32 bits. The left rotates imply complexity of 32 bits as well. The complexity for each 
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message chunk (512-bit) for all the 16 blocks of 32 bits for all stages becomes: 1st stage: 

(4+3)×32+32, 2nd stage: (4+3)×32+32, 3d stage: (4+2)×32+32, 4th stage: (4+2) ×32+32. In 

total we have: 16×32×30 bits = 15360 bits. The complexity for all chunks of the message is: 

T×15360 bits = 512
K ×15360 = 30K. Hence, we roughly estimate: Cg =30K.  

 
VI. Random Primes Key Generation Cost Cr, Public Key Encryption Cost CPE, 

and Public Key Decryption Cost CPD (RSA PublicCryptosystem). 

RSA Algorithm: Plaintext M is encrypted in blocks: 

Encryption: C = M e mod n      Decryption: M = Cd  mod n                                            

Public key = <n, e>                   Private key = <n, d>  

Requirements:  There exist <n, e, d> such that M = M ed mod n for all M < n. It is easy to 

calculate Me, Cd for all M<n.  However, it is computationally infeasible to find d given n, e. 

Random Primes Generation Cost for RSA Public/Private Keys Cr: 

RSA requires the generation of two prime numbers p, and q s.t.  p×q = n, where n will be 

used as the modulo in RSA. We use the Random Key Generation method to generate two 

such numbers. For a 512-bit key we get two 256-bit random numbers. Next, from each 

random number we generate a prime number. A sieve is used to eliminate obvious cases. 

Anything that survives the sieve is subjected to Fermat's test (if xp-t mod p<>1, then p is not 

prime). Next, we multiply the two (alleged) primes p and q to produce the modulus n. We 

impose that approximately: log2(p) = log2(q) = 0.5log2(n) = 0.5K. As seen, the complexity for 

a random number generation (not necessarily prime) p is: (1/k)×1.5(log2 p)3+(log2p), where 

1≤ k≤  log2(log2 p)          (1). 

However, we want our random numbers p and q to be large primes as well. By method of 

trial and error we examine which p, q will pass the Primality Test (in average log2(t)×0.7 

trials are required to find a large number t that fulfills all the “primality” requirements). Each 
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number t is candidate to pass the Primality Test, which results in processing cost of 

approximately: (1+O(1))× log2(t)<2× log2(t) MMs with complexity: 2(log2(t))2 + (log2(t)). 

Hence, the overall complexity to derive prime t given any random number u is:  

(log2(t)×0.7)× (2× log2(t)) × (2(log2 (t))2 +( log2(t))) = 2.8× ( log2(t))4 + 1.4× ( log2(t))3   (2).  

The complexity for the generation of two random numbers is given by (1). Then 0.7× log2(p) 

and 0.7× log2(q) trials are required in average to derive primes p, q, with complexity provided 

by (2). The complexity Cr(K) for the prime random p, q is: Cr(K)=0.7 (1/k)×1.5(log2p)4+0.7 

(log2p)2+2.8(log2p)4+1.4(log2p)3+0.7(1/k)×1.5(log2q)4+0.7(log2q)2+2.8 (log2q)4+1.4(log2q)3 = 

2× [0.7(1/k)×1.5( 1
2 log2n)4+0.7( 1

2 log2n)2  + 2.8 ( 1
2 log2n)4+1.4 ( 1

2 log2n)3]  

Cr(K) < 0.5(log2n)4 +0.35(log2n)3 + 0.35(log2n)2  = 0.5K4 +0.35K3 +0.35K2  , 1≤ k≤  log2( 1
2 K). 

 
Public Key Encryption Cost CPE:  

For RSA public key encryption, we must ensure that the following equality holds: e×d = 1 

mod (p-1)× (q-1). If e is known, we can derive d with O(1) calculations. In many versions of 

RSA, e is assumed fixed with bit-size Ke. We wish to calculate the encryption of a message of 

bit-size K. For that a ME is required. So we obtain: CPE = 3.5×Ke×K2 + 2Ke ×K. 

Observation: From the equation: e×d = 1 mod (p-1)× (q-1) we see that Ke+Kd ≥ log2 p+log2 

q = K. Thus, the selection of Ke affects the selection of Kd and vice versa. The most popular 

value for e is 3. Generally it is preferred d to be very large for the decryption, since the larger 

the d the more difficult it is for an attacker to break the algorithm. If we select e=3, we select 

a number d with size Kd≈K. This is why, in the RSA, encryption is faster than decryption. 

 
Public Key Decryption Cost CPD:  

For the decryption the same idea is adopted. We need to compute: m= cd mod n. If we use 

Shamir’s assumption for the unbalanced RSA, according to which cd mod n can be reduced to 

rdl mod p where d1=d modφ (p) and r = c mod p, we achieve a speedup of length(p). 
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According to Shamir’s Proposition we have: n = p×q but also lgn=10× lgn’ and lgp=2× lgp’, 

where the same equation that relates n’ and p’ holds as well: i.e. n’ = p’×q’. From these 

equations we can see that lg n / lg p>5, hence the use of mod p instead of mod n produces a 

decryption cost  CPD more than 25 times lower than the encryption cost CPE. (CPE >25×CPD). 

 A similar idea for the decryption used in the Chinese Remainder Theorem: we can speed 

decryption up to four times by computing: cd mod p and cd mod q instead. The Chinese 

Remainder Theorem (CRT) then allows us to compute cd mod p×q = cd mod n. The idea in 

the CRT is used for the decryption only, since p and q are known only to the member that 

decrypts the message. In the encryption, the member encrypting a message with the public 

key does not know p and q (unless it has created the public-secret pair). The resulting 

processing cost for the RSA decryption becomes:  CPD = (3.5/25)×Kd ×K2
  + (2/25)×Kd ×K .  

Special case: If e=3, then Kd = K, and CPD = ((3.5/25)×K3
 +(2/25)×K2

 )=O(K3), CPE = O(K2). 

 
 VII. Calculation of Symmetric Encryption and Decryption Costs CSE, CSD (DES) 

Detailed description of the DES operation can be found among other documents in [41]. We 

calculate the number of computations by following the algorithm step by step: We perform 

permutations of: (a) the initial 64-bit input, (b) the “per round required keys” for each of the 

16 DES rounds, and (c) the 64-bit output finally. The permutations (a), (c) have a specific 

structure and require a fixed number of operations (cost CPMT.). To generate the “per round” 

keys we do an initial permutation of the 56 useful bits of key (cost CPMT), and the output is 

divided into two 28-bit values. Hence, up to this point, 3 permutations of cost CPMT each are 

needed. They are table driven, and the cost for each is the mapping of each generated block to 

a given row and column in the table, repeated as many times as the bit length of the output. 

Hence, CPMT <64 bits. Then, we randomly permute 24 of those bits as the left half and 24 as 

the right half of the per round key. A random permutation of k bits has complexity about 

k× log2k. So, two permutations are executed that consume 24× log224 bits each, per round. In 
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each round, 48 bits are selected via a “table-driven permutation”, w.r.t. a table that consists of 

the previous randomly permuted 48 bits. For all 16 rounds, an additional number of 16×CPMT 

<16×48 bit operations is produced. In any round, the 64 bits are divided into two 32-bit 

halves: Ln, Rn. The output generated is 32-bit values Ln+1 and Rn+1. Their concatenation is the 

64-bit output of the round. Extra computations are needed only for Rn+1.  From value Rn and 

the “per round” key of 48-bits we produce an outcome F of 32 bits which is XORed with Ln 

The process requires about: (a) 48 bit operations (max.) to extend Rn from 32 bits to 48 bits, 

(b) 64 bit operations (max.) for mapping the outcome in the 64-bit boxes, and (c) 32 bit 

operations for the last XOR of F with Ln. The total processing for DES encryption becomes: 

O(3×64 +16×48+16×144). The same amount of computations is needed for decryption. 

To encrypt data larger than 64 bits with a key length larger than 64 bits we break the plaintext 

into chunks of 64 bits and use DES to encrypt each block. If the key has more than 64 bits we 

break the encryption key into chunks as well and do the encryption of the message. So, we do 

DES encryption/decryption 64
K⎡ ⎤⎢ ⎥ times. CSD and CSE are the same, linear to the key length. 

CSE  = CSD = 64
K⎡ ⎤⎢ ⎥ ×O(3×64+16×48×24+16×144)< 64

K⎡ ⎤⎢ ⎥ ×3264  = 51×K = CDES×K.  

 In general, we can safely assume the following: CSE = CSD = CDES×K, where 35≤  CDES ≤  60. 
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Chapter 3: Evaluating and Improving Key Agreement Protocols 

for Secure Group Communications subject to underlying routing

 

3.1 Introduction: Evaluating and Improving Key Agreement Protocols for 

Secure Group Communications subject to underlying routing. 

The primary focus of the prior work was the analysis of the proposed KM schemes, based on 

the overhead resulting from the processing and exchange of KM-related data only. All these 

protocols have been implemented on a logical graph that makes it possible to evaluate their 

logical design and algorithmic flow in isolation from any other related function of the 

underlying network. That is also referred to as a logical abstraction, which is widely used in 

the literature to evaluate and compare KM protocols with the key generation algorithm as the 

only performance attribute. It is useful in order to isolate and investigate the strengths and 

flaws of different protocols w.r.t. conceptual design and metrics related to KM. However, 

although this method has its own merit of interest, it does not realistically reflect the actual 

overhead of a protocol when implemented on a multi-hop ad hoc network. In reality, the 

execution of a KM protocol involves a number of underlying auxiliary network functions (i.e. 

routing, clustering, leader election) that should be included in the computation of the metrics 

that reflect the overall overhead incurred in the network. For example, it is unrealistic to 

assume that members of the secure group can communicate with each other directly in such a 

network. The limited resources of wireless devices may significantly constrain the 

connectivity among nodes. Hence, it is expected that a path between two members may 

contain multiple relays which also forward KM related data. Their contribution should be 

also included in the computation of metrics related to the execution of a KM protocol.  
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   In addition, each of the KM protocols considered relies upon the backbone network 

functions to a different extent or in a different way. It is obvious that our previous evaluation 

has not been totally fair or realistic. The consideration of network parameters that can 

accentuate the individual characteristics of the KM protocols as well as the differences in 

their performance will (a) provide more realistic comparison results and (b) shed more insight 

on the actual feasibility of each protocol in the resource limited environments studied.  

   For example, the hierarchical framework on top of which the three Octopus-based schemes 

are executed is supported by a clustering mechanism. Although the cost of adding and 

maintaining the clustering mechanism adds to the overall cost of each individual scheme, it 

does not alter the outcome of the comparative evaluation of the schemes. This is because all 

three schemes utilize clustering in the same manner. On the contrary, the leader election 

process and the communication regulation schedule within the subgroups of the three 

protocols differ. The different role of the leader in the subgroups potentially affects the leader 

election process required for each protocol. Similarly, communication regulation is not 

required for the subgroup in (O) and MOT, in contrast to MO, in which members interact 

among themselves for the subgroup key generation (KG). A simple schedule based arbitrarily 

on members’ static IDs is likely to result in unnecessary routing. This is because such a 

schedule does not exploit topological proximity of members for the communication 

exchanges required towards the generation of the group key. As we are going to show in what 

follows, establishing a topologically aware schedule to execute a KA protocol, reduces the 

total number of relays invoked in most cases. Reducing the overall communication cost that 

results from all the participants in the KG, including the relays, is one of our major 

objectives. Previous work does not deal with basic characteristics or side-effects of wireless 

multi-hop ad hoc networks: (a) members’ partial connectivity due to limited transmission 

range, (b) members’ dynamic agreement on a global communication regulation schedule due 

to lack of central trusted entities, and (c) issues or robustness and fault-tolerance, since 
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disruptions, failures, network partitions and merges occur all too often in such networks. As a 

result, the analysis of previously proposed protocols only gives a partial account on their real 

performance. In the following sections we propose methods towards capturing the actual 

behavior of the studied KA schemes, subject to underlying routing, in a wire-less multi-hop 

ad hoc network. Towards this direction, we first directly extend the proposed KA protocols 

including the underlying routing protocol blindly, that is without “topologically aware” 

features. This is the case when we arbitrarily assign member IDs. We then go beyond blind 

extensions of such protocols, by definition of a new topology driven communication schedule 

that optimizes or improves our own defined metrics of latency and bandwidth. The resulting 

protocols are significantly more efficient in terms of latency, actual communication cost or 

bandwidth (i.e. including the contribution of relay nodes as well) and computation cost. For 

this approach, we consider two cases for the group member graph: 

Case 1: The group member graph represents a physical topology (each edge is physical link). 

Case 2: The group member graph represents a logical topology (each edge is a logical link, 

bounded from the number of hops between two vertices provided by the routing. Intermediate 

hops are not necessarily group members) 

  In the current literature, the relevant work that deals partially with issues that arise when we 

combine KM with the underlying routing is limited. Amir et al. [14, 15], focus on robust KA 

to make GDH protocols fault-tolerant to asynchronous network events. However, their 

scheme was primarily designed for the Internet, and requires an underlying reliable group 

communication service and ordering of messages, so that preservation of virtual semantics is 

guaranteed. Hence, their contribution has limited scope and cannot be applied to a general ad-

hoc network. Poovendran et al. [44], attempt to minimize the bandwidth for secure group 

communications with respect to energy expenditure. They utilize centralized tree key 

distribution schemes. The network topology is considered static, and there is no provision for 

adjusting the key tree structure to a dynamically changing network. The optimal solution of 
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their formulation does not scale with group size. In [45, 46, 47], we extended the Octopus-

based KA protocols to provide robust and efficient KM for group communications in 

MANETs. Again, the primary focus of this work was the analysis and performance 

evaluation of the proposed schemes, in isolation from network functions that interact with the 

protocols.  

 

3.2. Direct Extension of KA protocols to a MANET, including routing, w.r.t. 

arbitrary fixed communications schedule 

   We model the connectivity among the parties with a connectivity graph G(V,E), where 

E∈V×V, and an edge between any two nodes exists if and only if the two associated parties 

are within each other’s radio range. We assume that the underlying routing is reliable and that 

messages are received in a timely manner. We do not deal with dynamic changes in the 

network such as link/node failures and mobility in this chapter. We assume that these are 

handled either by initiating the key establishment phase or by re-keying. 

  The most immediate approach of constructing group KA protocols over multi-hop ad-hoc 

networks is a blind one: underlying routing is integrated into KG without any topological 

optimizations. In this section we describe and evaluate the performance of this approach for a 

number of KA protocols discussed in the previous chapter: GDH.1, GDH.2, ING, BD, and 

Hypercube, which we now briefly recall as well for the sake of self-containment.  

 
A.   GDH1: This protocol assumes that all parties are connected according to a logical 

Hamiltonian path and consists of two stages: up-flow (collecting contributions from all 

members) and down-flow (allowing all members to compute the common key). In the up-

flow stage, each member does one exponentiation and the up-flow message between Mi and 

Mi+1 contains i intermediate values. After obtaining Kn, Mn initiates the down-flow stage. 

Each member Mi does i exponentiations: 1 to compute Kn and (i-1) to provide intermediate 
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values to lower indexed members, by raising them to the power of its own exponent. The size 

of the down-flow message decreases on each link, a message between Mi+1 and Mi includes i 

intermediate values. 

B.   GDH2: In order to reduce the total number of rounds, GDH.1 is slightly varied, so that: 

a) in the up-flow stage each member has to compose i intermediate values (each with i-1 

exponents) and one cardinal value with i exponents; Mn is the first member to compute the 

key Kn and the last batch of intermediate values, b) in the down-flow stage Mn broadcasts the 

(n-1) intermediate values to all group members. Even in this protocol it is assumed that all 

parties are connected according to a logical Hamiltonian path; furthermore it is assumed that 

the last party on the path can reach all others using a broadcast channel. 

C.   BD: This scheme only requires 2 logical rounds and can be divided into three phases: (1) 

Member Mi generates random Ni and broadcasts zi = iNa ; (2) Every member M computes and 

broadcasts Xi = 1
1

( ) ii
i

Nz
z

+
−

; (3) Mi can compute the key Kn = 1 2
1 1 2... modinN n n

i i i iz X X X p− −
− + − . The 

key defined by this scheme is different from the previous protocols, namely Kn 

= 1 2 2 3 1... nN N N N N Na + + + . The protocol assumes that parties can simultaneously reach all other 

parties through broadcast channels.   

D.   ING: This protocol requires a synchronous start-up, requires that all parties are 

connected according to a logical ring, and completes in (n-1) rounds. In any given round, 

every participant raises the previously-received intermediate key value to the power of its 

own random exponent and forwards the result to the next party. After (n-1) rounds everyone 

computes the same key Kn.  

E. Hypercube: This protocol assumes that the 2d parties are connected with a d-dimensional 

cube and can be identified with the vectors of the d-dimensional vector space GF(2)d. The 

protocol minimizes the number of simple rounds required for the group key establishment (2d 
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parties agree upon a key with d simple rounds by performing DH key exchanges on the edges 

of the cube). After a vector basis b1,…,bd of  GF(2)d is chosen, d rounds are run as follows:  

1st round: Every member Mi generates a random number Ni and performs a DHKE with 

member Mk, where i, k∈GF(2)d, for example k=i⊕ 2j-1, using values Ni and Nk respectively.  

jth round: Every member Mi does a DHKE with member Mk, where k=i⊕ 2j-1, where both 

members use the value generated in round i-1 as the secret value for the key establishment.  

 
The performance of the above schemes with respect to the main metrics of interest, on logical 

networks without routing considerations is summarized in Table 3.1. Latency in our context 

is defined as the number of parallel protocol atomic steps, such as communication rounds or 

1-hop transfers over any network physical graph G.  

 Latency Communication Cost Exponentiations 

ING n-1 n(n-1) n2 

BD 2 2n n2+n 

GDH1 2(n-1) n(n-1) (n2+3n)/2 

GDH2 n (n-1)(n/2+2) (n2+3n)/2 

CUBE log n n log n 2n log n 

Table 3.1. Performance of KA protocols on logical networks without routing integration. 
 

  The above protocols describe the KA algorithms and the resulting overhead originating only 

from the exchanges and computations among the “target” members, as indicated by the 

“logical implementation” without routing considerations. If we execute the latter protocols 

taking into account the underlying routing, then every message exchange among the intended 

group members may involve multiple relays (group members or not) that carry and propagate 

the intended KM material. The overhead invoked by these relays is not considered in the 

previous analysis of the discussed KA protocols. Furthermore, in certain cases, it is assumed 

that a member can directly reach the rest of the group members and broadcast to them in one 

round. Obviously, this assumption does not hold for a general framework. Moreover, using 
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broadcast and flooding the network may be inefficient. The use of broadcast/ multicast brings 

about several issues: (a) underlying multicast should be optimized as well in order to improve 

the performance of the KG scheme, and such a cross-layer consideration is additionally 

complex, and (b) multicast may not be supported by all network nodes (heterogeneous).  

   If the communication schedule applied is not topologically aware, then the routes formed 

during the communication exchanges are random and the graph generated is actually not 

expected to resemble the original graph – logical w.r.t. KG. In fact it could look like anything 

between the original graph under the best case scenario, (i.e. a ring if ING is executed), i.e. 

optimizing the underlying routing, and a bipartite graph under the worst case scenario. This 

arbitrary factor that emerges when we merge the KG algorithm “blindly” with the underlying 

routing is what we will try to capture, model and measure or bound.  

   We now present in detail how we derive our analytical results from blending the KG 

algorithms of the protocols discussed above, with an arbitrary and therefore, topology-blind 

multi-path routing required when they are executed on any network graph G(V,E) with 

arbitrary communication schedule.  

Notation1: Let the diameter of the physical graph G (diam(G)) be abbreviated as D (that is, 

the max number of hops between a pair of nodes in V), and the number of nodes as n. Let the 

number of hops in the path between two nodes Ni and Ni+1 be denoted as: Ri,i+1 = (Ni, Ni+1). 

For our analysis, we assume that: Ri,i+1≤  D ≤ |V(G)|=n.  

Notation 2: Let the length of an element in the algebraic group used (over which the decision 

DH problem is assumed to be hard) be denoted as K (number of bits).  

Notation 3: We denote the combined communication cost originating from the intended 

group members and from the relays involved as overall communication cost (CCost).We 

denote the routing cost (the number of hops visited by the underlying routing during the 

protocol execution) as RCost. We abbreviate the latency of the protocol execution as Lt. 
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  We first discuss the computation of metric performances for all five KA protocols and then 

summarize them in a table. Here we refer to the worst case scenarios.  

 
A. GDH.1: We compute the efficiency metrics for this protocol by summing the metrics 

obtained for the up-flow and down-flow stages; since the two stages are symmetric, it is 

enough to describe the computation for one stage only, and then multiply both metrics by 2. 

Up-Flow Stage: On a logical path, each member Mi composes i values to send to member 

Mi+1, for i=1,...,n-1. All relay members in between the route Ri,i+1 will carry the same message 

(i×K bits). Then, CCost due to step: Mi→Mi+1 is equal to Ri,i+1× i×K bits.  

CCost (GDH.1) = 2×
1

, 1
1

n

i i
i

R i K
−

+
=

× ×∑ ≤ 2×
1

1

n

i

D i K
−

=

× ×∑ =D×K×n× (n-1). 

RCost (GDH.1) = 2×
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤ 2×D × (n-1).  

Lt (GDH.1) = 2×
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤ 2×D× (n-1). 

B. GDH.2: As in the case of GDH.1, we compute the efficiency metrics for this protocol by 

summing the metrics obtained for the (not symmetric) up-flow and down-flow stages. 

Up-Flow Stage: The efficiency metrics are identical to the up-flow stage of GDH.1.  

Down-Flow Stage: Member Mn composes (n-1) values to broadcast to all members Mi.  

Notation 1: We denote the broadcast (multicast) cost (or equivalently routing cost) in terms 

of number of hops required until the broadcast message reaches all group members as Bn.  

Version_1: Assuming that in a realistic broadcast implementation each node broadcasts the 

same message only once to its neighbors, we could bound Bn as follows: (a) Bn≤ |E(G)|. 

Under the assumption of the multicast advantage and of omni-directional antennas, we bound 

Bn even further: (b) Bn≤ |V(G)|≤ n. Similarly, CCost is at most (a)|E(G)|× (n-1)×K, or (b) 

n× (n-1)×K using a simple controlled flooding strategy, and Lt is at most D. 
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Version_2: Another implementation of the broadcast is obtained by (n-1) simultaneous 

unicasts from the sender to each member of a single message corresponding to each member 

i through the routing path Rn,i. CCost becomes: 
1

1
, ( 1)

n

i
n iR n K

−

=

× − ×∑ ≤D×K× (n-1)2, 

the associated RCost becomes: 
1

,
1

n

n i
i

R
−

=
∑ ≤D× (n-1), and Lt becomes: max j {Rn, j}≤D. 

The resulting latency is determined by the member Mi that will get the message sent by 

member Mn last, and takes time D under the worst case scenario.  

CCost (GDH.2, V1) = 
1

, 1
1

n

i i
i

R i K
−

+
=

× ×∑ +Bn× (n-1),  

CCost (GDH.2,V1a)≤ 1
2 n× (n-1)×D×K+|E(G)|× (n-1)×K = (n-1)×K× ( 1

2 n×D+|E(G)|), or  

CCost(GDH.2, V1b) ≤ 1
2 ×n× (n-1)×D×K + n× (n-1)×K = n× (n-1)×K× ( 1

2 ×D +1). 

Similarly, RCost (GDH.2, V1a) = 
1

, 1
1

n

i i
i

R
−

+
=
∑ +Bn ≤D× (n-1) + |E(G)| , or  

RCost (GDH.2, V1b) =  
1

, 1
1

n

i i
i

R
−

+
=
∑ +Bn ≤  D× (n-1)+n. 

Lt (GDH.2, V1) = 
1

, 1
1

n

i i
i

R
−

+
=
∑ + D ≤  D× (n-1)+D = D× n. 

CCost (GDH.2, V2) = 
1

, 1
1

n

i i
i

R i K
−

+
=

× ×∑ +
1

1
, ( 1)

n

i
n iR n K

−

=

× − ×∑ ≤
1

1

n

i

D i K
−

=

× ×∑ +D×K× (n-1)2   

CCost (GDH.2, V2) =D×K× (n-1)× ( 1
2 n+n-1)=(n-1)× ( 3

2 n-1)×D×K= 1
2 (3n2+5n +2)×D×K. 

RCost (GDH.2, V2) = 
1

, 1
1

n

i i
i

R
−

+
=
∑ + 

1

,
1

n

n i
i

R
−

=
∑ ≤D× (n-1) + D × (n-1) =  2×D × (n-1). 

Lt (GDH.2, V2) = 
1

, 1
1

n

i i
i

R
−

+
=
∑ + max j {Rn, j}≤  D× (n-1) + D = D× n. 
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C. BD: The protocol can essentially be abstracted as the execution of two simultaneous 

broadcasts from each member to all others. We can analyze each broadcast from a user in 

each of the two broadcast phases as done for the down-flow stage of GDH.2.  

Version_1: Controlled Flooding Strategy for Broadcast: In each phase, each member 

broadcasts a single message of size K to the remaining (n-1) members. In each phase, the 

RCost is still Bn, CCost becomes: Bn× (n-1)×K, and the resulting Lt is at most D.  

CCost (BD, V1a) = 2× |E(G)|× (n-1)×K.                        CCost (BD, V1b) = 2×n× (n-1)×K. 

RCost (BD, V1a) = 2× |E(G)| .                                         RCost (BD, V1b) = 2× |V(G)|.          

Lt (BD, V1a) = 2×D.                                                        Lt (BD, V1b) = 2×D.    

Version 2: Using simultaneous unicasts, we obtain analytical expressions for the same costs:  

CCost (BD, V2) = 
1

1 1,
,2

n

i

n

j j i
i j KR

−

= = ≠

× ×∑ ∑ ≤  2×n× (n-1)×D ×K. 

RCost (BD, V2) = 
1

1 1,
,2

n

i

n

j j i
i jR

−

= = ≠

×∑ ∑ ≤  2×n× (n-1)×D. 

RCost for member Mi: 
1

,
1,

2
n

i j
j j i

R
−

= ≠
∑ ≤ 2× (n-1)×D,   Lt (BD, V2) = 2×maxi, j {Ri, j}≤ 2×D. 

D. ING: The ING protocol is executed on a logical ring where each member Mi mod n 

processes the value received from member Mi-1 mod n and communicates a new value to 

member Mi+1 mod n for (n-1) times, following the route Ri,i+1 = (Mi, Mi+1). The overall 

communication cost per member i for the step Mi →  Mi+1 becomes Ri,i+1× (n-1)×K bits. The 

following observation indicates how the overall Lt of the protocol is computed: In the worst 

case scenario, the size of the physical implementation of the ring can be D× (n-1). This also 

means that it takes time D× (n-1) for the contribution of member Mi+1 to reach member Mi, or, 

equally, D× (n-1) is the required amount of time for any member to complete the (n-1) 

rounds. Hence, Lt for each member and equivalently for the whole ING becomes: D× (n-1). 
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We now summarize the three metrics of interest (CCost, RCost, Lt) for ING: 

CCost (ING) = , 1
1

( 1)
n

i i
i

KR n+
=

× − ×∑ ≤ n× (n-1)×D×K. 

RCost (ING) = , 1
1

( 1)
n

i i
i

R n+
=

× −∑ ≤ n× (n-1)×D,    

Lt (ING) = , 1
1

n

i i
i

R +
=
∑ ≤  (n-1)×max{ , 1i iR + }≤ (n-1)×D. 

E. Hypercube (d-Cube): This protocol takes d=log2n rounds. During any round j, each 

member i performs a single DHKE with member k = 1( 2 )jiϕ −⊕ . This schedule is defined by 

one among the candidate bases picked from the vector space GF(2)d that determine the 

communication schedule of members for the execution of the protocol. Members i and k 

exchange one message during round j, through the routing path Ri,k = Rk,i. latency  is: d×D. 

We now summarize the three metrics of interest (CCost, RCost, Lt) for Hypercube: 

CCost (HCube) = 1
1 1

2

, ( 2 )j

dd

i i
j i

KR ϕ −

=
⊕

=
×∑ ∑ ≤ n×d×D×K. 

RCost (HCube) = 1
1 1

2

, ( 2 )j

dd

i i
j i

R ϕ −

=
⊕

=
∑ ∑ ≤ n×d×D,  

Lt (HCube) = max i{
1

1, ( 2 )j

d

j
i i

R
ϕ −

=
⊕∑ }≤ d×D. 

Summary: The prefix “nt” abbreviates the “non-topologically-oriented” extensions of the 

discussed KA schemes and the prefix “wt” (i.e. with topology) abbreviates the “topologically 

oriented” extensions of the same schemes.Table 3.2 summarizes the upper bounds (under the 

worst case scenario) on the overall communication cost, computation cost and latency of the 

five protocols discussed, when a non-topology oriented (nt) physical implementation is 

performed for the logical networks involved in them. By contrasting Table 3.1 and Table 3.2, 

we see that the efficiency of all the protocols decreases by at least a factor of D. 
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Remark: In this analysis, we have assumed that the group members already acquire 

temporary ids associated with a “nt” communication schedul. If the assignment of temporary 

ids to all the members, and the advertisement of a global transmission schedule, is done on 

the fly, then in Table 3.2, we should also add the associated latency and communication cost 

of the latter. If the assignment of such ids is done at random, then these ids could be hard-

wired on nodes as well. Still, in the event of membership changes or failures, updates 

regarding the communication schedule should be announced to the corresponding nodes. In 

either situation, the overall overhead caused by the direct adaptation of the discussed KA 

protocols to multi-hop ad hop networks is further increased. We do not aim to further analyze 

this extra complexity of the “nt” extensions of the KA protocols. Our investigation of these 

adaptations has (a) helped towards a realistic estimation of the actual implementation of a 

number of KA protocols on the discussed networks, and (b) has pointed out the need to come 

up with far more efficient and “smart” extensions of these protocols for the same 

environments. Hence, our basic objective, in addition to blindly extending and analyzing the 

KA schemes, is to develop extensions that take advantage of the proximity of group members 

and result in considerably more efficient versions of the protocols. In the section that follows 

we show that the framework required for the “wt” schemes is simultaneously used for the 

distribution of the temporary ids to nodes and thus for the generation of the global 

transmission schedule. Hence, the additional complexity for distributing temporary ids is 

already included in the overhead required for generating the “wt” framework. If we show that 

the combined overhead, including the distribution of temporary ids and the advertisement of a 

global schedule associated with the “wt” approach, is lower than this associated with the “nt“ 

approach computed so far, then we achieve even further reduction in the overhead of “wt” 

extensions. In that case, the value of our contribution would be even more significant. 

 Latency Bandwidth Exp. 

ntGDH1 2(n-1)D n(n-1)DK (n2+3n)/2 
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ntGDH2 nD  (|E|+ 1
2 n(n-1))DK or (n-1)(n/2+1))DK  (n2+3n)/2 

ntBD 2D 2n(n-1)DK  n2+n 

ntING (n-1)D n(n-1)DK  n2 

ntHCube Dlog2n nlog2nDK  2n log2n 

Table 3.2. Performance of nt KA protocols over Mobile Ad Hoc Networks 
 
nt Non – topological versions 

wt With topology consideration versions 

nf Non-auxiliary framework included 

wf With auxiliary framework inclusion 

Table 3.3. Abbreviations and symbols used in Chapter 3. 
 

 

3.3. Implementation of KA over MANETs, including routing, w.r.t. a wt schedule 

   In the previous section, we re-evaluated those protocols executing them blindly on a multi-

hop network (considering the underlying routing). The protocols were executed based merely 

on member IDs as designated by the KG algorithms. This “nt” approach may lead to 

excessive unnecessary routing, and consequently high communication cost. These results are 

very indicative of the actual overhead and rounds that will be incurred from these protocols 

when applied on a general ad-hoc network, even if the associated KG algorithm appears to be 

very efficient. In wireless multi-hop networks, bandwidth and power consumption are 

valuable resources, and nodes cannot afford to waste. Reducing the combined costs resulting 

from the routing and communication exchanges among nodes becomes essential if we want to 

apply the latter KA schemes on a resource-constrained MANET.  

  In this section, we try to improve the efficiency of each of these protocols. Towards this end, 

we are exploring the potential of optimizing their combined routing and communication costs 

by integrating into the design a topology oriented (wt) communication schedule. As we can 

see from our previous results, each protocol poses two different optimization problems as 

the routing structure of each protocol defines a specific optimization function for each of 
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the two metrics of latency and combined communication cost. In summary, we will define 

and later focus on minimizing the following quantities or performance metrics each of which 

describes either the overall communication cost or latency that each corresponds to one or 

more of the discussed KA protocols (scaled down by K):  

Overall Communication Cost (scaled by K):  

CCost1 = (n-1)× , 1
1

n

i i
i

R +
=
∑                                                                                               (3.1).          

CCost2 = 
1

, 1
1

2
n

i i
i

i R
−

+
=

× ×∑                                                                                                (3.2).               

CCost3 = (n-1)Bn                                                                                                           (3.3). 

CCost4 = 1
1 1

2

, ( 2 )j

dd

i i
j i

R ϕ −

=
⊕

=
∑ ∑                                                                                         (3.4). 

 Latency:  

 Lt1 = , 1
1

n

i i
i

R +
=
∑                                                                                                               (3.5).             

Lt2 = max_length (Bn)                                                                                                    (3.6). 

Lt3 = max i{
1

1, ( 2 )j

d

j
i i

R
ϕ −

=
⊕∑ }                                                                                         (3.7). 

Given these quantities, we can develop bounds for the overall communication cost (CCost) 

and latency (Lt) of the five protocols considered as follows:  

GDH.1:   CCost from (3.2), and Lt from (3.5),  

GDH.2:   CCost from (3.2), (3.3) and Lt from (3.5), (3.6),  

ING:       CCost from (3.1), and Lt from (3.1),  

BD:         CCost from (3.3), and Lt from (3.6), 

HCube:  CCost from (3.4), and Lt from (3.7). 



 113

Finding approximations of optimal solutions to these quantities, or even improving those 

provided via the nt approach, results in more efficient metrics for the protocols. We introduce 

our wt approach in the next section.  

 
3.3.1. Auxiliary Algorithms 

We now present low-cost auxiliary protocols that will be used towards the generation of the 

core framework for running our wt extensions: a “root” election algorithm, and a “rooted” 

spanning tree generation algorithm.  

  
3.3.1.1. Root Election Algorithm 

In Chapter 4, we will discuss a leader election scheme that takes into account a broad number 

of factors for the election (i.e. robustness, residual energy, processing power, available 

bandwidth, etc.), and receives input from all non-faulty legitimate group members. With this 

scheme, we select more than one leader: the currently active one, and a number of back-up 

ones to be sequentially activated once the current leader fails. The function of the leader is 

much broader than this of a mere starting point, since a leader is responsible for a higher 

number of operations that expand by far the role of a starting point. If we assume that the 

leader election process in an essential part of KM protocols, we can use either the active or 

one of the backup leaders as our starting point. We further assume that during network 

deployment, certain nodes are prior designated as active or backup leaders, and become the 

default leader during the initial operation of the secure group. As time progresses, the leader 

election process is initiated at regular intervals. Hence, at any time, the information about 

which node will serve as a starting point is propagated to all network nodes. The cost of the 

group leader election is not going to be included in the KA framework generation, since the 

purpose of the leader is much more general than just participating to the “starting point” 

process. The process will be analyzed in Chapter 4, however the cost for advertising the 
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current and subsequent “starting points” to the rest of members requires latency Lt = D, and 

combined communication cost: |E|×K1 or n×K1 (multicast advantage), where K1<<K. 

 
3.3.1.2. Generation of a rooted Spanning Tree (ST) 

  To derive a good approximation for the minimum number of hops necessary to visit all 

group members, we use the well-known approach of simulating Hamiltonian paths and cycles 

with a full walk over a rooted spanning tree – denoted as ST - of the connected network graph 

G (V, E). A ST of G is a connected acyclic sub-graph T(V’, E’) of G, s.t. V=V’ and E’⊆E, 

where |E’| = |V|-1. In a rooted ST, the tree edges are consistently directed w.r.t. a particular 

node (root). The purpose of our framework provides the flexibility to generate STs with 

potentially various attributes (i.e. low weight, where weight is typically: latency, loss rate, 

inverse of bandwidth, or node degree, diameter, edge count, etc.). We are interested in 

applying a very simple and lightweight algorithm for the generation of a ST, with extensions 

to handle dynamic changes: the link weights are associated with the distance (in number of 

hops) between the vertices (members) of each link. We distinguish two cases for the 

underlying physical graph and build the associated STs accordingly for each case:  

Case (a): The graph of the secure group is physical. In this case, the weight of any link that 

connects two group members directly is set to 1. An arbitrary ST is sufficient for this ca. 

Case (b): The graph of the secure group is logical, and a logical link may include non-group 

relays as well. We assume that a generic routing algorithm is prior run (i.e. Dijkstra) and 

informs each member of the minimum paths (w.r.t. number of hops) to reach a number of 

members in their proximity. This is a far more realistic case than (a) for our setting. Here, the 

group member graph is weighted, and use different methods to construct the required ST. We 

first construct a minimum spanning tree (MST) adapting Prim’s method to our specifications.  

Framework Maintenance: Since topology changes can partition the network, we extend the 

notion of a ST to a spanning forest (SF), i.e. a (disjoint) collection of STs. The original ST 
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may be separated into fragments (each of which is also a ST) and reconnect, depending on the 

dynamic changes, responding to multiple link/node failures and recoveries that can occur at 

arbitrary times. The border nodes of each fragment continually monitor their neighborhood 

for topological changes and notify the root. The framework maintenance is handled similarly 

to the proposal of Gallager, Humblet, Spira (GHS) [50], and Cheng et al. [51], where 

analytical results on the performance of their protocols are provided. Since we do not aim to 

maintain MSTs, in chapter 4 we propose a variation that significantly reduces the overhead. 

The impact of the partition and merges of the ST on the actual KA algorithms is studied in 

Chapter 4. Below, we give an overview of the following simple, low cost protocols to 

generate a ST for case (a). The corresponding algorithms for case (b) will be discussed next. 

 
3.3.1.3. Overview of Rooted ST algorithm – physical secure group graph (case a). 

   For the initial generation of an arbitrary ST, given a central root, one candidate algorithm to 

apply is a variation of this proposed by Dolev et al. [52], that contains a Breadth First Search 

(BFS) ST construction for rooted systems. In the algorithm, every node maintains two 

variables: (1) a pointer to one of its incoming edges, and (2) an integer measuring the distance 

in hops to the root of the tree. The network nodes periodically exchange their distance value 

with each other. After reading the distance values of all neighbors, a node chooses the 

neighbor with minimum distance dist as its new parent. It then produces its own distance, 

which is dist +1. The root does not read the distance values of its neighbors and always sends 

a value of 0. More specifically, after reading all neighbor values for k times, the distance of a 

node is at least k+1. So, all direct neighbors of the root will select the root as their parent and 

update their distance to 1. This line of reasoning can be continued incrementally for all other 

distances from the root. Hence, after O(D) update cycles (latency) the entire tree will have 

stabilized. The overall communication cost produced is approximately: O(D×n) [52] because 

all members query their neighbors during every round. However, if the algorithm is modified 
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so that members update their neighbors after their distance is stabilized, then the overall 

communication cost produced is reduced to: O(E). 

   In addition, we propose a more communication efficient approach towards producing a ST 

as quickly and simply as possible: each node x that becomes part of the ST sends a single 

“connect” message to each one of its neighbors (except for its ancestor in the tree). A 

neighbor node y accepts node x as its parent (and sends an ACK message to all 1-hop 

neighbors) if it receives the “connect” message for the first time from node x (i.e. it did not 

receive and accept a prior request from another node and it is not part of the ST already). It is 

obvious that this algorithm converges (as long as the graph remains connected) and does not 

generate cycles, since each node accepts only one “connect” message, that is, it obtains only 

one parent. The algorithm produces latency of approximately O(D) rounds. If we use of the 

“multicast advantage” property, we calculate the overall communication cost produced as:  

((n-1)[ACKs] +(n-1)[connect]) ×K1=2× (n-1) ×K1,   where K1<<K. 

 
3.3.2. Wt KA on a physical secure group member graph (case a). 

   We now use the auxiliary algorithms discussed to generate the required framework for the 

“wt” simulations of KA protocols subject to routing. We analyze the overall communication 

cost and latency by computing upper bounds on the seven quantities related to the 

optimization problems defined. The assignment of session ids is done after the generation of 

the basic framework and before the first execution of the KA over the given ST under the 

worst case scenario. Metrics CCost and Lt before the execution of the KA protocols become: 

CCost (aux) = (n+2n +2n) ×K1 = 5×n×K1,                               Lt (aux) = 2D+2n. 

3.3.2.1. Solution to (3.1), (3.5): ST Full Walk 

  Using an MST to approximate the Traveling Salesman Problem (TSP) with triangle 

inequality provides a near-optimal tour of a complete undirected graph G, designating a 

routing path at most two times the optimal. The triangle inequality is a natural one, meaning 
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that going by way of any intermediate stop cannot be less expensive (i.e. the cost function is 

the Euclidean distance). In our case, the network graph is such that allows the generation of a 

MST. Since the tree links are assigned with equal weights (1), any ST corresponds to an 

MST. A full walk of the MST traverses every edge exactly twice, resulting in a cost twice as 

much as the optimal cost. If the output of the pre-order walk is used as the schedule for the 

Hamiltonian tour in TSP, the total cost of the tour is at most 2×ROPT. It is obvious that 

ROPT≥ n (link weights or hop distances are set to 1) for our graphs. We can simulate 

Hamiltonian paths and cycles, just by performing a full walk of the rooted ST. Any of the 

well-known tree visit walks traverses every edge exactly twice, resulting in a cost twice the 

number of tree members. We obtain: 
1

, 1
1

n

i i
i

R
−

+
=
∑ ≤ 2×n in the simulation of Hamiltonian paths 

and rings, and (3.1), (3.5) are upper bounded as follows: (3.1)≤ 2×n× (n-1) and (3.5)≤  2×n.  

 
The following metrics can be now computed for protocols ING, GDH.1, GDH.2: 

CCost(ING) = CCost (aux)+(n-1)×2nK = 2n2K+ n(5K1-2K), Lt (ING) = Lt (aux)+2n=4n +2D,   

Lt (GDH.1) = Lt (aux) + 2×2×n = 6n + 2D,   

Lt (GDH.2-Stage1) = Lt (aux)+2×n = 4n+2D. 

Since 2×n≤ , 1
1

n

i i
i

R +
=
∑ ≤ n×D, we see that the wt-schedule reduces the combined routing and 

communication overhead, improving it by a factor of 2 n
n D

×
× = 2

D w.r.t. the nt-approach. 

 
3.3.2.2. Solution to (3.2): Closest Point Heuristic  

  This expression is minimized if the larger the message a node is carrying (i.e. the larger the 

parameter i is), the fewer relays are involved (i.e. the smaller parameter Ri,i+1 is). Hence, the 

following inequality should hold for the minimization of (3.2): 1, 2, 1 1,2....n n n nR R R− − −≤ ≤ ≤ . 

The truth of the argument can be easily proven by assuming an arbitrary allocation of values 
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in the associated R’s, and deriving the optimal value Opt through successive interchanges 

between R’s, each of which continually reduces the initial value until Opt is attained. Since 

the number of values a member communicates to its successor in the communication 

schedule is always incremental in GDH.1, the routing paths of successive members must be 

non-increasing w.r.t. hop count. In GDH.1 the last visited member Mn uses the established 

schedule backwards to forward the intermediate messages to the rest of members, until M1 is 

reached. An approximation that accommodates this requirement and returns a tour with total 

cost not more than twice the cost of an optimal tour would be suitable for our purposes. A 

solution to the two goals discussed could be given by the closest point heuristic for building 

a TS tour to approximate (3.2). The closest point heuristic begins with a trivial cycle of an 

arbitrarily chosen vertex. At each step, a vertex u that is not on the cycle but whose distance 

to any vertex on the cycle (e.g. vertex v) is minimum is identified. We extend the cycle to 

include u by inserting u just after v. We repeat this process until all vertices are on the cycle. 

This heuristic returns a tour whose total cost is not more than twice this of an optimal tour. 

   If we fix the backward schedule first, so that the first edge selected in the cycle 

(minimum) is assigned to relay the maximum number of messages (n-1), the second edge is 

assigned to relay (n-2) messages, etc., we immediately satisfy the “non-incremental” 

requirement. We can obtain a ST by deleting any edge from a tour, and we already acquire 

the MST in our setting. Thus, the closest point heuristic has direct application to our problem. 

We use the appropriate traversal method to visit all vertices of the ST and establish the 

GDH.1 backward schedule first. Our aim is the following: the larger the message a member 

relays, the smallest the routing path it has to follow, in the average case. By examining the 

common traversal methods (pre-order, in-order, post-order), we select the pre-order tree 

walk. An intuitive reason for this is that a pre-order tree walk prints (visits) the root before 

the values in either sub-tree. So, it uses a rather greedy approach by adding the “best nodes” 

first, in a forward manner, the earliest possible in the generated backward schedule. On the 
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contrary, the nature of the in-order and post-order walks is such that recursion prevents the 

immediate selection of the shortest paths in the tree between successive in the schedule 

nodes. Thus, longer paths (compared to the pre-order traversal) may end up connecting 

successive nodes, early in the generated schedule, when a better decision could have been 

taken. This is contrary to our second goal, according to which the shortest paths should be 

assigned to the nodes selected among the first for the backward schedule. Under this method, 

the root is the last member visited, whereas the node that initiates GDH.1 is the last node 

listed by the pre-order walk. By visiting the vertices indicated by the pre-order walk 

backwards, we obtain the forward GDH.1 schedule. Furthermore, if a node has already 

obtained information about the existence of a shorter (non-tree) path to the node requested, 

then it may use that path, otherwise the tree walk is executed in its normal mode.  

  We want to upper bound (3.2) by using a wt schedule that generates the backward GDH.1 

path of the n nodes. The topology of the nodes determines the nature of the formed ST, and 

consequently the value of (3.2). Towards this end, we studied a few examples of particular 

ST and computed (3.2) over them. A few indicative cases considered are: the single chain 

tree, the star tree of depth X, the fully balanced Z-ary tree, etc.  It will be shown that the 

value of (3.2) computed via pre-order traversal of any ST is upper bounded by 2n . 

    First of all, we start with computing (3.2) for two extreme pathological ST cases, i.e. the 

single chain tree and the star tree, and then we expand our computations to a fully balanced 

binary tree, a fully balance Z-ary tree, and an arbitrary tree: 

Single Chain Tree: 
1

1

n

i

i
−

=
∑ = ( 1)

2
n n× − . 

 

 

 

Figure 3.1. Star Tree with depth x=4, n=16. 
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Star Tree – depth1: (n-1)+2×
2

1

n
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i
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=
∑ (ir data)+
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−

=
∑  (rls data) = 

( 1)
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Star Tree – depth2: (n-1)+(n-2)+(
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(2n-1)+3( ( 3)
4
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2 ). 

Star Tree – depthX: Obviously, the data communicated to the intended recipients is as 

designated by the original logical protocol itself (i.e. ( 1)
2

n n× − ). Whenever the edge of a branch 

is reached (length x), the member associated with the most remote vertex of this branch relays 

its data through (x+1) members to the first unvisited vertex of an unvisited neighbor branch. 
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Figure 3.2. Fully balanced binary tree with 15 members. The black arrow denotes actual 
message communication between intended recipients (ir), the red arrow denotes virtual 
message communication between irs, the blue arrow simulates the communication designated 
by the red arrow, including a number of required relays (rls) between the end nodes (irs).  
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n n× − ). Every member has at least one relay including the intended destination. If 

every member needed only one relay to communicate its intended message, namely the 

intended recipient, then the physical execution of GDH.1 would coincide with the logical 
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least one member (differently placed in the tree for B and C respectively) has more than one 

relays. The value A is in effect the communication cost from the original logical execution of 

GDH.1. Value B deals with the data relayed by members associated with the leftmost leaf of 

a given branch. The message associated with such a member is relayed only twice. The first 

contribution is included in metric A and the second in metric B. We exploit the mirror 

symmetry of the fully balanced tree by summing together for metric B every two members 

that relay ( )f i and ( ( ))n h f i− − messages respectively. The function f maps branch i - to 

which the leftmost offspring belongs - to the number of messages produced by this offspring 

according to GDH.1. A branch is defined as a unique ramification of the tree starting from the 

root and ending at the parent of two leaf siblings. We note here that the enumeration of 

branches takes place at the one before last tree level, from right to left. In a fully balanced 

binary tree there exist (n+1)/4 such branches. C is the data relayed by members associated 

with the rightmost leaf of a given branch. We derive value C in a similar fashion. The basic 

difference is that the message associated with the rightmost member of a given branch is 

relayed more that twice, and the number of relays involved is not fixed but depend on the 

particular branch to which the rightmost member belongs. Following the same reasoning, we 

see that the mirror symmetry of the fully balanced tree can be explored in combination with 

the nature of the GDH.1 upward stage messages, to derive a simple, closed formula for C.  

 

Lemma 1: In any fully balanced binary tree where the node ids are assigned from higher to 

lower via a pre-order tree visit the expression for function f can be determined as follows:  

g(i) = ( 1)f i + - ( )f i = hcs+1, where: ( 1)
41 ni +≤ < , and hcs is the height of the common sub-

tree that includes the branches: i, i+1.  

Because of the symmetry of the fully balanced binary tree the following equalities hold: 
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( 1)f i + - ( )f i = ( )
8

1(( ) 1 1)nf i+ + + + - ( )
8

1(( ) 1 )nf i+ + + = ( )
4

1(( ) 2 )nf i+ + − - ( )
4

1(( ) )nf i+ −  

(3.8). 

( 1)f i + - ( )f i = hcs+1,  (3.9). 

(1)lf = 1 (left offspring) and (1)rf = 0 (right offspring). 

Proof: We now show by induction that (3.8), (3.9) are true for a fully balanced binary tree of 

any size if we fix the backward schedule first by means of a pre-order walk.  

Initial Step: Given (3.8), (3.9) and the initial state, it is very simple to compute f or g at any 

point. For a binary tree with 7 nodes we obtain g(1)=3, and for a binary tree with 15 nodes we 

get: g(1)=3, g(2)=4, and g(3)=3. Indeed, in a fully balanced binary tree of 7 nodes we get: 

(1)lf = 1, (1)rf = 0, (2)lf =4, (2)rf =3 and (3.8), (3.9) hold. In a fully balanced binary tree 

of 15 nodes (Fig. 2) we get: (1)lf = 1, (1)rf = 0, (2)lf =4, (2)rf =3, (3)lf = 8, (3)rf = 7, 

(4)lf =11, (4)rf =10, and obviously (3.8), (3.9) still hold.  

Intermediate Step: We now assume that (3.8), (3.9) hold for sub-tree R. 

 We will show that if we have computed function f or g at any point for a tree R of size (n-1) 

with member ids from (n-2) down to 0, assigned through a “backward pre-order” visit, then 

we can immediately apply these results to a fully balanced binary tree T of size (2n-1).  

Towards this end we construct tree L of size (n-1) by replicating R. Then the roots of these 

two sub-trees become the left and right offspring of the new root of tree T, and trees L and R 

become sub-trees of T. A pre-order walk visits recursively first the root of a tree, then the left 

and finally the right sub-tree. Since the assignment of ids is done backwards, the right sub-

tree R of tree T, will be visited last, and its nodes will be assigned ids from (n-2) down to 0 

via the pre-order visit. Hence, nodes in R that also belong to T are assigned the same ids as 

before and (3.8), (3.9) still hold for R, and thus for the right sub-tree of T. Since the two sub-

trees are symmetric, (3.8), (3.9) hold for the left sub-tree of T by definition. So far function g 
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has been computed for all branches of T except for these at points ( 1)
4

n+ and ( 1)
4

n+ +1, each 

of which belong to a different sub-tree L or R, right in the middle of T. The last visited (by the 

backward pre-order) member of sub-tree L is the right offspring of branch 1 in L or the right 

offspring of branch ( ( 1)
4

n+ +1) in T. This member is assigned an id with number (n-1) and its 

sibling on the left an id with number n. To determine g( ( 1)
4

n+ ) we also need to compute the 

ids of members that belong to branch ( 1)
4

n+ of T (or R). Since we know that the id of the root 

in R is (n-2) and also hR = hT -1= log2 (
( 1)

2
n+ ), we easily compute the ids of the offspring of 

the leftmost branch ( ( 1)
4

n+ ) of R: 1
4( )l

nf + = (n-2)- hR  = n-1-hT, 1
4( )r

nf + = n-2-hT . For the 

right offspring we compute g at the missing point: g( ( 1)
4

n+ ) = (n-1)-(n-2-hT ) = hT+1. 

We have just shown that (3.8), (3.9) hold for tree T as well, and this concludes the final step 

of our induction. Hence, our initial argument (Lemma 1) has been proven by induction. 

 It is easy to see that two fully binary sub-trees L and R of size (n-1) originate from the left 

and the right root offspring of the initial binary tree of size (2n-1). If we observe how the ids 

are assigned for any binary tree under our assumptions, we see that each of the two sub-trees 

L and R is already a fully balanced tree of size (n-1) that fulfills the required rules for the 

assigned ids. In fact, if we decrease the assigned ids in L by the number (n-1)/2 then we 

observe that sub-tree L coincides with sub-tree R. For example the tree in Figure 2 is divided 

to two sub-trees L (with leaf ids: 11, 10, 8, 7) and R (with leaf ids 4, 3, 1, 0). If we subtract 

the number (n-1)/2 = 7 from all ids of sub-tree L, it is easy to see that L=R. Then, we are 

provided with an additional argument to prove that (3.8) and (3.9) hold for the tree of size 15 

as well. This is true indeed, because under the pre-order tree walk we recursively visit first 

the root of a given tree, then its left sub-tree and then its right sub-tree, starting from the root 

of each sub-tree. Hence, ids are assigned so that we can construct a “backwards pre-ordered” 
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balanced tree T of size (2n-1) from a “backwards pre-ordered” balanced tree L of size (n-1): 

First we construct tree R by replicating tree L. Then we assign ids to R as follows: every 

member in R gets the id of the associated member in L, increased by the number (n-1)/2. 

Shifting the ids assigned in L by a fixed number obviously does not alter the results of (3.8), 

(3.9). Finally, the root in T is assigned the number (2n-1). This way, from a provably 

“backward pre-ordered” fully balanced tree of size K, we can construct “backward pre-

ordered” trees of any size B≥ 2K. Equivalently any “backward pre-ordered” fully balanced 

binary tree can be recursively reduced to a “backward pre-ordered” tree of smaller size. The 

latter argument helps to compute simply and fast functions f and g for a fully balanced binary 

tree of any size. Below we abbreviate a number of these computations: 

Tree Size: 7                gT = (3) 

Tree Size: 15              gT =(3,4,3) 

Tree Size: 31              gT =(3,4,3,5,3,4,3) 

Tree Size: 63              gT =(3,4,3,5,3,4,3,6,3,4,3,5,3,4,3) 

Tree Size: 127            gT =(3,4,3,5,3,4,3,6,3,4,3,5,3,4,3,7,3,4,3,5,3,4,3,6,3,4,3,5,3,4,3), etc. 

Notation: Given a tree member u, we denote the height of the sub-tree originating from 

member u as h(u). The height of the original fully balanced binary tree is denoted as h. 

Furthermore, let the parent v of node u be denoted as: v = p(u). 

We are now ready to compute all three metrics A, B, C: 

A = 
1

1

n

i
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=
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The remaining contribution of the right-sibling leaves to the combined communication cost is 

computed by metric C. In fact, C computes the relay messages that originate from the right-

sibling leaves that have not been included previously in A. The number of relays involved 
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between a right-sibling leaf u and the next un-visited member v (or root of the next unvisited 

sub-tree) is: hrel = (h(p(v))+1). Observe that the minimum number of such relays involved is 

three. However, one of these relays (the contribution of p(v) to v) is already computed in 

metric A. Hence, the hop-wise contribution of member u for metric C hop-wise is h(p(v)). 

The minimum number of relays originating from any right-sibling leaf is 2 for metric C.  

Observation: A pre-order traversal visits tree nodes in such a way that the id difference 

between two successive left (or right) leaf siblings u and v, defined by function g, is 

determined by hrel (u). Given that observation, the expression for the hop-wise contribution of 

member u for metric C can be equivalently expressed as: (hrel -1) = (g(u) -1). Now we are 

ready to compute metric C as shown below:  

C = ( 1)
2

n h− +
1

11

2

2
(( ( ) ( 1))j j

j

h ih

i
n h f k f ki

=

− −−

=
× − − + +∑ ∑ , where kj are such that h(kj) = i, and i 

is the hop-wise contribution of each member involved in C. 

C = ( 1)
2

n h− + (n-h) 1
1

2
2h i

h

i
i− −

−

=
×∑ +

1

11 2

2
( ( 1) ( ))j j

j

h ih

i
f k f ki

=

− −−

=
× + −∑ ∑  

C = ( 1)
2

n h− + (n-h) 1
1

2
2h i

h

i
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−

=
×∑ +

1

11 2

2
( )j

j

h ih

i
g ki

=

− −−

=
×∑ ∑ ≈ ( 1)

2
n h− +(n-h)×2h-1

1
1
2

2
( )

h
i

i
i

−

=

×∑  + 2h-1. 

Notation:  

0

n
k

k

x
=
∑ is a geometric or exponential series and has the value: 

0

n
k

k

x
=
∑ = 1

1
1x

x
n −
−
+

     (3.10). 

For |x| <1, we have the infinite decreasing geometric series: 
0

k

k
x

∞

=
∑ = 1

1 x−  (3.11). 

Additional formulas can be obtained by integrating or differentiating formulas (3.10), (3.11). 

If we differentiate both sides of (3.11) and multiply by x we get: 

0

n
k

k
kx

=
∑ = 2(1 )

x
x−

- 2(1 )
nx
x−

( 2 ( 1) ( 1)x n x n+ + − + )     (3.12). 
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 If we differentiate both sides of (3.12) and multiply by x we get: 
0, 1

k

k x

kx
∞

= <
∑ = 2(1 )

x
x−

 (3.13). 

Similarly, if we differentiate both sites of (3.13) and multiply by x we get:  

2

0

n
k

k
k x

=
∑ = 3

(1 )
(1 )
x x

x
+
−

+
3 2 2 2 1 1

3
( 2) (2 1) ( 1)

(1 )
n n n nnx n n x n n x n n x

x
+ + + ++ − − − + − + +

−
     (3.14). 

Similarly, if we differentiate both sites of (3.14) and multiply by x we get: 

2

0, 1

k

k x

k x
∞

= <
∑ = 3

(1 )
(1 )
x x

x
+
−

                  (3.15). 

  In order to upper bound metric C we use (3.10) and (3.12), by substituting x with 1
2 and n 

with (h-1). For these values, (3.10), (3.12) can be replaced by (3.13), (3.15) respectively: 

C ≈ ( 1)
2

n h− +(n-h) × 4
n × (

1
1
2

0

( )
h

i

i

i
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i
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i
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C ≈ ( 1)
2
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C ≈ ( 1)
2
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3 + 4
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1
2
1
2

2(1 )−
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1 ) + 4
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2
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1
2
(1 )

+

−
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1 )  

C ≈ ( 1)
2

n h− +(n-h)× 4
n × 2

3 + 4
n × 2

11  = ( 1)
2

n h− +(n-h)× 8
3n + 8

11n . 

 

We now sum all metrics:  

A+B+C = ( 1)
2

n n× − + ( 1)
8 ( )n n h+ − + ( 1)

2
n h− +(n-h)× 8

3n + 8
11n  = (n2 +n(1+ 4

h )- 8
5h )  (3.16). 
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Fully Balanced Z-ary Tree: The method for deriving the closed cost formula is similar to this 

of the binary tree. However, if a node has z children, only the last child relays its message 

more than two hops.  The following expression holds for this type of tree: 
1 1
1

hz
zn
+ −
−= . 

Working in a similar fashion we obtain the expression: A+B+C, where A is: 

A= 
1

1

n

i

i
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2
n n× − . 

B= 2
1

1
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B = 2
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1 1 1) 1( ( 1) ( )h h n h

z z z z z+ + −− −+ − −   
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1
( )1

i
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z i
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( 1)
2 (( ( )) ( 1))j j
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z i n h f fk k
=

−−

=

− × × − − + +∑ ∑ , where kj are such that 

h(kj) = i, and i is the hop-wise contribution of each member involved in C.  

In this case the following holds:  g(kj) = f(kj+1)-f(kj) = i+(z-1). 
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In order to upper bound metric C we want to use (3.12) and (3.15), by substituting x with 

1
z ≤ 1

3 and n with (h-1). However, for these values, (3.12) and (3.14) can be replaced by 

(3.13) and (3.15) respectively: 

C < h× ( 1)n
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C < h× ( 1)n
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C < h× (n-1)× 1)
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2 zh-1× 2
1
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Given that (n(z-1)+1) = zh+1, we get: 
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Combining all three formulae for metrics A, B, C, computed above we obtain:  

A+B+C < ( 1)
2

n n× − + 2
22
1 ( ( 1) (1 ) )
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z n z n h hz h− − + + − − + 2

(2 1)
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3
z ))n- 1)
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2 ( 1)

z
z z

−
− h + 22( 1)

1
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z - 2

1
z ) => 

A+B+C < n2+( 2)
2

(z− h+ 1
2( 1)z− (3+ 4

z - 2
4
z ))n - 1

2( 1)z− h - 1)
2

(z− + 22( 1)
1

z−
 (z+1+ 2

z - 2
1
z ) => 

A+B+C < n2+O( 2)
2

(z− h + 2
( 1)z− )n+O(1- z - 1

2( 1)z− h)                               (3.17). 

Observation 1: The complexity of implementing GDH.1 via traversing any Z-ary balanced 

tree, never exceeds the upper bound of: n2+O( 2)
2

(z− h + 2
( 1)z− )n + O(1- z - 1

2( 1)z− h), and its 

order is characterized by the factor: 2n . 
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Observation 2: From a fully balanced Z-ary tree of n nodes, an arbitrary tree of n nodes can 

be constructed, by successively adding and removing leaves in the Z-ary tree at any level. For 

example, the transition from a Z-ary tree to a (Z+1)-ary tree of the same number of nodes n, 

does not alter the upper limit of the bandwidth complexity at any instance. In other words, the 

various instances of an arbitrary spanning tree of n nodes that can be produced, while 

transitioning from a balanced Z-ary tree to a (Z+1)-ary tree and vice versa, incur 

communication complexity upper limited by 2n as well. This is the case, when the pre-order 

traversal method is used to visit all nodes of the arbitrary spanning tree. 

 

 

 

Figure 3.3. Arbitrary tree resulting from a fully balanced binary tree when one member is 
removed from branch i1, and a new one is added under branch i2.  
 
As an example, we now compute the combined communication cost (or equivalently A+B+C) 

when GDH.1 is applied on an arbitrary tree of n=15 members that results from a fully 

balanced binary tree after: 

(a) first removing a leaf from branch i1 and adding a new member under one of the 

offspring of branch i2, or 

(b) first adding a new member under one of the offspring of branch i1 and then removing a 

leaf from branch i2. 

 

Case (a): 

Observation 1: If we traverse sequentially the branches of the tree, starting from branch 1, 

then we observe the following: all members that belong to branches j<i1 maintain their 

previous ids, members that are leaves under branch i1 as well as all members that belong to 

any branch between (i1+1) and i2 have their ids shifted (increased) and equivalently the 
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number of messages they need to relay increases by 1. Finally, all remaining members that 

are visited by the pre-order walk after the new member (placed as a leaf under any of the 

previous leaves associated with branch i2), maintain their previous ids.  

Observation 2: Depending on whether we modify the left or right offspring of a given 

branch i1 or i2, the margins for the shifted ids are differentiated. In Table 3.4 we show how 

members’ previous ids are modified around those margins for all possible scenarios. By (+1) 

we denote the operation of increasing the numbering of previous members’ ids by 1, and by 

(0) we denote the operation of decreasing the previously “increased by 1” members’ ids so 

that their new ids now coincide with their previously assigned ids.  

 
Scenarios: B C 
SL1-:    i1: left offspring (i1+1) change (+1) I1 changes (+1) 
SL2 -:   i1: right offspring (i1+1) change (+1) (i1+1) changes (+1) 
SR1-:    i2: left offspring  i2 changes (0) I2 changes (0) 
SR2-:   i2: right offspring (i2+1) change (0) I2 changes (0) 

Table 3.4. Detailed demonstration of how members’ ids are modified (and consequently 
metrics B and C) after a left or right offspring is removed (branch i1) or added (branch i2).  
 
Based on these two observations, we re-compute values A, B, and C, for the two cases 

distinguished below: 

Case a.1: Assume that | i2- 8
n | ≤ i1. Since the contributions of nodes designated by the 

logical GDH.1 protocol are computed in A, it is obvious that A remains unchanged for both 

trees as long as they maintain the same number of members. However, values B and C do 

potentially change, since they include contributions from a varying subset of members. Based 

on observation 1, in order to exploit the remaining mirror symmetry regarding the tree leaves 

and the number of messages relayed by each, we separate the original common branch space 

in the following intervals: [1, 4
n - i2], [ 4

n - i2+1, i1], [i1+1, 8
n ]. Any members that belong to 

any of these intervals share common properties with the corresponding members that belongs 

to the mirror interval (i.e. the mirror of [1, 4
n - i2] is [i2, 4

n ]). These common properties are 
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either the symmetry witnessed in previous cases, or a similar symmetry, with a slight fixed 

offset as we will see now. Then, we re-compute metric B for the random tree, for all scenarios 

(SL{1,2}×SR{1,2}) denoted as Br, by splitting the original summation in three smaller ones 

so that each corresponds to one of the aforementioned intervals. For metric B only two 

scenarios are distinguished, since SL1=SL2=SL:  SLSR1 and SLSR2. 

Br (SLSR1) =B1+B2+B3   = 
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Br (SLSR1) = B + (i2-i1). 

Similarly: Br(SLSR2) = B1+B2+B3 =
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For metric C only two scenarios are distinguished, since SR1=SR2=SR:  SL1SR and SL2SR. 

Cr (SL1SR) = C0 +C1+C2+C3 = C0 + CN0, where: 

C0 = 
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CN0 (SL1SR) = 
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11 2
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(( ( )) ( ))j j
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h ih

i
n h x yi k k
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− −−

=
× − − +∑ ∑ , where kj are such that h(kj) = i, and i is 

the hop-wise contribution of each member involved in C. Working in a similar fashion as 

before, and extending the results obtained  for metric C for a fully binary balanced tree as 

shown for metric B we obtain:  
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Taking into account that { }1 1 1 11 12 2 , 2i i ih h h+ − += , we obtain the following upper bound for 
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Similar are the computations for CN0(SL2SR). 

 

Finally we obtain for metric Cr (SL1SR):  
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It is obvious that in this case the combined communication and routing cost of the transition 

from a balanced binary tree to an arbitrary one, is affected only by a constant factor c. 

Similar are the results for CN0(SL2SR) 

Case a.2:  Assume that | i2- 8
n | >i1. 

The computations are conducted in a similar fashion as these for Case a.1, the results 

obtained are similar with these obtained for Case a.1, and the resulting complexity is 

practically the same. Therefore, we skip the analysis associated with Case a.2. 

 

Case (b):  

Observation 1: If we traverse sequentially the branches of the tree, starting from branch 1, 

then we observe the following: all members that belong to branches j<i1 maintain their 

previous ids, members that are leaves under branch i1 as well as all members that belong to 

any branch between (i1+1) and i2 have their ids shifted (decreased) by 1, and equivalently the 

number of messages they need to relay decreases by 1. Finally, all remaining members that 
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are visited by the pre-order walk after the member that is removed from branch i2 (placed as 

a leaf under any of the previous leaves associated with branch i2), maintain their previous ids.  

Observation 2: Depending on whether we modify the left or right offspring of a given 

branch i1 or i2, the margins for the shifted ids are differentiated. In Table 5 we show how 

members’ previous ids are modified around those margins in detail for all possible scenarios. 

By (-1) we denote the operation of decreasing the numbering of previous members’ ids by 1, 

and by (0) we denote the operation of increasing the previously “decreased by 1” members’ 

ids so that their new ids now coincide with their previously assigned ids.  

Scenarios: B C 
SL1-:    i1: left offspring (i1+1) changes (-1) i1 changes (-1) 
SL2 -:   i1: right offspring (i1+1) changes (-1) (i1+1) changes (-1) 
SR1-:    i2: left offspring  i2 changes (0) i2 changes (0) 
SR2-:   i2: right offspring (i2+1) changes (0) i2 changes (0) 

Table 3.5. Detailed demonstration of how members’ ids are modified (and consequently 
metrics B and C) after a left or right offspring is added (branch i1) or removed (branch i2).  
 
Based on these observations, we re-compute A, B, C, for the cases distinguished below: 

Case 1: Assume that | i2- 8
n | ≤ i1. Since the contributions of nodes designated by the logical 

GDH.1 protocol are computed in A, it can be seen that A remains unchanged for both trees as 

long as they maintain the same number of members. Metrics B and C do change, since they 

include contributions from a varying subset of members. Based on observation 1, in order to 

exploit the remaining mirror symmetry regarding the tree leaves and the number of messages 

relayed by each, we separate the original common branch space in the following intervals: 

[1, 4
n - i2], [ 4

n - i2+1, i1], [i1+1, 8
n ]. Any members that belong to any of these intervals share 

common properties with the corresponding members that belong to the mirror interval. These 

common properties are either the symmetry that we witnessed in previous cases, or a similar 

symmetry, with a slight fixed offset. We re-compute metric B for the random tree, for all 

scenarios (SL{1,2}×SR{1,2}) denoted as Br, by splitting the original summation in three 
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smaller ones, each corresponding to one of the aforementioned intervals. For metric B only 

two scenarios are distinguished, since SL1=SL2=SL:  SLSR1 and SLSR2. 
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For metric C only two scenarios are distinguished, since SR1=SR2=SR:  SL1SR and SL2SR. 

Cr (SL1SR) = C0 +C1+C2+C3 = C0 + CN0, where: 
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the results obtained for metric C for a fully binary balanced tree as shown for metric B we 
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In this case the combined communication and routing cost of the transition from a balanced 

binary tree to an arbitrary one, is affected (decreased) only by a constant factor c. Similar are 

the computations and results for CN0(SL2SR), hence we omit them here. 

Corollary 1: Furthermore, if we extend the previous computations to a binary tree under any 

current state (not necessarily balanced), it can be easily seen that the transition from the 

existing to the next state, always causes a constant increase or decrease in the combined 

communication complexity (exactly as computed above).  

Case b.2:  Assume that | i2- 8
n | >i1. 

The computations are conducted in a similar fashion as these for Case b.1, the results 

obtained are similar with these obtained for Case b.1, and the resulting complexity is 

practically the same. Therefore, we skip the analysis associated with Case b.2. 

Corollary 2: The transition from a fully balanced binary tree to an arbitrary binary tree with 

the same number of members is performed via an equal number of member removals or 

additions, in an arbitrary sequence. As already seen, the transition from the current state to 

the next always results in a constant increase or decrease in the combined communication 

complexity. Hence, the combined communication complexity for executing GDH.1 on the 

tree produced after the transition is not altered in this case. However, even when we have a 

transition with varying number of members, we see that we can predict the change in the 

overall complexity in average at least, unless the transition occurs under a prescribed 

sequence of member additions or removals. The computations for the case of the generalized 

Z-ary tree are conducted in a similar fashion, and the corresponding results are analogous.  

  In summary, for the case of interest, and for all cases where the member additions are not 

overwhelming compared to member removals, we can safely conjecture that the statement in 

observation 1 is true: the complexity of implementing GDH.1 through the traversal of any Z-
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ary balanced tree is characterized by the factor 2n and bounded by the expression: 

n2+O( 2)
2

(z− h + 2
( 1)z− )n+O(1- z - 1

2( 1)z− h). 

 
3.3.2.3. Solution to (3.3), (3.6): Broadcast Tree 

 We apply a simple controlled flooding strategy based on a broadcast tree (BT) over the 

network nodes. An internal node that receives a message from its parent, forwards it to its 

immediate tree offspring only once. For each different source, the same ST is used, rooted at 

the given source each time. It is assumed the parent-children associations are modified on the 

fly. Now, we only need to perform broadcast over a rooted tree, which is quite simple as the 

root can broadcast to its children who can recursively broadcast into their sub-trees. With 

respect to GDH.2 protocol, (3.3) is further improved if each parent removes this part from the 

received message that corresponds to itself before forwarding the remaining message to its 

children. Under the worst case scenario the ST is degenerated to a chain and (3.3) 

becomes: ( 1)
2

n n− . Computing (3.3), (3.6) on a BT with height h(BT) we obtain: (3.3)< ( 1)
2

n n− , 

(3.6)≤ h(BT)≤D. 

 
3.3.2.4. Solution to (3.3), (3.6): Simultaneous Unicasts 

Another implementation of the logical broadcast is obtained by (n-1) simultaneous unicasts 

from the sender Mn to each member Mi of a single message through the routing path Rn,i. We 

obtain the following upper bounds for (3.3), (3.6): (3.3) =
1

1

,

n

i
n iR

−

=
∑ ≤D× (n-1),  and (3.6)≤D. 

Given the analysis so far, the following metrics can be computed for GDH.1, GDH.2 and BD: 

CCost(GDH.1) = CCost(aux) + 2× (3.2)×K < 5nK1+2× (n2+O( 2)
2

(z− h+ 2
( 1)z− )n+O(1- z -

1
2( 1)z− h))×K < 2× (n2 +O( 2)

2
(z− h + 2

( 1)z− + 2.5 1K
K )n+O(1- z - 1

2( 1)z− h))×K. 

Lt (GDH.1) = Lt (aux) + (3.5) = 6n + 2D . 
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CCost (GDH.2)= CCost (aux) + (3.2)×K + (3.3)×K < 5nK1 + (n2+O( 2)
2

(z− h + 2
( 1)z− )n+O(1-

z - 1
2( 1)z− h))×K+n2×K=(2n2+O( 2)

2
(z− h+ 2

( 1)z− +5 1K
K )n+O(1- z - 1

2( 1)z− h)) ×K. 

Lt (GDH.2) = Lt (aux) + (3.5) + (3.6) = 4n + 3D . 

CCost (BD) = CCost (aux) + 2× (3.3)×K < 5nK1 + 2×n× ( 1)
2

nn− ×K. 

Lt (BD) = Lt (aux) +2× (3.6) = 2n + 4D .    

3.3.2.5. Solution to (3.4), (3.7): Hypercube traversal over ST 

   We generate a rooted spanning tree T over all n group members and name them as 

designated by a pre-order tree traversal. As already discussed, during a full walk of the ST, 

each tree link is visited twice. In total, the full walk goes through 2n entities (some of the n 

members are traversed multiple times), and (2n-1) tree links. We now map every tree node 

visited consecutively during the full walk, to a new “entity” placed consecutively on a path. 

The ids are assigned incrementally to nodes in the path so that node with id: j precedes node 

with id: (j+1). These entities are in fact the n network nodes, some of which are replicated in 

the extended path, in the spaces designated by the full tree walk. All participating entities are 

physically one hop away from their predecessor and successor in the new path. In this path, a 

group member corresponds to possibly more than one entity and may be therefore assigned 

multiple ids. The execution of wt-Hypercube requires an additional round, since the number 

of participants is now double: 2n = 2(2d) = 2d+1. This algorithm provides a very simple 

method of computing a closed cost formula for the bandwidth and latency of Hypercube, for 

any physical deployment of nodes, for any arbitrary ST. The placement of nodes in the path 

automatically determines their peers for all subsequent (d+1) rounds. From this point, the 

protocol is executed as designated by the initial logical design. For example, during round j, 

member i does a 2-party DHKE with member k = 1( 2 )jiϕ −⊕ . Members i and k exchange one 

message during round j, through the routing path Ri,k = Rk,i. However, the size of each such 



 139

routing path can be now deterministically determined: the hop distance between two nodes is 

the lexicographical distance of their associated ids, namely Ri,k = |k– i| = 2j-1, except for the 

case that both ids belong to the same node, and Ri,k  = 0.  

 

 

Figure 3.4. Replicating and renaming network nodes w.r.t. pre-order tree walk, for td-HCube. 
 
 

 The solution to (3.4) is: 
1

1
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⊕
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j=
∑ = 2n× (2d+1-1)= 2n× (2n-1) = 4n2-2n.  

Considering that certain routing distances whose end parts belong to the same node are zero, 

the resulting costs may be much lower than the expression computed above. Each message 

exchange involves a single packet.  

  In the proposed wt-Hypercube, in any given round, all message exchanges among peers 

involve the same routing distance. Hence, the same per round (and consequently total) 

latency corresponds to all entities. For example, in round j, the routing distance between any 

two peers is 2j-1. The solution to (3.7) becomes: Lt = 
0

2
d

i

i=
∑ = 2d+1 – 1 =2n-1.Given the 

solutions to (3.4), (3.7), we obtain the following metrics for wt-Hypercube:  

CCost (HCube) =  CCost (aux)+ (3.4) ×K < 5nK1 + (4n2-2n) ×K = 4n2K + (5K1-2K)n. 

Lt (HCube) = Lt(aux) + (3.7) = 4n + 2D-1. 

The computations for wt-Hypercube increase, since the number of entities is now double: 

CComp(HCube) = 2n log2n = 2n (logn+1) = 2n(d+1). 

Observing the corresponding metrics associated with wt-Hypercube, we see that we improve 

over the nt approach by a factor x varying with the topology of the network, where x = 

d D
n
× ≥ 1. If the network is a single chain then the improvement is even greater and x = O(d).  
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Summary: Tables 3.6, and 3.7, summarize the upper bounds on the bandwidth and latency 

costs of the five protocols, when the discussed topological improvements are performed. The 

metrics CCost and CComp are all scaled by K. CCost and Lt in these tables should be 

contrasted with those in Table 3.2; in most cases the efficiency of the protocols increases by a 

factor of D or n. The core framework has significant impact only to the resulting latency. 

 Lt CCost Exp. 
wt-nf-ING 2n 2n2 – 2n       n2 
wt-nf-BD 2D 2×n× ( 1)

2
nn−  n2+n 

wt-nf-GDH1 4n 
2× (n2 +O( 2)

2
(z− h + 2

( 1)z− )n+O(1- z - 1
2( 1)z− h))  (n2+3n)/2 

wt-nf-GDH2 2n+D 
(2n2 +O( 2)

2
(z− h + 2

( 1)z− )n + O(1- z - 1
2( 1)z− h)) (n2+3n)/2 

wt-nf-CUBE 2n-1 4n2-2n 2n log 2n 
Table 3.6. Performance of the wt-KA protocols over MANETs, w/o core framework (nf). 

 
 Lt CCost Exp. 

wt-wf-ING 4n+2D 2n2K+ n(5K1 – 2K),           n2 
wt-wf-BD  2n+4D 5n 1K

K +2×n× ( 1)
2

nn−  n2+n 

wt-wf-GDH1 6n+2n 
2× (n2 +O( 2)

2
(z− h + 2

( 1)z− + 2.5 1K
K )n+O(1- z -

1
2( 1)z− h))  

(n2+3n)/2 

wt-wf-GDH2 4n + 3D 
(2n2+O( 2)

2
(z− h + 2

( 1)z− + 5 1K
K )n + O(1- z -

1
2( 1)z− h))  

(n2+3n)/2 

wt-wf-CUBE 4n+2D -1 4n2+ (5 1K
K -2)n 2n log 2n 

Table 3.7. Performance of wt KA protocols over MANETs including core framework wf. 
 

3.3.2.6 Graphical Illustration of Representative Results. 

Below, we illustrate graphically the most significant results of our comparative analytical 

performance evaluation. We measure the bandwidth (CCost) incurred to the network from the 

execution of the discussed protocols while varying the network size n, in number of packets 

(or equivalently bits) and the associated latency in atomic steps. In our evaluation we use all 



 141

versions of the protocols discussed: with our without topology considerations, i.e. wt or nt 

respectively, with of without the core framework, i.e. (wf) or (nf), respectively. We also vary 

the size of the network diameter D as follows: D = an, where 0.1<a<1. 
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Figure 3.5. Bandwidth and Latency for the td-wf-versions, as the size of the network and 
network diameter grow (D=0.8n). GDH.1 has the best performance overall w.r.t. bandwidth, 
but the worse w.r.t. latency. The rest of protocols demonstrate comparable performance. 
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Figure 3.6. Bandwidth and Latency for the td-nf-versions, as the network size and diameter 
grow (D=0.8n). GDH.1 has the best performance in bandwidth, but the worst latency. The 
rest demonstrate comparable performance, except for BD, that has very low latency. 
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(logarithmic scale)
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Figure 3.7. Bandwidth and Latency for the nt-versions, as the size of the network and 
network diameter grow (D = 0.8n). BD has the worst performance in bandwidth, but the best 
in latency. The nt-HCube outweighs the rest in their nt-version, whereas in its wt-version, it 
presents the worst performance, even though its wt-version isimproved from the nt one. 
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Latency for tb, td-nf, td-wf HCube (atomic steps)
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Figure 3.8. The first graph illustrates the latency for all HCube versions, as the network size 
increases. The nt-nf version presents the best performance overall, and the wt-version the 
worst. The second graph illustrates the bandwidth for all GDH.1 versions. Even in a small 
network diameter, the td-GDH.1 version prevails. 
 

3.4. Wt KA on logical secure member graphs subject to underlying routing. 

  Group members now use the underlying routing protocol to gather information about other 

group members in their proximity. We assume that a path between group members may as 

well include non-member relays. We simply rely on the redundancy of the routing protocol to 

ensure that the exchanged messages are delivered in a timely manner. We assume a generic 

underlying routing protocol with the property that it always finds the minimum path (i.e. 

Dijkstra). It provides all nodes with the paths to at least the nearest subgroup members (with 

respect to the number of hops), and finds at least one path connecting two members. The 

upper limit in the number of hops between members considered immediate “logical 

neighbors” is dynamically set. The search diameter (TTL) is expanded until at least a pre-

defined number of such neighbors are found or until the TTL threshold is reached. After the 

end of this process, every group member that is considered “connected to its group” acquires 

a number of virtual links to other members.  

  The weight of each such link is the distance between the two group members in terms of 

number of hops (relays). We are interested in minimizing the combined routing and 

communication cost (CCost), resulting from the execution of the KA protocols discussed. 

Depending on the metric we want to optimize, we can adjust the link weight accordingly: it 

may include delays, traffic, robustness, mobility, geometric distances, etc. Having obtained 
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the link weights, we will now generate a Minimum Spanning Tree (MST) over all group 

members. In section 3.2, the value of any link weight was always 1, and an MST would 

coincide with any ST. In this generalized case we need to find the MST of all MSTs 

originating from every single group member, if we want to apply an analogous method on the 

associated KA protocols. Obviously, utilizing a core framework that computes the MSTs 

from all group members is an over-kill. In what follows we describe a very efficient 

algorithm for extracting a “low cost” Hamiltonian path from a single MST. This algorithm 

applies to all the discussed KA protocols that require a ST to derive a wt, efficient 

communication schedule. We show that with the appropriate manipulation of the generated 

MST, we achieve even further improvement on the metrics of interest: CCost, RCost, and Lt.  

   Next, we introduce a new algorithm for optimizing the metrics associated with ING, 

GDH.1, and GDH.2, and in the following section we introduce a new algorithm for 

optimizing metrics associated with Hypercube. In both sections, we carry out extensive 

simulations over numerous network configurations to measure the overhead incurred to the 

network due to: a) the generation of the core framework and b) the execution of the discussed 

KA protocols with the new wt communications schedule. We describe our simulation set up 

and present the most characteristic results. We show that the new algorithms improve the 

performance of the new wt-versions of protocols even further. 

 
3.4. Wt adaptations of GDH.1, GDH.2, ING, on logical graph, subject to routing 

 As in the previous section, we assume that a starting point is pre-agreed before deployment, 

and as the network operation progresses, the leader election process provides group members 

with new and auxiliary starting points. The knowledge of the starting point is propagated to 

the rest of group members via a simple broadcast tree. The required backbone MST will be 

rooted at the starting point. Below we provide a detailed description of the algorithm that 

generates the core framework and is used for the assignment of session ids to the members. 
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3.4.1 MST Generation 

We generate a MST with starting point member A by applying a distributed version of Prim’s 

algorithm. Prim’s algorithm is based on a greedy strategy that is captured by the following 

“generic” algorithm which grows the MST one edge at a time. The algorithm manages a set 

of edges H, maintaining the following loop invariant: prior to each iteration, H is a subset of 

some MST. Prim’s algorithm has the property that the edges in the set H always form a single 

tree. This strategy is greedy since the tree is augmented at each step with an edge that 

contributes the minimum amount possible to the tree’s weight. In order to implement this 

algorithm as such however, all members must have global information on the link weights of 

all other members, so that they all see which member in H has the minimum link weight and 

allow the growing MST expand towards this direction. We adjust this algorithm to our 

distributed environment, by having each member that joins H report its candidate links to the 

root, and the root determines the next member J to join H by examining all unused candidate 

links of all members that currently belong to H. Then root A sends a Join Flag to member J, J 

joins H and so on and so forth. As it has been proven, the improved running time of the 

original Prim’s algorithm is:  Lt1 = O(E + Vlog2V). Let the weighted path between any group 

member J and the root A be denoted as RJ, A. Also, let PKS denote the bit size of the packet 

that carries a member’s candidates’ information up to the root, and KS the bit size of the Join 

Flag from the root to the next member that joins H, where KS <<K. The combined 

communication cost and latency incurred for the adjustment of Prim’s algorithm becomes:  

CCost1(aux)= ,j A
j V

R
∈
∑ × (PKS+KS)≈ |V|× (PKS+KS)×avg(Rj,A)≈ |V|× (PKS+KS)× 1

2 max j (Rj, A) 

Lt2 = 2× ,j A
j V

R
∈
∑ ≈2× ≈ |V| ×avg(Rj,A) ≈2× |V| × 1

2 × max j  (Rj, A) ≈ |V| × max j (Rj, A). 

 The running time of the adjusted algorithm in total becomes:  

Lt = Lt1 + Lt2 = O(E +Vlog2V) + |V| × max j (Rj, A) = O(E +V (log2V + max j (Rj, A))). 
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Still, we will measure these two metrics with our simulation experiments. 

 
3.4.2 MST Manipulation 

    Until now, we have generated a MST starting from member A. A full walk on this MST 

will provide us with a Hamiltonian path with cost CMST < 2COPT. We will investigate if we can 

do better than that for GDH.1, GDH.2, and ING. Thus, we look for heuristics that produce 

better results than the closest point heuristic or the full walk on an MST with triangle 

inequality. We start with the following observation: if the generated MST was in fact a chain, 

then the desired Hamiltonian path would be directly provided and would result in the same 

cost as this of the MST. Hence, the more the resulting MST resembles a single chain, the less 

the cost of the resulting Hamiltonian path (not tour) is expected to be. Based on this 

observation, we initiate the manipulation of the MST with the following transformation: 

During the formation of the MST the two longest distinct paths from all group members to 

the root are identified. The group member that marks the end of the longest path becomes 

now the new root of the transformed MST, and the associations between parents and 

offspring in the existing MST are sequentially altered to accommodate the transformed tree. 

This process, results in unfolding the MST to its longest path, or else in “extracting” the 

largest possible “path” from the MST (Figure 3.9 (b), (c)).  

   Next, each member that belongs to the new ST, recursively rearranges its offspring in the 

order of decreasing distances from their tree leaves (Figure 3.9 (d)). It is obvious that the 

backbone of the tree, which is the previously unfolded path, will be accessed last by a pre-

order tree traversal. It can be directly seen that in the case we want to generate a Hamiltonian 

path from this tree, all members that belong to the “unfolded” path will be visited only once. 

No recursions occur on the unfolded path. Hence, the longer the unfolded path is (the less the 

resulting tree branches), the less the number of members that will be revisited is. 

Consequently, this modification results in the reduction in the routing overhead for the 
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Hamiltonian path formed. This is also the intuitive idea behind the use of this heuristic for 

protocols GDH.1, GDH.2, and ING.  

   In the case of GDH.1 and GDH.2, the benefit from having each member in the transformed 

MST recursively rearrange its offspring is even greater. For the upward stage of GDH.1-2, 

the MST is traversed as indicated by the Minimum Point Heuristic. Along the lines of a 

greedy strategy, we select to fix the backward GDH.1-2 schedule first. For that, we assign 

each of the n group members with a unique sequential id from Z*∩ [0, n-1]. That is, we 

perform a pre-order visit of the MST by assigning session ids from the highest to the lowest 

one, as we traverse the tree. By fixing the backward schedule first via a pre-order MST 

traversal, we ensure that the members carrying the longest KM material are accommodated 

first. Hence, we still act along the lines of a greedy strategy. Among siblings, the following 

invariant is true: the higher the newly assigned id of a sibling (backward schedule), the 

fewer amount of hops (relays) a message originating from this sibling will go through until 

the destination is reached (successor or predecessor). The new id assigned to a member 

corresponds also to the number of KM elements the member must communicate to its 

successor or predecessor. Thus, among siblings, the longer the message, the less number of 

relays it involves. We stress again that we aim in improving the metrics of interest for the 

studied protocols by manipulating the MST with simple, lightweight, but effective heuristics, 

like the ones proposed. Below, we briefly summarize our algorithm. We briefly summarize 

our algorithm and analyze its overhead next:  

1. Construct MST using distributed Prim (nodes report candidate links to root which 

determines the next link) 

2. Transform MST by deploying (unfolding) its largest path, modify all parent-offspring 

associations properly 

3. Recursively re-arrange all offspring visited in increasing distances from MST leaves (case 

of GDH.1-2) 
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Figure 3.9. Manipulation of a MST: Transformation by unfolding it to the longest path and 
recursive re-ordering of each member’s offspring. (a): Initial MST Prim, (b): Identification of 
the largest path to unfold, (c): MST unfolded to its largest path, (d): Re-arrange offspring 
from larger to smaller path. 
 
3.4.3. Performance Analysis 

Notation: Let Rmax = maxi,j(Rj, i) be the longest virtual link between any two virtually 

connected members.  

The two longest distinct paths are found along with the initial MST formation. The MST root 

stores data about the two members whose distances from the root are the longest, and follow 

two distinct paths to the root. Based on the next candidate that joins the evolving subset H, 

the root updates its related information accordingly. Thus, no extra communication overhead 

or latency is incurred to the network for this operation. After the two longest paths are 

determined, the root notifies the member that will serve as the new root, say member C. 

Starting now from C all members sequentially alter their parent-offspring association. This 

running time for this operation depends on the length of the new unfolded path (UP), i.e. RUP 

= RC,D, as illustrated in Fig. 3.9(c). The associated communication overhead and latency are: 

 CCost2 (aux) = Weight (MST) ×KS  =  W(MST)×KS,                            Lt3 = RUP . 

  For the re-ordering process, each offspring recursively notifies its parent of its distance from 

the related tree leaf. For example, if member F collects the maximum distances of all 
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offspring from the tree leaves, it picks the maximum among these values, adds its own link 

weight towards its parent, and sends this information to its own parent, who will collect 

similar information from all offspring, and so on and so forth. Each parent stores this 

information and applies a sorting algorithm to its offspring (i.e. QuickSort) to virtually 

reorder them for the coming pre-order traversal. The sorting calculations can be executed 

independently from the propagation of the maximum distance to the root. The overhead 

incurred from this operation is the same as before: 

CCost3 (aux) = W(MST)×KS ,                                                 Lt4 = RUP . 

Overall, the communication cost and latency of the core framework becomes approximately:  

CCost (aux) = CCost1(aux) + CCost2(aux) + CCost3(aux).  

CCost(aux)= | |
2
V maxj(Rj,Rt)× (PKS+KS)+2W(MST)×KS < 1

2 |V|2×Rmax× (PKS+KS)+ 2|V|Rmax ×KS  

CCost (aux) < |V|×Rmax× ( 1
2 |V|× (PKS +KS) + 2 KS). 

Lt = Lt1 + Lt2 + Lt3 + Lt4.  

Lt = O(E +V (log2V + maxj (Rj, Rt) )) + 2×RUP  < O(E +V (log2V + |V|×Rmax )) + 2×2|V|×Rmax  

Lt <O(E + |V log2V| + ( |V|2 + 4|V|)×Rmax )). 

3.4.4. Simulations 

Simulations Set Up: We have conducted simulations to compare the routing cost of wt-

(GDH.1, GDH.2, and ING) vs. their original versions on a logical secure member graph, 

subject to underlying routing. Our network graph represents a single cluster area where a 

single group is deployed. A number of nodes from this graph are randomly selected as group 

members. The group leader is randomly selected. At the end of the group “registration” 

period, the sponsor piggybacks the list of the legitimate members into the routing packets. 

We assume a generic Dijkstra routing protocol that finds the shortest paths between members. 

Through the underlying routing, each member obtains the routing path(s) to its closest 

neighbor(s). We dynamically determine the proximity with respect to the number of hops 
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between two members. If no neighbors are found in the proximity, the search diameter (TTL) 

is gradually expanded until a pre-agreed number of members are found. 

  We further assume that while the backbone framework is being formed, the relative 

placement of members and hence the proximity lists do not change significantly. Such a 

change could result in a different “optimal” solution, and the one currently generated would 

become outdated and probably suboptimal. However, our algorithm is fairly fast. So, it is not 

too optimistic to assume that the topological changes that occur do not “offset” our solution 

much from the target. It is expected that the higher the mobility of nodes, the worse the 

performance of our algorithm is. Even though the wt-versions are more sensitive to mobility 

than the original, they still reduce significantly CCost and Lt, even if the generated schedule 

is not optimal. On the other hand, the backbone framework can be periodically reconfigured, 

in order to capture all dynamic changes and reflect them to the wt protocol executions. For 

example, the auxiliary framework may be recalculated whenever the performance of a given 

protocol degrades to the median of the best execution (the first one after the auxiliary 

framework reconfiguration) and of the average execution of the original nt scheme. 

  For our evaluation, we generated various random graphs for a given input of the number of 

nodes n and the number of members m. For the same graph and the same input, we have 

varied the subgroup configuration, i.e., we have selected the n members in a random manner. 

For each graph of input <n, m> and for each subgroup configuration, we evaluated the three 

metrics of interest (CCost, RCost, Lt) of the wt vs. the nt versions, and averaged the results for 

all random graphs with the same inputs <n, m>. We have tested the following cluster-

subgroup scenarios: Cluster Size: [100,…, 600],    Subgroup Size: [8,…64].  

  Simulation Results: We illustrate indicative results produced by the discussed protocols 

and their wt versions, measured in terms of the total number of hops (relays and group 

members) required for the protocols to successfully terminate.  The KM messaging is very 

heavy for the network nodes, so our aim is to reduce the overall number of bits (or packets) 
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required and relieve as many nodes as possible from relaying large keying data. This is 

indeed the case with the new protocol versions: they achieve significant savings in terms of 

RCost, and consequently CCost. The graphs that follow reflect a number of important metrics 

that justify the value of our new wt-algorithms: (a) CCost, RCost of the wt-versions vs. the 

original under various scenarios of group and network size, and (b) CCost, RCost required for 

the generation of the auxiliary framework: CCost(aux), CompCost(aux), under various 

scenarios of group and network size. The graphs in case (a) are all scaled by a factor K. 

CCost and RCost are significantly reduced in all scenarios captured by our simulations. In 

many cases the associated ratio becomes:  

RCOMM = ( _ , , )
( , , )

CCost ING Opt n S
CCost ING n S ≈ 1

2 . 

We illustrate the above with an indicative arithmetic example: for a subgroup of size 32, and 

network of size 200, the average relays produced (RCost or CCost) are 1215 for ING_Opt, 

and 2595 for ING, hence RCOMM < 1
2 .  

Furthermore, we are able to verify that CCost(aux) and CompCost(aux) of the wt-versions 

match our analytical results. Indeed, let us for example recall the formula we derived for 

estimating CCost (aux). Assuming that the maximum number of neighbors for each member 

is 10-12 (verified from our simulations as well), and having set KS = 8, we select PKS = 8×12 

= 96 (bit size of control packet×maximum number of neighbors) Also, we select Rmax = 8, 

and obtain the following expression: CCost (aux) < 8|V |× (52|V |+16). 

We evaluate this expression for a subgroup of 32 members and obtain: CCost (aux, V=32) < 

430,080 bits. Indeed our results verify that this upper bound holds, since indicative values of 

CCost that we obtain for group size n and network size S are the following: CCost (aux, 

n=32, S=200) = 336977 bits,  CCost (aux, n=32, S=300) = 395881 bits, CCost (aux, n=32, 

S=400) = 256436 bits. The same is the case with the rest of the group sizes we have included 

in our simulations. We should also observe that CCost (aux) increases as the network size 
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grows, until the network reaches some threshold value. Then, the corresponding metric starts 

decreasing. The reasoning behind this behavior is the following: two members are considered 

“connected” until the hop distance between them (TTL) reaches a certain threshold. After this 

threshold is exceeded, the members are considered disconnected. As the network size 

increases, the density of subgroup members decreases, and naturally the “neighbors” of each 

member decrease, as expected. The less the neighbors of each node are, the lower CCost(aux) 

and CompCost(aux) quantities become. In addition, we also verify that the metrics associated 

with the auxiliary framework are kept reasonably low and add little to the overall overhead 

produced by the execution of the wt-versions, even under a growing secure group and/or 

network size. On the other hand, the control messages used for the generation of the 

framework have size KS<<K. Acceptable bit lengths for K are above 2048 bits so that a KM 

protocol can be considered computationally secure to-date. We illustrate the above with an 

indicative arithmetic example: We have found that avg (CCost (ING_Opt, n=32, S=300) = 

3925, avg (CCost (ING, n=32, S = 300) = 5976, and avg (CCost (aux, ING, n = 32, S = 300) 

= 395881. It can be seen that the larger the constant K becomes, the bigger the difference in 

the overhead of ING_Opt vs. ING becomes. However, even if we assume that the bit size of 

K is as small as 1024 bits, we obtain the following results: CCost (ING_Opt + aux) = 

3925×1024 + 395,881 = 4,019,200 + 395,881 = 4,415,081 bits, while CCost (ING) = 

5976×1024 = 6,619,424. Obviously, the difference in the overall overhead (including the 

auxiliary overhead for the case of wt-ING) is considerable, even under this worst case 

scenario (small K, highest observed CCost(aux)). The difference in the overall overhead 

becomes even more impressive if GDH.1 is considered. We emphasize again that a new 

framework needs not be computed every time a wt-KA protocol is executed. We can re-

compute the framework periodically. Hence, the impact of the framework OH on the overall 

cost of our algorithms is even lower in practice. 
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Figure 3.10. (a) CCost for ING_Opt vs. ING, for Subgroup size n = 16, and network size S = 
100, for 100 different graph configurations. ING_Opt results in superior performance for the 
vast majority of different configurations, (b) CCost of ING_Opt vs. ING w.r.t. Subgroup size 
<16,…, 64>, in a network of size S in [100, 200]. Again, ING_Opt has superior performance. 
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Figure 3.11. (a) CCost(aux) (bits) [3], and (b) CompCost(aux) (bits) for ING_Opt, for an 
increasing group size <16,…,64>,  for three different scenarios of network size: 
S1=<100,200>, S2 = < 150, 400>, S3 = <200, 500>. The corresponding costs increase with 
the group size as expected. They also increase with the network size up to a certain threshold, 
for the same reasons discussed before. 
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Communication Cost of GDH1_Opt vs. GDH1 for large networks [200, 500], for 
an increasing subgroup size
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Figure 3.12. CCost of GDH.1_Opt vs. GDH.1 for: (a) 100 different group configurations on a 
network of 100 nodes (100 different runs) for group size of 16 members, (b) comparison 
w.r.t. number of members [16, 32, 64] in large network of [200,…, 500] nodes. The 
performance of GDH.1_Opt is significantly superior in the vast majority of cases, and this 
reflects on the average case as well. The ratio of improvement becomes: 0.53< RCOMM < 0.70. 
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Figure 3.13. (a) RCost and (b) CCost of GDH.1_Opt vs. GDH.1 w.r.t. the number of group 
members [16, 32, 64] in a large network of [200,…, 400] nodes.  
 
  The behavior and performance of GDH.2 is similar to this of GDH.1, and we skip the 

related results in order to avoid unnecessary repetitions.  

 
3.5. Wt adaptation of Hypercube on logical member graph, subject to routing 

 In this section, we introduce a new heuristic for generating an efficient, improved wt-

Hypercube. We assume that a starting point is pre-agreed, and as the network operation 

progresses, the leader election process provides members with new and auxiliary starting 

points. The knowledge of the starting point is propagated to the rest of group members via a 

simple broadcast tree. We provide a detailed description of the algorithm that generates the 

core framework and is used for the assignment of session ids to the group members. 

   Our goal is to improve on the previous wt-approach. We will identify the 2d parties on the 

d-dimensional space GF(2)d by selecting such a basis b1,…, bd ∈GF(2)d for the direction of 

communications per round, that results in optimizing the desired metrics of interest CCost, 

RCost, Lt. The previous method (MST manipulation) does not apply to this case because the 

group members communicate in pairs. If we used an MST, we would also need to define a 

deterministic method for extracting pairs out of an MST, which is not straight-forward. 

Furthermore, the selection of peers for the 1st Hypercube round and the selection of a unique 

basis in GF(2)d, limits the degrees of freedom for the selection of peers for the subsequent 

rounds. So, similar solutions for the subsequent rounds may not apply in most cases. What is 
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more, the initial selection of peers, even though optimal for the current round, may prove to 

be very unfortunate for the overhead incurred, after the end of all d rounds. Therefore, the use 

of MSTs as a core framework is highly unlikely to produce efficient Hypercube schedules. 

This solution is abandoned, and we are looking for more lightweight frameworks that can 

potentially improve the metrics of interest even further. It is clear how complex the problem 

is. The optimal solution can be found with the exhausting method of trial and error, but this is 

out of the question, and in particular for the environment of interest.  

 
3.5.1. Overview. 

  The goal of our algorithm is to determine the most “efficient” pairing for the 1st round. In 

other words, the peers selected for the 1st Hypercube round must considerably improve the 

metrics of interest. Towards this direction, we use a “greedy” strategy under which each 

member makes the best matching selection possible (1st Pass) and then a “corrective 

operation” is initiated (2nd Pass) that goes around “dead-ends” and ensures that all members 

obtain a peer. We virtually place each member of a 1st round pair in one of the two columns: 

left or right. The selection of these peers is close to the optimal for the given round, as we 

will show next, irrespectively of its impact to the subsequent rounds. However, we keep the 

message exchanges between the peers of this round active in every subsequent round, by 

doing the following modification to the original Hypercube: only half of the initial n group 

members, those either in the left or in the right column, participate actively to all subsequent 

rounds, as designated by the original scheme. The members that belong to the non-active 

column become passive recipients in the subsequent rounds. Without loss of generality, we 

assume that the members in the left column are the active participants and those in the right 

column become the passive ones. The active members are assigned new sequential session 

ids ∈  [0, 2
n -1] after the 2nd Pass. Before the start of the following rounds, the active 

members decide on a unique basis, and execute Hypercube for the next (d-1) rounds. In our 
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case, we select a basis that designates the new pairs at any given round j, where 0≤ j≤ (d-2), 

according to the following formula: in round j, party i interacts with party i⊕ 2j-1. In each 

such round, each active member communicates the newly calculated blinded value to its 

corresponding passive peer (member of right column). So, all group members participate 

indirectly to all rounds, since all receive the intended KM data, and process it as indicated by 

Hypercube. In the end, all group members obtain the same group key.  

  Given the previous observation, we can apply our algorithm on every round and not just the 

first one. Then, from the active parties of round j, only half remain active during round (j+1) 

and the other half become passive. Our heuristic greedy algorithm of “2 Passes” is applied 

once again to the currently active members, to determine the lowest weight pairings among 

them. So, instead of using a pre-agreed common basis for the direction of communications, 

we dynamically construct such a basis, based on the topological proximity of the active group 

members. However, this approach only works, if we de-activate half of the active participants 

of the current round, for all subsequent rounds. However, applying the heuristic as many 

times as the total number of Hypercube rounds is an over-kill. Also, the resulting protocol is 

quite different from Hypercube in nature, with features that may not be desirable for our 

network. An efficient and flexible solution is to apply the heuristic only for the first few R 

rounds. The threshold R can be dynamically set.  

  Given these considerations, we will conduct the following analysis by setting R = 1, in order 

to limit the overhead resulting from the backbone framework. We will show in the section of 

simulations that Hypercube performance improves substantially by this modification alone. 

Having defined our generic algorithm, it is trivial to change R and measure the improvement 

in the protocol. In this work, we find it sufficient to present only the results collected from R 

= 1, since: (a) the results are very satisfactory and the overhead of the auxiliary framework is 

low, (b) by increasing R the overhead due to the application of Hypercube is decreased, but 
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the overhead of the backbone framework increases as well, and (c) by increasing R the nature 

of Hypercube is shifted from totally distributed to centralized.  

 
1st Pass (Greedy Approach):  

  This process resembles the construction of an MST in that it follows a greedy strategy as 

well. The main difference is that only one member or one pair of members (that already 

belong to the structure being generated) is allowed to select the next candidate that will join 

the structure generated during the 1st Pass. Ideally, in the case that no corrective process is 

required (2nd Pass) the outcome of the 1st Pass is the following: a peer for every member is 

designated, with respect to the proximity among nodes. We denote the outcome of the 1st Pass 

as Set1. Towards the construction of Set1, a single token is circulated among members, and at 

each step, the token is passed to one member only. The details of the process follow: 

  Initially, the starting point is handed the token for the first time. The first time that a member 

is handed the token, will attempt to make the best selection available and find the closest in 

terms of number of hops peer. Assume that member A currently possesses the token. If there 

is such a peer F available, then members A and F will form a valid pair for the process, 

schematically represented with a horizontal line in the virtual sketch of Set1. If A is the 

starting point, there is always a peer matched to it, since all selections are available at this 

point, and also every member is “connected” to a number of members in a “connected” 

graph. If A is not the starting point, then there is a chance that its nearest neighbors have been 

reserved by other members, and A cannot find any peer available. We distinguish two cases: 

Case (a): A finds peer F available: A enlists F as its peer and together form a horizontal line 

on the virtual sketch of Set1 (Fig. 3.14). Now both A and F merge their proximity lists (those 

that contain the members in their proximity) and arrange their elements in increasing order of 

hop distance. The exchange of merged lists has size 2D×KS, where D is the upper bound of 

elements in a proximity list, and KS is the bit size of any of the control messages. Member A 
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still holds the token, and will give it to the first member from the merged and ordered 

proximity list that is still available (i.e. it is not already a part of Set1). Hence, A sends a Join 

control Flag to each member in the merged list sequentially, until it finds the first available 

member (say H), in which case it receives an Accept control Flag. Member H broadcasts this 

Accept control Flag and information about its new peer to all neighbors in its own proximity 

list. This way, neighbors know the status of H beforehand and do not need to query it when 

they become initiators. Members that are unavailable respond with a Refuse control Flag.  

    Then, member A provides the token to H. Member H becomes the initiator of a similar 

process, in order to find a peer of its own, and so on and so forth. If however, H does not find 

a peer, it gives back the token to its ancestor, member A. H becomes “grounded”, and it is 

represented via a “vertical line” on the sketch of Set1 (Fig. 3.14). Member A continues 

scanning its merged list and holds the token until it finds another available member (say 

member C) that will produce a peer (say member G). Schematically, member C is placed at 

the end of a vertical link whose other end starts from the middle of the horizontal link formed 

by members A and F. Members C and G form a horizontal link. Any successor of the merged 

lists of C and G (grounded or paired) will be placed on a vertical link whose other end starts 

from the middle of the horizontal link formed by C and G. If the merged list is exhausted and 

member A has not found a successor to hand the token to, then it recursively gives the token 

to its predecessor. The same method is followed until all members are visited. As long as the 

members are connected as defined at the beginning, this method produces no deadlocks, i.e. 

all members are visited before the process ends. Assume that S1 is the subset of members that 

have been visited during the 1st Pass, and S2 is the subset of members that could not be visited 

during the 1st Pass. At least one member in S2 must have a link to one or more members in S1 

otherwise the graph is not connected. Let this member be J. Now, all members in S1 are part 

of either a horizontal line, or a vertical one. Clearly, no members that belong to a vertical line 

have a link to member J, otherwise such a member could form a pair with J on a horizontal 
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line. The members that hold the token exhaust their merged lists until they find a successor. 

However, if at some point the process stalls, in the sense that no successors can be found, the 

token recursively goes up the whole structure (Set1), and at each step, all elements in the 

associated merged lists are scanned and the “neighbors” of all members that belong to Set1 

will be examined. Then, the link to J will be eventually found, and J will join S1 and will be 

also handed the token for the first time. Hence, all members will be eventually visited. 

Case (b): Member A does not find any peer available: As stated in the previous case, A 

provides the token to its predecessor member, which follows the same process and 

recursively provides the token to its own predecessor under case (b) or to a successor under 

case (a). The predecessor has already found its peer, and consequently, it looks through its 

merged list to find the next potential element to provide the token to. The process ends when 

all members have been visited, and the token recursively goes back to the starting node.  

 
2nd Pass (Corrective Operation): 

   The purpose of the 2nd pass is to “locally” re-arrange the grounded members and the pairs 

established during the 1st Pass so that all members obtain a peer at the end of this process. 

This time we access the structure (Set1) obtained after the end of the 1st Pass from down-up 

and we build the final Hypercube structure, denoted as Set2. We start with the horizontal 

links that have the following property: all members vertically attached to them (if any) are 

grounded. We denote the horizontal links with this property as leaf horizontal links. We start 

by re-arranging all associated members with the leaf horizontal links. Then, we go up one 

predecessor horizontal line at each step, until we reach the top, i.e. the horizontal link formed 

by the starting point. All paths starting from all leaf horizontal links eventually end up to the 

starting point. We denote the members that have been given the token and have also 

designated a peer for themselves during the 1st Pass as initiators. So, we start with leaf 

initiators and we go up one initiator at each step until we reach the starting point. The initiator 
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is always paired and represented as a vertex on a horizontal link. During this pass however, 

we re-arrange the initiator, its peer, and all their vertical links, when they become ready, and 

after this step the initiator may end up either without peer or with a different peer.  

   Each member that lies at the end of a vertical link (initiator or grounded) uses two control 

flags: the ActPass Flag and the Arranged Flag. If for a member ActPass = 1, then the member 

is active at this point during the 2nd Pass process, and actively participates to this step of the 

algorithm that involves it. If ActPass = 0, then the member becomes inactive for all 

subsequent steps of the process. When ActPass is switched to 0 it remains 0 throughout the 

process. If Arranged = 1, then the status of this member is determined for the current step of 

the algorithm. The status of a member is determined by the value of ActPass flag. If 

Arranged =1 and ActPass = 1, then the member participates in the step that involves it 

actively, because no peer has been assigned to it. If Arranged =1 and ActPass = 0, then the 

member has been assigned a permanent peer, and consequently it is not active for the step 

that involves it and any subsequent step. In this case, the status of a member does not depend 

on the outcome of the execution or previous steps of the algorithm. If however Arranged = 0, 

then the status of the ActPass flag is unknown. Then, the member must wait for the outcome 

of the step that involves the initiator of the previous step, virtually placed below its own 

initiator. For example, initially, all grounded members participate in the process with the 

following values in their control flags: ActPass = 1, Arranged = 1. This is because the status 

of the grounded members is known – they have no peers assigned – and they will actively 

participate in the step that involves them. The matched peers of the initiators from the 1st Pass 

are also going to participate in the step that involves them, and they set their flags to the same 

values as these of the grounded members. However, the status of the initiators (the matched 

members that are represented as vertices on the left of the horizontal links) is unknown. 

Initially, they participate in the step that involves them with the following values in their 

control flags: ActPass = 1, Arranged = 0. After getting feedback from initiators that lie below 
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them, they change the values of their control flags to: ActPass = {0, 1}, and Arranged = 1. 

We now give a detailed description of a single step of the 2nd Pass algorithm: 

  At any step of the 2nd Pass, every initiator monitors its own horizontal line until all vertices 

placed at the other end of the vertical links have set their Arranged flag to 1. Then, the status 

of all associated members (peer, grounded, initiators) is known and the process that will 

determine the status of the current initiator can now be activated. The initiator scans all these 

members to see how many have set the value of the control flag ActPass to 1. As discussed, 

those with ActPass = 0, have obtained permanent peers from the previous steps and do not 

participate to the process any longer. So, they can be ignored by the current initiator.  

(a) If the number of members with ActPass =1 is odd, then the current initiator will obtain a 

permanent peer in this round, and will become inactive for the remaining steps. Therefore, the 

initiator can set its own control flags (previously set as follows: ActPass =1, Arranged = 0) to 

the following values: ActPass = 0, Arranged = 1.  

(b) If the number of members with ActPass =1 is even, the current initiator will not obtain a 

permanent peer in this round, and will become active for the remaining steps. Hence, the 

initiator can set its own control flags (previously set as follows: ActPass =1, Arranged = 0) to 

the following values: ActPass = 1, Arranged = 1. In this case, the initiator gives priority to all 

the rest of members in its vicinity to obtain peers. This can be done, since the number of these 

members is even. The peer that was previously matched to this initiator will now be matched 

to one of the members that lie on the vertical links.  

 The current initiator, say A, determines the matching of its associated members according to 

the following method: first, it matches its ex-peer, say B, with its closest neighbor (in terms of 

number of hops) based on B’s proximity list. Then, if case (a) holds, it matches itself with the 

closest neighbor available, from its own or the merged ordered proximity list. It matches the 

vertices (members) on the vertical links, with the following simple algorithm:  
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   Member A scans its own proximity list, and the first two elements available are always 

matched together. Then, the next two remaining elements are matched together, and so on 

and so forth. Then, member A scans the proximity list of member B and matches the first two 

available elements every time, until all or all except the last elements (if the number of 

elements is odd) are exhausted. Finally, the two remaining elements on each of the two 

proximity lists of A and B, (if there are any) are matched together. The reasoning behind this 

algorithm is the following: the two elements that are matched together are always those that 

are available and have the minimum hop distance from their associated horizontal link. This 

means that they both have the minimum hop distance either from the initiator or from its ex-

peer (except for the last remaining pair). The idea is that these distances set up a threshold for 

the maximum distance between the newly matched members from the vertical links. This 

threshold is the minimum possible compared to a different matching.  

   Now all members associated with a given initiator (and the associated horizontal link) are 

matched. Since the initiator signals its known status (ActPass, Arranged = 1) to the upper 

level, the initiator associated with the upper level is ready to perform exactly the same steps 

and accommodate all members associated with it, following exactly the same approach. At 

the end, all members are accommodated if the number of members is even. This is so because 

the process for any given level is not executed unless all associated levels below this are 

accommodated (i.e. all members in them are paired).  

 
3.5.2. Hypercube Structure Manipulation 

  After the 2nd Pass ends, all members are matched in pairs. This would suffice if we were 

strictly interested in improving the performance of the 1st Hypercube round only. However, 

we still want to improve the overall performance of the protocol. We have selected to do this 

with the approach introduced at the previous section for the GDH-based protocols in order to 

generate the final communication schedule. The Hypercube structure becomes equivalent to a 
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ST if we map every pair of members to one tree node. In fact, that is what we do in reality, 

since in all subsequent rounds after the 1st, only one peer of every pair participates, hence we 

want to generate a communications schedule only for the members that are active after the 1st 

round. The other half (inactive after the 2nd round) have been accommodated for the 

remaining rounds: they remain recipients of the BKs computed by the active senders, during 

all rounds. Only these active members participate in Hypercube structure manipulation and 

obtain new IDs. The resulting Hypercube structure does not only provide pairs for the 1st 

round, but connects all active members via a structure exactly similar to this of MST. We will 

use the previous methods that deal with the manipulation of an MST to provide a schedule 

that improves its performanc. The method is similar as before: we apply the MST 

manipulation to the Hypercube structure (Fig. 3.14). We unfold the structure to its longest 

path, recursively arrange the offspring of each node in this structure in decreasing order of 

hops, and perform a pre-order traversal of the transformed structure to assign the new ids to 

the active members. The improvement is analogous to this of the previous schemes. As for 

the subsequent rounds, there is still improvement compared to an arbitrary assignment of ids, 

but the higher the rounds, the more uncertain or degraded this improvement becomes. In 

reality, the resulting values for these metrics may be much lower, since members may find 

paths of lower distances than these designated by the transformed structure.  
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Figure 3.14. Example of the formation of a Hypercube structure from a network graph with 
arbitrary configuration of the group members: The 1st and 2nd pass are first executed on the 
network, and if the structure contains more than one path, MST manipulation is triggered. 
 
3.5.3. Performance Analysis 

1st Pass: All subgroup members except for the peers of the initiators become initiators 

themselves and attempt to find a peer or a successor initiator. Let the number of subgroup 

members be n. The peers of initiators are denoted as x < 1
2 n. The Join flag is sent only from 

the initiators to the members in their proximity lists that are scanned. Members that accept 

the request to join broadcast their decision and make it known to their proximity lists. By 

making use of the multicast advantage, the Accept control flag packet is transmitted once to 

their proximity, but goes through all the virtual links reported in their proximity lists. 

Initiators may scan more than one member, in order to find one to join (because they are 

using the merged proximity lists, and cannot directly check the status of certain members). 

Hence, we assume that in average, an initiator scans half of the members reported in its 

proximity list. Members that get scanned respond by “Refuse” until one that accepts is found. 

In summary, keeping the notation of the previous section, the overhead incurred because of 

the exchange of control flags and other information is computed as follows: 

Join Flag: it is sent by (n-x) members and  received at maximum by: 1
2 (n-x) D members. 

CCost (Join) < 2
1

( , )j

n x
D

i
max R i j

−

=
∑ ×KS. 

Refuse Flag: It is transmitted at maximum by 1
2 (n-x) D members. 

CCost (Refuse) <
( )

2 1
1

( ) max ( , )j

n x
D

i
R i j

−

=
−∑ ×KS. 

Accept Flag:  It is broadcast by all members except for the starting point. An upper bound for 

CCost becomes: CCost (Accept) <
1

1
max ( , )j

n

i
R i jD

−

=
∑ ×KS. 
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Exchange of Proximity Lists: The x pairs exchange their proximity lists and merge them. 

Also, let PKS denote the bit size of the packet that carries a member’s proximity list. The 

overhead incurred for this operation becomes:  

CCost (List Exchange) =2×
1

max ( , )j

x

i
R i j

=
∑ ×PKS,  Latency: Lt < 2

1
max ( , )j

D
x

i
R i j

=
∑ . 

According to our previous definition, we select: PKS = D×KS. Therefore, the overall CCost 

due to the 1st Pass operation becomes approximately:  

CCost (1st Pass) = CCost (Join)+CCost (Refuse) + CCost (Accept) + CCost (List Exchanges). 

CCost(1stPass)<[2 2
1

( , )j

n x
D

i
max R i j

−

=
∑ -

( )

1
max ( , )j

n x

i
R i j

−

=
∑ +

1

1
max ( , )j

n

i
R i jD

−

=
∑ ]×KS 

+2×
1

max ( , )j

x

i
R i j

=
∑ ×PKS   

CCost(1stPass)<[2× 2
1

( , )j

n x
D

i
max R i j

−

=
∑ -

( )

1
max ( , )j

n x

i
R i j

−

=
∑ +

1

1
max ( , )j

n

i
R i jD

−

=
∑  

+2×
1

max ( , )j

x

i
D R i j

=
∑ ]×KS  < [D(n-x) – (n-x) + D(n-1) +2xD ] ,max ( , )j i R i j ×KS 

CCost (1stPass) < [D (2n+x-1) + (x-n)] ,max ( , )j i R i j ×KS . 

 
2nd Pass: Whenever the status of all members locally associated with one paired initiator 

becomes known, the initiator matches all members that are available in its merged proximity 

list. It individually notifies each member about its new peer. The merged lists may contain at 

maximum 2D elements. However, some of the elements are duplicates, or in practice each 

individual list contains less than D elements. To simplify the case, if we assume that each 

proximity list contains the same number of active members, then there are y = 2
n
x < 2D active 

elements in each. Hence, each initiator notifies (y+1) members of their new peers. It is 

obvious that the status of an initiator becomes known, when all the members of all initiators 
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that are “schematically” found below the given one, are accommodated. Therefore, the 

overall latency of the 2nd Pass is defined by the longest path of initiators, from the starting 

point to any leaf initiator. We can now compute the metrics related to the 2nd Pass algorithm: 

CCost(2ndPass)<
1

max ( , )j
i

x
y R i j

=
∑ PKS= 21

max ( , )j
n
xi

x
R i j

=
∑ PKS< 2

n ×D× ,max ( , )j i R i j KS 

Lt (2nd Pass) = maxZ 21
max ( , )j

n
xi

z
R i j

=
∑ , where z ≤ x. 

MST Manipulation: In this part, only half of the members actively participate. Furthermore, 

the Hypercube structure replaces the MST in the original algorithm. The current overhead 

results from manipulating the structure similarly as the MST in the previous heuristic. We 

quote this overhead, as computed earlier, and we adjust it to this framework:  

CCost (HCube_aux) = 2×Wgt(HMST)×KS , 

Lt (HCube_aux) = 2× max( )Wgt P , where Pmax is the max. path w.r.t. virtual hops in the 

unfolded Hypercube structure that consists of 1
2 n members.  

We can now compute the overall overhead for the construction of this auxiliary scheme:  

CCost (aux) = CCost (1st Pass) + CCost (2nd Pass) + CCost (HCube_aux). 

CCost(aux)<[(D(2n+x-1)+(x-n)) ,max ( , )j i R i j + 2
n D ,max ( , )j i R i j +2 1

2 n ,max ( , )i j R i j ]KS 

CCost(aux)<(D( 5
2 n+x-1)+x) ,max ( , )j i R i j KS<(3D+a)n ,max ( , )j i R i j KS, where x=an, a< 1

2 .                                  

CCost (aux) < (3D +1)×n × ,max ( , )j i R i j ×KS. 

Lt (aux) = Lt (1st Pass) + Lt (2nd Pass) + Lt (HCube_aux). 

Lt (aux) = 2
1

max ( , )j
D

x

i
R i j

=
∑ + maxZ 21

max ( , )j
n
xi

z
R i j

=
∑  + 2× max( )Wgt P  
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Lt (aux)< 1
2 xD ,max ( , )i j R i j + 2x

nz
,max ( , )i j R i j = ( 1

2 xD + 2x
nz ) ,max ( , )i j R i j , where z ≤  x.  

Lt (aux)<n×  ( 4
D
y + 2

1 )× ,max ( , )i j R i j < O(n× c’)× ,max ( , )i j R i j , where c’ = O(1). 

 

3.5.4. Simulations 

Simulations Set-Up: The simulation set up is similar to the previous case, regarding the 

GDH-based protocols. We have tested the following cluster-subgroup scenarios: Cluster 

Size: [50…800], Subgroup Size: [8…64].  

Simulation Results: Below we illustrate some indicative results on CCost and RCost 

produced by the original Hypercube and its new wt version, measured the total number of 

hops required for the protocol to successfully terminate. The KM messaging is very heavy for 

the network nodes, so our aim is to reduce the overall number of bits (or packets) required 

and relieve as many nodes as possible from “relaying” large KM data. The following graphs 

reflect a number of important metrics that justify the value of our new wt-algorithm: (a) 

CCost of the wt-version vs. the existing one under various scenarios of secure group and 

network size, and (b) CCost (aux) and CComp (aux) required for the generation of the 

auxiliary framework, under various scenarios of secure group and network size. The graphs in 

case (a) are all scaled by a factor K. CCost and RCost are significantly reduced in all the 

scenarios captured by our simulations. Indeed, in most cases we observe that the 

improvement ratio becomes: RCOMM = ( _ , , )
( , , )

CCost ING Opt n S
CCost ING n S < 1

2 . In fact: 0.32 < RCOMM < 0.7. 

To illustrate these with an example, for a subgroup of size 16, and a network of size 200, the 

average relays produced are 561 for HCube_Opt, and 1604 for HCube, and RCOMM = 0.35.  

  We verify that the costs of the wt auxiliary framework of the wt-version match our analytical 

results. Indeed, we re-call the expression that estimates the CCost (aux) metric. We assume 

that the maximum number of neighbors of each member is around 10-12, and set KS = 8. 
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Also, we select max (Rj, i) = 8, and D = 16. Then, we obtain: CCost (aux) < 3200× |V |. By 

computing this expression for a group of 32 members we obtain: CCost (aux, V = 32) < 

102,400 bits. Indeed our simulations results verify that this upper bound holds, since some 

indicative values of CCost for group size n and network size S are the following: CCost (aux, 

n =32, S= 200) = 98106 bits,  CCost (aux, n =32, S = 300) = 100725 bits , CCost (aux, n =32, 

S = 400) = 64136 bits. The same is the case with the rest of the group sizes we have included 

in our simulations. CCost (aux) increases as the network size grows, until some threshold 

value is reached. Then, the metric starts decreasing. This happens because two members are 

“connected” until the hop distance between them reaches a certain threshold. After the 

threshold is exceeded, the members become disconnected. As the network size increases, the 

density of group members decreases, and naturally the “neighbors” of each member decrease. 

The less the neighbors of each node are, the lower the overhead for the auxiliary framework 

is. We also verify that the metrics associated with the auxiliary framework are kept low and 

add little to the overall overhead produced by the execution of wt-HCube, even under a 

growing group and/or network size. On the other hand, the control messages used for the 

framework generation have size KS<<K. We emphasize again that a new framework needs 

not be computed every time a wt-KA protocol is executed. The frequency of this event 

depends on the dynamics of networks and on our own specifications and requirements. For 

example, it may be recalculated whenever the performance of a protocol degrades to the 

median of the best execution (first) and of the average nt-execution. 
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Figure 3.15. CCost of HCubeOpt vs. HCube for: (1) for 100 different group configurations on 
a network of 100 nodes (100 different runs) for a group of size 16, (2) for 100 different group 
configurations on a network of 300 nodes (100 different runs) for a group of size 32. 
HCube_Opt results in substantially superior performance for all the different configurations, 
in the two scenarios illustrated (better than this achieved with the previous wt- schemes). 
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Figure 3.16.  CCost of HCubeOpt vs. HCube w.r.t. the size of the group [16, 32, 64] in a 
network of (a): [100, 200] nodes, (b): [200, 500] nodes. HCubeOpt reduces the overhead in 
half. The performance difference grows even bigger as both the size of the group and network 
grow. So, HCube_Opt not only presents superior performance, but scales much better as well. 
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Figure 3.17. HCube_Opt CCost (aux) (bits): (a) three different group sizes for an increasing 
network size: [100, 500], and (b) three different scenarios of network size: S1=<100, 200>, 
S2 = <150, 400>, S3 = <200, 500>, for an increasing group size: [16, 32, 64]. The costs 
increase with the group size, as expected. They also increase with the network size and then 
at some threshold point they start decreasing (as discussed in the previous section). 
 

3.6. Conclusions 

   In this section, we contributed towards the design and analysis of more sophisticated 

approximation - optimization methods of the communication, routing, and latency functions 

(metrics) of the following KA protocols: GDH.1, GDH.2, ING, BD, and Hypercube. We 

developed new algorithms (heuristics) for generating topology-oriented communication 

schedules, to be used by these protocols. The heuristics introduced achieve significantly 

better approximations of the metrics we want to optimize. Our comparisons of the new 
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topology oriented and the original KA schemes are done via simulations. The new protocols 

achieve a dramatic overhead reduction. We believe that there is scope for even more efficient 

topology oriented approaches and we consider efficient simulations of KA protocols over 

multi-hop ad hoc networks as an interesting open problem.  

 
3.7. Wt adaptation of TGDH on logical networks, subject to underlying routing. 

  TGDH is the protocol used within the subgroups of the most efficient and robust 

representative of the Octopus-based schemes, MOT. Similarly to the previous sections, we 

extend TGDH to a novel distributed and topology aware scheme: DS-TGDH. In particular, 

our aim is to modify TGDH to: a) be feasible in the most general resource-constrained flat 

MANET where no nodes with special capabilities exist, b) produce considerably lower 

overhead for the network nodes involved, c) handle disruptions (network dynamics and 

failures) with low cost and impact. We consider the underlying routing protocol in our 

design, and we apply a distributed TGDH version over a robust schedule, optimizing metrics 

of interest. We focus on the design and analysis of the “stealthy” TGDH and compare it with 

the original. Through our analysis and results we provide more realistic comparisons that 

more accurately advocate the pros and cons of each protocol over the environment of study. 

  The primary focus of prior work on the Octopus schemes was the analysis of the proposed 

schemes, with the KG as the only performance attribute. However, since each of the schemes 

considered relies upon the former functions more or less, or in a different way, our previous 

evaluation is not totally fair. The consideration of network parameters that can accentuate the 

individual characteristics of the protocols and the differences in their performance will 

provide more realistic results. For example, scheduling is not required for the subgroup in the 

centralized (O), in contrast to MO and MOT where members interact among themselves for 

the subgroup KG. The need to apply the subgroup schemes in MO and MOT (GDH.2 and 

TGDH) over a schedule that optimizes metrics of interest comes into the play. The network 
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assumptions made in TGDH [53], (e.g. leader reaches all members via a single broadcast), 

are too simplistic to apply to a general MANET and mitigate the need to integrate the 

discussed functions in their design. In real multi-hop networks, a cross-layer consideration 

appears to be essential for a concrete framework. Previous results have designated MOT as 

the most efficient for the environment discussed. It would be worth exploring if MOT still 

prevails after a re-evaluation of the same schemes under more realistic assumptions. 

   Dividing such group into subgroups, each one corresponding to a fully connected graph of 

members, reachable by the subgroup leader via a single broadcast, would permit the 

execution of the original “centralized” TGDH exactly under the assumptions described in 

[53]. This approach is impractical for a large group: a high number of subgroups will be 

formed, very sensitive to even subtle mobility changes, and it is quite likely that they will 

contain very few members, even a single one. Even if such subgroups are in very close 

proximity they still cannot be merged. The result is a considerable waste in network 

resources, and an infeasible execution of Hypercube, where the crucial parameter d is likely 

to be high and unstable. Then, the resulting inter-cluster signaling overhead outweighs the 

benefits of Hypercube for the inter-cluster communication. 

   In the following sub-sections we present an adaptation of TGDH to meet the requirements 

of a general MANET. In particular, we modify TGDH so that: a) it is made distributed, b) it 

is executed under a schedule that optimizes our own defined routing and robustness metrics, 

under a topologically aware consideration, c) it tolerates failures and disruptions with low 

cost, d) it is far more efficient. We denote this novel scheme as DS-TGDH (Distributed 

TGDH with Schedule) and evaluate both protocols under the new assumptions.  

 
3.7.1 Fault-tolerant Extension of TGDH 

  The pre-agreed, ID-based schedule of TGDH members is in fact the KG algorithm, and does 

not deal with communication regulation. That would be redundant since all the messaging 
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goes through the sponsor. The BKs of each member at a given tree level is unicast to the 

sponsor who waits to collect all BKs of the same level and then combines them to a single 

broadcast to all the rest of members. This broadcast message signals the advancement in the 

tree level. Each member is now able to compute the designated secret value for the next level. 

It then blinds it and unicasts it to the sponsor. The same process is repeated for all levels 

upwards the tree until the root is reached. Hence, any two members communicate with each 

other via the sponsor. With this scheme, KA is executed in a centralized manner. TGDH may 

perform as claimed in [7] under the constraints of a limited network where any member is 

able to reach all group members with 1-hop and where the sponsor acquires extra bandwidth 

and power capabilities. Such a scenario does not reflect the general MANET case, so the 

resulting performance metrics are not realistic. The most significant drawbacks of TGDH as 

presented in [7] are the following: 

(a) Any trusted member, with sufficient bandwidth and power capabilities should be ready to 

assume the duties of a leader. The most important constraint for MANETs is the existence of 

such node(s). What is more, members may not be able to reach the sponsor via a single 

transmission anyway. So, both directions may introduce excessive multi-hop routing. (b) 

Simultaneous transmissions of BKs at any tree level to the sponsor through multi-hop routing 

in a limited network area may increase the probability of collisions at the MAC layer, and 

thus the probability of re-transmissions, deteriorating even more the performance of the 

scheme. (c) Power is considered valuable resource in MANETs, so it is undesirable for 

members to serve frequently as relays in heavy KM messages. Also, the sponsor is burdened 

with heavy tasks that consume its residual energy all too fast. (d) The sponsor still remains a 

single point of failure communication-wise. If it fails during key establishment, the protocol 

is stalled until a new leader emerges, and a number of BKs must be updated.  

  TGDH has some considerable advantages as well: (a) it is simple, no sophisticated 

scheduling is required, (b) failure of a member has no impact on the protocol other than the 
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update of a logarithmic number of BKs, (c) every member knows the BKs of all subgroup 

members and can proactively anticipate dynamic membership changes (evictions) that would 

result in the need to reconfigure the KG algorithm and restore the group key with minimal 

latency. Considering the pros and cons of TGDH, we present a more efficient, distributed 

version that uses a transmission schedule algorithm to mitigate the weak points of TGDH.  

 
3.7.2 DS-TGDH Overview: Communications Schedule 

3.7.2.1. Preparation Stage Overview 

The sponsor initially collects through members’ registration and link state information, all the 

required information about its subgroup members. We assume a generic underlying routing 

protocol with the property that it always finds the minimum path (i.e. Dijkstra). It 

provides all nodes with the paths to at least the nearest subgroup members (with respect to the 

number of hops), and finds at least one path connecting two members, as long as both are 

within the same cluster. The upper bound in the number of hops between members 

considered immediate “logical one-hop neighbors” is dynamically set. Routing provides 

members with information about the robustness of the paths to “neighbors”. For example, if 

we know the motion parameters of two virtual neighbors (speed, direction, radio propagation 

range), and their coordinates, we can determine the duration of the time these two nodes will 

remain connected, denoted as Link Expiration Time (LET) [55]. The routing path r is 

characterized by the minimum among all LETs of its links, denoted as Route Expiration Time 

(RET). RET indicates the overall stability of a path: as soon as a single link on a path is 

disconnected, the entire path is invalidated, as argued in [55]. We as well choose RET as a 

component of our “path robustness metric”, generated and communicated to members. We 

select the normalized product of the residual energies of all nodes included in the path: EN = 

1
| | ( )resr

i r

E i
∈
∏  as an additional metric to characterize path robustness. In this case we do not 

consider the minimum residual energy as a valid metric, because a node may participate to 
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more than one routing paths. We rather choose to average the residual energies of nodes 

along the same routing path and we characterize the “robustness” of a routing path r by the 

value: Rr = a ×EN +β ×RET. The contribution of each parameter towards the computation 

of Rr can be fine tuned through a and β . Network nodes are equipped with GPS or other 

similar devices that allow the computation of their own position, and of distances among 

them as well. Member x maintains and updates a “proximity” list Lx with cardinality |DMx|, 

that includes all the “virtual neighbors”, and the collected routing metrics for each. 

 
3.7.2.2. Execution Stage Overview 

  A member j that belongs to the schedule tree T, selects one among the available routing 

paths at level (l-1) that leads to a member k∈Lj. Member j generates now the offspring <j, k> 

for level l. Members j and k are connected with a logical link, one of low cost in terms of 

routing, and are considered siblings at level l. They update all members in their proximity 

(lists Lj, Lk) of the new event (TreeFlag(k) is set to “busy” mode). Then, they individually 

proceed to generate the offspring for the next level from the lists Lj and Lk respectively. If 

another member r that did not receive the updates attempts to enlist member j or k in the tree 

they just “refuse” and r checks its remaining options. The virtual tree expands according to 

the following simple idea: The more robust the members, the higher in the tree they will be 

placed. A member j arranges Lj with respect to the metrics discussed and attempts to use 

these members in this order one by one as offspring (in successive levels), unless they are 

already “used” by other members. Whenever a leaf is reached (i.e. a path cannot be expanded 

anymore), all the information regarding the members that belong to the path traverses up the 

root. The root then can check if all members are included in the tree (optional). In fact, tree 

members need only know their immediate parent, grandparent (if any) and the parent’s first 

sibling, in addition to their own siblings. Member j gives priority to this “unselected 

neighbor” m that satisfies at least one of the following rules in the order they are stated: 
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Rule_1: m∈{LJ∩ LB /T}, where T is the current tree version, and B is the parent (or first 

sibling) of j. By this rule, we want to ensure that if j becomes faulty then B can take its place 

in the tree, and become a sibling of all the previous siblings of j, so that the impact of a 

failure is minimal (no need to prune the tree). To ensure that the selection of m at this stage 

ensures a relatively strong tree link also, we simultaneously impose that Rr (j,m)>Th, where 

Th is a threshold value. If there is more than one choice, the “shortest path” one is preferred. 

Rule_2: m∈{Lj / T}and rjm≤D, s.t.∀ x∈{Lj / T}and rjx≤D: Rr (j, m) > Rr (j, x). If rule_1 

cannot apply, then rule#2 selects this member with the strongest link to j, among those with 

routing distance less than D hops.  

 

 

 Figure 3.18.  TGDH schedule formation from an arbitrary network graph. 
 
These rules ensure two basic requirements for robustness and efficiency: 1) Members with 

high risk of getting disconnected occupy the fewest possible internal nodes and are pushed 

towards the leaves. The impact of their “loss” is mitigated as much as possible when pruning 

the tree, 2) Members placed high in the tree are more likely to satisfy rule1, since they have 

more neighbors available. Their failure would affect the schedule of a larger member subset, 

so it is important to remedy such failures with minimum extra cost and latency. At the other 

extreme, failure of a member associated only with a leaf has no impact to the tree. So, a 

greedy strategy for the offspring selection appears to be the best to pursue. Members, at all 

times, attempt to use their best available options, and keep pushing the “worst candidates” 

towards the leaves. Even if root A fails, the idea is that its nearest former neighbor, e.g. B, 

replaces A in the tree, and routing connects to B all nodes prior connected to A. It is very 

likely that these nodes remain relatively close to B as well. The other tree nodes remain 

unaffected. Our approach indirectly achieves: a) minimum delay schedule tree since members 
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are enlisted in the tree in a first come first served manner, and b) producing a relatively 

balanced tree, since at any level, all members are free to expand.  

 
3.7.2.3 Analysis and Evaluation of DS-TGDH 

A. Evaluation of the Initial DS-TGDH Schedule 

  Member j does less than 2|Lj| comparisons of cost CCMP = O(1) each. When j is handed the 

token, it updates the list Lj of the status change in its flag (busy). While a member y is being 

“tested” during the selection process by member x, its flag is set to “lock”. Those members 

that contact y in the mean time, cannot enlist it as long as its flag remains to “lock” mode. 

After the selection stage ends, x unlocks y’s flag by setting it either to: busy or free. We 

obtain the DS-TGDH computation cost CP, by summing all ramifications of the former 

algorithm under the worst case scenario: CP = Lj×(3CCMP×KS) (rule1) + Lj×(3CCMP×KS) 

(rule2) + (3CCMP×KS) (process_results) = (2Lj+1) × (3CCMP×KS)    

 
B. Impact of Dynamic Events on the DS - TGDH Schedule. 

  We want to guarantee a transmission schedule that can anticipate dynamic or membership 

changes as well. From the security point of view, it is shown in [53, 7, 10] how members’ 

evictions and additions are handled in TGDH to preserve the basic fundamental security 

properties: Forward, Backward, Group key secrecy. Here, we want to show in addition how 

to resume TGDH schedule in the event of disruptions of any kind, with the minimum amount 

of overhead and latency, and ensure that the updated schedule is still functional and efficient. 

B1. Eviction: The virtual tree may need reconfiguration after the removal of a member. The 

basic idea behind the eviction algorithm is the following:  

Either the parent (A) or the first sibling (X) of the evicted member (B) substitute B in the tree 

path wherever it appears. Without loss of generality, let B be replaced by A. All former 

siblings of B must now become A’s siblings. For all members x∈(LB / LA), routing finds the 

shortest paths to A, and they are all added to LA. Compared to the rest of B’s former siblings, 
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members A or X are either more robust or lie closer to B. It is thus quite likely that some of 

B’s former siblings: a) already belong to LA or LX, and the routing needs not generate extra 

paths and b) do not belong to lists LA or LX, but the paths to be formed are relatively short, 

since both ends lie in the proximity of the evicted member B. These statements are quite 

likely to hold if the network is relatively dense. The decision of which member will substitute 

member B, is assigned to the last sibling chosen by B, denoted as L. L is the least preferred 

member from the point of view of robustness and path length among the remaining available 

“neighbors” of B placed in the tree. All previous selections are considered more stable. The 

routing finds the shortest paths from L to both X and A. The shortest one, whose robustness is 

no worse than some threshold, designates which member will substitute B. The reason is that 

we want the substitute member to accommodate all affected members with low OH, ensuring 

as high robustness as possible. It is more likely that the best selection for the least robust 

sibling is also the best for the rest. We could also find the shortest paths to X and A for all 

siblings, and select the one that accommodates best the majority.  

 

 

Figure 3.19. Schedule maintenance after B’s failure, when parent A = P(B) “replaces” B. 
 
B2. Addition: The routing finds the shortest paths from the new member T to members in the 

proximity, and the new proximity list LT is created. Member T will be added as a leaf to this 

member in LT to which it is connected via the minimum number of hops and fulfills a 

robustness criterion at the same time. A modification of rule1 is used to select the best 

solutions. Initially, T looks for a member B so that both B and Parent (B)∈rLT. This is 

necessary in order to make the tree robust to failures as discussed. If Rr (T,B) > R and Rr 

(T,Parent(B)) > R, the solution is optimal, else if only Rr(T,B)>R, the solution is considered 

suboptimal. If none of the above is true, we apply a version of rule2 over the members of LT: 
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T is attached to this member J with which they share the minimum hop path rr(T, J), for 

which robustness is among the highest in LT. Then, J expands one level and becomes the 

parent and the first sibling of T.  

 
C. Analytical Evaluation of Dynamic Events on DS-TGDH. 

Eviction: Let L be the last selected sibling of B. L does only two comparisons to determine 

which candidate will replace B. Let A be replacing B. Former B’s siblings, hB, that do not 

already acquire paths to A, use routing to obtain such paths and the associated metric values. 

However, hB<|LB|, since a subset of LB has been prior reserved by other tree members. Also, 

any j∉LA is likely to have been enlisted by B towards the end of its path. Let the parameter 

NE denote the average number of members that computes such paths. It holds that NE< hB/2.  

Addition: About DMT shortest routing paths are discovered. The total computation cost CP for 

member T is derived similarly to the corresponding eviction cost. Hence:  

CP = LT × (4CCMP×KS)(rule1) + LT × (2CCMP×KS)(rule2) + (2CCMP×KS)  (process Results)  

CP = (3LT+1)× (2CCMP×KS) (bits). 

 DS-TGDH Schedule Adjustment Costs 
Deletion Communication NE × KS (> hB /2) 
Deletion Computation 2CCMP×KS 
Add Communication   DMT × KS  (<D paths) 
Add Computation (3D+1)× (2CCOMP×KS) 

Table 3.8. DS-TGDH Schedule Adjusted Costs for Dynamic Changes 
 

3.7.2.4 DS-TGDH vs. TGDH Analytical Evaluation 

TGDH: h rounds are required for the computation of the group key. By then, each member 

has communicated h×K bits to the sponsor, and has received a total of h×n×K bits, from 

which the useful data is contained only in h×K bits. This means that each routing path from 

the sponsor to any member carries (n-1)×K bits of “redundant” KM data per round. The total 

expected number of BKs exchanged is:   E[BKS] = (n×h) [members] + (n2×h)  [sponsor]. 
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DS-TGDH: The number of pairs that interact in the initial case is reduced to half after each 

round. This is reflected in the way we have constructed the schedule tree. The total number of 

tree nodes is 2× n. Hence, we have 2× n exchanges of key parts over the designated routing 

paths. Any member must get the BKs of the members of its co-path. The member that 

participates actively at any step to the KG knows all the required BKs up to this point. This is 

true if we consider how the schedule tree is built. If member A is active at step i, it has been 

active in all previous steps from the start of its path, and has collected and sent all the 

required BKs (1 per step). Let hUA denote the number of times A appears in the tree (≠ A’s 

path to the root, hA). During the upward phase, A uses hUA paths and sends a BK over each.  It 

does not send the BK obtained at one round right away to its descendants, but waits first to 

collect all the keys of the members in its co-path. So, the distribution of the required BKs 

follows a top-down approach. The number of BKs distributed from a parent A to offspring B 

is equal to the number of hops B is away from the root. So, parent A receives a message (hA - 

hUA)×K bits long and sends hUA BKs to its offpring: i.e. for offspring j, at level i, A sends (hA-

i) BKs  (i≤  hUA). If a member is active at step i, it has been active during all steps j<i. 

hUA: number of times member A appears in the virtual tree. 

hA: hop distnce of member A from the root in the actual tree. 

hA – hUA: hop distance of member A from the virtual tree root.  

 

 

 

Figure 3.20.  Virtual DS-TGDH and basic tree height parameters 
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Upward phase (UPWD): Member A collects all BKs required for the inactive members of 

its co-path before distributing any. It does (hUA-1) exchanges of BKs, one with its peer for 

each round, until it becomes inactive. 

Downward phase (DNWD): Member A uses each of the (hUA-1) branches to send a BK to 

its corresponding offspring. For example, the BKs sent from A to B are: (hB – hUB). Member 

A receives from D a message (hA - hUA)K bits long and sends hUA BKs to its offpring: i.e. 

for offspring  j, at level i, A sends (hA-i) BKs  (i<hUA). 

Analytical Results for DS-TGDH per member A and in total 

A. Members Receive 

Blinded Keys: BKs(A) = (hUA-1)UPWD + (hA – (hUA-1))DNWD = hA. 

Routes Used:  RUR (A) = (hUA-1)UPWD  + 1DNWD = hUA. 

BKs (Total) = 
1i

i

n
h

=
∑ .                                      RUR (Total) =

1i

n

UIh
=
∑ . 

Assuming hUA = ½hA in average, then:  E[RUR]=E[
1

n

i
UIh

=
∑ ]=

1
( )

i

n

UIE h
=
∑ = ½×

1
i

i

n
h

=
∑   (3.18).   

B. Members Send 

Blinded Keys: BKs(A,level i) = (hUA-1)UPWD + (hA – i)DNWD(i) = hUA +hA-1-i . 

Routes Used: RUS(A)=(hUA -1)UPWD (1 BK/route)+(hUA -1)DNWD (hA-½ hUA) BKs/route in avg). 

BKs (Total) = (hUA-1+
1

1
)( A

UA

i

h
ih

=

−

−∑ ) = hUA×hA – ½×hUA× (hUA-1) = hUA× (hA - ½ × (hUA -1)). 

RUS (Total, twice) = (hUA-1). 

Expected Total Sending Cost values for all Members:  

E[RUS] = E[
1i

n

UIh
=
∑ ] =

1
( )UI

i

n
E h

=
∑ = ½

1
i

i

n
h

=
∑  (used twice)                                  (3.19). 
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E[BKS] = E( 1
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(3.20). 

The schedule tree is not necessarily balanced. Any arbitrary schedule tree can be derived 

from a balanced one of the same size, since the following observation is true: to extend a path 

in the balanced tree from h to h+1 (2 nodes are added – property of schedule tree), another 

path must be abbreviated from h to h-1 (two nodes get eliminated). By induction, we see that 

for a path to be extended from height h to h+k, one or more other paths must be abbreviated 

by k hops totally. The average individual member participation in unbalanced trees remains 

the same for both phases. Hence: 
1

n

i
i

h
=
∑ =

1

n

i

h
=
∑ =n×h                          (3.21), 

and the previous results of (3.18), (3.19), (3.20) can be revisited. 

(3.22), (3.19), (3.21) => E[RUR]= 1
2 (n×h),  E[RUS] = 1

2 (n×h)          (3.22).  

From (3.20), (3.21), with the use of probability theory we obtain:  

E[BKS]=
1

23
8 ( )

n

i
IE h

=
∑ +¼(n×h)= 2 23

8
1

( ( )) )I

n

h
i

E h σ
=

+∑ +¼(n×h), where 2
hσ is the path variance 

(expected low).  

Hence, E[BKS] = 3
8 (n×h2)+ 3

8 (n× 2
hσ ) + ¼ (n×h)                                  (3.23). 

Total Comm. OH TGDH DS –TGDH 
BKs (per member) h, n2×h   (h-½× (½×h-1))×½ h  
BKs Total (n×h) + (n2×h)   3

8 n × (h2+ 2
hσ )+¼ n × h     

Routes Used or Discovered 
per member 

Used: 1 (regular member), 
n (sponsor),  
Discovered: any  

Used: 2× (hUA-1), 
 Discovered: 2×D  

Total # of Routes Used or 
Discovered 

Used: n,  
Discovered: >n 

Used: 1
2 (n×h),  

Discovered: 2×n×D  
Redundant Info h×n×(n-1)×K bits (total) No 

Table 3.9.  Summary of analytical results of TGDH vs. DS-TGDH.  
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3.7.2.5 Simulations Results for DS-TGDH and TGDH 

i) Simulation Set-Up and Discussion: The simulation settings are similar to these for the 

previous heuristics regarding GDH-based and Hypercube schemes. We use two methods to 

select the subgroup leader: either randomly, or we pick the member with the largest 

“member” degree. At the end of the subgroup “registration” period, the sponsor piggybacks 

the list of the legitimate members into the routing packets. We have tested the following 

scenarios: Cluster Size: [100,…500], Subgroup Size: [2,…60].  

ii) Simulation Results: Below we illustrate some indicative results on RCost produced by both 

DS-TGDH and TGDH, measured in terms of the total number of hops (relays) required for 

the protocol to successfully terminate. The following graphs reflect RCost produced from the 

KG in both schemes. The KM messaging is very heavy for the network nodes, so our aim is 

to reduce the overall number of bits (or packets) required and relieve as many nodes as 

possible from “relaying” large KM data. Also, we wish to dynamically distribute the KM 

tasks of a single-point of failure leader to all members. Indeed, DS-TGDH results in 

significant savings in terms of RCost, and in most cases the associated ratio is: 

( )
( )

DS TGDH RC
TGDH RC
− <0.3. The total savings from the use of DS-TGDH are even more significant if 

we consider also the amount of redundant KM data, as calculated in our analysis, relayed by 

nodes during every round of TGDH. To illustrate the above with an example, for a cluster of 

size 300, and a subgroup of size 35, the averaged relays produced are 457 for DS-TGDH, 

2987 for TGDH. This means that the overall redundant data communicated via the relays is: 

⎡ ⎤2
2987

2 34 log 34 1024× × ×  bits=311,986,170 bits. The reduction in RCost achieved by DS-

TGDH is obvious, for any subgroup size, cluster size, and subgroup configuration. In many 

cases, the ratio of the reduction is greater than 3. DS-TGDH increase rate in RCost is much 

less compared to TGDH rate, subject to the cluster or subgroup size. Hence, the new protocol 

is not only more efficient and robust than the original, but scales much better as well. 
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Figure 3.21. Total RCost for TGDH vs. DS-TGDH in terms of (1) cluster size, for subgroup 
size of 20 members, (2) subgroup size, for cluster size of 300 nodes. 
   
3.7.2.6 Summary of the DS-TGDH Contribution 

In this section we focused on the design of a decentralized, low cost fault-tolerant version of 

TGDH, denoted as DS-TGDH for a general MANET. DS-TGDH benefits from a combined 

consideration of the underlying routing and the existing logical TGDH KG algorithm to 

enhance the performance and behavior of the original ancestor. We presented a wt schedule 

on top of which DS-TGDH is executed, and we analytically evaluated the overhead of the 

schedule generation and execution, for the initial and the steady state. We explored the 

potential of DS-TGDH through different views, to provide accurate and spherical evaluation 

of both algorithms, and of their strong and weak assets. Through our analytical work and 

simulation results we show how we can achieve better performance with our scheme.  

 
3.8. Overall Summary and Conclusions 

  In this chapter, we made a transition in modeling and analyzing a number of the most 

significant KA schemes with underlying routing consideration. This transition allows us to 

compute the actual overhead incurred to the multi-hop ad hoc network from the application of 

a given KA scheme. Through the combined consideration of the underlying routing and the 

original logical KG, we extended and improved the following KA protocols: GDH.1, GDH.2, 

ING, BD, Hypercube, and TGDH. We achieved this, by applying every discussed KA 

scheme on a topologically-aware (wt) communications schedule. Each protocol poses two 

different optimization problems as the routing structure of each defines a specific 
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optimization function of the metrics of combined communication-routing cost and latency. 

We have seen that most of these functions correspond to NP-complete problems. 

Consequently, our main objective has been to find good approximation solutions that are also 

feasible in our discussed environments. Towards this end, we introduced a number of novel 

lightweight heuristics for generating communication-schedules that shift the performance of 

the discussed KA schemes towards the optimal, given the constraints imposed. Indeed, the 

resulting schemes present notably superior performance in terms of combined communication 

cost, routing cost, and latency compared to their ancestors. Next, in chapter 4, we are 

continuing on extending the new protocol versions, focusing on the impact of mobility on the 

wt KA protocols, and on improving on the robustness, fault-tolerance, and efficiency of the 

wt-KA protocols subject to the frequent dynamic changes in the network of study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 184

 

Chapter 4: Design of Improved, Resilient Key Agreement 

Schemes 

 

  

4.1. Introduction: Towards Robust and Resilient Key Agreement Protocols 

   The inability of most contributory protocols to tolerate or recover from node failures, 

network partitions or merges, with low overhead is their major drawback in MANETs. For 

example, upon a failure at any point during group key establishment, the majority of 

contributory protocols start over from scratch. This is so because their event flow-chart 

(logical algorithm) does not anticipate such failures. The impact of such failures either on the 

communication schedule used and/or on the security properties of the KA protocols is quite 

significant and has not been studied to date. Our objective is to improve the robustness and 

resiliency of a number of KA schemes when they are run on the dynamic infrastructure-less 

environment of interest, so that they tolerate or recover from failures with the minimum 

possible extra overhead. In this section we are conducting a comprehensive investigation of 

the resiliency of the improved wt-versions of a number of contributory protocols (i.e. GDH.1, 

GDH.2, ING, BD, TGDH, Hypercube, etc.), as designed in Chapter 3. To improve the 

robustness and fault-tolerance of these protocols, we are further extending them, by 

introducing new algorithms and mechanisms (rules) in their event flow-chart, that ensure that 

all possible disruptions, at any phase of key establishment, are handled so that: a) the extra 

overhead and latency incurred to the network is maintained as low as possible, and b) the 

minimum amount of information that has been gathered up to the point of disruption is lost.  

Method: We are methodically testing all potential failure scenarios on a given protocol at 

any point during execution. For each case of failure, we study its impact on: (a) the keying 
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algorithm and messages, or equivalently the logical flow of the key generation algorithm, and 

(b) on the existing communications schedule, and consequently on the group connectivity. 

We want to understand how both (a) and (b) are affected from a “disruption”, and introduce 

(if possible) lightweight techniques to make the protocol capable of circumventing this 

“disruption” or resuming with very low extra overhead, from the perspective of both (a), (b). 

  Another very significant source of disruption, that makes sense mostly for centralized or 

hybrid schemes, is the failure of the group leader. On the other hand, different KM schemes, 

rely upon a different set of auxiliary network functions, (such as routing, communications 

schedule, leader and/or simple member recovery schemes, leader election, clustering, etc.), 

and in a different way. For example, in a contributory scheme, the impact of a leader failure 

(if there is one) is not differentiated in most cases than the impact of a simple member. On the 

contrary, in a centralized or hybrid scheme, the impact of a leader failure is very significant, 

as the whole protocol stalls, waiting for a new leader to undertake the execution, whereas the 

impact of a member’s failure, usually has not effect to the normal flow of the protocol, other 

than the operation of re-keying in order to preserve the fundamental security properties. This 

vast differentiation in the two categories of protocols results in different requirements for the 

design of leader election algorithms, and leader/member recovery schemes. Hence, it 

becomes obvious, that for a fair and realistic comparison of a set of KM protocols, we should 

consider in their design and evaluation, at least those network functions that are executed 

differently or incur different overhead for each scheme. The structure of this chapter is the 

following: in section 4.2, we introduce a novel version of Hypercube (R-Proactive). Dynamic 

events are handled proactively, and the novel scheme results in improving a number of 

important metrics compared to the original scheme. In section 4.3, we are extending all the 

discussed wt-versions of KA protocols to handle dynamic events with low impact in most 

cases. In section 4.4, we present and analytically evaluate a leader election algorithm, suitable 

not only for Octopus-schemes, but for many more centralized or contributory schemes.  
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4.2. Robust, Fault-Tolerant Hypercube (R-Proactive Hypercube) 

  In this work, we extend Hypercube to tolerate multiple member failures with low cost. We 

achieve this through the integration of Hypercube with a novel adaptively proactive 

algorithm. We assume that members have already been authenticated via some underlying 

mechanism and we focus on the design and analysis of a fault-tolerant Hypercube that can 

contribute to the robustness and efficiency of Octopus schemes. We evaluate and compare 

our algorithm with the existing approach [1, 2]. Through our analysis and simulations we 

demonstrate the superiority of the new algorithm in terms of robustness and efficiency. 

Hypercube constitutes the core of the Octopus schemes. The protocols applied to each 

subgroup are not fault-tolerant, but can be made to recover from failures with low overhead. 

The latter is also greatly attributed to the limited subgroup size and topological proximity of 

the subgroup members. This is not the case with the application of Hypercube, and that is 

where one of the main vulnerabilities of Octopus schemes lies. Hypercube does not exploit 

topological proximity of nodes. It ends up connecting any two subgroups, possibly through a 

considerable number of relays. A pre-agreed schedule is used based on some attributes of the 

leaders, like their “hashed” IPs, or IDs dynamically assigned beforehand. In particular, for the 

2d leaders to agree on a group key, d rounds of key exchanges are required. In every round, 

each leader selects a different peer to perform a key exchange with. Obviously, not all of 

them can be in relative proximity to each other anyway. The dynamic network characteristics 

result in frequent membership and mobility changes, with considerable extra overhead. The 

existing scheme does not anticipate disruptions. Upon failure(s) at any point during KA, 

Hypercube must start over: the underlying routing is invoked again, a significant amount of 

relays become involved in the group key exchange, and considerable delay (reflected in the 

total number of rounds required until the successful protocol termination) burdens the 

network. Extending Hypercube to tolerate failures with low overhead or latency becomes 
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critical for its own feasibility and for the feasibility of Octopus protocols. In section 4.2.1 we 

describe the requirements of our framework, in 4.2.2 we introduce our R-Proactive algorithm, 

and in 4.2.3 we sketch a proof of how fault-tolerance is achieved. In 4.2.4 we present the 

analysis of the R-Proactive vs. Basic and the most indicative results of the comparative 

performance evaluation, and in 4.2.5 we present the simulations set-up and our results.  

 
4.2.1. Requirements, Assumptions, and Fault-Tolerance for Hypercube protocol 

Notation_1: Let B(x) = ax be the blinding of value x (exponentiation of x under base a) and 

ϕ (x) = x mod n. For simplicity, we often replace expression B(X) with BX.  

 

 

 

Figure 4.1. Hypercube Illustration with d=3. 
 
 
We assume that the underlying routing is capable of establishing end to end paths, avoiding 

intermediate link failures. We do not consider cases where the network is partitioned. We 

mainly focus on member disruptions and failures during group key establishment. The 

impact of such failures either on the communication schedule or on the security properties of 

Hypercube is quite significant and has not been studied to date. Even a relatively low failure 

rate increases considerably the number of rounds it takes for the protocol to terminate. We 

wish to extend Hypercube to anticipate failures so that: a) the extra overhead and latency 

incurred in the network is maintained as low as possible, and b) the minimum amount of 

information that has been gathered up to the point of failure is lost. Also, we want to preserve 

the fundamental properties of Forward, Backward and Group key Secrecy. From this 

perspective, a member k that is no longer considered legitimate (misbehaving, evicted, faulty, 

disconnected) at any round should not be able to compute the final group key, even if it still 

receives all the future blinded values exchanged. To better illustrate this with an example of 
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eight nodes (Fig. 4.1), assume that member B is evicted, and should be excluded from the 

final group key K =
ef ghab cda a a aa aa . The elements: , ,

ef ghcd a aa a aa a a are exchanged in the 

clear among parties, and any member may get hold of them. It is then easy to see that B 

(contributed the initial secret value b) could compute K via successive exponentiations. We 

want to alter K in such a way that B is unable to reconstruct it, while most of the messages 

already exchanged are still useful (setting K’ =
c d e f g ha aa aa could be a solution - it 

excludes however member A as well). The extreme approach to exclude member B from the 

final group key is to start over Hypercube from scratch. A more improved version is to freeze 

Hypercube in round t during which the failure was observed, and restart it only among the 

“polluted parties”, namely those that have so far interacted with B in any of the previous 

rounds. That way, a 2t-cube within the 2d-cube is restored first, and then the normal execution 

resumes at round t. This reactive version, denoted as Basic, still results in significant latency, 

particularly in cases where the node failure occurs near the final rounds. 

 
4.2.2. R-Proactive Hypercube protocol 

Hypercube has been mainly used within the Octopus framework in our work. Membership 

changes, failures and disruptions were always handled within the Octopus subgroups, and the 

changes were just securely propagated through Hypercube. It was assumed that under failures 

Hypercube would start from scratch, or a version of Basic could be applied. R-Proactive is a 

hybrid adaptively proactive approach to anticipating and handling member failures at any 

time during group key establishment. From the security perspective, our main concern is to 

maintain the property of Group Key Secrecy at the presence of disruptions. The properties of 

Forward/Backward Secrecy bound to the membership changes are ensured by Octopus that 

handles membership changes efficiently. Hence, we want to ensure that after a member is 

excluded from the protocol for any reason at any time during group key establishment, it is 
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unable to compute the group key. In terms of efficiency, we will explore ways to maintain the 

security of our scheme, without starting over the protocol from the 1st round whenever 

failures occur. Limiting the total number of rounds required for successful termination at the 

presence of failures and reducing the associated costs are our main objectives. 

 
 4.2.2.1. Overview 

R-Proactive consists of two stages: proactive (1st stage), and normal (2nd stage). The protocol 

still requires d rounds to terminate if no failures occur. The 1st stage extends until round R<d. 

The parameter R represents the level of “proactive-ness”. It is dynamically adaptive and 

depends on the metrics we want to improve, and on the rate of failures observed: the higher 

the rate, the higher the value of R is set.  

1st stage: Participants relay additional shares for the DHKEs that result in each member 

executing more than one DHKE with its peer per round, for the first R rounds. If one or 

multiple failures occur at this stage, Hypercube does not stall, and does not start over, but 

proceeds normally to the termination of this stage at round R. The multiple intermediate DH 

values computed by all members during this stage will be processed after round R. Members 

use the collected values to proactively compute multiple intermediate secret keys at this 

stage, each of which excludes one or more peers encountered during the previous rounds. 

Thus, if any of a member’s peers fails, the member will select this key at round R from the 

available key pool it has computed, that excludes the faulty peers from the subgroup key 

computations so far. Peers that fail before round R have not effect on R-Proactive other than 

determining which intermediate keys from the key pool formed at round R will be used and 

by which members. For peers that fail after round R, the protocol resumes from round R 

instead of 1, after the designated members select the proper keys from the key pool, and use 

them for the subsequent rounds.  
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2nd stage: The algorithm switches to the original Hypercube. After members select the 

designated keys from the key pool, they use them for the subsequent rounds, and perform a 

single DHKE with their peers for the remaining rounds.  

 
4.2.2.2. Detailed Description 

  We now describe in detail the R-Proactive algorithm for a general Hypercube of size d and 

show that it correctly terminates at the presence of failures. Because of the symmetry of 

members’ participation to the algorithm, it suffices to focus on DHKEs and computations of 

members that belong to any i-cube for each round i. For the communications schedule, we 

assign each member with a unique id from Z*, i.e. (A, B, C, D, E, …)= (0, 1, 2, 3, 4, ...). We 

select this base from the vector space so that member j communicates with peer 

k= 1( 2 )ijϕ −⊕ at round i. So, peer A communicates with peer B at round 1, with C at round 2, 

with E at round 3, with I at round 4, etc. 

Notation_1: Party A that initiates Hypercube with secret value a is denoted as A(a). In this 

analysis, the modular reduction of a secret generated value x, namely ϕ (x), prior to its 

blinding, B(ϕ (x)) is implicitly assumed, but not reflected to our equations, for ease of 

notation. We denote the operation of raising each base value in the vector T
nX = (x1, x2, .., xn) 

to each exponent included in the vector T
mY = (y1, y2,…, ym) as: 

T
n mX Y∧× = 

1 2

1 2

1 2

1 1 1

2 2 2

...

...
... ... ... ...

...

m

m

m

yy y

yy y

yy y
n n n

x x x
x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

1. Stage 1 (Proactive) 

Round 1: Parties execute one DHKE and store all values either generated or just received 

from their peer, in order to relay them all to the party they contact at the next round. At the 

end of this round parties A – B, and C – D store the following values:   
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A(a)<->B(b): T
ABX = (aab, aa, ab), 1

T
AX = (aab, a), 1

T
BX = (aab, b).  

C(c)<->D(d): T
CDX = (acd, ac, ad), 1

T
CX  = (acd, c), 1

T
DX = (acd, d).   

Notation_2: We denote the global vector including all initial blinded keys (BKs) of all 

nodes generated at the beginning of round 1 as T
INITBX = (aa, ab, ac, ad, ae, af, ag, ah,…). Let 

vector ( , )T
INITBX i j include those elements of T

INITBX  that become available to member j at 

the end of round i. For example: (0, )T
INITBX A = (aa), (1, )T

INITBX A = (aa, ab), (2, )T
INITBX A = 

(aa, ab, ac, ad), etc. as we will see shortly. 

Round 2: A party sends the following values to its peer: i) the BKs computed at the end of 

the previous round and ii) these computed and/or received at the beginning of round 1.  

Message exchanges during round 2. 

C(acd, c) -> A(aab, a): T

CDXB = (
CDaa , ac, ad). 

A(aab, a) -> C(acd, c): T

ABXB = (
ABaa , aa, ab). 

D(acd, d) -> B(aab, b): T

CDXB  = (
CDaa , ac, ad), etc. 

Computations during round 2. 

A does: 2
T

AX = CDXB ∧× 1
T
AX =(

CDaa ,ac,ad) ∧× (aab,a)=(
ab cda aa ,

abc aa × , 
abd aa × ,

cdaaα× , caa , daa ) 

C does: 2
T
CX = ABXB ∧× 1

T
CX =(

ABaa ,aa,ab) ∧× (acd,c) = (
ab cda aa ,

cdaaa × ,
cdb aa × , 

abc aa × , caa , bca ) 

B does: 2
T

BX = CDXB ∧× 1
T
BX =(

CDaa ,ac,ad) ∧× (aab,b)=(
ab cda aa ,

abc aa × ,
abd aa × ,

cdb aa × , cba , dba ) 

Similar is the process for parties D, E, F, G, and H. 

Notation_3: K=
ab cda aa , L=

ef gha aa , K(A)=
cdb aa × , K(B)=

cdaaα × , K(C)=
abd aa × ,…., 

L(E)=
ghf aa × , L(F) =

ghe aa × , K(BC) = daa , K(AC) = dba ,…, L(AG) = fha , etc. 

Round 3: A similar process is performed as in round 2, with the exception that only a limited 

number of the newly generated DH secrets are stored in the resulting vector 3
TX . Each 



 192

member i blinds the values contained in the stored 3
T
iX  to generate the vector 3

T
iXB  that will 

be communicated to the designated peer member: i⊕ 2j-1, where j represents the current round 

number. We denote vector TSX as one containing a subset of those keys that are comprised in 

vector TX . Also, let T
iK� denote the vector of values associated with the single value K, held 

by member i, and let T
jL�  denote the vector of values associated with the single value L, held 

by member j (K, L, as well as K(AB), L(GH) etc. computed during round 2). 

  Depending on the fault-tolerance level we want, we can control and limit the number of BKs 

a member is going to communicate to its peer during any given round. The maximum number 

of available BKs that can be sent from member E to A for example is provided below:  

E->A: T
EXB  = B( 2

T
EX ∪ 1

T
EX ∪ 0

T
EX ) = ((BL, BL(H), BL(G), BL(F), BL(FH), 

BL(FG))∪ (
efaa , 

ghaa , ag, ah)∪ (ae, af)). 

 If member A combines all these BKs with its own secrets from the previous rounds, 

i.e. 2
T

AX ∪ 1
T
AX , - and all the rest of members act similarly - , the newly generated BKs 

provide Hypercube with the capability to go around any subset of simultaneous member 

failures instantly, without extra processing cost. The trade-off is a vastly growing number of 

keys, computed or received by each member during every round. However, we will show 

how members can tolerate any number of failures per round, proactively, using a relatively 

low number of keys per round: 

Indicative Message Exchanges during round 3. 

E ->A: T
ESXB  = SB 2

T
EX = (BL, BL(H), BL(G), BL(F), BL(FH), BL(FG), 

efaa = BL(GH), 

ghaa = BL(EF)). 

A->E: T
ASXB = SB 2

T
AX = (BK, BK(D), BK(C), BK(B), BK(BD), BK(BC), 

abaa = BK(CD), 

cdaa = BK(AB)). 
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F->B: T
FSXB  = SB 2

T
FX = (BL, BL(H), BL(G), BL(E), BL(EH), BL(EG), 

efaa = BL(GH), 

ghaa = BL(EF)), etc. 

The two peers may communicate to each other the vector of initial BKs available to them so 

far. For example, A may also send to E vector (2, )T
INITBX A = (aa, ab, ac, ad) and vice versa. If 

more than one failure occurs after round R, then for each additional failure, the rest of 

members need to obtain this one element from ( , )T
INITBX R − that R-Proactive designates. 

( , )T
INITBX R − can be constructed proactively, by having each member k send its 

peer ( 1, )T
INITBX j k− at every round j. This option burdens the communication exchanges per 

member per round j with 2j-1 additional keys. The benefit is that in the event of member 

failures after round R, all the other members already acquire the desired element 

from ( , )T
INITBX R − , and process it right away. On the other hand, the second option is to 

distribute the designated element to members on a need to know basis, after a failure. As we 

will see, there are always non-faulty members that acquire the designated element. 

Computations during round 3. 

A executes: 3
T

AX =S( ESXB ∧× 2
T

ASX ) = S [S(BL ∧× T
AK� ), S(B T

EL� ∧× K), S( B T
EL� ∧× T

AK� )]. 

From these vectors, member A only needs to include the following resulting keys in 3
T

AX :  

3
T
AX = (BL ∧× K, BL ∧× K(B), BL ∧× K(C), BL ∧× K(D), BL(F) ∧× K, BL(G) ∧× K, BL(H) ∧× K , 

efaba aa ,
ghaba aa ). 

Working similarly we get for member E: 3
T
EX =(BK ∧× L,BK ∧× L(F), BK ∧× L(G), 

BK ∧× L(H), BK(B) ∧× L, BK(C) ∧× L, BK(D) ∧× L,
efaba aa , 

efcda aa ). 

The following equality holds for any party J: BL ∧× K(J) = BK(J) ∧× L     (4.1). 

This can be instantly proven since ( ) ( )( ) ( )K J K JL La a= .                          
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Considering (4.1), we see that vectors 3
T

AX  and 3
T
EX differ only in the last element. The first 

element is actually the DH key produced at the end of the 3d round if the original, typical 

Hypercube is applied. If d=3, then all members agree upon this key at the end of the 3d round, 

which contains equal contributions from all members. Observing the following six elements 

in both vectors, it can be seen that each one excludes the contribution of only one other 

member. The contributions (a, e) of members A, E, are naturally contained in all six elements 

(since if not, members A and E could always add their own secret contributions (a, e) 

themselves through one or more exponentiations to an element that contains neither of them). 

Members A and E interact at round 3 to compute secret keys that either contain the 

contributions of all parties so far, or exclude the contribution of one only party (other than 

themselves) per element (secret key).  

Notation_4: Let Y = BL ∧× K = 
ef ghab cda a a aa aa , and then let Y (B) = BL ∧× K(B) = 

ef ghcda a aa aaa ×
, etc. We combine the first seven elements of vectors 3

T
AX and 3

T
EX  in the 

vector ,
T
A EY� , so that element t ∈ ,

T
A EY�  => t = Y(j), j∈{ 0 , B, C, D, F, G, H}. We use the 

following notation for the computed keys of the 3d round: 

3
T
AX  = ( ,

T
A EY� , 

efaba aa , 
ghaba aa ),   3

T
EX  = ( ,

T
A EY� , 

efaba aa , 
efcda aa ). 

If we choose to construct the vector that contains the parties’ initial blinded secrets 

( , )T
INITBX R − proactively, then the vectors 3

T
AX , 3

T
EX  contain a part of ( , )T

INITBX R − .  

Hence: { (3, )T
INITBX A , (3, )T

INITBX E } = (2, )T
INITBX A + (2, )T

INITBX E  

Hence, the newly computed vectors for members A, E at the end of the 3d round become: 

3
T
AX =( ,

T
A EY� , (3, )T

INITBX A ,
efaba aa ,

ghaba aa ), 3
T
EX =( ,

T
A EY� , (3, )T

INITBX E ,
efaba aa ,

efcda aa ). 

By similarly processing all keys for the rest of members, at round j = 3, each party computes 

2j+1=9 keys as a result of 2j+1 DHKEs with its peer. 
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Reactive Option: the last two elements in the vectors are somehow redundant. They are used 

to handle certain cases of simultaneous failures instantly, at no extra cost. The same can be 

achieved with vector , 4
T

i iY ⊗
� alone as well, with little extra processing.  

Proactive Option: includes in the secret vector at the end of the round, 2j = 8 elements, that 

correspond to a subset of the blinded initial members’ contributions contained in T
INITBX . 

Round 4 - Round R: The process is exactly similar to this of round 3 and can be omitted. 

 
2. Stage 2 (Normal) - Rounds [R, d].  

Members switch to original Hypercube, using the designated values from the subsets 

(vectors T
RX ) generated at round R as secret values for the DHKE during round R+1. Every 

party is involved in exactly one DHKE per round. If no member failure occurs while in stage 

2, then all members agree on the same key at the end of round d. Upon failure(s), those 

members among the rest that have interacted directly or indirectly with the “faulty” member 

in any of the previous rounds, (i.e. “polluted”), must restart stage 2, by “going back” to round 

R and selecting (and processing) this element of T
RX that correspond to the particular failure.  

 
4.2.3. Fault-Tolerance with R-Proactive Hypercube protocol 

1. Member(s) Failure prior to Round R. 

Assume that member B fails during round k, while engaged in communication with party T = 

B⊕ 2k-1. If T has received the blinded vector from B, it processes it exactly as indicated by R-

Proactive, else it requests from party W=B⊕ 2k-2 (the party that communicated with B at the 

previous round, i.e. if T = F then W = D) its own blinded vector. Upon receiving a blinded 

vector either from member B or W, member T processes it exactly as described in the R-

Proactive. During the following rounds, all parties that would normally communicate with B, 

are now reconfigured to communicate with T (if T actually received the blinded vector from 

B, and B failed afterwards) or W (if B failed prior to sending its blinded vector to T, or if T 
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fails as well) respectively, thereon. Should T and W also fail during the same round k or a 

subsequent one, the members that were supposed to contact them from this point and on, 

backtrack in rounds and are configured to communicate thereon with the party that was last in 

contact (most recent round) with any of these parties. This is the only effect that the failure of 

any member during stage 1 causes to the normal execution of R-Proactive, as we will show.  

   To illustrate this with an example, let T = F, and W = D referring to the 3-cube example of 

eight nodes (scheme 1). Assume that B fails prior to contacting F. Then, F will get 

2
T

DSBX instead of 2
T

BSBX  from D. Member D has contacted B during the previous round, 

and generates a BK with elements equal to those that B has generated. This BK passes on to 

member F during the current round. Hence, the only difference observed is the following: in 

the end, member F will compute vector 3
T
FX , which differs from what it would compute 

otherwise (if B had not failed) only in that it includes ,
T
D FY�  instead of ,

T
B FY� . That means that 

member F will have paired with D, which is correct, and anticipated by the algorithm 

anyway. Also, it means that among all elements in vector ,
T
D FY�  (held by member F) there 

exists one that excludes member B, (i.e. L ∧× K(B)), but there is not an element excluding D in 

the case that D also fails at some later point. Similarly, all members that will be redirected to 

D instead of B, during the following rounds, will end up with legitimate (according to R-

Proactive) final key vectors. Since at the final stage, no vector ,
T
B FY�  is computed by any 

member, if B is the only “faulty” member, then member B is excluded instantly from the final 

key, if the rest of the members pick the element L ∧× K(B) as their final key. Similarly, the 

failure of any additional member(s) i prior to round R, is (are) also reflected to the 

computations, and in the end of round R, no vector of the form ,
T

i jY� , for any of the remaining 

members j is created. Hence, all the remaining members contain an element in their vectors 
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that excludes member B, an element that excludes member i (i.e. L ∧× K(i) or L(i) ∧× K), and in 

general, an element excluding one failed member at a time. All the elements that correspond 

to the non-failed members are multiplied to construct the final key. This way, faulty 

members are excluded from the final key altogether with a single action, and each of the 

remaining members can instantly compute the desired product, as soon as round R is over.  

Then, members compute: K = (L ∧× K(B))× (L(i) ∧× K).   

2. One or Multiple Failures during round R.  

Assume that B has failed prior to round R. The remaining members select key L ∧× K(B) from 

vector TY� , as discussed. All members but B possess this key now (the failure of B has been 

accommodated so that no vector ,
T

B IY� exists to deprive party I from L ∧× K(B)). Now, if 

member G fails as well, its contribution must also be excluded from the key that will be 

picked up after round R. Again, G’s failure is accommodated during round R so that no vector 

,
T

G IY�  is computed by another party I. In that case, the key computed from all members except 

for B and G is: K = (L ∧× K(B))× (K ∧× L(G)), as previously. 

3. Member Failures after Round R. 

 Upon failure of any member(s), Hypercube is stalled at the current round k. The “polluted” 

members corresponding to round R pick the appropriate new key(s) from TY� and use it (them) 

instantly, or process it (them) via MEs and multiplications as we will see right next. Starting 

from round R+1, only the members that initially “polluted” the other half of the members at 

any given round (pollution propagation), in the sense that they communicated to those 

members values that included the contribution of the “faulty” member, need to update those 

parties with the new values (Hypercube is executed in one direction only), until round k is 

reached, and the original Hypercube is executed once again from round k. The same process 

is repeated upon subsequent member failures. Assume now that C fails. If the new key 
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becomes L ∧× K(C), then member G that holds the vector ,
T

C GY�  will not be able to compute the 

final group key, since the element L ∧× K(C) is not included in vector ,
T

C GY� . In this case, the 

final key at round R is not computed instantly as in the previous cases, but members need to 

execute one extra ME to compute it. The final key at round R becomes: K = ( ( ))g L K Ca ∧× .  

 The BK ag has been either already relayed to all members (proactive option), or it will be 

communicated to the members that request either from G or from members that have 

obtained this value from the first two rounds (reactive option). Any member may send value 

( )L K Ca
∧×  to G.  Upon failure of another member e.g. D, the key selected by all the rest is: K 

= ( ( ( ))g L K Ca
∧× )× ( ( ( ))h L K Da

∧× ).   

In this section, we sketched how R-Proactive goes around all possible failure cases during 

execution. We have shown that the intermediate keys computed after each failure, always 

exclude the “faulty” members without the need to start the execution from scratch. 

 
4.2.4. Analytical Evaluation of Basic vs. R-Proactive Hypercube 

  R-Proactive is a hybrid approach for handling failures at any round of execution. 

Considering that parties may not be directly connected, and may also be subject to abrupt 

dynamic changes, the impact of extra rounds in this framework is significant: the underlying 

routing protocol increases the total communication cost, excessive relay nodes may be 

required, and the overall performance degrades (i.e. QoS deteriorates due to more collisions 

at the MAC layer, the bandwidth usage becomes higher and the same is the case for the 

consumption of network resources). Reducing the extra routing cost and the total number of 

rounds becomes our most important priority, even at the expense of extra computation and 

storage cost, which must still be kept low. R-Proactive is designed with these requirements in 

mind, and is also very flexible since we can adjust the level of “proactive-ness”, by 

adaptively selecting the round R at which we switch from the proactive to the normal mode. 
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This “proactive-ness” translates to the trade-off between the number of the total rounds in 

the presence of failures (latency), and the extra communication or computation costs 

incurred to the network, due to the multiple keys that must be computed per round. R-

Proactive can tolerate any number of failures, and this is a very useful feature for any 

framework upon which it is applied. For a group of size O(1000), typical values for d do not 

exceed 13. The value of d sets an upper limit to the value R.  

 

 

 

 

 

Figure 4.2. R-Proactive Hypercube Algorithm. 
 

1) Analysis and Comparative Evaluation of Basic vs. R-Proactive 

We now compute the analytical formulae of the metrics of interest for both schemes. We also 

conduct a comparative performance evaluation, assuming that up to M failures occur during 

one execution (M<2d). We evaluate the schemes for various distributions of these M failures 

over the d rounds of the typical Hypercube execution (worst, best, average, and random case 

scenarios that correspond to particular distributions of M over the Hypercube rounds), and for 

multiple values of parameters R and d. The worst case scenario occurs if all M failures occur 

during the last round for both algorithms. 

Notation_5: Let K be the number of bits per message, CE be the processing cost (bits) of a 

modular exponentiation (ME). By “RC”, “CM”, and “SC”, we abbreviate the combined 

routing communication cost (RC), the computation cost (CM), and storage cost (SC). 
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A failure before round j pollutes a 2j-1-cube. It takes (j-1) rounds to update it. In each round, 

half of the parties are only senders and half only receive the updated values. All members 

perform 2 MEs per round (compute the current secret, and blind it for the subsequent round).  

RC (no failures): 2d×d×K.  

Round j failure: RC( j): 1

1

2
J

J

i

−

=
∑ ×K=2J ×K,   and  CM( j): 2J+1×CE.  

RC (with failures):
1

(2 ( ))
d

d

i
F i K

=
− ×∑ + 

( _ _ )

1

2
M any round J

J

Failure=
∑ ×K,          SC (per member): d×K.  

B. R-Proactive. 

Stage 1: During this stage, each member blinds 2t-1 +2 shares from round t-1, computes 2t+2 

new DH keys, and transmits 2t BKs, under the proactive option at round t. The total costs 

until round R, in the presence of failures become: 

CM (RProact1):=
1

1(2 ( )) (3 2 2) E

R
d

i

iF i C
=

−− × × −∑ ,  

RC (RProact1): = 
1

( )(2 ) (2 1)
R

d i

i
F i K

=
− × −∑ , SC (max. per member, RProact1): = 2R+1 ×K. 

Here the parameter F(i) represents the number of members that have failed up to round i. 

Failure of a member during this stage affects insignificantly the previous costs.  

Stage 2: Upon failure at round j>R, the “polluted” members run Basic from R, selecting 

another key from their vector pool.  

RC (RProact2): =: 1

1

2
J

J

i R

−

= +
∑ ×K = (2J - 2R)×K,    CM (RProact2):= ((2J+1-2R+1) +2R  )×CE . 

R-Proactive succeeds in greatly reducing the total number of rounds of the Hypercube in the 

presence of failures, as well as the associated RC in the presence of failures. The novelty in 

our algorithm is that Hypercube never has to stall for a failure that occurs during the 1st stage, 

and as far as the 2nd stage, the number of rounds to remedy the failure is much less, since 
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members only need to go back to round R. However, RC and CM are higher for R-Proactive, 

if the total number of transmitted bits is considered (the higher the proactive-ness level R, the 

higher the number of elements that must be exchanged to construct the framework of the 1st 

stage). However, if we implement Hypercube (Basic, R-Proactive) with ECDH, we achieve a 

substantial reduction in RC. Nevertheless, the amount of rounds R-Proactive takes to execute 

in the presence of failures is dramatically reduced compared to the original Basic. 
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Figure 4.3. Total RC and Total # Rounds for 30 Failures: Basic vs. R-Proactive, d=6, R=4. 
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Figure 4.4. Total RC Basic vs. R-Proactive with ECDH, varying the Proactive-ness Level R. 
 
 
2) Elliptic Curves Cryptography (ECC) Implementation 

ECC is known to offer a security level comparable to that of other cryptographic systems of 

larger key sizes. If we substitute DHKEs with EC-DHKEs we achieve an obvious reduction 

in communication and storage costs (i.e. DH K = 1024 vs. ECDH m = 169 bit key sizes). We 

illustrate the benefit of ECs for R-Proactive with an arithmetic example. Consider an IP 

packet of 1500 bits, with a (head-tail) label of 128 bits, and available payload of 1372 bits. If 

we apply R-Proactive, setting R = 4, a member must send a maximum of 18 elements to its 
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peer during round R. If DH is used, then only 1 element fits in the IP packet, and hence 18 

packets will be sent from a node to its peer. If ECDH is used, then 1372
169⎢ ⎥⎣ ⎦= 8 elements fit in 

one IP packet, so partners need to exchange only 3 packets. Hence, R-Proactive becomes 

more powerful with the use of ECs [55, 56]. 

 
4.2.5. Basic vs. R-Proactive Hypercube Simulation Results 

1) Simulation Set-Up and Discussion:  

We have conducted simulations to compare the combined routing/communication (RC) costs 

incurred to the network from the execution of R-Proactive vs. Basic Hypercube to gain a 

realistic view of the actual performance of both schemes over an ad-hoc multi-hop network. 

We use different graphs to generate the secure group and analyze the performance of the two 

algorithms. A number of nodes from this graph are randomly selected as subgroup leaders. 

We assume a generic Dijkstra routing protocol that finds the shortest paths between leaders. 

For our evaluation, we generated various random graphs of different sizes S∈[100, 500] for 

each initial input of member number n = 2d, and for the same graph we have varied parameter 

d: 2<d≤ 8. For the same graph and input, we have varied the group configuration, i.e., we 

have selected the n members at random in every repetition. For R-Proactive we also varied 

parameter R, where 1<R ≤ d, for each graph and configuration, and for each d. Failures have 

been simulated with the use of a probability failure parameter p, where 0.01≤ p≤ 0.04 for 

each member that is alive during a round. The probability of member failures is uniformly 

distributed in terms of rounds. For a given input <S, d, R, p>, we ran both algorithms with 

and without failures, for 100 different group configurations and we averaged the results. 

2) Simulation Results: 

We illustrate in the following graphs some indicative results produced by Basic and R-

Proactive. We can see that our simulations actually confirm our analysis for all cases. 

 Fig. 4.3.a shows a comparison in the RC overhead of the two schemes, for d=8, R=4, in the 
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presence of failures, after the first group key establishment. So, the backbone framework for 

the schemes is not considered and we focus only on the steady state. Clearly, as the number 

of failures increases, R-Proactive presents an increasingly superior performance.  

Fig. 4.3.b shows a comparison in the latency (total rounds) of the schemes for d=6, R=4, by 

varying the number of failures before the protocols successfully terminate and compute the 

current group key. R-Proactive presents an increasingly superior performance, and appears 

“impervious” to failures. This behavior compensates the relatively expensive framework 

required for R-Proactive (computed once). 

Fig. 4.4 shows a comparison of the schemes in the total RC cost, when R-Proactive is 

implemented with ECs, for d=8, in the presence of failures. Both algorithms present 

comparable overall RC, so the use of ECs mitigates the expensive framework in R-Proactive. 
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Fig. 4.5.a shows a comparison of Basic vs. R-Proactive for R = 4, in terms of the total 

number of packets sent under increasing failure rates [0.01,…,0.04] and group size 

[16,…,64]. When the failure rate increases, i.e. p>0.03, the total packet transmissions in Basic 

decreases. This happens because whenever the number of failed members is halved, we re-

adjust the schedule of members in Basic and decrease the current number of rounds required 

for termination of the original scheme without failures by one. Still, R-Proactive is superior 

for almost all scenarios. However, in a real case scenario, it is not so simple to do the re-

adjustment discussed in Basic for the members. They must be allocated new ids and co-
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ordinate to apply a new schedule, which is impractical and expensive.  

Fig. 4.5.b shows a comparison of the schemes (for R in [3..7]), for a network of size S=200, 

and d=7, in terms of the total number of rounds under the presence of failures, for two failure 

rates p = 0.01, 0.02. R-Proactive achieves a significant reduction in the total number of 

rounds, particularly as R increases. For p=0.02, the number of rounds for Basic is quite low. 

This is also due to the round re-adjustment done. Even so, for R>4, R-Proactive achieves an 

even bigger reduction in the total round number. 

 
4.2.6. Conclusions 

This section focuses on the design of a Fault-Tolerant Hypercube protocol when it used as the 

core scheme to connect subgroup leaders for Octopus-based schemes in a MANET. We 

describe a hybrid proactive approach for extending Hypercube to tolerate failures suitable for 

the dynamic environment and for the application of interest. We presented comparisons of 

two different schemes: the original Hypercube with a slight variation: Basic, and our fault-

tolerant adaptively proactive extension: R-Proactive. By exploring the features and evaluating 

the performance of the two algorithms, we show how we can achieve better performance with 

our scheme in the presence of failures. We also illustrate how the incorporation of ECC 

favors our design and improves its overall performance. 

 
4.3. Algorithms for Handling Disruptions in KA protocols – Robustness  

4.3.1 Introduction 

   Our method includes the formation of a spanning tree over the group members, at their 

initial state. We abbreviate the extended versions of the protocols as “wt” (with topology). 

Without loss of generality, our analysis in this section is conducted on such wt-versions, but it 

is valid for any other protocol version with structured communication schedules.  

   Since topology changes can partition the network, we extend the notion of a spanning tree 

(ST) to a spanning forest (SF), i.e. a (disjoint) collection of STs. A SF is a directed sub-
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graph in which all nodes are contained and there are no cycles, each node has at most one 

parent, and every two connected nodes belong to the same tree in the forest. The original ST 

may be separated into fragments (each of which is also a ST) and reconnect, depending on the 

topology changes, responding to multiple link/node failures and recoveries that can occur at 

arbitrary times. The border nodes of each fragment continually monitor their neighborhood 

for topological changes and notify the root. The maintenance of the framework is handled 

similarly to the proposals of Gallager, Humblet, Spira (GHS) [50], and Cheng [51], where 

analytical results on the performance of their protocols are provided as well. However, since 

we do not necessarily need to maintain minimum STs, we propose a number of variations to 

these algorithms that significantly reduce the resulting overhead. The impact of the partition 

and merging of the original ST on the actual group KA algorithms is currently studied.  

  We are now going to analyze each of the following group KA protocols: ING, GDH.1, 

GDH.2, BD, DS-TGDH, Hypercube. We will be using Fig. 4.6 to deploy all possible 

scenarios of disruption, study and improve the behavior and performance of the these 

protocols. We assume that the tree on the left is the ST or MST, formed over the network 

graph, to accommodate the wt-versions of the discussed group KA protocols. The new 

communications schedule of the wt-versions are designated by a full walk of the MST, and in 

the following figure, member D becomes the predecessor of member C. We then assume that 

at time T0, the ST is partitioned in at least two fragments, say A1 and A2, after the ST got 

disconnected at one point at least, say at link (C, D). This could have happened because either 

members C and/or D became faulty, and/or the link (C, D) became faulty overall. Whenever 

this event occurs, we distinguish two cases: (a) this disruption occurs after member D has 

communicated the proper KM material as designated by the KG algorithm to its successor 

(member C), and (b) this disruption occurs before member D communicates the proper KM 

material to its successor (member C). The resulting fragments form a SF. The members of 

these fragments monitor the network at regular intervals and attempt to re-connect if possible 



 206

with one or multiple other fragments, using techniques similar to these presented in GHS 

[50], and Cheng [51]. Then, assume that at time T1, fragments A1 and A2 re-connect (merge) 

through the available link (G, H). We are now going to examine the impact of all these 

dynamic events to the logical design of the key generation algorithm of each protocol, as well 

as to the connectivity among parties. We set the time window W as the critical waiting period, 

during which the protocol stalls, waiting in case any of its fragments re-connect.  

 

  

 

 

Figure 4.6. MST split in two (or multiple) fragments, i.e. A1 and A2 (link (C, D) becomes 
disconnected). A1, A2 attempt to re-connect through link (G, H). 
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In our example, assume that members C and D get disconnected. Now, member C belongs to 
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after attempting to re-connect to member D, or to any relay that belongs to fragment A2, for a 

specified period of time (or maximum number of attempts), generates and passes a “repair 

token” to the first neighboring member close to the failure, assume member B. Member B 

gets the “repair” token and attempts to connect to member D or any other member that 

belongs to fragment A2 (or to any member outside fragment A1, in case of multiple 

fragments). Upon success, member B will become a gateway node connecting the two 

fragments, and the token will be destroyed. Upon failure, member B will pass the token to 
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this neighbor that is closest to the point of failure and has not received the token so far. 

Assume that this member is its predecessor in the upward stage of GDH.1, say member A. 

The same process will be repeated, during a pre-defined waiting period tWAIT. After the 

expiration of this window of time,  we switch to the original method proposed by Cheng, 

according to which all members of one fragment attempt to connect to any member of the 

other fragment by polling the network at regular intervals. 

Notation: Let: n be the number of group members, d = log2n be the number of Hypercube 

rounds, m be the number of merging fragments with equal number of members each: s = 

(n/m), in a generalized example. 

Below, we present the analysis of only a few of the discussed protocols, in order to avoid 

redundancies. We omit the analysis of GDH.1, GDH.2, and Hypercube. 

 
4. 3. 1. wt-ING  

Case 1: Fragments A1 and A2 remain disconnected for time > W  

   The n ING participants form a virtual Hamiltonian ring, and each link in this ring is 

traversed n times. Therefore, whatever the nature and timing of the disruption associated with 

the link (D, C) is, it is impossible for all participants to compute the original – intended – 

group key, even if member C received the designated contribution from member D before the 

disruption. The only exception is if the disruption occurred after the nth (final) link traversal, 

which also coincides with the successful termination of the protocol. We recall that an atomic 

step in ING reduces to the communication of a distinct value over each link. If a disruption 

occurs over any link before the final step, then these members that still require elements that 

have not yet traversed the failed link (depending on their placement in the virtual ring), 

cannot compute the group key. However, all members may store the received values, and if 

the fragments merge later, and members C and/or D become “functional” again, then ING 

may resume from the point it got stalled. 
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  After the waiting period has ended and no merges have occurred, fragments A1 and A2 

execute ING separately from scratch. The nature of ING is such that the fragments cannot 

exploit the previously gathered contributions, except for their own generated initial secret 

values. This is because the contributions collected by any group member, at any point, 

contain at least one element that is not contained in at least one other member, and the final 

step of the algorithm is when all members gather all contributions, and are capable of forming 

the same group key. Considering this, A1 and A2 can only run ING separately but may use 

their initial secret contributions.  Should A1 and A2 reconnect later through gateway link (G, 

H), there are three options for all group members to obtain a global group key: 

Case1_1: They can resume the ING of the original MST from the point it was interrupted if 

all participants are currently non-faulty and have stored the corresponding values. The 

information that would be routed from the currently “broken link” (D, C) is now routed 

through gateway (G, H). The cost for establishing the original ING group key remains the 

computationally the same, but the communication cost is now higher, as members’ 

contributions are not optimally routed anymore.  

Case1_2: The remaining participants can start over the execution of a new ING, with new 

communication schedules that take into account the adjusted associations of parents-

offspring, and gateway links. In particular, the smaller in size fragment(s) change their 

parent-offspring associations, setting the gateway member to a larger fragment as their root, 

i.e. member G becomes the root of fragment A1.  

Case1_3: The most inexpensive and practical option is the execution of 2-party DH between 

the gateway members (i.e. G, H), using as secret keys those established after the execution of 

ING separately on each fragment. Then, the gateways of each fragment propagate the 

received BKs to their members, and all members obtain the same global group key. This 

solution is practical as the number of fragments that merge may be more than two and the 

merging can occur at different instances. 
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Case 2: Fragments A1 and A2 re-connect through gateway link (G, H) before time < W 

We distinguish the corresponding three options as stated in Case 1. 

Impact on Re-Keying from the merging Fragments. 

ING does not lend itself to simple re-keying algorithms. Hence, GDH.2 can be used among 

the various gateways to establish a common group key and propagate the corresponding BKs 

to the members of each fragment. If re-keying is required after the merging, members run the 

“reduced ING” on the fragment that witnesses membership changes, and compute a new 

subgroup key for this fragment. Its gateway member becomes the initiator of the GDH.2 re-

keying operation and sends the proper GDH.2 values to the gateways of the remaining 

fragments. Each gateway that collects the corresponding GDH.2 broadcast, computes the 

global group key, and sends to its members: (a) either one DH value only, sufficient for the 

members to compute the group key following the typical GDH algorithm (for efficiency and 

low overhead), or (b) the whole downward message (for robustness): if any other member 

becomes gateway of the corresponding fragment in the future, it should be able to initiate re-

keying, by having stored all the required GDH.2 elements.  

Remark: To preserve the property of forward secrecy, if C or D or any other members are 

found faulty at any round, a “reduced” version of ING 2 is run to exclude the faulty members 

from the subgroups of the corresponding fragments. The remaining fragments maintain their 

own subgroup key unless they include faulty members. Then, GDH.2 re-keying is executed 

among gateways. Each fragment is responsible for propagating the BKs obtained to its 

members, so that they can also compute the new group key that excludes the faulty members. 

We stress here that we have selected GDH.2 to perform re-keying, because it is the only 

protocol that lends itself to simple re-keying algorithms, initiated from any single party.  

 

4. 3. 2. wt - BD   

Case 1: Breakage: A1, A2 are re-connected through gateways G, H while time <W  
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A1 may re-adjust its parent-offspring associations before the 2nd round -if feasible, so that the 

whole tree becomes a broadcast tree again, with gateway G as the new root (controlled 

broadcast gets more efficient). However, A1 does not need to alter its parent-offspring 

associations. All traffic from A1 to A2 and vice versa can be routed through gateways G, H.  

Case 2: Fragments A1, A2 get disconnected before round 1 for time > W 

If the general root of the ST is now contained in A1, multiple fragments may be formed.  

Each fragment executes BD separately. If members C and/or D become faulty or evicted, 

then the remaining members involved in each fragment simply will not include the key parts 

originating from C or D in the computation of their combined group key (Chapter 2).  

Case 3: Fragments A1, A2 get disconnected before round 2 for time > W 

A1, A2 compute a separate BD key without restarting round 1. It suffices that members that 

belong to one fragment exclude from their computations the contributions (exponents) from 

members that belong to the other fragment(s), and initiate round 2 based on the exponents 

broadcast from members of their own fragment. Not all members need to be aware of the 

broken link. The root notifies only the affected ones: at this point each member i uses the 

parts sent from members (i-1), (i+1) to compute its own contribution (Xi) for the 2nd round.  

 Assume that the broken link (b1, b2) is such that member i is now included in fragment A1 

(the root of which is member b2), and member (i+1) is included in fragment A2. Then the 

following steps are executed: the root of each fragment notifies its members of the boundaries 

of the subset of members from which they should expect to receive KM data. Of course, this 

step is optional, since the members of each fragment cannot receive data originating from 

members of other fragments anyway. 

Fragment A1: member b2 is the starting member (root), and member i is the last member 

visited. Hence, member b2 now computes: Xb2= (z(b2+1)/zi) (instead of: (z(b2+1)/ z(b2-1)), 

and member i now computes: Xi = (zb2/zi-1). 
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Fragment A2:  the root notifies member b1 of its new successor (i.e. member (i+1), if 

members are assigned ids via a pre-order tree traversal). Hence, member b1 computes Xb1= 

(z(i+1)/z(b1-1)), and member (i+1) computes: Xi+1 = (z(i+2)/z(b1-1)). 

The course of action is similar for different kinds of configurations after the breakage (i.e. 

when the initial root belongs to A1, and multiple other fragments are formed. 

Case 4: Fragments A1, A2 get disconnected after round 2 for time > W 

Case 4a: Members from all fragments (i.e. A1, A2) compute the same group key. 

It is possible, if there is no strict requirement for forward secrecy, since all members have 

obtained the required KM material by then. 

Case 4b: Members from different fragments (i.e. A1, A2) compute separate group keys. 

If the requirement for forward secrecy is strict, A1 and A2 must compute a separate BD key. 

The members in each fragment do not need to re-compute everything from scratch. On the 

contrary, they use the KM material gathered during the previous 2 rounds. The course of 

action is similar to case 3, with the only difference that one member from each different 

fragment needs to change its contribution towards the 1st round, so that the group key of one 

fragment remains secret to the members of the other fragment. Then, each fragment runs a 

“reduced BD” version (during which only a small subset of the normal computations and 

communication exchanges need to be executed), and computes a separate group key. 

 
BD Re-Keying:  

BD can lend itself to efficient re-keying algorithms (Chapter 2), so if members C or D are 

found faulty at any time during the protocol execution the following steps are executed:  

If C or D becomes faulty before round 2 then the rest of members simply will not include 

the KM material originating from C or D in the computation of the group key. The “X values” 

will be computed as in case 3, taking into account the removal of C or D as well. 
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If members C or D becomes faulty after round 2 then an arbitrary member (i.e. the root) 

will change its secret initial value and broadcast its new exponent to the related members. 

Then, a “reduced BD” will be executed by all members, to re-compute those among the “X 

values” that are modified, and then the new group key that excludes the faulty members. 

Impact on Re-Keying (Case 4) from merging Fragments. 

If the disconnected fragments merge to the original group and all merged members wish to 

establish a common group key, we summarize here all the distinguished cases: 

Case 4a: All members already share a common group key.  

Case 4b: We distinguish between three different options:  

Case 4b_1: Members run “reduced BD”: most of the already exchanged KM material will be 

preserved. Members that belong to different fragments exchange the exponents they already 

computed during the 1st round. At this point, n broadcast messages will be exchanged. Also, 

one member from each fragment computes a new exponent (to preserve forward secrecy). 

Then, the corresponding members re-compute the modified “X values”, and broadcast them 

to all members so that they can compute a global group key (with fewer computations). Then, 

at this point, 4×m broadcast messages are sent out, as shown in Chapter 2. Similarly, the 

computations performed per fragment are: s [MEs] + (s+2) [divisions]. 

Therefore, the merging overhead for the fragments becomes:  

p4b_1 (Group reduced BD, n, m, s, Comm) = (n+ 4×m) broadcast messages generated, 

p4b_1 (Group reduced BD, n, m, s,Comp)=m× (s[MEs]+(s+2) [div/s])=n[MEs]+(n +2m)[div/s]. 

Now, the merged group has obtained a group key that follows the specifications of the 

original BD. Hence, a re-keying under 4b_1 incurs the overhead of the extended BD re-

keying introduced in Chapter 2. The re-keying overhead under Case 4b_1 becomes: 

p4b_1 (Re-Keying (eviction) BD, n, m, s, Comm) = 4 broadcast messages, 

p4b_1 (Re-Keying (eviction) BD, n, m, s, Comp) = n [MEs] + (n +2)[div/s]. 
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Case 4b_2: An expensive option is when merging members execute BD from scratch, which 

is highly undesirable. The operation of re-keying is executed exactly as discussed in Case 4a. 

Case 4b_3: The merging fragments use their separate subgroup keys to run overlay GDH.2 

and compute a global group key. As in the case of GDH.1 and ING protocols, it makes no 

sense to run an overlay BD, since the resulting expression for the final key cannot have been 

generated by a flat execution of BD. Again, similarly to the corresponding cases of the 

previously analyzed schemes, the gateway members exchange the proper BKs and propagate 

the received BKs to all members of their ex-fragment. A Re-keying under 4b_3 includes the 

following steps: the ex-fragment that witnesses the membership change will modify its 

subgroup key (re-keying), via the “reduced BD”. Then, the gateway member of the given 

fragment will initiate the GDH.2 overlay re-keying: the shares of the broadcast message of 

the downward stage will be recalculated (w.r.t. the new subgroup key of the given fragment), 

and broadcast to the rest of group members. The overhead for merging the fragments for 

the first time (including the computation of subgroup keys) becomes: 

p4b_3 (subgroup regular BD, group overlay GDH.2, n, m s, Comm) = m×2s [total broadcasts 

for all fragments] + 1
2 (m2+3m-4) [broadcast for overlay execution of GDH.2] + m×n [or else 

a broadcast message of m elements distributed to all n members], 

p4b_3 (subgroup regular BD, group overlay GDH.2,n,m,s,Comm) = 2n+ 1
2 (m2+5m-4) [bcast], 

p4b_3 (subgroup regular BD, group overlay GDH.2, n, m s, Comp) = m× (s+1)× s [total MEs 

for members in all fragments] + 1
2 (m2+3m-2) [computations for overlay execution of GDH.2] 

+ n [computations by all members to compute the final group key], 

p4b_3 (subgroup reg. BD, group overlay GDH.2, n, m s, Comp) = n× (2s +1)+ 1
2 (m2+3m-2). 

The re-keying overhead within a given fragment becomes (reduced BD version - Chapter 2):  

p4b_3 (subgroup reduced BD, s, Comm) = 4. 
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p4b_3 (subgroup reduced BD, s, Comp) = s [MEs] + (s+2) [divisions]. 

The modified subgroup key triggers overlay GDH.2 re-keying, the overhead of which is:  

p4b_3 (re-keying GDH.2, n, m, Comm) = m×n (or else a broadcast message of m elements 

distributed to all n members following a simple controlled flooding strategy), and 

p4b_3 (re-keying GDH.2, n, m, Comp) = (m+n-1) [MEs]. 

In total, the merging OH at steady state for the group becomes: 

p4b_3 (Group merge BD-GDH.2, n, m, s Comm) = (m + 4) broadcast messages generated, 

p4b_3 (Group merge BD-GDH.2, n, m, s, Comp) = (m+ n + s-1) [MEs] + (s× (s-1)) [div/s]. 

Summary: None of the two methods (4b_1, 4b_3) is clearly superior to the other in the sense 

that it improves on both metrics of interest. For example, merging the fragments under 4b_3 

results in lower communication overhead, lower number of modular divisions, slightly higher 

number of MEs, lower overhead overall, compared to 4b_1. In this case however, the trade-

off comes when the re-keying operation is required. Using 4b_1 over 4b_3 results in lower 

communication overhead, lower number of MEs, and higher number of modular divisions. 

 
4. 3. 3. DS-TGDH or TGDH 

Notation: Let d = log2n be the number of rounds for TGDH to successfully terminate. 

Case 1: Breakage: A1, A2 are re-connected through gateways G, H while time <W  

Without loss of generality, assume that the sponsor belongs to A2. All the traffic between A1 

and A2 is routed through gateways G and H. Both the original TGDH and the improved DS-

TGDH schemes are executed normally. The KG algorithm in both protocols is based on the 

design of two different logical trees from all the participating members. DS-TGDH reflects 

all topological changes and associations among members in the weight of the corresponding 

links. As discussed in Chapter 3, based on these weights, there are one (or more) logical trees 

that optimize certain metrics of interest. If the fragments of the group are connected through 
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gateway members that alter the associations among members and their link weights, a new 

tree will be generated whenever the next “optimized key generation” is triggered.  

Case 2: Fragments A1, A2 are disconnected before or during Round 1 for time > W 

If the sponsor is contained in A1, multiple fragments are formed. In TGDH, each member 

must contact the sponsor during each of the d rounds to compute a group key. Therefore, each 

fragment executes (DS) TGDH separately and elects its own sponsor. If these fragments get 

partitioned as well, the same approach is recursively applied on each new network partition. 

Case 3: Fragments A1, A2 are disconnected during Round 1< j < d for time > W 

If the sponsor is contained in A1, multiple fragments may be formed. In TGDH, each 

member must contact the sponsor in each of the d rounds in order to be able to compute a 

group key. Therefore, each fragment executes (DS) TGDH separately and elects its own 

sponsor. If these fragments get partitioned as well, the same approach is recursively applied 

on each new partition. Hence, A1, A2 compute separately a (DS) TGDH subgroup key. 

Below, we give an overview on how a partition during any round is handled by each protocol 

so that: (a) each fragment resumes the execution from the current round during which the 

partition occurred and does not start from scratch, and (b) the KM material already exchanged 

is not found redundant within the fragments, but used towards the key establishment. 

TGDH: If the given fragment does not have a sponsor, any member in it may become the 

sponsor for the remaining rounds. The existing or the new sponsor collects the ids of the 

members contained in its fragment and continues the process from round j, while members 

use the BKs collected up to round j. In TGDH, the communication exchanges between any 

two members in any round are all regulated by the sponsor. The sponsor replaces the 

contribution of the missing members by “dummy” values (BKs) or “zero flags” and the 

recipients of such “dummy” BKs or “zero flags” use their own previously computed BK 

unchanged for the subsequent round. Depending on the number of remaining members in a 

fragment, the overhead required to start over the execution may be lower than this incurred if 



 216

we continue the execution from the current round, replacing the contribution of missing 

members with “dummy values. We use the following rule to determine which of the two 

overheads is lower: if the number of remaining members in a fragment is x, and y = log2x ≤  

(d-j), then we choose to re-start TGDH for that fragment. Also, the sponsor can optimize the 

original execution, by reducing the broadcast message of BKs in each of the remaining 

rounds to include the contributions of the existing members only in the fragment. 

DS-TGDH: The remaining members in each fragment attempt to exchange their BKs with 

their originally scheduled peers for round j. If their partner is missing (belongs to another 

fragment or is faulty), they will use the BK computed before round j unchanged for the 

subsequent round (j+1), during which they are scheduled to communicate with another 

member. Also, these members replace their “missing” partner wherever they were supposed 

to appear in the virtual DS-TGDH for the subsequent exchanges in the remaining rounds. The 

same is the situation even if a pair of members is missing in a given round. Similarly, the 

nodes in the path upwards the root that are mapped to any of the missing peers, either get 

replaced by the last non-faulty member that communicated with any of the two peers, or are 

deleted, if those peers were leaves in the original DS-TGDH, respectively. The total number 

of rounds required for a subgroup key to be established in a given fragment may become 

lower, i.e. if there is only 1 member left from the list of the active members in round k< d. It 

is easy to see, that the upward stage of this algorithm always terminates, since the virtual tree 

always designates a tree root that computes the subgroup key of the fragment, even if this 

root is not the original one. The key point is that as long as the fragment remains connected, 

the substitutions suggested are always feasible, and hence a new DS-TGDH can be built, 

which is in fact a subset of the original tree, with different link weights that accommodate the 

fact that some members are missing. The downward stage of DS-TGDH on a fragment is 

completely determined by the upward stage, and is executed as defined by the upward. 

Having sketched the upward stage, the remaining members of the fragment know exactly the 
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configuration of the new DS-TGDH tree. This tree may not be the optimal anymore for the 

current key establishment on the given fragment. However, it provides the best solution if we 

want to continue the execution without starting over. 

 
Merging Fragments and Re-keying:  

If the disconnected fragments merge to the original group and all merged members wish to 

establish a common group key, we summarize all the cases distinguished during our analysis.  

Case 4_1_1 (TGDH): The fragments execute virtual TGDH. In this case, if only the sponsors 

of the fragments participate to a new TGDH using the already computed subgroup keys of 

their fragment as their initial shares, the resulting group key is equivalent to the group key 

that would be formed if the TGDH scheme was executed once over all the group members. If 

we analyze the virtual tree structure of TGDH, we see that any sub-tree of the original tree 

executes TGDH recursively and computes an intermediate subgroup key individually and 

independently. If we substitute any such sub-tree with a single entity that participates to 

TGDH with the intermediate subgroup key that corresponds to the sub-tree it substitutes, the 

resulting group key will be the same as this of the original execution. So, any TGDH group 

key that is constructed from fragments as we described, can be mapped to a TGDH group key 

constructed directly from single members. It suffices that both TGDH trees are logically 

reduced to the same configuration of their 1st level (tree leaves): the same member ids are 

associated with the same tree leaves, and the resulting pairs of members that are formed for 

the communications exchanges of the 1st level are equivalent in both trees.  For the correct 

mapping, it suffices that attention is given to the number of members within each fragment, 

and to the number of fragments overall. During the deployment of the members contained in 

the fragments and after appending them to the members of the rest of fragments to generate 

the configuration for the 1st level, certain leaves must be associated with dummy or empty 

nodes so that the correct intermediate subgroup keys that correspond to fragments are formed.  
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 Example: Let: A, B, C, D, and E be the group members, and let A, B, and C be the members 

contained in A1, and D, E be the members contained in A2. The intermediate subgroup keys 

for each fragment are:  K(A1) = 
aba ca , K(A2) = dea , respectively. The group key that will 

be computed from the merging of the two fragments becomes: K(TGDH) = ( 1) ( 2)K A K Aa ∗ . 

If we had a flat configuration we would be able to derive exactly the same group key if an 

“empty” value was placed between members C and D in the logical flat deployment of all 

members in the 1st tree level. Namely, the order of this configuration from left to right would 

be the following: A, B, C, ∅ , D, E, leading to the following pairs of the 1st level: {[A, B], 

[C], [D, E], [∅ ]}. This is exactly the deployment of the 1st level configuration of each 

TGDH sub-tree that corresponds to each fragment separately, if we append them all together.  

  The gateways of all merging fragments are responsible for the communication exchanges 

between the sponsors and the “super-sponsor” in the overlay TGDH, and also propagate the 

received BKs from the sponsors to all members in their fragments along with the information 

about the configuration of the TGDH overlay tree. This way, all members are able to generate 

the global group key, which has the structure of a typical TGDH key. The overhead 

associated with case 4_1_1 is computed by a flat execution of the original TGDH in two steps 

(TGDH within each fragment, and then merging of the fragments and broadcast of 

corresponding BKs to the remaining members in each fragment).  

Hence, the merging overhead (including the computation of fragment subgroup keys) is:  

p4_1_1 (Group fragment TGDH,n,m,s,Comm):m× (2× s) bcast or log2s messages per member] 

+[(2×m) bcast messages in the sponsors TGDH tree or log2m messages per sponsor]+[m 

bcast messages from all m sponsors to distribute the group key shares to their members],  

p4_1_1 (Group fragment TGDH, n, m, s, Comm): (2n+3m) total messages,[(log2s+log2m+1) 

messages per sponsor, log2s messages per member, 
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p4_1_1 (Group fragment TGDH, n, m, s, Comp, exp/s) = [m× (4× s) in total within fragments, 

or 2×  log2s per member]+[(4×m) in total in the sponsor TGDH, or 2× log2m per sponsor] + 

[n for the sponsors or members to compute shares of the final group key or the group key]. 

p4_1_1 (Group fragment TGDH, n, m, s, Comp, exp/s): (5×n + 4×m) in total, (2× log2s + 

2× log2m +1) per sponsor, (2× log2s +1) per member. 

The operation of re-keying in the merged scheme is handled as in the typical TGDH, and the 

overhead incurred is exactly the same. The re-keying overhead under 4_1_1 becomes: 

p4_1_1 (Re-Keying (eviction) TGDH, n, m, s, Comm): a broadcast of h = log2n modified BKs 

from the super-sponsor to all members, 

p4_1_1 (Re-Keying (eviction) TGDH, n, m, s, Comp, exp/s) = 2×h [super-sponsor] + 2×n 

[members] (a member does from 1 to (h-1) MEs based on the number of BKs that change for 

it, or 2 MEs in average).  

Case 4_1_2 (DS-TGDH): The fragments execute DS-TGDH. The case is handled similarly 

to 4_1_1, as the logical algorithm is the same for both. DS-TGDH is just a decentralized 

version of TGDH. When the fragments merge, the application of DS-TGDH over the roots of 

the previous DS-TGDH fragments does not necessarily result in an optimized DS-TGDH. 

Still, the tree that is formed from the two-fold application of DS-TGDH is a DS-TGDH.  

Hence, the merging overhead (including the computation of fragment subgroup keys) is:  

p4_1_2 (Group fragment DS-TGDH, n, m, s, Comm): (2n+3m) total messages, 

[(log2s+log2m+1) messages per root, log2s messages per member, 

p4_1_2 (Group fragment TGDH, n, m, s, Comp, exp/s): (5×n + 4×m) in total, (2× log2s + 

2× log2m +1) per fragment root, (2× log2s +1) per member. 

The re-keying overhead under 4_1_2 is similar to this computed for 4_1_1. 

Case 4_2: The gateway members of all merging fragment execute GDH.2 using the subgroup 

keys of their fragments as their initial secret shares. The gateways may propagate to the rest 

of members of their fragment either the whole broadcast message (robustness), or only the 
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single value required for the generation of the group key (efficiency). Re-keying is executed 

as follows: only the fragment that witnesses the membership change initiates re-keying as in 

(DS) TGDH, and computes a new subgroup key. Then, the gateway of this fragment triggers 

re-keying via overlay GDH.2, using the newly computed subgroup key to re-calculate the 

KM material of GDH.2 downward stage. The merging overhead of members including the 

computation of the fragment subgroup keys becomes:  

p4_2 (subgroup regular TGDH, group overlay GDH.2, n, m s, Comm) = m×2s [total 

broadcasts for all fragments] + 1
2 (m2+3m-4) [broadcast for overlay execution of GDH.2] + 

m×n [or else a broadcast message of m elements distributed to all n members], 

p4_2 (subgroup regular TGDH,group overlay GDH.2,n,m,s,Comm)=2n+ 1
2 (m2+5m-4) [bcast], 

p4_2 (subgroup regular TGDH, group overlay GDH.2, n, m s, Comp) = m×4s [MEs all 

members all fragments]+ 1
2 (m2+3m-2) [overlay GDH.2]+n [all members for final group key], 

p4_2 (subgroup regular TGDH, group overlay GDH.2, n, m s, Comp) = 5×n + 1
2 (m2+3m-2). 

The overhead for the re-keying within a given fragment (size s) becomes:  

p4_2 (subgroup TGDH, s, Comm) = log2s, 

p4_2 (subgroup TGDH, s, Comp) = 2× log2s [sponsor] + 2× s [members] (a member does from 

1 to (log2s -1) MEs depending on the number of BKs that change for it, or 2 MEs in avg.).  

The modified subgroup key triggers overlay GDH.2 re-keying, the overhead of which is:  

p4_2 (re-keying GDH.2, n, m, Comm) = m×n (or else a broadcast message of m elements 

distributed to all n members), and  p4_2 (re-keying GDH.2, n, m, Comp) = (m+n-1) [MEs]. 

In total, the re-keying overhead for the group becomes: 

p4_2 (Group merge TGDH-GDH.2, n, m, s Comm) = (m + log2s) broadcast messages, 

p4_2 (Group merge TGDH-GDH.2, n, m, s, Comp) = (m+ n + 2× s-1) [MEs]. 
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Faulty Members: If C or D are found “faulty” at any round (assume j) during key 

establishment then this information is propagated to the corresponding fragments. Then, (DS) 

TGDH stalls at round j and either the sponsor in the case of TGDH and/or only the members 

in contact with the “faulty” member up to round j in the case of DS-TGDH respectively, re-

start the protocol from round 1 to round j, excluding the contribution of the “faulty” member 

to preserve forward secrecy (as in Basic). In either case, j new BKs will be generated and 

communicated to the members that are involved in this intermediate process (reduced (DS) 

TGDH). Then, (DS) TGDH will resume normally from round (j+1).  

Summary: The two methods proposed (4_1_1, 4_2) are comparable to each other, and the 

superiority of one over the other depends on the values of the parameters n, m, and s. For 

example, if (m+2s) < n, then the method proposed in Case 4_2 is superior in terms of re-

keying computation overhead to Case 4_1_1 by a factor of (n-m-2s).  

 
4. 3. 4. Conclusions 

We have methodically tested all potential failure scenarios each of the given protocols (wt-

ING, wt-GDH.1, wt-GDH.2, wt-BD, (wt) TGDH, and (wt)-Hypercube) at any point during 

execution. For each case of failure, we studied its impact on: (a) the keying algorithm and 

messages, or equivalently the logical flow of the KG algorithm, and (b) on the existing 

communications schedule, and consequently on the group connectivity. We conducted a 

comprehensive investigation of the discussed schemes to understand how both (a) and (b) are 

affected from a “disruption”. At the same time, we introduced lightweight techniques to make 

the protocols capable of circumventing certain “disruptions” or resuming with low extra 

overhead, from the perspective of (a) and (b). In addition, our analysis designates how many 

nodes and which are affected from certain kinds of failures.  
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4.4. Leader Election: Subgroup Leader Election for Octopus Based Protocols 

 Additional crucial parameters for the evaluation of KM protocols are those related to leaders 

(if any). The tasks undertaken by a leader, the impact of a leader’s failure to the protocol, the 

process of leader election, etc. determine significantly the nature, characteristics and 

performance of a KM scheme. This is even more so for hierarchical schemes, where groups 

are divided into subgroups, and each subgroup is provided with a subgroup leader, such as the 

Octopus-based protocols. The selection of the transmission range among subgroup leaders 

(inter-cluster) and the transmission range between an individual leader and its members 

(intra-cluster), is crucial for the operation of such protocols. For the purposes of our work we 

focus on the operation of Octopus protocols between two re-clustering instances. Although 

clustering is a side effect of the Octopus-based scheme, it constitutes a broad research 

direction of its own and is out of the scope of this work. Some more lightweight operations 

are incorporated into the Octopus-based schemes, to handle dynamic changes as “locally” as 

possible, and mitigate the need for re - clustering for the longest time possible. One solution 

is to have the leader election algorithm within each subgroup to elect more than one 

potential leader. These backup subgroup leaders can be in “hibernation” during the 

operation of the primary subgroup leader, or can be communicating information other than 

KM material about members, for a smoother hand-off and smaller delays in the subgroup. 

Finding backup subgroup leaders capable of covering the entire subgroup may not always 

be feasible, but it is highly desirable that they compare favorably to the other members in 

terms of the following characteristics: (a) robustness to dynamic changes, (b) high 

bandwidth, capacity, and residual energy, and (c) can cover a considerable portion of the 

subgroup, for a potentially long period. Octopus allows an isolated, localized handling of 

each network area, where different constraints prevail, resulting in a more efficient group key 

establishment, through the existence and maintenance of flexible subgroups.  
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4.4.1. Overview of a leader election algorithm for hierarchical protocols 

We assume that initially, during the deployment of the network, a pre-agreed set of subgroup 

leaders, known to each other, undertake all the required tasks for the initialization of secure 

groups and subgroups, and consequently, for the establishment of secure group 

communication. These subgroup leaders advertise themselves to network nodes in their 

proximity (with fixed transmission level). Nodes that get one or multiple advertisement 

messages from subgroup leaders in the vicinity select and notify the leader they wish to join, 

based on certain criteria. For example, they may select this leader from which they receive a 

signal with the highest SNR. A subgroup leader at this point accepts potential group members 

and registers them. Each subgroup initiates the subgroup key establishment phase after the 

expiration of the advertisement period. In the mean time, the subgroup leader propagates the 

current subgroup identity s_id to its members, and through link state information, further in 

the network. This is essential for mobile nodes that wish to join the group but have not been 

reached by any of the advertisement messages yet. If the subgroup that accepts to register the 

newcomers has already established a subgroup key, but has not yet contributed its part to the 

second phase of Octopus, the subgroup simply re-keys, and all nodes obtain a new subgroup 

key that includes the newcomer. If a new node registers to a subgroup after this subgroup has 

contributed its part towards the 2nd phase of the Octopus, then this node is registered with the 

status of “guest”, but is not allowed to get the current subgroup key. The new node will have 

to wait until after the current group key is established, and after another wait period during 

which the subgroup either probes for potential newcomers. After its expiration, the subgroup 

re-keys and triggers again the 2nd phase of Octopus that will generate a new group key (large 

scale re-keying) with lower cost.  

Metrics and parameters for the subgroup leader election:  

(a) The residual energy r e sE , at the given instance when the measurement is taken.  
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(b) The maximum transmission inter-cluster and intra-cluster ranges Tl and Ts, at which 

the node operates when it becomes subgroup leader.  

(c) The node degree of a candidate leader. It is actually related to Ts, since the number of 

nodes that can be reached from a given member depends on TS.  

(d) The combined power required from individual members to reach a given candidate 

subgroup leader (even if multi-hop routing is required). This metric reflects the total energy 

consumption within a subgroup from the point of view of the individual members. We denote 

this metric as Combined Member Power (CMP), and we define: CMP =
1

K
i ii

pow r
=

×∑ , 

where: K is the number of subgroup members, ipow : the minimum power required so that a 

member either reaches the leader in 1-hop, or a relay member trying to get to the leader, and 

ri is the number of times a member is requested to reach or serve as relay towards the leader. 

(e) This metric reflects the number of messages required so that the leader is reached by all 

nodes. It is denoted as Total Communication Hops (TCH) and defined as TCH = 
1

K
ii

r
=∑ .  

 
Overview of the subgroup leader election algorithm.  

  We assume that the leader election process runs proactively, while a subgroup leader is 

currently active within the associated subgroup. The algorithm may be operating in parallel 

with the KG, synchronization or coordinating functions required within the subgroup. 

Subgroup members with r e sE above threshold _res THRE  may contact the current leader and 

become legitimate candidates. The leader notifies all subgroup members of the identity of 

these legitimate candidate leaders. Then, the leader will trigger and initiate M measurements 

at arbitrary instances of its own choice, i.e. when it is not executing a heavy KM operation, or 

when it is idle, i.e. waiting for the expiration of batcht  period. The subgroup leader sends 

trigger messages to all the candidate leaders to initiate the measurements, and notifies all 

members that a measurement is taking place. Each member, after receiving the measurement 
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notification messages, attempts to contact each of the candidate subgroup leaders using 

minimum relays, adjusting its transmission range if feasible (and reporting it),. Candidate 

subgroup leaders, wait for time gett  to collect this information from as many members as 

possible. After the expiration of this period, they calculate the metrics CMP and TCH. The 

next step is that each candidate leader, selects one or multiple intra-cluster transmission 

ranges, and for each selected transmission range, it measures the degree of subgroup nodes it 

is directly connected to. Each candidate leader, after computing pairs of transmission range 

and subgroup member degrees (Ts, D_Ts), sends all measurements to the current leader. The 

current leader feeds the measurements of each individual candidate into a combined cost 

function denoted as SL(R), where R is the sequence number of the measurement in 

consideration, 1<R<M. Alternatively, the subgroup leader may store all these measurement 

values separately and consider only a subset, depending on which metrics are of interest to 

improve. The analytical formula of the combined cost function has the following structure:  

R =   ( )( ) / ( ) / ( ) ( )
T s

res
S

D RE R C M P R T C H R T Rα β γ δ× + + + × ,  

where: , , , 0a β γ δ ≥ , are pre-selected and are fine-tuned to meet the special requirements of 

each subgroup. There measurements are triggered by the current subgroup leader at arbitrarily 

selected intervals. The larger the amount of time that the current subgroup leader remains 

active, the larger the amount of such measurements that can be taken, and the more accurate 

the selection of the successive leader becomes.  

By taking a number of measurements at regular intervals, we incorporate indirectly in our 

costs, the robustness of the candidate leaders to dynamic changes, within the subgroup. For 

example, metrics such as: CMP, TCH, DTs, Ts are affected by mobility or membership 

changes, or failures, either of the candidate leader itself or of any of the members. Metrics 

CMP and TCH in particular consider indirectly the relative positions of subgroup nodes, and 

reflect these into practical measurements of energy consumption and communication cost in 
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the subgroup overall. For example, this algorithm will capture a subgroup leader that is 

gradually moving away from most of the subgroup members, by producing CMP and TCH 

values that become larger and larger at every successive measurement. The current leader, 

collects and evaluates the proper values, and orders the candidate subgroup leaders in a list 

from best to worst candidate. It communicates the list to all candidates, so that they all 

become aware of the next best selections in case of one or multiple failures. 

 
4.4.2. Analytical Cost of the Subgroup Leader Election Algorithm  

Notation_1: Let x be the maximum number of candidate leaders, K be the number of 

subgroup members, M be the highest number of measurements conducted, L and P be the 

maximum number of times a member or a candidate leader adjust their transmission levels. 

We have just described a proactive algorithm for leader election within the subgroups of 

Octopus protocols. We will now briefly evaluate the communication, computation, storage 

and energy cost of this algorithm for the subgroup members, current subgroup leader and 

candidate subgroup leaders. Initially, the current leader receives up to K messages from 

members requesting to be considered candidates, and selects x of them. The leader 

broadcasts to its subgroup a message triggering the measurement process, including the ids 

of the candidate leaders. Each member attempts to reach each of the x candidates, by 

adjusting its transmission power level if feasible, L times at maximum. If it still cannot reach 

the candidate it will use one or more relays. Thus, member i transmits: 1
2

L
ir+ × messages in 

average, and the corresponding energy consumption becomes: 1
2

L
i ir pow+ × × .  

 Each candidate collects also the contribution of all members to the CMP and TCH 

measurements, processes them (adds them), and temporarily stores them (2K). The associated 

processing cost for each metric is O(K). Then, it measures its node degree, adjusting its own 

transmission level P times at maximum. Each measurement requires one broadcast message 

from the candidate leader. Members within transmission range send back an ACK reply.  
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Ideally, the candidate subgroup leader aims to capture all nodes within 1-hop, so it starts with 

a feasible transmission range that can cover as many subgroup members as possible. The 

communication cost for this measurement is approximately P(1+K) at maximum. The overall 

processing cost is P×K. Then, the candidate combines these measurements in one packet and 

communicates this packet to the current subgroup leader. Therefore, the subgroup leader 

receives x messages to store and process. It orders the candidate leaders either based on the 

value of a single metric, or on a combination of multiple metrics. Each metric value is 

combined with the associated values from the previous measurements. So, the leader must 

add x packets, and then run a sorting algorithm, e.g. merge-sort, quick-sort, etc. that takes 

about O(xlogx) processing time. Then, the processed list is broadcast to the x candidates. 

Next, we summarize the communication, computation, and storage overhead incurred to all 

subgroup members in order to execute this subgroup leader election algorithm.  

Single Measurement 

1. Current Subgroup Leader: 

Communication Cost (# of messages): 1 + 1 = 2 

Energy Consumption Cost: 2 ×pow(Ts) 

Computation Cost (# of packets): c ×  K + c ×  x + c2 ×x ×  logx , where c, c2 < 3 

Storage Cost (# of packets): K + x  

2. Candidate Subgroup Leader i: 

Communication Cost per Candidate i (# of messages): 1+ 1
2

L
ir+ × + P + 1  

Total Communication Cost (# of messages): K + 1
2 1

xL
i i

r+
=

×∑  + P ×K + x  

Energy Consumption Cost per Candidate i: (2+P)× ipow + 1
2

L
i ir pow+ × × , assume ri<K/4 

Total Energy Consumption Cost: (2+P+ 1
2

L+ ) 
1

x
i ii

pow r
=

×∑ , assume ri < K/4 

Computation Cost (# of packets): 2×  c1×  K + P ×K   , where c1 < 2 
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Storage Cost (# of packets): K + 2K+ P = 3K + P 

3. Simple Subgroup Member i: 

Communication Cost per Member i (# of messages): 1+ 1
2

L
ir+ ×  + P, assume ri < K/4 

Total Communication Cost (# of messages): K + 1
2 1

KL
i i

r+
=

×∑ + P×K, assume ri < K/4 

Energy Consumption Cost per member i: (1+P)× ipow + 1
2

L
i ir pow+ × × , assume ri < K/4 

Total Energy Consumption Cost:  (1+P+ 1
2

L+ ) 
1

K
i ii

pow r
=

×∑ , assume ri < K/4. 

 
4.4.3. Feasibility of Leader Election Algorithm for Octopus-based Protocols 

This algorithm is feasible for all hierarchical protocols, but it can be also feasible for small 

flat networks, or for large flat networks divided in regions: each region is a subgroup and has 

its own leader. This scheme is even more feasible for Octopus protocols for the following 

reason as well: (O), MO, and MOT, operate in 3 distinct steps. During the 1st step, all entities 

are active (communication-wise) and compute a subgroup key, during the 2nd step simple 

members are idle and subgroup leaders interact among themselves to compute the group key, 

and during the 3d step subgroup members become recipients of KM material sent by the 

leaders, and compute the group key. Since the measurements may be triggered at arbitrary 

instances, the 2nd step of initialization, or the 1st or 2nd step of re-keying, during which 

members are idle and are not executing heavy KM operations, can be exploited. All members 

(including candidates) can conduct the bulk of their measurements during these time frames. 

Then, they can piggyback the results of their measurements in the same packets that contain 

KM material. The recipients will be multiple: these designated by the KG algorithm, and 

these designated by the measurements process. This can be done during the 1st step of the 

subsequent key establishment, or re-keying within a given subgroup, when all members 

participate to the subgroup KG: their KM material will reach the recipient, as designated by 

the logical KG algorithm, possibly through a varying number of relays. This gives an extra 
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advantage to the simultaneous application of the leader election algorithm during this step. In 

addition, if we make a slight modification to the leader election algorithm, so that all 

members directly report the results of their measurements to the current subgroup leader, then 

it is obvious that we reduce the extra communication cost even further. This happens at the 

expense of extra computations executed by the main subgroup leader of course. The subgroup 

leader may then use the 3d step to distribute the processed list to its members, piggybacked in 

the packets that contain shares of the group key.  

 
4.4.4. Integrate Logical Design and Auxiliary Network Functions 

The existence of a robust leader is a very important issue, particularly for centralized and 

hierarchical KM protocols. In these protocols, the implications of leader failures are severe: 

in most cases, a new leader must be elected and the protocols must start over. In contributory 

schemes like GDH.1-2 on the other hand, the function of a leader is mostly coordinating. 

However, even if the duties of a leader are reduced, its failure may still be as devastating for 

the contributory scheme as well. For example, in GDH protocols, the leader duties, even 

though different than the traditional duties of a centralized leader, are assigned to the last 

member reached by the upward stage.  In GDH.1, in particular, it is very important that the 

leader is as stable as possible. Although in GDH.2 any member is capable of initiating 

efficient re-keying, in GDH.1 only the leader may initiate member addition at least (and 

member eviction in a few cases, as GDH.1 does not lend itself to efficient re-keying). If the 

current GDH.1 leader has failed, the protocol must start over in order to include or remove a 

member, degrading the overall performance of the protocol.  

  In our analysis, we selected three protocols for the subgroups of the Octopus based schemes. 

From all these protocols, only GDH.2 may go around the event of a leader failure with lower 

cost and impact than the rest. A leader failure may be handled as a member failure indeed: 

GDH.2 goes around it with low cost re-keying, and with the election of any other member as 
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a leader. In the other protocols, either the leader failure entirely stalls the execution (i.e. 

centralized (O), GDH.1), or a new leader election with strict specifications must be executed 

before the protocol resumes (i.e. TGDH). Hence, the benefits of the proposed scheme may be 

more significant for (O) and MOT, compared to MO. Given all that, if a very simple leader 

election scheme is used within MO instead, then MO takes the lead from the other protocols 

in terms of performance for the first time. This is so, unless the overhead from a potentially 

vast number of re-keyings followed by new leader elections, outweigh the performance 

improvement achieved. This would be the undesirable trade-off for not incorporating a more 

sophisticated leader election scheme. Of course, if the same leader election protocol is used in 

all three schemes, then the performance associations of the three protocols are not modified.  

 In addition, we have shown that the wt protocols are flexible to network partitions and 

merges. These protocols maintain most of their performance attributes even when applied to 

partitioned or merged groups. Even when they are not operating according to their full 

potential, lightweight techniques are introduced to ensure that the schemes adjust to abrupt 

changes and: (a) still improve on the most important metrics of interest compared to their 

original nt-ancestors, and (b) minimally deviate from the natural progression of the key 

generation algorithm. Of course, after a number of key establishments, the wt-protocols may 

be reconfigured to take into account the latest topological changes, as this would be the case 

anyway, even under less severe dynamic changes. We have contributed towards the above by 

extending the design of these wt-schemes with lightweight techniques and rules that can be 

used to make the schemes more robust and efficient to dynamic changes and disruptions. 

Although our basic motivation for this contribution was to extend our proposed Octopus 

solutions to deal successfully with network dynamics (complete Chapters 2, 3), the analysis 

conducted in this chapter has its own merit of interest as well.  
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Chapter 5: Two Level Hybrid Schemes for an Over-Layered 

MANET 

 

 

5.1. Introduction 

  In this chapter, we are shifting our focus from totally flat to hierarchical MANETs with a 

specific configuration that resembles typical scenarios encountered in civilian cases or most 

often in the battlefield. Our physical environment is heterogeneous and consists of a number 

of wireless LANs often communicating with the aid of an overlay network. These overlay 

networks provide member with “special capabilities”, i.e. members with very high 

bandwidth, computational resources, storage capacity, etc. Furthermore, they provide robust 

and trusted nodes with sufficient capabilities to become group leaders. The network consists 

of heterogeneous nodes that result in producing links of variable qualities, uni/bi-directional 

asymmetric paths, larger bandwidth resources at higher tiers (satellites, planes), restricted at 

lower (cell-phones, laptops), different physical/communication mobility levels. At the low 

end mobility is more rapidly changing and higher degree of self-organization is observed. 

Nodes often need intermittent connectivity to reach others at the higher end.  

   Our objective in this chapter is to develop KM protocols for group communications for the 

discussed networks. Towards this end, we have designed a two-level hybrid KM scheme that 

models these environmental variations so that the first level of hierarchy represents nodes at 

the higher end, and the second level represents nodes at the lower end. The two-level hybrid 

scheme (2HH) exploits the diversity of the battlefield: it links key distribution to network 

topology, hierarchy, predicted or unpredicted member mobility, and routing. The 2HH has 
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adaptability to the network limitations and topology. It may use a combination of protocols 

in the two levels to achieve improvement in one or more of the metrics of interest: i.e. to 

achieve substantial reduction in the communication or computation overhead, or both. 

Additionally, this scheme may simultaneously support a wide range of protocols of different 

categories. Our additional aim is that given the parameters of the network and a wide range of 

KM protocols, the most appropriate protocols to be applied to each of the two levels of this 

2HH can be automatically selected. In the following sections, we describe the new model in 

detail, explore how combinations of a wide range of KM protocols affect the metrics of 

interest for the 2HH: (a) which combinations of protocols are best, (b) if and how the 

contribution (benefit) of the protocol combinations is affected by varying the network 

parameters, and (c) provide an analytical tool that automatically determines the best 

combinations for the 2HH, w.r.t. the metrics of interest, given the network parameters.  

  We will investigate the effect of all possible combinations of two diverse centralized KM 

protocols that make sense: the star-type Group Key Management Protocol (GKMP), and the 

tree-type Logical Key Hierarchy protocol (LKH). As part of our analysis, we will provide 

closed cost formulae of the resulting metrics of interest. After thoroughly exploring the 

contribution of these two protocols on 2HH, we extend our investigation on a number of 

different KM protocols, from all categories.  

 
5.2. Two Level Hybrid Scheme (2HH) Model 

 The “secure” distribution of the group key is achieved with the use of some kind of public 

key infrastructure (PKI). For example, a group that executes DH-based KA protocols does 

not require such infrastructure, because the security of the group key is guaranteed by the 

inherent properties of the DH scheme.  
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5.2.1 PKI for Group Key Distribution (KD) 

  A PKI enables users of a basically unsecured public network to securely and privately 

exchange data through the use of a public and a private cryptographic key pair that is 

obtained and shared through a trusted authority. A PKI provides for a digital certificate that 

can identify an individual or an organization and, when necessary, revoke the certificates. 

The PKI assumes the use of public key or asymmetric cryptography, which is the most 

common method for authenticating a message sender or encrypting a message. In public key 

cryptography, a public and private key are created simultaneously by a Certification 

Authority (CA) using the same algorithm. The private key is given only to the requesting 

party and the public key is made publicly available (as part of a digital certificate). A member 

uses its private key to decrypt text that has been encrypted with its public key by someone 

else. The most popular public key encryption/decryption mechanisms are: RSA (Rivest, 

Shamir, Adleman), Elliptic Curves, El Gamal. 

   The other mechanism for the exchange of messages among users is the private or 

symmetric key encryption/decryption method. The private key system is known as symmetric 

cryptography because we use one key to carry out the encryption and its inverse to decrypt 

the message. Methods for symmetric key exchange abound. Among the most popular ones 

are: DES (Data Encryption Standard) and its variations (i.e. 3-DES), IDEA, AES, etc. The 

symmetric encryption/decryption is a fast operation in comparison to the asymmetric one, but 

it is more vulnerable to attacks, and requires secure channels and many assumptions in order 

to be used in practice. The basic drawback of the public key encryption/decryption 

mechanisms is that they are very expensive and slow compared to the symmetric ones.  

   The mechanism that is used today for encryption/decryption is the best compromise of the 

two protocols. The exchange of messages among the group is performed with the symmetric 

key encryption/decryption method, which is fast and inexpensive. However, we distribute the 

private keys used in the symmetric protocol with the asymmetric method in order to make 



 234

sure that these private keys are safe from attacks and as securely distributed as possible. In 

terms of the public key mechanism, we assume that every node is provided with its own 

private key and has published a public key that corresponds to its private. Every time a node 

is added or deleted from a group, we have to update the symmetric key used by the group in 

order to preserve forward or backward secrecy respectively. This update occurs by encrypting 

the new symmetric group key with the private key of each member, i.e. we use the public 

(asymmetric) method again. Also, the group leader in charge of the KD process, may 

generate a new secret key for every new member. The leader encrypts this secret key with the 

public key of the new member and sends this encrypted message to the member. The member 

decrypts the message containing its secret key with its private key (known only to itself) and 

obtains the secret key that is now known only to the leader and itself. The member will use 

the secret key to communicate privately with the leader from now on. In this manner, the 

public key method is used as a secure channel that communicates to the group members the 

secret keys that are going to be used by the symmetric key method.  Therefore, centralized 

protocols that execute the task of KD for the multicast system need some PKI. For the 

purposes of this work, and for all the protocols integrated in the 2HH scheme that require a 

PKI, we select the RSA public key encryption/decryption method, and the DES 

symmetric key encryption/decryption method among others.  

 
5.2.2 Parameters, Symbols, and Abbreviations 

Abbreviations: 

GSC: Group Security Controller 

GSA: Group Security Agent 

2HH: Two Level Hybrid Hierarchical Scheme 

GKMP: Group Key Management Protocol 

CBT: Core Based Tree Protocol 
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Parameters: 

n: number of users in 2HH,  

K: length (bit size) of an element for the asymmetric method in star-based schemes. 

K’: length (bit size) of an element for the asymmetric method in tree-based schemes. 

d: number of descendants of a tree node, in tree-based KM protocols 

h: height of the tree, in tree base KM protocols  

p: probability of inserting or removing an entity other than the global leader of 2HH (or GSC) 

Cryptographic Parameters: 

CPE /CPD: Computation Cost per PKI Encryption/Decryption, CSE/CSD: Computation Cost per 

symmetric Encryption/Decryption, Cr: Computation Cost for a Pseudo-random Number 

Generator for primes (for RSA keys), Crr: Computation Cost for a Pseudo-random Number 

Generator, CE: Computation Cost for the operation of Modular Exponentiation (ME), Cg 

Computation Cost for the Hashing operation. 

 
5.2.3. Two-Level Hierarchical Scheme (2HH)  

The configuration of 2HH is illustrated in Figure 5.1. It consists of two levels, the upper level 

(first) and the lower level (second). Each level contains a different group or groups of entities, 

and the operation of KM is independent for each level. Hence, the KM of the whole 2HH 

scheme is done in a hierarchical manner as well. The characteristics of the network and of 

individual entities are different for each level. The bandwidth resources are larger at higher 

tiers (satellites, planes), and restricted at lower (cell-phones, laptops). The physical and 

communication mobility levels differ as well. At the low end mobility is more rapidly 

changing and higher degree of self-organization is observed. Nodes often need intermittent 

connectivity to reach others at the higher end. 

First level: It consists of a single KM group whose members are the GSAs. The leader of this 

group becomes the GSC of the whole 2HH. If the KM protocol applied to the group is 



 236

centralized, then the GSC securely distributes a group key to its members, the GSAs. The 

GSC is the most powerful entity in the system, followed by the GSAs. The GSAs are entities 

with enhanced capabilities compared to the simple members, they are considered to lie in 

between a GSC and a member, with respect to various characteristics: power, bandwidth, 

capacity, mobility profile, etc. The GSC usually delegates its duties to GSAs, who undertake 

the task of independently establishing group keys with a subset of simple members. 

Second level: It consists of multiple groups. Each GSA (defined as member in the group of 

the first level) now becomes the leader of its own group of simple members. Hence, ideally, 

the second level consists of as many groups as the number of GSAs in 2HH. Each group may 

contain an arbitrary number of simple members. Therefore the following analogy obviously 

holds: the GSAs are to the GSC what the simple members are to the GSA. If we assume 

without loss of generality that the average size of the group handled by each GSA is n2, and 

we further assume that the total number of GSAs that participate in 2HH is n1, then, we 

compute the overall number n of entities contained in 2HH as follows: n = 1+n1×n2.  

 We assume that all GSAs have a common mobility profile, partially characterized by the 

parameter p1, which represents the probability of a GSA being added to or removed from the 

KM group of the 1st level. Similarly, we assume that all simple members have a common 

mobility profile, partially characterized by the parameter p2, which represents the probability 

of a simple member being added to or removed from the KM group of the 2nd level. 

Independency of Subgroups (Independent Update): Each subgroup in 2HH is an 

independent entity in the sense that the members of each different subgroup establish their 

own subgroup key, in addition to the global group key. Hence, the group of GSAs (1st level), 

and each of the groups of simple members (groups in the 2nd level) establish their own 

individual subgroup key. In fact, the global group key can be communicated to the entities in 

2HH with the aid of these intermediate subgroup keys: it can be encrypted with these 

intermediate subgroup keys. Whenever a member is added to or evicted from a subgroup in 
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either level, the subgroup key is updated, independently from the other subgroup keys. In that 

sense, the key updates are only limited within the various subgroups, and the process 

becomes more scalable to a growing size of the secure group. 

Physical interpretation of parameter p: This mobility parameter maps the mobility 

characteristics of entities in 2HH to the rate of key updates required in a given time frame. 

For example, if the mobility characteristics of nodes are known or computable (i.e. speed, 

direction, mobility model, bandwidth, etc.), then the approximate time when a member will 

disconnect from its group can be predicted. This event is followed by an update in the group 

key of the evicted member, in order to maintain forward secrecy. The frequency of the 

group key updates is the important parameter for a KM protocol under the steady state. The 

relative mobility of members is among the major factors that determine the parameter p. 

However, other factors like resources’ depletion, i.e. battery drainage, poor physical 

protection of members, etc. also play a role in determining accurate margins for parameter p. 

Hence, we can say that parameter p summarizes the dynamic events observed during a given 

time frame within a group that lead to re-keyings. Equivalently, the probability p can be 

interpreted as the group key update rate, or the frequency of re-keyings. The values that it 

might take depend on the network parameters which vary in different executions. In the end 

of this chapter, we describe the simulations conducted to capture the frequency of members 

being disconnected from their subgroups (i.e. partially parameter p), using three different 

mobility models. Our aim was to: (a) determine how the frequency of re-keyings is affected 

by different mobility profiles alone, and (b) provide realistic values for p, since it is used as a 

free parameter in our analysis of the different metrics (costs) of different combinations of 

protocols integrated in 2HH. 

Definition: Average Operating Cost is the average computation cost for the addition 

or deletion of a GSA or member to the hybrid scheme. 
 GSC

GSA

member
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Notation for Distributed Keying Elements 

K1ij: GSA to member,    

K2i: GSA to cluster,  

K3: GSC to members, 

K4i: GSC to GSAs.                         

Figure 5.1. 2HH Model schematic illustration: First Level (upper): cluster between GSC and 
GSAs, Second Level (lower): GSAs to members.   
 
Next, we are going to provide a detailed analysis of the two most significant protocols 

integrated into 2HH in various combinations: GKMP and CBT. The combinations that 

involve these two schemes will be thoroughly analyzed and will serve as the guiding example 

for all other combinations that involve different protocols. 

Basic Assumption: Throughout 5.3, we assume that the probability for inserting/deleting a 

(new) GSA or a (new) member into/from the group is (1/2). 

Discussion: In this chapter, we assume that there exists an underlying mechanism that ensures 

that all members that participate in key distribution are already authenticated. We further 

assume that the GSC acquires the capabilities required for playing the role of a CA. For every 

entity a designated pair of RSA public and private keys is assigned by a CA or TTP. The 

public key of this entity is published along with its identification. All public keys of the 

network entities are published at the GSC. The GSAs have access to the GSC at any time: the 

availability of the GSC for the GSAs is assumed in terms of services and bandwidth both for 

the up-link and for the down-link. Hence, the GSAs communicate with the GSC to ensure 

that a given member is authenticated and get its authentic public key. The GSC executes the 

following tasks: (a) monitors the network for membership changes, (b) authenticates the new 

members, (c) assigns RSA public and private keys, and (d) periodically refreshes the 

certificates of members. Members do not have direct access to the GSC through the up-link 

but communicate with their local GSAs. The GSC can access all members. If a member 
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looses connectivity with its GSA, it is considered evicted from the particular GSA. In this 

case, the member either joins another GSA, or it becomes evicted from the whole network. 

 

5.2.4. GKMP Overview (Group Key Management Protocol) 

The GKMP scheme can be used as the organization scheme within each subgroup of a given 

GSA (2nd level) or within the group of GSAs (1st level) as well, in the 2HH model.  It is a 

star-based centralized protocol. GKMP has a single group leader of group controller. Each 

member i stores a pair of keys: GKPi = {SEK, KEKi}. KEKi is an abbreviation for “Key 

Encrypting Key” and denotes the individual secret key that is shared only between the group 

controller and member i., with which SEK will be encrypted. SEK is an abbreviation for 

“Session Encryption Key” and represents the session key (group key) that will be shared 

among all group members for the purpose of the secure multicasting.  

  GKMP provides small storage (each member needs to store only two secret keys in addition 

to their RSA pair of public-private keys), at the expense of a large communication overhead 

for membership updates (evictions). Whenever a member is evicted from a secure group of 

size n, the current GSC computes a new group key (SEK) for the group. It encrypts the SEK 

(n-1) times with the KEK of each of the (n-1) remaining members, and sends the generated 

cyphertext to each member individually. Hence, the computation and communication costs 

required for this operation are linear to the size of the group, so GKMP is neither efficient nor 

scalable at steady state. The operation of a member’s addition is more lightweight. The GSC 

generates a new SEK and encrypts it: (a) once with the previous SEK, acquired by all n 

previous members, and broadcasts the same single cyphertext to all n previous members, and 

(b) once with the KEK of the new member, and individually communicates the new 

cyphertext to the new member. Hence, the GSC now performs only two computations 

(encryptions), and communicates only two different cyphertexts to all members. 
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GKMP Analytical Evaluation  

Initially the GSC generates the n secret keys (KEKs) it will send to the n group members via 

the asymmetric encryption method (RSA). Then, it generates the group session key (SEK) to 

for the multicast communication. It communicates SEK to each member individually via the 

symmetric encryption method (DES). SEK is encrypted with the KEK of each member. 

Below we discuss some representative metrics, the rest are computed in a similar manner. 

                                                                                

 

Figure 5.2. Schematic Illustration of GKMP configuration 
 
 
Initial Computation: The GSC generates (n+1) new keys: the n KEKs and the SEK. The 

cost for the random key generation is given by the function Cr. Then, the GSC performs a 

public encryption (RSA) for each of the n KEKs, with cost CPE for each. It then, unicasts the 

SEK to each member, symmetrically encrypted with its KEK. Thus, the GSC does n 

symmetric encryptions with cost CSE for each. Hence, the cost is: (n+1)Cr+nCPE+nCSE. Each 

member first decrypts its KEK with cost CPD. Then, it decrypts the SEK with cost CSD. 

Add Computation: When a new member is added, the GSC must change its SEK to preserve 

backward secrecy. First, it generates a new secret key for the new member, encrypts it with 

the members’ RSA private key and sends it to the new member. Then it generates a new 

SEK. It broadcast it to all members, encrypted with the previous SEK, known to all members 

except for the new one. It also unicasts the new SEK to the new member symmetrically 

encrypted with the KEK of the new member. The total GSC cost is: 2Cr + CPE + 2CSE. The 

new member asymmetrically decrypts the KEK and then, symmetrically decrypts the SEK. 

The rest of members need only decrypt the symmetrically encrypted (with the previous SEK) 

new SEK. Hence, the member cost becomes: CPD (new member) +CSD. 

GSCGSC
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Add Communication: The GSC communicates a KEK to the new member and broadcasts 

the encrypted new SEK.  It also unicasts SEK encrypted with the KEK of the new member to 

the new member. Thus, the cost becomes 3K. 

Delete GSC Computation: When a new member is deleted from the group, the GSC 

changes the SEK to ensure forward secrecy. The GSC computes a new SEK, communicates 

the new SEK to each remaining member individually, symmetrically encrypted with the KEK 

of each member. Thus, the GSC also performs (n-1) symmetric encryptions, with cost CSE for 

each, and the overall cost becomes: Cr + (n-1) CSE.  

 
5.2.5. Tree Based Key Management – Core Based Trees (CBT) Overview 

CBT extends LKH. The n leaf nodes are the group members and the group key is associated 

with the tree root. Each member knows only all keys associated with the path extending from 

its leaf up to the root. 

 

 

 

Figure 5.3. Illustration of CBT Configuration: member i is denoted as Mi, and its internal 
keys as Kj, i , where j is the tree level an internal key is placed on. Finally, K0 is the group key. 
 
 
A New Member joins the group: The key server (or GSC) assigns the new member to a leaf 

node. The new member receives all keys associated with the nodes on its path to the root. The 

received keys are independent from any previous keys in the tree. The GSC replaces all keys 

on the key path of the new member sequentially with fresh keys, starting from the leaf and 

going up the root. The GSC symmetrically encrypts each new successive key to be sent, with 

the new predecessor key just sent. The first key sent, associated with the tree leaf, is 

encrypted with the member’s KEK. The GSC sends each of the new keys of the group 

members that use them on a need to know basis.  
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A Member leaves the group: All the keys known to the evicted member will be changed (so 

that forward secrecy is preserved). These keys are being replaced sequentially from the leaf 

up to the root. The GSC symmetrically encrypts each new successive key to be sent with the 

new predecessor key just sent. The first new key sent, associated with a given tree leaf, is 

symmetrically encrypted with the member’s KEK.  The tree configuration is very efficient 

because it only requires the update of logd (n) keys, assuming that the tree is balanced. 

 

Evaluation of Cost for CBT 

Initially, the GSC generates n secret keys to send to the n members of the group (associated 

each with a tree leaf) via the asymmetric method (RSA). Then, the GSC generates secret keys 

for all internal nodes in the tree. It symmetrically communicates to each member the keys 

associated with the nodes that belong to its path from the leaf up to the root. Thus, the GSC 

communicates approximately h secret keys to each member. The key associated with the tree 

root will be the session key for all multicast group communication. Below, we discuss some 

representative cost metrics, the rest are computed in a similar manner. 

GSC Storage Cost: The GSC store all tree keys. The secret key associated with an internal 

node may be used by the GSC to encrypt a message for the d members (in a balanced d-tree) 

that contain this internal node in their paths from the leaf up to the root. The number of nodes 

in a balanced d-tree is: d0+d1+d2+…+dh = (dh+1-1)/(d-1) = (dn-1)/(d-1). 

Initial Computation: The GSC generates as many new keys as the number of nodes in the 

tree with cost Cr each. The total number of new keys generated are: (dn-1)/(d-1). From these 

keys, the GSC asymmetrically encrypts the n keys that it is going to communicate to the 

members via RSA. The remaining keys, namely (dn-1)/(d-1)– n = (n-1)/(d-1), are sent to the 

members symmetrically encrypted. The GSC symmetrically encrypts the key of each internal 

node with d different keys. Thus, it does d× (n-1)/(d-1) symmetric encryptions with cost CSE 
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each. A member asymmetrically decrypts (with cost CPD) its secret key. With this key it later 

symmetrically decrypts (with cost CSD for each key) the h keys sent to it by the GSC. 

Initial Communication: The GSC sends to the n members their n secret keys. Then, it sends 

d× (n-1)/(d-1) encrypted messages that will be symmetrically decrypted by the intended 

recipients. Hence, the cost becomes: (d× (n-1)/(d-1)+ n)K = ((dn-1)/(d-1) + (n-1))K. 

Delete Communication: The GSC, for each updated node, sends the new key symmetrically 

encrypted to (d-1) children. It performs the same operation for all h updated nodes, thus the 

total cost becomes: (d-1) h K. 

Parameters GKMP CBT 

GSC Storage (n+1) K (dn-1) K/ (d-1) 

Member Storage 2 K (h+1) K 

Init. GSC Computation (n+1) Cr +n CPE +nCSE (dn-1)Cr /(d-1)+n CPE+d(n-1)CSE /(d-1) 

Init. member Comput. CPD + CSD CPD  + h CSD 

Initial Communication 2 n K ( n + d(n-1)/(d-1)) K 

Add GSC computation 2 Cr + CPE + 2 CSE (h+1) Cr + CPE + 2 h CSE 

Add member Comput. CPD + CSD CPD + h CSD 

Add Communication 3 K (2h + 1) K 

Delete GSC Comput. Cr + (n-1) CSE h Cr + (d-1) h CSE 

Delete member Comput CSD h CSD 

Delete communication (n-1) K (d -1) h K 
Table 5.1. Communication and Computation Costs for GKMP and CBT protocols. 
 
5.3. Hybrid Models Design and corresponding Cost Analysis 

We integrate GKMP and CBT to 2HH, in six different combinations, and we calculate the 

metrics of interest for each such configuration.  

 

5.3.1. First Scheme: Single unbalanced CBT over 2HH, Two Groups of Members 

p1: probability of GSA addition/deletion, p2:  probability of member addition/deletion.  

p1< p2 (p1, p2: motion frequencies). 

n1: # GSAs (clusters), n2: # members in each cluster. 
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The resulting tree is unbalanced, with two distinct path lengths: 

h1 = - logd p1 (GSA) and h2 = -logd p2 < h1 (members).                                                       

The GSC distributes to GSAs and to members also the designated secret keys. 

 

 

 

Figure 5.4. Single unbalanced CBT over 2HH, two groups of members (GSAs, members) 
 
Storage Costs: 

GSC:           
12 1 21 1

11 1 1 2

h h h
d d d

n K N KCh hd d
d
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⎡ ⎤⎛ ⎞
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⎡ ⎤

′⎢ + ⎥
⎢ ⎥⎢ ⎥

          Member: ( )12h K
⎡ ⎤

′+⎢ ⎥
⎢ ⎥⎢ ⎥

 

Derivation of the expression Nc:  

  The first term of this expression is the storage cost for the tree of members only. Members 

only are associated with the leaves of a balanced sub-tree with height h2. The members can 

apply the original CBT protocol, on such a balanced sub-tree, so the total number of nodes 

and thus the number of keys the GSC stores is: (dh2+1-1)/(d-1). 

The GSAs are associated with tree leaves whose path to the root has size h1. Equivalently, a 

sub-set of these members (selected at random) become the root to balanced sub-trees with 

height h1-h2. All non-empty leaves of these trees become associated with a GSA. This is how 

the original tree that comprises both members and GSAs is formed. As already discussed, the 

GSC stores the keys of all nodes of the tree.  

  The total number of nodes in the sub-tree of GSAs is: (d×dh1-h2 –1)/(d-1). Each such sub-

tree includes a maximum number of GSAs: dh1-h2. However, given that the total number of 

GSAs is n1, the minimum number of such GSA trees generated is: n1/dh1-h2.  By adding the 

nodes belonging to the sub-trees of the two types (member sub-tree, GSA sub-trees), we take 

members

GSAs
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into account the members that are also roots of GSA sub-trees twice (n1/dh1-h2 such members 

in total) in our computations. Therefore, the total number of keys stored in each GSA tree if 

we subtract the tree root becomes: (d×dh1-h2–1)/(d-1)-1= d× (dh1-h2-1)/(d-1).  Thus, the total 

storage cost for the GSC, if we add everything together becomes: NC K’ = 

12 1 21 1
11 1 1 2

h h h
d d d

n K
h hd d

d

+ −
− − ′+ ⋅

−− −

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

. 

Initial Computation Cost: 

GSC: ( ) ( )11 1 2N C n n n C N CC r P E C S E

⎡ ⎤
⎢ ⎥′ ′ ′+ + + −
⎢ ⎥
⎢ ⎥

 

GSA: 1C h CPD SD⎡ ⎤′ ′+⎢ ⎥
        Member: 2C h CP D S D⎡ ⎤′ ′+⎢ ⎥

 

Derivation of the computation cost for GSC 

  Initially, NC new keys will be generated by the GSC with cost Cr (random generator 

function) for each. The GSC first sends asymmetrically encrypted the secret keys of all the 

leaves (those associated with both members and GSAs: in total n1+n1n2). Then, the GSC 

sequentially sends the secret keys of all the remaining internal nodes symmetrically encrypted 

with the member secret keys of members previously sent, with the same method we have 

already discussed. Here, the keys of the parent nodes of the members that are roots to GSA 

sub-trees must be communicated both to the members and to the members’ offspring as well. 

Therefore, the GSC symmetrically encrypts the key of such a node: (a) d times for its 

offspring that are members, and (b) d× z times, where z is the number of GSA sub-trees that 

exist below these members. As discussed, the number of symmetric encryptions performed 

by the GSC regarding the members only becomes:  

d× (n1 n2 -1) / (d-1) = d× (dh2-1) / (d-1) = ((dh2+1-1) / (d-1))-1,            (5.1). 

For the GSA sub-trees, the GSC acts similarly. Although the key of the physical root of a 

GSA sub-tree (namely a member’s key) is neither encrypted  nor communicated to the nodes 
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of GSA sub-trees, the key of the parent of such a member plays the role of the physical root: 

it is encrypted and broadcast d times to the associated GSA sub-tree. In analogy to CBT, the 

number of symmetric encryptions done by the GSC for each GSA sub-tree becomes:  

d× (n1-1)/(d-1) or d× (dh1-h2 -1)/(d-1),                                                     (5.2). 

We repeat here that the number of GSA sub-trees is: n1 / dh1-h2 ,            (5.3). 

The overall number of symmetric encryptions performed by the GSC is obtained from the 

expression: (5.1)+(5.2)× (5.3), and becomes: NC-1. 

   Each GSA asymmetrically decrypts its private key sent by the GSC, and then symmetrically 

decrypts all the keys of nodes contained in its path to the root. The same is the case with each 

member. The difference is that the GSA decrypts a path of height h1 whereas the member 

decrypts a path of height h2. 

Initial Communication Cost: ( ){ }1 11 2N n n KC
⎡ ⎤′+ + −⎢ ⎥⎢ ⎥

 

The communication cost is the number of bits that have to be communicated from GSC to all 

the GSAs and members so that the proper keys are distributed. For the distribution of keys 

asymmetrically to all the leaves, the GSC uses: (n1 + n1 n2) K bits. For the symmetric 

distribution of all the required keys to all the interior nodes the GSC uses: (NC -1) K bits. 

Average Operating Cost for GSC: 

1
{ (( 1) 2 ) ( 1) (( 1) 2 )}1 1 1 1 1 2 2 2 22

1
{ ( ( 1) ) ( 1) ( ( 1) )}1 1 1 1 1 2 2 2 22

n p h C C h C n n p h C C h Cr PE SE r PE SE

n p h C d h C n n p h C d h Cr SE r SE

′ ′ ′ ′ ′ ′+ + + + − + + + +

′ ′ ′ ′+ − + − + −

Both GSAs and members are viewed as “members” from the perspective of the GSC. In the 

case of a new GSA or member inserted into the group the GSC is responsible for creating and 

distributing the appropriate encrypted keys both for the case of a GSA addition (first term) 

and for the case of a member addition (second term). These two terms are derived exactly as 

we have analyzed in the CBT protocol for member addition. The third and fourth term 
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represent the computation cost of a GSC for deleting a GSA and a member from the tree 

respectively. Similarly, the terms are derived exactly as we have analyzed in the CBT 

protocol for the case of member deletion. The total number of members that remain in 2HH 

after a member deletion is: n1(n2-1)p2. 

Average Operating Cost for GSAs: ( )1 1 1n p C h CPD SD′ ′+  

A newly inserted GSA asymmetrically decrypts the private key sent by the GSC, and then 

symmetrically decrypts the private keys associated with its path to the root sent by the GSC 

as well. The cost for this operation is: 1

2
( )1 1 1n p C h CPD SD′ ′+ .When a GSA is deleted, 

the remaining GSAs perform the same actions as before, and the resulting cost for this 

operation becomes: 1

2
( )1 1 1n p C h CPD SD′ ′+ .When a member is added or deleted, no 

actions have to be taken by any other GSA, since the GSAs and members possess different 

group keys, and additionally, the GSC is responsible for executing the steady state related 

operations in this scheme.  

Average Operating Cost for Members: ( 1) ( )1 2 2 2n n p C h CPD SD′ ′− +  

Similar is the course of thought for deriving the formula for the addition or deletion of a 

member. Again, under this configuration, the addition or deletion of a GSA does not affect 

members. The GSC handles the GSAs and the members as two different kinds of members. 

Average Communication Cost: 

1 1{ (2 1) ( 1) (2 1) } { ( 1) ( 1) ( 1) }1 1 1 1 2 2 2 1 1 1 1 2 2 22 2
n p h K n n p h K n p d h K n n p d h K′ ′ ′ ′+ + − + + − + − −  

The first and the second terms are the communication cost for adding a new GSA or member 

to the tree respectively. The third and fourth terms are the communication cost for deleting a 
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GSA or member from the tree. Both GSAs and members are viewed by the GSC as two 

different kinds of members. 

 

5.3.2. Second Scheme: GSC to GSAs: CBT, GSA to members (clusters): GKMP 

The resulting tree of CBT is balanced with h1 =logd n1,  

Storage Cost: 

GSC: 1( 1)
1

dn K
d

⎡ ⎤− ′⎢ ⎥
−⎢ ⎥

       GSA: ( )2 11K n K h K
⎡ ⎤

′+ + +⎢ ⎥
⎢ ⎥

                Members: 3K⎡ ⎤⎢ ⎥  

The GSC stores the secret keys of all tree nodes. Any GSA stores the following keying 

material: (a) the keys associated with its path to the root (GSC), (b) the secret key used to 

communicates with the GSC individually, (c) the n2 secret keys it communicates to all 

members in its cluster individually, and (d) the cluster session key it communicates to all 

members in its cluster. Members store their individual private keys, shared only with their 

leading GSA. These keys are distributed (and asymmetrically encrypted) by their leading 

GSA, and are used to symmetrically encrypt the session key. In addition, the members store 

the session shared with their leading GSA, and the session key shared with the GSC. 

GSC Computational Cost: ( )1
1( 1) 1

11 1

d ndn C C n Cr SE P Ed d

⎡ ⎤−−⎢ ⎥′ ′ ′+ +
⎢ ⎥− −⎢ ⎥

 

GSA Computational Cost: ( )1 ( )1 2 2C h C n C n C CPD SD r PE SE
⎡ ⎤′ ′+ + + + +⎢ ⎥  

Member Computational Cost: C CPD SD
⎡ ⎤+⎢ ⎥⎢ ⎥

 

Overall Communication Cost: ( )11 21 1 21

d n
n K n n K

d

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ ′+ +⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎢ ⎥

 

The GSC generates (dn1-1)/(d-1) new keys via the random generator with cost Cr for each 

key. The GSC is responsible only for the distribution of keys to GSAs, and the term for the 

computational cost is directly derived from the CBT cost formulas. The GSA asymmetrically 
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decrypts the secret key sent by the GSC and then decrypts the keys associated with its path up 

to the root symmetrically sent by the GSC as well. The GSA generates the secret keys of all 

its members (n2), asymmetrically encrypts them and distributes them to the members, with 

associated costs indicated by the corresponding GKMP formulas. The member first 

asymmetrically decrypts its individual secret key, and then symmetrically decrypts the 

session key, sent by the GSA. By summing the total number of keys sent to all the GSAs 

from the GSC and the total number of keys sent to all members from their leader GSAs, we 

obtain the overall communication cost. 

Average Operating Cost for GSC: 

1 1{ (( 1) 2 )} { ( ( 1) )}1 1 1 1 1 1 1 12 2
n p h C C h C n p h C d h Cr PE SE r SE′ ′ ′ ′ ′+ + + + + −  

The first term represents the cost incurred at the GSC for adding a new GSA to the tree of 

GSAs. In this scheme, the GSC is not involved with the addition and deletion of members. 

These operations are up to the GSA to handle. The cost formulae follow the CBT scheme. 

The second term represents the cost incurred at the GSC for deleting a GSA from the tree. 

Average Operating Cost for GSA: 

1
{ ( ) ( 1 ) ( 2 2 ) }1 1 1 1 2 22

1
{ ( ( 1 ) ) ( 1 ) ( ( 1 ) ) }1 1 2 2 2 1 2 2 22

n p C h C n n p C C CP D S D r P E S E

n p n C n C n C n n p C n Cr P E S E r S E

′ ′+ + − + + +

+ + + + − + −

 

The first and the second term represent the cost incurred at the GSA for adding a new GSA to 

the CBT or a new member to the given GSA (exactly as indicated by the GKMP cost 

formulae) respectively.  The third and fourth terms represent the cost incurred at the GSA for 

deleting another GSA (exactly as indicated by the CBT cost formulae) or a member from the 

given GSA (exactly as indicated by the GKMP cost formulae) respectively. When a GSA is 

to be deleted (third term) the GSC is responsible for removing it and for sending the proper 

updated keys to the corresponding nodes in the tree. However, another GSA must recruit the 

members of the evicted GSA. So, either there is a free GSA to which no cluster has been 
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assigned yet, or a member of the cluster is randomly selected as GSA. The new GSA recruits 

all n2 members and builds a new cluster by generating and distributing the proper keys as 

indicated in GKMP (third term). 

Average Operating Cost for Members: 

1 1{ ( 1 ) ( )} { ( ) ( 1 ) }1 2 2 1 1 1 2 22 2
n n p C C n p C C n n p CP D S D P D S D S D− + + + + −  

 The addition term represents the cost incurred at any member for adding another member to 

the cluster (according to the GKMP formulae). The deletion term represents the cost incurred 

at any member for: (a) deleting a GSA from the tree, and (b) evicting a member from the 

same cluster. When a GSA is evicted then its members join in another cluster. The first part 

of the deletion term represents the cost for a member joining in another cluster if its GSA is 

deleted, an event with probability p1. The last deletion term represents the computations done 

by the rest of members when a member is deleted from its group.  

Average Communication Cost: 

1 1{ (2 1) ( 1) (3 )} { (( 1) 2 ) ( 1) ( 1) )}1 1 1 1 2 2 1 1 1 2 1 2 2 22 2
n p h K n n p K n p d h K n K n n p n K′ ′+ + − + − + + − −  

   The average communication cost sums up the total number of keys exchanged both in the 

case of a GSA or member addition and in the case of a GSA or member deletion respectively. 

The terms of the equation are derived following exactly the cost analysis of CBT and GKMP, 

and this of the operating costs for the current scheme. 

 
5.3.3. Third Scheme: GSC to GSAs: CBT, GSA to members: CBT 

h1 = logd1 n1,   h2 = logd2 n2, each tree is balanced. 

d1 = fan out of upper tree,    d2 = fan out of lower tree 

In this scheme both levels in 2HH follow independently the CBT protocol (do not interact). 

After this observation, it is easy to derive the cost formulae of the corresponding cost 

functions of the third scheme.  
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Storage Cost: 
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Since both levels of hierarchy follow CBT independently, all costs formulae are directly 

derived from the CBT cost analysis. A GSA stores all keys of the tree it generates for it own 

cluster of members and also the keys associated with its path to the root in the tree of GSAs. 

Computational Cost: 

GSC: ( )1 1( 1) 1 11
11 11 1

d nd n
C C n Cr SE PEd d
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⎢ ⎥− −⎢ ⎥
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⎡ ⎤
′ ′+⎢ ⎥
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GSA:  ( )2 2

2

1( 1) 2 2
1 21 12

d nd nC h C C C n CPD SD r SE P Ed d

⎡ ⎤−−⎢ ⎥′ ′ ′ ′ ′+ + + +
⎢ ⎥− −⎢ ⎥

    

 A GSA decrypts the proper keys sent by the GSC and simultaneously generates and encrypts 

the keys that will be sent to its own cluster (tree) of members, exactly as indicated by the 

CBT cost formulae.  

Communication Cost: ( ) ( )1 11 1 2 2
1 1 21 11 2

d n d n
n K n n K

d d

⎡ ⎤⎛ ⎞ ⎡ ⎤− −
⎢ ⎥⎜ ⎟ ⎢ ⎥′ ′+ + +
⎢ ⎥⎜ ⎟ ⎢ ⎥− −
⎝ ⎠ ⎣ ⎦⎢ ⎥

 

Average Operating Cost for GSC:    

1 1{ (( 1) 2 )} { ( ( 1) )}1 1 1 1 1 1 1 1 12 2
n p h C C h C n p h C d h Cr PE SE r SE′ ′ ′ ′ ′+ + + + + −  

  In this scheme, the GSC interacts only with the GSAs, as indicated by the CBT protocol. 

The first term is the operating cost incurred at the GSC for adding a new GSA and the second 

(deletion) term represents the operating cost incurred at the GSC for deleting a GSA from the 

tree, exactly as indicated by the CBT cost formulae. 

Average Operating Cost for GSA: 
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1 { ( ) ( 1 ) (( 1 ) 2 )}1 1 1 1 2 2 2 22
1 ( 1 )1 2 2 2 2{ ( ) ( 1 ) ( ( 1 ) )}1 1 2 1 2 2 2 2 22 1 12 2

n p C h C n n p h C C h CP D S D r P E S E
d n d n

n p C n C C n n p h C d h Cr P E S E r S Ed d

′ ′ ′ ′ ′+ + − + + +

− −
′ ′ ′ ′ ′+ + + − + −

− −

The first term represents the cost incurred to the GSA due to: (a) the addition of a new GSA 

(as indicated by CBT), and (b) the addition of a member (as indicated by CBT). The second 

term represents the cost incurred to the GSA due to: (a) the deletion of a GSA, and (b) the 

deletion of a member. When a GSA is evicted then its members join in the cluster of another 

GSA. The first part of the deletion term represents the cost incurred at the GSA that recruits 

in its cluster all the members of the evicted GSA (an event with probability p1). 

Average Operating Cost for Member:  

1 1{ ( 1) ( )} { ( ) ( 1) )}1 2 2 2 1 1 2 1 2 2 22 2
n n p C h C n p C h C n n p h CPD SD PD SD SD′ ′ ′ ′ ′− + + + + −  

  The addition term (first) represents the cost incurred to members for the addition of another 

member to a cluster. The deletion term (second) represents the cost incurred to members 

when: (a) their GSA is deleted and they are assigned to a new GSA, and (b) a member is 

evicted from their cluster.  

Average Communication Cost: 

11 1 2{ (2 1) ( 1) (2 1) } { (( 1) ) ( 1) ( 1) }1 1 1 1 2 2 2 1 1 1 1 2 2 1 2 2 2 22 2 1

n
n p h K n n p h K n p d h K n K d K n n p d h K

d

−
′ ′ ′ ′ ′ ′+ + − + + − + + + − −

−
 

  The addition term (first) represents the keys required for: (a) the addition of a GSA to the 

CBT of GSAs, and (b) the addition of member to a cluster. The deletion term represents the 

keys required for: (a) the deletion of a GSA from the CBT of GSAs, (b) the transferring the 

member cluster of the evicted GSA to another GSA and generating and distributing new keys 

for them (as indicated by CBT), and (c) the deletion of a member from a given cluster.  

 

5.3.4. Fourth Scheme: GSC to GSAs: Single CBT, Single Group of Members 

p: same for all members. 

Now, h = - log p, p =1/(n1×n2), balanced tree: 
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Storage Cost: 

GSC: 1 1
1

hd
d

+⎡ ⎤−⎢ ⎥
−⎢ ⎥⎢ ⎥

                           GSA: ( )1h K
⎡ ⎤

′+⎢ ⎥
⎢ ⎥⎢ ⎥

                 Members: ( )1h K
⎡ ⎤

′+⎢ ⎥
⎢ ⎥⎢ ⎥

 

The GSC stores the keys of all nodes in the single balanced CBT tree. Any non-empty tree 

leaf is associated with either a GSA or a member. The GSAs and members store these keys 

associated with nodes in the tree that belong to their path towards the root. 

Computational Cost: 

GSC: ( )
1 1

11 1 21 1

h hd dC n n n C Cr PE SEd d

⎡ + + ⎤⎛ ⎞
⎢ ⎥⎜ ⎟′ ′ ′+ + + −

⎜ ⎟− −⎢ ⎥⎝ ⎠⎢ ⎥

 

GSA: G hCPD SD
⎡ ⎤

′ ′+⎢ ⎥
⎢ ⎥⎢ ⎥

                       Members: G hCPD SD
⎡ ⎤

′ ′+⎢ ⎥
⎢ ⎥⎢ ⎥

 

Communication Cost: ( )
1 1 1 11 21

hd n n K
d

⎡ + ⎤⎧ ⎫−⎪ ⎪⎢ ⎥′+ + −⎨ ⎬
−⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥

  

   All cost formulae directly follow the cost functions of CBT. 

Average Operating Cost for GSC:  

1
{ (( 1) 2 ) ( 1) (( 1) 2 )}1 1 22

1
{ ( ( 1) ) ( 1) ( ( 1) )}1 1 22

n p h C C hC n n p h C C hCr PE SE r PE SE

n p hC d hC n n p hC d hCr SE r SE

′ ′ ′ ′ ′ ′+ + + + − + + + +

′ ′ ′ ′+ − + − + −

 

The addition term (first) represents the cost incurred to the GSC due to: (a) the addition of a 

new GSA (as indicated by CBT), and (b) the addition of a member (as indicated by CBT). 

The deletion term (second) represents the cost incurred to the GSC due to: (a) the deletion of 

a GSA, and (b) the deletion of a member. The GSC handles views both GSAs and members 

exactly the same way, handles them as simple members, and places both at the leaves of a 

balanced tree with height h. Hence, the eviction of a GSA does not affect any members. 

Average Operating Cost for GSA: ( )1n p C hCPD SD′ ′+  
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  Since the GSAs are placed in the leaves of the trees with no hierarchy under them, they act 

similarly to the simple members. In the case of a GSA addition, the new GSA asymmetrically 

decrypts the private key sent by the GSC, and then symmetrically decrypts the private keys 

associated with its path to the root sent by the GSC as well. The cost for this operation is: 

1

2
( )1 1 1n p C h CPD SD′ ′+ . The remaining GSAs decrypt any number z of secret keys, 

where 1≤ z≤ h. When a GSA is deleted, the remaining GSAs perform the same actions as 

before, and the resulting maximum cost incurred by a GSA for this operation becomes: 

1

2
( )1 1 1n p C h CPD SD′ ′+ . 

Average Operating Cost for Member: ( 1) ( )1 2n n p C hCPD SD′ ′− +  

 The corresponding cost is derived similarly to the average operating cost for the GSAs. 

Average Communication Cost: 

1 1
{ (2 1) ( 1) (2 1) } { ( 1) ( 1) ( 1) }1 1 2 1 1 22 2n p h K n n p h K n p d hK n n p d hK′ ′ ′ ′+ + − + + − + − −  

 
5.3.5. Firth Scheme: GSC to GSAs: GKMP, GSA to members (cluster): CBT 

h2 = logd n2   (balanced tree)                 n1 p1 + n1 (n2 -1) p2 =1 

Storage Cost: 

GSC: ( 1)1n K⎡ ⎤+⎢ ⎥  GSA:  2 2
2

1
13 ( )d n

dK K −
−+⎡ ⎤⎢ ⎥        Members: ( 1)h K⎡ ⎤′+⎢ ⎥  

  The storage cost formulae are derived in a straight-forward fashion, following the 

corresponding costs of GKMP for the group of GSAs, CBT for all member clusters, and 

merging both in the case of GSAs (use GKMP to store keying material regarding the group of 

GSAs, and use CBT to store keying material regarding its own cluster).      

Computational Cost 

GSC:  ( 1) ( )1 1n C n C Cr PE SE⎡ ⎤+ + +⎢ ⎥                   Members:   C hCPD SD
⎡ ⎤+′ ′⎢ ⎥⎢ ⎥  
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GSA:   
( 1) ( 1)2 2( ) 21 1
dn d n

C C C n C CPD SD r PE SEd d
− −⎡ ⎤

′+ + + +′ ′⎢ ⎥
− −⎢ ⎥        

The computational cost formulae are derived in a straight-forward fashion, following the 

corresponding costs of GKMP for the group of GSAs, CBT for all member clusters, and 

merging both in the case of GSAs (use GKMP to compute the keying material of the group of 

GSAs, and CBT to compute the keying material of its member cluster).      

Communication Cost: 
( 1 )22 ( )1 1 2 1 1

d n
n K n n n K

d
−⎡ ⎤

′+ +⎢ ⎥
−⎢ ⎥  

The communication cost is derived from the number of the keys sent initially from the GSC 

to GSAs (GKMP) and these sent from each GSA to their cluster members (CBT).  

 
Average Operating Cost for GSC: 

1 1{ ( 2 2 ) } { ( ( 1 ) ) }1 1 1 1 12 2
n p C C C n p C n Cr P E S E r S E

⎡ ⎤+ + + + −⎢ ⎥⎢ ⎥
  

The addition term represents the cost incurred at the GSC for adding a new GSA to the tree of 

GSC. The deletion term is the cost of deleting a GSA from the tree. The costs are derived 

from the analysis of GKMP.  

Average Operating Cost for GSA: 

1
{ ( ) ( 1) (( 1) 2 )}1 1 1 2 22

( 1) ( 1)1 2 2{ ( ) ( 1) ( ( 1) )}1 1 2 1 2 22 1 1

n p C C n n p h C C hCP D SD r P E SE

dn d n
n p C n C C n n p hC d hCr P E SE r SEd d

′ ′ ′+ + − + + + +

− −
′ ′ ′ ′ ′+ + + − + −− −

The addition term (first) represents the costs incurred to a GSA for adding another GSA 

(indicated by GKMP) or a member (indicated by CBT) to the scheme. The deletion terms 

(second) represent the cost for deleting a GSA or a member. The members that were left 

without GSA need to find a new leader, so the third term is the cost for connecting the new 

GSA to these members under a tree scheme.  

Average Operating Cost for Member:  

1 1{ ( 1 ) ( )} { ( ) ( 1 ) 2 )}1 2 2 2 1 1 2 1 2 2 22 2
n n p C h C n p C h C n n p h CP D S D P D S D S D′ ′ ′ ′ ′− + + + + −  
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The addition term (first) represents the costs incurred at a member for adding a new member 

to the scheme (indicated by CBT). The deletion term (second) represent the cost incurred for 

members for deleting a GSA from a cluster and assigning all members of that cluster to 

another GSA, or deleting a member (indicated by CBT).  

Average Communication Cost: 

11 1 2{ 3 ( 1) (2 1) } {( ( 1) ) ( 1) ( 1) }1 1 1 2 2 2 1 1 1 2 1 2 2 22 2 1

n
n p K n n p h K n p n K n K d K n n p d h K

d

−
′ ′ ′ ′+ − + + − + + + − −

−
 

The addition term (first) represents the communication cost for: (a) adding a new GSA into 

the GKMP group, and (b) adding a member into the CBT group of members. The deletion 

term (second) represents the cost for: (a) deleting a GSA from the GKMP group of GSAs and 

also establishing a new CBT cluster between a new GSA and the members of the deleted 

GSA, and (b) deleting a member from CBT cluster of a GSA.  

 
5.3.6. Sixth Scheme: GSC to GSAs: GKMP, GSA to members: GKMP 

Storage Cost:    

GSC: ( 1)1n K⎡ ⎤+⎢ ⎥⎢ ⎥                         GSA: 3 2K n K⎡ ⎤+⎢ ⎥⎢ ⎥                 Members:   2K⎡ ⎤⎢ ⎥  

All formulae are straight-forward, following the corresponding costs of GKMP for the group 

of GSAs and for all member clusters, and merging both in the case of GSAs.      

  Computational Cost: 

GSC: ( 1 ) ( )1 1n C n C Cr P E S E⎡ ⎤+ + +⎢ ⎥   

GSA: ( 1) ( )2 2C C n C n C CP D S D r P E SE⎡ ⎤+ + + + +⎢ ⎥      Members: C CP D S D⎡ ⎤+⎢ ⎥  

Communication Cost: 1 1 22 2n K n n K+⎡ ⎤⎢ ⎥  

Average Operating Cost for GSC: 

1 1{ ( 2 2 )} { ( ( 1 ) )}1 1 1 1 12 2
n p C C C n p C n Cr P E S E r S E+ + + + −  
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  The addition term (first) represents the cost for adding a new GSA to the group of GSAs (as 

designated by GKMP). The deletion term (second) represents the cost for deleting a GSA 

from the GKMP group of GSAs.  

Average Operating Cost for GSA:     

1
{ ( ) ( 1) ( 2 2 )}1 1 1 2 22

1
{ (( 1) ( )) ( 1) ( ( 1) )}1 1 2 2 1 2 2 22

n p C C n n p C C CP D SD r P E SE

n p n C n C C n n p C n Cr P E SE r SE

+ + − + + +

+ + + + − + −

 

The addition term (first) represents the cost for: (a) the addition of a GSA to the GKMP 

group of GSAs, and (b) the addition of a member to the GKMP cluster of its GSA leader. The 

deletion term (second) represents the cost for: (a) the deletion of a GSA from the GKMP 

group of GSAs, the assignment of the members of the deleted GSA to a new GSA, and the 

formation of a new secure cluster between them (indicated by GKMP), and (b) the deletion of 

a member for the GKMP cluster of a GSA.  

Average Operating Cost for Member:     

1 1{ ( 1) ( )} { ( ) ( 1) }1 2 2 1 1 1 2 22 2
n n p C C n p C C n n p CPD SD PD SD SD− + + + + −  

Average Communication Cost:  

1 1{ 3 ( 1) 3 } {( ( 1) 2 ) ( 1) ( 1) }1 1 1 2 2 1 1 1 1 1 2 1 2 2 22 2
n p K n n p K n p n K n p n K n n p n K+ − + − + + − −  

 

5.3.7. Other Schemes 

  Until now, we have considered only two popular KM protocols, GKMP and CBT, and we 

have merged them together in various combinations in 2HH. GKMP provides lower storage 

cost but higher communication overhead than CBT. CBT, on the other hand, achieves 

substantially lower communication overhead, particularly whenever a component is deleted, 

at the expense of storage and computational cost. The aim of our analytical work is to model 

and analytically evaluate these combinations, to find out which improves which metrics of 
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interest, and which exploits the advantages of the two individual protocols most efficiently. 

Obviously, we can incorporate many more KM protocols to the 2HH scheme. The most 

important factors that determine the best such combination are the individual performance of 

each of the applied KM protocols, the number of entities in the two levels of 2HH (n1, n2), 

and their mobility frequencies (p1, p2). Also, some protocols may scale better than others. In 

2HH, the GSC is assumed to be robust and trusted. Thus, for the upper level, centralized 

schemes are encouraged. This is not always the case with the GSAs however. Depending on 

the network specifications, centralized or contributory schemes may be used for the lower 

level. The most robust protocols tolerate higher mobility rates in the network without 

breaking down as often as the rest of protocols do. Another issue is how the overall 

performance of the hybrid scheme is affected when two or more protocols overlap. For 

example, when two different protocols are applied to the two levels, the GSA computation 

and communication costs are calculated from the overlap of these two different protocols. 

The resulting cost formulae may not be predictable any more, and may significantly modify, 

namely either accentuate or amplify, certain characteristics of the individual protocols 

applied. Hence, to minimize these costs we must consider not only how the protocols 

individually operate but also how they interact when combined (i.e. in the case of GSA).  

 

Example: one protocol may present high computation cost for the GSC and low for 

members, whereas another protocol may present low computation cost for the GSC and high 

for members. If we combine these two protocols so that the second one is applied to the 1st 

level and the first one to the 2nd level, we end up with higher cost for the GSA, in comparison 

to what we would have achieved had we combined them the opposite way. However, the 

second combination would result in higher cost for the GSC. As for the total communication 

cost (it depends on all three components: GSC, GSAs and simple members), we must conduct 

a performance evaluation to decide on the best combination given the parameter values. 
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   By taking all these issues into account we will be able to “extract” these combinations that 

are best for the 2HH scheme, in the sense that they result in the optimization or substantial 

improvement of one or more of the metrics of interest. The most efficient protocols are OFT, 

TGDH, CBT, MOT, ELK, GKMP. The existence of a GSC ensures that centralized schemes 

can be applicable for the 1st level of the 2HH scheme at least. These protocols have all been 

modeled and analytically evaluated in Chapter 2. We stress here again the following facts: 

(a) For the non DH-based centralized protocols (i.e. CBT, GKMP, OFT, ELK), we maintain 

the same RSA-based PKI model we developed in Chapters 2 and 5, and use the expressions 

previously calculated for the following RSA-cryptographic functions: Cr, CPE, CSE, CPD, CSD. 

(b) The DH-based protocols integrated in 2HH (i.e. GDH.2, TGDH, MOT) have better 

performance than RSA-based. In addition, the random key generator required for keys to be 

used either in symmetric encryption or for the DHKEs (Crr is the corresponding cost function) 

is much cheaper than this used for the RSA PKI (Cr is the corresponding cost function). This 

is so because the RSA random number generator must compute on the side two extra large 

primes of given length. Further details can be found in the appendix of Chapter 2. 

   We integrated all the discussed protocols in various combinations in 2HH, modeled them, 

analyzed them and derived the corresponding cost formulae, similarly to the first six schemes 

we have demonstrated. Since the method is exactly the same, we skip the detailed analytical 

evaluation of the remaining combinations. Rather, we directly proceed to illustrate the results 

of the comparative performance evaluation, including most of the combinations used: 

1. Single Key Tree (CBT), two Member Groups  

2. GSC-GSAs CBT, clusters GKMP 

3. GSC-GSAs CBT, clusters CBT 

4. Single CBT, single Members Group 

5. GSC-GSAs GKMP, clusters CBT 

6. GSC-GSAs GKMP, clusters GKMP 
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7. GSC-GSAs OFT, cluster {OFT, ELK, CBT, GDH.2, MOT, TGDH, GKMP}  

8. GSC-GSAs TGDH, cluster {OFT, ELK, CBT, GDH.2, MOT, TGDH, GKMP} 

9. GSC-GSAs CBT, cluster {OFT, ELK, GDH.2, MOT, TGDH}  

 
5.3.8. Comparative Performance Evaluation and Graphic Results 

 In what follows, we are graphically illustrating the most significant results of our analytical 

evaluations of the discussed combinations. We measure the computation and communication 

metrics for all entities (GSC, GSAs, members), for initial and steady state, in terms of a 

growing group size rate (n2 / n1), or in terms of a growing mobility rate (p2 /p1). Different 

combinations in 2HH prevail for different metrics, and for different group size and mobility 

rates. We integrated into 2HH a large variety of feasible combinations. In addition, a large 

portion of the sampling space has been examined. Given these two facts, we claim that the 

following holds: given the specifications of our network and of 2HH, i.e. group size (n1, n2) in 

both levels, or group size ratio (n2 / n1), mobility in both levels (p1, p2), or mobility ratio (p2 / 

p1), our results directly and automatically provide the best combinations for one or multiple 

metrics of interest, for one or multiple specifications fixed (varying degree of freedom). We 

illustrate the initial and steady state costs of the 2HH scheme, when varying either the group 

size ratio or the mobility ratio respectively, while keeping the remaining parameters constant 

(which take different fixed values at a time, so that the sampling space is more thoroughly 

tested). We note here that the trees constructed by the following protocols: OFT, ELK, 

TGDH, and MOT, are binary by default (d = 2). 
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Figure 5.5. Initial Communication Cost vs. Group Size Ratio (n2/n1): 1, 4, 16. Single CBT, 
Two CBTs and ELK-TGDH reduce OH the most. Most protocols do not seem to be very 
sensitive to a growing Group Size Ratio, except for TGDH-MOT and TGDH-GDH.2 (that 
also present the worst performance). The mobility ratio is constant; the following values have 
been used to evaluate the OH in terms of a variable group size ratio: 2, 5, 10, 15, 20, 25.  
 
 

 

 

 

 

Figure 5.6. Initial GSC Computation Cost vs. Group Size Ratio (n2/n1): 1, 4, 16, for varying  
number in the tree offspring d (dcase1 (Two_Tree(CBT)) = 2, d1 = 2, d2 = 2 (Tree(CBT)-
GKMP, Tree(CBT)-Tree(CBT), GKMP-Tree(CBT)), dcase4 = 2 (Single_Tree(CBT))). The 
combinations that reduce OH the most are: TGDH-ELK, TGDH-OFT followed by OFT-OFT, 
ELK-ELK, GKMP-GKMP. Single CBT again presents the worst performance and is not 
sensitive to Group Size Ratio. The mobility ratio is constant; the following constant values 
have been used to evaluate the OH in terms of a variable group size ratio: 2, 5, 10, 15, 20, 25.  
 

 

 

 

 

Figure 5.7. Initial GSA Computation Cost vs. Group Size Ratio (n2 / n1): 1, 4, 16, for varying 
number in the tree offspring d (dcase1 = 3, d1 = 2, d2 = 4, dcase4 = 3). The combinations that 
reduce OH the most are: TGDH-MOT, OFT-MOT, ELK-MOT followed by GKMP-GKMP, 
OFT-OFT. Combinations that use ELK in the 2nd level result in the worst performance. The 
mobility ratio is kept constant; the following constant values have been used to evaluate the 
OH in terms of a variable group size ratio: 2, 5, 10, 15, 20, 25.  
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Figure 5.8. Average Communication Cost vs. Mobility Ratio (p2 /p1): 2, 5, 10, 15, 20, 25. The 
s that reduce the corresponding OH the most are: those that include OFT and/or ELK in either 
level, followed by GKMP-GKMP, and CBT-GKMP. Combinations that use TGDH in any 
level, Tree (CBT)-GKMP, Tree(CBT) –Tree(CBT) result in the worst performance. It 
appears that all costs are sensitive to the varying mobility ratios. The Group Size Ratio is kept 
constant; the following constant values were used to evaluate the OH in terms of a variable 
Mobility Ratio: (1, 4, 16), and n1=(32, 16, 8), n2 =(32, 64, 128). 
 

 

 

 

Figure 5.9. Average Communication Cost vs. Group Size Ratio (n2 / n1): 1, 4, 16, for varying 
number in the tree offspring d (dcase1 = 2, d1 = 3, d2 = 4, dcase4 = 3). The combinations that 
reduce OH the most are: those that use OFT or ELK in the 2nd level of 2HH, followed by 
GKMP-GKMP, and Tree (CBT)-GKMP. Combinations that use TGDH in either level, Tree 
(CBT)-GKMP, Tree (CBT)-Tree (CBT) result in the worst performance.  The costs of almost 
all combinations are sensitive to a varying Group Size Ratio. The mobility ratio is constant; 
the following constant values were used to evaluate the OH in terms of a variable group size 
ratio: 2, 5, 10, 15, 20, 25. In these graphs in particular, we used p1 = 0.02, and (p2 / p1) = 5. 
 

 

 

 

 

Figure 5.10. Average GSC Operating Cost vs. Group Size Ratio (n2 / n1): 1, 4, 16, for varying 
number in the tree offspring d (dcase1 =3, d1 = 2, d2 = 4, dcase4 = 3). The combinations that 
reduce the corresponding OH the most are: the use of TGDH in any level followed by OFT-
OFT, ELK-ELK, GKMP-GKMP, and Tree (CBT) -GKMP. Single-Tree and TwoTree result 
in the worst performance. Most costs appear to be sensitive to the Group Size Ratio. The 
mobility ratio is kept constant; the following constant values have been used to evaluate the 
OH in terms of a variable group size ratio: 2, 5, 10, 15, 20, 25. In these graphs in particular, 
we used p1 = 0.02, and (p2 / p1) = 10. 
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Figure 5.11. Average GSA Operating Cost vs. Mobility Ratio (p2 /p1): 2, 5, 10, 15, 20, 25, for 
varying number in the tree offspring d (dcase1 = 3, d1 = 2, d2 = 4, dcase4 = 2). The 
combinations that reduce the corresponding OH the most are: Single_Tree (CBT), Two_Tree 
(CBT), followed by combinations that use TGDH in any level. Combinations that use ELK in 
any level of 2HH result in the worst performance. Almost all the discussed costs are sensitive 
to a varying mobility ratio. The Group Size Ratio is kept constant; the following constant 
values were used to evaluate the OH in terms of a variable Mobility Ratio: (1, 4, 16), and n1 = 
(32, 16, 8), n2 = (32, 64, 128). In these particular graphs we have used the following values 
regarding the most significant metrics: n1 =32, n2 = 32. 
 
 
5.3.9. Discussion - Conclusions 

The 2HH demonstrates adaptability to the network topology and the various network 

constraints. A combination of protocols may be used to improve one or more metrics of 

interest. Given the network parameters, such as: users mobility frequencies, user 

characteristics (processing capabilities, bandwidth, battery life), overall number of users,  and 

number of users of certain categories, we can now automatically select the most suitable key 

distribution protocols for both its levels and combine them to a very efficient hybrid scheme. 

For our evaluation, we set the basic parameters to take values as indicated below: 

n2/n1 = t: (1, 4, 16) and n1=(32, 16, 8), n2 =(32, 64, 128),  n1*n2  = 1024.  

p2/p1 = y: (5, 10, 15, 20, 25) or {(2.5, 10, 40), and p1 = (0.08, 0.04, 0.02), p2 = (0.2, 0.4, 0.8)}. 

 The Operating Costs are very sensitive to ratios t and y. Furthermore, all metric functions are 

sensitive to the length of keying elements (K) and consequently to the following 

cryptographic functions: CPE /CPD, CSE /CSD, Cr, and Crr. Naturally, metrics are sensitive to the 

parameters: p1, p2,, n1, and  n2  alone. Certain metrics are sensitive to the tree configurations, 

namely to the selection in the number of descendants of internal nodes: d1, and d2 (where 

CBT is used according to the original definition, namely: CBT-CBT, GKMP-CBT, CBT-

CKMP), dcase1 (Single_Tree (CBT)), dcase4 (Two_Tree(CBT)), respectively. The overall 

performance of 2HH is much better when no contributory protocols are applied (which is 

expected). However, certain combinations of non-contributory with contributory schemes 

reduce the performance more than certain cases that combine two non-contributory protocols 
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do. Different combinations of protocols may prevail for different costs depending on the 

partial performance of each protocol regarding the particular cost. Among undeniable 

winners for the vast majority of cases are combinations that use OFT and/or TGDH protocols 

with other efficient protocols (regarding a given metric). 

Example: The first six schemes combine CBT and GKMP protocols in different ways:  

For all costs related to 2HH, except for the Average Communication Cost, GKMP-GKMP 

and Tree (CBT)-GKMP are the prevailing schemes. For the Average Communication Costs 

however clearly Tree (CBT)-Tree (CBT) and GKMP-Tree (CBT) are the schemes that result 

in the best performance. For GSC Initial and Operative Costs, Single_Tree (CBT) presents the 

worst performance (since it is overloaded with the tasks of the GSAs as well), but presents 

much better performance along with Two_Tree (CBT) with respect to the Communication 

Costs (the communication between the GSC and the GSAs is spared). 

 
5.4. The effect of Mobility on the Performance of the 2HH scheme 

   In this section, we are investigating the effects of mobility on the behavior and performance 

of the discussed KM schemes, and mainly on the 2HH scheme. We want to better understand 

the requirements imposed by various mobility models. These requirements will then be met 

with the improved design of KM. Our main objectives are the following: (a) the design of an 

analytical and simulations tool that operates as follows: Given the network and mobility 

specifications and parameters, and given the specific metrics we want to improve, it 

“automatically” designates the most efficient combination(s) of KM protocols to be 

integrated to 2HH, so that the desired overhead is significantly reduced, (b) we want to 

measure exact variations in the re-keying (mainly) overhead due to mobility of individual 

protocols, or combinations of protocols integrated into 2HH, (c) we want to improve on our 

analytical results gathered, and make them more accurate, by substituting the arbitrarily 

attributed probabilities of members’ evictions and additions with real measurements, and (d) 
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the mobility model, speed of group members, transmission range, and other mobility 

parameters, can be another input to the theoretical and simulation tool that take as input 

various network parameters (i.e. number of members at each level, mobility profile of nodes, 

transmission range, bandwidth, etc.) and determines which combinations of protocols are 

most suitable for the two levels of hierarchy.  

   The approach we follow is to reflect various mobility patterns into our analytical cost 

models and then design KM schemes that offer the best trade-offs with respect to these 

requirements. In our simulations, we consider the most crucial mobility and network 

parameters for all network nodes (speed, mobility model followed by group members, 

transmission range of group members, network and cluster sizes). We want to determine how 

the probability of members being evicted from their cluster varies, with varying the mobility 

and network parameters. We are then able to test the effects of mobility on practical metrics: 

e.g. number of communication exchanges, number of broadcasts, number of rounds, amount 

of storage and computation, running time, etc., required for re-keying, or initialization.  

  We are dealing with mobile nodes that move ad-hoc, but in certain applications there is the 

tendency for nodes to move in groups, presenting obvious similarities in their mobility 

patterns. Given this observation, we have considered the following mobility models for our 

analysis and simulations, details of which can be found in [57]: (a) the Random Way Point 

Mobility Model (RWPM), and the Smooth Random Way Point Mobility Model (SRWP), 

for nodes that move completely ad-hoc, (b) the Reference Point Group Mobility Model 

(RPGM) or the Reference Velocity Group Mobility Model (RVGM), for nodes that appear 

to be moving in groups (similar mobility pattern). RPGM describes the group membership by 

its physical displacement from the group reference center. In RVGM, the similarity in 

members’ movements is considered as the most important characteristic of a mobility group.  
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5.4.1. Overview and Analysis 

Notation: First, we define a number of probabilities and parameters as follows: 

S: the number of clusters (subgroups) of a broad KM group. 

J: the probability for any member to become evicted from its own subgroup. 

m: the rate of new incoming members into the group (from the outside world). 

λ : the probability that an arbitrary member already evicted from its own subgroup joins 

another subgroup. 

Method: We model a generic 2HH over various networks of different size and configurations 

as follows: our network consists of clusters of equal size that represent the subgroups formed 

at the 1st or 2nd level of the hierarchy of 2HH. We fix a number of network and mobility 

parameters (i.e. members’ transmission ranges, members’ average speed, etc.). The mobility 

of all group members is characterized with the same mobility model, every time the 

simulation starts over. We use three different mobility models to test the performance and 

behavior of our schemes. The duration of each simulation run is approximately 500 seconds. 

During this period, we measure and then average the frequency of members being 

disconnected from their subgroup. 

   The probability J can then be defined as follows: J = # _ _ _
# _ _

evicted members per cluster
members per cluster . This 

probability in our simulations is totally defined by the mobility patterns of members, and 

depends on the mobility model used, the members’ velocity, transmission ranges, etc. 

However, in reality, evictions of members occur for reasons unrelated to mobility as well. For 

instance, for security reasons, whenever suspicious behavior is observed, or members have 

expired credentials, they are evicted from their subgroup. In addition, members are subject to 

battery drainage, or may become faulty at any time. Hence, the “total eviction” of a member 

partially depends on unprecedented factors that are orthogonal to its mobility. This 

probability is not reflected in our current simulations. Our simulation set up is such that all 
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members that are evicted from their subgroup eventually join in another subgroup. So, in our 

settings no member becomes totally evicted from the network. This is so, because we assume 

that whenever a member reaches the borders of our grid shaped topology, it bounces back in 

the opposite direction, and gets back into the group. Of course, for the duration of the 

simulation, an evicted member may not actually join another subgroup even though it moves 

within the borders of our topology. It can happen that it moves in areas that are unreachable 

from any member of any subgroup. However, because of the fact that the simulation is run 

for a short period we do not handle this case as total eviction from the group. Rather, we 

assume that eventually, the member joins an arbitrary subgroup. In reality however, there 

exists a probability that an evicted member from any subgroup does not join any other 

subgroup. This probability partially depends on members’ mobility and can be captured with 

simulations, but also depends on other factors, i.e. security, protocol policies, waiting period, 

etc. that may be different for each case, and introduce another parameter (w.r.t. security, 

policy), that may also constitute an input for 2HH. In this work, we have denoted this 

probability with (1-λ ), and we view this as a free parameter that can be provided as input to 

2HH along with the network and protocol specifications. Similar is the case with the rate m of 

new members that join the secure group. This rate does not involve the mobility pattern and 

profiles of members and cannot be realistically captured in simulations. Again, we introduce 

this probability as a free parameter. This parameter should be provided as input to 2HH along 

with the network and protocol specifications.  

   Considering all the above, our analytical models are formulated by integrating the discussed 

(free or measured) probabilities and rates into the previously “arbitrarily fixed” probabilities 

of evicted or added members into the clusters of the secure group. Hence, the probability of a 

member being evicted from its subgroup is J, while the overall probability of an arbitrary 

member being evicted from its subgroup and totally disconnected from the secure group 

becomes: J× (1-λ )), and the overall probability of an arbitrary evicted member to join a 
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given cluster becomes: J× λ × 1
( 1)S− of a member joining a new cluster. Similarly, the 

probability of a member’s addition to a given cluster becomes: (m× 1
S + J× λ × 1

( 1)S− ). As 

we have explained, the parameters and/or rates: S, m, andλ , are orthogonal to mobility. The 

purpose of our simulations is to capture the probability J of a member being evicted from its 

subgroup, as an effect of the mobility of members. As we can see, the measurable parameter 

J, along with parameters:λ , m, and S, that are introduced as input to 2HH, fully determine 

membership changes during initial or steady state. Hence, by measuring the mobility-

dependent parameter J, for varying mobility specifications, we gain insight as to how 

mobility affects the performance of KM schemes, because we can determine the frequency of 

disruptions (in the case of initialization) and/or membership changes at steady state.  Since, 

the KM handles these events either by starting over the KM protocol (in the case of a 

contributory scheme), or by invoking the re-keying operation (steady state), we can 

accurately determine the resulting overall extra communication, computation, and storage 

overhead produced by the participants. These costs are easily calculated: we only need to 

substitute in the analytical evaluations provided in section 5.3, the existing entity addition/ 

eviction probabilities with the newly defined probabilities (these of inserting or deleting a 

GSA or a simple member), that were previously arbitrarily set to ½ pi.   

  In summary, our contribution in this section is to expand the 2HH model so that it includes 

mobility parameters in its input, and accurately reflect all these to the analytical formulae that 

will determine the best set of combinations to be used for the existing network configuration. 

Towards this end, we conducted simulations to measure the only parameter - J - that reflects 

the mobility profiles of members. We obtain an analytical and simulation tool that offers the 

best trade-offs and improved KM design w.r.t. our requirements. 

  Below, we summarize the basic results (pEV, pADD) that can be integrated in all analytical 

formulae derived throughout section 5.3: 



 269

- Avg. probability of a member being evicted from its subgroup: pEV =J. 

- Avg. probability of a member becoming disconnected from the group: pOUT = J× (1-λ )).  

- Avg. probability of any evicted member to join another cluster: pMOVE = J× λ × 1
( 1)S− . 

- Avg. probability of a member’s addition to any cluster: pADD= (m× 1
S + J× λ × 1

( 1)S− ). 

5.4.2 Simulation Set Up 

   We conducted simulations over various network configurations (various network graphs) 

with varying network size (500, 800, 1000 nodes), consisting of a varying number of clusters 

(16, 32, 64, 128). We measured the impact of a number of different mobility models on the 

connectivity of entities to their cluster. We assume that the clusters represent subgroups of a 

group KM protocol (or subgroups of the 1st and 2nd level in 2HH).  

  We measured the number of members that disconnect from their subgroups during a given 

window of time, and we average the results. These results were averaged over a period of 500 

seconds of simulation time, for different network configurations and parameters. We report 

the average frequency of member evictions in the whole network (i.e. from all subgroups) per 

second. In our simulations, we used RWPM, RPGM, and SRWPM mobility models, and we 

ran them with three different member speeds: 5m/s, 10m/s, 20m/s. We assume that the 

transmission range of all members, denoted as Tx, is 70m, selected at random. For our setting 

we use a square grid topology, and we assume that members that reach the borders “bounce 

back” into the network. Our results are very indicative of how different mobility models 

affect the performance of KM, in a given network. Changing the network configuration and 

even a few of the network specifications (i.e. TX) result in different values of the discussed 

probabilities, and probably in different outcome of the comparative evaluation of the mobility 

models used in our simulations. Hence, we cannot generalize the results of our simulation for 

all inputs, and “hard-wire” the measurements of the probabilities in our analytical 

evaluations. Another option could be to provide direct formulae that compute these 
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probabilities analytically; in our previous analytical results the notion of mobility is restricted 

in arbitrarily selected probabilities of nodes joining or leaving particular groups. Refining and 

extending the existing analytical models to better reflect how mobility affects the various key 

KM schemes is a second option. To this end, we started by basing the guidelines of our 

analytical investigation on the work of McDonald et al. [58], where a novel framework for 

dynamically organizing mobile nodes in wireless ad hoc networks into clusters is presented. 

Also, Bettstetter et al. [59], and Kurose et al. [60], introduced a simple analytical mobility 

model for MANETs based on Poisson distribution. However, in this work they are inevitably 

making some very simplistic assumptions. In addition, since it is generally accepted that 

nodes within a MANET cannot be moving completely ad hoc (on the contrary, most nodes 

have an intended destination towards which they are heading), a more complex distribution 

than Poisson should be considered for modeling the movements of nodes in MANETs. 

Although their analysis is useful, and their results could be used in our existing analytical 

schemes to reflect the effect of mobility, even for verification purposes, we believe that our 

simulations yield more accurate results: we are not making as many simplifying assumptions 

and in addition, we are testing multiple mobility models of different nature (ad-hoc and group 

models). Hence, using simulations, we also compare the effect of different mobility models 

on the performance of KM protocols, which cannot be achieved with the existing analytical 

work. McDonald considers the random assumption as optimal as well, and uses initially the 

Poisson distribution, but provides useful insight on: how mobility affects clusters, the 

probability that a node is clustered, how to compute cluster survival time, and other useful 

results. These results could be integrated in our existing analytical formulae, for estimating 

the probabilities produced, or for verification purposes. Extending the work of McDonald, 

Bettstetter, and Towsley, to include more complex mobility models for MANETs is a very 

broad and challenging problem of its own. To our knowledge, there is not a single study that 

provides a unified, spherical, analytical approach. 
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 Although the simulation results cannot be generalized for all networks, all we need to do 

every time we are provided with different input, is to run the same simulations for the 

parameters provided, measure the probability J and process the results as shown in our 

example, incorporate the value of J in the probabilities formulated in 5.1, and finally, directly 

substitute these probabilities in the corresponding analytical formulae derived in 5.3. This 

methodology can be transparent to a simple user. The user provides the necessary parameter 

input and specifications to a “black box” that executes all the discussed simulations, 

analytical evaluations, and determines the most efficient set of combinations for 2HH. 

 
5.4.3 Simulation Results 

  In Table 5.2, we illustrate some of the indicative results of the average number of member 

evictions due to mobility, from all network members, per second, per mobility model, per 

speed, in networks of varying size (500, 800, 1000 nodes). From these values, parameter J 

can be directly computed. For example, for RPGM, for a members speed of 20m/s, and for 

cluster size of 64 members, in a network of 500 nodes, the average number of evictions per 

second obtained is: 5.143. We obtain J by normalizing this value, hence: J = (5.143/500) = 

0.010286. As seen from this set of simulations, RPGM results in the lowest number of 

member evictions. This is expected, since this model captures the behavior of members that 

move as a group and not ad-hoc, and hence the probability of members getting disconnected 

from their cluster is reduced. The difference in the values of J for different parameters is 

reflected in the extra overhead required for re-keyings.  

Mobility Model: RWPM model                                            Network Size: 500 nodes 

Speed     
Clusters 

 
5m/s 

 
10m/s 

 
20m/s 

16 3.362 5.252 5.274 
32 4.132 5.77 7.774 
64 3.84 6.396 7.154 

128 3.342 6.178 10.174 
Mobility Model: RPGM model                                          Network Size: 500 nodes 



 272

Speed     
Clusters 

 
5m/s 

 
10m/s 

 
20m/s 

16 1.31 1.682 2.676 
32 1.66 2.018 4.006 
64 1.92 2.734 5.143 

128 2.216 3.918 6.664 
Mobility Model: SRWPM (smooth random way point)   Network Size:  500 nodes 

Speed     
Clusters 

 
5m/s 

 
10m/s 

 
20m/s 

16 3.712 7.37 14.826 
32 4.14 6.72 15.908 
64 3.48 8.69 18.116 

128 4.368 8.928 15.978 
Table 5.2. Member Eviction Rates for 3 different mobility models and speeds, varying the 
cluster and network size. 
 

   The values illustrated in Table 5.2 are useful towards a realistic comparison of the 

initialization overhead required for the successful key establishment in either a contributory 

or a centralized protocol. We will use a simple arithmetic example, for our point to come 

across, and gain insight on the effect of mobility on the various KM protocols. Assume that 

each cluster in a network of 500 nodes has size of 32 nodes, and the mobility patterns of 

members can be best simulated by the RWPM model, and the average speed of each member 

is approximately 10m/s. Let the average TX of each node be 70m. We assume that each 

cluster (GSAs to members) executes one of the following protocols: (a) CBT, (b) GKMP, (c) 

GDH.2. We want to examine the impact of members’ disruptions due to mobility on any of 

these protocols for the case of initialization. The impact of such disruptions during steady 

state, are straightforward to compute from our analytical formulae of section 3. From table 3, 

we obtain the average rate of member evictions for our parameters: 5.77 members/s. The 

average number of clusters formed in this network is: 500
32⎡ ⎤⎢ ⎥  = 16. Therefore, the average rate 

of member evictions per cluster is: 5.77/16 = 0.36 members/s.  
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Case (a): In GKMP, the GSA communicates to each member in its cluster two consecutive 

messages, hence it must send 64 packets for the successful initialization, denoted as 

TBCAST(64).  After the expiration of this period, the task of the GSA is over. It is assumed that 

the GSA has executed the necessary cryptographic computations beforehand. If during this 

period one or more member disconnect, the task of the GSA is not disrupted. The key 

establishment terminates successfully. The GSA engages in a re-keying operation to ensure 

that the property of forward secrecy is preserved. No matter how many members disconnect 

during the TBCAST(64) period, the GSA will execute the operation of re-keying only once. 

Thus, in the worst case scenario, the extra overhead incurred to the GSA and members from 

membership changes during initialization, is either zero (no changes) or this required for a 

single “member eviction”. This overhead is independent of the rate of member evictions per 

cluster, and of the TBCAST(64) period. 

Case (b): Similar is the case with the centralized CBT scheme. The only difference is that in 

case re-keying is required after initialization, the overhead incurred to the GSA and simple 

members is different from this of GKMP. Again, this overhead is independent of the rate of 

member evictions per cluster as well as of the TBCAST (64) period. 

Case (c): In GDH.2 the case is very different: the failure of a member results in the re-

initialization of the key establishment, as this event affects both the content of KM messages, 

and the sequence of exchanges. The execution that involves a cluster of 32 members requires 

at least 33 rounds. In each round, a member receives the proper data from its predecessor, 

processes it accordingly, and sends the processed message to its successor. The running time 

of each round can be broken down to the amount of time required for processing the KM data 

(TPROC), and for the propagation of the processed message (TPROP). We simplify the overall 

amount of time for the key establishment as: TINIT = 33(TPROC (avg) +TPROP). Even if extra 

relay members are involved for the communication of a message to its intended recipient the 

following holds: TPROC >> TPROP, and we can ignore the factor TPROP, since TPROC may take 



 274

even seconds in the case that the computational and storage capabilities of members are 

limited. For example, setting TPROC (avg) = 1s, we obtain in an ideal case: TINIT = 33s. Even 

under this optimistic scenario, the average member evictions during TINIT are: 33×0.36 

members = 11.88 members. That means that it is very likely that GDH.2 starts over many 

times, more than these indicated by the number of evicted members, since the longer it takes 

for the protocol to terminate, the probability for further evictions increases. This result alone, 

points out how inefficient contributory protocols are for highly mobile environments, and 

how bad they scale. One way out is to proceed to key establishment despite the evicted 

members, and execute a single re-keying afterwards, as is the case in centralized schemes. 

This option however is rarely feasible, since in most cases, the protocol stalls after members’ 

failure. If we know how many times GDH.2 must start over it is simple to compute the 

amount of extra communication, computation, and storage overhead required.  
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Chapter 6: Elliptic Curves Cryptography (ECC) and its Impact 

on the Key Management Protocols Studied 

 

6.1 Introduction  

   Since the invention of public key cryptography, numerous public key cryptosystems have 

been proposed. Each of these systems relies on a difficult mathematical problem for its 

security. None has been proven to be intractable. In practice, they are believed to remain 

intractable with the current computational technology (or computationally infeasible). The 

longer it takes to derive the key with the best known algorithm for a problem, the more secure 

a public-key cryptosystem based on that problem is. Today, three types of public keys 

systems, classified according to the mathematical problem on which they are based, are 

generally considered both secure and efficient: 

1. The integer factorization systems (i.e. RSA is the best known example) 

2. The discrete logarithm problem (DLP) systems (i.e. Digital Signature Algorithm 

(DSA), DHKE, El Gamal) 

3. The elliptic curve discrete logarithm problem (ECDLP) systems (EC cryptosystems). 

 ECC was proposed independently by N.Koblitz [61] and V.Miller [63]. Since then, a vast 

amount of research has been conducted on its secure and efficient implementation. In recent 

years, ECC has received increased commercial acceptance as evidenced by its inclusion in 

standards by accredited standards organizations such as ANSI, ISO, NIST, etc. Before 

implementing an ECC system, several choices have to be made. These choices include 
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selection of EC domain parameters (underlying finite field, field representation), and 

algorithms for field arithmetic, EC arithmetic, and protocol arithmetic. The selections can be 

influenced by security considerations, application platform, constraints of the particular 

computing environment (e.g., processing speed, code size, memory size (RAM), gate count, 

clock time, power consumption), and ccommunications environment (e.g., bandwidth, 

response time). It is difficult to decide on a single “best” set of choices. ECs can be used in 

public key cryptography to generate pairs of Public- Secret keys. They do not introduce new 

cryptographic algorithms: rather existing ones can be implemented with ECs: 

1. Key Agreement: EC- Diffie-Hellman 

2. DH-Signature: EC-DSA 

3. Public Encryption: EC-El Gamal 

EC groups were proposed in 1985 as a substitute for the multiplicative groups modulo p that 

are used in the classical DLP. All protocols that are based on the classical DLP can be 

translated to the EC setting. More precisely, we provide the following definitions for DLP, 

and ECDLP below: 

Classical DLP version: Given elements a, y in a group G of order n, we cannot compute in a 

feasible amount of time an element x so that y =ax mod n.  

EC version of DLP (ECDLP): Let A, B be known points on an EC E so that B = k×A, for 

integer k. We cannot compute integer k in a feasible amount of time. 

                                                                                     

 

 

 

Figure 6.1. Illustration of an EC and the operation of point addition. 
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6.1.1 Basic Advantages 

 Although there are known sub-exponential, super-polynomial algorithms for breaking RSA 

and DH based on modular arithmetic, sub-exponential algorithms that could break ECC have 

not been found so far. So, there exist no good attacks on DL-ECC contrary to integers. 

Hence, ECC implementation is believed to be secure with much smaller key sizes: for 

example, a 4096-bit key size for RSA can be replaced by a 314-bit key size for EC. In 

general, for the same level of security, EC-based systems can be implemented with much 

smaller parameters, leading to significant performance advantages. Such improvements are 

particularly important in the wireless arena where computing power, bandwidth consumption, 

hardware implementations, memory, and battery life of devices are more constrained. ECs are 

inherently efficient in terms of computation, and they have the potential to induce substantial 

overhead savings when applied to our protocols, substituting RSA or DH.  

  All cryptographic parameters used for the evaluation of our KM protocols (i.e. CE, CPE, CSE, 

etc.) depend on key lengths. So, ECC may improve the performance of KM protocols, by 

reducing the value of these parameters. In addition, shorter key lengths facilitate the routing 

of the encrypted data. The IP packets have a size limit usually lower than 4Kbits. It is not 

desirable to break the KEK to packets. That makes the actual key vulnerable (insecure), and 

the corresponding operation more inefficient. A substantial lower key size, as provided by the 

use of ECs, totally eliminates this problem. 

 
6.1.2. Performance Discussion 

The RSA algorithm only uses one type of calculation - exponentiation.  The nature of the 

exponent determines the speed of the operation. For signing and decryption, the exponent 

(private key) is large, so the calculation is quite slow. For verification and encryption, 

however, the exponent can be quite small, i.e. 3. Therefore, any analysis of RSA speed 

consists of slow times for signing and decrypting and much faster speeds for verification and 
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encryption. In El Gamal systems completely different mathematical operations are used, so 

signing and decryption times do not equal each other, nor do those of verifying and 

encrypting: signing is faster than verification, decryption is faster than encryption. The 

difference between public and private key operation times are trivial compared to this 

difference in RSA. Even though EC public key operations are a bit slower than those in RSA, 

the sum of the public and private key times in ECC is much smaller than in RSA. For 

example, at the 163-bit ECC/1024-bit RSA security level, an EC exponentiation for ECs over 

arbitrary prime fields is roughly 5 to 15 times as fast as an RSA private key operation, 

depending on the platform and optimizations. At the 256-bit ECC/3072-bit RSA security 

level the ratio is increased to between 20 and 60. In [63], [64], and [65], sample timings for 

RSA and ECC operations on different platforms are provided, resulting from extensive 

experimentations. Below, we summarize the most significant results of the comparison 

among the three types of public key schemes. 

RSA vs. El-Gamal vs. ECC: 

 Key Generation: Most Expensive for RSA 

 Signature Generation (RSA vs. ECDSA): RSA Slower (4-8 times) 

 Signature Verification (RSA vs. ECDSA): RSA Faster (50 times),  

 Public Key Encryption (RSA vs. EC-ElGamal): RSA faster 

 Public Key Decryption (RSA vs. EC-ElGamal): RSA slower 

 ECC: Smaller Signatures/Certificates, Less Resources 

ECC Drawbacks: ECC is slower for public key operations, such as signature verification 

and public key encryption. Furthermore, DH KA is simpler from the perspective of fine 

tuning domain and network parameters. In addition, the dominant certificate authority on the 

internet at the present time, VeriSign, supports RSA.  

 In summary, each public scheme discussed has certain advantages in comparison to the rest. 

What the most appropriate scheme to use is depends on the network and protocol parameters, 
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on the specific application or protocol and their associated parameters, and on our own 

requirements. Still, in the growing wireless industry, the numerous advantages of ECC over 

the rest of public schemes have made it an attractive security alternative.  

 
6.2. Method and Objectives 

   In this chapter we investigate the efficiency of the implementation of KM protocols, and in 

particular Octopus-based schemes, under ECC. The protocols that we examine are based on 

RSA or DH public key systems, but provide the flexibility for the use of other cryptographic 

schemes. Our aim is to exploit further all these protocols, gain an insight on how all the 

metrics of interest are affected, and examine if further improvement in certain metrics can be 

achieved by the substitution of RSA or DH with ECC. Our findings can also be applied to the 

Hybrid Hierarchical scheme we proposed in the previous chapter.  

  In particular, we substitute all DH-based operations with ECDH operations in the three 

Octopus-based schemes, and we substitute the RSA operations with EC-El Gamal in the 

centralized OFT scheme, used for the initial comparative evaluation of Octopus schemes. We 

analyze the complexity of the EC-based schemes and derive analytical formulae for the 

overall communication, computation, storage costs of the EC-versions of (O), MOT, and 

OFT. Then, we conduct a comparative evaluation of the EC-equivalents of these schemes vs. 

the original. Our analytical evaluation achieves the following: given the KM protocol, 

operation to be executed (initial key establishment, re-keying) and the required parameters 

regarding the original cryptosystem and its EC-equivalent, we can now easily estimate the 

approximate gain or loss in any of the metrics of interest. As an auxiliary step, prior to the 

discussed analysis, we worked to derive approximate estimates of the bit-complexity of all 

cryptographic parameters involved in the analysis of our KM protocols with ECs. Although 

results on parameters such as latency, energy costs, etc., associated with all KM operations 

exists for various platforms, through extensive experimentations, we are interested in a more 
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generic analysis, disassociated as much as possible from given platforms. This can be 

achieved if we focus on the bit-complexity of the EC-based cryptographic parameters.  

 
6.3. Evaluation of EC-based cryptographic parameters (overview, evaluation) 

6.3.1. Overview of EC definitions and properties 

ECC requires the use of two types of mathematics: EC point arithmetic and underlying finite 

field arithmetic. An EC is a set of points specified by two variables that are elements over a 

field Fq. A field is a set of elements with two custom defined arithmetic operations, usually 

addition and multiplication.  Most of the computation for ECC takes place at the finite field 

level. The most common choices for the underlying finite field are:  

 2mF , also known as characteristic two or even (containing 2m elements, where m>1), 

 pF , also known as integers modulo p, odd, or odd prime (containing p elements). 

In software environments, the use of 2mF offers significant performance advantages 

over pF . The revised standard FIPS 186-2, revised by NIST, has 10 recommended finite 

fields, 5 prime and 5 binary. For each of the binary fields one random and one Koblitz EC 

(defined as: 2 3 2 1y xy x ax+ = + + , a = {0, 1}) was selected. In the analysis that follows, we 

randomly selected the Koblitz curve over 1632F . We choose a polynomial basis representation 

for the field elements: each element can be viewed as a polynomial whose coefficients are 

either 0 or 1. In polynomial multiplication, a product polynomial of degree greater than 162 

may be produced. It is reduced by the irreducible polynomial or reduction polynomial p(x) 

= x163 +x7 + x6 + x3 +1, as specified in the revised standard. 

  When implementing an EC cryptosystem, one is required to compute: Q = P×a, where 

points Q, P ∈E, and a∈Z*. This operation is called scalar multiplication (SM). Let the cost 

of the SM operation be denoted as CSM. The operation of scalar multiplication (SM) in EC-
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based systems is equivalent to the modular exponentiation (ME) operation in DH-based or 

RSA-based systems. Therefore, in order to evaluate the cost (bit-complexity) of the EC-based 

schemes, we need to evaluate the parameter CSM first. The operation of SM (i.e. Q=P×a) is 

computed by a sequence of Point Doublings (PD) and Point Additions (PA) of the EC point 

(i.e. P). Let a = (am am-1 ...a0) be the binary representation of the multiplier a where the most 

significant bit of a is 1. Q can be computed by the following algorithm, known as “repeated 

double and add”, proposed in [66]: 

Q ←P, For i = (m-1) to 0   {Q ←Q+Q;  if (ai = =1) Q ←Q+P; }, Return (Q). 

 
  For a randomly selected multiplier a with binary representation one needs m doubling steps 

and an average of (m/2) adding steps. Hence, CSM ≈ (m/2) CPA + m CPD . 

  Other binary representations may be used as well. One among them is the signed digit 

representation. A particularly useful representation is the non-adjacent form (NAF) which has 

the property that no two consecutive coefficients ai are non-zero. NAF(a) has the fewest non-

zero coefficients of any signed digit representation of a. The “repeated double and add” 

algorithm under a NAF representation of the multiplier a can be efficiently computed using a 

slight modification of the previous algorithm [67]. The average density of non-zero 

coefficients among all NAFs of length m is approximately m/3. It follows that the expected 

running time of the algorithm proposed in [69] is T(m) = (m/3)A+ mD. It is suggested in [67] 

that the running time of the previous algorithm can be further improved if using a window 

method which processes w digits of a at a time. The running time of this algorithm becomes: 

T(m) = (m+1)D +(2w-2-1) + m/(w+1))A.  For m=163, the running time is minimized when w = 

4, and T(m) = (m+1)D +(3+m/5)A. Even further improvements are proposed in [67], at the 

expense of other costs however, i.e. storage (when values are pre-computed), and under 

specifically adjusted software. These improvements efficient as they are, add significantly to 
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the complexity of implementation. For our analysis, we use the two simplest methods for 

computing CSM as computed. 

   The next step is to compute the bit complexities for the PA and PD operations. Both PA and 

PD reduce to a series of polynomial operations. In the following figure, quoted from [67], the 

algorithms for the discussed operations on the EC: E, are illustrated. 

Adding two distinct point on an EC   (PA) Doubling a point on an EC  (PD) 
INPUT: EC points P = (x1, y1) and Q = (x2, y2) 
OUTPUT: R = P + Q = (x3, y3) 

Compute θ  = 2 1
2 1

y y
x x
+
+  

Compute x3 = 2θ +θ  + x1 + x2 + a 
Compute y3 = θ (x1 + x3)+ x1 + x3 + y1 
Return (x3, y3) 

INPUT: EC points P = (x, y)  
OUTPUT: R = P + P = (x3, y3) 

Compute θ  = y
xx +  

Compute x3 = 2θ +θ  + a 
Compute y3 = x2 +(θ +1)x3 
Return (x3, y3) 

Figure 6.2: Illustration of the Point Addition and Point Doubling operations on EC E:  
 
 
Both PA and PD translate to a number of basic finite field operations over the irreducible 

polynomial f(x) as defined earlier: additions, multiplications, squarings and inversions. For 

the particular category of EC we are interested in, these finite field operations are straight-

forward to compute and are summarized in Table 6.1. 

 Additions Multiplications Squarings Divisions 
Point Addition 9 2 1 1 
Point Doubling 4 2 2 1 

Table 6.1. Finite Field Operations for Point Addition and Point Doubling on the EC: E. 
 
The following step is to compute the bit-complexities of each of the discussed finite field 

operations. A considerable amount of research is dedicated to studying and improving the 

performance of finite field operations for all categories of ECs. Usually, the evaluation of the 

methods discussed is tightly bound to a specific platform, software and hardware, dedicated 

to a specific problem. The comparative performance evaluation is usually done with respect 

to the resulting timings (latency), energy costs, hardware and software performance (i.e. 

number of cycles for each arithmetic unit, software instructions), etc. We are interested 

however in the most generic analysis, disassociated as much as possible from specific 

platforms, with special software or hardware design. Such an analysis can be achieved by 
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computing the bit-complexities of the finite field operations. Towards this end, we have 

performed an extensive study of a number of efficient known algorithms for finite field 

operations. Among the studied algorithms, we distinguished those that: (a) do not address 

special cases or have very special constraints, and (b) are not too hard to implement under the 

majority of platforms, software or hardware equipment. We completed some of these 

algorithms by deriving their bit-complexity or running time whenever it was not provided. 

Then, we proceeded to further filtering these algorithms, in order to keep only the most 

efficient and simple ones. We repeat that our main objectives are to compute the 

cryptographic parameters for the operations of PA and PD (i.e. CPA, CPD), and consequently 

for the operation of scalar multiplication (SM) (i.e. CSM). With our generic analysis the 

number of bits translates to the number of packets, which translates to the Communication, 

Computation, and Energy Costs. This connection is linear only when assuming that the power 

level is stable (e.g. max. transmission power level), and the data rate is stable as well. 

However, this is highly unlikely, since the power level depends on platform, hardware, 

software implementation, network, transmission level, clock cycles etc. So, we cannot derive 

the bit complexity of these cryptographic parameters from the energy costs alone. 

  
6.3.2. Finite Fields Operations Complexity Computation 

In this section, we are deriving the bit-complexities for the following field element arithmetic 

operations modulo the irreducible polynomial f(x): addition, multiplication, squaring, 

inversion, modular reduction. Below, we are quoting the algorithms we have selected, and we 

are completing them by deriving the bit-complexities for each. Then, we will incorporate the 

results into the EC cryptographic parameters.  

Notation: Let t = 32
m⎡ ⎤⎢ ⎥ , and let s = 32t – m. In software, a(x) is stored in an array of t 32-bit 

words: A = (A[t-1],… A[1], A[0]), where the leftmost s bits of A[t-1] are unused. Addition of 

field elements is performed bitwise, thus requiring only t word operations. If C = 
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(C[n],…,C[1],C[0]) is a vector, then C{j} denotes the truncated vector (C[n],…,C[j+1],C[j]). 

Let the symbol BC denote the bit complexity for the algorithms presented.  

  
Modular Reduction: It is based on the observation that xi = xi-m r(x) (mod f(x)), where f(x) = 

xm + r(x), and i≥m. Let c(x) be a binary polynomial of degree at most 2m-2. The following 

algorithm reduces c(x) modulo f(x) one bit at a time, starting with the leftmost bit. 

Modular Reduction (one bit at a time) 
INPUT: binary polynomial c(x) of degree at most 2m-2 
OUTPUT: c(x) mod f(x) 

Precomputation: Compute uk(x) = xkr(x), 0≤ k≤ 31. 
For i from (2m-2) downto m do 

 If ci = 1 then: let j = ( )
32

i m−⎢ ⎥⎣ ⎦  and k = (i-m) – 32j. Add uk(x) to C{j}. 

Return ((C[t-1],…, C[1], C[0])). 
Table 6.2. Algorithm for Modular Reduction w.r.t. irreducible polynomial f(x) over 2mF . 
 

Complexity of Modular Reduction: In average ci =1 half of the times (i.e. 2
m ), hence step 3 

is executed for 2
m  times. Under the worst case scenario, let ci =1, for 3

2
m ≥ i≥m, activating 

the longest additions (i.e. C{ 2
m },…, C{0}), corresponding to additions starting from 3

2
m bits 

to 2m bits, successively increased by 1.  

Then, BC (MR)<
3
2

2
1

m

m
∑ = 

2

1
1

m

∑  - 
3
2

1
1

m

∑ = m(2m+1) – 3
4
m  ( 3

2
m +1) = 

27
8
m + 4

m (worst case). 

Similarly, BC (MR) >
3
2

1
m

m

∑  = 
1

3
2

1
m

∑  - 
1

1
m

∑  =  3
4
m  ( 3

2
m +1) - 2

m (m+1) = 
25

8
m + 4

m (best case). 

Also, BC (MR) = 
2

4
3m + 4

m  (average case).                                                 

Squaring: Squaring is a linear operation in 1632F : if a(x) = 
1

0

m
i

i
i

a x
−

=
∑ , then a(x)2 = 

1
2

0

m
i

i
i

a x
−

=
∑ . 

The binary representation of a(x)2 is obtained by inserting a 0 between consecutive bits of the 

binary representation of a(x). Then, we compute a(x)2 (mod f(x)).  



 285

Complexity of Squaring: The difference with the previous case is that ci = 0 for 3
4
m times, 

and step 3 is executed 4
m times.  The complexity is computed similarly as for the operation of 

modular reduction, taking into account the extra cases under which ci = 0. 

Therefore, BC (SQ) < 3
2
m  + ( 3

2
m +2) + ( 3

2
m +4) + …. + (2m-2) + 2m => 

BC (SQ)< 3
2
m

4
m  + 2

1

1
4

1
m

∑ =
2

8
3m  + 4

m  ( 4
m +1) = 

27
16
m + 4

m  (worst case scenario)               

Similarly, BC (SQ) > m + (m+2) + (m+4) + …. + ( 3
2
m -2) + 3

2
m  => 

BC (SQ) > m 4
m  + 2

1

1
4

1
m

∑  = 
2

4
m + 4

m  ( 4
m +1) = 

25
16
m + 4

m  (best case scenario). 

Also, BC (SQ) = 
2

8
3m + 4

m  (average case scenario). 

 
Addition: For field elements this is trivial: the two blocks of bits are combined with the 

bitwise XOR operation.  

Complexity of Addition mod f(x): The complexity of the pure addition is m. Then the 

intermediate result undergoes modular reduction, using the previously discussed algorithm. 

The resulting polynomial here is of degree (m+1) at maximum. Hence Step 3 will be applied 

only once at maximum, and an addition using m bits will be executed: BC(A) = 2m. 

 
Multiplication: Among all methods proposed in [67], we select the fastest one, which is also 

among the simplest, in the sense that the modular reduction is performed after the 

polynomials multiplication. Let a(x), b(x), be the two polynomials to be multiplied, of degree 

at most (m-1) each. This method is based on the observation that if b(x)xk has been computed 

for some k, then b(x)xk+j can be easily obtained by appending j zero bits (or j zero words if we 

are computing b(x)x32 k+j) to the right of the vector representation of b(x)xk.. 

Right to Left method for Polynomial Multiplication 
INPUT: binary polynomials a(x) and b(x) of degree at most 2m-2 
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OUTPUT: c(x) = a(x)b(x) 
C← 0. 
 For k from 0 to 31 do 

for j from 0 to (t-1) do:  if the kth bit of A[j] is 1 then add B to C{j} 
if k≠ 31 then B←Bx. 
Return ((C[t-1],…, C[1], C[0])). 

Figure 6.4. Algorithm for Polynomial Multiplication. 
 
 
Complexity of Polynomial Multiplication: In average ai =1 half of the times (i.e. 2

m ), and 

thus the iterative step is executed for 2
m  times. Under the worst case scenario, let ai =1, 

for 2
m ≤ i≤m, activating the longest additions (i.e. C{0} downto { 2

m }), corresponding to 

additions starting from 2m downto 3
2
m bits, successively decreased by 1.  

BC (Mult) < 
3
2

2
1

m

m
∑ = 

2

1
1

m

∑  - 
3
2

1
1

m

∑ = m(2m+1)– 3
4
m  ( 3

2
m +1) = 

27
8
m + 4

m (worst case scenario). 

BC (Mult) > 
3
2

1
m

m

∑  = 
1

3
2

1
m

∑  - 
1

1
m

∑  =  3
4
m  ( 3

2
m +1) - 2

m (m+1) = 
25

8
m + 4

m (best case scenario). 

Also, BC (Mult) = 
2

4
3m + 4

m  (average case scenario). 

 
Complexity of Polynomial Multiplication (mod f(x)): The polynomial c(x) undergoes 

modular reduction according to the corresponding modular reduction algorithm. We now 

combine the bit complexity derived for the polynomial multiplication with this of modular 

reduction to derive the overall complexity of the process. The distribution of zeros and ones 

in the intermediate polynomial c(x) does not necessarily follow this of polynomial a(x), for 

any of the three scenarios (best, worst, and average). Therefore, we combine the complexities 

derived for all three cases (scenarios) of modular reduction in each individual case of 

polynomial multiplication. This results in the computation of lower and upper bounds for 

each individual scenario of modular polynomial multiplication as follows: 

BC (Mult_worst)+BC(MR_best)<BC(M_Mult_worst)<BC (Mult_worst)+BC (MR_worst) => 
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(
27

8
m + 4

m ) + (
25

8
m + 4

m ) < BC(M_Mult_worst) < (
27

8
m + 4

m ) + (
27

8
m + 4

m )  => 

2

2
3m + 2

m <BC (M_Mult_worst) < 
27

4
m + 2

m . 

BC (Mult_avg) + BC (MR_best) < BC (M_Mult_avg) < BC (Mult_avg) + BC (MR_worst) => 

(
2

4
3m + 4

m ) + (
25

8
m + 4

m ) < BC (M_Mult_avg) < (
2

4
3m + 4

m ) + (
27

8
m + 4

m )  => 

 
2

8
11m + 2

m < BC (M_Mult_avg) < 
2

8
13m + 2

m . 

BC (Mult_best)+BC (MR_best) < BC (M_Mult_best) < BC (Mult_best) + BC (MR_worst) => 

(
25

8
m + 4

m ) + (
25

8
m + 4

m ) < BC (M_Mult_best) < (
25

8
m  + 4

m ) + (
27

8
m + 4

m )  =>  

2

4
5m + 2

m < BC (M_Mult_best) < 
23

2
m + 2

m . 

 
Inversion: The fastest algorithm proposed in [67] is a variant of the Extended Euclidean 

Algorithm (EEA) for polynomials. The algorithm computes the inverse of a non-zero field 

element a∈ 2mF . The algorithm maintains the invariants ba+df = u, and ca+cf = v for some d 

and e which are not explicitly computed. At each iteration, if deg(u) ≥  deg(v), then a partial 

division of u by v is performed by subtracting xjv from u, where j = deg(u) – deg(v). In this 

way, the degree of u is decreased by at least 1, and on average by 2. Subtracting xjc from b 

preserves the invariants. The algorithm terminates when deg(u) = 0, in which case u = 1 and 

ba + df = 1; hence b = a-1 mod f(x). 

Extended Euclidean Algorithm for inversion in 2mF  

INPUT: a ∈ 2mF , a≠ 0 
OUTPUT: a-1 mod f(x) 

b← 1, c← 0, u← a, v← f.  
While deg(u)≠ 0 do 

j←  deg(u) – deg(v). 
If  j<0 then: u↔ v, b↔ c, j← - j.  
 u← u+ xjv, b← b + xj c. 

Return (b). 
Figure 6.5. Algorithm for Inversion (mod f(x)), based on the Extended Euclidean Algorithm.
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Complexity of Inversion (mod f(x)): The selected algorithm executes simultaneously the 

inversion and the modular reduction. The iterative step is invoked m times, since the degree 

of the variable u that is initiated to the polynomial a with degree m, is reduced by at least 1 in 

every iteration. The bit-complexity induced by this step is approximately 2m (two additions 

involving polynomials of maximum degree m). Therefore, BC (M_INV) = 2m2. 

In Table 6.3, we summarize the complexities of the computed arithmetic operations. As a 

next step, we will incorporate these results in the EC cryptographic functions: CSM, CPA, CPD. 

Arithmetic Operations over 2mF  Bit-Complexity 

Modular Reduction  [(
25

8
m + 4

m ), (
27

8
m + 4

m )] 

Addition (mod f(x)) 2m 

Multiplication (mod f(x)) [(
2

4
5m + 2

m ), (
27

4
m + 2

m )] 

Squaring (mod f(x)) [(
25

16
m + 4

m ), (
27

16
m + 4

m )] 

Inversion (mod f(x))  2m2 

Table 6.3. Bit-Complexities of arithmetic operations (mod f(x)) over 2mF . 
 

 
6.3.3. Evaluation of EC-based cryptographic parameters 

Combining the computations quoted in Table 6.1 and Table 6.3, we can now compute the 

cost of the cryptographic operations associated with ECs, i.e. CPA, CPD, CSM. The complexities 

of the arithmetic operations are derived based on a binary representation of the polynomials, 

under this study cases. A NAF representation is expected to contribute cryptographic 

parameters of lower complexity. We have selected the binary representation as the algorithms 

described and their bit-complexities have been derived based on this representation of the 

polynomials involved. The costs of these parameters are computed below: 

Point Addition: 9A + 2Mult + 1Sq + 1 Inv =>  

18m + 2(
2

4
5m + 2

m ) + (
25

16
m + 4

m ) + 2m2 < CPA < 18m + 2(
27

4
m + 2

m ) + (
27

16
m + 4

m ) + 2m2  => 

277
16
m +19.25m < CPA < 

295
16
m +19.25m    =>  CPA

 ∈  [(
277

16
m +19.25m), (

295
16
m +19.25m)]. 
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Point Doubling: 4A + 2Mult + 2Sq + 1 Inv =>  

 8m + 2(
2

4
5m + 2

m )+(
25

8
m + 2

m )+2m2 < CPD < 8m+2(
27

4
m + 2

m )+(
27

8
m + 2

m )+2m2 => 
241

8
m + 

9.5m < CPA < 
251

8
m +9.5m              =>             CPD

 ∈  [(
241

8
m +9.5m), (

251
8
m +9.5m)]. 

Scalar Multiplication (BF): = 2
m PA + m PD  =>    CSM = 0.5mCPA+mCPD =>  

0.5m(
277

16
m +19.25m)+m[(

241
8
m +9.5m)<CSM <0.5m(

295
16
m +19.25m)  + m(

251
8
m +9.5m) => 

7.5m3+(19+ 1
8 )m2<CSM<9.5m3 +(19+ 1

8 )m2  =>CSM
∈[(7.5m3+(19+ 1

8 )m2), (9.5m3+(19+ 1
8 )m2)]  

Operation Maximum Bit-Complexity 

Scalar Multiplication 9.5m3 +19.125m2 

Point Addition 6m2 +19.25m 

Point Doubling 6.5m2 +9.5m 

Table 6.4. Upper Bounds for Bit-Complexities of cryptographic operations over 2mF . 
 

 
6.3.4. EC-DH to substitute DHKE in DH-based schemes 

Now that we have computed the basic EC cryptographic parameters, we are ready to analyze 

the EC-DH public key scheme. ECDH is exactly similar to DH, with the only difference that 

a scalable multiplication (SM) is executed in the place of a modular exponentiation (ME) in 

the case of DH. In the following figure both algorithms of ECDH and DH are contrasted, so 

that their similarity becomes clear. The EC version of a DH-based KM protocol is simply 

produced by substituting the operation of DHKE with EC-DHKE wherever it occurs in the 

original DH-based protocol, or equivalently, substituting the MEs with SMs. The EC-based 

KM protocol versions have better communication costs as their keys are smaller.  

 
6.3.5. EC El Gamal to substitute RSA operations in RSA-based schemes 

In this section, we provide and analyze the operations that correspond to the EC-versions of 

KM protocols that are based on the RSA protocol for their public operations (i.e. OFT, etc.). 

In essence, the RSA public scheme is substituted with the El Gamal scheme. El Gamal is also 



 290

used for public encryption and public decryption, as illustrated in the Table 6.5., and it is DH-

based. Hence, in order to derive EC-El Gamal from the original El Gamal, all DH operations 

in El Gamal, or MEs, are directly substituted with EC-DHKEs or SMs, as discussed before.  

 

 

 

 

 

Table 6.5. Sequence of operations required for public encryption (column 1) and public 
decryption (column 2) in EC El Gamal, quoted from [70]. 
 

 

 

 

 

Table 6.6. EC-El Gamal communication and computation operations for public encryption 

and decryption over 2mF . Two extra operations are required: Plaintext Embedding with cost 
CPlEC, (for the encryption), and Plaintext Recovery with cost CECPl (for the decryption). 

 
 
Plaintext Embedding and Plaintext Recovery 

To encrypt a plaintext m with ECs we need to embed m to a point Pm on the given EC. For 

that, we need a method that takes an arbitrary text and embeds it on an EC, so that it always 

gives a bijection between the points of the EC and the plaintext block. The method of 

Plaintext Recovery takes a point Pm of an EC and produces the original plaintext m. Before 

we illustrate the algorithm, we present some auxiliary notation and lemmas. 

Notation:  Let y = sqrt(z) denote the square root of an integer z, and  p be a prime number.  

Lemma 1: For p>2, every element a∈ p
∗Ζ  has either 0 or 2 distinct square roots in p

∗Ζ . 

Compute Pm= C2- bxC1

Receive (C1, C2)Send (C1, C2)

Compute pair (C1, C2) = 
(Pxk, Pm+ kxBT )

Choose random k    [2,m-1]

Send BT,, Receive AT Send AT,, Receive BT 

Compute BT =P x bCompute AT =P x a
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Receive (C1, C2)Send (C1, C2)

Compute pair (C1, C2) = 
(Pxk, Pm+ kxBT )
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Send BT,, Receive AT Send AT,, Receive BT 
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2 Scalar Mult/tions (CSM), 
1 Points Additions CPA , 
1 Plaintext Recovery CECPl
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1 Plaintext Embedding CPlEC, 
2 Rand. Number Gener/tion Crr, 
3 Scalar Mult/tions CSM, 
1 Points Additions CPA .
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2 Scalar Mult/tions (CSM), 
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2 Rand. Number Gener/tion Crr, 
3 Scalar Mult/tions CSM, 
1 Points Additions CPA .

El Gamal CPD  Operations:El Gamal CPE  Operations:
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Proof: Let x be a square root of a. Then –x is also a square root of a. In addition, x and –x are 

distinct mod p, so a has at least 2 square roots. We look to see if there are more. Assume that 

y is another square root of a. Then x2 = y2 => x2 – y2 =0 => (x-y)(x+y) = 0. This has the 2 

solutions y = ± x. This lemma gives a count of how many quadratic residues there are in p
∗Ζ . 

Since every square maps to 2 distinct elements, exactly half of the elements of p
∗Ζ must be 

squares (i.e., there are (p-1)/2 squares). Hence, an element is square with probability (1/2). 

  Also, we use the following simple method [41] for finding square roots (mod p) more easily: 

Square Roots (mod p): If we select p s.t. p = 3 (mod 4) prime, there is a way to find the 

solution more easily. Let y∈ ∗Ζ , and x = y(p+1)/4 (mod p). If y has a square root mod p, then 

sqrt(y) mod p = ± x. If not, then sqrt(-y) =± x. 

Proof: According to Fermat’s Theorem: yp-1 = 1 (mod p). So, x4 = yp+1 = y2yp-1 = y2 (mod p). 

This implies that (x2 –y)(x2 +y) = 0 (mod p) => x2 = ± y (mod p).  Exactly one of y or –y is a 

square root (mod p), since if both are, i.e. y = a2 (mod p) and –y = b2 (mod p), then -1 = (a/b)2 

(mod p), which means that 1 is a square (mod p) which is impossible when p = 3 (mod 4). So, 

if y has a square root then y = x2 and sqrt(y) = ± x, else –y has a square root and –y = x2.  

Complexity: This of a modular exponentiation of size p. 

    
Representing Plaintext in ECs: There is no deterministic method to map a plaintext m to a 

point in a given EC, only fast probabilistic methods that fail with small probability pf = (1/2)k, 

where k is sufficiently large, so that pf  is acceptable. One of these methods is known as 

Koblitz. Below, we provide an overview and derive the corresponding bit-complexity. 

Koblitz Plaintext Embedding: Assume that K is a large integer so that pf is acceptable, and 

assume that (m+1)K< p. We want to map the plaintext m to a point in the x co-ordinate of an 

EC by setting x = mK+j, 0 ≤  j ≤K. As discussed, this happens with probability (1/2) only. 
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So, we will adjoin a few bits at the end of m and adjust them until we get a number x such 

that x3+ax+b (mod p)) is a square. 

Step 1, …K: For j = 0, 1, …, K-1, we compute: x = mK+j, z = x3+ax+b (mod p). Then, x 

corresponds to a point of the following EC: E: y2=x3+ax+b (mod p), only if z is a square and 

we try to calculate sqrt(z). If p =3 (mod 4), then we use the method in [41] quoted here too. If 

sqrt(z) = y, we take Pm = (x, y), otherwise we increment j by one and try again with the new 

x. We repeat this step until we find a square root or until j=K. If j=K, then we fail. Since 

x3+ax+b (mod p) is a square approximately half of the time, we have (1-(1/2)K) probability 

of success.  An indicative value for the variable K is usually 30. We assume that K repetitions 

at maximum are required before we obtain a square root. 

Koblitz Plaintext Recovery: To recover text m from point Pm = (x, y), we set: m = x
K⎢ ⎥⎣ ⎦ . 

Bit Complexity for Koblitz Method: We assume that in practice we repeat for R =10 the 

discussed steps with the following corresponding complexity: 

1) Substitute x in E: 1 ME for x3, 1 modular multiplication for (ax), and 2 additions for z, 

resulting in overall complexity of: ((6×4×m2 + 4×m) +2×m2 +2×2m) = 26m2+8m. 

2) Compute Square Root with [41]: 1 ME with l = (m/4), 1 modular squaring, resulting in 

total complexity of: (6× (m/4)×m2+(m/4)×m+(1/2)×m2+(1/4)×m)= 1.5m3+0.75m2 + 0.25m. 

While the cost for the Plaintext Recovery via the Koblitz method is negligible, the cost for the 

Plaintext Embedding becomes: CPlEM = R× (1.5m3 + 27m2 + 9m) = 15m3 + 270m2 + 90m. 

EC El-Gamal related Operations Bit Complexity 
Random Number Generator (BBS) - Crr(m) 4m3/log2m + 0.7m 
Plaintext Embedding (Koblitz) -        CPlEC (m) 15m3 + 270m2 + 90m 
Plaintext Recovery (Kobitz)     -        CECPl (m)          ------- 
Public Encryption                    -        CPE (m) 43.5m3 + 333m2 + 109.25m 
Public Decryption                    -        CPD (m) 19m3 + 44.25m2 + 19.25m 

Table 6.7. Bit-complexities associated with the EC-El Gamal scheme. The abbreviations 
“PE” and “PD” correspond to: Public Encryption and Public Decryption. 
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6.4. Comparative Evaluation of the original vs. EC-versions of Octopus and OFT 

After finding approximate values for all cryptographic operations involved in the KM 

protocols discussed, we now derive the analytical formulae for all corresponding schemes. 

We provide the results of our comparative performance evaluation of the original and the EC-

versions of the Octopus-based and of OFT schemes. We illustrate the graphical results of this 

evaluation and discuss the most significant ones. The bit complexity of the operation of SM is 

generally higher than this of a ME with the same input. However, due to the fact that the key 

sizes of the EC-versions are much lower, the resulting bit-complexities (OH) of a SM in the 

EC-versions of Octopus schemes are much lower than these of a ME in the original Octopus 

schemes. Every ME is replaced by a SM in the EC-based schemes. Hence, the computation 

costs for the EC-based Octopus schemes are significantly lower. As far as OFT, the case is 

different for the computation costs. EC-PE (EC El-Gamal) is more expensive than RSA-PE, 

even when the input is smaller (shorter keys for ECs). It turns out that the corresponding costs 

of the entities (group leader) that do PEs are higher for the EC version of OFT. This is not the 

case with EC El-Gamal PD OH which is lower than the corresponding RSA PD OH. In this 

case, entities that perform EC PD (i.e. simple members) incur lower OH. 

 

 

 

 

 

Figure 6.9. (a) Deletion Communication Cost for the subgroups for d=6 and (b) Addition 
Communication Cost for d=7, original vs. EC versions of Octopus and OFT (logarithmic 
scale). In (a), the EC-versions of Octopus schemes reduce the resulting OH significantly, 
exactly for the same reasons analyzed for Figure 6.1 (b). In (b) the EC-versions prevail 
significantly. The associations among all protocols of the same type remain unchanged. OFT 
prevails as far as the original schemes followed by MOT, and then EC-OFT globally prevails 
for both the original and EC-based versions, followed by EC-MOT. 
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Figure 6.10. (a) Initial Communication Cost, and (b) Initial Computation Cost for all 
Subgroup Leaders for original vs. EC versions of Octopus schemes, d = 7, and OFT 
(logarithmic scale). In both cases the EC-versions of the schemes prevail significantly. The 
associations among all protocols of the same type remain unchanged (as computed in Chapter 
2). In (a), (O) and MOT prevail in the original and EC versions. In (b) EC-MOT prevails for 
the EC-versions, exactly for the same reasons analyzed for Figure 6.1 (b). 
 

 

 

 

 

 

Figure 6.11. (a) Deletion Computation Cost for the Leader of the Modified Subgroup, and (b) 
Deletion Computation Cost for the Leaders of the Remaining Subgroups for the original vs. 
EC versions of Octopus and OFT schemes (logarithmic scale). In both (a) and (b) the EC-
versions of Octopus schemes produce significantly lower OH and EC-MOT prevails. In the 
case of OFT however, in (a) the original OFT results in a better performance that the EC-
OFT. This is because the EC-El Gamal PE is more expensive than its RSA equivalent. In (b), 
members perform PDs which are cheaper for the case of EC compared to RSA. 
 
 
6.5. Conclusions and Future Directions  

In this chapter, we computed the bit complexities of parameters required for the cost formulae 

of the EC-versions of DH-based or RSA-based KM protocols. We incorporated these 

parameters in the cost formulae of the KM operations of the discussed protocols and 

conducted a comparative performance evaluation. Indeed, ECs improve significantly the 

performance of DH-based schemes for all cases, and RSA ones for most cases.  
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   For a complete, spherical investigation of the advantages of EC-based KM protocols, a very 

significant research direction is to extend these performance evaluations to more KM 

protocols with respect to additional metrics as well (i.e. generic latency, etc.). Towards this 

end, it would be of great value to implement the EC-equivalent Octopus-based protocols and 

include them in our existing Octopus-based implementation test-bed. This way, the overall 

latency and battery consumption can be measured experimentally and compare the 

corresponding metrics in the KM protocols with and without ECs.  
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