Abstract

Title of Thesis:
TORA, Correctness, Proofs and Model Checking
Degree Candidate:
Shah-An Yang

Degree and year:
Master of Science, 2002

Thesis directed by:
Professor John S. Baras


Department of Electrical Engineering

This work uses rigorous mathematical proof and model checking to verify the correctness of the Temporally Oriented Routing Algorithm (TORA).  It demonstrates that TORA, which has infinite reachable states even for finite networks may be modeled exhaustively by introducing supplemental nondeterministic state transitions into the nondeterministic finite automaton model of the algorithm.  The problem of generating topologies for modeling mobile ad-hoc networks is discussed.  Various state reduction methods are explored, including the exploitation of network symmetries by using graph automorphisms.  Many implementation issues are addressed ranging from a design pattern used for encapsulating recursion and model checking using course grain parallelism on a computing cluster.

TORA, Correctness, Proofs and Model Checking 

by

Shah-An Yang

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Master of Science

2002

Advisory Committee:



Professor John S. Baras, Chair


Professor Richard La


Professor Udaya Shankar

Acknowledgements

I am grateful for the support of my research work and graduate studies through the contracts (all with the University of Maryland, College Park) ONR/SPAWAR N6600100C8063, ARL-Telcordia DAAD190120011, DARPA DAAD190110494, NASA NAG59150 and NCC3520, the Maryland Industrial Partnership program, and Hughes Network Systems company.
Table of Contents 

List of Figures…………………………………………………………………iii
1Introduction


2TORA


3Notation


5Link Reversal Algorithms


8Proof of Correctness


8Not Gafni-Bertsekas


8Advantage of Temporally-Oriented Heights


9Partition Detection


9TORA Model


12TORA Properties


25Finite Automaton Model


31Simulation


33Design


63Implementation


77Results


79Conclusions


79Future Research


81References





List of Figures

29Fig. 1.  Four insertion points for state “3 1 2” generating child states.


42Fig. 2.  Generation of all graphs where N = 4 recursively from graphs where N = 3.


44Fig. 3.  Multiple representations of the same graph.


56Fig. 4.  Interaction between clients and servers.


73Fig. 5.  Class diagram for recursive iterator design pattern.


75Fig. 6.  Class diagram for distributed architecture.




Introduction

The goal of this thesis is to try to apply formal methods to the verification of TORA, which is a mobile ad hoc networking routing algorithm.  The main difficulty in applying any formal methods to a system like this is exponential state space explosion.  More commonly, formal methods have been applied to protocols rather than algorithms where the number of states is clearly finite.  TORA has an infinite number of states, though there is a structure to the state space that makes it simpler than the general problem.

There are two separate approaches to formal methods although some work has been done towards their unification.  The first category of formal methods is state enumeration techniques.  The underlying model used here is that of a finite automaton.  The typical state enumeration system requires the specification of the system in some formal language, each claiming some advantages over the others, but fundamentally, they are all exhaustive simulations with extensive state space pruning techniques.  The limitation in these approaches is state space explosion.  In a routing algorithm like TORA, there is an infinite amount of space and an infinite number of scenarios that it can act in.  At most, a model checker will be able to say that under a given finite set of scenarios, a routing algorithm like TORA behaves as expected.  There is not in general a way to automatically infer that based on correctness in a finite number of scenarios that the algorithm performs correctly in an infinite number of cases.  It is usually unknown whether the very next unexplored scenario will exhibit an incorrect behavior.

The second approach can be called proof methods.  This approach attempts to deduce properties of the system by using theorems.  There is some work that has been done towards automating this, but most work is still done by hand.  Even so called “automatic theorem provers” would more aptly be called automatic theorem “checkers” as their main strength is in making sure that the human theorem prover remains honest and does not make any mistakes in his calculations.  Verification of proof steps is decidable in general, but actually proving a result from axioms is not.  This makes it possible to check theorems automatically, but not prove them.  Using theorems and proofs is much more powerful than model checking in the sense that it is possible to establish general results for an infinite number of scenarios.  The disadvantage is that very little can be automated and a large amount of the work is left to the human analyst.

In this thesis, we have attempted various approaches to verifying TORA and the following will describe the strengths and weaknesses of various approaches showing that none are actually adequate.

TORA

TORA, like other distance vector algorithms, uses only local information to maintain global structure.  The information is distributed across different nodes, and no individual node has complete information about the routes in the network.  Each individual node acts according to a set of simple rules and through their combined behavior, routes emerge.  The goal of this work is to “decompile” the lower level mechanisms of TORA into higher level mechanisms that can be verified as producing routes for the network.

TORA is based on a class of algorithms referred to as the Gafni-Bertsekas (GB) algorithms.  This class of algorithms is deficient in that when the network is partitioned, the heights (the distance metric associated with each node) grow unboundedly.  In practice, this will cause excessive network traffic as routing information continually propagates unproductively.  TORA includes a partition detection mechanism to prevent this from happening.  This includes mechanisms for reactivating a node once it has been deactivated.  TORA also features some performance improvements over the original GB algorithms.

A proof of correctness and convergence properties for the GB algorithms exists.  A proof also exists for a modified version of TORA in Vincent Park’s thesis.  There are actually cases where TORA fails to converge under some very special conditions involving changes in topology and link requests.

Notation

Throughout this paper, the following notation is used.

	G
	a finite graph with undirected links

	V
	the set of ordered vertices or nodes in G

	E
	the set of edges or links in G

	N
	the size of vertex set |V|

	x
	a node in V (each node x is assumed to have a unique integer ID and x is used interchangeably to represent both the node itself and its ID)



	(x, y)
	a link in V ((x, y) is equivalent to (y, x) as all links are assumed undirected)

	N(x)
	neighbors of x, { y ( V | (x, y) ( E }

	D(x, y)
	length of shortest path from node x to node y

	h(x)
	the height of node x (h(x) represents just the height, not the unique height)

	hf(x)
	the full unique height of node x, (h(x),x)

	h(x).(
	the first component of the height of node x

	h(x).(
	the second component of the height of node x


If the link (x, y) exists, then it is expressed as (x, y) ( E, otherwise (x, y) ( E.

( x, y ( V  x ( N(y) ( y ( N(x) ( (x, y) ( E ( (y, x) ( E.

Since the graphs are undirected, nodes that are adjacent are adjacent in both directions.  Also, saying that a node is in the neighborhood of another node is equivalent to saying that there is an edge between them.

The system may evolve with time.  When it is necessary, appending [t] to a symbol represents its value at time t, for example E[t], or h(x)[t].

Sequences are ordered sets and they are represented by listing their elements separated by commas in order enclosed by the characters “<” and “>”.  Certain set operations are defined for sequences.  Membership, denoted with “(” is valid a valid infix operator that indicates whether or not a particular symbol occurs in the sequence.  Care must be taken in defining other set operations, such as union and disjunction are not clearly defined for sequences because they depend on the elements to be unordered.  Sequences will have certain operations that are specific to them that are defined later.

Tuples, denoted by having their elements listed enclosed by “(“ and “)” separated by commas,  are not like sets or sequences.  Tuples are a fixed length list of elements where like a sequence, the ordering of the elements has significance.  Unlike in a sequence, however, each element in a tuple has a specific meaning associated with it and this meaning is assigned by the position within the list.  In some cases, the meaning associated with each element in the tuple is the same, so the ordering effectively does not matter.  We allow an abuse of notation in that tuples, when they are prefixes of other tuples may have fields appended to them and then become the other tuples.

TORA Specific Notation

	r(x)
	the reference level of node x

	h(x).( / r(x).(
	what TORA refers to as (

	h(x).oid / r(x).oid
	the ID of the node originally defining x’s reference level

	h(x).r / r(x).r
	reflected bit of x’s height

	h(x).(
	what TORA refers to as (


In the GB algorithms, ( and ( are used to represent characters in a height string.  For notational consistency, ( and ( will also represent characters in the height strings of TORA.  TORA usually refers to these terms as ( and (, but they are conceptually equivalent to the ( and ( of the GB algorithms.

When referring to TORA, h(x) is a 4-tuple defined as

h(x) ( ( (, oid, r, ( ).

r(x), which applies only to TORA, and not to the general GB algorithms is given by the 3-tuple

r(x) ( ( (, oid, r ).

r(x) is also called the reference level and serves as a convenient way to refer to the first three fields of h(x).

Link Reversal Algorithms

TORA is based on a group of link reversal algorithms that we will refer to as the Gafni-Bertsekas (GB) algorithms [3].  The GB algorithms provide loop free routes in a network with bidirectional links to a single destination in the network using only information available locally, from adjacent nodes.  GB algorithms, unlike other distance vector routing algorithms, such as distributed Bellman-Ford, do not suffer from routing table loops.

The algorithm assigns heights to each node such that the nodes can be totally ordered by their heights.  This ordering on the nodes implies a direction to each of the links: the links are directed from nodes with greater heights to the nodes with the lower heights.  This creates a directed acyclic graph (DAG) from the undirected graph.

The way that the algorithm assigns heights is by updating only those nodes that become local minima and therefore have no outgoing links.  When a node other than the destination becomes a local minimum, that is all of its neighbors have heights that are greater than its own, it increases its height so that it is no longer a local minimum.  As long as local minima other than the destination exist in the network, their heights continue to increase, until only the destination node is a local minimum.  When this occurs, and all nodes except the destination have neighbors that are lower in height, no more events are enabled, assuming a fixed topology.  The resulting height assignment is such that starting at any node in the network, by following links that lead to nodes of lower height, eventually the destination is reached.  The paths will not form any loops because the heights of the nodes are totally ordered and the hops along the paths must proceed by strictly decreasing node height, guaranteeing uniqueness of the nodes traversed.  For a proof of all the properties discussed here, see the paper by Gafni and Bertsekas.

There are assumptions that an algorithm must satisfy in order to guarantee the properties to be described below:

P1) The only time a node may update its height is when it assumes a greater height, reversing the direction of its links when it is a local minimum.  Decreasing height is forbidden.  This rule has one exception: for the destination node, height updates are never allowed.

P2) The new height must depend solely on the heights of the neighbors of the node.

P3) An unbounded number of link reversals must lead to the height of the node becoming unbounded.

With these assumptions, additionally assuming that the network is not under partition (not partitioned meaning that all nodes are connected to the destination), the following properties apply.

By construction, the paths are always loop-free.  However, the algorithm will exhibit routing loops while the heights are evolving and links are reversing directions.  When a link reverses directions, packets that traversed the link just prior to the reversal now have an option of going backwards, up the same link that they just traversed.  The routing loops formed in this fashion are purely transient and once the algorithm converges, all the routes are loop-free.

The algorithm always converges in a bounded period of time.  The algorithm is also stable in that any node that has a directed path to the destination will not undergo any further reversals.  Furthermore, the number of reversals and the final resulting heights depend only on the initial conditions of the network, though multiple paths (the algorithm behaves non-deterministically) can be used to reach the final state.

Problem with GB Algorithms:  Count to Infinity

Like other distance vector algorithms, GB algorithms count to infinity under network partition.  Since the heights are totally ordered, there will always be a globally minimal height, which implies that there will always be at least one locally minimal height.  When the network is partitioned, that is the destination is not connected to the network, the local minimum cannot be the destination.  Since there is always a local minimum that is not the destination, height updates are always enabled.  The heights in the network increase indefinitely.

Proof of Correctness

TORA stands for Temporally-Oriented Routing Algorithm [8].  The temporally-oriented comes from the fact that TORA uses timestamps to create new heights.  Using timestamps enhances performance over other GB algorithms.  Another significant difference between TORA and the GB algorithms is that it does not suffer from the count to infinity problem under network partition.  TORA includes a partition detection mechanism that takes advantage of the way height increases diffuse throughout a network.

Not Gafni-Bertsekas

As mentioned above, TORA uses timestamps for the new heights violating assumption (P2).  This immediately puts TORA outside of the Gafni-Bertsekas class of algorithms.  TORA does not have path independence.  The set of final heights can vary, even for the same initial conditions.  Also, unlike the GB algorithms, the number of reversals depends on the ordering of events.  While many properties from the GB algorithms are lost, TORA should always converge in a finite period of time.  Establishing this formally is one of primary goals of this work.

Advantage of Temporally-Oriented Heights

Since the new heights are based on time, they are always globally the greatest heights in the network.  This can improve the performance over other link reversal algorithms of the GB class.  Consider the case of ordinary partial reversal algorithms and consider a chain of nodes where the heights are ordered completely backwards with respect to the location of the destination.  In the case of TORA, the local minimum at the end of the chain would define a new globally highest reference level.  The nodes in the chain upstream of TORA would then have room to increase their heights without exceeding the new globally highest node.  In the case of non-temporally oriented heights, this is not the case and a large number of ‘oscillations’ are necessary before all the heights converge.

Partition Detection

TORA includes a partition detection mechanism.  Under certain conditions, it is possible for a partition to be detected when none actually exists.  What the algorithm can guarantee is that if a partition is detected by TORA, then at some point in time previous to the partition being detected, a partition did occur, that is part of the network became completely disconnected from the destination.  This result will be proved in a later section.  There is a problem though, in that sometimes the network will become partitioned, but then another topology change may cause the network to become connected again.  In this case, it is possible for TORA to detect a partition when it does not actually exist.

TORA Model

To improve the tractability of analyzing TORA, we omit modeling the details of the query response mechanism.  We construct a simplified model of TORA similar to the model of link reversal algorithms presented by Gafni and Bertsekas[3].

In TORA, each node in V has a height associated with it.  The heights and reference levels of nodes are ordered lexicographically, that is, they are equal only when all fields are equal and h1 > h2 if the first different field counting from left to right, of h1 is greater than that of h2.  Each node has a unique identifier and these identifiers are totally ordered.  This lexical ordering has the following obvious result for any nodes x, y ( V
r(x) > r(y)  (  h(x) > h(y)  (  hf(x) > hf(y).

TORA by definition adheres to (P1), that nodes may update their heights when they are local minima.  Define S to be the set of nodes that are local minima excluding the destination.

S  ( { x ( V | x ( destination ( ( y ( N(x)  hf(y) > hf(x) }.   (1)

This set is of interest because it is on this set that reversals are enabled.  When S is empty, no further height update events are possible and the algorithm has converged, at least while the topology remains constant.

Lemma 1:  ( (x, y) ( E  ((x ( S ( y ( S).  If x and y are adjacent, only one may be a local minimum.

Proof:  Suppose ( (x, y) ( E  (x ( S ( y ( S).

(x, y) ( E ( y ( N(x)   (2.1)

x ( S ( ( z ( N(x)  hf(z) > hf(x) ( hf(y) > hf(x)  (2.2)    (By (1))

y ( S ( ( z ( N(y)  hf(z) > hf(y) ( hf(x) > hf(y)  (2.3)

(2.2) and (2.3) are direct contradictions of each other, so (( (x, y) ( E  (x ( S ( y ( S).  (
Corollary 1:  Link reversal events are only enabled for non-neighboring nodes.

Proof:  By (P1) and Lemma 1.  (
One of the features of this algorithm is that no assumption about the atomicity of events is necessary.  This is because Corollary 1 excludes any two adjacent nodes from both updating at the same time.  This means there is no contention between neighbors performing height updates simultaneously.  The algorithm does not even require that the updates occur in order.  The algorithm, viewed at this level, only requires that the updates can be reliably sent between nodes.  This assumes that the topology is fixed while the information is being updated.  While topology changes may disrupt the operation of the algorithm, TORA is only guaranteed to converge while the topology remains constant.

We now formalize the update rule for nodes in S.  Let x ( S.  Let ( represent the event causing x to become a local minimum.  Let t be the time at which the update takes place.  Let h( express the new height to be selected.  h( can also be expressed as components r( and ((.  h( is selected according to the criterion below.

(1)  If ( is a link failure

then h( := ( t, x, 0, 0 ).  (3)

(2)  If ( is not a link failure

and ( y, z ( N(x) r(y) ( r(z)    (4.1)

then let r* ( 
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(3)  If ( is not a link failure

and (( y, z ( N(x)  r(y) ( r(z)  (5.1)  (complement of 4.1)

and ( y ( N(x)  r(y).r = 0  (5.2)

then r( := r(y) + ( 0, 0, 1 ) for any y ( N(x) and (( := 0.  (5.3)

(4)  If ( is not a link failure 

and (( y, z ( N(x) r(y) ( r(z)  (6.1)  (same as 5.1)

and ( y ( N(x)  r(y).r = 1   (6.2)  (complement of 5.2)

and ( y ( N(x)  r(y).oid = x  (6.3)

then a partition is detected.

(5)  If ( is not a link failure

and (( y, z ( N(x) r(y) ( r(z)   (7.1) (same as 6.1)

and ( y ( N(x)  r(y).r = 1  (7.2) (same as 6.2)

and ( y ( N(x)  r(y).oid ( x    (7.3)  (complement of 6.3)

then h( := ( t, x, 0, 0 ).  (7.4)  (same as (3))

Note that in case 4, no height is assigned because a partition is detected.  Also note that we will not model the events that occur after the partition is detected and assume that TORA’s CLR flood works properly.

TORA Properties

Using the above formalisms for TORA, we shall prove that for a connected, static topology, TORA converges in a finite number of steps.

Lemma 2: Whenever a node increases its height in a reversal, its reference level increases.

Proof: Let x be a local minimum.   Let r denote r(x) while x is a local minimum, and let r( denote the reference level TORA chooses as the next reference level.  Proceed by verifying the result, r( > r, for all cases.

Case (1) and (5):  x generates a new globally highest reference level.  The desired condition,

r( > r,

holds true trivially.

Case (2):  This case applies only when

( y, z ( N(x)  r(y) ( r(z).    (4.1)

TORA will choose to propagate the highest reference level of those nodes in N(x).  Let

r* ( 
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Given (4.1), and the fact that r* is a maximum,

( y ( N(x)  r* > r(y).  (8)

Let y* be any element of N(x) satisfying (8).  Since x is a local minimum, r(y*) ( r(x), and

r* > r(y*) ( r(x).  (9)

When x takes r* as its reference level, its reference level increases.

Case (3):  Reflect back a higher sublevel when all neighbors have the same reference level.  Since x is a local minimum, ( y ( N(x) r(y) ( r(x).  When reflecting back a higher sublevel, the new reference level r( > r(y) ( r(x).

Case (4):  This case ultimately causes TORA to halt and clears the heights altogether.  It does not really perform a reversal.

Since the statement holds true for all cases, it must be true.  (
Lemma 3:  Whenever a node increases its height in a reversal, its reference level becomes greater than or equal to the reference level of its highest neighbor.

Proof:  Let x be a local minimum.  Let r denote r(x) while x is a local minimum and let r( denote the reference level TORA chooses as the next reference level for x.

Case (1) and (5):  x generates a globally highest reference level.  Obviously r( > the reference level of any node in N(x).

Case (2):  By (4.2) r(  (  the reference level of all neighbors of x.

Case (3):  All neighbors of x have the same reference level, s by (5.1).

r( = s + ( 0, 0, 1 )  >  s.

Case (4):  This does not cause a reversal to be performed.

In all cases, the result holds.  (
Lemma 4:  A node may perform at most two reversals until all of its neighbors reverse and increase their reference levels.

Consider case by case what happens after the first reversal.  Let h be the height of x prior to its reversal and let h( be the height TORA selects to update x, and r( be the corresponding reference level.

Case (1) and Case (5):  x generates a globally highest reference level h( > h(y) ( y ( V.  In order for x to become a local minimum again, all of its neighbors must increase in height to be higher than x.  In these cases, x may only reverse again after all of its neighbors have increased.

Case (2):  Since x performs only a partial reversal, it is possible that x is still lower than some of its neighbors after it reverses.  Let

O ( { y ( N(x) | hf(y) > hf( }

be the set of x’s neighbors that are still higher than x after its first reversal.  x may become a local minimum again without these nodes reversing, though all of x’s other neighbors must reverse before x may reverse.  By (4.3), we know that

( y ( O  r(y) = r(.  (10)

Now consider x’s second reversal.  Let r( be x’s reference level after it reverses the second time.  By Lemma 2, we know that r( > r( and by (10) we know that ( y ( O  r( > r(y).  The only way that x may become a local minimum again to reverse for the third time is if all the nodes in O reverse, thus proving the result for case 2.

Case (3): Since prior to x’s reversal, all of its neighbors are at the same reference level, and x takes on a reference level higher than its neighbors’ reference level, in order for x to become a local minimum again, all of its neighbors must increase in height first.  (
Corollary 2:  For any two nodes in a connected, fixed topology graph, where ( is the number of hops along the shortest path between the two nodes, the difference in the number of reversals between the two nodes must be less than or equal to 2(.

Proof:  Proceed by induction on the number of hops, (.  For ( = 1, Lemma 4 states directly that the number of reversals can differ by at most 2, which equals 2(.  Assume that for ( - 1 hops, the result is true.  Let x, y ( V be two nodes that are ( hops apart.

( z ( V  z ( N(x) ( y and z are ( - 1 hops apart.

By the inductive assumption, z can differ in reversal count with y by only by 2(( - 1).  Since z ( N(x), and using Lemma 4, x may only differ in hop count from z by 2, so it can only differ in hop count from y by 2(( - 1) + 2 = 2(.  (
Theorem 1:  Convergence:  TORA always converges in a connected network
For a connected, fixed topology graph, TORA either converges in a finite number of steps, or a partition is detected.

Proof:  Suppose that there exists some connected network for which TORA never converges and never detects any partitions.  This implies that S is never empty and that there are an infinite number of reversal events.  For this to be true, there must be at least one node x, that undergoes an infinite number of reversals.  Let D be the diameter of the network (the length of the longest shortest path).  By Corollary 2 and the fact that the destination never reverses its height, we know that the upper bound on the number of reversals that any node can undergo is 2D.  This is a contradiction and thus TORA always converges in a finite period of time.  This result is only valid when the network is connected to the destination.  (
TORA always converges or detects a partition when the nodes in the network are connected to the destination.  It is also possible to show that under certain conditions, TORA cannot detect a partition in a connected network.

Lemma 5:  Let nodes x, y ( V, be such that (x, y) ( E[t0] and hf(y)[t0] < hf(x)[t0].  If

( t1 > t0  hf(y)[t1] < hf(x)[t0] ( ( ( ( [t0, t1]  (x, y) ( E(()  (11)

then ( ( ( [t0, t1]  hf(x)[(] = hf(x)[t0].

In other words, given two nodes x and y that are initially adjacent and remain connected over the period of interest, if initially, hf(y) < hf(x), and hf(y) remains less than hf(x), then hf(x) must remain constant.

Proof:  Assume (11) holds.  By (P1), the fact that heights are non-decreasing,

hf(y)[t1] < hf(x)[t0] ( ( ( ( [t0, t1]  hf(x)[t0] > hf(y)[t1] ( hf(y)[(].

( ( ( [t0, t1]  hf(x)[(] ( hf(x)[t0].    (by (P1) again)

( ( ( [t0, t1]  hf(x)[(] ( hf(x)[t0] > hf(y)[(].

( ( ( [t0, t1]  ( y ( N(x)  hf(x) > hf(y).

Hence x cannot change its height because it is never a local minimum.  Therefore x’s height must be constant over [t0, t1].  (
Corollary 3:  Let X ( {x1, …, xn } ( V be such that the set

P ( { (x, y) | ( i ( {1, …, n-1 }  x = xi ( y = xi+1 }

is a subset of E and ( i ( { 1, …, n-1 }  hf(xi)[t0] > hf(xi+1)[t0].  If

( t1 > t0  hf(xn)[t1] = hf(xn)[t0] ( ( ( ( [t0, t1]  P ( E(()  (12)

then ( x ( X  ( ( ( [t0, t1]  h(x)[(] = h(x)[t0].

Proof:  Proceed by induction on n applying Lemma 5.   For X ( {x1, x2 }, the result is a direct consequence of Lemma 5.  Assume that the result holds true for X ( { x1, …, xn-1 }.  In the case of X ( {x1, …, xn }, assume that (12) holds.  Then from Lemma 5 we know that

( ( ( [t0, t1]  h(xn-1)[(] = h(xn-1)[t0].

Using the inductive hypothesis, the result follows.  (
Corollary 3 generalizes Lemma 5 to apply to chains of connected nodes.  The result could be extended to have the same condition as Lemma 5, but it is not necessary.

The following is an important result that characterizes the propagation of reference levels throughout the network.

Lemma 6:  Let x generate at time t0, a new reference level r ( ( t0, s, 0 ) where

h(x)[t0] = ( t0, x, 0, 0 ).

Assume that ( t1 > t0  ( ( ( [t0, t1]  E[t0] = E[(], that is the topology is static over [t0, t1].  Then

( y ( V  r(y)[t1] = r  (  h(x)[t1] = h(x)[t0].
Proof:  r is uniquely generated by node x at time t0.  Let y1 ( V be any node such that r(y1)[t1] = r.  This reference level may be reached in only two ways.  All node IDs being unique guarantees that x is the only node that may generate r.  If y1 is any node other than x, then it must take on this reference level does so by propagation, which is by case (2) of the height selection algorithm.

Since prior to t0, reference level r does not exist, and r(y1)[t1] = r, ( t ( [t0, t1] where y1 reverses and takes on reference level r.  By Lemma 2, y1 may only update its reference level to r once, so t is unique.  The condition below is necessary for the propagation of reference level r at time t to node y1.

( ( z ( N(y1)  hf(z)[t] > hf(y1)[t] )  (13)

( ( ( m ( N(y1)  (  ( ( z ( N(y1)  ( m = z ( hf(m)[t] > hf(z)[t] ) )  (14)

( ( z ( N(y1) r(m)[t] > r(z)[t] ) .  (15)

(13) states that y1 must be a local minimum.  (14)-(15) state that there must exist some neighbor m where its height is greater than any of y1’s neighbors and there must be another neighbor of y1 with a reference level strictly less than r(m)[t].  Let y2 be the node satisfying conditions (14) and (15).  When y1 updates its height at time t, according to (4.3), h(y1)[t] < h(y2)[t] and h(y1)[t1] = h(y1)[t] < h(y2)[t] so by Lemma 5, h(y2)[t1] = h(y2)[t].  The statement below summarizes the result.

( y1 ( V  r(y1)[t1] = r  (  y1 = x  (  ( y2 ( N(y1)  r(y2)[t1] = r  ( h(y2)[t1] > h(y1)[t1]  (16)

Equation (16) has a recursive structure.  Assume that y1 ( x.  Then there exists y2 with reference level r, having a height at t1 strictly greater than h(y1)[t1].  Now y2 is another node, where the condition r(y2)[t1] = r holds.  If y2 is not x, by (16) again, there exists another node y3 such that r(y3)[t1] = r.  Also, h(y3)[t1] > h(y2)[t1] > h(y1)[t1].  This recursion can be repeated whenever the next node discovered is not x.  Any sequence < y1, …, yn > generated in this way is always increasing in height, so each node in the sequence is unique.  Since there are a finite number of nodes in the network, the recursion must terminate and the only way it can terminate is if yn = x.  (
Corollary 4:  Under the same conditions given in Lemma 6,

(  y ( { y ( V | r(y)[t1] = r   (  y ≠ x }  ( X ( {x1, …, xn } ( V  

( x ( X  r(x) = r 

(  x1 = y  (  xn = x
( ( i ( { 1, …, n-1 } ( xi, xi+1 ) ( E  (  h(xi)[t1] < h(xi+1)[t1].

In other words, starting at y, there exists a path of connected nodes connected, such that all have reference level r, and increase in height, terminating at x.

Proof:  Follows in arguments given in Lemma 6.  (
Lemma 6 and Corollary 4 illustrate how a reference level propagates through the network.  As a newly defined reference level propagates, a DAG is formed, rooted at the node generating the new reference level.  This DAG consists of nodes all having the same reference level.  In order for the root node to become a local minimum and reverse, it is necessary that no nodes in the entire network have the same reference level.

Lemma 7:  Assume that the topology is fixed.  Let x ( V generate a new reference level r at time t0.  Assume that x detects a partition at time t1 by having its reference level reflected back.

( (1 ( [t0  , t1]  ( y ( { y ( V | y ( x  (  r(y)[(1] = r }  ( (2 ( ((1, t1)  ( t < [(1, (2]  r(y)[t] = r  ( r(y)[(2] = r + ( 0, 0, 1 ).

In other words, any y that acquires reference level r, must update its reference level from r to the reflected reference level r + ( 0, 0, 1 ) in order for x to detect a partition.

Proof:  Assume that that the topology is fixed and node x ( V generates a new reference level r at time t0.  At time (1, let y ( x ( V be such that r(y)[(1] = r.  By Corollary 4,

( X ( { x1, …, xn } ( x ( X  r(x) = r  (  x1 = y  (  xn = x  (  ( i ( { 1, …, n-1 }  ( xi , xi+1 )  ( E  (  h(xi)[t1] < h(xi+1)[t1].

For this set X, we proceed by induction on n to show for n > 1, the result is true.  For n = 2, where y ( N(x), we know by the fact that x detects a partition at time t1, and by required conditions (6.1)-(6.3), that r(y)[t1] = r + ( 0, 0, 1 ).  Since r(y)[(1] = r, the result follows by (P1).  

Now assume that the result holds for n-1.  Let y ( V be such that r(y)[(1] = r and the set X associated with y by Corollary 4 satisfy |X| = n.  Then x2 ( N(y) satisfies the criterion for case n-1.  By the inductive hypothesis, x2 must change reference level from r to r + ( 0, 0, 1 ).  This means that x2 must become a local minimum.  This cannot happen until x1 increases its reference level so that hf(x1) > hf(x2).  Let r(  > r be the reference level that x1 increases to.  Suppose that r( ( r + ( 0, 0, 1 ).  Since r + ( 0, 0, 1 ) is the least reference level greater than r.  Then r( ( r + ( 0, 0, 1 )  (  r( > r + ( 0, 0, 1 ) by Lemma 2.  This means that when node x2 updates its height, its reference level will be at least r(.  This contradicts the inductive hypothesis, so r( = r + ( 0, 0, 1 ).  (
Corollary 5:  Assume the topology is fixed.  Let x ( V generate a new reference level r at time t0.  If at any time before x detects a partition,

( y ( V  r(y) = r  ( ( z ( N(y)  r(z) > r  + ( 0, 0, 1 )  (17)

then x1 cannot detect a partition.

Proof:  By Lemma 7, all nodes acquiring reference level r must reverse to reference level r + ( 0, 0, 1 ).  By Lemma 3, any node reversing, must take on a reference at least as high as its highest neighbor, which in this case has a reference level greater r + ( 0, 0, 1 ).  (
Lemma 8:  Assume that the topology is fixed and all nodes are connected to the destination d.  Let x ( V generate a new reference level r at time t0.  For any node that propagates the reference level r + ( 0, 0, 1 ) via case (2) of the decision tree, two conditions hold at the time when it updates its reference level to r + ( 0, 0, 1 ).

1) All its neighbors have reference level r or the reflected reference level r + ( 0, 0, 1 ).

2) It must have reference level r.

Proof:  Let z be a node generating the reflected reference level r + ( 0, 0, 1 ) by case (3) at time t > t0.  Proceed by induction using the neighbors of z as the base case.

Let w be any node in N(z).  Case (3) requires that all neighbors of z have reference level r, so r(w)[t] = r.  Assume that w takes on the reflected reference level at time t1 > t.  By Lemma 2, the fact that r(w)[t] = r, and the fact that r + ( 0, 0, 1 ) is the minimum reference level greater than r, ( ( ( [t, t1]  r(w)[(] = r, so the second property is true for w.  In order for w to be a local minimum

( v ( N(w)  hf(v)[t1-] ( hf(w)[t1-].

( v ( N(w)  r(v)[t1-] ( r.

( v ( N(w)  r + ( 0, 0, 1 ) ( r(v)[t1-].  (if not, w propagates a higher reference level)

( v ( N(w)  r(v)[t1-] = r.

So the first property is true for w.  The result holds for all neighbors of any node generating the reflected reference level.

Assume that the first and second property hold for some node w ( V.  Assume that w takes on the reflected reference level at time t1 > t.  Let v ( N(w)  r(v)[t1] ( r + ( 0, 0, 1 ).  Assume that v takes on reference level r + ( 0, 0, 1 ) at time t2 > t1.  By the first property applied to node w, r(v) = r.  Therefore, by the argument for the base case, the second property applies to node v.  Arguing again as in the base case, the first property must also apply to node v.  The result holds for the neighbor of any node for which the result holds.

Since the only way a node can propagate reference level r + ( 0, 0, 1 ) is by

a) being a neighbor of  a node generating the reflected reference level or

b) being a neighbor of a node propagating the reflected reference level,

it must be true in all cases.  (
Definition:  The frontier of r, where r is a reference level, denoted f(r) ( V, is defined

f(r) ( { y ( V | r(y) ( r  (  ( z ( N(y)  r(z) = r }.

Theorem 2:  Correctness Criterion:  No partitions detected in connected networks
Assume that the topology is fixed and all nodes are connected to the destination d.  Let x ( V generate a new reference level r at time t0.  x cannot detect a network partition through case (4) of the height selection process.

Proof:  Assume that the topology is fixed and all nodes are connected to the destination d.  Let x ( V generate a new reference level r at time t0.  Since all nodes are connected to d, then there must be a path from x to d.

Let F  ( f(r).

Let M ( { y ( V | r (y) = r }.

Let G ( { y ( M | ( z ( M  D(z, d) ( D(y, d) }.

In other words G is the set of nodes having reference level r with the shortest distance to the destination.  F, M and G change with time so let F[t], M[t] and G[t] denote their respective values at time t.

Proceed by showing that in all cases either

1) ( t > t0  |G[t]| > 0 ( ( (1 ( [t0 , t)  ( (2 ( ( (1, t ]  ( y ( G[(1]  ( z ( G[(2]  D(y, d) ( D(z, d).  That is |G| > 0 and the distance between G and the destination is non-increasing with time.  Since |G| > 0 and ( y ( G  r(y) = r , by Lemma 6, x cannot detect a partition.

or

2) ( t > t0, ( y ( F[t]  r(y)[t] > r + ( 0, 0, 1 ).  Then by Corollary 5, x cannot detect a partition.

Initially, the first condition is satisfied.  |G| = 1 > 0 and since there are no comparisons, the distance between nodes in G and d satisfy the non-increasing criterion.  It is possible for the second condition to hold also, and either way, the property holds true.

Assume that the first condition is satisfied.  Now proceed by showing that for all enabled events, either the first or second result will hold.  If this is the case, then no sequence of events may ever cause the conditions to be violated and the proof is complete.

There are only two events that may directly affect G.

A. Node y with reference level r(y) ( r updates its reference level to r(y) = r.

B. Node y ( G updates its reference level from r(y) = r to r(y) > r.

Event A can only occur for nodes in F by definition.  Event B applies to nodes in G.

Consider the effects of event A on conditions 1 and 2.  Let y ( F[t] be a local minimum at time t.   Assume that conditions 1 and 2 hold prior to updating the height of y to r.  If

( z ( G[t]  D(z, d) > D(y, d)  (18)

then G[t] will be replaced with { y } after the event occurs.  Since y is closer to the destination than any node in G[t], condition 1 is preserved.  If

( z ( G [t]  D(z, d) = D(y, d),  (19)

then G[t] will be replaced with G[t] ( { y }, still preserving condition 1.  Otherwise, if

( z ( G[t]  D(z, d) < D(y, d),  (20)

G[t] is unaffected and condition 1 is still preserved.  Any occurrence of event A preserves condition 1.  Note that once ( z ( G  D(z, d) = 1, the only frontier node is the destination, but since the destination cannot update its height, (18) is no longer reachable.

Consider now the effects of event B on conditions 1 and 2.  Let y ( G be a local minimum at time t.  Let N ( F ( N(y).  y ( G  (
( z ( N(y)  r(z)[t] = r.  (21)  (by Corollary 4)

( z ( N  r(z)[t] ( r  (  D(z, d) = D(y, z) - 1.  (22)  (by definition of G)

Since y is a local minimum and by the fact that ( z ( F  r(z) ( r,

( z ( N  r(z) > r.  (23)

(  ( z ( N  r(z) ( r + ( 0, 0, 1 ).  (24)

Assume ( z ( N  r(z) > r + ( 0, 0, 1 ), condition 2 is satisfied and the result holds.  Otherwise suppose

(( z ( N  r(z) > r + ( 0, 0, 1 )  (25)

then ( z ( N  r(z) = r + ( 0, 0, 1 ).  (26)  (with (24))

By Lemma 8 and (26) ( z ( N  z must have had reference level r just prior to having reference level r + ( 0, 0, 1 ).  By (19), ( z ( N  D(z, d) < D(y, z).  This contradicts the assumption that condition 1 holds prior to event B occurring:  the distance between nodes in G and the destination are non-increasing with time.  Therefore, (25) is not reachable.

The conditions are satisfied by all possible events.  (
Theorem 2 shows that any node generating a new reference level cannot detect a partition if the topology remains static after the reference level has been created.  However, in cases where the topology is dynamic and changing, it is easy to produce cases of partitions being detected in connected topologies.

There are two distinct cases of partition detection when the topology is allowed to change.  In one case, partitions have never existed in the network and the fact that a topology change can lead to a partition being detected is an artifact of the algorithm.  In the other case, a network partition existed transiently and was detected, but is already in the process of communicating the partition being detected.  The first case is avoidable, but the second case is not in the current framework.

Finite Automaton Model

While analysis as used above can yield certain properties about the algorithm under study, it is an interesting to ask whether or not choosing a formal model would have any advantages.  The primary reason for making things formal is that in doing so, the system becomes more precise and loses any ambiguity in interpretation.  Sometimes, the only precise specification of any system is actually the source code, but code contains too many details specific to the implementation language and the machine architecture.  For the formal model here, we will consider several frameworks, extended finite state machines, finite automaton and regular expressions.

A formal model here means that the system can always be decomposed into nothing more than typographical manipulations, which is why string representations are important.

We would like such a model to be able to tell us whether or not a particular routing algorithm converges under all possible steady state conditions and whether the halt state satisfies some desired criterion.  This is a good deal like the halting problem of Turing machines, which stated is, “given a string, is it possible to determine whether a Turing machine will halt on this particular string?”  In general, for Turing machines, this question is undecidable.  The analogous problem in our system is given a particular input string consisting of a set of initial conditions for the system, specifying the topology of the system and describing the state of each node, will TORA halt?  The question can be posed in terms of the decidability of TORA.

The basic problem of decidability stems from the fact that there are in most cases an infinite number of different input strings that can be tested.  While it is possible to verify that the system halts for any finite number of these initial conditions through simulation, it is not possible to conclude that the system converges for all inputs in this manner because it could be that the next untested set of inputs could cause the system to diverge.  There are various ways to show a system is decidable.  One way is to prove it conventionally as earlier in this work.  This has the problem that it is very easy for a human to make a mistake in proving a result.  Another alternative is to attempt to map the system, which is a general Turing machine into a less general framework, but one that is guaranteed to converge by construction, such as a finite automata or regular expression.  If TORA can be mapped into a finite automaton, then proving that it converges is trivial.  All that is necessary is to show that the finite automaton is loop free.  Equivalently, it may be possible to show that TORA is a regular expression that does not contain any Kleene star terms, as those imply looping and possible divergence.  Ideally, this process of converting a general specification into a constrained specification such as a finite automaton or a regular expression could be performed automatically by a computer, and the possibility of this approach is explored in the following discussion.

The problem at hand is to prove that the algorithm converges in the absence of topology changes and inputs.  Whenever the topology changes, the system will generally have to respond with some sequence of events and update the routes, so as long as there are inputs to the system, there will continue to be events.  However, when the topology changes cease, the system should converge.  For this reason, in our model, we are not concerned with dealing with time varying inputs.  The only input to the system that is considered is a string describing the initial conditions.  The system is causal, so testing all possible initial conditions is equivalent to testing all possible sequences of topology changes followed by indefinite periods of static topology.  While the above simplifies the model by isolating it from time events that have taken place prior to the period of time being modeled, parts of the network that are separated spatially have no means of communicating with each other or affecting each other in the absence of further topology changes.  Therefore we only consider connected networks with static topologies.

The input to the system is a string describing a fixed topology and a complete description of the state of all nodes.  While all topologies are possible in TORA, as these are created by real world situations, there is the possibility that we can choose an initial condition for the state variables of a node that is invalid in the sense that it is unreachable from any execution of TORA starting with valid initial conditions.  It is therefore possible that a state is discovered where TORA does not converge, where in the real world, this state would never be reached to begin with.  It may be difficult to show what set of states are reachable.  This is not a problem if the convergence result holds true.

We begin with the simpler example of the Gafni-Bertsekas full reversal algorithm.  We make the usual simplifying assumption that we are only need to verify that the algorithm converges in connected networks with no topology changes under all possible initial conditions.  While the algorithm is described where each node has a specific height, these heights make no difference to the behavior of the algorithm when there are no topology changes.  This yields another simplification in the case of the full reversal algorithm.  In the full reversal algorithm, it is not necessary to explicitly represent the height of each node, rather only the relative heights of the nodes are necessary.  Therefore we represent the state of the system by a string representing the full ordering of the nodes.  While this is not strictly necessary, since it is still only the relative ordering of connected nodes that matters and the relative ordering of unconnected nodes does not matter, this difference will reveal itself in finite automaton as those states representing variations on relative orderings of non-adjacent nodes will be Nerode equivalent states.

Given the input string representing the topology and initial states of the nodes (this could for example be the serialized adjacency matrix described in the sequel appended with a list of comma separated integers representing the relative ordering of the nodes), we wish to find a finite automaton model of the system that will be executed that does not contain any loops.  This will ensure that the algorithm converges.  What is required then is to show that for all input strings, we can find a loop free automaton that models the system.  For a given size of the network N, there are N! possible relative orderings of the nodes.  These represent possible initial states.  The number of topologies for a given number of nodes is difficult to quantify, however, for each topology, there is a corresponding state machine with N! initial states corresponding to the N! possible initial conditions.

We proceed by induction on the number of nodes N.   With one single node, there is only one possible topology and one possible state, so the system is obviously loop free.

Assume that for all systems modeling N – 1 nodes, each state machine, with its corresponding topology, is loop free.  Then we wish to prove then that incrementing the number of nodes preserves the loop freedom of the resulting state machine.  As previously described, the number of states for a network with N nodes is N!, one state for each possible total ordering of the nodes.  A state machine corresponding to the system with N – 1 nodes has (N-1)! states.  By incrementing the number of nodes, the number of states increases from (N – 1)! to N(N-1)! = N!.  These states are created by adding “N” into the N empty slots formed by the N – 1 permutations.  Figure 1 illustrates this procedure.
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Fig. 1.  Four insertion points for state “3 1 2” generating child states.

The states generated by inserting the next state into the previous state descriptors are called child states.  There is a way to map parent state machines into child state machines.  For each topology, there is a unique state machine (where the initial state out of N! possible initial states is determined by the initial relative ordering of the heights of the nodes) where each connected topology of size N can be generated by adding a node to a topology of size N – 1.  The state machine generated by augmenting the original state machine (the augmentation process has not been defined yet) is called the child state machine.  We will refer to the projection of the child state machine onto the parent state machine.  A state in the child state machine is projected onto the parent state machine simply by taking its parent.  Similarly, a transition from the child state machine may be projected into the parent state machine by considering it a transition between the two parent states corresponding to the two child states.

The property that allows this augmentation of the original state machines to assist in the construction of the new state machine is the fact that transitions between child states must be consistent with transitions between parent states.  More precisely, if two child states correspond to two different parent states, then there may be a transition between them only if there was a transition between their parent states.  Hence, if the parent state machine is loop free, the child state machine is at least loop free between states that are derived from different parents.  This means we only need to consider for each parent state, if the part of the state machine generated by considering only the children of the parent state is loop free, then the entire state machine is loop free.  This second result follows easily because when the new node “N” is a local minimum, it creates new transitions, but they are all loop free because N cannot become a local minimum again as a result of one of these transitions.

To prove that the child state machine must be consistent with the parent state machine requires a slightly more careful analysis.  We prove by contradiction that all child transitions must be consistent with parent transitions.  Suppose that there is a new transition required in the child state machine between different states in the projection in the parent state machine.  Let this new transition be called “l”.  l transitions the system from ordering a to ordering b where a and b must differ in their projections.  All transitions must consist of taking one node and increasing its height (shifting it right in the string descriptor of the state).  Let ( be the node associated with transition l (( is the node that has its height increased by transition l).  ( must be a local minimum in the child state machine which implies that ( is a local minimum in the projected state machine.  Since all valid shifts of ( must already be defined in the original state machine, so must l.  Therefore we have a contradiction and the result follows.

This state machine converges because each non-resting state has valid outgoing transitions and the graph is loop free.  With this result, it is interesting to consider also what happens when looking at this type of state machine using regular expressions.

Simulation

Even though the algorithm was originally implemented in SPIN [5], it became very tedious to specify the different conditions that the algorithm would experience using SPIN’s restrcited syntax.  SPIN adopts a concurrency model that is similar to the one used in Hoare’s Communicating Sequential Processes.  The most crucial part of SPIN that differentiates it from a general programming language is the non-determinism.  In SPIN, all decisions and control flow must be implemented as a non-deterministic choice between guarded statements.  Essentially, each decision in SPIN is non-deterministic and all branches are executed, but only those that have their guard conditions evaluating to false will halt and those evaluating to true will actually continue to be executed.  In executing the program, SPIN explores each of these non-deterministic branches and enumerates the states, essentially running an exhaustive simulation covering all possible traces of events while maintaining a history of explored states using some special hashing and representations to make it memory efficient.  It uses the non-determinism in the program as a decision tree for exploration.

What makes this less than ideal for TORA is in choosing the correct model for the algorithm.  We are interested in modeling TORA over a wide range of varying topologies and initial conditions.  To implement this in SPIN, it is necessary to construct the network topologies and the all the initial conditions using the non-determinism operators that are available in SPIN.  This is quite unnatural, especially in the sense that the non-determinism of the construction of the network carries the overhead of being possibly interleaved with other events.  SPIN is more geared towards protocols where there is finite amount of state and where the most critical part of the model checking is to checking all the interleaving of events of the executions.  In TORA, this is less important because of its property of updating only nodes that are local minima and adjacent nodes are never local minima so the amount of non-determinism is limited to nodes that are not directly communicating with each other.  There are an infinite number of network topologies and an infinite number of different combinations of initial heights.  Several initial runs in SPIN yielded poor coverage of the state space and we decided that using a general programming language would be a much more programmer and execution efficient way of modeling the system than through SPIN.

Another reason why SPIN is not very suitable for this particular problem is that there are too many possible changes in topology that can result in different states to model.  SPIN enumerates states starting from an initial condition and applies partial order reduction to eliminate redundant interleavings of concurrent processes.  In our model of TORA, however, it is not clear what an initial condition is and what transitions are enabled at any given moment.  It is possible to start with a number of nodes N and execute all sequences of possible topology changes interleaved with all possible enabled TORA transition events.  This will define a certain set of reachable states which can then be examined for liveness and correctness.  However, there is reason to suspect that the reachable states for all sets of N nodes includes more than what is reached here.  The reason is that in a mobile network, nodes can be added and subtracted and these topology changes can affect the state of the system we are studying.  However, a study of this type would be completely infeasible because there are an infinite number of ways that nodes can be added and subtracted from a network.  This complicates the reachability analysis of TORA.

Another approach to solving these types of problems is to use so called “theorem provers”.  We initially experimented with the theorem prover PVS.  The name “theorem prover” is actually a misnomer, as it does not actually prove theorems.  The term “theorem checker” would be more appropriate.  The way PVS actually works is by accepting human guidance to prove the theorems.  Abduction, deriving whether or not a particular theorem is true based on the axioms is known to be an NP hard problem on the size of the axiom set.  The strength of PVS is in the fact that it automates certain tedious steps of proofs and also ensures that there are no logical flaws.  It does not prevent the human operator from making errors in constructing the axiom set though.

Design

Ideally, we would like to check the system using all network topologies and all possible initial conditions.  This is all that is required because the algorithm only guarantees convergence under stable network conditions.

The problem is abstracted to the level of graphs and heights.  We have chosen to model things at this level because it is at this level that the correctness of the algorithm will be established.  The details of packet delivery and the mechanism for establishing reliable communication between nodes are well understood.

Model Checking

Only fully connected graphs are modeled because parts of graphs that are unconnected have no way of communicating algorithmically and hence they are equivalent to parallel models of the smaller graphs.  One of the requirements in performing a successful model checking is in choosing the correct level of abstraction for the problem.  Consider the basic problem faced in model checking, that is state enumeration.  In an algorithm such as TORA, the number of possible states is practically infinite, because the specification includes references to timestamps (which are really limited to 64 bits but for our purposes 64 bits might as well be infinite).  In order to perform any model checking, it is necessary to exploit structure in the algorithm and abstract the specification to a level where the algorithm may be modeled with a finite number of states.

State Space Model

As described previously, the full reversal algorithms may be modeled without the explicit use of heights.  We abstract the state to only the relative heights of the nodes rather than a numerical height for each node.  The system captured by only a relative ordering of the heights of the nodes is realized by an actual implementation with concrete heights, though one would never try to implement the system with only relative orderings.  In the same manner, we would like to reduce TORA down to the level of relative orderings, as there are only N! possible orderings of nodes, whereas there would be an infinite number of possible combinations of ( values in the heights, not even considering the other state variables, such as ( and ( and oid.

To construct an abstraction for the ( values, the insight necessary is that only the relative values of the (s matters.  It does not matter by how much the ( values differ, but only that they do, and their ordering.  So to represent (, we use only a ranking system where the ( values are ranked from least to highest.  We represent this rank as a number from 1 to N.  In a full reversal, where a new ( value is required which is higher than any of the existing (s, we simply choose the next highest unused integer ranking.  As stated, it is not important how much the ( values differ either, as long as their ordering is preserved.  The existing ( values can then shifted down to fill in any gaps in the ranks.  For example, if the last node with the ( value 1 undergoes a full reversal, then no other height in the system has ( value 1.  We subtract 1 from all (s greater than 1 in the state space without any loss of generality in the behavior of the algorithm.  This implies that the rank of a node’s ( never exceeds N, and in many cases the maximum rank across the nodes will be less than N because multiple nodes may share a common ( value through propagation.

The next variable to consider is the oid of the nodes.  To understand what abstractions are available with the oid, it is important to keep in mind where the oid is used by the algorithm.  TORA uses the oid field to distinguish between different reference levels when they have the same (.  Since we are making the simplifying assumption here that all events are fully ordered, all generated ( values are unique and this function of the oid may be disregarded.  This frees us from having to consider oids playing a role in deciding whether two reference levels are the same and immediately yields a simplification of the state space.  If the ordering of the oids does not matter, then the actual values used do not have to be from an unlimited range of integers.  We may simply use an unordered set of unique identifiers to represent the oids.  This raises the question of how many oid identifiers are required to sufficiently model the behavior.  It is possible that many of the nodes may initially have oids corresponding to ids of nodes that are not connected to the network that were obtained through propagation.  It is necessary to model at least one of these external oid fields, and that is sufficient because aside from resolving different reference levels with common ( values, the only other way in which TORA uses the oid field is in comparing the oid of one node’s height to the id of another node.  The result may either be true or false, but the behavior is the same over the network whether there are multiple oid values not corresponding to any id values in the network or there is only a single oid value in place of each one of the multiple oid values.  This simplification only works because of the assumption that ( values are uniquely generated.

The r bit is a single bit of information per node.  It is difficult to see except possibly through reachability arguments where any simplifications may be applied.

Next we consider the ( associated with each node.  Again, we examine the way in which TORA uses ( values.  In TORA, ( is similar to (, in the sense that the relative ordering of ( values plays an important role in the behavior of the algorithm.  However, it is not only the ordering, but in branch (2) of TORA’s decision tree, it is required that ( values may be decremented by 1.  This makes it necessary to model the incremental differences between ( values.  While it is still not necessary to model the entire general space of all integers, as there is always one free variable in the sense that there is one value of ( which we may define absolutely and shift the rest keeping the relative differences between the (s constant, it is still beyond our modeling capability because it represents an infinite range of ( values.  An important abstraction is used here.

In order to check whether the behavior of any specification satisfies some invariant, it is possible to first weaken the specification, and then check the weakened specification against the invariant.  By weakening, what is meant is that any behavior that is exhibited by the original specification will be exhibited by the weakened specification, but the converse is not true.  The weakened specification will exhibit behaviors that are not possible in the original specification.  This does pose some risk in that if the weakened specification does not satisfy the invariant, it is possible that the original specification still might be correct and it is only due to the weakening that the system no longer satisfies a given correctness property.

To reduce the amount of state used by ( values, we will have to weaken the specification of TORA.  To achieve this weakening, we will introduce supplemental nondeterministic transitions to the system.  Conceptually, we will be permitting in our model more behaviors than the TORA specification allows.  The weakening allows us to keep track of only the relative ordering of ( values.  When using only the relative ordering of ( values, it is not clear where to place the newly generated ( relative to the other ( values that are ranked less than the one being decremented.  So when it is not possible to know where the newly created ( will fall, we weaken the specification and assume that all the state transitions may occur over all different possible placements of the new ( value.  This allows us to apply the ranking system to (, the same way that it was previously applied to (.  Since ( values are compared only between nodes that share a common reference level, we only need to rank them between nodes with common reference levels.  This system is more general than the original TORA specification, but any implementation of the TORA specification will implement this system so any invariants that apply to this model of TORA will still apply to TORA itself.  The alternative of keeping a full account of the ( would force us to deal with ( values from a possibly infinite range, which is intractable in our state enumeration approach.

Like the oid field, the id field is used by TORA to distinguish between relative heights of nodes where all preceding fields have the same values including (.  However, we have chosen to model the selection of ( values with a ranking system, and we are using nondeterministic choice to model transitions in ( values.  We further reduce the state space by making ( values unique across common reference levels.  This requires no assumptions about the algorithm, but again makes our formalism slightly more general than the actual specification.  The other places where the id field is used by TORA is in comparing it to oid fields.  The id field is therefore as the oid field, in having the domain of unordered sets of unique values.

Exhaustive Topology Generation

Since the goal is to test exhaustively all possible executions of the algorithm, it is necessary that every possible network topology is tested.  For this, we attempt to enumerate graphs to be used for the model checker.  The graphs relevant to this work are those that are simple, fully connected and with undirected edges.  That is, between any two vertices of the graph, there can be a single undirected link.  For more on graph theory see [2].

To enumerate these graphs, we must understand when two graphs are actually the same.  [7] gives some of the most powerful techniques currently used for graph isomorphism.

Definition:  Two graphs G1 and G2 are said to be isomorphic if there exists a one-to-one onto mapping ( : V1  ( V2 that takes the vertices V1 and maps them to V2 such that

( (x, y) ( E1  (((x), ((y)) ( E2 .

Also, since the mapping is one-to-one onto, the inverse mapping (-1 must exist and

( (x, y) ( E2  ((-1(x), (-1(y)) ( E1 .

Finding out whether two graphs are isomorphic, requires finding the reordering mapping ( that satisfies the above condition.

To represent the reordering mapping ( formally, we make use of the ordering of the vertices V.  As defined previously, each vertex in V has associated with it a unique integer.  These vertices are totally ordered with respect to their integer IDs.  In the following discussion, when referring to vertices in V, where it is necessary to refer to their natural ordering, they will be represent in the form

v1, v2, …, vn ,

where the ordering of these vertices must be

< v1, v2, …, vN >.

The formal representation of the mapping ( can now be given.  ( is formally a sequence of unique numbers, for example < 5, 1, 2, 3, 4 >.  Let U and V be two sets of vertices where that |U| = |V|.  Let ( be a mapping from U to V.

( vi ( V  vi = uj  where uj ( U  (  j is the ith integer in the sequence (.

The domain of ( for a given N, can be thought of as the set of all possible sequences

< i1 i2 … in >

where the ijs are numbers.  There are in fact N! of these sequences for any given N corresponding to N! reorderings.  The symbol ( will be used interchangeably to represent both the mapping from V1 to V2 and as a sequence of numbers.  The meaning will be clear from the context.

It is useful to note that there are two possible conceptual representations for ( that are equivalent to one another.  In the representation chosen, we can think of ( as giving a reordering.  That is sequence ( specifies a new ordering of the vertices in terms of their positions of the original ordering.  An alternative way of interpreting this mapping is as a ranking, which in fact corresponds with (-1.  ( may also be interpreted as a ranking of the vertices, that is, each number in ( gives the new rank of the vertex in the original graph corresponding with the position in (.

Since ( is a sequence it is useful to define certain sequence related terms to be used with (.  Firstly, we denote sequences in this paper as < x, y, …, z >.  (’s length, which is the count of numbers in its sequence, is given by |(| and usually |(|=|V| where V is one of the set of vertices associated with the mapping (.  Additionally, since ( is a sequence, it has a prefix and a suffix.  Let i( where i ( [1, … |(|] denote the sequence of the first i elements in the sequence (.  i( (where i < |(|) is also a sequence, and it defines a partial mapping from V1 to V2.  This mapping is incomplete, but useful because from i(, complete mappings may be derived by concatenating or prefixing more numbers.  Of course N( = (.  Similarly, (i denotes a suffix of (.  In order to specify the actual element in the sequence, the postfix addressing operator [k] is defined as representing the kth element in the sequence, for example ([k].  The numbering for the addressing operator starts at 0 and goes up to N - 1.

Concatenation is given by the “(” infix operator, but it is usually omitted and concatenation is depicted by writing the symbols for the two sequences adjacent to one another, the one on the left becomes the prefix and the one on the right becomes the suffix.

In order to reduce the number of test cases for the model checker, we wish to enumerate those graphs that are unique, in the sense that no pairs of graphs are isomorphic.

Here is a simple algorithm for generating the set of all unique graphs (without isomorphism) given a set of vertices V.  Let E be the set of all edges between vertices in V
{ (x, y) ( V x V | x ≠ y }.

Then

|E|= N(N-1)/2.

Considering all possible combinations of these links being on and off, the set of all possible graphs with vertices V is then given by

{ (V, E() | E( ( 2E }.

This power set is exponential in the square of the number vertices in V.  However, it contains many pairs of graphs that are isomorphic with each other, and many that are not fully connected.  Use Tarjan’s algorithm to filter out graphs that are not fully connected [9].  It is possible to test the resulting graphs pair wise for isomorphism and eliminate those that are isomorphic.  Algorithms for deciding whether graphs are isomorphic are described in the following.

Given that we are enumerating graphs, we might consider a scheme to generate graphs of size N recursively from the set of graphs of size N – 1.  From the set of all graphs of size N – 1, generate the graphs of size N by the following procedure.  For each connected graph of size N – 1, connect one additional vertex in all 2N-1-1 possible edge configurations.  As previously, it will be necessary to filter the result by testing resulting graphs pair wise for isomorphism, although it will no longer be necessary to use Tarjan’s algorithm to check for connectedness since the graphs are all connected by construction.
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Fig. 2.  Generation of all graphs where N = 4 recursively from graphs where N = 3.

Figure 2 depicts the generation of all 6 graphs with 4 vertices from all graphs having 3 vertices.

Definition:  An adjacency matrix is an N x N matrix that represents graph G.  Each of its entries (i, j), row i, column j, contains information about the edges in G.  The entry (i, j) contains

“1”  if (vi, vj) ( E
“0” otherwise

Note that the adjacency matrix defined in this manner is “0” along the diagonal because we are omitting self-edges.  Also, the adjacency matrix is symmetric across the diagonal because

(vi, vj) ( E  (  (vj, vi) ( E
Formally, we may encode the adjacency matrix as a string of length N(N-1)/2 consisting of “0”s and “1”s.  The string is produced by transcribing each value to the upper right of the diagonal in column-row order (which is also equivalent to transcribing each value to the lower left of the diagonal in row-column order).  All combinations of “0”s and “1”s conforming to length N(N-1)/2 are valid string representations of graphs.  We refer to this form of the adjacency matrix as the “serialized adjacency matrix”.  Figure 3 shows different representations of the same graph.  The arrows in the adjacency matrix show the two paths that can be used to obtain the same serialized adjacency matrix representation.
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Fig. 3.  Multiple representations of the same graph.

Graph Isomorphism

As an example of a brute force algorithm for figuring out whether or not two graphs are isomorphic that runs in O(N!), consider two graphs with an equal number of vertices N.  We attempt to find the mapping ( that satisfies the isomorphism requirement.  Choose one of the two graphs and apply to it all N! possible reordering mappings (.  Apply each ( to the chosen graph’s vertices and edges then recomputed the adjacency matrix.  If any of the resulting reordered adjacency matrices equals the adjacency matrix of the other graph, then the graphs are isomorphic.  In many cases though, it is not necessary to test all N! mappings.  A well known technique for reducing the search space is backtracking.

Definition:  A vertex invariant is formally a string that characterizes a vertex that is independent of the labeling or ordering of the vertices in a graph and can be computed without this information.

An example of a vertex invariant is the vertex degree, that is |N(v)|.  For any vertex v, of a graph G, the degree may be computed without any knowledge of the labeling of the graph.  Other properties, for example, the list of neighbors of any particular vertex will have a string representation that depends on the ordering or labels of the vertices.  One interesting property of vertex invariants is that they are closed under concatenation.  That is, given two vertex invariants, their concatenation is also a vertex invariant, which may be applied recursively again to the resulting combined vertex invariant to obtain a new vertex invariant.  Combining invariants in this way can increase their discriminating power.

Backtracking

The following discusses a decision tree, which is also a graph and therefore terminology applying to graphs will be used.  To help avoid confusion between vertices in graphs being examined and vertices in the decision tree, any time a vertex in the decision tree will be specifically referred to as a “tree node”.  “vertex” will refer to a vertex in a graph.  

We will describe a way to construct ( incrementally appending one number at a time.  Consider the set of prefixes

P1 = { < 1 > , < 2 >, …, < N > }.

This is the set of all valid prefixes of length one.  All possible mappings ( have as their prefix a unique element from the set P1.  Define the set Pi as the set of all prefixes of length i.  We generate the set Pi recursively by the following formula.

Pi = { ((< i > | ( ( Pi - 1  ( i ( ( }.

It is easy to show that
( i ( {1, …, N }  |Pi| = (N – (i – 1))|Pi - 1|

because

( ( ( Pi - 1  |{ i | i ( ( }| = |{1, …, N } – (| = |N – (i – 1)|.

The basic algorithm for constructing all possible mappings ( is already described above.  Start with the initial set P1, then recursively apply the formula

Pi = { ((< i > | ( ( Pi - 1  ( i ( ( }

until PN has been computed.  While straightforward, running this procedure would take a great deal of memory because the size of the set Pi = N! which can be very large even for moderate N.  Rather than hold every single possible ordering in memory simultaneously, it is possible to perform a depth first rather than the breadth first recursion.  That way, the memory utilization is N2 rather than N! .

An algorithm that maintains a single sequence of numbers S (for selection) that always represents the current partial mapping ( under consideration is described below.  It is described in a slightly more general form than necessary to simplify the proof.  Several auxiliary variables, which are listed below, are necessary for this procedure to work and it will be shown that the memory utilization is O(N2).

I:  a sequence of integers representing the initial partial mapping

A:  a sequence of unique integers (non-overlapping with S) that are to be appended

The sequence of numbers I can be any initial value specifying the desired prefix of the sequences to the explored.  It is typically < >, that is a zero length sequence.  The sequence of available choices A, is such that

( i ( A  i ( I.

A is the sequence of choices to be appended to the initial sequence S and explored in all its permutations.  Typically, the initial choice of A for this problem will be the sequence of all numbers from 1 to N, < 1, 2, …, N >.

In addition to the variables above, which are inputs to the algorithm, there are auxiliary variables used in the computations defined below.

S:  a sequence of integers representing the current partial mapping

Q:  a sequence of sequences of integers representing unexplored branches

U:  a sequence of sequences of integers representing explored branches

Q (for queue) is a sequence with size N + 1 and its embedded sequences have maximum size N.  The structure of U is identical, but it serves a different purpose from Q.  Q is conceptually a queue of branches that remain unexplored in the decision tree while U is the queue of branches that have already been explored in the decision tree.

The working variables have the following initial values.

S = I
Q = < A >

U = < <> >

Q and U are both initially length one.  The notation is somewhat peculiar but U is a sequence of length one containing only the empty sequence.

The algorithm is described below as a recursive formula (using the convention that the updated variables, are expressed by affixing a “(” character to the original variable).  The indented formatting style used is from [6].

(    (    |Q[|Q|-1]| > 0
(1)

(    S( = S ( 1(Q[||Q|-1|])
(2)

(    Q(  = Q ( < U[|U|-1] ( Q[|Q|-1]|Q[|Q|-1]|-1 >
(3)

(    U( = U ( < >
(4)
(    (    |Q[|Q|-1]| = 0  (  |Q| > 1
(5)

      (    S( = |S|-1S
(6)

(    Q( = |Q|-2 Q ( < Q[|Q|-2]|Q[|Q|-2]|-1 >
(7)

(    U( = |U|-2U ( < U[|U|-2] ( 1Q[|Q|-2] >
(8)

(   (    |Q[|Q|-1]| = 0  (  |Q| =  1
(9)

      (    halt
(10)

S represents only a partial mapping until |S| = N, at which point S specifies a complete mapping.  The algorithm halts (its behavior becomes undefined) when the condition on line (9) is satisified.  That is, the algorithm halts when there is only remaining sequence in Q and it has zero length.

The algorithm has three different branches of execution.  Lines (1)-(4) lengthen the sequence S by appending the first element of the last element of Q to S then it updates Q and U by appending appropriate elements to it.  Line (7) of the algorithm does two things:  it removes the last element from the sequence Q, shortening it by one; (7) also removes the first element from the sequence Q[|S|-1].  Line (8) does the counterpart of line (7) by removing the last element of U and taking the element removed from the sequence Q[|S|-1] and placing it at the end of U[|S|-1], in essence moving the first element of Q[|S|-1] to the end of U[|S|-1].  Finally lines (9)-(10) specify the halting condition for the algorithm.  Note that the conditions on lines (1), (5) and (9) are mutually exclusive and cover all possible Q.

This algorithm explores all possible mappings S that result by appending each permutation of sequence A.

Proof:  We proceed by induction on the length of A and where I can be any sequence of unique integers.  To establish the base case, consider what happens when

A = < >  (  |A| = 0.

Initially,

S = I
Q = < <> >

U = < <> >.

The condition on line (9) is satisfied and the algorithm halts immediately.  S has explored only the initial value I, which is consistent with the result.

For the inductive hypothesis, assume that for any sequence A of length N – 1, S explores all possible permutations of A appended to I and eventually the algorithm halts with S back in its initial state I, Q = < <> > and U = < A >.  Now consider what happens then when the A has length N.  Initially

S = I

Q = < A >

U = < < > >

Call this system (1.  What happens next is lines (1)-(4) are executed.  This results S being extended by the first element in A, then in Q being extended by the sequence < U[|Q|-1] ( Q[|Q|-1]|Q[|Q|-1]|-1 >, which is at this point equal to A|A|-1.  At this point, the key observation is that the system is very similar a system, call it (2 initialized with I = I ( 1A and A = A|A|-1.  The only difference between this system and the system specified is that (1 has an additional element prefixing Q and an additional element prefixing U.  However, since all the manipulations of Q and U in lines (1)-(8) of the algorithm except for the halting condition on line (5) are relative to the tail end of Q and it does not matter what the length of Q is, the behavior of the systems up to the point where |Q| = 1 is indistinguishable.  At the point where (2 has |Q| = 1, the state of the system is given according to the inductive hypothesis by I, Q = < < > > and U = < A > and S has explored all possible permutations of A appended to I, where I is actually I ( 1A and A is actually A|A|-1.  (1 is in an analogous state where instead of the Q and U described above, it has Q = < A, < > > and U = < <>, A|A|-1 > so it does not halt.  Instead, it executes lines (5)-(8), removing the second elements of both Q and U then taking the first element from the first sequence in Q and moving it to the end of the first sequence in U.  Again, we have the situation where lines (1)-(4) are executed, but this time, I is initialized to I = I ( < A[1] >.  This process repeats until all sequences are explored.  (
The algorithm converges and explores every possible ordering of the input sequence.  Additionally, it has the property of exploring things in a non-repeating prefix manner.  That is, when S takes on a certain value with a specific prefix, it explores all possible strings with that prefix before changing the prefix.  This allows us to prune the search space when we know that a specific prefix is not a possible prefix for the mapping.  This is accomplished by executing lines (5)-(8) which backtrack to the prior prefix rather than lines (1)-(4) which extend the current prefix.

This search is memory efficient as and it has simple recursive implementation.  The search proceeds along the leftmost or rightmost branch and when a dead-end is reached, that is an ordering is found that cannot possibly be the ordering ( as it does not have the correct corresponding adjacency matrix, backtrack up to the parent node and take the leftmost or rightmost branch that has not yet been searched.  It is memory efficient because going depth first, we need only to store one path of nodes and “backtrack” to parent nodes when a branch is eliminated.  The above description of the algorithm suggests that the implementation will consume O(N2) since each of the N layers in the search tree requires a separate sequence of length O(N) to be maintained.  This is not necessary though.  It is possible to share the same queue and perform manipulations on it as the queues are not accessed across layers of the recursion.

Vertex invariants.

One well known vertex invariant is the degree of the vertex.  The degree of a vertex refers to the number of links that it has, which can also be thought of the count of “1”s in its row or column in the adjacency matrix.  Each choice of mapping ( must be such that each vertex under the remapping has the same degree as the corresponding vertex from the graph being tested for isomorphism.  Let V1 and V2 be two sets of vertices corresponding to graphs G1, and G2 respectively.  Let ( : V1 ( V2 be the mapping under consideration.  Then formally:

( x ( V1  |N(x)| = |N(((x))|

where |N(x)| is the degree of node x.  If the degrees do not match for a pair of vertices, then all descendants of that node may be eliminated from consideration.  In addition to degree, there are other criterion that may be used also, for example the sum of the distances between the vertex and all other vertices in the network.  Described next are other methods that may be used to prune the tree.

Nth degree list.

In addition to using the degree of the vertex, it is also possible to use the Nth degree of the vertex.  Define the Nth degree of the vertex x as being the number of vertices who’s minimum distance to x is equal to N.  The sequence of Nth degrees which may be obtained by performing a breadth first search starting at each vertex, nothing the number of unmarked vertices reached for each iteration of the search, gives additional information that can be used to prune the tree.

Serialized adjacency matrix prefix invariance.

Given the set of vertices

V = { v1, v2, …, vN },

with ordering < v1, v2, …, vN >,

we make the following observation about the serialized adjacency matrix.  For N > k ( 1, the values in the upper left k x k block of entries in the adjacency matrix depend solely on edges between vertices

{ v1, v2, … , vk }.

This block does not depend on the ordering of any vertices in the set

{ vk+1, vk+2, …, vN }.

The entries in the adjacency matrix for any index greater than k can vary based on the choices following k.  However, once the kth decision has been made in the decision tree, the upper left k x k block of the adjacency matrix is fixed and it will be invariant over the remaining N – k choices.  The depth first search is well suited for using this invariant as it builds prefixes incrementally.  Once the kth element in the prefix has been guessed, the upper left k x k block of entries can be tested against the upper left k x k block of the other graph to prune the tree.  Also, this technique has the benefit of only needing to test the data associated with the kth column of the serialized adjacency matrix since the prefix is constructed incrementally, the shorter prefixes have already been tested.  This is different from a vertex invariant in the sense that it makes use of information available in a partial ordering of the vertices.

Hashing

While being able to prune the decision tree does reduce the amount of computation necessary, for the majority of graph pairs there are ways to avoid the decision tree altogether.  Obvious ones include ensuring the number of vertices and edges is the same in both graphs.  A powerful method is to take the sorted list of vertex invariants for both graphs to be compared and make sure they are equal.  We can make these matches highly efficient by maintaining a sorted list of these non-unique identifiers and performing binary searches for matching.  Or as in this particular implementation, we could implement a hash code for the signatures and perform matches in a hash table.

Canonical Representation

An alternate approach to this problem is that of coming up with a canonical representation of the graphs.  A canonical representation is formally, a string describing a graph such that for all graphs that are isomorphic to each other, the strings are identical and for all other pairs, the strings differ.  Rather than having to test all the candidate graphs pair-wise against each other for isomorphism, with the canonical representation, it is possible to sort the representations and reduce the number of comparisons necessary.  Also, comparisons between different graphs can occur in linear time with respect to the length of the string representation rather than exponential time.

One such canonical representation is obtained by serializing an adjacency matrix.  The serialized adjacency matrix is not by itself canonical because a graph can have multiple such representations depending on the ordering of the vertex labels.  To find one that is unique, first generate all N! of these strings by evaluating all N! permutations of vertex label orderings.  From that set, choose the string with the greatest value, lexically.  This string is unique and is a canonical representation for the graph.

The above procedure is very computationally inefficient, and all currently known algorithms for producing canonical representations of graphs are of exponential complexity in the worst case.

As with determining whether a pair of graphs is isomorphic, it is possible to prune the decision tree for computing the canonical representation for a graph.  However, instead of proceeding depth first as in the test for isomorphism, it is better to search breadth first since we have to find the globally minimal string.  A breadth first search allows results at a higher level in the tree, where there are fewer branches to be compared against each other before descending to the lower levels where there the number of branches increases exponentially.

In order to limit the size of the space searched, a number of optimizations have been incorporated that are similar to the ones used in pruning the search tree for graph isomorphism.  However, even with these optimizations, there are still cases of graphs where the algorithm must take exponential time to compute the canonical representation.

The first of these optimizations is the restriction that the vertices must be ordered according to the ordering of their vertex invariants.  This works best when there is not much symmetry in the graph and each vertex has a different value for its invariant.  When the graph exhibits a great deal of symmetry, this approach does little to restrict the search as all the vertex invariance strings are identical.  For example, if the graph is fully connected, then all the Nth degree strings will be string representation of the number N - 1.

To help avoid the situation where all the vertices have the same invariance strings, we reduce vertices that are indistinguishable from each other into a single vertex.  Two vertices x and y are indistinguishable when their adjacency lists are identical with the exception that if x ( N(y) then y ( N(x).  For these vertices, their ordering may be swapped freely in the adjacency list without affecting the adjacency matrix or the canonical string representation.  However, when we reduce these vertices to one vertex, the resulting matrix and string no longer uniquely identifies the graph as it could correspond to a graph with fewer vertices.  To distinguish graphs that contain indistinguishable vertices, we include in the string a prefix to each column listed “(multiplicity, mutually connected)” where multiplicity is the string integer representation of the number of nodes that are in the indistinguishable set and mutually connected is the value “1” when the indistinguishable vertices have each other as neighbors and “0” otherwise.

Automorphisms

Very much related to graph isomorphisms is graph automorphisms.  An automorphism is a relabeling of a graph such that the adjacency relationships between the nodes remains the same.  Let ( be an automorphism of graph G having vertices V and edges E.  Then ( : V  ( V such that

( (x, y) ( E  (((x), ((y)) ( E.

In order to find the automorphisms of a graph G, it is possible to use the same backtracking decision tree as described previously but instead of terminating when an automorphism is discovered, the algorithm simply adds the automorphism to a list.  The automorphisms are stored in the form of trees so that they may be searched rapidly.

Distributed Graph Enumeration

Both of the above algorithms are implemented both as a distributed algorithm and on a tradition single processor.  The following describes the design of the distributed version of the program.  The single processor version is straightforward.

The design uses Java RMI for communication between processors.  The computers used are the workstations that are on the University of Maryland’s campus network, so the bandwidth available between them is 10-100 Mbps.  This is very slow compared to local memory access of the machines, but by employing pre-fetching and minimizing the size of the data that is sent back and forth over the network, it is possible to keep the machines at near maximum throughput.
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Fig. 4.  Interaction between clients and servers.

The basic architecture has one machine to perform centralized coordination of all the jobs and minimal computations otherwise.  This central machine is called the “supervisor” or “server” in our implementation.  The machines that are responsible for actually performing the computations are the “workers” or “clients”.  The basic process begins as the supervisor creates a queue of jobs that need to be performed.  The workers connect to the supervisor and request tasks to be performed.  The supervisor serializes the tasks that it has in its job queue, and then sends them to the worker machines to be processed.  The worker machines demarshall the tasks (serialization, marshalling and demarshalling are all handled by Java’s RMI) and processes them.  Upon finishing the assigned tasks, the worker submits the results to the supervisor.  It may request a new task at this point.  The process continues until all tasks are completed and all results have been submitted to the supervisor.

Two strategies for enumerating graphs are implemented.  The first strategy, which is fast on a single processor system, is the hash and backtracking algorithm.  The main computation that occurs in this algorithm is the pair-wise comparison of all graphs in a tournament style.  Each new graph that is generated must be compared to every other graph that has already been generated.  This cross comparison with multiple graphs is where the majority of the machine computation occurs.  In order to distribute this computation between all the different workstations, each worker machine must maintain a list of all the graphs that have been previously generated so it can perform comparisons to the new graphs that it is checking for uniqueness.  Hence every single graph must be distributed across the network to every single workstation participating in this computing cluster.  This communication becomes a bottleneck for the process.

To improve the performance of this process, each worker caches the set of graphs and maintains this set of graphs as new graphs are generated.  Since each worker constantly generates new graphs, there is a continuous synchronization requirement between them.  In this implementation, it is the supervisor that serves as the point of coordination between all graphs.  As a worker submits a completed task to the supervisor, it could be the case that other workers (while this worker was processing the task) have submitted new graphs that were not present before this worker completed its task.  Hence, submitting a new graph actually occurs in two phases.  In the first phase, the worker informs the supervisor that it has a new graph to add to the list of graphs.  The supervisor then locks access to a master list of all the currently known graphs and provides the worker with the list of graphs that have been submitted since the worker last submitted a task.  The list remains locked while the worker compares the graph that it is getting ready to submit to the list of graphs just received from the supervisor.  This delay is a bottleneck and may cause all the workers to wait for the one worker to finish its update.  In practice, this caused major performance problems when any one machine in the cluster is loaded, for example with another process. 

The preceding algorithm is inefficient for cluster computing because all the workers must wait for the slowest workers in the group in the synchronization step.  This leads us to consider an alternative algorithm where there is no waiting required by any of the workers.  In the computation of canonical forms of graphs it is not the comparison of graphs that takes time; it is instead the calculation of canonical forms.  The task for each worker is then to calculate the canonical form for a set of graphs and to submit their canonical forms to the supervisor.  In this case, the supervisor is responsible for comparing the canonical forms to the existing list which can be done very efficiently with a hash table.  The only disadvantage of this approach is that the computation of canonical forms seems less efficient than the direct comparison of graphs.

State Enumeration / Initialization

The basic approach in enumerating the states is to generate all possible combinations of heights of the nodes as described above, then for each state, finding all possible successors and marking these as transitions in the nondeterministic finite state automaton.  There are further reductions possible, and reachability analysis should be applied to cull the state space.

The overall approach taken here is to model TORA under the condition that the topology does not change.  However, it is necessary to consider the possibility that the topology was changing leading up to the point where we are modeling from.  This leads to the conclusion that virtually any state configuration is a possible initial condition.  Anytime the topology changes, it is always possible that the topology changes occur faster than TORA has time to respond and for any given node, it is always possible to reach any height given the proper initial conditions.  Hence, by changing the topology it is possible to reach any configuration of nodes and heights.  We can also argue that since TORA does not specify initialization of the network, it is conceivable that the network may be initially in any configuration as long as the ids of the nodes are unique.

While the above is true regarding the heights of the nodes, there is one piece of state in TORA that is not captured by the heights alone.  That is, a single bit representing something about a prior event is also part of TORA’s state.  This bit captures whether the last event causing a node’s height to become locally minimum in its neighborhood was a dropped link event.  The behavior of the system is affected by this bit.  If the event causing a node to become a local minimum is a dropped link, the node generates a new reference level which does not depend on the height of its neighbors though is guaranteed to be globally maximum.  All other state transitions depend on conditions placed on the heights of the neighbors of the nodes.

We ignore this bit of information and do not include any transitions of that type in our state machine for the following reasons.  The criterion we are checking for is that the state machine should converge.  The only way for the state machine to diverge is if there are loops formed by state transitions.  Since we know that this bit is set only by a topology change, and the system we are modeling is free from topology changes, this bit can never be set except initially.  Once this bit is unset, it will never be set again.  Therefore no loops will ever be formed involving states having this bit set.  We assume that all states that are reachable are enumerated, including those only reachable from initial conditions with the linked dropped bit set.  The transitions are not enumerated however and this is acceptable because we know that they will never be a part of loops in the system.

State Space Reduction and Partitioning

It is possible to reduce the state space explored further by exploiting the symmetry in the problem.  One of the techniques used here is using automorphisms of the graphs.  For a given graph, two states are the same, if the heights of the nodes are automorphic permutations of each other.  Formally, this criterion is expressed as

( x ( V  hf(x) = ((hf(x))

where ( is an automorphism of the graph.  Depending on how much symmetry is available in the graph, this can reduce the size of the state space by several fold.

Another technique used to reduce the size of the state space is partitioning.  If a partition of the state space exists, then it is beneficial to exploit this partitioning.  The first reason is that it is possible to evaluate a partitioned state space in parallel over multiple processors by independently processing each partition.  The second reason is that may graph algorithms are worse than linear in the number of vertices.  Therefore, we would expect it to run faster if we can reduce the number of states that need to be evaluated simultaneously.

By exploiting the network’s symmetry, a reduction may be achieved by the proper assignment of node ids.  There are two cases to consider and we will evaluate them separately (there is a state space partition between them).  The first case is where the network is connected to the destination, and the second case is where there is a network partition and the destination is not part of the network  By convention, since the value of the id does not actually matter, we assume that an id having value 0 always represents the destination.

In the case where the destination is present in the network, we must consider each node as a possible destination.  However, if there is symmetry in the network, certain locations for the destination are equivalent to others.  We use the graph’s automorphisms to reduce the number of possible places for the destination that we need to evaluate.  For each orbit, there only needs to be once choice of destination.  It would be redundant to evaluate the state machine under choices of destination that are in the same orbit because the state machines would be equivalent to each other.  Once the destination has been chosen, the assignment of the rest of the ids is arbitrary because again, their values do not matter, only that they are unique.  Since we are working with a canonical representation of the graph where there is an ordering associated with the nodes, we adopt the convention that once we determine the location for the destination, we number the non-destination node ids in their canonical ordering with integers 1 through N - 1.  It is possible to use only a single permutation of ids because the rest of them are covered by fully permuting the oids.

In the case where the network is under partition and the destination is not actually in the network, the selection of ids proceeds simply by assigning the values 1 through N to each of the nodes in the canonical ordering.  Other configurations of ids are actually equivalent to other configurations of oids which are reached again through fully permuting the oids.

Loop Detection

Given a state machine, we need an algorithm for determining whether or not it contains any cycles.  The state machine is essentially a digraph where the vertices correspond to the states and the directed edges correspond with enabled transitions between states.  We use a depth first recursion to detect cycles in the graph.  The algorithm requires associating with each vertex a mark which is initially in the state unmarked but as the algorithm progresses, the state of each mark transitions first to in progress and finally to marked.

The following is a description of the algorithm.  As stated earlier, all vertices are initially unmarked.  As long as there are vertices with the state unmarked, select one of them arbitrarily.  If there is an order associated with the vertices, it is convenient to just choose the next unmarked vertex in the order.

After selecting an unmarked vertex, call this vertex x, first update the mark of the vertex to in progress.  Consider all the marks associated with vertices for which the directed edge (x, y) exists.   If any of these neighboring vertices has a mark in the state in progress, then a cycle has been detected and the algorithm terminates.  Otherwise if the state of the neighboring vertex is unmarked then recursively apply this algorithm using the neighboring node for vertex x.  Do nothing if the neighbor is already in state marked.  When done recursively checking the adjacent neighbors, update the state of vertex x to marked.

The algorithm terminates when either a cycle has been detected or all vertices have been marked.  The proof of convergence for this algorithm is straightforward.  For N vertices, there are 3N states of the marks.  Each mark may only progress from unmarked to in progress to marked.  Since there are a finite number of states and there is no way for the state of the algorithm to cycle, it converges.

Correctness of this algorithm may be demonstrated by using an invariant based on which vertices may become marked.  A vertex may be marked only if it is not part of any cycles.  Initially, this is true, and there are no steps in the algorithm where this can be made false.

Implementation

Distributed Graph Enumeration

One important issue in the distributed program is the communication bottleneck.  Each time a worker must request a task or submit a task, it has to wait under two conditions.  The first condition is when the server is busy communicating with other workers.  The second condition is when there is delay caused by the network.  In any case, it would be more efficient to continue the calculation in parallel with trying to communicate with the server.  Two buffers are used for this.  The first buffer is the request buffer, which has a fixed length that is determined by how long the expected delay of the server is and how long each computation will require.  The second buffer is used to queue the data that is to be sent back to the server.  The process uses three parallel threads.   One thread continually checks if the input queue is full, when it is, it blocks until it is not full, but when it is not full, it issues requests to the server for tasks to fill the queue.  The second thread performs the actual calculations and it continually checks the input queue for tasks, blocking when the input queue is empty.  When this computational thread completes each calculation, it places the results in an output queue.  The third thread monitors this output queue and as data becomes available, it sends it back to the server.  All three of these threads work simultaneously.  This prevents the workers from having to wait for the network roundtrip time of requesting a new task from the server and submitting results to the server.  In fact, the pre-fetching is performed in parallel with the calculations as it takes only a small amount of the processor and is mostly bound by input and output.

In maximizing the throughput in the distributed cluster, another bottleneck is the size of the data.  Originally, we relied on Java serialization to perform the marshalling and demarshalling of the data sent back and forth across the network.  Java’s serialization takes the objects and writes each field to a stream of data.  This is inefficient because the objects contain a large amount of data.  The graph data structure, for example, is implemented as an adjacency matrix where each entry is a Boolean (which is stored in Java as a full byte because addressing Booleans is much less efficient).  It is much more compact to actually store the graph as bits and to handle the serialization directly.  At this point it might be a good time to mention some of Java’s deficiencies.  While eliminating some ambiguity, all the infix bitwise operators in Java automatically promote whatever data type is currently being used to integers.  This makes it very hard to perform computations on bytes, which is important in this problem.

This raises another interesting possibility for implementation.  It is possible to perform operations on the compact graph representation where each link corresponds to a specific bit in a particular byte.  The addressing scheme used is described here.  The serialized adjacency matrix contains a single bit for each relevant bit in the adjacency matrix (in the adjacency matrix there is some redundancy because each link has two entries (i, j) and (j, i)).  The formula for finding out the offset of any bit into the serialized adjacency matrix is given below.

offset = row + column(column-1)/2

Assume that the offset, row, and column are numbered starting at 0.  Using the above formula to address the bits and applying the appropriate bit masks actually results in a great deal of overhead to accesses of the link data for the graph.  It does have the advantage of being much more space efficient.  In this design, the serialized adjacency matrix, which is an array of bytes, is used only in two cases.  The first case is transiently, when the graph data must be sent across the network we desire the transmitted information to be as compact as possible.  The second case is at the server where a complete list of all the canonical forms are maintained, which has the added benefit of using less memory at the server.  However, anytime a computation must be performed regarding the graph, the full graph is used so that indexing operations are fast.  The indexing might be faster if it were written in C rather than Java because of the automatic promotion of infix bitwise operands to 32 bit integers even if they are simply 8 bit bytes.

Handling the marshalling and demarshalling of the data directly rather than applying Java’s default serialization mechanisms improved the performance of the system by threefold in spite of increasing the communication overhead by introducing another layer of translation between the graph type and its compact format.

Bit Pattern Generation

To generate exhaustive sets of bit patterns, we use the following recursive algorithm.

    void generateCombinations(Consumer c, int next) {

        if (next == _bits.length) {

            c.consume(_bits.clone());

        } else {

            boolean set = false;

            do {

                _bits[next] = set;

                generateCombinations(c, next + 1);

                set = !set;

            } while (set);

        }

    }

This method is called initially with next having value 0.  The variable _bits is an array of Booleans.  The Consumer argument to this algorithm is a receiver for the generated values.  It is part of a design pattern used in this work that will be described later in the section on the Recursive Iterator.

Permutation Generation

Similar to the algorithm for generating bit combinations is the algorithm for generating permutations.

    void generateOrderingsRecurse(Consumer c, int[] order, int next) {

        if (next == order.length) {

            c.consume(order);

        } else {

            generateOrderingsRecurse(c, (int[])order.clone(), next + 1);

            for (int i = next + 1;  i < order.length;  i++) {

                int[] newOrder = (int[])order.clone();

                int temp = newOrder[next];

                newOrder[next] = newOrder[i];

                newOrder[i] = temp;

                generateOrderingsRecurse(c, newOrder, next + 1);

            }

        }

    }

This algorithm is called initially with order being the array of integers [ 0, 1, …, N ] and next having value 0.  The algorithm works by swapping all possible values into position from left to right.  The Consumer argument is the same as the one described in the last algorithm.

TORA State Enumeration

Having developed a model for TORA’s state space, the specific method for enumerating the state space still uses further abstractions.  The state variables are assigned in a sequence based on their dependencies.  The approach used here relies on an implicit representation of the state that is then mapped into an explicit state representation to avoid enumerating redundant states.

We start with the assignment of node ids.  In particular, if the destination is part of the network, then we have to select which node is the destination based on the automorphisms as described previously.

Since in TORA, all heights are totally ordered, we make use of this property in the next step of the enumeration.  We use the algorithm for generating reorderings that was described previously to generate all possible orderings of the nodes.  Once an ordering has been decided, we go about deciding what values there are for the other variables.  This generated ordering of the nodes must respect the fact that the destination should always have the global minimum height in the network.

Given the ordering of the nodes, the possible ( values consistent with this ordering may be computed.  The nodes are totally ordered, so ( values must increase with the position within the ordering.  To represent these increments in ( values, we use an array of Boolean variables of length N – 1.  A value of “true” for the ith Boolean variable indicates that between node i and i+1, there is an increment in the value of (, a value of false means that there is no increment.  Thus all possible assignments of ( values are achieved by considering this array of Boolean variables over all 2N-1 possible values.

We have assumed that events are totally ordered in TORA and perfect clock synchronization, which means that common ( values implies common oid values.  So the assignment of oid values depends on the assignment of ( values.  Once the sequence of (s has been decided, we assign the possible oid values to be consistent with the ( values we decided on.  Also, the particular assignment of oid values is slightly affected by whether or not the destination is part of the network.

If the network is under partition, the oids take on values in the range [ 1, …, N + 1 ].  The oid values 1 through N correspond with ids that are actually part of the network while the value N + 1 which is the one id value required to represent all ids that are not part of the network.

On the other hand, if the network is not under partition, and the destination is included in the network, the oids take on values in the range [ 0, …, N ].  It must be the case that the destination takes on oid value 0, corresponding with its id value because that is always the initial oid assignment for the destination and it never changes.

The combinations of oid value assignments that are permitted are those that are selected from the accepted range just described and are equal over blocks of continuous ( values.  That is, for each continuous ( segment, a choice of oid value from the range [ 1, …, N + 1] or [ 0, …, N ] depending on whether or not the network is under partition, is made and it is independent of all other choices of oid assignment to other ( segments.  The exception to the rule is with the first segment in the unpartitioned case which includes the destination.  This segment always has oid 0.  If A is the number of continuous ( segments not including the fixed destination segment, the number of possible oid assignments is (N + 1)A.

The assignment of the reflected bit depends also on the assignment of (, but is independent of the oid assignment.  For each continuous segment of ( values, a pivot is chosen separating the non-reflected nodes on the left and the reflected nodes on the right.  This pivot point is permuted across all possible positions and combinations of positions with the given ( segments, but in the unpartitioned case, the destination node is never reflected.

Finally, the assignment of ( is fixed once the previous state variables have been determined.  ( is assigned increasing values starting at 0 for each segment of reference level given by (, reflected, and oid.

Recursive Iterator Design Pattern

Several recursive functions are used to compute permutations of state variables and for reasons to be described in the following, this is inconvenient and hurts the encapsulation of these functions.  A way to encapsulate recursive procedures is described in [1] and here we present it as a design pattern [4] along with some implementation insights.

Intent

Encapsulate access to a sequence of outputs from an algorithm, especially one that relies on the call stack as a data structure.

Also Known As

Producer Iterator

Motivation

Recursive algorithms that produce a list of outputs throughout execution while relying on data that is placed on multiple call frames can be difficult to encapsulate.  The reason for this difficulty is that once the algorithm is called, it does not return to the caller until it has terminated.  Particularly, when the algorithm generates a sequence of results that are available before termination, we desire that client code should be able to process these incrementally generated results as they are generated, rather than waiting for the algorithm to halt.  At the same time, it would be beneficial for the solution to place as little burden on the client code as possible and to be reusable.

An obvious way to solve this problem is to store the results incrementally on a list while the algorithm runs, then to return this list to the caller when the algorithm terminates.  This solution places very little burden on the client code, however, it is uses memory inefficiently.  The problem is that if the algorithm generates a very long sequence, a very large amount of memory will be needed to store each result.  This solution requires all of the data elements to be stored simultaneously in memory, even though it is possible that the client only requires access to them one at a time.  A better solution will allow the client to access the elements as they are being generated and have the client decide whether or not to store the data.

The fact that the algorithm is recursive does not preclude rewriting it as a non-recursive algorithm and then providing a way to iterate through the incremental results that are made available.  However, if the algorithm relies on the values stored at different levels in the call stack, rewriting the algorithm to not use recursion may require the use of a stack explicitly, which is much more cumbersome than using the implicit call stack, especially if the algorithm is expressed naturally as a recursion.  This solution is workable, but requires a great deal of additional effort. 

Yet another solution, which avoids both the maintenance of a list and a great deal of work in rewriting the algorithm is to require the client code implement a callback which is then passed to the recursive algorithm.  The recursive algorithm passes generated values to the callback, thereby allowing the client to perform operations on the data as it is generated.  This has the unfortunate side effect of placing a constraint on how the client code is to be written and simultaneously creates additional coupling between the client code and the algorithm.  The client code, in order to support this solution needs to have all of the state necessary to process the element generated by the list available as member variables.  This pollutes an object’s member space when these variables include transient counters and other variables that are more naturally expressed as call stack variables.  While this does not place much of a burden on the algorithmic code, it puts a great deal of burden on the client code and creates additional coupling.

The recursive iterator pattern is intended to encapsulate access to the sequence of elements that is generated by a recursive algorithm while minimizing coupling with client code and allowing the algorithm to still be expressed as a recursion.  The key idea in this pattern is to create a second call stack for the recursive algorithm which is separate from the client call stack.  We achieve this by using a separate thread for the recursion.  The algorithmic code is then passed a callback, implemented in the recursive iterator object.  The recursive iterator object implements a classic, producer-consumer synchronization where the message passed in the callback corresponds to the element being produced.  Hence, the callback may block, in effect pausing the recursive algorithm.  The recursive iterator also provides an iterator, which is used by the client, corresponding to the consumer.  A call to retrieve the next element in the iterator may block, and when it does, it leaves the producer (the recursive algorithm) to generate its next element, thereby unpausing it.  In this manner, the recursive algorithm produces the data for the client code.

Notice that the recursive iterator object may contain a buffer for values produced by the recursive algorithm.  This creates an opportunity for parallelism between the client code and the recursive code.  For example, while the client code is waiting for I/O, it is possible that the recursive algorithm can advance in the meanwhile.  Furthermore, parallel pipelines can be constructed based on these recursive iterators for use in multiple CPU systems and it is not necessary for the algorithms encapsulated by the recursive iterators to be recursive.

Applicability

Use the Recursive Iterator pattern

to provide access to a sequence of elements generated by a recursive algorithm.

to support parallelism between incrementally processed stages of data.

to provide iteration over any sequence of generated elements.

Structure
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Fig. 5.  Class diagram for recursive iterator design pattern.

Participants

Algorithm – generates sequences of elements that is prompted to start through a realization of the Producer interface.

Client – accesses the elements generated by the algorithm through the Iterator interface.

Iterator – defines an interface for accessing and traversing elements.

RecursiveIterator – implements the producer-consumer thread initialization and synchronization code and realizes the Iterator.

Producer – defines an interface for generating new elements.

Consumer – defines an interface for accepting new elements.

Collaborations

The algorithm produces new elements, which are then queued by the RecursiveIterator in preparation for providing them when next is invoked on the Iterator by the client.

Consequences

The recursive iterator pattern simplifies the interface to elements generated by a recursive algorithm while keeping the implementation of the algorithm itself also simple.  Additionally, the pattern creates opportunities for parallelism in the code.

Implementation

The recursive iterator pattern can exploit anonymous inner classes, a Java language feature.  The use of anonymous inner classes to implement the Producer and Consumer interfaces reduces the amount of namespace clutter required.  To illustrate how this technique works, consider the following snippet of code from the RecursiveIterator implementation.

    private void produce() {

        _producer.produce(new Consumer() {

            public void consume(Object o) {

                synchronized (_mutex) {

                    assignNextAndNotify(o);

                    waitAvailable(false);

                }

            }

        });

        synchronized (_mutex) {

            assignNextAndNotify(_END_OF_LIST);

        }

    }

The Consumer is realized as an anonymous inner class of the RecursiveIterator.  This usage is very similar to the action listener anonymous inner class realization idiom.  This allows the consumer member variables and methods of the RecursiveIterator.  While this could be achieved through correct visibility and packaging, this implementation has a smaller namespace profile than having a separate Consumer implementation.  The other alternative would be to have the RecursiveIterator implement the Consumer interface directly.  This would unfortunately lead to making the Consumer interface methods public, which is not what is intended here.  Similarly, the Producer interface may be implemented by the Algorithm as an anonymous inner class as well and can be facilitated by having the Algorithm take responsibility for instantiating the RecursiveIterator.  

Distributed Architecture
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Fig. 6.  Class diagram for distributed architecture.

Several classes and interfaces form a basic architecture for running distributed batch jobs.  This is useful primarily for exploiting large grain parallelism, which is prevalent throughout the problem we are studying.  A single server that creates jobs and workers that connect to the server. The diagram depicts how both of the distributed processes make use of the classes and interfaces of the basic abstract implementation.  There are two basic implementation classes and two interfaces.

The TaskManager class is an abstract implementation of the Supervisor interface that instantiates both the workers and the tasks to be completed.  The only abstract method is dumpTasks(), which takes a Consumer as an argument.  The subclasses implement dumpTasks() to generate specific tasks to be completed in a distributed manner implementing the Task interface.  At initialization, the TaskManager uses the Unix rsh facility to instantiate workers on other machines.  Once instantiated, these workers establish an RMI connection to the Supervisor interface implemented by the TaskManager.  The TaskManager includes some other basic functionality such as logging the submitted solutions to the tasks.  This behavior can be overridden as it is by the GraphEnumerationTask.

Worker is a class that requests tasks from the Supervisor interface remotely over RMI and executes the tasks it receives by calling the execute() method in the Task interface.  It then gets the results and submits them back to the Supervisor interface using the submitSolution() method.  It also includes methods that can be overridden such as postProcess() which allow an alternative implementation to do additional processing of the tasks received before submitting them.

A minimal implementation of this distributed process requires that the client code include a concrete implementation of the Task interface and also a subclass of TaskManager that implements the abstract method dumpTasks() which provides the tasks to be processed.  If additional functionality is required, the Worker class may be subclassed as it is in the case of the graph enumeration implementation.  This is so that some state may be stored in the Workers, which are usually memoryless.

Results

Graph Enumeration

Intuitively, this problem of graph enumeration should be very well suited to implementation in a distributed system because many of the calculations are independent of each other.  However, the performance on the distributed system varies depending on which algorithm is chosen.

When the algorithms above are implemented on a single processor, the overall performance in enumerating graphs is roughly double using the hash and backtrack algorithm.  More than 95% of the isomorphism problems are decided by the hash, which is very fast compared to the search through the decision tree.  The canonical form, which always requires a search through a decision tree with an upper bound of O(N!) in computational time is slower.

Overall, the cluster gives better performance than the single processor version in spite of the code optimizations that make the single processor version of the code roughly twice as fast as the distributed version.  However, there is something to be said in general about cluster computing.  The machines in the University of Maryland’s computing cluster, consisting of 400 MHz Sun Ultra 10 workstations are quite slow compared to certain single processor systems.  An Athlon 1400 MHz machine performs the same task as the school machine roughly 3.5 times faster (which is close to the clock speed multiplier).  This is not a computation based on the processor speed (400 x 3.5 = 1400), but it is actually the experimental result.  Also, since the single processor code is inherently twice as fast as the distributed code already because of certain optimizations that are not available in the distributed version, the overall effect is that the single processor code is equivalent to 7 machines running in parallel.  We expect then that the performance of the cluster of machines used to be 40/7 = 6.  This is approximately the speedup achieved.  Overall, the speedup achieved by running across a cluster of 40 machines is appreciable, but not as significant as expected.  It was overall about thrice as fast as running on a single fast processor, though it is about 10 times faster than any single processor in the cluster.

Any one of the above mentioned factors would improve the performance of the cluster.  The most significant of these factors is the relative processing speed of the individual computers in the cluster compared to the processing speed of the single fast computer.  The other significant factor to take into account is the use of different algorithms in the distributed and non-distributed code.  In general, there will always be optimizations available to single processor machines because global memory is local.  These optimizations will not be available to a distributed system, though it may be argued that for a parallel processor system with shared memory, many of the issues encountered in dealing with the network overhead would be eliminated, such as the need for caching data locally and converting the data to a compact representation for transport across the network.

State Enumeration

In up to the case including 4 nodes, the state enumeration method was able to find no loops in TORA.  The number of states increases dramatically with the number of nodes.  This is the state explosion problem.  At 4 nodes, the simulation is able to run to completion while with 5 nodes, the amount of RAM is the limiting factor.  While there are certain machines in the cluster with sufficient RAM to contain the cases with 5 nodes, most of the machines have only 128 MB of memory, which is too little.

There two approaches used in this work complement each other in demonstrating correctness and convergence properties of the algorithm TORA.  While it is possible to demonstrate correctness and convergence criterion using traditional proof methods, several assumptions are made in the proof for simplicity.  Some of these assumptions are dropped in state enumeration technique.

Conclusions

Several approaches towards proving the correctness of TORA have been attempted and explored.  While all the testing failed to find anything wrong with the algorithm, there is still no guarantee that it is correct as the proof requires simplifications and assumptions to be placed on the algorithm and the model checking requires not only simplifying assumptions, but it is also very limited in the number of nodes that the result applies to.

Future Research

The ultimate goal of this type of research is to develop a way to automatically check a specification for correctness and liveness properties.  This is currently an entirely open ended question.  While these results do verify correctness in TORA, it is only under certain assumptions that the proof is valid.  The state enumeration technique makes fewer assumptions but unfortunately it is extremely limited in how many nodes can actually be tested.  Also, while state enumeration techniques can work from a specification, it still requires a great deal of human involvement to perform the reduction.  The idea of being able to go automatically from a specification to a proof of correctness has still a long way to go.
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(a) Graphical Representation
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(b) Adjacency Matrix
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(c) Serialized Adjacency Matrix
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