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As our reliance on computer networks grows, the need for better and more ac-

curate intrusion detection systems to identify and contain attackers becomes a

fundamental research topic.

In this thesis we will focus on the detection of three attack scenarios: spreading

of active worms throught the Internet, distributed denial of service attacks and

routing attacks to wireless ad hoc networks. For the first two attacks we will

determine anomalous changes in the network flow. For the third attack, we provide

an abstract representation of a highly mobile ad hoc network in order to establish a

baseline for detecting abnormalities generated by intrusions changing the behavior

of the routing protocol. We consider these problems in the framework of sequential



change detection theory as we want to detect the appearance of an attack early in

its development.
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Chapter 1

Introduction

1.1 Intrusion Detection

The number of computer attacks increases steadily per year. At the time of this

writing the Internet Security Systems’ baseline assessment is that a new, unpro-

tected computer with an Internet connection will be compromised within one day

or sooner [1]. Intrusion prevention techniques such as encryption and authentica-

tion are usually the first line of defense. In practice however, most of the times

there are weaknesses in the implementation of intrusion prevention and intrusion

detection becomes a second line of defense.

1.2 Change Detection Algorithms

In detection theory if we observe a given stochastic process for a fixed interval of

time, the typical objective is to minimize the error probabilities (probability of

false alarm and probabiliti of missed detection). Optimal detection schemes have

been found, which produce tests that compare the likelihood ratio between the
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given hypotheses with a threshold dependent on the error probabilities.

In classical sequential detection methods the goal is to find optimal solutions

to a hypothesis testing problem while accounting for trade-offs between the prob-

ability of error and the decision time. This problem is typically formulated as

a Markov stopping time and the usual test is a sequential probability ratio test

(SPRT). A more specific problem within sequential detection that we will also

consider is the quickest change detection, where the trade-off is between the delay

of detection and the false alarm rate.

Most of the presentation of these problems and formulations follows [2].

1.2.1 Sequential detection

We will assume that we are observing a discrete time stochastic process (Xk)k≥1.

We say that a test ζ = (g, T ) is a sequential probability ratio test (SPRT) for

testing between simple hypotheses H0 = {θ : θ = θ0} and H1 = {θ : θ = θ1} if

we sequentially observe data and if for each time k we make one of the following

decisions

• accept H0 when Zk ≤ a

• accept H1 when Zk ≥ h

• continue to observe and to test when a < Zk < h.

In the above,
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Zk = log
fθ1

(Xk
1 )

fθ0
(Xk

1 )
(1.1)

is the log likelihood ratio function of the two hypotheses. Xk
1 = {X1, ..., Xk},

and a and h are positive thresholds such that −∞ < a < h < ∞. Next, let

us define

g(XT
1 ) =















1, when ZT ≥ h

0, when ZT ≤ a

(1.2)

where T is the exit time

T = Ta,h = min{n ≥ 1 : (Zn ≥ h) ∪ (Zn ≤ a)} (1.3)

Wald’s sequential probability ratio test (SPRT) is optimal for binary hypotheses

testing (M=2) between two independent distributions in the sense that it simulta-

neously minimizes both expectations of the sample size among all tests for which

the probabilities of error do not exceed predefined values.

1.2.2 Optimal change detection algorithms

Despite the abundance of techniques addressing the change detection problem,

optimum schemes can mostly be found for the case where the data are independent

and identically distributed (i.i.d.) and the distributions are completely known

before and after the change time k0 [3].

The cumulative sum (CUSUM) and the Shiryaev-Roberts statistics are the two

most commonly used algorithms for change detection problems.
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1.2.2.1 CUSUM algorithm

For the i.i.d. case, the CUSUM algorithm minimizes (non asymptotic optimality)

the following objective function

F (T ) = sup
k0≥1

ess supEk0
[(T − k0 + 1)+|x1, ..., xk−1] (1.4)

(where (x)+denotes max{0, x}) among all stopping times subject to the false alarm

constraint E∞[T ] ≥ 1/Fa for some given Fa ≥ 0. The algorithm is given by

zi = log
fθ1

(xi)

fθ2
(xi)

(1.5)

Zk =

k
∑

i=1

zi (1.6)

mk = min
1≤j≤k

Zj (1.7)

and the stopping time is:

T = inf
k
{k : Zk −mk ≥ h} (1.8)

for a given threshold h satisfying the false alarm constraint.

It can be shown that Zk −mk satisfies the recursion Zk −mk = (Zk−1−mk−1 +

zk)
+ with Z0 −m0 = 0.

1.2.2.2 Shiryaev-Roberts statistic

For the i.i.d. case, the Shiryaev-Roberts statistic minimizes (non asymptotic opti-

mality) the objective function

F (T ) = sup
k≥1

Ek[T − k0|T ≥ k0] (1.9)
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subject also to a given false alarm rate. The algorithm is computed by the recursion

Rn = (1 +Rn−1)e
zi with R0 = 0 (1.10)

The stopping time is given by

T = inf
n
{n : log(Rn) ≥ h} (1.11)

1.2.2.3 Algorithm with a prior of the change time

There is a final optimal algorithm for i.i.d. observations proposed by Shiryaev that

minimizes the objective function

F (T ) = E{1{T<k0} + c(T − k0)
+} (1.12)

where c represents the cost of each “extra” observation after the change time k0

and 1( )is the indicator function. The algorithm assumes a geometric prior for the

change time. The optimal stopping rule consists in stopping the first time the

posterior probability of the change time exceeds some constant threshold.

1.2.3 Nonparametric CUSUM and Gishik-Rubin-Shiryaev Statistics

Most change detection algorithms applied to network traffic use nonparametric

statistics as it is very complicated to know or model the pre-change and post-change

distributions of an observation of the network flow at all times by parametric

families.
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The non-parametric version of the CUSUM assumes a random process with

some regularity conditions. The form of the process is

xk = a+ ξk1(k<k0) + (b− ψk)1(k≥k0) (1.13)

where E[ξk] = E[ψk] = 0, b + a > 0 , a < 0 and 1( )is the indicator function.

The statistic for such a sequence is

Sk = (Sk−1 + xk)
+, S0 = 0 (1.14)

and the corresponding decision rule is

T = inf
n
{n : Sn > h} (1.15)

for a given threshold h selected based on the false alarm rate.

The nonparametric version equivalent to the Shiryaev-Roberts statistic is the

Gishik-Rubin-Shiryaev statistic [4].

1.2.4 GLR for composite hypothesis and nuisance parameters

The case of composite hypotheses is more useful and important from a practical

point of view. Unfortunately, this case is much more complicated and there are

fewer available theoretical results than in the case of simple hypotheses.

Two possible solutions for the case of composite hypotheses are the generalized

likelihood ratio (GLR) and the average over the prior distribution of the composite

and nuisance parameters.
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The precise optimal properties of the GLR test in the general case are unknown,

but for many special cases, the GLR test is optimal and therefore it will be our

preferred choice.

To present the algorithm consider the case where the parameter θ1 after the

change is unknown and before the change θ0 is known. The log-likelihood ratio for

observations from time j up to time k is

Zk
j (θ1) = log

fθ1
(xj, ..., xk)

fθ0
(xj, ..., xk)

, (1.16)

so the ratio is a function of two unknown independent parameters: the change

time and the value of the parameter after the change. The standard statistical

approach is to use the maximum likelihood estimates of these two parameters, and

thus the double maximization:

gk = max
1<j<k

sup
θ1

Zk
j (θ1) (1.17)

1.3 Network definitions and algorithms

The network topology will play an important role in the chapter on worm detection

so we will include some basic definitions.

Various classes of graphs (networks) have recently attracted attention in rela-

tion to various dynamic properties of the Internet and other complex networks.

One of the first network models studied is the Erdós − Rényi random graph

model, where one starts with N nodes and connects every pair of nodes with

7



probability p, ending up with a graph with approximately pN(N − 1)/2 edges

distributed randomly, and with the typical distance (hop count) between two nodes

scaling as log(N). Another important parameter in the description of a network

is the node degree, i.e. the number of edges (links) emanating from a node. The

important discriminant is the degree distribution:

Pr[a randomly selected node has k edges]:=P (k)

In a random graph the majority of the nodes have approximately the same

degree, close to the average degree of the network kav, and the degree distribution

is Poisson. On the other hand, in most real large networks such as the router graph

on the Internet and the WWW graph, the degree distribution deviates significantly

from a Poisson distribution. It has a power law tail P (k) ≈ k−γ. Such networks

are often called scale-free networks.

A key parameter in the analysis and discrimination between graphs is the

clustering coefficient of a node i, characterized by the number of edges Ei between

all neighbors ki over all possible edges among them ki(ki − 1)/2.

A good overview of these topics including the basic algorithms to generate

different kind of networks is presented in [5].
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Chapter 2

Worm Detection

2.1 Description of the Attack

Worms are programs that self-propagate across a network by exploiting security

flaws in widely-used services offered by vulnerable computers. In order to locate

the vulnerable computers, the worm probes different computer addresses at the

specific port number of the service it is looking for. By exploiting the security

flaw in the service, the worm usually can execute arbitrary code with elevated

privileges, allowing it to copy and execute itself in the compromised machine. In

order to reproduce, the worm scans for new vulnerable machines from each new

compromised computer.

There are other types of worms that we will not consider: for example email

worms (viruses) such as Melissa, which require some sort of user action to abet

their propagation. As such they tend to propagate more slowly and are easier to

detect.

Worms are popular attacks because no other mechanism allows for the rapid
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and widespread distribution of malicious code, with virtually no way to trace the

attacker.

We will focus on the description of some worms to clarify the concepts:

2.1.1 Examples of self-propagating code in the Internet

The second half of 2001 witnessed the appearance of three major worms with a

high infection success.

• Code Red I (v2) was originally detected in July 19, 2001. The same day

it was reported that more than 250,000 machines were infected in just 9

hours. This worm exploits a security flaw in Microsoft IIS web servers (the

.ida vulnerability.) Once it infects a host, it spreads by launching 99 threads

which generate uniformly random IP addresses. Each of these 99 threads

probed the destination computers to determine if the service was accessi-

ble. After the 3 TCP way handshake, it uploads all the code, waits for the

acknowledgment and moves on to infect other computers.

• Code Red II was originally detected in August 2001. It exploited the same

vulnerability as Code Red I. If the language installed in the system was

Chinese, it ran 600 threads and spread for 48 hours, otherwise it ran 300

threads and spread for 24 hours. The scanning of each thread was different

from that of Code Red I. It attempted to infect computers with addresses

close to the infected machine. With probability 4/8 it probed an address in

10



the same class A network, with probability 3/8 it probed the same class B

network and with probability 1/8 it probed an address in the whole Internet.

This worm died by design by rebooting its host machines after October 2001.

• Nimda was detected on September 2001. It has been called a hybrid worm

because it tries to spread by different means such as probing web servers,

mass emailing, and by scanning for the back-doors left behind by Code Red

II.

Even though Code Red I and Nimda are still very popular, there are new worms

being released in the Internet very often. Here we mention two recent examples to

show the prevalence of this threat to date:

• The SQL Spida worm follows the footsteps of Nimda and Code Red. It was

detected in May 2002. Once a vulnerable SQL server is found, the worm

will infect that target and begin scanning for new targets. The scanner

bundled with the worm is multi-threaded. It searches for uniformly random

IP addresses over the Internet.

• Slapper was detected in September 2002. It spread rapidly throughout the

Internet, affecting over 20,000 vulnerable servers within 72 hours. It exploits

an OpenSSL buffer overflow vulnerability in Apache web servers. The worm

attacks by sending an initial HTTP request to port 80 (HTTP) and examin-

ing the Server header response. Only if the target server is running certain

11



Linux distributions it will proceed to connect to port 443 (HTTPs) to send

the exploit code to the SSL service that is listening on the remote computer.

2.2 Why is it important to detect worms early in their de-

velopment?

In the latest Internet Risk Impact Summary report published by ISS at the time

of this writing [1], the prevalence and increase of computer attacks using worms

was emphasized. The top three categories of computer attacks are directly related

to worms and other self-propagating hybrid threats which exploit multiple vulner-

abilities across desktops and servers. In addition, the worm attacks of Code Red

and Nimda were selected as the top worst security attacks in the last five years [6].

We would like to detect a worm as soon as possible in order to minimize the

number of compromised hosts. A case example was that the quick discovery and

prompt action by System Administrators prohibited Slapper from spreading fur-

ther and prevented its damage [1]. Some highly contagious worms can also induce

side effects such as BGP routing instabilities when they reach their peak.

Currently, however, detection usually relies on informal email discussion on a

few key mailing lists. This process takes hours at a minimum, which is very slow

for the rapidly-propagating worms.

Furthermore in [7] it is stated that the spread of the theoretical flash or Warhol
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worms will be so fast that no human-driven communication will suffice for adequate

identification of an outbreak before nearly complete infection is achieved. It is

therefore proposed to sponsor research in automated mechanisms for detecting

worms based on their traffic patterns. The appearance of such a worm was selected

as the greatest security threat in the Internet [6].

2.3 Detection algorithms

Although the spread of a worm increases traffic over a network, the worm itself is

small (Code Red was 4KB), and it only takes 40 bytes for a TCP SYN packet to

determine if a service is accessible, so detection cannot rely on bandwidth statistics.

Furthermore, detection based on side effects such as the use of host unreachable

messages and connection attempts to routers as a way of detecting worms will be

less reliable while the worm is getting off the ground if it uses a hit-list scanning

[7].

We will focus on the fact that the self propagating code will try to use specific

vulnerabilities that can be identified with certain port numbers. So in the rest of

this chapter we will assume that the traffic monitoring variable is the connection

attempts (probes) to a given TCP/UDP port number(s). We will also assume most

of the time a probability distribution on the traffic observations. Such probability

can be of the form Pr(Number of probes to a given port number | A service is

provided in such a port). So in our framework we assume that there is a baseline of
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connections to the given monitored port in all sensors (computers) of the network.

The observations can be made at different participating ISPs enforcing policies for

blocking self-propagating code once it is detected.

We will explore the effect of aggregation from distributed sensors. This ap-

proach is motivated by the current infrastructure of distributed Intrusion Detec-

tion Systems such as myNetwatchman, Dshield and Symantec’s DeepSight Threat

Management System. Another motivation is presented in [7] as the authors pro-

pose to foster the deployment of a widespread set of sensors for worm detection

(possibly in the Internet backbone.)

2.3.1 Detection of a change in the mean

Clearly the simplest approach to change detection is to detect a change in the mean.

We will denote by {Xl,k} the observed stochastic process at sensor l ∈ {1, ..., L}

at time k ∈
� + and by Xk we will denote the aggregate observation at time k, i.e.

Xk =
L

∑

l=1

Xl,k (2.1)

2.3.1.1 Change detection in distributed sensor systems

In this first approach we will assume that each sequence {Xl,k} is i.i.d. with pdf

f
(0)
l before and f

(1)
l after the change. Furthermore, in traditional distributed detec-

tion it is assumed that the observation sequences {X1,k}, ..., {XL,k} are mutually

independent s.t. f (i)(x1,k, ..., xL,k) =
∏L

l=1 f
(i)
l (x1,k) for i ∈ {0, 1} in order to keep
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the problem tractable. In our case we can assume the independenve condition

among sensors holds when the worm scans randomly the whole network monitored

by the sensors i.e. the worm has no scanning preference between sensors.

Based on the information available at time k a message Vl,k depending on Xl,k

is sent to the fusion center. We want to find a stopping time T ∈
� + minimizing

sup
1≤ko<∞

Eko
{(T − ko)

m|T ≥ ko} (2.2)

for all m, (where k0 is the unknown change time) subject to a false alarm rate

1/E∞[T ] < Fa. It was shown in [8] that the optimal message (in the asymptotic

case when Fa → 0) Vl,k is completely determined by threshold comparisons of the

likelihood ratio at the sensor l: βVl
< f

(1)
l (Xl,k)/f

(0)
l (Xl,k) ≤ βVl+1 (note the inde-

pendence on V on k). It is of importance in traditional detection over distributed

sensors to minimize the transmission bandwidth, so Vl,k is usually a quantized ob-

servation based on the partition on f
(1)
l (Xl,k)/f

(0)
l (Xl,k) by the thresholds βVl

. In

the limit case, the sensor will not send anything (0) if the likelihood ratio is below

a certain threshold, and will send an alarm (1) if it is greater than a threshold β.

In our case since bandwidth is not a limiting factor we will send the likelihood (or

log-likelihood) evaluation to the fusion center.

The message Vl,k will have an induced distribution g
(i)
l when the observation

Xl,k is distributed as f
(i)
l . The test at the fusion center using the Shiryaev-Roberts

detection is thus

Z(k) =

L
∑

l=1

log
g

(1)
l (Vl,k)

g
(0)
l (Vl,k)

(2.3)
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R(k) = (1 +R(k − 1))eZ(k), R(0) = 0 (2.4)

T (Fa) = inf{k ≥ 1 : R(k) ≥ 1/Fa} (2.5)

We will assume that f
(0)
l (xl,k) = e(−λ0,l)

λ
xl,k

0,l

xl,k!
and f

(1)
l (xl,k) = e(−λ1,l)

λ
xl,k

1,l

xl,k!
with λ1,l >

λ0,l for all sensors. The likelihood ratio at each sensor is then eλ0,l−λ1,l

(

λ1,l

λ0,l

)xl,k

.

It is then clear that the thresholds comparisons of the likelihood are reduced to

thresholds comparisons on xl,k. For example in the case of a binary message

alphabet {0, 1},

Vl,k =















1, if xl,k >
log β+λ1,l−λ0,l

log λ1,l−log λ0,l

0, if xl,k ≤
log β+λ1,l−λ0,l

log λ1,l−log λ0,l

(2.6)

In the asymptotic case, in which we do not care about bandwidth constraints and

are allowed to use an arbitrarily large message alphabet, g
(i)
l → f

(i)
l .

2.3.1.2 CUSUM of aggregated traffic

For this approach we send xl,k directly to the fusion center, without computing

the local likelihood. Again, we will assume i.i.d. distributions at the sensors with

f
(i)
l (xl,k) = e(−λi,l)

λ
xl,k

i,l

xl,k!
. It is known that the aggregate Xk will be distributed as

f (i)(xk) = e−λi
λxk

i

xk!
(2.7)

where λi =
∑L

l=1 λi,l (i ∈ {0, 1}). The log-likelihood ratio at the fusion cen-

ter needed to apply the CUSUM algorithm presented in the introduction is thus

zk(xk) = (λ0 − λ1) + xk log
(

λ1

λ0

)

.

16



Figure 2.1: Code Red I Infection (source CAIDA)

2.3.2 Detection of an exponential signal in noise

The i.i.d. assumption of the observations after the change is not valid because

each infected host will try in general to scan the same number of hosts in a given

interval of time, and as more and more hosts become infected xl,k will increase with

k. In particular we know from simple population dynamic models that a worm

scanning uniformly randomly the whole network will follow a logistic growth [7].

In figure 2.1 we see the number of infected hosts by Cod Red I during its first

day. In figure 2.2 we see the growth in number of probes by the worm w32.Leave.

Let η be the population of infected hosts. Let r be the intrinsic growth rate

(the growth rate when η(t) is small) and let a be a given positive constant. Then
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Figure 2.2: Number of probes due to the w32.Leave worm

the logistic growth satisfies the nonlinear ordinary differential equation

dη

dt
= (r − aη)η (2.8)

with solution

η(t) =
N0B

N0 + (B −N0)e−rt
(2.9)

where B = r/a and N0 is the population at time 0. Since we are interested in

detecting a worm as soon as possible we look at the behavior of η(t) when it is

small, i.e. we consider the exponential growth

η(t) = N0e
rt (2.10)

The equivalent discrete time recursion obtained from difference equations is

ηd
k = N0m

k (2.11)
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(d stands for “discrete”) where m is the discretized growth rate when ηd is small

and N0 is the number of hosts compromised at k = 0. The discretized version of

the continuous time equation (2.10) is

η(k∆t) := ηk = N0e
rk (2.12)

We can see that ηk matches ηd
k when r = log(m). We can use ηk and ηd

k inter-

changeably although for the cases in which we need integer values, ηd
k will be easier

to use.

For the detection problem we will assume that the values of N0 and r (or m) are

unknown. Moreover we will consider that the normal traffic Wl,k at each sensor l,

is distributed under a (probably unknown) distribution f
(0)
l (wl,1, ..., wl,k) for k ∈ �

giving a normal traffic aggregate

Wk =

L
∑

l=1

Wl,k (2.13)

distributed as f (0)(w1, ..., wk).

Our main assumption in this section is that the number of probes seen at

the sensors will be proportional to the number of infected hosts αηd
k. The usual

change detection hypothesis testing problem for the aggregate traffic (2.1) would

be as follows:

H0 : xk = wk when 1 ≤ k ≤M

H1 :
xk = wk when 1 ≤ k < k0

xk = αηd
k + wk when k0 ≤ k ≤M
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However, we want k to restart to 1 whenever H0 is accepted, so we use a

sequential hypothesis testing where the change time k0 is implicitly given by the

time in which the sequential test restarted and H1 was accepted.

H0 : xk = wk when 1 ≤ k ≤M

H1 : xk = αηd
k + wk when 1 ≤ k ≤M

In order to detect a signal in noise we must compute the generalized likelihood

ratio in the time window [1,...,M] and compare it to the threshold h. To accom-

modate different growth rates, the intervals ∆t of the time steps k can increase or

decrease.

2.3.2.1 Exponential signal detection in noise

The detection of the signal αηd
k in noise wk is achieved with the test:

supα,N0,m f
(0)(xk − αηd

k)

f (0)(xk)

H1

�

H0

h (2.14)

Note that the parameters α and N0 can be combined into a single parameter A0

for the optimization problem.

We will start by assuming that the normal traffic Wl,k is i.i.d. with distribution

fl(wl,k) = e(−λl) λ
wl,k

l

wl,k!
. So under H0, Xk is then distributed as

f (0)(xk) = e−λλ
xk

xk!
(2.15)
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where λ =
∑L

l=1 λl.

The discrete noise distribution presents the problem that the optimization al-

gorithm in (2.14) has to restrict αηd
k to integer values. Note that in this case

∀(A0, m), ∀(k, j)
(

xk − ηd
k(A0, m)

)

is independent of
(

xj − ηd
j (A0, m)

)

. So we can

compute the likelihood ratio for each time step k. The likelihood ratio function for

time step k is then

max
A0,m

λxk

0 λ
−A0mk

0 xk!

λxk

0 (xk − A0mk)!
= max

A0,m
λ−A0mk

0 xk(xk − 1) · · · (xk − A0m
k + 1). (2.16)

For the whole time window [1,...,M] the log-likelihood ratio is then

max
A0,m

M
∑

k=1



−A0m
k log(λ0) +

A0mk−1
∑

j=0

log(xk − j)



 (2.17)

The maximization is subject to the constraints xk−A0m
k ≥ 0, m > 1 and A0m

k ∈

� +. This equation cannot be solved assuming continuous variables and rounding

up or down the optimum values found. We must therefore rely on combinatorial

optimization.

2.3.2.2 Exponential change in the mean

In this subsection we will assume the same noise model as in subsection 2.3.2.1. We

will assume that the mean of f (0) varies with respect to k via an exponential growth

model. The advantage of this approach is that we can use standard optimization

algorithms over � k for the GLR method, as the mean can take any real value. The

disadvantage of this approach is that it is not truly a problem of signal detection
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in noise. Furthermore for certain discrete random variables such as those with a

Poisson distribution, if the mean changes the variance also changes.

Under the first approach to H1: the exponential growth in the mean, Xk will

be distributed as

f (1) (xk;A0, r) = max
A0,r

e(−λ−ηk(Ao,r)) (λ+ ηk(A0, r))
xk

xk!
(2.18)

where the dependence on the unknown nuisance parameters A0 and r is stated ex-

plicitly. Following the GLR algorithm given in the introduction we could compute

gM = max
1≤k≤M

log
f (1)(xk;A0, r)

f (0)(xk)

However since the signal we are trying to detect is exponential we prefer to avoid

the maximization step over k and use a batch approach with a sliding window of

size M. Note that given fixed (A0, m), for all (k, j)k 6= j (xk) is independent of

(xj), so we can compute the likelihood ratio for each time step k. The likelihood

ratio at time step k is then

max
A0,r

e−(λ0+A0erk)(λ0 + A0e
rk)xk

e−λ0λxk

0

= max
A0r

e−A0erk

(

1 +
A0e

rk

λ0

)xk

(2.19)

For a window [1,...,M] the log-likelihood ratio is:

max
A0,r

M
∑

k=1

(

−A0e
rk + xk log

(

1 +
A0e

rk

λ0

))

(2.20)

The maximization is subject to the constraints A > c1 and r > c2, where c1 and

c2 are two given positive constants.
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2.3.2.3 Nonparametric regression detection

So far we have always been assuming a parametric distribution f (0)(w1, ..., wk) for

the normal traffic. This assumption is valid for a wide number of ports as the

traffic seen can be regular. However in some cases the real distribution can be

quite difficult to obtain. For example the number of probes seen to port 80 (http)

or port 21 (ftp) for computers providing those services can exhibit long range

dependence and multifractal behavior.

In order to deal with some of the more complicated problems, in particular

those where no clear mean of f (0)(w1, ..., wk) can be established, we propose a

nonparametric change detection algorithm.

The idea is to do a linear regression on log(xi). This regression will produce

two parameters, a slope ck and the error errk from the estimated regression of

xk−M+1, ..., xk. From this we compute the statistic zk = ck/errk. We use a sliding

window over k to compute the statistic. Then we apply the non-parametric version

of CUSUM or the Girshik-Rubin-Shiryaev algorithms to zk.

2.4 Simulation

2.4.1 Worm simulation

We created different scale-free network topologies with a delay of one unit step per

edge for simulating the communication among different nodes. One of our main
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Figure 2.3: One of the Simulated Networks with 540nodes
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algorithms was a modification to the Albert − Barabási (AB) algorithm [5]. In

this setup we build a cluster of nodes using the (AB) algorithm of size Lcluster

where each new node is included with degree dcluster. Afterward we add LAS nodes

(LAS = 4 in our simulations) with two edges connecting them to random nodes

in the cluster. From this point forward we continue to include nodes of degree

1 selecting an edge from any node except from the node in the clusters, so this

growth simulates the creation of 4 autonomous systems (AS) connected through a

high degree cluster. At the end the LAS nodes (selected among all nodes created

after the first Lcluster + LAS nodes) with the highest degree are connected to the

high degree cluster to reduce the bottlenecks from nodes in the subnetworks to

reach the cluster. A typical result of this algorithm is shown in figure 2.3.

The simulations can be placed in the framework of the distributed IDS pre-

sented such as myNetwatchman and Symantec’s Deep Sight Threat Management

system. Each node represents the IDS of a given subnetwork and the worm scans

different computers in different subnetworks until it finds a vulnerable machine.

However the simulation environment we present is more closely related to the

widespread of sensors in the Internet backbone [7], because each node acts as a

router and will see transit probes (e.g. a leaf router). Under this framework the

worm spreads by using hit-list scanning because all the initial probes find a vul-

nerable machine. Therefore no attack probe is wasted scanning immune machines.

For the normal flow model, each node tries to send a normal probe every T

units of time to a uniformly randomly selected node in the network. Each node
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sends the probes independent of any other node. T was assumed to be a random

variable either Exponential (with time delay equal to the average round trip time

of the network) or Pareto distributed (with parameters a=1.5 and b=1). At the

change time there is only one abnormal node. The node tries to contact another

node at random to reproduce the worm. The malicious node then waits four round

trip times to start searching for another vulnerable node. This waiting time was

selected as a model of the three way handshaking plus the small upload of the

worm found in real networks. In figure 2.4, the first subfigure shows the time in

which each particular node got infected. The second subfigure shows the number

of infected hosts. The infection starts at time 500 and by time 750 more than 85%

of the nodes are infected.

2.4.2 Application of the detection algorithms

• By “fusion” we refer to the algorithm presented in section 2.3.1.1. The mean

λ0,l of the assumed Poisson distribution g
(0)
l was estimated during the first

200 time steps for all l. The mean of the anomalous Poisson distribution was

set arbitrarily to λ1,l = 1.2λ0,l.

• By “aggregate cusum” we refer to the algorithm of section 2.3.1.2. The

mean λ0 of the assumed Poisson distribution f (0) was again estimated for

the aggregate traffic during the first 200 time steps. The anomalous Poisson

distribution was also set to λ1 = 1.2λ0.
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Figure 2.4: Infection time

Figure 2.5: Number of probes at the 12 highest degree nodes.
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• By “exponential in noise” we refer to the algorithm of section 2.3.2.1. We

used combinatorial optimization for different time windows as the optimiza-

tion function in equation (2.17) cannot be maximized using continuous vari-

ables and rounding up at the end. The integer restriction gives us a prob-

lem, as mk for m ∈ {2, 3, ...} and k ∈ � grows extremely fast. Our solution

was to select two windows. In the first window of length 5 the median of

Xk−4, Xk−3, Xk−2, Xk−1, Xk is obtained as X̂k. The second window of length

4 is taken among X̂k−3, X̂k−2, X̂k−1, X̂k. It is in this window that the opti-

mization in equation (2.17) takes place.

• By “exponential change in mean” we refer to the algorithm of section 2.3.2.2.

A variant of this algorithm was obtained by setting A0 fixed and maximizing

over r. The nonparametric CUSUM algorithm was applied to the optimal

estimate r̂. This algorithm will be called “r nonparam cusum”. Proving the

concavity of the function we want to maximize (equation (2.20)) is very diffi-

cult. We instead computed the Hessian and checked if it is negative definite

at the solution of the gradient. For the simple case of fixed A0 the gra-

dient of the function is given by ∂
∂r

∑M

k=1

(

−A0e
rk + xk log

(

1 + A0erk

λ0

))

=

∑M

k=1

(

−kA0e
rk + xk

kA0erk

A0erk+λ0

)

, so the optimization relies on solving a non-

linear function. The Hessian is
∑M

k=1

(

−k2A0e
rk + xk

λ0k2A0erk

(A0erk+λ0)
2

)

. When

we optimize also with respect to A0 the problem is reduced to solving a set

of nonlinear equations, but we used mostly optimization methods without
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the gradient computations.

• By “regression” we refer to the algorithm presented in section 2.3.2.3. A

variant of this algorithm is called “robust regression”, and was obtained by

using the iterated weighted least squares estimate of the slope. This robust

approach was selected as a way to cope with outliers without including di-

rectly the error (in the least square fit) in the change statistic. The slope

crobust
k obtained at each time window [k−M+1, ..., k] was used as the stochas-

tic process for the nonparametric CUSUM algorithm.

2.4.3 Detection results

The following detection delay plots are the worst case detection delay as all change

detection statistics are reinitialized to zero at the time of infection. Furthermore

all detection delays were obtained by averaging 10 runs.

Our first performance metric was the detection delay vs the number of sensors

under an exponential waiting time for the normal traffic. The sensors were picked

in order starting from the highest degree nodes. Surprisingly, for our simulated

network in figure 2.3, the detection delay does not seem to decrease monotonically

as the number of sensors increases, or even with different network sizes, except for

the regression statistics (figure 2.7.)

According to our network construction algorithm we have four subnetworks

and each is connected on average by two gateways to the highly connected cluster
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Figure 2.6: Detection delay vs high degree node aggregation, 540 nodes.

and thus any node within that subnetwork trying to reach a node outside will send

packets through this gateways so they tend to contain most of the traffic. To test if

the result was a consequence of our four subnetwork constructions we generated a

scale-free network based on the original (AB) algorithm. During the construction

each new node is attached to the network with m edges. For the figure 2.8 we

chose m = 2.

The results seem to suggest that in a general scale-free network a very small

set of the highly connected nodes is enough to detect any global variation on

the network flow, and that increasing the number of sensors does not on average

decrease -or increase- the detection delay, in fact on average it remains constant.

However if the sensors are picked at random then aggregation helps according
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Figure 2.7: Detection delay vs high degree node aggregation, 120 nodes
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Figure 2.8: Detection delay vs high degree node aggregation for (AB) network
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Figure 2.9: Detection delay vs node aggregation selecting the nodes at random

to figure 2.9.

Furthermore if we select the highest degree nodes in a random network (random

graph), the aggregation also helps. See figure 2.10.

Partial answers can be found by the degree distribution in figure 2.11 of our

original 540 node network. As should be expected very few nodes have a high

degree that captures most of the traffic in the network. The high degree nodes for

the original 540 node network are given in table 2.1. This is consistent with the

heavy tailed degree distribution of the (AB) model network in figure 2.12. The

degree distribution of a random network follows a Poisson distribution and thus

the number of high degree nodes is larger (figure 2.13.)
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Figure 2.10: Detection delay vs high degree node aggregation in a random network.

Figure 2.11: Degree distribution of the 540 node network
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Figure 2.12: Degree distribution of a 540 node network created with the (AB)

algorithm

Figure 2.13: Degree distribution of a random network
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Node 42 41 44 89 43 56 55 135 87 4

Degree 50 42 25 14 14 13 13 12 11 11

Table 2.1: High degree nodes for the network in figure 2.3

So far most of the statistics have performed similarly except for “regression”,

“robust regression” and the “r nonparam cusum”. The “exp in noise” statistic

also suffers when the nodes aggregated are selected at random (figure 2.9) and in

a random network (figure 2.10.) This result is due to the constrained optimization

as discussed before. When we aggregate random sensors in a scale-free network,

or when we monitor any node in a random network, the aggregated overall traffic

is smaller and thus it is very difficult to fit a fast exponentially increasing function

(equation (2.17)) in small intervals.

To test the effectiveness of the nonparametric statistics we then simulated the

waiting time of the normal traffic with the Pareto distribution (see figures 2.14

and 2.15).

The detection delay vs the average time for false alarm can be seen in figures

2.16, 2.17 and 2.18.

2.5 Conclusions

In scale-free networks a very small set of the highly connected nodes is sufficient

for detection and aggregation only improves the performance of the nonparametric
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Figure 2.14: Detection delay under Pareto traffic 540 node network
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Figure 2.15: Detection delay under Pareto traffic 640 node network
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Figure 2.16: Detection delay vs false alarm rate 540 node network.
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Figure 2.17: Detection delay vs false alarm rate (AB) network
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Figure 2.18: Detection delay vs false alarm rate for a random network

statistics. If we select sensors at random or if we monitor a random network

then aggregation is very important for detection. Most of the parametric statistics

perform comparably under a wide variety of conditions. The best performance

on average is always obtained by the statistics measuring a change in the mean,

mainly “fusion”, “aggregate CUSUM” and “exponential change in mean”. When

the traffic deviates significantly from the assumed traffic distribution, the best

performance is produced by the nonparametric statistics “regression” and “robust

regression”.

The large variability in the aggregation can be accounted in part to the small

spikes that cross the threshold before the real statistic grows (lucky alarms). For
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Figure 2.19: Fusion statistic under Pareto traffic

example in figure 2.19 the alarm was set at time 610, even when the real growth

in the statistic was after time 650.
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Chapter 3

Detection of Distributed Denial of Service Attacks

3.1 Description of the attack

A denial of service attack (DoS) can be defined as an attack designed to disrupt

or completely deny legitimate users’ access to networks, servers, services or other

resources. The most common DoS attack involves sending a large number of pack-

ets to a destination causing excessive amounts of network endpoint bandwidth to

be consumed and (or) cpu processing rate at the destination.

In a distributed denial of service (DDoS) attack typically an attacker compro-

mises a set of Internet hosts (using manual or semiautomated methods like a worm)

Figure 3.1: The attacker creates a zombie army to flood a target.
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and installs a small attack daemon on each host, producing a group of ”zombies”

(figure 3.1). This daemon typically contains both the code for producing a variety

of attacks and some basic communications infrastructure to allow for remote con-

trol. Using variants of this basic architecture an attacker can focus a coordinated

attack from thousands of zombies installed across different autonomous systems

(AS) boundaries, onto a single site causing excessive amounts of endpoint and

possibly transit network bandwidth to be consumed [9].

3.1.1 Persistence and characterization of DDoS attacks

In [10] an estimate of 12,805 attacks was provided over the course of three weeks

in February 2001. Most of the attacks were short, 50% were less than 10 minutes

and 80% were less than 30 minutes. However the tail of the distribution was long:

1% of the attacks were greater than 10 hours. Although most of the attacks are

targeted against home machines, suggesting that minor DDoS are used to settle

personal vendettas, there is a small but significant fraction of attacks directed

against network infrastructure. 2-3% of attacks target domain name servers (DNS)

and 1-3%, target routers (with a disproportionately large number of packets.)

According to Alan Paller, director of the SANS Institute, DDoS attacks are

not going to be solved because we get some new hardware in the system, but by

re-engineering the whole Internet.
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3.1.2 Recent examples of DDoS attacks

One of the more complex and elaborate DDoS attacks was the attack on October

22, 2002 to the 13 main DNS root servers. The attack flooded with ICMP messages

the 13 DNS root servers around the world with more than 10 times the normal

amount of data. Seven of the servers were affected enough to have periods of “zero-

reachability”. It took about an hour for security specialists to enact defensive

measures and restore service. The attack failed to disrupt service because the data

on the 13 key servers is replicated tens of thousands of times by ISPs and other

computers around the world. Only an estimated 6% of the requests reached the

root DNS servers. These attacks were easy to defend against because they relied on

a simple ICMP flood which is not typically seen in very high volumes. Instead of

sending a flood of packets that all use the same protocol, attackers usually disguise

a DDoS attack as normal traffic. In such an attack, nothing about the protocols

used or the packets sent would appear unusual, but the volume of traffic would be

enough to overwhelm the targeted server. Even more pernicious would be attacks

that target the routing infrastructure (as opposed to the DNS infrastructure) of

the Internet according to security engineers at Arbor Networks.

3.1.3 Related work

Several vendors offer early-detection and response tools for dealing with DoS at-

tacks. The main focus of such technologies is to quickly give IT managers the
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information needed to filter out malicious traffic while letting in legitimate users.

Most of these products work by comparing live network traffic against some

previously defined baseline and by alerting users if there is a significant divergence

from that baseline. The alerts might be based on a comparison of byte or packet

rates, traffic that’s directed at specific resources, traffic that originates from specific

IP addresses or spikes in network traffic.

The change detection approach to detect denial of service attacks has also been

addressed in [11, 12] where the detection is done at the victim’s network. We will

try to present new algorithms for the detection in the upstream “transit” network.

3.2 Why is it important to quickly detect routers participat-

ing in a denial of service attack?

Almost all DDoS attacks involve multiple networks and attack sources, many of

which have spoofed IP addresses to make detection even harder. So completely

choking off the offending traffic requires network administrators to call upstream

service providers, alerting them of the attack and having them shut down the

traffic. That process has to be repeated all the way back to every attack source.

So although DDoS are easily identified at the victim’s site, it is natural to extend

the quickest detection problem to the transit network.

There are various techniques and ideas for mitigation of denial of service attacks
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that require the identification of the routers participating (involuntarily) in the

attack. Most of these techniques consume a significant amount of router resources

so it is advisable to use them only when needed. Some examples that are provided

in some Cisco Routers are TCP Intercept and Committed Access Rate. Some

related work is also presented in [13, 14] where the key step in the proposed denial

of service mitigation algorithm consists in identifying the routers forwarding the

malicious traffic.

Network administrative policy influences how the nodes are monitored and

what to do once we start correlating alarms. Does it make sense to monitor all

routers? Or does this monitoring consume too many resources? Are the nodes

monitored computing the statistics necessary to detect a local change by them-

selves? Or are they sending all the information (packets per link) to compute the

statistics at the network-operating center (a fusion center). A reasonable assump-

tion for transit networks carrying a lot of traffic which cannot be analyzed at line

rate, is that routers do not keep the number of packets to a specific destination,

as this might be too expensive during operation. Thus we are interested only in

passively monitoring the network.

3.3 Detection Algorithms

Our main goal is to attempt a first approach to the problem of detecting when a

distributed denial of service attack is taking place in one sub-network of a transit
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(core) network comprised only of routers.

Parametric and non-parametric change detection algorithms are applied to the

problem of detecting changes in the direction of traffic flow. The directionality of

the change in a network flow is assumed to have an objective or target. We are

interested in the quickest detection problem when the attack is distributed and

coordinated from several nodes against a targeted one.

We use a directionality framework, which gives us a way to compute the sever-

ity and directionality of the change. The severity represents a composite M-ary

sequential hypothesis test that is easily solved under Gaussian assumptions.

We finally introduce a heuristic distributed change detection mechanism for

correlating the alarms in a subset of monitored nodes. Given an alarm as a pair

(direction and severity) we correlate the severity of the alarms with alarms from

other nodes in the same direction. And we show that this is equivalent to another

M-ary sequential detection problem among the routers.

3.3.1 Problem formulation

We take a new approach for identifying Distributed Denial of Service attacks by a

set of nodes in a transit network. The basic idea is that at each highly connected

node, the data tends to aggregate from the distributed sources toward the desti-

nation, giving a sense of directionality to the attack. This directionality idea will

provide us a framework to design change detection algorithms that are going to be
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less sensitive to changes in the average intensity of the overall traffic and will focus

on differentiating the different random fluctuations of the network traffic versus

fluctuations where there is a clear change in the direction of the flow at a given

node. We are considering packets in a very broad and general way, but clearly

our approach can be extended to monitor certain specific packet types given the

protocol. For example we might be interested in measuring only TCP SYN-ACK

response packets for identifying a reflected distributed denial of service attack, or

ICMP packets for identifying ping floods.

Let’s assume we are monitoring node d in figure 3.2. Let Xd,m
k denote the

stochastic process representing the total number of packets sent by d through the

link (d,m) (an ordered pair) at time step k, where m ∈ N (d) denotes a neighbor of

d, and N (d) the set of neighbors of d. Let Xd
k denote the vector with the elements

Xd,m
k and let

θd
0 :=

















E0[X
d,a
k ]

E0[X
d,b
k ]

E0[X
d,c
k ]

















(3.1)

We will be interested in changes of the form:

θd
0 + νΥm (3.2)

where ν is a non-negative scalar and Υm (in the case of three observed links

|N (d)| = 3) is one of the usual basis vectors of the three dimensional Euclidean
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Figure 3.2: A transit network composed of nodes a, b, c and d.

space. Namely:

Υa =










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0

0
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
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

0

0

1






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(3.3)

So in figure 3.2, if node d suddenly starts a broadcast, there will be a change in the

mean of all processes. However we are not interested in such a change. Instead if

there are attackers in the subnetworks attached to b and c, and they target a host

in the network attached to a by flooding it, there will be a change in the direction

Υa. Testing directions should help us in discriminating unwanted false alarms due

to random fluctuations of the flows.

To formalize our ideas we consider the framework discussed in [2] of change

detection in a known direction but unknown magnitude of the change. Our problem
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is a little bit different in that we are considering an M-ary sequential hypothesis

testing problem and that we will not allow changes with negative or zero values

for ν, i.e. we impose the restriction ν ≥ 0.

Thus the resulting change detection problem is:

θd(k) =















































θd
0 when k < tchange

θd
0 + νΥa or

θd
0 + νΥb or

θd
0 + νΥc when k ≥ tchange

(3.4)

where tchange is an unknown time step when the change occurs.

Since we have an unknown parameter ν we follow the GLR approach from the

introduction. We run in parallel a GLR for each possible direction Υm versus the

null hypothesis θd
0 :

gd,m
k = max

1≤j≤k
log

supνd,m≥0

∏k

i=1 fθd
0
+νd,mΥm

(Xd
k)

∏k

i=j fθd
0

(Xd
k)

(3.5)

Only the test gd,m
k that reaches its given threshold is stopped. The threshold hd,m

for each of the parallel tests is selected given a fixed false alarm rate probability.

Equation (3.5) has a nice closed form solution when the distributions are as-

sumed to be Gaussian � (θd
0,Σd). In this case we get the constrained optimization

problem:

min
ν≥0

k
∑

i=j

1

2

(

Xd
i − θd

0 − νΥm

)T
Σ−1

d

(

Xd
i − θd

0 − νΥm

)

(3.6)

If the restriction is inactive then we obtain

v̂d,m
k (j) =

ΥT
mΣ−1

d

(

1
k−j+1

∑k

i=j Xi − θd
0

)

ΥT
mΣ−1

d Υm

(3.7)
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If the restriction is active then v̂d,m
k = 0.

The intuitive idea of this approach is that you are projecting the difference

between all available sample means and the mean θd
0 (or historic mean estimate for

practical purposes) into each of the possible directions Υm, and selecting the time

step of this projection that maximizes the likelihood of the alternate hypothesis

assuming θd
0 + v̂d,m

k (j)Υm, i.e. when we think the sample mean started moving in

the Υm direction. The uncorrelated covariance (in our case) is just a weighting

parameter for being cautious about declaring a change in the mean too soon if the

process is observed to have large fluctuations around the mean.

We tested the robustness of this approach even when the distribution was not

Gaussian, as long as we are computing the mean and covariance in a window of

time, much bigger than our false alarm delay, to keep mean and covariance up to

date and only detect abrupt changes. Recall that in the worm detection chapter

we computed the mean only once.

Following most change detection approaches applied to network traffic [11, 12],

we also use the nonparametric CUSUM test for each link independently: Sd,m
k =

max{0, Sd,m
k −Xd,m

k −Nd,m
k − cd,m

k }, where cd,m
k is a positive deterministic sequence

chosen experimentally to minimize the average detection delay and N d,m
k is the

historical estimate of the mean E0[X
d,m
k ].
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3.3.2 Sensor Fusion

So far we have been focusing on detecting a change in a single node. One of the

main advantages in having several nodes under monitoring is that we can perform

an aggregation of the statistics between the different nodes in order to decrease

our detection delay given a fixed false alarm rate probability. In particular if we

are monitoring nodes far away from the destination, most of the local statistics

will not yield an alarm and the attack might be unnoticed.

The alarm aggregation can be performed by several methods. Here we propose

a simple algorithm that will only require the knowledge of the routing tables for

the nodes being monitored.

We want a mechanism to aggregate the different statistics at each monitored

node. Clearly the aggregation mechanism cannot be multiplicative, because if we

are monitoring a node physically unable to detect the attack (a node that is not

in the routing path of any of the attackers and the victim) the low value of the

computed statistic of this node will adversely affect any small information that any

other node might have in relation to the attack. On the other hand the computed

statistics for all nodes can vary to different scales of magnitude yielding a biased

addition.

To cope with this latter problem we compute the normalized statistic ϕd,m
k :=

g
d,m

k

hd,m . If none of our monitored nodes has raised an alarm, the number of monitored

nodes will be bounded by
∑

d ϕ
d,m
k . This can be in turned interpreted as a new
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upper bound for a collective threshold which can be selected given a false alarm

rate probability. Note the similarity of this approach with the fusion detection

from the chapter on worms.

Selecting which statistics to correlate (add) is the key issue. In keeping with our

directionality framework we will correlate only the statistics relating two or more

nodes to a common node. This is the reason we need the routing table information

of our monitored nodes.

The algorithm is as follows:

Given two nodes d and e;

For each link d→ m

For each link e→ n

If there is a node f reachable through d→ m and e→ n

then correlate their normalized statistic;

In the following section the application of the aggregation will be described, and

we will show also the relation to another suboptimal M-ary sequential detection

problem where M is the number of all possible link combinations of the two (or

more) routers that reach the same destination. We will apply this formulation to

the case of two nodes, but it extends recursively when we are monitoring three or

more nodes.

53



Figure 3.3: The transit network

3.4 Simulation Results and evaluation

For our experimental results we used the network simulation software ns2. We

created a transit (scale-free) network topology given in figure 3.3 where the transit

network consists of 15 routers numbered from 0 to 14. Each cloud represents a

subnetwork whose internal architecture we are not interested in. It consists of

15 transit nodes performing only routing between each subnetwork. There are 12

subnetworks with 65 hosts each.

During the normal operation of the network each of these 780 hosts selects ran-
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domly a host in another sub network, and establishes an On-Off source connection

with Pareto distributed times. The routing protocol selects a route with the least

number of hops toward a given destination. The attack is simulated with a given

number of compromised nodes in different subnetworks. During the attack, each

of these nodes will start a constant bit rate connection toward a specific node.

The rate of the attackers was varied to test the detection algorithms with different

percentage of attack packets circulating over the transit network at a given time.

We considered 7 attackers. One in each of the subnetworks connected to nodes 3,

4, 5, 8, 9, 11 and 13. The victim is in the network connected to node 14.

Some typical link usage characteristics can be seen in figure 3.4, where node 6

uses node 0 to reach 14. An attack occupying 2.5 percent of the transit network

traffic begins at k=350.

We first tested the performance of the statistics Sd,m
k and gd,m

k at individual

nodes. With the network under normal operation we experimentally obtained the

thresholds for each statistic for a given false alarm rate of 0.003.

We selected the nodes 0, 1, 2 and 7 to test the detection delay of the statistics

independently of each other. The results can be seen in figure 3.5, showing the

average detection delay per node when we monitor individually nodes 0,1,2 and

7. A detection delay of 1 is the same as the average delay for a false alarm.

The average delay of detection is computed between the four nodes for different

percentages of the amount of traffic the attack generates over the transit network.

Node 0 had the smallest detection delay in all cases, as it is a node where most
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Figure 3.4: Link usage

Figure 3.5: Average detection delay
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of the traffic toward node 14 gets agglomerated, giving thus a large change in the

mean. Node 2 performed poorly because it only routes toward node 14 the attacks

packets generated by the attacker in the subnetwork of node 9 and thus sees very

little traffic. gd,m
k performs marginally better than Sd,m

k .

The aggregation mechanism can be applied to decrease the detection delay

when we are monitoring more than one node. In previous results we mentioned

the poor performance of nodes routing very few packets toward the destination.

Lets consider the case of two nodes far (in the number of hops) from the victim.

We will pick nodes 6 and 3 for the aggregation. Node 6 routes only the malicious

traffic from the subnetwork attached to node 11 and node 3 only route malicious

traffic from its subnetwork. Furthermore if we consider an attack reaching less than

2% of the transit network traffic it will be very difficult to detect any abnormal

change without a global integrated view of the statistics at different nodes.

For testing our aggregation algorithm we will start at k=1 an attack reaching

1.5% of all traffic at the transit network. Again the attack is toward a host in the

subnetwork of node 14.

The normalized statistics are computed for each link in the nodes. The solid

dark curve in figure 3.6 is the normalized statistic for the link (3,1), the only

link that the attack uses. The dotted curves are the normalized statistics for the

links (3,13), (3,4), (3,11) and the link to its subnetwork. Figure 3.7 shows the

normalized statistics for node 6. The solid dark curve is the normalized statistic

for the link (6,0). The circles identify the statistic from node 6 to its subnetwork.
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Figure 3.6: All normalized statistics for node 3.
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Figure 3.7: All normalized statistics for node 6.
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This statistic raises a local false alarm at k=42. In both cases we can see that the

statistic closest to reaching the threshold, is not the one by the links being used

in the attack.

The routing tables required for the aggregation algorithm are given in Tables

1 and 2.

Link Routing to nodes

(6,7) 7,13,2,10,12,9

(6,0) 0,14,1

(6,4) 4,3,5

(6,11) 11,3

(6,8) 8

(6,subnetwork)

Table 3.1: Routing table for node 6

By simple inspection of the routing tables we see that we need to correlate the

link (6,0) with (3,1) because nodes 6 and 3 use them (respectively) to reach nodes

0, 1 and 14. Similarly, the link (6,11) must be correlated with (3,11), link (6,4)

with (3,4), link (6,7) with (3,13), (6,7) with (3,1) and (6,8) with (3,11).

If we denote as Hi the hypothesis when node i or its subnetwork are under

attack, then we have the following hypothesis testing problem created by the ag-

gregation mechanism
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Link Routing to nodes

(3,1) 1,0,2,14,10,9,12

(3,13) 7,13

(3,4) 4,5

(3,11) 11,6,8

(3,subnetwork)

Table 3.2: Routing table for node 3

1(H0∨ H1∨H14) = ϕ6,0 + ϕ3,1 > h0∨1∨14

1(H11) = ϕ6,11 + ϕ3,11 > h11

1(H4∨H5 ) = ϕ6,4 + ϕ3,4 > h4∨5

1(H13∨H7) = ϕ6,7 + ϕ3,13 > h13∨7

1(H2∨H10∨H12∨H9) = ϕ6,7 + ϕ3,1 > h2∨10∨12∨9

1(H8) = ϕ6,8 + ϕ3,11 > h8

where 1( ) is the indicator function of the Hypotheses. If we have fixed routes in

the network, the thresholds hi∨...∨j can be computed to reach a given false alarm

rate.

The results of our aggregation algorithm between all allowable normalized

statistics are shown in figure 3.8. The dark solid curve is the correlated statis-

tic of the links (6,0) and (3,1). The other dotted curves represent the correlated
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Figure 3.8: Correlated statistics.

statistics of the remaining allowable links. It is clear that the aggregation of the

normalized statistics at nodes 6 and 3 gives a better resolution of the attack than

the statistics of 6 and 3 alone while discriminating the uncorrelated random fluc-

tuations of the traffic intensity that cause most of the false alarms.

Not only can we achieve the detection of the attack (depending on the new

aggregation threshold), but also we can diminish the impact of the false alarm

originating at node 6. Another important conclusion is that without the need

to extract or store header information from the packets transmitted through the

network, we are able to infer (from the intersection of the two routing tables for

the highest correlated statistic of the links (6,0) and (3,1)) the only three possible
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targets: Namely the nodes 0, 1 and 14, i.e. hypothesis H0 ∨H1 ∨H14.

A simple marginal constant reduction in the delay detection such as that ob-

tained with gd,m
k vs. Sd,m

k can provide significant help when we correlate the statis-

tics because constant gains will get multiplied by the number of nodes participating

in the detection reducing exponentially the detection delay.

3.5 Conclusions and further work

Note that one main difference between Sd,m
k and gd,m

k is that for testing a change in

the link m, Sd,m
k does not use information from the other links of node d whereas

gd,m
k does. A possible use of the information contained in all the links from d is

to compute a statistic that measures the changes in the normalized traffic seen

through a link (d,m):

ρd,m
k :=

Xd,m
k

∑

m∈N (d) X
d,m
k

This approach has the added advantage that a positive change in the mean of

ρd,m
k tends to yield a negative change in the mean on any other neighbor n of d as

ρd,m
k and ρd,n

k for n 6= m are negatively correlated because

∑

m∈N (d)

ρd,m
k = 1

. Experimental validation shows that the process ρd,m
k has less variations than its

normalized counterpart and will be more amenable to a mean computation and

the usage of the CUSUM nonparametric statistic.
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A way to complement the use of the direction concept in the formulation of the

statistic is by testing each possible direction against a change in all directions (Υd))

for detecting when the overall traffic of the network has increased or decreased,

i.e. computing

gd,m
k = max

1≤j≤k
log

supv≥c1

∏k

i=j fθd
0
+vΥm

(Xd
k )

supλ

∏k
i=j fθd

0
+λΥd

(Xd
k)

where λ is a scalar not necessarily greater than a positive constant c1 unlike ν.

Optimal solutions to the problem of sequential testing of more than two hy-

potheses are, in general, intractable. Hence research in sequential multi-hypotheses

testing has been directed toward the study of practical, suboptimal sequential tests

and the evaluation of their asymptotic performance. Simple generalizations of the

Wald’s binary SPRT, such as a parallel implementation of a set of simple SPRT’s,

may be far from optimum in multi-hypotheses problems [15].

In [15] a proof of asymptotic optimality as the decision risks (or error probabil-

ities) go to zero for two nontrivial extensions of the SPRT are presented. The tests

are also asymptotically optimal to any positive moment of the stopping time dis-

tribution, and the results are extended to continuous-time statistical models that

may include correlated (non-i.i.d.) and non-homogeneous observation processes.

This generalization justifies the use of these tests in a variety of applications.

Our M-ary change detection procedure used in this chapter is thus suboptimal.

We could improve results by following the optimal detection procedures.
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Chapter 4

Detection of routing attacks in MANETS

4.1 Attacks to the routing protocols

Mobile -wireless- ad hoc networks (MANETS) are particularly vulnerable to at-

tacks to the routing protocols. Unlike fixed networks, the routers usually do not

reside in physically protected places and can fall under the control of an attacker

more easily. Such an attacker can then send incorrect routing information. Fur-

thermore messages can be eavesdropped and faked messages can be injected into

the network without the need to compromise nodes.

General attacks are misrouting, false message propagation, packet dropping,

packet generation with faked source address, corruption on packet contents and

denial-of-service [16, 17]. In [18] they consider up to 40% misbehaving nodes which

agree to forward packets but fail to do so. Solutions are based on identifying these

nodes and avoiding them. Detection is made by listening promiscuously to the

next node’s transmissions. If the next node does not forward the packet, then it

is misbehaving.
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One of the attacks exploiting the wireless medium is the wormhole attack. In

this problem an attacker records packets or bits at one location in the network

and tunnels them to another location by means of a single long-range directional

wireless link or through a direct wired link to a colluding attacker. At the end of

the tunnel certain packets are retransmitted into the network [19]. The wormhole

attack can be devastating to a routing protocol. For example in DSDV if each

routing advertising sent by node A were tunneled to node B (and any data packet

is not retransmitted) and vice versa, then A and B would believe that they are

neighbors. If they were not within wireless transmission range, they would be

unable to communicate. Furthermore, if the best existing route from A to B were

at least 2n+2 hops long, then any node within n hops of A would be unable to

communicate with B and vice versa.

4.1.1 Related work

To our knowledge there is only one publication on intrusion detection for mobile

ad hoc networks [20]. Besides describing the overall architecture of the IDS, their

approach consists in training two classification algorithms for the simulation of

attacks falsifying routing information and dropping packets. The classification

algorithms used were support vector machines (SVMs) and RIPPER (a rule in-

duction algorithm). Features such as the percentage of changes in a routing table

in a given amount of time, position of the nodes obtained from GPS devices, and
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Figure 4.1: Allowed state transitions in an ad hoc network

percentage of traffic change were considered. There is no deductive modeling of the

intrusions; although rules are induced by RIPPER but their performance is not as

good as the SVM decisions, which do not provide any insight on the classification

of the attacks.

4.2 Problem formulation

Our approach is mostly an academic exercise for building a model capturing the

dynamics of a highly mobile ad hoc network. The basic idea is that an attacker

will change the routing information in such a way that our perceived mobility of

the nodes will differ from our previous experience.

We want to learn the allowable state transitions (which depend in our sampling

interval.) In figure 4.1 we have a simple scenario in which node 3 moves toward

node 1 and we have 2 possible transitions. It can be the case that based on the
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Figure 4.2: Codebook of size 10 of the hop count distribution

mobility pattern for the network, only transition to state B is allowed (e.g. node

3 can not move fast relative to 1.) For establishing a baseline of the allowable

state transitions we build a discrete hidden Markov model (HMM) with param-

eters (π,A,B) for modeling the temporal relations of various statistics encoding

the underlying mobility of the nodes. The states of the HMM can be viewed as

abstractions of different spatial configurations of the mobile nodes. We will pick

the observation variable to be the hop count distribution at a given node (figure

4.2.) For simplicity we will assume a proactive distance vector routing protocol

such as DSDV in order to have all hop counts at any time.

If we have N nodes (actually N +1 but each node see only N other nodes), the

hop count distribution seen at any node at the time step k can be considered as a
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vector in {0, ..., N}D: Xk = [X0
k , ..., X

D−1
k ]′ (X i

k ∈ {0, ..., N} where D is a limit we

impose in the maximum number of hops we will consider, i.e.

X0
k = number of nodes 0 hops away (disconnected and itself)

X1
k = number of nodes 1 hop away

...

XD−2
k = number of nodes D − 2 hops away

XD−1
k = number of nodes D − 1 or more hops away (4.1)

In order to consider a discrete HMM we need a way to deal with the high-

dimensional observation vectors Xk. The number of all possible observations is

(N +1)D−1 as we note that we are working with a hyperplane in (N +1)D because

∑D−1
i=0 X i

k = N + 1. The most natural approach is to quantize (compress) Xk to

a set of M codewords. The codebook Ξ for vector quantization can be learned by

using the classic LBG algorithm, in which for a given fixed rate R, one tries to

find the codebook that minimizes the given distortion function. We will consider a

quadratic distortion. Figure (4.2) shows a typical codebook of size 10 obtained for

the hop count distribution under the mobility model discussed in the simulations

section.

In order to continue in the change detection setup we follow a CUSUM pro-

cedure applicable to the case of dependent observations xj with distributions fθ1
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and fθ0
under hypotheses H1 and H0 respectively[21]:

Sn =

{

Sn−1 + log

(

fθ1
(xn|xn−1, ..., xk)

fθ0
(xn|xn−1, ..., xk)

)}+

(4.2)

where xk is the first sample after the last reset, i.e., Sk−1 = 0. It is clear that

this algorithm is only a reformulation of the SPRT algorithm for the log-likelihood

ratio: log
(

fθ1
(xn|xn−1,...,xk)

fθ0
(xn|xn−1,...,xk)

)

with the lower threshold selected at 0. The upper

threshold h will be selected given a false alarm rate.

In the field of intrusion detection most statistic models are built for anomaly

detection. In the case of observations in a finite alphabet (the codebook in our

case) the alternate hypothesis can be considered as the uniform distribution, i.e.

∀x̂ ∈ Ξ (P (x̂) = 1/M) . This is a way of not assuming anything about the attack

and therefore it is particularly suited for detecting the attacks we do not know

of. So under the assumption that we have an HMM model (πθ0
, Aθ0

, Bθ0
) for the

normal operation of the network, equation (4.2) can be reduced to

Sn = (Sn−1 + log(1/M) − log fθ0
(x̂k, ..., x̂n) + log fθ0

(x̂k, ..., x̂n−1))
+ (4.3)

where ∀k, x̂k ∈ Ξ.

4.3 Simulation results

The simulations take place in a 1000x1000m2 region with 40 nodes moving at

speeds of 5m/s and with a communication range of 250m. For the mobility of the

nodes we used the standard random waypoint algorithm in which the nodes select
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Figure 4.3: Codeword transitions with two nodes sending bad routing information

at random
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with a uniform distribution a destination point from the region and after reaching

their target they remain there for a given amount of time (5s in our simulation)

before selecting again another destination. We will be assuming that we monitor

one node in which the hop count distribution is sampled every two seconds. A

total simulated time of four hours was selected. The HMM is trained with the

first 3600 samples. In the following 1800 samples the nodes continue to behave

normally and in the final 1800 samples the attack takes place.

A second mobility model considered (avw mobility) is one in a 52x42m2 U-

shaped building where there are 47 offices and 47 nodes. Each node spends most

of the time in its home office and travels with a speed of 1m/s among different

offices selected at random. Each node has a communication range of 11m. A total

simulated time of one hour was selected and the time step between measurements

was 2 seconds.

The prior is initialized as a uniform distribution. The number of states is

selected to be equal to the number of observations and both matrices Aθ0
and Bθ0

are initialized with higher values in their respective diagonal component than the

rest of the values.

The first attack we simulated was an artificial attack to take advantage of the

HMM. Under this scenario two nodes start sending bad routing information ran-

domly at any given time about their distance to any other node. The spurious

pattern of the attack caused by the random attack produces more codewords tran-

sitions as seen in figure (4.3). As seen in figure (4.4), the attack was easily detected
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Figure 4.4: Change detection statistic for attack 1
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Figure 4.5: Change detection statistic for a wormhole attack

using equation (4.4).

The second scenario considers a wormhole attack, where the endpoints of the

wormhole are located at x, y coordinates (1000/3, 500)m and (2000/3, 500)m for

the 1000x1000m2 plane. This attack was also detected using equation (4.4). How-

ever, we can see in figure 4.5 that the statistic is not robust to the change.

A way to improve the performance is by including information on the attack.

We trained another HMM (πθ1
, Aθ1

, Bθ1
) for the attack mode. The resulting per-

formance of this new change detection statistic between two HMMs can be seen in

figure 4.6.

The performance of the change detection statistics to the wormhole attack

is similar to an attack in which one node is sending bad routing information con-

stantly. However in this case, a batch detection procedure by testing the likelihood
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Figure 4.6: Change detection statistic when we have an HMM model of the attack

of the state transitions for a given window of time seems to perform better when

we do not have an HMM of the attack. In figure 4.7 we can see that the state

transitions of a normal sequence have in average a higher log-likelihood value than

the states transitions from the attack. Figure 4.8 is the ROC curve.

Another way to deal with the problem is to build a more complex HMM.

A natural generalization to avoid the dependence of the detection on the trained

codebook is to consider directly the continuous hop count distribution vector Xk ∈

� D . To deal with this continuous vector we trained an HMM with a mixture of

two Gaussians with two hidden states. With continuous observations we also need

a fixed interval in � D for defining the uniform probability distribution. However

we decided to estimate the mean of the likelihood fGaussianHMM
θ0

(xn|xn−1, ..., xk)

for any new time step xn, to replace the distribution log 1/M . The resulting
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Figure 4.7: Log-likelihood of state transitions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

pfa

pd

Figure 4.8: ROC curve for batch detection
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Figure 4.9: Change detection statistic using a Gaussian mixture output HMM

performance of the statistic is shown in figure (4.9).

4.4 Conclusions and further work

Although the attacks introduced can be detected by very different and easy means,

the principle of detecting an unknown attack to the routing protocol with different

characteristics was obtained. In particular, attack 1 produces a change in the

variance of the hop count distribution, and attack 2 produces a change in the

mean of the hop count distribution. Both attacks were detected by simply testing

on the likelihood of our learned model.

The drawbacks of any anomaly detection approach are that we always need to

assume that we can train our model in an attack free environment. Issues we have
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to study further is the amount of time required for training our normal model, and

the dependence on the mobility pattern.

Another of the main limitations is that it flags as an alarm any deviation from

normal conditions and determining a normal baseline for ad hoc networks might

be very difficult in practice.
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Chapter 5

Conclusions

In this thesis we have presented new approaches to detect intrusions using a sta-

tistical framework.

The detection of self-propagating code was discovered to depend on the net-

work connectivity. For traffic satisfying the parametric assumptions the statistics

“fusion” “aggregate cusum” and “exponential change in mean” perform better

than the others. When the traffic has a long range dependence, the nonparametric

statistics “regression” and “robust regression” perform better. However this de-

pends highly on the burst spikes of the normal traffic and their performance will

degrade as the traffic becomes more bursty.

In the detection of denial of service attacks we introduced a new directionality

framework to improve the detection in transit networks from statistics using only a

change in one link. In real networks it is very likely that the sensors will be placed

at the peering routers because these routers will be close to the target. So to apply

our framework for detecting the transit routers we can use a change detection

statistic with a prior in the change time. The change time will be assumed to be
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the time when the alarm is set from one of the peering routers.

For ad hoc networks we presented a new formulation for representing the mo-

bility of the nodes. In practice the mobility might have very large variations and

therefore a model robust to these normal changes must be studied.
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