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ABSTRACT

Title of Dissertation: BROADCAST SCHEDULING IN

INFORMATION DELIVERY NETWORKS

Majid Raissi-Dehkordi, Doctor of Philosophy, 2002

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

The continuous growth in the demand for access to information and the in-

creasing number of users of the information delivery systems have sparked the

need for highly scalable systems with more efficient usage of the bandwidth. One

of the effective methods for efficient use of the bandwidth is to provide the infor-

mation to a group of users simultaneously via broadcast delivery. Generally, all

applications that deliver the popular data packages (traffic information, weather,

stocks, web pages) are suitable candidates for broadcast delivery and satellite or

wireless networks with their inherent broadcast capability are the natural choices

for implementing such applications.

In this dissertation, we investigate one of the most important problems in broadcast

delivery i.e., the broadcast scheduling problem. This problem arises in broadcast

systems with a large number of data packages and limited broadcast channels and

the goal is to find the best sequence of broadcasts in order to minimize the average

waiting time of the users.

We first formulate the problem as a dynamic optimization problem and investigate



the properties of the optimal solution. Later, we use the bandit problem formu-

lation to address a version of the problem where all packages have equal lengths.

We find an asymptotically optimal index policy for that problem and compare the

results with some well-known heuristic methods.

Since the equal file length assumption is not appropriate for applications such as

cache broadcasting in the Internet delivery systems, we also investigate an exten-

sion of the problem where the files have random lengths. After investigating some

of the properties of the optimal solution, we derive an asymptotically optimal index

policy for that case as well. Also, through simulation studies, the performance of

the policy is compared with that of some other heuristic polices designed by intu-

itive arguments. The index policy is also extended to systems with deterministic,

unequal file sizes and its performance is evaluated and compared to other policies

via simulation studies.

The formulation and analytical procedures used in deriving the index policies in

this dissertation allow for introduction of other extensions of the problem like as-

signing weights to the data files (studied in Chapter 3) or taking into account

the channel errors and correlation between the arrivals. We will present our for-

mulation of the last two extensions and discuss some of the numerical results to

motivate future work on these problems.
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Chapter 1

Introduction

The rapid growth in the demand for various information delivery services in recent

years has sparked numerous research works for finding more efficient methods for

the delivery of information. In many applications the flow of data is not symmetric.

In what we call a typical data delivery application, there are a few information

sources and a large number of users, thus, the volume of data transferred from the

sources to the users is much larger than that in the reverse direction. The short

information messages available on some cellular phones is an example of this type

of applications. The WWW traffic, which constitutes about 50% to 70% of the

Internet traffic [19, 51], can be also regarded as a data delivery application. The

data transferred through these applications is usually the information packages

requested by many users as opposed to applications with one-to-one information

content like email. This property of the data delivery applications and the fact

that every information package is typically requested by a large number of users at

any time, makes the wireless broadcast systems a good candidate as the transport

media for those applications. In fact, the broadcast transmission via either wired

or wireless media, makes a more efficient use of the bandwidth by not sending the

1



NOCNOCNOC

Figure 1.1: Typical architecture of a satellite information delivery system.

information through any path more than once. However, the wireless media, due

to their inherent physical broadcast capability, have the additional advantage of

forming a one-hup structure where all the receivers share the single download link

and receive the requested information at the same time. Throughout this report,

we use the term broadcast system to refer to this type of system with physical

broadcast capability. Figures 1.1 and 1.2 show two examples of these type of

systems. In both systems, we assume that all the users who are waiting for a

specific package will be directly served with a single transmission of that package

over the broadcast channel. This property, solves one of the major problems in

the design of any information delivery system, which is the scalability problem.

The scalability of a system depends on the relation between the resources of the

system and its number of users. In a satellite information delivery system, or any

other system with broadcast capability, the main resource of the system, which is

the downlink, is insensitive to the number of users and the number of users can
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Figure 1.2: Typical architecture of a wireless information delivery system.

be increased without any need for an increase in the bandwidth of the downlink1.

Therefore, the satellite and wireless environments provide highly scalable systems

for data delivery applications. Some of the popular data delivery applications are

as follows:

• Delivery of popular information packages: In this type of service, cer-

tain number of time-sensitive information pages like stocks, weather or traffic

information are broadcast by the system to the users upon their request. In

this application, the packages usually have a short fixed length. Also, in some

cases, deadlines may be introduced for some of the time-sensitive packages.

The main concern of the provider is to schedule the broadcast of the infor-

1There are of course other practical issues like the uplink bandwidth, geographical coverage,

... that need to be taken into account. However, considering the highly asymmetric nature of

the data and assuming that the users are within the coverage area of the system, the downlink

becomes the main bottleneck of the system

3



mation packages in order to minimize a measure of the delay experienced by

the users of different packages. Many cellular phones are currently capable

of receiving the information like news, weather and so on and the use and

variety of these systems is expected to grow with the advancements in the

broadband wireless systems and mobile computing field.

• Cache broadcast: This application is a method for fast delivery of the

WWW service from certain web servers to their users. The use of local

caches to locally store the popular information in various parts of the net-

work is a common practice for reducing the response time of the system.

A cache enables the system to locally respond to the requests for popular

web pages without the need for accessing the main server on the Internet.

In satellite networks, the cache is usually located at the Network Operation

Center(NOC). Having a cache installed in a satellite Internet delivery sys-

tem, the performance can be further increased by broadcasting the cached

pages to all users who need the pages at the same time or within certain time

interval instead of serving all of them individually.

• Webcasting: This type of system is in fact quite similar to cache broad-

casting. The users of this system are the information providers or companies

who already have the necessary information for their users or employees on

the WWW and like to provide them with fast access to those pages. The

difference between this service and the regular Internet service is the fact

that this service does not necessarily provide access to the Internet, and the

web site contents are locally stored in the ground station. This system, like

other WWW applications, works as a client/server application and there is

some type of uplink to transfer the requests to the server(ground station)

4



but the transmitted data is available to all members of the group.

There are already a number of companies (e.g. Hughes Networks System [55],

Cidera [9]) that offer various data delivery services using satellite links and their

number is expected to grow with the advances in the information technology and

the increasing number of users. The advances in wireless networks and the advent

of mobile computing applications suggest that there will be more room for taking

advantage of the potential benefits of broadcast systems for making more efficient

networks.

The two main architectures for broadcast delivery are the one-way(or Push) and

the two-way(or Pull) systems. The two systems differ in the lack or presence of a

return channel to transfer the user requests to the server. In a push system, the

server does not actually receive the requests and schedules its transmissions based

on the statistics of the user request pattern (hence the term push). Conversely, in

a pull system the server receives all the requests and can schedule the transmis-

sions based on the number of requests for different data packages. A pull system is

potentially able to achieve a better performance than a push system but the cost

of a return channel can generally overshadow this performance improvement. For

this reason hybrid architectures, those that combine push and pull systems, are

commonly suggested in the literature [27, 20, 15]. The main problem to address in

both of the above broadcast methods is the scheduling of data transmissions. As

we will mention in the next section, the problem of scheduling in a push system is

solved to a large extent. However, to our knowledge, the problem of finding the

optimal broadcast scheduling policy for a pull system has not been solved yet.

Based on the nature of the applications supported by a data delivery system, dif-

ferent performance metrics can be used to evaluate the performance of the system.

5



However, in most cases, the average waiting time is the parameter that is usually

chosen. Other parameters like the worst-case waiting time can also be of interest

when strict deadlines are assigned to the packages. In this work, we try to min-

imize the weighted average waiting time of the users to allow more flexibility in

assigning soft priorities to the packages.

The above work was initially motivated by its applications in the DirecPc or other

satellite data delivery systems to improve the performances of their Internet de-

livery services in future. Parallel to this effort, we also worked on another project

that dealt with the analysis of the traffic in the current systems which mainly

takes advantage of the large coverage of the satellite system. In that project, we

collected the traffic flowing at the hybrid gateway of the DirecPc system and per-

formed a statistical analysis of that traffic and derived several useful quantitative

as well as qualitative results about its components. Those results were used later

in other projects for more realistic performance evaluation studies on that system.

Therefore, the above problems are related in the sense that they both address the

problems associated with the same system.

1.1 Contents and organization of the thesis

This thesis is organized as follows. Following the literature review provided in

this chapter, Chapter 2 serves as the main building block of our work. In that

chapter, after a detailed review of the previous works on broadcast scheduling, the

mathematical formulation of the standard form of the problem where all files have

equal lengths as a Markov Decision Problem(MDP) is introduced. In Chapter 3,

a separate section is dedicated to reviewing the principles of our approach that is

based on the Restless Bandit problem formulation [61]. After proving the required

6



properties, we find both the exact and approximate asymptotically optimal index

policies for that problem. Finally, Chapter 3 ends with a detailed investigation of

the performance of our policy where we compare our results with the results of

other well-known heuristic policies. Chapter 4 uses the same method introduced

in Chapter 3 to address the scheduling problem in a pull system when the files

have different lengths. Unlike the standard form of the problem and despite the

potential applications of the results to cache broadcast systems, to our knowledge,

there has not been any previous work to address this problem before. We define

the formulation of the problem and prove some of the properties of the optimal

policy. We also extract an index function based on similar optimization arguments.

The final section of Chapter 4 is dedicated to experimental evaluation of our pol-

icy. We compare the results of our policy with the performances of a number of

other heuristic policies which we could come up with by extending the well-known

heuristic policies used in other circumstances. In Chapter 5 we divert from the

broadcast scheduling problem to present the results we obtained from statistical

analysis of the traffic in the DirecPc system. Finally, Chapter 6 is dedicated to

our formulation and preliminary results for some other extensions of the broadcast

scheduling problem and suggestions for future work.

It is worth mentioning that although our work on broadcast scheduling is moti-

vated by the problems in broadcast communication systems, our results are not

limited to communication applications. This work can be considered as the generic

problem of finding the optimal scheduling policy in a queueing system with a bulk

server of infinite capacity. It is easy to think of some applications of this prob-

lem in transportation industry which has been the origin of many queueing and

scheduling problems.

7



Chapter 2

Broadcast scheduling, literature

review and formulation of the

problem

This chapter serves as the main building block of our approach for finding the

optimal scheduling policy for different systems. First, we review the related work

by other researchers on this topic and review their approaches. Next, we present

our MDP formulation of the problem as a maximization problem and point to the

shortcomings of this initial formulation as an N -dimensional problem.

We present the Bandit problem methodology and the reduction of the problem

to N one-dimensional optimization problems. We then find the optimal solution

for each one-dimensional problem and present the near-optimal solution to the

original problem using those results. The final section of this chapter is dedicated

to numerical results for evaluating the performance of our policy and comparing

it to some other policies.

8



2.1 Related work

The series of works by Ammar and Wong are probably the first papers address-

ing the broadcast scheduling problem in detail. In [39, 40] they consider various

aspects of the push systems by analyzing the problems associated with a Teletext

system. They derive a tight lower bound for the average waiting time of the users

of a Teletext system with equal-sized packages of data. They also showed that the

optimal scheduling policy is of the cyclic type where the frequency of appearance

of every page in every broadcast cycle is directly related to the square root of the

arrival rate of the requests for that page. They presented a heuristic algorithm

for designing the broadcast cycle based on the arrival rates. Vaidya and Hameed

[57, 41] extended the so called square root formula to cover push systems with un-

equal page sizes and also considered the systems with multiple broadcast channels.

They showed that the appearance frequency of a page in the broadcast cycle is

inversely related to the square root of its length and proposed an on-line algorithm

for transmitting the requested pages. Moreover, they investigated the role of chan-

nel errors and made provisions for the error probability in their algorithm. Su and

Tassiulas [54] proposed an MDP formulation of both the push and pull delivery

systems. They showed that the optimal policy for a push system with two pages is

of the cyclic type and derived an equation for the optimal content of every cycle.

They also proposed a heuristic indexing policy for the push broadcast scheduling

that dynamically chooses the page to be broadcasted at the beginning of every

broadcast period. In a separate work, Bar-Noy [3] finds the optimal broadcast

schedule for a push system with two pages under different choices of the request

arrival processes while allowing the page lengths to be different. There are also

other papers [16, 18] which address the scheduling problem for more complicated

9



variations of a push system by proposing different data delivery schemes.

Despite the wealth of resources about the push systems, the number of works ad-

dressing the pull broadcast systems is limited. However, none of those papers

(except [14] to our knowledge) have tried to find the optimal scheduling policy and

most of them have suggested heuristic algorithms which despite their good perfor-

mances in some cases [12, 54] do not contain the notion of optimality. In [14], the

problem of finding the optimal scheduling policy for a pull system is formulated

as a dynamic programming problem. They attempted to numerically solve the

problem for small systems and made a number of conjectures about the properties

of the optimal policy based on the results. This work might be the first analytic

approach for solving the pull scheduling problem. However, the problem of finding

the optimal policy still remains open. In [27], a number of heuristic policies for a

pull system are proposed and their resulting average waiting times are compared.

Valuable observations about the performances of both push and pull systems are

also made in that paper. In [54], an index policy called the Performance Index

Policy (PIP) was introduced. The PIP index associated with each page is a func-

tion of both the arrival rate and the number of pending requests for that page.

After experimental tuning of the parameter of that function for the case with Zipf

distribution of the arrival rates, the PIP policy produced satisfying results in a

number of experiments. The work by Aksoy and Franklin [12] proposed another

index policy named RxW and reported a performance comparable to PIP in dif-

ferent experiments. The two above works are probably the best known scheduling

methods for a pull system. However, the distance between their performances and

that of an optimal policy is unknown. All of the above works only consider the

case where all pages are of equal importance and have equal sizes and do not apply
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to cases like cache broadcasting where the pages can have unequal lengths. More-

over, due to the complete heuristic nature of the algorithms, it is difficult to extend

them to other possible scenarios. This is the main motivation behind our work.

In this thesis, we address the scheduling problem in a pull system. We aim to

find a near-optimal (with respect to the weighted average waiting time) scheduling

policy via optimization methods and also provide a benchmark for evaluating cur-

rent and possibly future heuristic algorithms. We have approached the scheduling

problem from a dynamic optimization point of view. This formulation is similar

to the formulation in [14] and [54] but instead of using numerical methods for very

simplified versions of the problem or using this formulation in its initial form to

find a few properties of the unknown optimal policy, our goal is to reach an ana-

lytic solution and present an index policy through optimization arguments. Using

the Restless Bandit [61] formulation, our approach naturally addresses the systems

with multiple broadcast channels, or prioritized pages and also provides guidelines

for the case with unequal page sizes.

2.2 Problem formulation

In our formulation, we denote by N(> 1), the number of information packages

stored in the system. In this chapter we present the formulation of the case where

all packages have equal sizes. This assumption is also made in [54, 14, 12] and

most of the other works on this subject and is a reasonable assumption for many

applications. Throughout this thesis, we will use the terms page, package, and

information package interchangeably to simplify the notation. The fixed page size

assumption naturally introduces a time unit that is equal to the time required to

broadcast a page on a channel and it can be set to one without loss of generality. All
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of the broadcast times therefore, start at integer times denoted by t; t = 0, 1, . . ..

Here we assume that the system has K(1 ≤ K < N) identical broadcast channels.

In a pull broadcast system, the system receives the requests for all packages from

the users and based on this information the scheduler decides which pages to

transmit in the next time unit in order to minimize the average waiting time over

all users.

For the systems with a large number of users it is reasonable to assume that the

requests for each page i; i = 1, . . . , N arrive as a Poisson process and denote

by λi the rate of that process. The waiting time for every request is the time

since the arrival of the request to the system until the end of the broadcast of the

requested page. Due to the Poisson assumption for the request arrival process and

given that a request arrives in the interval [t, t + 1), its exact arrival time would

have a uniform distribution over this interval. Therefore, the waiting time from

the time of arrival till the start of the next broadcast cycle (t + 1) has a mean

of 1/2 which, together with an integer part (i.e. number of time units till the

beginning of the broadcast of the requested page) make the actual waiting time of

the request. This constant value can be omitted from our calculations without loss

of generality and we can assume that the requests for every page i arrive at discrete

time instants t as batches with random sizes having Poisson(λi) distribution. The

system therefore, can be shown by a set of N queues where each queue corresponds

to one of the packages and holds all the pending requests for that package, and

K servers as in figure 2.1. Due to the broadcast nature of the system, the queues

are of the bulk service type [8] with infinite bulk size i.e. the requests waiting in

a queue will be served altogether once the queue is serviced. The state of this

system at each time t is shown by X(t) = (X1(t), X2(t), . . . , XN(t)): where Xi(t)
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Figure 2.1: The pull type broadcast as a queuing system.

is the number of pending requests for page i at time t. Also, let’s denote by

A(t) = (A1(t), A2(t), . . . , AN(t)) the discrete-time request arrival process for all

pages where Ai(t) represents the number of requests for page i during [t, t + 1)

time interval. Xi(t); i = 1, . . . , N is a Markov chain which evolves as

Xi(t + 1) = Xi(t) − Xi(t)1[i ∈ d(t)] + Ai(t) (2.1)

where d(t) ⊂ {1, . . . , N} is the set containing the indices of the K pages broad-

casted at time t. Figure 2.2 shows a sample path of the evolution of a system with

three pages and a single broadcast channel.

The weighted average waiting time over all users is defined by

W̄ =
N∑

i=1

ciλi

λ
W̄i

where W̄i is the average waiting time for page i requests and λ is the total request

arrival rate to the system. The ci coefficients are the weights associated with the

pages to allow more flexibility in assigning soft priorities to the pages. By Little’s
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Figure 2.2: Sample path of a system with three pages.

law the average waiting time can be written as

W̄ =
1

λ

N∑
i=1

ciX̄i. (2.2)

where X̄i is the average number of requests in queue i and the constant λ term

can be omitted in the minimization problem. Due to the discrete-time nature of

the system, and to avoid technical difficulties associated with the DP problems

with average reward criteria, instead of minimizing (2.2), we use the expected

discounted reward criteria defined as

Jβ(π) = E

[ ∞∑
t=0

βt
N∑

i=1

ciXi(t)

]
(2.3)

where π is the scheduling policy resulting in Jβ(π). Equations (2.3) and (2.1), with

the initial condition X(0), define the following DP problem with J∗ denoting the

optimal value defined as

J∗
β(π) = min

π
E

[ ∞∑
t=0

βt
N∑

i=1

ciXi(t)

]
. (2.4)
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We have shown in appendix A that Jβ(π) satisfies the equation

(1 − β)Jβ(π) = E

[
N∑

i=1

ciXi(0)

]
+ βE

[ ∞∑
t=0

βt
N∑

i=1

ciAi(t)

]
− E

 ∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)


(2.5)

where d(t) is the set of the pages broadcasted at time t. Since the first two terms

of the right-hand side are independent of the policy π, the problem of minimizing

Jβ(π) would be equal to the maximization problem

Ĵ∗
β(π) = max

π
E

 ∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)

 . (2.6)

This problem is in fact a DP problem with state space S = (S1, . . . , SN) where

Si = 0, 1, . . .; i = 1, . . . , N and decision space D = {d; d ⊂ {1, 2, . . . , N}&|d| = K}
with |d| denoting the cardinality of set d. The decision space D is the set of all

possible K tuples of the indices 1 through N . The reward function for broadcasting

of pages in d ∈ D at state s = {x1, . . . , xN} ∈ S is

r(s, d) =
∑
l∈d

clxl (2.7)

and a stationary policy is a function π : S �→ D that maps every state to a decision

value. It can be shown (Theorem 6.10.4 [48]) that under mild conditions on the

reward function (which includes our linear function) and given the assumption of

finite arrival rates, the L operator defined as

L(V (s)) = max
d∈D

r(s, d) + β
∑
s′∈S

pd(s, s′)V (s′)

 ∀s ∈ S (2.8)

is a contraction mapping and therefore this DP problem with unbounded rewards

has an optimal solution. Here, pd(s, s′) is the stationary transition probability

of going from state s to state s′ under decision d and V (s); s ∈ S is the value

function associated with the optimal solution. This function satisfies the optimality
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equation

V (s) = L(V (s)) ∀s ∈ S. (2.9)

This maximization problem is the problem we will address in the sequel to find

a non-idling, stationary optimal policy for the pull broadcast environment. What

we are specially interested in is an index-type policy that assigns an index νi(xi)

to queue i; i = 1, . . . , K and the optimal decision is to service the queue(s) with

the largest index value(s). If the index for each queue only depends on the state of

that queue, the computation load for every decision would be of order N which is

important from a practical point of view for systems with a large number of stored

pages.

Since in our formulation there is no cost for serving a queue, we expect the optimal

policy to serve exactly K non-empty queues at each time. This can be better seen

via a sample path argument. Suppose that {d1, d2, . . .} is the decision sequence

dictated by policy π when the system starts from initial state x and the arrivals

occur according to sequence A = {a1, a2, . . .}. Suppose that, at some time instant

t, there are M > K non-empty queues in the system and π opts to serve K ′ < K

of them. We can construct a new policy π∗ which serves the same queues as π

plus K − K ′ additional non-empty queues. Let’s suppose one of the additional

queues j have xj requests at time t, and t′ > t is the earliest time policy π will

serve that queue. In this system, the reward function is linear and the arrivals are

independent of the state of the system. Hence, if Sπ
A(x) is the total discounted

reward generated by policy π with initial state x and arrival sequence A, then we

will have Sπ∗
A (x) ≥ Sπ

A(x) + cjxj(β
t − βt′). This argument shows that for every

idling policy π, we can construct a non-idling policy π∗ which will result in a

greater total discounted reward for every sample path and therefore, in a greater
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expected discounted reward. Henceforth, from now on, we only focus on the set of

non-idling policies for finding the optimal policy.

Also, it should be mentioned at this point that in the discrete-time setting of the

above problem, the arrival process is only modelled as an i.i.d. sequence with

a specific pmf. Although our initial Poisson assumption for the request arrival

process implies that the corresponding pmf would be that of a Poisson distribution,

our analysis below is quite general and holds for other distributions as well.

2.3 Properties of the optimal policy

As in many other problems, the DP formulation of our problem provides a math-

ematical characterization of the optimal solution but does not necessarily lead to

a closed-form or analytical expression for it. The range of the results that we can

get by working with equation (2.9) is limited to a few properties of the optimal

solution. However, since the methods for proving those properties are similar to

what we will use in the following sections where we introduce our main approach

for solving this problem, it is constructive to point to some of the results in this

section.

The properties we tried to prove show that the optimal policy is of the threshold

type and the decision surfaces (in the N-dimensional space with each dimension

representing the length of one queue) are non-decreasing with respect to all coor-

dinates. This approach has a limited range and only gives us ideas about the form

of the optimal policy. We first need the following lemma to prove the properties.

Lemma 2.3.1 Let Sd
p(x) denote the resulting discounted reward sum when the ini-

tial condition is x and arrivals occur as sample path p and the fixed(independent

of state) decision sequence d is applied to the system. Then we have
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Sd
p(x) ≤ Sd

p(x + ei) ≤ ci + Sd
p(x). (2.10)

where ei = (0, . . . , 1, . . . , 0) is the unit vector in RN with ith element equal to one.

Proof: Consider two identical systems one with initial condition x and the other

with initial condition x + ei defined as above. If the same fixed policy is applied

to these two systems, the reward would be the same before the first broadcast of i.

At that point, the second system receives a reward that is 1ci units more than that

received by the first system. Since the dynamics of the system forces the length

of the serviced queue to zero, it in fact erases the memory of the queue after each

service. Therefore, the resulting rewards even for queue i in both systems would

be the same afterwards. Therefore, the first inequality holds(ci > 0). The presence

of the discount factor 0 < β < 1 causes the additional instantaneous reward in the

second system to result in at most a ci unit difference between the two discounted

sum of the rewards(if i is served at time t = 0), hence the second inequality holds.

The first property can be proved using the above lemma. suppose

• x = (x1, x2, . . . , , xN)

• y = x + ei; i ∈ 1, 2, . . . , N

then

Theorem 2.3.2 For x and y defined as above and function V (.) being the value

function of the optimal policy of our maximization problem, we have

(a) V (y) ≤ V (x) + ci.

(b) V (x) ≤ V (y)
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Proof: Let d∗ be the optimal policy and denote by dx
p the deterministic sequence

of decisions dictated by d∗ when the arrivals occur according to a deterministic

sample path p and the initial condition is x. According to lemma 2.3.1 we have

Sdy
p

p (y) ≤ Sdy
p

p (x) + ci (2.11)

If we take the expectation of both sides with respect to the sample path probability

P (p), we get

V (y) ≤ ci +
∑
p

P (p)Sdy
p

p (x). (2.12)

Also, according to the definition of optimality of policy d∗ we have

V (x) =
∑
p

P (p)S
dx

p
p (x) ≥ ∑

p

P (p)Sdy
p

p (x). (2.13)

inequality (a) follows by combining the two above results.

Also, according to lemma 2.3.1 we have

S
dx

p
p (x) ≤ S

dx
p

p (y) (2.14)

If we take the expectation of both sides with respect to the sample path probability

P (p), we get

V (x) ≤ ∑
p

P (p)S
dx

p
p (y). (2.15)

Also, according to the definition of optimality of policy d∗ we have

V (y) =
∑
p

P (p)Sdy
p

p (y) ≥ ∑
p

P (p)S
dx

p
p (y). (2.16)

Hence inequality (b) follows.
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The second property can also be proved using the following discussion.

Theorem 2.3.3 If d∗ is the optimal policy and d∗(x) = i then d∗(y) = i with x

and y defined as above.

Proof: Since i is the optimal policy for state x, we have

cixi+β
∑
A

P (A)V (x+A−xiei) ≥ cjxj +β
∑
A

P (A)V (x+A−xjej) j = 1, . . . , N.

(2.17)

We need to show

ciyi +β
∑
A

P (A)V (y+A−yiei) ≥ cjyj +β
∑
A

P (A)V (y+A−yjej) j = 1, . . . , N

(2.18)

or since y is different from x just in the ith element,

cixi+ci+β
∑
A

P (A)V (x+A−xiei) ≥ cjxj+β
∑
A

P (A)V (y+A−xjej) j = 1, . . . , N j 	= i.

(2.19)

From 2.17 we have

cixi+ci+β
∑
A

P (A)V (x+A−xiei) ≥ ci+cjxj+β
∑
A

P (A)V (x+A−xjej) j = 1, . . . , N.

(2.20)

Also , from lemma 2.3.2 part(a) we have

V (y + A − xjej) ≤ ci + V (x + A − xjej) (2.21)

or

β
∑
A

P (A)V (y + A − yjej) ≤ ci + β
∑
A

P (A)V (x + A − xjej). (2.22)

From (2.20) and (2.22), equation (2.19) follows, that proves the theorem.
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The last property shows that the optimal policy is of the threshold type. In

other words, once i becomes the optimal decision for an state x, it remains the

optimal decision for all states x + kei; k = 1, 2, . . ..

As it was mentioned before, equation (2.9) only reveals limited properties of the

optimal policy. Our main approach in this dissertation requires some background

from the Bandit problems and also a few properties of the bulk service queueing

systems. Therefore, we end this section at this point and explain our main approach

in the following chapter after providing the necessary material.
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Chapter 3

Preliminary properties, Bandit

problem formulation and results

This chapter serves as the main building block of this dissertation. Here we explain

our approach for addressing the broadcast scheduling problem and the resulting

scheduling policy. However, this formulation is only useful when the underlying

system possesses certain properties. Therefore, we dedicate the first section to

exploring some of the properties of bulk service queueing systems which will be used

later in this chapter. That will be followed by a brief review of stochastic scheduling

and our main approach i.e., Restless Bandit problem formulation. Finally, we

present the resulting policy and and an extensive evaluation of its performance

compared with other well-known policies.

3.1 Properties of controlled bulk service queues

Queues with infinite bulk service capability posses a number of interesting proper-

ties. A generic single-server bulk service queue with Poisson arrivals and general
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service distribution is shown by the M/Gb
a/1 notation [8] where the subscript a is

the minimum number of customers in the queue needed by the server to start a

service and superscript b is the bulk size i.e., the number of customers which will

be served by each service. Since here we deal with controlled queues in a dynamic

programming setting, we do not present our results about the regular continuously

serviced bulk service queues. However, some results are included in appendix B

for the interested readers. Imagine one of our bulk service queues with Poisson

arrivals and constant service times as before. If we assume that all the arrivals

that arrive during a service period are counted only at the end of that period, the

system would be a pure discrete-time system. The sub-problem we would like to

consider for a single queue is to find the optimal policy that results in the maxi-

mum expected value of the discounted reward given that the reward obtained by

serving the queue at any time is equal to the number of customers in the queue

and there is also a fixed cost ν for each service. The optimal policy is the optimal

assignment of active or passive actions to every state. More precisely, the objective

function is:

Jβ = E

[ ∞∑
t=0

βtR(t)

]
.

where R(t) is the reward at time t that is

R(t) =


cs(t) − ν if d(t) = 1

0 if d(t) = 0

and d(t) is the indicator function that is 1 if the queue is served and 0 otherwise.

s(t) is the state of this system at time t and is the number of customers in the

queue waiting to be serviced. A property that is crucial in later discussions is as

follows
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Figure 3.1: Typical s(ν) and ν(s) curves.

Property 3.1.1 The optimal policy is of the threshold type with respect to the

state space ordering. In other words, if it is optimal to serve the queue at state x,

then it is also optimal to serve the queue if it is at any state y > x.

The proof of this property can be found in appendix B where we use an induction

argument. This property shows that for every fixed value of the service cost ν∗,

the set of states where it is optimal not to serve the queue (S0(ν∗)) contains all

the states less than or equal to a threshold state sth(ν
∗). The optimal policy is so

far to compare the state of the queue at each decision instant with the threshold

state and serve the queue if the state is larger then the threshold. The threshold

state sth(ν
∗) is the largest state for which it is still optimal to leave the queue idle.

The threshold state also has the following property

Property 3.1.2 For the single bulk service queue discussed in this section, the
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threshold state sth(ν) is a non-decreasing function of the service cost ν (figure

3.1).

Proof: Appendix B.

Instead of finding the threshold state for every value of ν, we can assign to every

state s(figure 3.1), a corresponding service cost value ν(s) that is the minimum

service cost needed to keep state s in the idling set. Therefore, if the system is

in state s, it is optimal to serve the queue if the service cost is smaller than ν(s),

leave the queue idle if it is larger and equally optimal to serve or to remain idle if it

is equal to ν(s). The function ν(s) can be considered as the index associated with

state s which, when compared to the actual value of the service cost ν∗, determines

the optimal action. This is the characteristics of an index policy in the dynamic

optimization context as will be discussed below.

3.2 Stochastic scheduling and Bandit problems,

review

In a typical stochastic scheduling problem there is a system that is composed of a

number of controllable stochastic processes and a limited amount of available con-

trol should be distributed between the projects during the operation of the system

in such way to maximize the total reward generated by them. Manufacturing and

computer communication systems might be the most important examples of such

systems. There is no unified and practical method to find the optimal solution to

all the problems that fit into the above general definition. However, many such

problems can be formulated in the framework of dynamic programming. Although

the straightforward numerical application of this method does not necessarily result
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into useful results (due to the usually large size of the formulations), its framework

sometimes helps to reveal structural properties of the optimal policy. One of the

well known models for the dynamic programming formulation of the stochastic

scheduling problems with known structural results for the solution is the Multi-

armed Bandit model. In the basic discrete-time version of the Multiarmed Bandit

problem, there are N independent reward processes (called projects) and a single

server. At each discrete decision instant t = 1, 2, . . ., the server can be allocated to

activate only one of the projects and the other projects remain idle. Each project

i; i = 1, 2, . . . , N , when activated, changes its state si(t) according to its stationary

state transition probability matrix. Also the activated project generates an imme-

diate reward R(t) = ri (si(t)) which is a function of its state. The idle projects

neither change their states nor produce any rewards. The optimization problem is

to maximize the expected discounted value of the total reward defined as

E

[ ∞∑
t=1

βtR(t)

]
(3.1)

where 0 < β < 1 is a constant discount factor and the initial state is known. This

problem has received considerable attention since it was formulated about 60 years

ago. The most important result appeared in 1970s where Gittins and Jones [26, 22]

found that the optimal policy is of the index type. More specifically, they showed

that at each decision instant t, there is a function called the index associated with

each of the projects defined as

νi(si(t)) = max
τ≥t

E
[∑τ

l=t β
lri (si(l))

]
E [

∑τ
l=t β

l]
(3.2)

and the optimal policy at time t is independent of the previous decisions and is

to activate the project with the largest index value. The significance of this re-

sults is in exploring the indexing structure of the optimal policy which converts
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the original N dimensional problem into N one-dimensional problems, a property

that is crucial to the applicability of this method for practical applications with

large values of N . All of our effort throughout this work is also focused on finding

policies of the index type even if they do not result in the optimal solution. The

interpretation of the above index function is simple. It is the maximum expected

discounted reward per unit of the discounted time for each project and intuitively

it makes sense to activate the project which can potentially produce the maximum

reward. In a number of other significant works on this problem, other interpreta-

tions of the index function [21, 63, 30] as well as extensions to the original problem

[62, 58, 32, 31] were introduced and studied by other researchers.

The main restriction of the Multiarmed Bandit problem is the one that requires

the passive projects to remain frozen and do not change their states which is not

necessarily the case for many problems and particularly our problem. If we con-

sider the N queues in our problems as the N projects in the above formulation,

the state of the projects will be the length of each queue and the reward function

for serving a queue will be the number of serviced customers. Obviously, the idle

queues keep receiving new arrivals and their state keeps changing even during the

idle state. This restriction is somehow alleviated in the Multiarmed Bandit formu-

lation of the scheduling problem in regular single-service queueing systems [62, 58]

which resulted in the so-called cµ rule as the optimal policy (also through other

approaches e.g. [4, 10]). However, we were not able to use any of those formu-

lations for our bulk-service scheduling problem. We therefore use what Whittle

[61] introduced as an extension to this problem which is called the Restless Ban-

dit problem and allows the passive projects to produce rewards and change their

states too. Unfortunately, with this generalization, the existence of an index-type
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solution is no longer guaranteed. However, as Whittle showed, in some cases an

index-type solution can be found for a relaxed version of this problem that results

into reasonable conclusions about the optimal policy for the original problem.

3.3 Restless Bandits formulation

In this section we explain the Whittle’s method for use in the discrete time ver-

sion of the dynamic optimization problem and will give the formulation of the

β-discounted version of the Restless Bandit problem in a way to match our prob-

lem and refer the reader to [61, 43, 7, 44] for more detailed information.

In this formulation, the dynamic optimization problem is treated as a linear op-

timization problem using the linear programming formulation of the MDPs. Let

us call the state space of queue i by Si and the total N dimensional state space of

the problem by S. Also, let us show the decision space of the problem with D and

suppose that α(j) is the probability distribution of the initial state of the system.

The linear programming(LP) formulation of the MDP [48] converts the original

dynamic programming problem

V (s) = max
d∈D

r(s, d) + β
∑
j∈S

pd(j|s)V (j)

 ∀s ∈ S (3.3)

to the (dual) LP problem

Maximize
∑
s∈S

∑
d∈D

r(s, d)z(s, d)

subject to

∑
d∈D

z(j, d) − ∑
s∈S

∑
d∈D

βpd(j|s)z(s, d) = α(j) ∀j ∈ S
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and z(s, d) ≥ 0 for d ∈ D and s ∈ S.

Here, α(.) is the initial probability distribution of the states and

z(s, d) = E

[ ∞∑
t=0

βtI[x(t) = s & d(t) = d]

]
(3.4)

where I(.) is the indicator function of the event defined by its argument. In other

words, z(s, d) is the discounted expected value of the number of times that action

d is taken at state s.

For our scheduling problem, the state space S is the product of the N state spaces

S1, S2, . . . , SN . Therefore, the objective function of the dual problem can be writ-

ten as

Maximize
N∑

n=1

∑
s∈Sn

rn(s, 0)zn(s, 0) +
∑

s∈Sn

rn(s, 1)zn(s, 1)

 (3.5)

subject to

∑
l∈{0,1}

zn(j, l) − ∑
s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = αn(j) for n = 1, . . . , N and j ∈ Sn.

(3.6)

where

zn(s, 1) = E

[ ∞∑
t=0

βtI[xn(t) = s & n ∈ d(t)]

]
(3.7)

and

zn(s, 0) = E

[ ∞∑
t=0

βtI[xn(t) = s & n /∈ d(t)]

]
(3.8)

and p1
n(j|s) (p0

n(j|s)) is the probability of queue n going from state s to state j

when it is activated(idle). Obviously, in our problem we have rn(s, 0) = 0 and

rn(s, 1) = cns. An additional constraint implicit to this scheduling problem is that

at any time t, exactly K queues should be serviced. This constraint is in fact the
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only constraint that ruins the decoupled structure of the dual problem and the

following relaxation removes this limitation. This relaxation assumes that instead

of having exactly K of the projects activated at any time, only the time average of

the number of activated projects be equal to K. This assumption in the discounted

case can be stated as the following additional constraint to the dual problem

N∑
n=1

∑
s∈Sn

zn(s, 1) = K/(1 − β). (3.9)

To exploit the structure of the solution to the new problem, Whittle used the

Lagrangian Relaxation method to define a relaxed problem which, in our case, is

Maximize
N∑

n=1

∑
s∈Sn

rn(s, 1)zn(s, 1)

 + ν

K/(1 − β) −
N∑

n=1

∑
s∈Sn

zn(s, 1)

 (3.10)

subject to

∑
l∈{0,1}

zn(j, l) − ∑
s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn.

the above problem can be stated as

Maximize
N∑

n=1

∑
s∈Sn

(rn(s, 1) − ν)zn(s, 1)

 + Kν/(1 − β) (3.11)

subject to

∑
l∈{0,1}

zn(j, l) − ∑
s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn.

Therefore, multiplier ν works as a constant cost for activating a project. Whittle

termed ν as a constant subsidy for not activating a project, but in the queuing
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theory problems the service cost interpretation seems more familiar. Problem

(3.11) can be decoupled into N separate problems

Maximize
∑

s∈Sn

(rn(s, 1) − ν)zn(s, 1) (3.12)

subject to

∑
l∈{0,1}

zn(j, l) − ∑
s∈Sn

∑
l∈{0,1}

βpl
n(j|s)zn(s, l) = α(j) for n = 1, . . . , N and j ∈ Sn.

(3.13)

The solution to the Lagrangian Relaxation problem (3.11) is a function of the

parameter ν and is an upper bound to the solution of problem (3.5) and for a

specific value ν∗ the solutions to both problems are equal. Suppose that ν∗ is

known, then, the problem becomes finding the optimal policies for each of the N

problems in (3.12). Here for each queue n we have the problem of serving or not

serving the queue at each state s ∈ Sn, given that the reward for serving a queue

is cns − ν∗ and the reward for not serving it is zero, so that the total discounted

expected reward is maximized. This is the problem we studied in section 3.1 and

found that the optimal policy, for a fixed value of the service cost ν, is an index

policy with the index being a function of the current state of the system and it

is optimal to serve the queue if the index is larger than ν. the optimal policy for

each queue is therefore to calculate the value of index for that queue and activate

the queue if it is larger than the service cost.

Whittle used this idea and gave a logical heuristic to address the original problem

with the strict constraint on the number of active projects. The heuristic policy

is to find the critical cost value(index) νn(sn(t)) for each queue n at decision time

t and serve the queues with K largest index values. He conjuctured that this

policy is asymptotically optimal and approaches the real optimal point as K and
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N increase. Weber and Weiss [50] showed that this conjecture is not necessarily

true in all cases and presented a sufficient condition for it to hold. They also

presented a counterexample for this conjecture. However, based on their results,

they argued that such counterexamples are extremely rare and the deviation from

optimality is negligible. We remind that the above heuristic would not have been

meaningful if our projects did not have the monotonicity property that resulted in

an index type optimal solution for the single queue problem.

The significance of this result is in the fact that it reduces the original problem to

the simpler problem of finding the optimal policy for a single-queue system, which

is potentially much easier to solve and to get either an analytical or experimental

solution for it. So far, we have shown that our problem have certain properties

that make the above heuristic an acceptable indexing policy. The complexity of

this indexing policy is hidden in the form of the ν(s) function for each queue and

in the following section we present a recursive method to calculate ν(s) for each

queue.

3.4 Calculation of the index function

The index ν associated with state s ∈ Sn is the amount of the service cost that

makes both the active and idle actions equally favorable at that state under the

optimal policy. Using the results of appendix B, it can be easily shown that for

that value of ν, the optimal policy would be to serve the queue for states larger

than s and to remain idle for states smaller than s. Therefore, the following set of

equations characterizes the value function V s(.) for ν(s).

V s(0) = β
∞∑
i=0

p(i)V s(0 + i) (3.14)
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V s(1) = β
∞∑
i=0

p(i)V s(1 + i) (3.15)

...

V s(s) = β
∞∑
i=0

p(i)V s(s + i) (3.16)

V s(s) = −ν(s) + cs + β
∞∑
i=0

p(i)V s(i) (3.17)

V s(s + 1) = −ν(s) + c(s + 1) + β
∞∑
i=0

p(i)V s(i) (3.18)

...

This system of equations has all the V s(.) values plus ν = ν(s) as unknowns. In

other words we fix the border state to s and need to find the corresponding ν(s).

To find the complete ν(s) index function, this set of equations should be solved

for every s. In the following, we will try to exploit the properties of this system of

equations to find an easier method for calculating the ν(s) function. Due to the

special form of the V s(.) function we have

V s(s + i) = V s(s) + ci; i = 0, 1, . . .

Therefore the set of unknowns reduces to V s(0), . . . , V s(s), s, ν(s). The last term

in equation (3.17) is equal to V s(0) therefore we have

ν(s) = cs + V s(0) − V s(s). (3.19)

Equation (3.16) can be written as

V s(s) = β
∞∑
i=0

p(i)V s(s + i)

= β
∞∑
i=0

p(i)(V s(s) + ci)

= βV s(s) + βcλ.
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Therefore we have

V s(s) =
βcλ

1 − β
(3.20)

and

V s(s + i) = ci +
βcλ

1 − β
. (3.21)

Substituting (3.20) in (3.19) gives

ν(s) = cs + V s(0) − βcλ

1 − β
. (3.22)

According to this equation we only need to find V s(0) in order to calculate ν(s).

The reduced set of equations for finding V s(x); x = 0, . . . , s − 1 is therefore

V s(x) = β
∞∑
i=0

p(i)V s(x + i)

= β
s−x−1∑

i=0

p(i)V s(x + i) + β
∞∑

i=s−x

p(i)V s(x + i)

= β
s−x−1∑

i=0

p(i)V s(x + i) + β
∞∑
i=0

p(s − x + i)V s(s + i)

= β
s−x−1∑

i=0

p(i)V s(x + i) + βV s(s)
∞∑
i=0

p(s − x + i)

+ βc
∞∑
i=0

ip(s − x + i)

= β
s−x−1∑

i=0

p(i)V s(x + i)

+ βV s(s)h(s − x − 1) + β(λ − m(s − x − 1) − (s − x)h(s − x − 1)

= β
s−x−1∑

i=0

p(i)V s(x + i)

+ βh(s − x − 1)(V s(s) − c(s − x)) + βc(λ − m(s − x − 1))

where h(.) and m(.) are functions of the Poisson distribution defined as

h(n) =
∞∑

i=n+1

p(i) (3.23)
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and

m(n) =
n∑

i=0

ip(i). (3.24)

Defining Ws = (V s(0), . . . , V s(s − 1)), we can write the above system as

AsWs = Bs (3.25)

where

As =



1 − βp(0) −βp(1) . . . −βp(x) . . . −βp(s − 1)

0 1 − βp(0) . . . −βp(x − 1) . . . −βp(s − 2)

...
...

...
...

0 0 . . . 1 − βp(0) . . . −βp(s − x − 1)

...
...

...
...

0 0 . . . 0 . . . 1 − βp(0)



(3.26)

and

Bs = β



h(s − 1)
[

βcλ
1−β

− cs
]
+ cλ − cm(s − 1)

h(s − 2)
[

βcλ
1−β

− c(s − 1)
]
+ cλ − cm(s − 2)

...

h(s − x − 1)
[

βcλ
1−β

− c(s − x)
]
+ cλ − cm(s − x − 1)

...

h(0)
[

βcλ
1−β

− c
]
+ cλ − cm(0).



(3.27)

An immediate observation of the role of the weight coefficient c in the above equa-

tions shows that it only results in a solution Ws(and so V s(0)) which is c times

larger than the solution for c = 1 case. Taking this observation into account, from

equation (3.22) it can be seen that the index function satisfies

Property 3.4.1 If νc(s) is the index function for a bulk service queue with the

reward function at state x defines as R(x) = cx, we have νc(s) = cν1(s); ∀s ∈ S.
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Hence, without any loss of generality we will continue our analysis for c = 1.

By solving equation (3.25) the value of ν(s) is found and for every value of s a

similar s × s system needs to be solved. However, a closer look at the structure

of As and Bs matrices shows that As+1 is formed by adding an additional first

row and first column to As and also Bs+1 is formed by adding an additional first

row to Bs. The new system has of course s + 1 unknowns shown as Ws+1 =

(V s+1(0), V s+1(1), . . . , V s+1(s)). Since matrix A is upper triangular, the subsystem

defining the V s+1(1), . . . , V s+1(s) values is the same as the previous system defining

the V s(0), . . . , V s(s − 1) values. Therefore, we have

Property 3.4.2 If V s(.) is the value function of the optimal policy for the case

where s is the border state and V s+1(.) the similar function for s + 1 being the

border state, then V s+1(x + 1) = V s(x); x = 0, . . . , s − 1.

Also using the above property it is easy to show that

Property 3.4.3 For V (0) values we have

V s+1(0) = β
1−βp(0)

[
p(1)V s(0) + . . . + p(s)V s(s − 1) + λ + h(s)( βλ

1−β
− s − 1) − m(s)

]
.

Therefore, once the values of the V s(x); x = 0, . . . , s − 1 are found, the values of

V s+1(x); x = 0, . . . , s can be easily calculated using the V s(.) values. The index

function can therefore be efficiently computed using this recursive method.

We can also use the above relations to prove a number of properties of the

index function. The results are for c = 1 and the extension to c 	= 1 is trivial.

Theorem 3.4.4 The index function ν(s) is a non-decreasing function of s such

that

(a) ν(s) ≤ ν(s + 1).

(b) ν(s + 1) ≤ ν(s) + 1
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Proof: Based on equation (3.22) we have

ν(s + 1) − ν(s) = 1 + V s+1(0) − V s(0) (3.28)

but

V s+1(0) − V s(0) = β
∞∑
i=0

p(i)[V s+1(i) − V s(i)]

= βp(0)[V s+1(0) − V s(0)] + β
∞∑
i=1

p(i)[V s+1(i) − V s(i)]

= βp(0)[V s+1(0) − V s(0)] + β
∞∑
i=1

p(i)[V s(i − 1) − V s(i)]

Therefore

V s+1(0) − V s(0) =
β

1 − βp(0)

∞∑
i=1

p(i)[V s(i − 1) − V s(i)]. (3.29)

Since V s(i − 1) ≤ V s(i) ≤ V s(i − 1) + 1; i = 1, 2, . . .(Lemma 2.3.2), we have

−β(1 − p(0))

1 − βp(0)
≤ V s+1(0) − V s(0) ≤ 0. (3.30)

Using equation (3.28), we have

1 − β(1 − p(0))

1 − βp(0)
≤ ν(s + 1) − ν(s) ≤ 1 (3.31)

and since β < 1 the left hand term is always greater than 0 which completes the

proof. This property was used in section 3.3 to establish the indexing argument

and tells that the ν(s) curve is monotonic increasing with a maximum slope of 1(c

in the general case).

3.5 Index function in light traffic regime

In the previous section we calculated the index function via a recursive method

for a Poisson arrival with arbitrary rate but we failed to present a closed form
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formula for that function due to the complexity of the equations. An interesting

case to consider is when the arrival rate is low so that we can model the arrivals in

every period to be according to an iid Bernoulli sequence with p the probability of

having one arrival and 1 − p the probability of zero arrivals. It is worth noticing

that this assumption is not as restrictive as its name may imply. It only needs the

arrival rate to be enough low with respect to our time unit which is the distance

between successive decision instances. Therefore for a system with small page sizes

or equivalently large download bandwidth, this can be a reasonable assumption.

Consider again the bulk service queuing system with infinite capacity for the server

and assume that we have the option of serving or not serving the queue at equally

spaced decision instances of time t = 0, 1, . . . where the service time of the server

is a constant 1. Using the same method as the last section, if ν is the amount of

service cost that makes state s equally favorable for both idle and active decisions,

then the value function of the optimal policy satisfies the following system of linear

equations

V (0) = β(1 − p)V (0) + βpV (1) (3.32)

V (1) = β(1 − p)V (1) + βpV (2) (3.33)

...

V (s) = β(1 − p)V (s) + βpV (s + i) (3.34)

V (s) = −ν + cs + β(1 − p)V (0) + βpV (1) (3.35)

V (s + 1) = −ν + c(s + 1) + β(1 − p)V (0) + βpV (1) (3.36)

...
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where V (x) is the expected reward of the optimal policy given the initial state x.

Here again we have

V (s + i) = V (s) + ci; i = 0, 1, . . .

and we can verify that the following equations hold

ν(s) = cs + V (0) − V (s)

V (0) =

(
βp

1 − β(1 − p)

)s

V (s)

V (s) =
βcp

1 − β
.

Therefore

ν(s) = cs +
βcp

1 − β

[(
βp

1 − β(1 − p)

)s

− 1

]
. (3.37)

It can be shown that this function is monotonic increasing with a slope between

0 and 1. Since p is the probability of a single arrival for a Poisson process with a

low rate, it is in fact the rate of the process and can be replaced with λ keeping in

mind that the formula is only valid for small values of λ < 1. We expect the new

index function to be very close to the original index function for small rates and

deviate from that as the rate increases. To observe the degree of match between

the two functions, we plotted the functions for several rate values in figure 3.2.

According to these results, as we expect, the two functions are very close for small

values of λ and their difference increases with λ. However, there is an acceptable

match even for a range of λ > 1 values. Therefore, for practical purposes, the

closed form function might be used for small rates.
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Figure 3.2: The exact index function and the light traffic approximation.

3.6 Results

In this section some of the results we obtained from simulation studies about the

performance of different broadcast scheduling policies are presented. We have com-

pared the performances of the following policies in different experiments.

• MRF or Maximum Requested First, This policy serves the queue with the

largest number of pending requests.

• FCFS , this policy is the simple First Come, First Serve policy where the

queue with the oldest request is served first.

• PIP or Priority Index Policy, this policy introduced in [54] is the best known

indexing broadcast scheduling policy. The index function is defined as x/λγ

where x is the queue length, λ the arrival rate and γ is a constant. It is
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Figure 3.3: Comparison of the total average waiting time for different scheduling

policies with the distribution of the arrival rates having a Zipf distribution.

found by trial and error that a value of γ around 0.5 is the optimum value.

Therefore, in the following simulations we have used x/
√

λ as the PIP index

function.

• NOP or Near-Optimal Policy which is the index function defined by our

method.

In the first set of simulations, we used 100 queues with the arrival rates distributed

according to the Zipf distribution. The total rate was varied from very low to very

high values to show the performances of the policies for a wide range of the input

rate. The service times were set to one time unit and the total average waiting

times were calculated for each simulation. Figure 3.3 shows the results of these

experiments. As we observe, the performance of our policy is much better than
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Figure 3.4: Performance comparison of the PIP, NOP and NOPL policies.

MRF and FCFS and identical to PIP. Also in figure 3.4 the performances of PIP

and NOP policies are compared with the light traffic approximation of the NOP

index which we call NOPL. It can be seen that, for the range of arrival rates

tested in these experiments, there is no difference in the performances of NOP and

NOPL policies and the closed form index can be used in practical purposes. In

order to further compare the performances of PIP and NOP policies, we performed

two other sets of simulations each with different distribution of the input rates

among the queues. Since the Zipf distribution defines a convex distribution, we

used a linearly decreasing distribution in one group of experiments and a concave

shaped distribution in another group and ran the simulations for different values

of the total input rate(figure 3.5). Figures 3.6 and 3.7 show the results of these

experiments only for the PIP and NOP policies. We can see that the results

are extremely similar. It was mentioned before that once we find a proper index
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probability of the different pages in the experiments.

function, any monotonic increasing function of that index can be used as an index

as well. The results suggest that what Su [54] found as an index by trial an

error is in fact very close to a monotonic increasing function of the index we

have calculated using optimization arguments. Figure 3.8 shows the individual

average waiting times experienced by the requests for each page under PIP and

NOP policies for an specific arrival rate. The close matching of the two results

confirms the close relation between PIP and NOP policies. In another set of

experiments we compared the performances of PIP and NOP policies for the case

where the pages have different weights. We showed in previous sections that the

effect of weight C in the index function ν(s) is in the form of a simple multiplicative

factor. PIP, in its original form, does not address the case with weights. Therefore,

we tried to use the same analogy and extend its definition so that the weight
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Figure 3.6: Comparison of the total average waiting time for PIP and NOP schedul-

ing policies with the distribution of the arrival rates having a linear shape.

coefficient appears in the index function as well. In the first extension, which we

call EPIP1 for notational convenience, we define the index function as ν(x) = cx√
λ

and in the second extension(EPIP2) we define it as ν(x) =
√

cx√
λ

. We performed

the experiments on a system with 100 pages with Zipf distribution of the arrival

rates and assigned a weight of 5 to the first 10 pages. The weights of the other

pages were set to 1. Figure 3.9 shows the performances of all four policies under

different arrival rates. As we can see, PIP by itself does not perform very well which

is not unexpected. EPIP1, which uses the same multiplicative form as NOP to

incorporate the effect of weights, also does not perform as good as NOP. However,

EPIP2 have exactly the same performance as NOP and suggests that the effect of

weight in the PIP index should be through a square root multiplicative factor. The

NOP policy and the method we used for its derivation, in addition to having the
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Figure 3.7: Comparison of the total average waiting time for PIP and NOP schedul-

ing policies with the distribution of the arrival rates having a concave shape.

notion of optimality, has the advantage of being more flexible because this method

allows us to define the index function for the general case of weighted priorities

assigned to the packages and moreover, we are currently using it for dealing with

the unequal file size case which is not studied yet.

3.7 Conclusion

In this chapter we derived a scheduling policy for the scheduling of broadcasts

in a pull system with equal file sizes. The policy defines an index function for

each page in the system and at every decision instant the first K pages with the

largest values of the index are broadcast. The performance of our policy is almost

identical to the performance of the PIP policy however, since we have taken an
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analytical path for its derivation, it can be readily applied to cases with non-

Poisson arrivals or when there are priority weights assigned to the pages. Other

policies, due to their heuristic reasoning , do not address these general cases. Our

approach shows that the index function scales linearly with the c coefficient. Using

this result and through a number of experiments, we also introduced a heuristic

extension to the PIP to include the weighted case as well. Another advantage of

our approach is the guidelines it provides to consider the scheduling problem for

a system where the pages do not have fixed lengths. This case is particularly of

interest for cache broadcasting in the Internet and the previous methods do not

address this important case. Chapter 4 is dedicated to the analysis of this type of

pull systems.
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Chapter 4

Broadcast scheduling in systems

with variable-length files

4.1 Introduction

In this chapter we investigate the problem of optimal scheduling of the broadcast

messages in a system where the pages do not have equal sizes. This situation

is more realistic than the fixed-length setting when we need to investigate the

scheduling of the cached web pages. Caching is a popular method for improving

the download time in the Internet. In a system with caching, a local cache stores

copies of the most popular pages visited by the users and serves the future re-

quests locally by sending the stored copy to them. Obviously, the proper updating

mechanism should be implemented by the cache system to guarantee the valid-

ity of the information. Since the cached pages are the most popular pages, they

automatically become the most eligible pages for broadcast delivery. Therefore,

in a satellite or centralized wireless system, the issue can be further improved by

broadcasting the cached pages instead of one-to-one transmissions. However, since
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here the information packages are different web pages, the assumption of all of

them having equal sizes is not valid anymore and pages should be allowed to have

different and even potentially random sizes. The fixed-size assumption makes the

formulation too complicated and virtually intractable. Therefore, we start with

the case where the page lengths are Geometric random variables with possibly

different mean values. Later in this report, we use the obtained results to consider

the fixed-length case as well.

4.2 Related work

Unlike the previous case with equal file sizes, where we could refer to the works by

many other researchers, to our knowledge there has not been any published work on

this more general setting, nor any of the previous works have tried to extend their

heuristic algorithms to accommodate this new extension of the problem. However,

we may refer to Vaidya [41] who studied the effect of having pages with different

sizes in a push system and presented a method for designing the broadcast cycle

for that case.

4.3 Problem formulation

Here we present our formulation of the pull broadcast scheduling with different

file sizes. We denote by N(> 1), the number of information pages stored in the

system. Similar to the previous case, we assume that the broadcasts can only start

in certain time instants which are equally spaced in time. This periodic setting

introduces a time unit that can be set to one without any loss of generality. The

difference between this new case and the previous one is that the transmission of a
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page does not necessarily end in one broadcast period and can span several periods

depending on the size of the page. The page sizes are assumed to have Geometric

distributions with parameter qi for type i pages. In other words

P [broadcast of page i spansn timeunits] = qi(1− qi)
n−1, 0 < qi < 1, i = 1, . . . , N.

(4.1)

Here we implicitly assume that the sizes are rounded up to the smallest integer

multiple of the above time unit. We also allow preemption in the system, i.e. the

broadcast of a page can be interrupted by the system, so that another page can

be broadcast, and can be resumed at a later time. However, this can only happen

at the beginning of every broadcast cycle. This implies that the users are capable

of receiving different segments of a page separately and re-assembling them at the

receiver. Therefore, every broadcast initiation time t = 0, 1, . . . is a decision time

(and also a possible preemption time). Due to the preemption assumption, the

full transmission of a page of length n can take longer than n periods. Hence

the waiting time of the requests for a page ends after the transmission of the

last segment of that page. The new requests for each page which arrive after the

beginning of the transmission of the first segment of that page, need to wait till

the beginning of the next transmission of the whole page. We also assume that the

system has K(1 ≤ K < N) identical broadcast channels. In this pull broadcast

system, the system receives the requests for all pages from the users and based on

this information the scheduler decides which pages to transmit in the next time

unit in order to minimize the average waiting time over all users.

Here, again we assume that the request arrival process for each page i; i = 1, . . . , N

is a Poisson process with rate λi. This assumption allows us to study the discrete-

time system where all the arrivals during every time period arrive as a batch at
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the end of that time period. Obviously, the batch sizes are random variables with

Poisson(λi) distribution. The state of this system at each time t is shown by

X(t) = (X1(t), Y1(t), X2(t), Y2(t), . . . , XN(t), YN(t)): where Xi(t) is the number

of requests for page i at time t that have received at least one segment of the

requested page and Yi(t) is the number of requests for the same page which arrived

after the broadcast of the first segment of the page and therefore need to wait till

the beginning of next full broadcast of that page. Each (Xi(t), Yi(t)); i = 1, . . . , N

process is a Markov process with transition probability

(Xi(t + 1), Yi(t + 1)) =


(0, Yi(t) + Ai(t)) with prob. qi if i ∈ d(t)

(Xi(t), Yi(t) + Ai(t)) with prob. (1 − qi) if i ∈ d(t)

(Xi(t), Yi(t) + Ai(t)) if i ∈/ d(t)

(4.2)

if Xi(t) > 0 and

(Xi(t + 1), Yi(t + 1)) =


(0, Ai(t)) with prob. qi if i ∈ d(t)

(Yi(t), Ai(t)) with prob. (1 − qi) if i ∈ d(t)

(0, Yi(t) + Ai(t)) if i ∈/ d(t)

(4.3)

if Xi(t) = 0. Here Ai(t); i = 1, . . . , N is the discrete time arrival process of the

new requests for page i during the time interval [t, t + 1) and d(t) ⊂ {1, . . . , N}
is the set containing the indices of the K pages broadcast at time t. Figure 4.1

shows a sample path of the evolution of a system with three pages and a single

broadcast channel.

The weighted average waiting time over all users is defined by

W̄ =
N∑

i=1

ciλi

λ
W̄i
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Figure 4.1: Sample path of a system with three pages.

where W̄i is the average waiting time for all page i requests and λ is the total

request arrival rate to the system. The ci coefficients are the weights associated

with the pages to allow more flexibility in assigning soft priorities to the pages. By

Little’s law the average waiting time can be written as

W̄ =
1

λ

N∑
i=1

ci(X̄i + Ȳi). (4.4)

where X̄i and Ȳi are the average numbers of the requests currently in service or

waiting for service in queue i, respectively. Similar to the previous problem, instead

of minimizing (4.4), we use the total discounted reward criteria and try to minimize

the total discounted expected number of waiting requests defined as

Jβ(π) = E[
∞∑

t=0

βt
N∑

i=1

ci(Xi(t) + Yi(t))] (4.5)

where π is the scheduling policy resulting in Jβ(π). Equations (4.5) and (4.2),

together with the initial condition (X(0), Y (0)), define the minimization problem

J∗
β(π) = min

π
E[

∞∑
t=0

βt
N∑

i=1

ci(Xi(t) + Yi(t))]. (4.6)
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We have shown in appendix A that Jβ(π) satisfies the equation

(1 − β)Jβ(π) = E[
N∑

i=1

ci(Xi(0) + Yi(0))] + βE[
∞∑

t=0

βt
N∑

i=1

ciAi(t)]

− βE

 ∞∑
t=0

βt
∑

i∈d(t)

qici(Xi(t)I[Xi(t) > 0] + Yi(t)I[Xi(t) = 0])

 .

Therefore, since the first two terms of the right-hand side are independent of the

policy π, the problem of minimizing Jβ(π) would be equal to the maximization

problem

Ĵβ(π) = max
π

E

 ∞∑
t=0

βt
∑

i∈d(t)

qici(Xi(t)I[Xi(t) > 0] + Yi(t)I[Xi(t) = 0])

 . (4.7)

To facilitate the analysis, we assume that the state space of each queue i; i =

1, 2, . . . , N is a finite set Si and denote the state space of the system by S =

S1 × S2 × . . . × SN . This problem is in fact a DP problem with decision space

D = {d; d ⊂ {1, 2, . . . , N} and |d| = K}. The expected reward for broadcast of

pages in d ∈ D at state s = {x1, y1, . . . , xN , yN} ∈ S is

r(s, d) =
∑
i∈d

qici(xiI[xi > 0] + yiI[xi = 0]) (4.8)

In the following, we show the optimal value function of this problem by is V (s); s ∈
S which satisfies the optimality equation

V (s) = max
d∈D

r(s, d) + β
∑
s′∈S

pd(s, s′)V (s′)

 ∀s ∈ S (4.9)

where pd(s, s′) is the stationary transition probability of going from state s to state

s′ under decision d.

We use the Restless Bandit approach to address this problem too. That formu-

lation allows us to reduce the original 2N -dimensional problem into N similar
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2-dimensional problems and focus on finding either analytical or experimental so-

lutions for the latter. However, due to the complexity of the state transitions, this

case is much more complicated than the previous case. As before, we first explore

some of the properties of a single-queue system and will use the results for the

original problem.

4.4 Some properties of a single controlled bulk

service queue

In this section we examine the single-queue sub-problem. Imagine one of our bulk

service queues with Poisson arrivals and Geometric service times as before. If we

assume that all the arrivals that arrive during a service period are counted only

at the end of that period, the system would be a pure discrete time system. The

sub-problem we would like to consider for a single queue is to find the optimal

policy that results in the maximum expected value of the discounted reward. Here

the reward obtained by serving the queue at any time is equal to the number

of customers in the queue with probability q and is 0 otherwise. There is also a

fixed cost ν for each service. The optimal policy is the optimal assignment of active

(serving the queue) or passive (leaving the queue idle) actions to every state. More

precisely, the objective function is:

Jβ = E

[ ∞∑
t=0

βtR(t)

]
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Figure 4.2: Typical shapes of the idle and active regions for a single queue problem.

where R(t) is the reward at time t, that is

R(t) =



cx(t) − ν with prob. q if d(t) = 1 and x(t) > 0

cy(t) − ν with prob. q if d(t) = 1 and x(t) = 0

−ν with prob. 1 − q if d(t) = 1

0 if d(t) = 0

where d(t) is the action at time t which is 1 if the queue is served and 0 otherwise

and (x(t), y(t)) is the state of this system at time t as defined before.

In order to be able to apply the Restless Bandit approach and find an index policy

for this problem, we need to find if the single-queue problem has the monotonic-

ity property. Furthermore, we need to find the exact form of the policy and its

switching curve to be able to calculate the index at every time. Figure 4.2 shows

one example of the form of the optimal policy with the idle and active regions

distinguished. The monotonicity property requires that as the service cost ν in-
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creases from −∞ to ∞, the idling region increases monotonically from ∅ to the

whole state space. All of our experimental results obtained by finding the optimal

solution for this problem (via the Value Iteration method) in a large number of

different settings (different values of λ,ν and,q) confirm the monotonic expansion

of the idling policy with increasing values of ν. Figure 4.3 shows a few results for

this system with different ν values. The idling region for each case is the convex

region that includes the origin and is surrounded by the x and y axes and the

corresponding switching curve. The shape of the idling region is more or less the

same in all results. It defines a policy which is of the threshold type in both x and

y directions (except x = 0 points in some cases). The threshold property in the x

direction can be stated as follows:

Property 4.4.1 The optimal policy of the single-queue problem with bulk service

and random file lengths as above is of the threshold type in the x direction. In
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other words, if d(x, y) is the decision defined by the optimal policy for state (x, y)

we have

if d(x, y) = 1 then d(x + i, y) = 1; ∀x > 0 and i > 0; (4.10)

Proof: Appendix C.

Unlike the above case, it is very difficult to prove the threshold property in the y

direction. Proving the threshold property of the optimal policy of the DP problems

is not a new topic. As examples, we can refer to papers by Lin and Kumar [36],

Hajek [23], Koole [33], Viniotis and Ephremides [59] and many other works. To

point out the difficulties of our specific problem we refer to the fact that in most

of the above works, the threshold property is proved using related properties of

the value function i.e., the sub(super)-modularity and convexity properties. Sub-

modularity imposes an inequality constraint on the values of the value function of

the optimal policy at any four neighbor points, namely

V (x, y + 1) − V (x, y) ≤ V (x + 1, y + 1) − V (x + 1, y). (4.11)

This property mostly arises in single-input single-output queueing systems where

at each event the queue length either increases/decreases by one or remains un-

changed. Unfortunately in our system, with the batch nature of both arrivals and

departures, this property is no longer the key property for the threshold property.

The problem of batch arrivals can be alleviated by assuming that the page sizes

and the server speeds are such that the light-traffic assumption holds. But, the

bulk service property of the queues requires a different inequality to be satisfied

by the value function i.e.,

V (x, y + 1) − V (x, y) ≤ V (0, y + 1) − V (0, y) (4.12)
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which is much more difficult to prove. Nonetheless, despite the differences in the

middle stages of our problem with the other works, the general methods used by

them is still applicable to our problem. The two most popular methods for proving

the structural properties of the solutions to DP problems use induction along with

one of the Value Iteration or the Policy Iteration methods[48]. We examined both

of these methods extensively and found that the Policy Iteration allows us to

explore more properties of the optimal policy. The proof of the threshold property

in the y direction can not be separated from other structural properties of the

optimal policy. If we focus our attention on the light-traffic regime, we will find

that the optimal policy d(x, y) has certain properties. Defining x0
�
= 
ν

q
�, these

properties can be listed as follows (figure 4.4).

1. d(x, y) = 1 ; ∀y , ∀x > x0

58



2. ∃y0 > 0 s.t. d(0, y) =


1 if y ≥ y0

0 if y < y0

3. ∀ 0 < x ≤ x0; ∃yx > 0 s.t. d(x, y) =


1 if y ≥ yx

0 if y < yx

4. ∀ 0 < x < x0; 0 ≤ yx − yx+1 ≤ 1
βa

+ 1

5. For β >> 0 we have y0 > x0.

Properties 1 and 4 basically describe the threshold property in the x direction in

more details. Properties 2 and 3, deal with the threshold property in the y direction

and property 5 is only a reasonable simplifying assumption to make the problem

more tractable. A general proof of these properties requires careful consideration

of all cases that may happen for different problem settings. The most important

factor is the value of y0 with respect to the y1 through yx0 values. In appendix C

we present a detailed discussion of our analysis of this problem for a typical case.

Despite the interesting observations and results we obtained from this analysis, the

proof is not yet complete. We were basically able to prove the properties 2,3 and

4 via the Policy Iteration arguments using the assumption that properties 1 and

5 are given. Although property 5 does not seem to be difficult to hold, property

1 is not easy to prove. Nonetheless, since our main concern is the validity of the

monotonicity property in the typical cases that happen in our problem, we rely on

our numerical results together with the partial results we obtained from theoretical

analysis of the problem to apply the Restless Bandit approach to this problem. In

the next section, we will use our findings from this section and appendix C to find

a close approximation of the relation between the service cost ν and the switching

curve. This will be the main step to calculate the index function and there we will
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also verify the monotonicity property via the approximate index function.

Before finishing this section, it is constructive to visually analyze the form of the

optimal policy and the switching curve. Figure 4.5 shows the switching curves for

various problem settings. Each service will produce an expected immediate reward

of qx plus a future reward that would be generated by the current y component

(plus possibly new arrivals) shifting to the x position. We will also have a fixed cost

ν for each service. Therefore, it is reasonable to expect the optimal policy to be

idle for small values of x and y and be active for larger values. We can also expect

the activation level for the y component to be larger than that for the x component

because of the discount factor β. Now, for larger values of service cost ν, larger

immediate or future rewards are needed to make the active decision worthwhile,

hence the idling region expands as seen in the top figure. Increasing the value of

q increases the expected reward obtained from the active decision, therefore the

idling region shrinks as in the middle figure. The effect of the arrival rate is not so

obvious. As can be seen in the bottom figure, the idling region increases with the

arrival rate only in the y direction. It can be justified by the fact that the arrival

rate only affects the future rewards therefore, if the immediate reward (which only

depends on x)is large enough to make the active decision worthwhile, the value of

the arrival rate will not have any effect on that. However, for smaller values of x

where we need to count on the future rewards. If the arrival rate is high it is better

to wait for the next reasonably large batch of the arrivals to come and then serve

all of them together, otherwise it will not be beneficial because it unnecessarily

delays the current x and y customers and increases their total delays.

In the next section we will focus on the light-traffic regime to find an analytical

expression for the index function.
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Figure 4.5: Typical shapes of the switching curve for a single queue problem.
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4.5 Computation of the index

In the previous case of the broadcast scheduling problem with equal size files, the

index was a function of the queue length x and arrival rate λ and we found a way

to compute the index value. In that problem, even if we were not able to find a

method for calculation of the index, we could still think of the numerical calcu-

lations for several values of the arrival rate and for a range of queue lengths and

storing the values to be used by the scheduling algorithm. In the present system,

however, the index is a function of four parameters x, y, λ and q and that approach

is impossible. Therefore, we need to find an analytical approach to calculate the

index.

Due to the batch nature of arrivals to each queue, the form of the index function

is very complicated in the general case. However, by considering the light traffic

case, very good approximations of this function can be found. The light traffic

regime is particularly more useful for the pull delivery systems since the preference

of these systems to push delivery is in low to moderate traffic regimes where the

latter system may result in too many superfluous broadcasts.

In the light traffic regime, we assume that the probability of more than one arrival

during a broadcast period is negligible and show by p0 and p1 = 1− p0 the proba-

bilities of zero and one arrivals during a period, respectively. In this situation, it is

possible to find an analytical formula that results into a method for computing the

index value for each queue. The details of our derivations are shown in appendix

C. We showed that for a fixed value of ν, q and λ, the switching curve can be

defined by a point on the x = 0 axis, called y0, a point on the x = 1 axis, called y1,

and the points defined by the integer approximation of a straight line with slope

−1/βa, which starts from the (1, y1) point and ends on the x = �ν/q� line. The
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values of y0 and y1 satisfy the following equations

y1 − y0 =
1

βa

[
ν

q
− 1

]
− ap1

q
(4.13)

y0 =
ν

q
+

βp1

1 − β

(
1 − c−y0

)
(4.14)

where

a =
q

1 − β(1 − q)

c =
1 − βp0

βp1

.

For the scheduling problem, we need to find the required ν that puts a given (x, y)

pair on the switching curve and the above relations can be used inversely. First,

the corresponding (1, y1) point can be found from

y1 = y + (x − 1)/βa. (4.15)

Next, y0 can be calculated by solving the following equation

y1 +
1

βa

[
βp1

1 − β
+ 1

]
+

ap1

q
= y0

(
1 +

1

βa

)
+

p1

a(1 − β)
c−y0 . (4.16)

Having found the value of y0, the corresponding ν is

ν = qy0 − qβp1

1 − β

(
1 − c−y0

)
. (4.17)

If the resulting ν turns to be smaller than qx, then x is on the right border of the

idling region, i.e. x = ν/q. For x = 0 case, the available y is in fact the y0 value

and ν is directly found from the last equation above.

An interesting observation at this point is to compare the above light traffic ap-

proximation to the same approximation for the equal file size case we considered

in a previous work. The equal file size case is in fact a special case of the current

setting with q = 1. In other words, serving the queue is always successful and
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therefore the x component is always zero. Since the state space collapses into only

the y axis, we expect the value of ν for a certain y0 to be the same as the previous

case. In fact that is exactly the case and both formulas are equal for q = 1 which

may be seen as a consistency check for our calculations.

For the general problem with arbitrary arrival rate, the location of y0 and y1 and

also the right border does not change much from the light traffic approximation

(with p1 replaced by λ) but the straight line tends to ”bend” downward. We

have also derived an experimental second order correction factor that changes the

straight line to a parabolic curve closer to the real curve in higher rates. However,

in our experiments the light traffic approximation without the correction factor

gave satisfactory results for the range of arrival rates we considered. This method

can be used as a near-optimal scheduling method but our next goal after find-

ing this policy is to find a lower-complexity heuristic index policy which perform

equally well compared to this policy. In the next section, we present the results of

our experiments with a number of different heuristic policies.

Our light traffic approximation of the switching curve also allows us to investigate

the changes in the curve as ν increases. In fact, we can state the following property

Property 4.5.1 Both of y0 and y1 values are non-decreasing functions of ν.

The proof of this property which uses the above equations is provided in appendix

C. Since the slope of the upper border of the idling region is independent of ν and

also the right border is a non-decreasing with ν (x = ν/q), we can state:

Property 4.5.2 The idling region is a non-decreasing function of ν and, for each

value of ν, it contains the idling regions associated with smaller ν values.

Although it is not a proof for the general case, its correctness for the general case

is supported both by intuition (thinking of ν as the service cost) and by the results
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of a large number of numerical calculations.

4.6 Results

In this chapter we compare the results of our index policy for several experiments

with the results from using a number of other indexing policies. Unfortunately,

to our knowledge, the broadcast scheduling problem with random file sizes has

not been addressed before. Therefore, we don’t have any immediate rival policy

readily available for comparison. However, through our experiments, we tested

some well-known policies used in simpler broadcast systems, which allowed us to

evaluate the performance of our policy compared to those policies. Our goal was

two-fold. We were interested in finding if any of those policies can beat our policy

and, we were also looking for possible low complexity policies which perform close

to our policy in different situations, hence being proper candidates for practical

applications. Another set of experiments was performed in a slightly different

system than what we analyzed in this work, i.e. unequal but deterministic file sizes.

The analytical approach to this type of system was failed in the early stages due

to the introduction of new dimensions to the state space of the system. However,

we found it constructive to think about logical heuristic policies and to compare

their results with our policy modified for the new case.

4.6.1 Random file sizes

We compared our policy, which we call NOP(Near-Optimal Policy), to six other

policies in the first round of experiments. We set up a system with 50 pages and

simulated it under different settings with each policy. Other than the choice of the
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scheduling policy, every experiment had two other parameters namely, the average

size of each of the pages and, the total request arrival rate of the system. In all

experiments the assignment of the average size to each page was the opposite of

the assignment of the request arrival rate to that page i.e., the longest page was

the least popular page and the shortest page the most. This rule is qualitatively

consistent with many practical situations. Also, in all experiments we used the

Zipf law to assign the individual request arrival rates to each queue given the total

request arrival rate of the system.

We performed our experiments with three different choices for the set of the aver-

age file sizes. These choices were based on the fact that, depending on the nature

of the files broadcasted by this system, the distribution of the sizes can be differ-

ent. For example, if the files are web pages, we may expect their distribution to

have a heavy-tail behavior. This argument is more meaningful in our next set of

experiments with deterministic file sizes, since in the random case only the average

sizes are taken from these distributions and the actual file sizes are still according

to geometric distributions. However, performing the experiments with these new

distributions even in the random case allows us to have a better comparison be-

tween different policies in different situation.

The three distributions we tried to simulate by proper choice of the file sizes are

uniform, Pareto and exponential distributions. For the uniform distribution we

picked the average file sizes to be

l(i) = round
(
L + (i − N)

L − 1

N − 1

)
(4.18)

with N = 50 and L = 50. Here, N is the number of files in the system and

L is the size of the largest file. The minimum size is fixed at 1. To simulate a

truncated Pareto distribution with maximum value L and shape factor a, we used
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the following assignment

l(i) = round

([
1 − i

N
(1 − L−a)

]−1/a
)

(4.19)

with a = 1.8 and the same values for L and N . Similarly an exponential distribu-

tion was modelled by the following file sizes

l(i) = round

1 − 1

a
log

1 − (i − 1)
(
1 − ea(1−L)

)
N

 (4.20)

where a = 25 and L = 50.

In addition to the file size distribution, each policy was tested under 7 different

total arrival rates namely, 5, 10, 20, 50, 100, 150, 200. The upper limit is roughly

high enough to represent the saturation region of the average delay, i.e., the region

where the average delay does not change much with the increase in the work arrival

rate. To summarize, for each policy, 3 × 7 = 21 results are available.

Candidate policies

Inspired by both intuition and the results of our previous work on the systems

with equal file sizes, we picked six different policies in for our experiments. These

policies are:

• NOP: The light traffic approximate indexing policy derived in the previous

chapters.

• PIP: The original policy introduced in [54] extended for the new two dimen-

sional setting where the index is defined by

νi =
xi + cyyi√

λi

(4.21)
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• HP1: Heuristic policy defined as

νi =
(xi + cyyi)qi√

λi

(4.22)

• HP2: Heuristic policy defined as

νi =
(xi + cyyi)

√
qi√

λi

(4.23)

• HP3: Heuristic policy defined as

νi =
(xi + cyyi)

qi

√
λi

(4.24)

• HP4: Heuristic policy defined as

νi =
(xi + cyyi)√

qiλi

(4.25)

• HP5: Heuristic policy defined as

νi =
(x2

i + y2
i + xiyi)

λi

(4.26)

• MRF: Maximum-Request-First index defined as

νi = (xi + cyyi) (4.27)

where cy is a weight parameter and needs to be tuned experimentally. Initially, we

started with tuning cy for all policies. However, it was found quickly that the PIP,

HP3 and HP4 perform much worse than the other policies in all cases. Therefore,

those policies were dropped from the list of the candidates for a near-optimal policy.

Figures 4.6, 4.7 and 4.8 show the performance of each of the remaining policies for

different choices of the cy value for the pareto file size case. Based on the results,

we conclude that HP2 and MRF policies are less sensitive to the cy value, but
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Figure 4.6: Tuning of the cy parameter for HP1 policy.
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Figure 4.7: Tuning of the cy parameter for HP2 policy.
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Figure 4.8: Tuning of the cy parameter for MRF policy.

overall, they perform best with cy = 0.9. However, HP1 is more sensitive to this

coefficient and achieves its optimum performance with approximately cy = 0.5.

Our experiments with uniform and exponential distributions also gave the same

results for the cy values. Having each policy optimized, we can now compare the

performances of the above policies with each other. Figure 4.9 shows the results

obtained from each policy under different simulation settings. It is clear from the

results that NOP and HP2 are the best policies with NOP slightly outperforming

HP2 in most cases.

To summarize, we have found that the optimized versions of all candidate policies

are inferior to NOP. According to the results, for practical purposes, the heuristic

HP2 (with cy = 0.5) can be used as a low complexity alternative for NOP.

4.6.2 Fixed file sizes

In some broadcast systems, the files to be broadcasted are locally stored in the

system and therefore the system knows their exact sizes. The cache broadcast sys-
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choices of the file size distribution.
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tems are examples of this type of systems. Unfortunately, the analytical approach

to this problem proved to be too complicated and our efforts have not produced

any sound results. However, in the absence of an optimal analytical solution, it is

possible to modify the NOP policy for this case and it is constructive to compare

its performance with those of some other heuristic policies.

The NOP policy can be easily modified for use in the fixed file length case by

replacing the average file size parameter 1/qi, with the exact file size value Li in

the previous formulas. We compared the performance of the NOP with MRF,

HP1 and HP2 plus a new heuristic policy which we call LTWF1 which essentially

approximates the ”Longest-total-waiting-time-first” policy. The HP1 and HP2 in

this case replace the qi factor with 1/Li wherever it appears and we also used the

optimum values of cy found in the previous experiments for them. For LTWF1,

the index is defined as

ν =
x2 + y2 + xy

λ
. (4.28)

Figure 4.10 explains how this index which is the sum of the areas of the two

triangles and the rectangle in the diagram is derived. Since LWTF1 does not use

the information about the number of already broadcasted segments of the file,
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another versions of it named LWTF2 was defined as

ν =
x2 + y2 + xy

λ
− lx (4.29)

where l is the number of already broadcast segments of the file. In fact, the LWTF2

index excludes the broadcast times of the first l segments from the total waiting

time. The HP5 policy used in the random file size case is in fact the LWTF1 policy

modified for the random case. We also tried to include the remaining waiting

time of the customers in the index function by approximating it by (L − l)y and

also by (L−l)y2

lλ
which basically estimates the remaining waiting time based on the

time spent to serve the recent l segments of the file. The first modification only

worsened the performance slightly. But the second modification gave completely

unacceptable results compared to the other policies. Therefore, we don’t discuss

those two policies any more. The set of experiments in this section are similar to

the last section, i.e., we found the average waiting times resulted by all policies

for 7 different arrival rates and three choices of the file size distribution. Since the

file sizes are deterministic, assuming different distributions for those sizes have a

better meaning in this case. Figure 4.11 shows the results. The first observation

is the poor performance of the LTWF policies compared to the other policies.

This can be an indication of this type of policy not being optimal (or even close

to optimal) for this system. Also, in all graphs, HP1 performs poorly compared

to the other policies. NOP and HP2 always perform very close to each other

although, as we also observed in last section, HP2 in some cases performed slightly

better then NOP. We associate this difference to using the approximate light traffic

version of NOP and expect this negligible difference to disappear if we enhance

our approximation. To our surprise, MRF showed a highly variable performance.

For uniform and exponential file sizes, it performed almost the same as HP2, i.e. ,
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Figure 4.11: Performance of different policies for different choices of the file size

distribution.
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the best performance. But for pareto file sizes, it performed poorly and similar to

LTWF and HP1 policies. However, as a general rule, we do not consider MRF to

be as good as NOP or HP2. The poor performance of LTWF policies also suggests

that having exact information about the number of remaining segments of the

files does not necessarily enhances the performance. However, like many other

observations, this is only a conjecture unless a formal proof shows its validity.

Based on our work on the theoretical side of this version of the problem, we expect

this not be a simple problem.

As a conclusion, we may infer that for practical purposes, HP2 can also be used

as a low complexity policy for a wide range of file size distributions.

4.7 Conclusion and future work

The problem discussed in this chapter can be regarded as an extension of the orig-

inal problem and includes that as a special case. We investigated the properties

of the simpler single-queue problem and used the results to find an asymptotically

optimal policy for the original problem. However, the file size is not the only di-

rection for an extension to the original problem and other practical issues in some

systems require changes in other initial settings of this problem. The abstract na-

ture of the original problem allows for many different extensions to the problem to

be introduced. Some other extensions can be introduced by changing the restric-

tion on the arrival processes. In all the previous studies so far, we have assumed

that the request arrival process to each queue is an i.i.d. Process which is also

independent of all other properties of the system. Two immediate extensions are

found when we relax either of the above restrictions i.e., the i.i.d. property and the

independence of the arrivals and the state. In the following we take a closer look

75



at these extensions and present a framework to take them into account in future

research. A thorough analytical study of either of these new problems requires a

step-by-step approach to carefully formulate and investigate them. However, we

previously found that the core of the problem, when using the Restless Bandit

approach, is the properties of the single queue system. Hence, we perform a qual-

itative study of the single-queue problem for each case and investigate the effect

of each extension on the index function by comparing the numerical results by the

associated results from the original single-queue problem.

4.7.1 Markovian arrivals

Previously, in our formulation, we assumed that the requests arrive in batches at in-

teger time instants. The size of each batch was a random variable with Poisson(λ)

distribution and independent of the sizes of other batches. Here we like to consider

the case where the batch size sequence is a Markov process i.e., the size of each

batch depends on the sizes of the previous batches. To have a specific set up, we

let the batch size distribution to remain Poisson but allow the sequence to have a

memory of length one i.e., each batch size also depends on the value of the previous

size. An appropriate model for this arrival sequence is the integer-valued Poisson

AR(1) process. This type of process has been used in different studies to model the

presence of memory in integer-valued random processes in some statistical mod-

elling applications [38, 37] and we present a brief introduction of this model below.

Poisson AR(1) process The Poisson AR(1) process Xt; t = 0, 1, . . . is defined

by the following difference equation

Xt = α � Xt−1 + Wt; (4.30)
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where Wt is an iid Poisson process with rate λw > 0, 0 ≤ α ≤ 1 is a constant and,

the thinning operator � defines the random variable α � X as

α � X =
X∑

i=1

Yi(α) (4.31)

where Yi is a sequence of i.i.d., Bernoulli random variables with success probability

α. In other words, α�X is a Binomial random variable with maximum value X and

success probability α. It is straightforward to verify that if Xt−1 is Poisson with

rate λ, then α�Xt−1 is also Poisson with rate αλ. Also, if Wt is Poisson with rate λw

and independent of the X values and X0 is Poisson with rate λ = λw/(1−α), then

Xt; t = 0, 1, . . . will be a stationary process with a Poisson marginal distribution

with rate λ.

A difference between the Poisson AR(1) process and its continuous version i.e., the

Gaussian AR(1), is the fact that there are two random components in the integer

case. Some of the Properties of the stationary Poisson AR(1) process are listed

below.

E[Xt|Xt−1] = αXt−1 + λw (4.32)

E[Xt] =
λw

1 − α
(4.33)

V [Xt|Xt−1] = α(1 − α)Xt−1 + λw (4.34)

V [Xt] =
λw

1 − α
(4.35)

ρk = corr(Xt, Xt−k) = αk (4.36)

P (Xt|Xt−1) =
min(Xt,Xt−1)∑

x=0

 Xt−1

x

αx(1 − α)Xt−1−x e−λλXt−x

(Xt − x)!
. (4.37)

As we expect, the equation for the correlation function matches the correlation

function of the continuous AR(1) process. in the following, we use this process to

model the request arrival process to a broadcast queue and will try to study the
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implications of adding memory to the process. Obviously, by setting α = 0, the

arrival process becomes an i.i.d. Poisson process with rate λw.

Broadcast queues with Markov arrivals

In our previous studies of the different broadcast scheduling problems using the

Restless Bandit approach, we found that the problem mainly reduces to the prob-

lem of controlling each queue individually and independent of the other queues. In

our setting, serving the queue while containing x requests, generates a reward of x

and we also incur a fixed cost ν. Leaving the queue idle neither generates a rewards

nor involves any cost. However, because of the Markovian property of the arrival

process, the state of the queue at each time instant is the number of requests in

the queue together with the size of the latest arrival batch. If we denote by V (x, i)

the value function associated with the optimal policy for having x requests in the

system and the most recent arrival of size i(included in x), then V (., .) satisfies the

optimality equations

V (x, i) = −ν + x + β
∞∑

j=0

p(j|i)V (j, j) (4.38)

for all states (x, i) in the active region and

V (x, i) = β
∞∑

j=0

p(j|i)V (x + j, j) (4.39)

for the states in the idle region. p(j|i) is the conditional probability of having j

arrivals at time t given that we had i arrivals at t−1, for i, j ≥ 0. This probability

is given by equation 4.37 above. A careful look at the above formulation shows that

the state always remain in the x ≥ i region (except possibly at time 0). Therefore,

only that area is of our concern in this study.

In the original problem, we found that the optimal policy for any given value of

the service cost ν, is characterized by a border state x(ν) where it was optimal to
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Figure 4.12: The effect of the correlation on the optimal policy.

leave the queue idle for all states less than x(ν) and serve the queue otherwise. In

the current system, the state is a point on the x− i plane so the optimal policy is

characterized by a curve that separates the idle and active regions. The strength of

the memory of the system can be controlled by the value of α. α = 0 results in a

memoryless system while α = 1 results in a constant sequence i.e., unit correlation

function. Our first set of experiments aim to investigate the effect of the memory on

the index function. To this end, we compute the optimal policy for several systems

with only their α values being different. In all experiments we have used the Value

Iteration method for finding the optimal policy. Figure 4.12 shows the results for

a queue with fixed arrival rate λ = 10, β = 0.99 and service cost ν = 3.0 with four

different values of α. The rate of the innovation process Wt in each experiment is

changed to always result in a total arrival rate of 10 requests per time unit. The

α = 0 case is the original memoryless problem with i being augmented as the new
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state variable. Obviously, in this case, the threshold state will remain the same for

all i values as it can be clearly seen in the figure. The value of the threshold state

is around x = 73 which is also what our recursive method for the original problem

would calculate. For α = 0.1(λw = 9), the threshold state depends on the value of

i and takes smaller values, compared to the previous case, for small ”i”s and larger

values for larger ”i”s. This behavior can be explained by the variations in the next

”instantaneous” arrival pdf due to the current arrival size i. It can be shown that

(J |I = i) is a Poisson random variable with rate αi + λw. For i = 10, the next

arrival distribution has the same rate of 10. Therefore, the threshold state remains

the same (intersection of α = 0 and α = 0.1 curves in the figure). However, since

the threshold state is an increasing function of the arrival rate, it moves toward

larger values as i becomes larger than 10 and toward smaller values as it becomes

smaller than 10. The other two curves show the same behavior for α = 0.2 and

α = 0.3 cases.

The second set of experiments investigates the dependence of the optimal decision

regions on the value of ν. In these experiments, we fixed α at 0.1 and computed

the optimal policy for four different values of ν. Figure 4.13 shows the results and

as we expect, the edge of the idling region is pushed toward larger x values as

ν increases. Although not serving as a proof, the figure nevertheless shows the

monotonic increase of the idling region with increasing ν values.

As a conclusion of the above experiments, and from the viewpoint of guessing the

value of the index associated with every state, we can compare the index with the

case with α = 0. For any x, the value of the index associated with state (x, i) is

larger than the corresponding ν(x) value if i < λ, smaller if i > λ and equal if

i = λ. The above deviations from the standard case become larger as α increases.

80



0 50 100 150 200 250 300
0

50

100

150

200

250

300

Queue length

C
ur

re
nt

 n
um

be
r 

of
 a

rr
iv

al
s

Optimal decision regions for a single queue with different ν values

ν = 1.0
ν = 2.0
ν = 3.0
ν = 4.0

Illegal region 

All arrival sequences are Poisson−AR(1)
with rate λ = 10 and α = 0.1

D = 1 

D = 0 

Figure 4.13: The effect of service cost on the optimal policy.

4.7.2 Systems with transmission errors

Another direction to extend the original problem is to allow for transmission errors

in the system. After every broadcast, a fraction of the receivers fail to receive the

file completely and therefore send another request for that file to the system. In

our modelling of this effect, we assume a simple bernoulli model for the failure of

each customer in receiving a broadcasted file. The failure probability is shown by q

and we assume that the retransmission requests are received by the system before

the next decision instant. If we show the value function of the optimal policy by

V (x); x = 0, 1, . . ., it satisfies

V (x) = −ν + (1 − q)x + β
∞∑
i=0

p(i|x)V (i) (4.40)

for the active region and

V (x) = β
∞∑
i=0

p(i|0)V (x + i) (4.41)
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for the idle region. Here p(i|x) is the probability of going to state i after the

broadcast of a file for x clients. This probability is composed of two parts, a

Poisson random variable with rate λ and a Binomial distribution with success

probability q and maximum value x. In other words

p(i|x) =
min(i,x)∑

j=0

 x

j

 qj(1 − q)i−j e
−λλi−j

(i − j)!
. (4.42)

The similarity between the transition probabilities for this case and the previous

case is obvious. In fact, this model captures another form of dependence in the

arrival process where the arrivals also depend on the size of the recent serviced

batch. We remind that a value of q = 0 results in the original system with no

errors.

In order to investigate the effect of the q parameter on the index function, we

calculate the index function for many values of x and for three choices for q i.e.,

q = 0(the classic case), q = 0.05 and q = 0.1. We used the Value Iteration method

for each x and q value to find the corresponding ν. Figure 4.14 shows the results

and it can be easily seen that the index function increases with increasing q. This

effect is expected since a larger q results in a larger contribution to the base arrival

rate λ from the retransmit requests and a larger total rate always results in a larger

index function.

We end this section by reminding that both of the above situations need more

detailed analyses and, when solved, will give useful results for practical systems.
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Chapter 5

Analysis of the Internet traffic

5.1 Introduction

This chapter highlights the main results of a traffic analysis project that was per-

formed on a satellite data delivery system. This topic, although different in subject,

is related to the previous topic of broadcast scheduling in the sense that they both

deal with the different aspects of the same system.

The goal of this project was to extract realistic models for the statistical behav-

ior of the various components of the Internet traffic flowing through the hybrid

gateway of the DirecPC system. Having correct models for the statistical prop-

erties of the traffic is an essential part of any work on performance evaluation of

the system, either through simulations studies or by analytical methods. There

has been a lot of research work in the recent years on this topic and interesting

observations have been reported in some papers. As examples, we can refer to

[46] as a detailed empirical modeling of the TCP traffic and [56] as one of the first

modeling experiments that indicated the failure of the Poisson model for certain

aspects of the traffic. Later, other works ([29, 11]) revealed that the reason for this
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deviation and specifically, the long-range dependence (LRD) property, is because

of the heavy-tailed distribution of the file sizes transferred by the network. Among

the other works on traffic modeling, we can name the work by Paxon and Floyd

[56] where they derived the empirical distributions of the various components of

the traffic like file sizes, connection durations etc. and also [60, 1, 51] where the

qualitative behavior of the traffic is studied. A review of the different works on

traffic modeling shows that although certain properties of the traffic like the tail

distribution of the file sizes and its resulting LRD property in the aggregate traffic,

do not change from time to time and from network to network, other more detailed

properties like the best fit to some distributions may change by time and by the

network. In this project we study the traffic flowing through a hybrid network i.e.,

the DirecPC network and try to find if our findings are inline with the previous

findings for other networks. Here, in Section 5.2 a brief review of the system and

our measurements is presented. Section 5.3 is dedicated to the methods that were

used in our analyses. Finally, in section 5.4, we present and discuss the results of

the experiments.

5.2 DirecPC environment

The DirecPC system is a hybrid Internet delivery system that allows its users to

have a high download bandwidth by using a satellite link. Users or, in the DirecPC

terminology, the Hybrid Hosts(HH) initiate every transaction by sending a request

in the form of an IP packet with its own IP address as the source and the Internet

Host(IH) address as the destination address. This packet is sent by the user using

one of the different access methods (e.g. dial-up service, direct satellite access)

to the HGW. After the arrival of the packet to the HGW, it is sent to the actual
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Internet Host. The IH sends the requested packets to the IP address of the HH

but all the packets destined to any HH address pass through the HGW. As soon

as the HGW realizes that the packet is to be received by an HH, it sends the

packet to the satellite link via the queuing system in the gateway. Once sent to

the satellite link, the HH receives the packet using its satellite receiver. One of the

components of the DirecPC system is its queuing system. More users with better

quality of service requirements can be served with an efficient queuing system and

a crucial element for designing a good queuing system is a good understanding of

the incoming traffic to the system and its statistical properties.

In this project we have tried to fit several statistical models to different aspects

of the traffic to find a reasonable model that captures those characteristics in the

best way. The traffic we were interested on is the traffic that flows through the

satellite link i.e. the IH to HH traffic. The traffic is collected from the LAN at the

HGW that contains three types of traffic : traffic from HH to HGW, traffic from

HGW to IH and traffic from IH to HH that is of our interest. We used the tcpdump

program to record the LAN traffic (all the traffic) and used are own awk scripts and

C programs to extract the IH to HH traffic from it and also to further extract the

traffic related to different protocols from the trace. The other components of the

traffic are also subject of other projects but in the rest of this report by ”traffic”

we mean the IH to HH traffic.

5.3 Methods

Depending on the statistical properties of the different components of the traffic,

different models can be fitted to them. For quantities like the connection size

usually the samples are independent and identically distributed and we are mostly
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interested in fitting a well-known probability distribution to them. However, when

the process of interest is not i.i.d., its correlation structure is also of interest. Packet

and connection interarrival times are examples of correlated processes as we will

see later in this chapter. Analysis of each data set involves certain steps that we

will discuss in the next section.

5.3.1 Initial tests

First, we need to ensure that the data is stationary i.e., its statistical character-

istics remain constant in time. Although there is no clear distinction between

stationarity and long-range-dependence, various methods are available to test the

stationarity of a sequence using hypothesis testing. We used a simple method

defined in [5]. The sequence is first divided into N pieces and the mean-square

value of each piece is computed. If the sequence is stationary, the sequence of the

mean-square values should be an i.i.d. sequence. We then use a simple indepen-

dence test called the Reverse Arrangement test [5] to test the confidence level of

the hypothesis which states that the mean-square values are independent.

In practice, we found that for most cases, a sequence of approximately 20 minutes

length passes the stationarity test with a %95 confidence interval, which is intu-

itively correct, considering the relatively larger time constant of the hourly trends

in the traffic.

After finding a stationary section of every sequence, the first test is to find about

its autocorrelation properties. Here, we make a visual judgment using the Auto-

correlation Function(ACF) of each time series defined as

ACF (k) =
cov(X(t), X(t − k))

cov(X(t), X(t))
; k = 0, 1, . . . (5.1)
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where X(t) is the original time series and cov(., .) represents the covariance func-

tion. When the values of the ACF at k > 0 points are reasonably inside the %95

confidence interval, we treat the series as a non-correlated series. Otherwise, we

will seek more information about its correlation structure if it shows any long-

range-dependence(LRD) properties.

5.3.2 Probability models

We used four well-known probability distributions as candidates to fit to each of

the i.i.d. data sets. These distributions are the exponential distribution with pdf

fX(x) = λe−λx x > 0; λ > 0, (5.2)

Lognormal distribution with pdf

fX(x) =
1√
2πσ

x−1e
(log x−µ)2

2σ2 ; x > 0, (5.3)

Weibull distribution with

fX(x) =

(
β

α

)(
x

α

)β−1

e−( x
α)

β

α, β > 0 x > 0. (5.4)

and Pareto distribution with

fX(x) =
aka

xa+1
a, k > 0 x > k. (5.5)

The choice of the exponential distribution is based on the fact that many aggregate

processes approach a Poisson process in the limit. The Weibull and Lognormal

distributions have been used in other traffic modeling projects to fit the data, and

the Pareto distribution is chosen to capture any possible heavy-tail behavior in the

data sets.
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5.3.3 Estimators and fitting tests

In order to fit the data to each of the above distributions, the Maximum Like-

lihood estimators [28] for each distribution were used. For a sample data set

X = x1, x2, . . . , xN , these estimators are:

λ̂ =
1

N

N∑
i=1

xi (5.6)

for the exponential distribution,

λ̂ =
1

N

N∑
i=1

log xi (5.7)

and

σ̂2 =
1

N

N∑
i=1

(
log xi − µ2

)2
(5.8)

for the lognormal distribution,

α̂ =

[
1

N

N∑
i=1

tβ̂i

] 1

β̂

(5.9)

and

β̂ =

( N∑
i=1

tβ̂i log xi

)(
N∑

i=1

xβ̂
i

)−1

−
N∑

i=1

log xi

−1

(5.10)

for the Weibull distribution and finally

k̂ = minxi (5.11)

and

â = n

[
N∑

i=1

log(xi/k̂)

]−1

(5.12)

for the Pareto distribution.

In the cases where it is desired to investigate more about the autocorrelation of the

data sets, specially if the goal is to detect the LRD properties, we use the wavelet

estimation method introduced in [1]. Briefly, this method uses the fact that ([2])
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if X is a self-similar process with Hurst parameter H ∈ (0.5, 1), the expectation of

the energy Ej within a bandwidth 2−j around frequency 2−jλ0 is

E[Ej] = E

[
1

Nj

∑
k

|dj,k|2
]

= c|2−jλ|1−2H
(5.13)

where c is a constant independent of j and dj,k; k = 1, . . . , Nj are the wavelet

coefficients at scale j and time 2jk of the discrete wavelet transform of X. Based

on this observation, a plot of log2 E[Ej] versus j will be linear with slope 2H − 1

and we use this method to detect the self-similar property and if so, to find the

Hurst parameter. In our experiments we counted the number of packets arrived

in successive 10ms intervals and used that discrete-time sequence for the wavelet

test. We also used the Whittle estimator [6] for estimation of the H parameter for

comparison purposes.

Finally, in order to compare the fits given by the above four distribution to a given

data set, we use a non-parametric discrepancy test introduced in [47]. This test,

called the λ2 test, is a modified χ2 test which is known to be less sensitive to the

number and width of the bins. It should be mentioned at this point that none of

our data sets really matches any of the above distributions in a statistical sense

i.e., within a reasonable confidence interval. We are only looking for models that

reasonably capture the shape of the empirical distributions.

5.4 Results

In this section we discuss some of the results of our experiments on the collected

traffic trace. The trace was 7396 seconds long and contained 12696587 TCP and

644814 UDP packets. A total of 1352 different users were active for some period

during the measurement time. The TCP and UDP packets carried 10572270728
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Protocol #packets %packets #bytes %bytes

TCP 12,696,587 %92.8 10,572,270,728 %98

UDP 644,814 %4.7 151,229,464 %1.4

Other 340,656 %2.5 8266712 %0.6

Table 5.1: share of different protocols in the traffic.

and 151229464 bytes of data, respectively, that results in an approximate rate of

1449905 bytes per second. Table 5.1 shows the shares of the two major protocols

in the traffic. As we can see in the traffic, the TCP is by far the most frequent

protocol that makes about %98 of the traffic. Because of this result, we further

concentrated our analysis on the TCP traffic. The TCP traffic was analyzed to

model the packet arrival as well as the connection arrival processes. A second

analysis gave the composition of the TCP traffic in terms of the shares of different

protocols in it. The TCP traffic is composed of the traffic generated by all the

applications using this protocol as their transport protocol. A simple analysis

of the traffic shows that the HTTP,FTP and NNTP are the three most popular

components of the TCP traffic and other applications like POP3 and SMTP are

in the next rows. Since HTTP traffic is by far the largest component of the traffic

(%50−%70), here we mostly focus our attention on this traffic and do not present

the results related to other protocols and applications.

5.4.1 TCP Packet Arrival

The arrival process for the TCP packets is a combination of the arrival pattern of

the many protocols using TCP as their transport protocol. A stationary test on the

aggregated packet arrival process in 20s intervals shows a high level of stationarity
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Figure 5.1: Autocorrelation function of the aggregated TCP packet arrival process.

(%90) in the part of the trace between 2500-5000 seconds. The autocorrelation

function for this part of the trace is shown in figure 5.1. The first observation

is that a strong periodic component with an approximate period of 0.5 seconds

exists in the traffic which causes the strong periodic spikes in the autocorrelation

function. detailed analysis of the traces showed that this component is caused by

periodic consumption of part of the bandwidth by other services that share the

bandwidth with the Internet traffic in the hybrid gateway. However, if we ignore

this effect and focus on the values of the autocorrelation function at other points

it shows a non-negligible tail for the correlation function. Therefore we use the

wavelet tool to investigate the scaling properties of this process. Figure 5.2 shows

an almost linear scaling behavior from scales 7 to 13 i.e. scales of 1 to 80 seconds.

If we accept that level of linearity for the trace, the slope of the line fitted to

that part gives a Hurst parameter of H = 0.84. The Whittle estimator with the
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Figure 5.2: Global scaling behavior of the aggregated TCP packet arrival process.

assumption of a FGN model for the aggregated process in 1 sec intervals gives

also an H value of 0.844 with the %95 confidence interval of [0.828 0.859] which

matches our previously estimated value. These results suggest that the aggregated

TCP packet arrival process is an LRD process with the above Hurst parameter.

This observation is in line with many previous reports (e.g. [60, 1, 45]) where the

LRD behavior has been observed in different data sets. As we see in the graph,

the behavior of the process is very different in smaller scales. Specifically, the peak

around scales 5 and 6 is probably caused by the periodic component around those

time scales. In the following sections, we will try to investigate more about the

properties of the TCP traffic. However, since the TCP traffic is composed of many

different protocols, we only focus on its major component i.e., the HTTP traffic

so that we can talk about a unified model for this component. Otherwise, due to

the different nature of different applications, it would be unreasonable to propose
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such overall models.

5.4.2 HTTP traffic

As we expect (figure 5.3), the scaling behavior of the HTTP packet arrival process

is very similar to that of the parent TCP traffic and shows a self-similar behavior

with Hurst parameter 0.84 over the 5 to 13 scaling range or equivalently between

0.32s and 82s time scales. Since our traffic trace is a collection of a large number of

different client-server connections, it is natural to focus on the behavior of a typical

connection during our search for a reason for the above self-similar property. This

is mainly motivated by a famous paper by Taqqu et. al. [17] where they prove that

the superposition of a large number of independent alternating (ON-OFF) renewal

processes, each with independent ON and OFF durations, and at least one of the
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ON or OFF durations having a heavy-tail distribution with tail slope a, results

in a fractional Brownian motion process with Hurst parameter H = (3 − a)/2.

The ON-OFF property is a natural feature of the HTTP traffic and therefore

it is reasonable to try to relate the self-similar property of the aggregate to the

individual client-server connections.

The HTTP traffic between a client-server pair usually consists of of successive

periods of silence (OFF) and file transfer (ON). Each file transfer period starts

when the user requests a file from the server by clicking on a link and the silence

or the think time period starts after the end of the previous file transfer and is

continued until the user requests a new file. In order to find the distribution of

the ON and OFF durations in our traffic, we extracted all distinct client-server

communications from the trace and measured the ON and OFF periods in each of

them by treating all the connections with their start times less than 0.5 seconds

apart as part of the same ON periods and, the end of the longest connection as

the end of that ON period. After finding all the available ON and OFF periods

from the HTTP trace, we constructed two separate data sets of ON and OFF

durations and investigated the distribution of each set separately. A visual ACF

test on each set showed a reasonable independence structure and figure 5.4 shows

the complementary empirical distribution of each set in the log-log scale. It can be

seen from these figures that the OFF periods do not show any heavy-tail behavior

however, the ON durations drop, for large values, with an approximate slope of

−1.2. This construction then suggests a Hurst parameter of H = 0.9 for the packet

arrival process which is not very far from our direct estimation of this parameter

(0.84).

The ON periods are in fact the durations of the TCP connections that carry the
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Figure 5.4: Distribution of the Length of the ON and OFF times for HTTP traffic.

different segments of the web pages to the clients. Therefore, we can expect to see

a close relationship between the distribution of the ON durations and the file size

distributions, at least with regard to the tail behavior which is the main cause of

the self-similar property.

5.4.3 HTTP file size distribution

We measured the size of the files transferred by the HTTP protocol by subtracting

the final and initial segment number for each connection. However, to avoid the

errors caused by the censor effect in our finite-time data, we only used the con-

nections which started during the first hour of the trace to make sure that all the

connections are taken into account. Figure 5.5 shows the empirical distribution

of this data set along with the best fits by the four candidate distributions for

96



log(datashort)

lo
g(

1 
- 

ed
f)

0 2 4 6 8

-1
.4

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

o o o oo oo
oo o

o
o

o
o

o
o

o
o

o
o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

o

o

o

o

o

o

o

•
•

• •• ••• • • • •
•• •

•
•

•
•

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

x
x

x
xx xxxx

x
x

x
xx

x
x

x
x

x
x
x
x

x
x

x

x

x

x

x

x

x

x

x

x

x

#

#
# ## ####

#
#

#
###

#
#

#
#

#
#
#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

@

@

@
@@@@@@

@
@@

@@@@@@@@@@@@@
@@

@
@

@@
@@@@@@@@@@@@@@@@@@@

Empirical CDF of the data and the fitted distributions

Figure 5.5: The CDF of the sizes of the HTTP connections and the fitted distri-

butions to the lower %65 of the data.

fitting. It is clear from the figure that the file size distribution has basically two

different behaviors. In fact, the shown distributions are the best fits to the lower

%65 section of the distribution. Table 5.2 shows the result of the fitting based on

the λ2 discrepancy test explained before. Here λ is a measure of discrepancy and

σ(λ) is its variance. According to this table, the Weibull distribution results in the

best fit to this data and the Pareto distribution is the worst of them. However,

the situation is reversed for the upper %35 of the data. Figure 5.6 shows that the

Pareto distribution can capture the heavy-tail behavior of the upper portion of the

data much better than the other distribution. The estimated shape factor for the

Pareto fitting is approximately 1.1 which results in a slightly heavier tail than the

tail of the distribution of the ON times. However, we still consider this result as a

confirmation of the fact that the self-similar nature of the HTTP traffic is largely

caused by the heavy-tail distribution of the file sizes [11]. In fact, in [11], they
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Distribution λ − σ(λ) λ + σ(λ)

Exponential 0.2270 0.2272

Lognormal 0.2130 0.2132

Weibull 0.1232 0.1232

Pareto 2.5231 2.5243

Table 5.2: Results of the discrepancy test on the fitted distributions to the lower

%65 of the HTTP connection sizes.

estimated a slope of −1.2 for the tail of the file size distribution while estimating

a Hurst parameter of 0.7 to 0.8. So our results show more consistency between the

file size and the Hurst parameter.

Although our experiments and results also include detailed studies about the sta-

tistical properties of the FTP and NNTP protocols, we do not include the results

here and only mention that the same steps were taken to have a reliable analysis

of each data set. Our results showed that the FTP connections arrival process has

a marginal distribution very close to an exponential distribution (figure 5.7) and

although the autocorrelation function for lags larger than 0 is not completely inside

the %95 confidence interval, it may be still considered as an independent sequence

resulting in a Poisson model for the FTP connection arrival process. Also, the

duration of the FTP connections has a heavy tail as can be seen in figure 5.8.

Therefore, it seems that an M/G/∞ model [10, 34] can be a proper model for the

aggregate FTP traffic.
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5.5 Implications of the HTTP model, future work

A major implication of the ON-OFF model for the HTTP connections is in the

resource allocation applications. This issue is studied in [13]. They construct a

Markov chain for a system where a fixed bandwidth is shared by N HTTP users. In

that system all users have the same ON-OFF behavior where the OFF periods are

generated by sampling the think time distribution and the ON periods for each user

start when the user begins to transfer a file. All file sizes have the same distribution.

Obviously, in this system, the OFF durations are independent. However, since the

ON durations depend on the file sizes as well as the bandwidth for every user, they

will depend on the number of users in their ON state. Let’s assume that the OFF

durations have an exponential distribution with mean 1/λ and the file sizes have

an exponential distribution with mean 1/µ. In that case, the number of ON users
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Figure 5.9: Markov chain representation of a single-class processor sharing system.

constitutes a Markov chain as shown in figure 5.9 where B is the total bandwidth.

In this system, the distribution of the bandwidth received by each user can be

found by calculating the stationary distribution of the Markov chain. However,

the assumption of exponential distribution for the file sizes prevents this model

to be practical in real situation. Heyman et.al. [13] showed that the stationary

distribution of this chain is insensitive to the file size distribution, i.e. as long as

the file size distribution has a mean of 1/µ, the stationary distribution remains the

same no matter what the actual shape of the distribution is.

A very useful extension of this model is the case where the users do not all get

the same share of the bandwidth. Instead, users are divided into classes and the

bandwidth is divided according to some weighted processor sharing fashion. More

specifically, suppose that there are N1 users of class 1 and N2 users of class 2 in

the system and weights w1 and w2 are assigned to classes 1 and 2, respectively. In

a typical state with x1 users of class 1 and x2 users of class 2 in their ON state,

the bandwidth received by each class 1 user is

w1B

x1w1 + x2w2

(5.14)

and the bandwidth for each class 2 user is

w2B

x1w1 + x2w2

. (5.15)

If we assume that the file size and think time distributions are both exponential
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Figure 5.10: Markov chain representation of a two-class weighted processor sharing

system.

as before, the system can be represented by a two-dimensional Markov chain as in

figure 5.10.

A number of initial simulation studies on this system suggested that the insensi-

tivity property holds here as well. A first look at this chain also showed that it

has one of the necessary conditions for insensitivity i.e.,the instantaneous attention

property. This property requires the system to start processing a job as soon as

it arrives into the system and obviously, a processor sharing system satisfies this

requirement. With that assumption, we were looking for proper well-known nu-

merical and analytical methods (e.g. Matrix geometirc methods [35, 42], Diffusion

approximation [49, 25], ...) to find the stationary distribution of this chain.

However, a more thorough study of the insensitivity phenomena and the related

works and particularly [52],[53] and [24] showed that another necessary condition

for insensitivity i.e. the job local balance property does not always hold for this
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Figure 5.11: A two-class system to investigate the local balance property.

Markov chain. In our system, the job local balance property with respect to a

specific user s0 requires that

For all states g that contain user s0 in its ON state, the flow out of g due to ON

to OFF transitions of s0 equals the flow into g due to OFF to ON transitions of

s0.

This fact can be studied by constructing a simple 2 × 1 chain which distinguishes

between the users of the same class (figure 5.11) and finding the flows generated

by the departure or arrival of that user. It can be shown that these flows do not

necessarily satisfy the job local balance property and therefore the chain is not

insensitive.

In the absence of the insensitivity property, the analysis of the system becomes a

difficult task that deserves a separate study. Therefore, we did not continue this

path for this project. however, due to the practical importance of this issue, we
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would like to introduce it as a subject for future work on resource allocation for

Internet users.
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Chapter 6

Summary and concluding remarks

In this dissertation we investigated the problem of broadcast scheduling in satel-

lite and wireless systems. One of the most important problems in such systems

is to find the optimal scheduling of the broadcasts of different information pages

that results in the minimum average waiting time for the users. In our setting, we

assumed that the system has N different information pages and K; K < N broad-

cast channels and the request arrival rates for all pages are known. We presented

a survey of the previous works and the Dynamic Programming(DP) formulation

for this problem in Chapter 2 and also showed that the DP formulation by itself

does not lead to any analytical solution. We used Restless Bandit approach to

attack this problem and, by investigating the properties of a single-queue schedul-

ing problem, showed that this approach can be applied to our problem to find

near-optimal scheduling policies.

The first version of the problem where all files have equal lengths and different

weights can be assigned to the files was investigated in Chapter 3. Our analy-

sis led us to an index policy that, at each decision time, assigns an index to each

queue and only broadcasts the pages that correspond to the K largest index values.
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We also found a closed-form expression for the index function for the cases with

small request arrival rates. Furthermore, having a near-optimal policy allowed us

to evaluate the performances of several other heuristic policies presented by other

researchers and to introduce extensions to those policies in some cases.

Another important extension of this problem where the pages were different in size

was presented in Chapter 3. There, we used the same formulation and through ei-

ther analytical or numerical methods showed that the problem can be solved using

the same method. After deriving a formula for the index function for the case with

Geometrically distributed file sizes, we performed a large number of simulation

studies to compare the performance of this policy with a number of other heuristic

policies. We also used the results to present an index policy for the deterministic

file size case and evaluated its performance through simulation studies. Our re-

sults in both cases were either better than or equal to the results given by other

heuristic policies.

Other possible extensions of this problem were introduced in Chapter 4. We pre-

sented our formulation for the cases where the arrivals are Markovian or the trans-

mission error probability is not negligible. We also presented our preliminary

findings to be used in future work on this matter. Another equally important di-

rection for work on this type of systems is to consider the scheduling problem in the

presence of deadlines and we think a similar approach can be used for that problem

as well. As a general conclusion, we believe that the Restless Bandit formulation

is a viable approach to address different problems in broadcast scheduling.

Finally, in Chapter 5, we presented some of the results of a traffic analysis project

on the Internet traffic flowing through a satellite Internet delivery system. Our

findings in these results were inline with similar studies on other networks and also
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enabled us to construct statistical models for various elements of the TCP traffic

for use in simulation studies.
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Appendix A

Derivation of the maximization

problem

A.1 Derivation of the maximization problem for

equal file sizes

Assuming initial condition X(0), the objective function of the minimization prob-

lem can be written as

Jβ = E

[ ∞∑
t=0

βt

[
N∑

i=1

ciXi(t)

]]

= E

[
N∑

i=1

ciXi(0)

]
+ E

[ ∞∑
t=0

ββt

[
N∑

i=1

ciXi(t + 1)

]]

but if d(t) is the set of pages transmitted at time t we have

Xi(t + 1) =


Xi(t) + Ai(t) i /∈ d(t)

Ai(t) i ∈ d(t)
(A.1)
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with Ai(t) being the number of new requests for page i. therefore Jβ can be written

as

Jβ = E[
N∑

i=1

ciXi(0)] + βE

 ∞∑
t=0

βt[
N∑

i=1

ciAi(t) +
N∑

i=1

ciXi(t) −
∑

i∈d(t)

ciXi(t)]


= E[

N∑
i=1

ciXi(0)] + βE

[ ∞∑
t=0

βt[
N∑

i=1

ciAi(t)]

]

+ βE

[ ∞∑
t=0

βt[
N∑

i=1

ciXi(t)]

]
− βE[

∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)].

We also have

βJβ = βE

[ ∞∑
t=0

βt[
N∑

i=1

ciXi(t)]

]
(A.2)

therefore

(1 − β)Jβ = Jβ − βJβ

= E[
N∑

i=1

ciXi(0)] + βE

[ ∞∑
t=0

βt[
N∑

i=1

ciAi(t)]

]
− βE[

∞∑
t=0

βt
∑

i∈d(t)

ciXi(t)].

The first two terms of the right hand side of the equation are independent of the

policy. Therefore, since 1 − β > 0, minimizing Jβ is equal to maximizing

Ĵβ = E[
∞∑

t=0

βt
∑

i∈d(t)

ciXi(t)] (A.3)

which completes the derivation.

A.2 Derivation of the maximization problem for

random file sizes

Assuming initial condition X(0), the objective function of the minimization prob-

lem can be written as

Jβ = E

[ ∞∑
t=0

βt[
N∑

i=1

ci(Xi(t) + Yi(t))]

]

= E

[
N∑

i=1

ci(Xi(0) + Yi(0))

]
+ E

[ ∞∑
s=0

ββs[
N∑

i=1

ci(Xi(s + 1) + Yi(s + 1))]

]
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but if d(s) is the set of pages transmitted at time s we have from equation (2.1)

and (4.3)

Xi(s+1)+Yi(s+1) =



Xi(s) + Yi(s) + Ai(s) if i /∈ d(s)

Xi(s) + Yi(s) + Ai(s) with prob. 1 − qi if i ∈ d(s)

Yi(s) + Ai(s) with prob. qi if i ∈ d(s) and Xi(s) > 0

Ai(s) with prob. qi if i ∈ d(s) and Xi(s) = 0

(A.4)

with Ai(s) being the number of new requests for page i. therefore Jβ can be written

as

Jβ = E[
N∑

i=1

ci(Xi(0) + Yi(0))]

+ βE

[ ∞∑
s=0

βs
N∑

i=1

ciAi(s)

]

+ βE

[ ∞∑
s=0

βs
N∑

i=1

ci(Xi(s) + Yi(s))

]

− βE

 ∞∑
s=0

βs
∑

i∈d(s)

qici(Xi(t)I[Xi(t) > 0] + Yi(t)I[Xi(t) = 0])


We also have

βJβ = βE

[ ∞∑
t=0

βt[
N∑

i=1

ci(Xi(t) + Yi(t))]

]
(A.5)

therefore

(1 − β)Jβ = Jβ − βJβ

= E[
N∑

i=1

ci(Xi(0) + Yi(0))]

+ βE

[ ∞∑
s=0

βs
N∑

i=1

ciAi(s)

]

− βE

 ∞∑
s=0

βs
∑

i∈d(s)

qici(Xi(t)I[Xi(t) > 0] + Yi(t)I[Xi(t) = 0])

 .

110



The first two terms of the right hand side of the equation are independent of the

policy. Therefore, since 1 − β > 0, minimizing Jβ is equal to maximizing

Ĵβ = E

 ∞∑
s=0

βs
∑

i∈d(s)

qici(Xi(t)I[Xi(t) > 0] + Yi(t)I[Xi(t) = 0])

 (A.6)

which completes the derivation.
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Appendix B

Analysis of some bulk service

queueing systems

B.1 Proofs related to a single controlled bulk

service queue

The following results investigate the form of the optimal policy for a single bulk

queue. Here we assume that there is a constant service cost ν for each service(active

period) but no cost for remaining idle. The reward for serving the queue at state

(x, y) is defined by equation (2.3). The optimal policy is the policy that chooses

to serve the queue for some states and remains idle for the other states so that the

total expected discounted sum of the rewards is maximized.

B.1.1 optimality of the threshold policy

In this part we prove that the optimal policy is of the threshold type and moreover,

the idling region is a convex set on the state space of the queue containing the
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origin. We show the value function of the optimal policy π∗ by V (.) and we first

prove some properties of this function.

We need the following lemma:

Lemma B.1.1 Let Sd
p(x) denote the resulting discounted reward sum when the

initial condition is x and arrivals occur as sample path p and the fixed(independent

of state) decision sequence d is applied to the system. Then we have

Sd
p(x) ≤ Sd

p(x + 1) ≤ c + Sd
p(x). (B.1)

Consider two identical queues one with initial condition x and the other with

initial condition x + 1 defined as above. If the same fixed policy is applied to

these two systems, the reward would be the same before the first service epoch.

At that point, the second system receives a reward that is c units more than that

received by the first system. Since the dynamics of the system forces the length

of the serviced queues to zero, it in fact erases the memory of the queues after

each service. Therefore, the resulting rewards even for both queues would be the

same afterwards. Therefore, the left hand inequality holds(c > 0). The presence

of the discount factor 0 < β < 1 causes the additional instantaneous reward in the

second queue to result in at most a c unit difference between the two discounted

sum of the rewards(if queues are served at time t = 0), hence the right inequality

holds.

The first part of the theorem can be proved using the above lemma.

Theorem B.1.2 For the value function V (.) of the optimal policy of our maxi-

mization problem, we have
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(a) V (x + 1) ≤ V (x) + c.

(b) V (x) ≤ V (x + 1)

Proof: Let dπ∗ be the optimal policy and denote by πx
p the deterministic sequence

of decisions dictated by π∗ when the arrivals occur according to a deterministic

sample path p and the initial condition is x. According to lemma B.1.1 we have

Sπx+1
p

p (x + 1) ≤ Sπx+1
p

p (x) + c (B.2)

If we take the expectation of both sides with respect to the sample path probability

P (p), we get

V (x + 1) ≤ c +
∑
p

P (p)Sπx+1
p

p (x). (B.3)

Also, according to the definition of optimality of policy π∗ we have

V (x) =
∑
p

P (p)S
πx

p
p (x) ≥ ∑

p

P (p)S
dY

p
p (X). (B.4)

inequality (a) follows from combining the two above results.

Also, according to lemma B.1.1 we have

S
πx

p
p (x) ≤ S

πx
p

p (x + 1) (B.5)

If we take the expectation of both sides with respect to the sample path probability

P (p), we get

V (x) ≤ ∑
p

P (p)S
πx

p
p (x + 1). (B.6)
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Also, according to the definition of optimality of policy d∗ we have

V (x + 1) =
∑
p

P (p)Sπx+1
p

p (x + 1) ≥ ∑
p

P (p)S
πx

p
p (x + 1). (B.7)

Hence inequality (b) follows.

Now, we can prove the following property:

Theorem B.1.3 If π∗(x) = 0, i.e. it is optimal to remain idle at state x, then it

is also optimal to remain idle at state x − 1 i.e. π∗(x − 1) = 0.

Proof: since π∗(x) = 0, we have:

cx − ν + β
∞∑
i=1

p(i)V (i) ≤ β
∞∑
i=1

p(i)V (x + i) (B.8)

Starting with the above property, we have

V (x + i) ≤ c + V (x − 1 + i) (B.9)

or

β
∞∑
i=1

p(i)V (x + i) ≤ c + β
∞∑
i=1

p(i)V (x − 1 + i) (B.10)

Using the hypothesis, we have

cx − ν + β
∞∑
i=1

p(i)V (i) ≤ c + β
∞∑
i=1

p(i)V (x − 1 + i) (B.11)

or

cx − c − ν + β
∞∑
i=1

p(i)V (i) ≤ β
∞∑
i=1

p(i)V (x − 1 + i) (B.12)

that is, d(x − 1) = 0 which completes the proof.
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B.1.2 Relation between the threshold state and the service

cost

We showed that for every value of the service cost ν there exist a threshold state

s(ν) with the set of idling states under the optimal policy being S0 = 0, . . . , s.

Here we will show that s(ν) is a non-decreasing function.

Let us assume that u is the stationary optimal policy for service cost ν with

threshold state s and denote by V ν(.) the value function associated with that

policy. Based on the optimality principle, function V ν(.) satisfies:

V ν(0) = β
∞∑
i=0

p(i)V ν(0 + i) ≥ −ν + 0 + V ν(0) (B.13)

V ν(1) = β
∞∑
i=0

p(i)V ν(1 + i) ≥ −ν + c + V ν(0)

...

V ν(x) = β
∞∑
i=0

p(i)V ν(x + i) ≥ −ν + cx + V ν(0)

...

V ν(s) = β
∞∑
i=0

p(i)V ν(s + i) ≥ −ν + cs + V ν(0)

V ν(s + 1) = −ν + c(s + 1) + V ν(0) ≥ β
∞∑
i=0

p(i)V ν(s + 1 + i)

...

Now, take a new value for the service cost ν ′ > ν and show by V ν′
(.) the value

function obtained by applying policy u(with threshold s) with this new value of

the service cost. Function V ν′
(.) satisfies:

V ν′
(0) = β

∞∑
i=0

p(i)V ν′
(0 + i) (B.14)

V ν′
(1) = β

∞∑
i=0

p(i)V ν′
(1 + i)
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...

V ν′
(x) = β

∞∑
i=0

p(i)V ν′
(x + i)

...

V ν′
(s) = β

∞∑
i=0

p(i)V ν′
(s + i)

V ν′
(s + 1) = −ν + c(s + 1) + V ν′

(0)

...

Let’s denote the difference between the two value functions by ∆(.) i.e. ∆(x) =

V ν(x) − V ν′
(x) x = 0, 1, . . .. It is easy to show that function ∆(.) satisfies the

following equations:

∆(x) = β
∞∑
i=0

p(i)∆(x + i) for x ≤ s (B.15)

and

∆(x) = β
∞∑
i=0

p(i)∆(i) + ∆ν = ∆(0) + ∆ν for x > s (B.16)

where ∆ν = ν ′ − ν > 0. After some simplifications we have

∆(x) = β
s−x∑
i=0

p(i)∆(x + i) + β(∆(0) + ∆ν)h(s + 1 − x) for x ≤ s (B.17)

where h(x) =
∑∞

i=x p(i). The following simple lemma asserts that all ∆(0), . . . , ∆(s)

values are positive.

Lemma B.1.4 All ∆(i) i = 0, 1, . . . values defined above are positive and are of

the form ∆(i) = ki(∆(0) + ∆ν) where 0 < ki < 1 for 0 ≤ i ≤ s and ki = 1 for

i > s.

Proof: From the above equations ∆(s) can be written as

∆(s) = βp(0)∆(s) + βh(1)(∆(0) + ∆ν)
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or

∆(s) =
βh(1)

1 − βp(0)
(∆(0) + ∆ν).

We also have

βh(1) = β(1 − p(0)) < 1 − βp(0)

therefore, ∆(s) can be written as

∆(s) = ks(∆(0) + ∆ν)

where 0 < ks < 1. Now we show that all ∆(x) values for x < s have the same

form by using full induction. Suppose that all ∆(i) values for i = x + 1, . . . , s are

of the form

∆(i) = ki(∆(0) + ∆ν) 0 < ki < 1.

Using equation (B.17), the value of ∆(x) can be calculated

∆(x)(1 − βp(0)) = βp(1)∆(x + 1) + . . . + βp(s − x)∆(s) + βh(s + 1 + x)(∆(0) + ∆ν)

= β[p(1)kx+1 + . . . + p(s − x)ks−x + h(s + 1 − x)](∆(0) + ∆ν)

Since the ki i = x + 1, . . . , s − x values are all less than one, we have

∆(x)(1 − βp(0)) < β(1 − p(0))(∆(0) + ∆ν)

or

∆(x) = kx(∆(0) + ∆ν) 0 < kx < 1.

Therefore, by induction, all ∆(i) i = 0, . . . , s are of the above form. Specifically,

for i = 0 we have

∆(0) = k0(∆(0) + ∆ν)

or

∆(0) =
k0∆ν

1 − k0

> 0.
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Since ∆ν > 0, we conclude that all ∆(i) i = 0, . . . values are positive which

completes the proof.

Now, we go back to equation (B.14) and try to find under what conditions the

policy u is also optimal, i.e. satisfies the optimality equation for all states, when

the service cost is ν ′. For every state 0 ≤ x ≤ s we have from equation (B.13)

V ν(x) = β
∞∑
i=0

p(i)V ν(x + i) ≥ −ν + cx + V ν(0) (B.18)

also from the above lemma we have

∆(x) < ∆ν + ∆(0) (B.19)

therefore, subtracting (B.19) from (B.18), we have

V ν′
(x) > −ν ′ + cx + V ν′

(0) (B.20)

that is, the u policy is optimal for 0 ≤ x ≤ s states. For x > s states from equation

(B.13) we have

cx − ν + V ν(0) ≥ β
∞∑
i=0

p(i)V ν(x + i)

= β
∞∑
i=0

p(i)[cx + ci − ν + V ν(0)]

= β[cx − ν + V ν(0)] + βcλ (B.21)

Obviously, this inequality strengthens as x increases. Also, due to the optimality

of state x = s as the largest state of the idling set, no value of x < s+1 can satisfy

(B.21). Therefore, x = s + 1 is the smallest integer(state) which satisfies (B.21).

We know from lemma (B.1.4) that for policy u, V ν(0) is a non-increasing function

of ν(since ∆(0) > 0). Hence, inequality (B.21) weakens as ν increases and the

maximum value of ν for which the inequality still holds for x = s + 1 is the one

satisfying

c(s + 1) − ν∗ + V ν∗
(0) = β[c(s + 1) − ν∗ + V ν∗

(0)] + βcλ (B.22)

119



λ

Q1          Q2

W1         W2 = d

Figure B.1: A bulk service queuing system.

or

ν∗ = c(s + 1) + V ν∗
(0) − βcλ

1 − β
. (B.23)

Therefore, as long as the value of the service cost is smaller than ν∗, state x =

s + 1(and so the larger states) stay in the active region and the policy u with

threshold state s remains optimal.

To summarize the above arguments, we showed that if policy u with threshold

state s is optimal for a service cost ν(and produces a value function V ν(.)), then

it is also optimal for all values of the service cost ν ′ where ν ≤ ν ′ ≤ ν∗. But

comparing equations (B.23) and (3.22), we find that ν∗ is the value of the service

cost that makes state s + 1 the threshold value of the optimal policy. therefore for

ν ′ > ν∗ values, the same argument can be repeated for the optimal policy u′ with

its threshold state being x = s + 1 and so the property is proved.

B.2 Properties of some bulk service queues with

continuous service

In our broadcast system the bulk size is infinite and service time is a constant. Let

us for example consider a single discrete-time broadcast queue of type M/D∞
1 /1

with arrival rate λ and service time d where the service occurs only at discrete
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Parameter Distribution Mean

W1 Unif[0, d] d
2

Q1
1−F (n)

λd
λd
2

W2 constant d

Q2 Poisson(λd) λd

Table B.1: Properties of a bulk service queue (F (.): CDF of Poisson(λd) distribu-

tion)

time instants of distance d (figure B.1). Here we denote by Q1 and Q2 the number

of customers in the queue and in service respectively and by W1 and W2 the corre-

sponding waiting times. The total queue length and waiting time (Q and W ) will

be the sums of the the two terms. By definition, the value of W2 is fixed and is

equal to d. Also, since the waiting room in the queue is completely emptied at the

beginning of every service period, the number of customers who will be waiting for

the beginning of the next period (Q2) will have a Poisson distribution with rate λd.

The distribution of the waiting time of the customers in the queue is also easily

obtained by considering the fact that by PASTA the residual time (of the current

period) seen by the arrivals is Unif[0, d]. Therefore, the average waiting time in

the queue (W1) is d
2
. The average value of the number of waiting customers(Q1)

is easily obtained from W1 using the Little’s law and is λd
2

. We have shown that

the pmf of this random variable is the normalized complementary cmf of a Poisson

process with rate λd(appendix A). Table B.1 summarizes these properties. As we

see, the waiting times are finite and independent of the arrival rate. This is a direct

result of the infinite bulk capacity of the server. This fact can also be seen in a

queueing system of the M/M∞
1 /1 type where the service times are exponentially
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distributed with parameter µ and a service can start as soon as an arrival lands on

the empty queue. This queue is Markovian and has a 2-dimensional Markov chain

representation which we have analyzed and found the average total queue length

and the average total waiting time to be

Q̄ =
ρ(2ρ2 + 2ρ + 1)

ρ2 + ρ + 1
;

and

W̄ =
Q

λ

where ρ = λ
µ
. Here, it can also be easily seen that as we expect, W̄ approaches

the finite value 2
µ

as λ → ∞. In general, for a M/G∞
1 /1 queue, an arrival is either

served immediately (if it arrives to the empty queue), or will be served at next

service which will be right after the end of the current service. If we denote by p0

the probability of queue being empty, X̄ the average service time and, by R̄ the

average residual service time seen by the (Poisson) arrivals, we have

W̄ = X̄p0 + (1 − p0)(X̄ + R̄) (B.24)

Since 0 < p0 < 1 and R̄ ≤ X̄, we can bound the average waiting time by

X̄ < W̄ < 2X̄. (B.25)

In other words, the infinite service capacity of the server never allows the waiting

time to be more than two service periods.
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Appendix C

Analysis of a bulk service queue

with random file lengths

The following results investigate the form of the optimal policy for a single bulk

queue with Geometric service times. Here we assume that there is a constant

service cost ν for each service(active period) but no cost for remaining idle. The

reward for serving the queue at state (x, y) is defined by equation (4.8). The

optimal policy is the policy that chooses to serve the queue for some states and

remains idle for the other states in such a way that the total expected discounted

sum of the rewards is maximized.

C.1 Threshold property in the x direction

In this part we prove that the optimal policy is of the threshold type in the x

direction. We show the value function of the optimal policy π∗ by V (., .) and first

prove some properties of this function in the following lemma.

Lemma C.1.1 Let Sd
A,Q(x, y) denote the resulting discounted reward sum when
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the initial condition is (x, y), arrivals occur as time sequence A, service success

occurs as sequence Q and the fixed decision sequence d = d0, d1, . . . is applied to

the system. Then we have

(a) Sd
A,Q(x, y) ≤ Sd

A,Q(x + 1, y) ≤ Sd
A,Q(x, y) + c ; x > 0

(b) Sd
A,Q(0, y) ≤ Sd

A,Q(0, y + 1) ≤ Sd
A,Q(0, y) + c

(c) Sd
A,Q(x, y) ≤ Sd

A,Q(x, y + 1) ≤ Sd
A,Q(x, y) + βc ; x > 0

Proof: (a) Consider two identical queues one with initial condition (x, y) and the

other with initial condition (x + 1, y). If the same set of arrival, success and de-

cision sequences are applied to these two systems, the reward would be the same

before the first successful service epoch say t1. At that point, the second system

receives a reward that is cβt1 units more than that received by the first system.

Since the dynamics of the system forces the x component of the state to zero, the

two systems will be identical thereafter. Therefore, the resulting rewards for both

queues would be the same afterwards. Since 0 < β < 1 and c > 0, the maximum

difference occurs at t1 = 0 and the minimum at t1 = ∞.

(b) Since in a state of the form (0, y) the service will be applied to component y,

the same argument as part (a) is valid for this case.

(c) Consider two identical systems under similar arrival, success and decision se-

quences, with initial states (x, y) and (x, y+1). the first successful service (at time

t1) changes the states to (0, y + i) and (0, y + 1 + i) respectively. The difference in

the reward sequences occurs when the second successful service happens(t2). At

that time the reward of the second system is cβt2 units more than the reward of

the first system and after that both systems go to identical states (0, at2) where at2

is the number of new arrivals during period t2. since t2 occurs after t1, the earliest
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time it happens can be t2 = 1 which results in the right hand inequality. The left

inequality is valid as before.

Using the above lemma it can be shown that

Lemma C.1.2 The optimal value function V (., .) satisfies the following inequali-

ties

(a) V (x, y) ≤ V (x + 1, y) ≤ V (x, y) + c ; x > 0

(b) V (0, y) ≤ V (0, y + 1) ≤ V (0, y) + c

(c) V (x, y) ≤ V (x, y + 1) ≤ V (x, y) + βc ; x > 0

Proof: By definition, the optimal value function V π(x, y) is the maximum attain-

able value of EA,Q [SA,Q(x, y)] over all deterministic stationary policies. To prove

(a), we take the expectation over A and Q of part (a) inequality of the previous

lemma to get

EA,Q

[
Sd

A,Q(x, y)
]
≤ EA,Q

[
Sd

A,Q(x + 1, y)
]
≤ EA,Q

[
Sd

A,Q(x, y)
]
+ c for all fixed d.

(C.1)

Here we used the fact that the success sequence is an iid, binary sequence with

success probability q and independent of the arrival sequence. if we set d for

every choice of A and Q to be the fixed control sequence dictated by the optimal

decision policy π applied to a system with initial state (x + 1, y) (we show it

by d = πA,Q(x + 1, y)) the middle term in (C.1) will be equal to V π(x + 1, y).

The right most term is definitely not greater than V π(x, y) because applying the

control sequence optimized for the (x + 1, y) initial state to a system with initial

state (x, y) can not produce an expected reward larger than that gained by the

optimal policy. Hence we have V π(x + 1, y) ≤ V π(x, y) + c which is the right
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inequality in (a). To prove the left inequality, again start from (C.1) and set d to

be the sequence dictated by the optimal policy for A and Q but for initial state

(x, y), i.e. d = πA,Q(x, y). The left most term of (a) is in fact V π(x, y) and the

middle term is smaller than or equal to V π(x + 1, y) by definition. Therefore, the

left inequality of (a) is valid too. Inequalities (b) and (c) can be proved using

similar discussions.

We can now prove the main property of the optimal decision policy through the

following theorem. Figure (4.2) can be viewed as a graphical representation of this

property.

Theorem C.1.3 The optimal policy π for the single-queue scheduling problem

defined in section 4.4 is of the threshold type in the x direction. More specifically,

the idling region in the (x, y) state space has the following property

for every x > 0 and y; if dπ(x, y) = 1 then dπ(x + 1, y) = 1

Proof: By definition

V (x, y) = (C.2)

max

{
−ν + qcx + qβ

∞∑
i=0

p(i)V (0, y + i) + (1 − q)β
∞∑
i=0

p(i)V (x, y + i)

, β
∞∑
i=0

p(i)V (x, y + i)

}

therefore, dπ(x, y) = 1 means

−ν + qcx+ qβ
∞∑
i=0

p(i)V (0, y + i)+(1− q)β
∞∑
i=0

p(i)V (x, y + i) ≥ β
∞∑
i=0

p(i)V (x, y + i)

(C.3)

or

−ν + qcx + qβ
∞∑
i=0

p(i)V (0, y + i) ≥ qβ
∞∑
i=0

p(i)V (x, y + i). (C.4)
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Similarly,

V (x + 1, y) = (C.5)

max

{
−ν + qcx + qc + qβ

∞∑
i=0

p(i)V (0, y + i) + (1 − q)β
∞∑
i=0

p(i)V (x + 1, y + i)

, β
∞∑
i=0

p(i)V (x + 1, y + i)

}
.

For dπ(x + 1, y) = 1 we need to have

−ν+qcx+qc+qβ
∞∑
i=0

p(i)V (0, y+i)+(1−q)β
∞∑
i=0

p(i)V (x+1, y+i) ≥ β
∞∑
i=0

p(i)V (x+1, y+i).

(C.6)

Starting from equation (C.4) and using part (a) of lemma C.1.2, we have

−ν + qc + qcx + qβ
∞∑
i=0

p(i)V (0, y + i) ≥ qβ
∞∑
i=0

p(i)V (x, y + i) + qc (C.7)

≥ qβ
∞∑
i=0

p(i)[V (x, y + i) + c]

≥ qβ
∞∑
i=0

p(i)V (x + 1, y + i)

which proves the theorem. This result shows that the for every fixed y, there

is a threshold value xth such that it is optimal to serve the queue for all states

of the form (xth + i, y); i = 0, 1, . . . and remain idle for all states of the form

(i, y); i = 1, . . . , xth − 1. State (0, y) is an exception as we will show later.

C.2 Calculation of the index function in light

traffic

In this chapter we derive an approximation of the switching curve in the light traffic

regime. In this regime the arrival rate is a small number such that the probability
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of more than one arrivals during any broadcast period is negligible. Let’s denote

by p0(> 0) and p1 = 1 − p0 the probabilities of zero and one arrivals, respectively.

We also use the threshold property in both the x (x > 0) and y directions and the

y0 > x0 assumption throughout this section. The latter property is valid when β

is enough close to 1. Below, we investigate properties of the value function V (., .)

of the optimal policy d(., .).

C.2.1 Properties of the value function

Starting from the (0, 0) point we have

V (0, 0) = βp0V (0, 0) + βp1V (0, 1)

V (0, 1) = βp0V (0, 1) + βp1V (0, 2)

...

V (0, y0 − 1) = βp0V (0, y0 − 1) + βp1V (0, y0).

where y0 is the first point on the y axis outside of the idle region. Therefore we

have

V (0, y) = cV (0, y − 1) y = 0, . . . , y0 (C.8)

or

V (0, y) = cyV (0, 0) y = 0, . . . , y0 (C.9)

where

c =
1 − βp0

βp1

. (C.10)

Similarly, the same relation also holds for the other points along vertical lines inside

the idle region, namely

V (x, y) = cyV (x, 0) y = 0, . . . , yx0 ; x = 1, . . . , x0 (C.11)
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where yx is the first point along the x = x line that is in the active region.

Another property is that the value function for all the points of the active region

has a fixed increment in the x direction. To show this, let us consider a point

(x, y); x > 0 such that d(x, y) = 1, i.e.

V (x, y) = −ν + qx + βqp0V (0, y) + βqp1V (0, y + 1) (C.12)

+β(1 − q)p0V (x, y) + β(1 − q)p1V (x, y + 1). (C.13)

The threshold property in the x direction requires that

V (x + 1, y) = −ν + qx + q + βqp0V (0, y) + βqp1V (0, y + 1) (C.14)

+β(1 − q)p0V (x + 1, y) + β(1 − q)p1V (x + 1, y + 1). (C.15)

Let’s define the following difference functions

∆xV (x, y)
�
= V (x + 1, y) − V (x, y) (C.16)

∆xyV (x, y)
�
= ∆xV (x, y + 1) − ∆xV (x, y). (C.17)

It is easy to show that, due to the threshold property of the optimal policy, function

∆xyV (x, s) satisfies the following equations for all s = y, y + 1, . . .

∆xyV (x, s + 1) =
1 − β(1 − q)p0

β(1 − q)p1

∆xyV (x, s). (C.18)

Since 1−β(1−q)p0

β(1−q)p1
≥ 1, using the results of lemma C.1.2, it can be shown that the

trivial solution is the only acceptable solution for this set of equations, i.e.

∆xyV (x, s) = 0; ∀s ≥ y (C.19)

which in turn leads us to the following result

∆xV (x, s) = cte; ∀s ≥ y. (C.20)
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This result is nothing but the constant increment property in the x direction.

Although we used the light traffic assumption during the proof, this result also

holds for the general case. The value of the increment can be calculated as follows.

Let’s denote by a the constant increment value in the x direction. For the general

case, the value of a can be found as

V (x + 1, y)− V (x, y) = q + (1− q)β
∞∑
i=0

p(i) [V (x + 1, y + i) − V (x, y + i)] (C.21)

or

a = q + (1 − q)β
∞∑
i=0

p(i)a (C.22)

or

a =
q

1 − β(1 − q)
. (C.23)

This result also holds for V (0, y) points with y ≥ y0. By definition

V (0, y) = −ν + qy + βqp0V (0, 0) + βqp1V (0, 1) (C.24)

+ β(1 − q)p0V (y, 0) + β(1 − q)p1V (y, 1);∀y ≥ y0

which happens to be equal to the V (y, 0); ∀y ≥ y0(> x0) values. Therefore, the

constant increment property holds with the same increment value.

Function V (x, y) has the constant increment property in the y direction for y ≥
max(y0, yx). This property can be proved with a similar argument as above and

the amount of the increment in the y direction can be found to be

b =
βqa

1 − β(1 − q)
= βa2. (C.25)

We can now determine the location of the border points yx; x = 0, . . . , x0 as

follows. Since by definition y0 is the smallest y where d(0, y) = 1, we have

V (0, y0) ≥ βp0V (0, y0) + βp1V (0, y0 + 1) = βV (0, y0) + βp1a (C.26)
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or

V (0, y0) ≥ βp1a

1 − β
. (C.27)

Also

V (0, y0 − 1) ≥ −ν + qy0 − q + βqp0V (0, 0) + βqp1V (0, 1) (C.28)

+β(1 − q)p0V (y0 − 1, 0) + β(1 − q)p1V (y0 − 1, 1)

or

V (0, y0 − 1) ≥ V (0, y0) − a (C.29)

or equivalently using C.8,

V (0, y0) ≤ ac

c − 1
. (C.30)

Equations C.27 and C.30, together with equation C.8 and the increment property

in the y direction result in the following inequalities

V (0, y0 − 1) ≤ aβp1

1 − β
≤ V (0, y0) ≤ a(1 − βp0)

1 − β
≤ V (0, y0 + 1). (C.31)

The two constant values in this inequality have an interesting relation ship, that

is,

a(1 − βp0)

1 − β
=

aβp1

1 − β
+ a (C.32)

and also

a(1 − βp0)

1 − β
=

aβp1

1 − β
× c. (C.33)

In other words, y0 is located at a point where the slopes of the exponential portion

of the V (0, y) and the linear portion of it are very close (tangent in the continuous

case). Similar arguments can be used to find limits on the value of the value

function on the border points for 0 < x ≤ x0. Specifically, assuming the typical

case where yx ≥ y0, it can be found that

V (x, yx − 1) ≤ bβp1

1 − β
≤ V (x, yx) ≤ b(1 − βp0)

1 − β
≤ V (x, yx + 1). (C.34)
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It can also be found, using the same assumption along with the previous results,

that

V (x, yx) =
−ν + bp1

q
a + b(yx − y0) + βaV (0, y0) + ax (C.35)

and

V (x + 1, yx+1) =
−ν + bp1

q
a + b(yx+1 − y0) + βaV (0, y0) + a(x + 1). (C.36)

Combining the above equations, we get

V (x + 1, yx+1) − V (x, yx) = b(yx − yx+1) − a. (C.37)

Finally, using inequality C.34, we have

−b ≤ V (x + 1, yx+1) − V (x, yx) ≤ b (C.38)

or

1

βa
− 1 ≤ yx − yx+1 ≤ 1

βa
+ 1. (C.39)

This equation puts a limit on the slope of the upper part of the switching curve

for 0 < x ≤ x0. The lower limit is always a positive number which conforms with

the threshold property in the x direction.

C.2.2 Approximation of the index function

In order to find a closed form expression for the switching curve, we will try to find

the border values yx that put the (x, yx) point on the border , i.e., make the idle

and active decisions equally favorable. The resulting values are not necessarily

integer but they very well approximate the actual location of the last point of
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the idle region and the first point of the active region. For point (0, y0) we have

d(0, y0) = 0 therefore

V (0, y0) = βp0V (0, y0) + βp1V (0, y0 + 1)

= βp0V (0, y0) + βp1V (0, y0) + βp1a

or

V (0, y0) =
βap1

1 − β
. (C.40)

Similarly, by equating the idle and active decisions for every point (x, yx); x =

0, . . . , x0, we find that

V (x, yx) =
βbp1

1 − β
; x = 0, . . . , x0. (C.41)

Since in the above derivations we have replaced V (x, y + 1) with V (x, y) + b, we

need to make sure that we have yx ≥ y0. We will check this requirement later in

this section. For (x, yx) we also have

V (x, yx) = −ν + qx + βqp0V (0, yx) + βqp1[V (0, yx) + a]

+ β(1 − q)p0V (x, yx) + β(1 − q)p1[V (x, yx) + b]

or

V (x, yx) = −νa

q
+ xa +

bp1a

q
+ b∆x0 + βaV (0, y0) (C.42)

where ∆x0
∆
= yx−y0. If we replace the V (x, yx) and V (0, y0) by their corresponding

values from equations (C.41) and (C.40), after some simplifications we have

∆x0 =
1

βa

[
ν

q
− x

]
− ap1

q
; x = 1, . . . , x0. (C.43)

This equation allows us to determine the value of yx for any x = 1, . . . , x0 by having

the y0 value at hand. It also shows that all yx; x = 1; . . . ; x0 are along a straight
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line with negative slope −1/βa which crosses the y = y0 point at x0 = ν−bp1

q
and

since b, p1 < 1 it is reasonable to assume that this point is very close to ν/q for

larger values of ν. Therefore, all the yx border points for x = 1, . . . , 
ν/q� lie above

or equal to y0. In order to find another equation for y0, we can start from V (y0, y0).

Since (x0, y0) is on the border, we can write

V (y0, y0) = V (x0, y0) + a(y0 − x0) (C.44)

= V (x0, y0) + a

(
y0 − ν − bp1

q

)

=
βbp1

1 − β
+ a

(
y0 − ν − bp1

q

)
.

We can also write V (y0, y0) in terms of V (y0, 0) and use the fact that V (y0, 0) =

V (0, y0) (this can be easily verified since d(0, y0) = d(y0, 0) = 1). Starting with

V (y0, y0 − 1) we have

V (y0, y0 − 1) = −ν + qy0 + βqp0V (0, y0 − 1) + βqp1V (0, y0)

+ β(1 − q)p0V (y0, y0 − 1) + β(1 − q)p1V (y0, y0)

after some simplifications we have

V (y0, y0 − 1) =
−ν + qy0

d
+

q

d
cy0−1V (0, 0) +

f

d
V (y0, y0) (C.45)

where

d = 1 − βp0(1 − q) (C.46)

and

f = β(1 − q)p1. (C.47)

Using a similar approach and the above result, we can find a relation between

V (y0, y0 − 2) and V (y0, y0). If we skip the interim calculations, the final result is

V (y0, y0 − 2) =
−ν + qy0

d

(
1 +

f

d

)
+

q

d
cy0−2V (0, 0)

(
1 +

fc

d

)
+ (

f

d
)2V (y0, y0).

(C.48)
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This process can be continued until we find an equation that relates V (y0, 0) to

V (y0, y0) as follows

V (y0, 0) =
−ν + qy0

d

(
1 +

f

d
+ . . . + (

f

d
)y0−1

)

+
q

d
V (0, 0)

(
1 +

fc

d
+ . . . + (

fc

d
)y0−1

)

+ (
f

d
)y0V (y0, y0).

Since f < d and also fc < d, the above equation becomes

V (y0, y0 − 2) =
−ν + qy0

d

1 − (f
d
)y0

1 − f
d

+
q

d
V (0, 0)

1 − (fc
d
)y0

1 − fc
d

+ (
f

d
)y0V (y0, y0).

Now, if we substitute V (y0, y0) with its equivalent value from equation (C.44) and

also replace V (y0, 0) by V (0, y0) = βp1a
1−β

, after a few steps we have

βp1a

1 − β
= a

[
1 − (

f

d
)y0

](
y0 − ν

q

)
(C.49)

+

[
1 − (

fc

d
)y0

]
V (0, 0)

+
β2p1a

2

1 − β

(
f

d

)y0

+ a

(
f

d

)y0
(
y0 − ν − bp1

q

)
.

This is the main equation with y0 as its unknown variable. Since we are mainly

interested in the cases with β � 1, we can perform more simplifications. As β → 1,

we have a, b → 1 and also f
d
, fc

d
→ 0, therefore we have

y0 =
βp1

1 − β
+

ν

q
− 1

a
V (0, 0). (C.50)

We also know that

V (0, y0) = cy0V (0, 0) =
βp1a

1 − β
(C.51)
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or

1

a
V (0, 0) = c−y0

βp1

1 − β
. (C.52)

Substituting into equation (C.50), we get

y0 =
ν

q
+

βp1

1 − β

(
1 − c−y0

)
. (C.53)

This equation is our light traffic approximation for values of β close to 1 for cal-

culating the value of y0. It also shows that, for relatively large β, y0 remains well

above the x0 � ν/q value. Having found y0, other yx values can be found from

equation (C.43), which together with the vertical line x = 
ν/q� define the borders

of the idle region. To double check the correctness of our approximations, below

we compare our above analytical results with the exact numerical results for some

cases. Figure C.1 shows the exact shape of the switching curve calculated from

numerical solution of the dynamic programming equation, together with the ap-

proximate curve defined by the above method for two values of λ = 0.9, 1.0, with

different q and ν choices. It can be seen that in all cases there is a good match be-

tween the exact and approximate curves. Although the light traffic approximation

is derived from the assumption of zero probability for more than one arrivals, it

is still possible to apply the above method to the general case by replacing p1 by

λ. However, we no longer expect a good matching between the exact and approx-

imate curves. In fact, for relatively short file sizes, or equivalently large q values,

the approximate method continues to match the exact curve to a reasonable degree

for arrival rates up to λ = 13 (figure C.2). But this matching disappears quickly

in systems with relatively large file sizes as can be seen in figure C.3 where for

q = 0.2 the approximate value is not acceptable for rates higher than 1.
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Figure C.1: Comparison between the exact and approximate curves for different

parameter values.
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Figure C.2: Comparison between the exact and approximate curves for different

rates and q=0.8.
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Figure C.3: Comparison between the exact and approximate curves for different

rates and q=0.2.

C.2.3 Relation between the switching curve and the ser-

vice cost in light traffic

We need to show that both y0 and y1 values are non-decreasing functions of ν. The

non-decreasing property, in fact, comes from the integer nature of these values.

Otherwise they would have been increasing functions. We start with y0 and prove

that ∂ν/∂y0 > 0. We have

ν = qy0 − qβp1

1 − β

(
1 − c−y0

)
. (C.54)

Therefore

∂ν

∂y0

= q − qβp1

1 − β
ln c c−y0 . (C.55)

The above derivative is positive only if we have

βp1

1 − β
ln c c−y0 < 1 (C.56)

138



since

c =
1 − βp0

βp1

> 1, (C.57)

for y0 ≥ 0 we have c−y0 ≤ 1. To show that the remaining term is also less than

one, we write

βp1

1 − β
ln c =

βp1

1 − β
ln(1 +

1 − β

βp1

)

=
ln(1 + t)

t

where

t =
1 − β

βp1

> 0. (C.58)

Since ln(1 + t) is a strictly concave increasing function and we have ln(1 + t) = t

at t = 0, therefore for all t > 0 we have ln(1 + t) < t which proves the result.

Therefore, y0 is a non-decreasing function of ν.

For y1, we have

y1 = y0 +
1

βa

[
ν

q
− 1

]
− ap1

q
. (C.59)

Again, using the above result about ∂y0/∂ν, it is obvious that y1 is also a non-

decreasing function of ν.

C.3 Other properties of the optimal policy

This section contains the results we obtained from applying the Policy Iteration

method to prove the properties of the optimal policy and the decision region defined

by it. As we mentioned in Chapter 4, the proof is not complete and requires

more efforts. However, the discussions and partial results presented below will be

essential for a complete proof. Depending on the form of the optimal policy and

the decision region defined by it, the proof can have many special cases where each
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need to be addressed individually. Here, at some points, we deliberately ignore the

special cases and only focus on the typical cases to capture the main theme of our

arguments which can be applied to the other cases as well.

In this method, we consider a sequence of policies dn(., .); n = 0, . . . generated by

successive application of the Policy Iteration method [48] to an initial arbitrarily

selected policy. In regular conditions, this sequence will converge to the optimal

policy for the problem. If the initial policy d0(., .) is chosen such that it possesses

certain properties and if we can show that those properties are inherited by the

successive policies generated as above, then the optimal policy as the limit of the

sequence will have those properties as well. In our problem, several properties need

to be proved at the same time. the minimum number of properties required for

the proof are as follows

1. d(x, y) = 1 ; ∀y , ∀x > x0

2. ∃y0 > 0 s.t. d(0, y) =


1 if y ≥ y0

0 if y < y0

3. ∀ 0 < x ≤ x0; ∃yx > 0 s.t. d(x, y) =


1 if y ≥ yx

0 if y < yx

4. ∀ 0 < x < x0; 0 ≤ yx − yx+1 ≤ 1
βa

+ 1

5. For β >> 0 we have y0 > x0.

Here, we will only show that if the dn(., .) policy has all of the above properties,

then dn+1(., .) will have properties 2, 3 and, 4. A complete proof needs to check

the other two properties as well, though the last property does not seem to be a

strict requirement if β is enough large.
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Let’s denote by V n(x, y) the value function associated with policy dn(x, y). By

definition, for (x, y) such that dn(x, y) = 1 we have

V n(x, y) = −ν + qx + βqp0V
n(0, y) + βqp1V

n(0, y + 1) (C.60)

+ β(1 − q)p0V
n(x, y) + β(1 − q)p1V

n(x, y + 1)

and if dn(x, y) = 0,

V n(x, y) = βp0V
n(x, y) + βp1V

n(x, y + 1). (C.61)

As we showed before, since dn(., .) is a threshold policy, V n(x, y) has the constant

increment property in the active region in the x direction for x > 0 and in the y

direction for y ≥ max(y0, yx). The modified policy dn+1(., .) is found by applying

the DP operator L to the V n(., .) function as follows.

dn+1(x, y) = arg max
i=0,1

{LiV
n(x, y)} (C.62)

where

L0V
n(x, y)

�
= βp0V

n(x, y) + βp1V
n(x, y + 1) (C.63)

and

L1V
n(x, y)

�
= −ν + qx + βqp0V

n(0, y) + βqp1V
n(0, y + 1) (C.64)

+β(1 − q)p0V
n(x, y) + β(1 − q)p1V

n(x, y + 1).

Similarly, for the points on the y axis we have

L0V
n(0, y)

�
= βp0V

n(0, y) + βp1V
n(0, y + 1) (C.65)

and

L1V
n(0, y)

�
= −ν + qy + βqp0V

n(0, 0) + βqp1V
n(0, 1) (C.66)

+β(1 − q)p0V
n(y, 0) + β(1 − q)p1V

n(y, 1).
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Figure C.4: Typical shape of the value function along the y axis.

Now, let’s denote by yn
0 the threshold value on the x = 0 axis defined by policy

dn(., .). Based on the previous results we have

V n(0, y) = V n(0, yn
0 ) + a(y − yn

0 ) for y ≥ yn
0 (C.67)

and

V n(0, y) = V n(0, yn
0 )c−(y−yn

0 ) for y < yn
0 . (C.68)

The new threshold yn+1
0 associated with policy dn+1(., .) is found by applying the

above operator to V n(., .). We need to show that if yn+1
0 is the smallest y for

which dn+1(0, y) = 1 then dn+1(0, y) = 1 for all larger values of y as well i.e., the

threshold property in the y direction for x = 0 remains valid during the Policy

Iteration steps. If we denote by yn+1
0 the new threshold along the y axis, we have

V n(0, yn+1
0 − 1) > −ν + qyn+1

0 − q + qV n(0, 0) (C.69)

+ β(1 − q)[p0V
n(yn+1

0 − 1, 0) + p1V
n(yn+1

0 − 1, 1)]
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and

cV n(0, yn+1
0 − 1) < −ν + qyn+1

0 + qV n(0, 0) (C.70)

+ β(1 − q)[p0V
n(yn+1

0 , 0) + p1V
n(yn+1

0 , 1)]

= −ν + qyn+1
0 + qV n(0, 0)

+ β(1 − q)[p0V
n(yn+1

0 − 1, 0) + p1V
n(yn+1

0 − 1, 1)]

+ βp0(1 − q)a + βp1(1 − q)a

= −ν + qyn+1
0 + qV n(0, 0)

+ β(1 − q)[p0V
n(yn+1

0 − 1, 0) + p1V
n(yn+1

0 − 1, 1)]

+ β(1 − q)a.

The new threshold value yn+1
0 can be smaller, equal, or larger than yn

0 depending

on the dn(., .) policy. Let’s investigate the case where yn+1
0 − 1 < yn

0 but it is still

larger then x0. In that case we have

V n(0, yn
0 ) = V n(yn

0 , 0) (C.71)

and

V n(0, yn+1
0 − 1) = V n(yn+1

0 − 1, 0) (C.72)

where δ
�
= yn

0 − yn+1
0 . The right hand side of equation C.69 can then be written as

−ν + qyn+1
0 − q + qV n(0, 0) + β(1 − q)[p0V

n(yn+1
0 − 1, 0) + p1V

n(yn+1
0 − 1, 1)]

= −ν + qyn
0 + qV n(0, 0) + β(1 − q)[p0V

n(yn
0 , 0) + p1V

n(yn
0 , 1)]

−q − qδ − β(1 − q)[p0(δ + 1)a + p1(δ + 1)a] (C.73)

= V n(0, yn
0 ) − (δ + 1) (q + β(1 − q)a)

= V n(0, yn
0 ) − a(δ + 1).
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Therefore, equations C.69 and C.70 can be written as

V n(0, yn+1
0 − 1) > V n(0, yn

0 ) − a(δ + 1) (C.74)

and

cV n(0, yn+1
0 − 1) < V n(0, yn

0 ) − aδ. (C.75)

If we define K
�
= V n(0, yn

0 ), the above equations become

Kc−(δ+1) > K − a(δ + 1) (C.76)

and

Kc−δ < K − aδ. (C.77)

These equations have a simple geometric interpretation. They show that the dis-

tance of the new threshold value from the old threshold is the largest integer point

before the intersection of the extension of the linear portion of the value function

(with slope −a) to the smaller y values and, the exponential portion of the value

function as shown in figure C.4. In other words, the improved policy dn+1(0, y),

assigns the idle policy to all y’s where the exponential curve is above the linear

extension, and the active policy for all y’s where it is under the linear function.

Since Kc−δ is a convex function of δ, it has at most two intersection points with

any straight line including the K − aδ function. Therefore, the line remains above

the exponential function for all (0, y) points where yn+1
0 < y < yn

0 i.e., the improved

policy is 1 for all those points and 0 for all points with y < yn+1
0 . We only need to

show that the improved policy is also 1 for y ≥ yn
0 . For this we need to have

βp0V
n(0, y) + βp1V

n(0, y + 1) < −ν + qy + qV (0, 0) (C.78)

+ β(1 − q)p0V
n(y, 0) + β(1 − q)p1V

n(y, 1)

= V n(0, y).
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or

V n(0, y) >
βap1

1 − β
. (C.79)

It is easy to observe that in this case we have (figure C.4),

V n(0, yn
0 ) − a > V (0, yn

0 − 1) =
V n(0, yn

0 )

c
(C.80)

or

V n(0, yn
0 ) >

ac

c − 1
=

a(1 − βp0)

1 − β
>

aβp1

1 − β
. (C.81)

Hence, the improved policy is also 1 for y ≥ yn
0 and it is therefore of threshold type

along the x = 0 axis. The optimal threshold along the x = 0 axis (i.e. y∞
0 ) will

eventually be at the point where the straight line with slope −a will be tangent

to the exponential curve (or the closest integer approximation). The proof for the

yn+1
0 > yn

0 case is almost trivial using the above reasonings and we will not discuss

it here.

The second property that we need to show to remain valid during the Policy

Iteration stages is the threshold property along each of the vertical axes with

0 < x < x0. In other words, we need to show that the improved policy dn+1(x, y)

for every x as above, will have a threshold value yn+1
x where dn+1(x, y) = 0 for

y < yn+1
x and is 1 for all other y. The proof for a typical case where yn

x > yn
0 is

very similar to the above discussions with only the parameter a being replaced by

b. As we showed in the previous sections where we tried to compute the index

function, for yn
x < yn

0 the exponential function will be replaced by a polynomial

function and the argument becomes more and more lengthy and complicated and

since this case is not very frequent, we will not discuss it here.

Property 4 is the last property we would like to discuss in this section. As before, we

need to show that if this property holds for dn(., .), it will also hold for dn+1(., .).
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Figure C.5: The value function along the y axis for two consecutive x values.

Let’s assume the threshold points corresponding to two successive x1 and x2 =

x1 + 1 values under the dn policy to be yn
1 and yn

2 , respectively. By assumption we

have

yn
1 − 1

βa
− 1 ≤ yn

2 ≤ yn
1 . (C.82)

Therefore,

V n(x + 1, yn
2 ) ≥ V n(x + 1, yn

1 ) − b(
1

βa
+ 1) (C.83)

= V n(x, yn
1 ) + a − b(

1

βa
+ 1).

or

V n(x + 1, yn
2 ) ≥ V n(x, yn

1 ) − b. (C.84)

Now, the mechanism of finding the corresponding threshold values for the improved

policy dn+1 is according to the Policy Iteration rule and can be explained by the

same geometric discussion we presented before for each of yn+1
1 and yn+1

2 values

as shown in figure C.5. For y ≥ yn
1 , both V n(x, y) and V n(x + 1, y) functions
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are straight lines with slope b and with V n(x + 1, y) = V n(x, y) + a. However,

V n(x, y) switches to the exponential curve at y = yn
1 while V n(x + 1, y) does it at

y = yn
2 . The new threshold values for each of these functions are the intersections

of the linear extensions of the top portion of each function with the exponential

portion, as described before. The goal is to show that the new threshold values

yn+1
1 and yn+1

2 satisfy the above inequality relationship. We showed in equation

C.83 that V n(x + 1, yn
2 ), which is the beginning point of the exponential part for

the V n(x + 1, y) function (from above), is within certain range of the V n(x, yn
1 )

value. Let’s define

δ1 = yn
1 − yn+1

1 (C.85)

and

δ2 = yn
2 − yn+1

2 (C.86)

As we showed before each of the δi; i = 1, 2 values are the solutions of the

Kic
−δi = Ki − bδi (C.87)

equation with K1 = V n(x, yn
1 ) and K2 = V n(x + 1, yn

2 ). It is easy to show using

the behavior of ∂δ
∂K

and equation C.83 that, the difference between δ1 and δ2 values

is bounded and keeps the resulting yn+1
1 − yn+1

2 value within the limits specified by

this property. In other words, the new threshold values for consecutive xs maintain

the distance bound.

We finish our discussion of the properties of the optimal policy by reminding that

the above arguments are guidelines capturing the most frequent forms of the switch-

ing form and a complete proof requires a more detailed and lengthy analysis.
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