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ABSTRACT

Title of Dissertation: INTELLIGENT DISTRIBUTED FAULT

AND PERFORMANCE MANAGEMENT

FOR COMMUNICATION NETWORKS

Hongjun Li, Doctor of Philosophy, 2002

Dissertation directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

This dissertation is devoted to the design of an intelligent, distributed fault

and performance management system for communication networks. The archi-

tecture is based on a distributed agent paradigm, with belief networks as the

framework for knowledge representation and evidence propagation.

The dissertation consists of four major parts. First, we choose the mobile

code technology to help implement a distributed, extensible framework for sup-

porting adaptive, dynamic network monitoring and control. The focus of our

work is on three aspects. First, the design of the standard infrastructure, or

Virtual Machine, based on which agents could be created, deployed, managed

and initiated to run. Second, the collection API for our delegated agents to col-

lect data from network elements. Third, the callback mechanism through which



the functionality of the delegated agents or even the native software could be

extended. We propose three system designs based on such ideas.

Second, we propose a distributed framework for intelligent fault management

purpose. The managed network is divided into several domains and for each

domain, there is an intelligent agent attached to it, which is responsible for

this domain’s fault management tasks. Belief network are embedded in such an

agent as the probabilistic fault models, based on which evidence propagation

and decision making processes are carried out.

Third, we address the problem of parameter learning for belief networks with

fixed structure. Based on the idea of Expectation-Maximization (EM), we derive

a uniform learning algorithm under incomplete observations. Further, we study

the rate of convergence via the derivation of Jacobian matrices of our algorithm

and provide a guideline for choosing step size. Our simulation results show

that the learned values are relatively close to the true values. This algorithm is

suitable for both batch and on-line mode.

Finally, when using belief networks as the fault models, we identify two fun-

damental questions: When can I say that I get the right diagnosis and stop?

If right diagnosis has not been obtained yet, which test should I choose next?

The first question is tackled by the notion of right diagnosis via intervention,

and we solve the second problem based on a dynamic decision theoretic strategy.

Simulation shows that our strategy works well for the diagnosis purpose. This

framework is general, scalable, flexible and robust.
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Chapter 1

Introduction

Communication networks have become indispensable today and this trend will

continue as more and more new technologies emerge. These will provide both

opportunity and challenge. A network can be configured to use the latest tech-

nologies and be customized to the user’s needs. At the same time, the risk or

faults in such a heterogeneous system will increase [1]. To meet the needs of cur-

rent and future communication environments, it is the responsibility of network

management to maintain the network operation and service.

Conceptually, any system that is able to monitor and control the state of

another centralized or distributed system at medium to long term time scales

can be called a network management system, and it consists typically of an

operator interface with a powerful but user-friendly set of commands for per-

forming monitoring and control tasks (manager); and incremental hardware and

software embedded in network elements, computers and managed resources in

general that allow the manager to monitor and control the state of the equipment.

Typically, a Network Management System (NMS) consists of the following five

functional areas: Fault Management, Configuration Management, Accounting

Management, Performance Management and Security Management (FCAPS).
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The role of fault management is to detect, isolate, diagnose and correct the

possible faults during network operations. Therefore it is primarily fault man-

agement that helps to keep the normal operations and ensure the networks relia-

bility and availability. Due to the growing number of networks that have served

as the critical components in the infrastructure of many organizations, interest

in fault management has increased during the past decade, both in academia

and in industry [2, 3, 4, 5, 6, 7, 8].

In general, any fault diagnosis procedure can be interpreted in terms of search

spaces and corresponding operations [9]. The search spaces are data space, hy-

pothesis space and repair space. In data space, measured data, together with

alarms and users reports, are mapped into some fault hypotheses. It may in-

clude operations like data gathering, data analysis (such as trend analysis and

feature extraction) and hypothesis testing. In hypothesis space, the hypotheses

generated in data space are mapped into some possible causes. Usually, there

is a fault model in this space based on which the reasoning can be executed.

In repair space, such causes are mapped into a set of possible actions to treat

or repair the faulty components in some efficient way. Such a space-operation

paradigm has been successfully adopted in many fault diagnosis applications in

various areas like electric circuits and chemical industry. In communication net-

works fault management, we can also take this paradigm, and we base our work

on three important assumptions [10]:

• The objective is to deal with malfunctions, not the design faults, of the

system. So it is basically a fault diagnosis problem, rather than fault

tolerant system design.

• Tests are more expensive than computations so it is more favorable to
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compute and infer the faults and their causes rather than brute-force tests.

• Mis-diagnosis is more expensive than tests. Thus, it is desirable that a

fault management system can cover and diagnose as many fault scenarios

as possible in a cost efficient manner.

The task of fault management is to detect, diagnose and correct the possible

faults during network operations. Fault detection refers to the recognition of

the symptoms of a fault, which include trouble reports issued from end users

or personnel, and alarms issued from the monitoring processes. Fault detection

can be thought of as an online process that gives indication of malfunctioning.

To declare the existence of such malfunctioning, we need a model of ”normal”

behavior against which comparisons can be made. Such normal behavior could

be specified as a finite state machine, as in the case of protocol or software test-

ing [11, 12, 13]; or it could be a derived model according to operation status

and/or statistical analysis, for example Auto Regressive (AR) model [14] and

Generalized Likelihood Ratio (GLR) model [15]. A normal behavior could also

be a service agreement between an end user and a service provider. So if the

user senses service degradation, he/she may then file a trouble report. Typically,

such indications of malfunctioning are manifested in the form of events, which

should be correlated to facilitate fault diagnosis [16, 17, 18]. Fault diagnosis is

the most difficult task of fault management, and refers to the process of iden-

tifying the most likely reason(s) for the symptoms based on some modeling of

cause and effect relationships among the propositions of interest in the current

problem domain. Inputs to the fault diagnosis task are the detected symptoms

in terms of system reported alarms or user and personnel reported trouble re-

ports. Finally, corrective actions are taken to restore the normal operations. In
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addition to the mentioned tasks, fault documentation is also important due to

being fundamental for the enhanced functionalities. In [2], Dreo presented an

overview of trouble ticket systems for such documentation tasks. In our work,

we focus on fault diagnosis issues.

1.1 Motivations

In this section, we describe the motivations for our integrated, intelligent fault

management system based on a critical evaluation of current research results

and approaches.

Distributed Management Architecture

A conventional network management system consists of two classes of compo-

nents: managers and agents. Applications in the management station assume

the manager role; Agents are server processes running in each involved manage-

able network entity. These agents collect network device data, stores them in

some format, and support a management protocol, e.g., Simple Network Man-

agement Protocol (SNMP) [19, 20]. Manager applications retrieve data from

element agents by sending corresponding requests over the management proto-

col. There is no intelligence embedded near the network elements. What the

agent does is to provide the manager with the desirable data only. It is the

manager that performs all the statistics computation, threshold checking and

other applications, e.g., the fault diagnosis steps.

Such a system favors a centralized framework and works well for small net-

works. But as the networks become larger, more complex, and heterogeneous
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(e.g. multimedia networks), the centralized paradigm will incur vast amounts

of communication between manager and agent and thus occupy too much band-

width inefficiently. Since not all the data are relevant and necessary for the

manager to process, and there are many cases where the processing can be done

on the spot, there is no need to centralize all the processing at the manager site.

In this regard, we borrow the idea of Management by Delegation (MbD) [21]

and distribute some of the processing logic and responsibilities by embedding

code within the network elements. This embedded code within the network

element is called a delegated agent. In our work, such delegated agents are

deployed to the network elements for the monitoring and control purpose.

In terms of fault management, we also propose that the faults should be

dealt with locally if they are local. Only those that cannot be handled locally

should draw global attention. To do this, we propose an intelligent, distributed

fault management system where the managed network is divided into separate

domains. It is the author’s belief that it will be more efficient, both in time and

bandwidth utilization, if faults were handled in this way.

Flexible Manager-Agent Interface

In conventional network monitoring systems, the set of services offered by the

element agents is fixed and is accessible through interfaces that are statically

defined and implemented, for example Remote Monitoring (RMON) [22]. Stat-

ically pre-assigning functionality implies that the decision of what functionality

to delegate needs to be taken at the agents’ design phase. But, not all possi-

ble management tasks can be predefined this way. Further, requirements in the

dynamic network environment change very often, which means that new type
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of functionality might be required now and then. To this end, not only do we

need to distribute intelligence, we also need to provide a dynamically extensible

interface between such agents and the manager, such that the manager could

change the parameter values, and extend the processing logic of the delegated

agents dynamically.

Further, the functionality of the underlying native processes could also be

dynamically extended via our callback mechanisms. The native processes, writ-

ten in C/C++ for many cases, embody the processing logic viewed as necessary

at the time of native software design and implementation. They may, however,

lack consideration of some unanticipated cases. Such unanticipated cases, if they

do occur, might lead to inconsistency in the processing followed. Thus we need

to modify or extend the native software processing logic somehow to accommo-

date those unanticipated cases. Based on the observation that we would not

like to re-code the C/C++ programs and recompile, reinstall, and reinstantiate

the server processes, which usually incurs system down time, we need a flexible

way such that the processing logic could be extended dynamically. Here, we

respect the current processing logic and put on more processing capabilities to

handle the unexpected cases. This is more like putting a ”booster” rather than

replacing the original logic.

Note that the awareness of such undesirability and thus the need for change

of logic is from human, not from the native processes themselves. It is the human

manager again, that determines the functionality of the added codes. Such added

codes would work with the original codes to get the expected results for both

regular and the unanticipated situations.
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Automated System

In legacy communication networks, fault diagnosis is often not too difficult since

the knowledge of the network manager combined with the alarms reported is

usually enough to rapidly locate most failures. But in future communication

networks, which are expected to be broadband, giant, heterogeneous and com-

plex, things will not be that easy. As the size and speed of the networks grow,

their dynamics become increasingly difficult to understand and control. For ex-

ample, a single fault can generate a lot of alarms in a variety of domains, with

many of them not helpful. Multiple faults will make things even worse. In such

cases, it is almost impossible for the network manager, inundated in the ocean

of alarms, to correlate the alarms and localize the faults rapidly and correctly

just by his experience. On the other hand, more and more users, possibly with

different or even competing requirements of quality of service (QoS), wish to

benefit from the networks. These will pose significant problems on fault man-

agement and thus more advanced techniques are needed. Therefore, efficient

fault management requires an appropriate level of automation.

Probabilistic Fault Models

Knowledge-based expert systems, as examples of automated systems, have been

very appealing for complex system fault diagnosis [23]. Nevertheless, most of the

developed expert systems were built in an ad-hoc and unstructured manner by

simply transferring the human expert knowledge to an automated system. Usu-

ally, such systems are based on deterministic network models. A serious problem

of using deterministic models is their inability to isolate primary sources of fail-

ures from uncoordinated network alarms, which makes automated fault identifi-
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cation a difficult task. Observing that the cause-and-effect relationship between

symptoms and possible causes is inherently nondeterministic, probabilistic mod-

els can be considered to gain a more accurate representation for the networks.

As a natural and efficient model for human inferential reasoning, belief networks

have emerged as the general knowledge representation scheme under uncertainty

and key technology for diagnosis [24, 25, 26, 27]. In our work, we use belief

networks as the probabilistic fault models.

Integrated Fault Management

In previous research on fault management, the term ”fault” was usually taken

the same as ”failure”, which means component (hardware or software) malfunc-

tions, e.g. sensor failures, broken links or software malfunctions [8]. Hardware

faults are usually due to incorrect or incomplete logic design, damage, wear or

expiry, etc. Software faults usually come from incorrect or incomplete design

and implementation. We call such faults hard faults. In communication net-

works, however, there are still some other important kinds of faults that need to

be considered. For example, the performance of a switch is degrading or there

exists congestion on one of the links. Another example is to model faults as

deviations from normal behavior [28]. Since there might not be a failure in any

of the components, we call such faults soft faults. Hard faults can be solved

by replacing hardware elements or software debugging. Such diagnosis is called

re-active diagnosis in the sense that it consists of basically the reactions to the

actual failures. Soft faults are in many cases indications of some serious problems

and for this reason, the diagnosis of such faults is called pro-active diagnosis. By

early attention and diagnosis, such pro-active management will sense and pre-
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vent disastrous failures and thus can increase the survivability and efficiency of

the networks. Handling soft faults is typically part of the functionality of per-

formance management [29, 30] and in the sequel, we use the term ”fault” to

represent both hard and soft faults for convenience.

Decision-Theoretic Diagnosis Strategy

In communication networks fault management field, Hood and Ji [14] proposed a

pro-active network fault detection scheme based on Auto Regressive (AR) mod-

els and belief networks. Selected Management Information Base (MIB) variables

were monitored and their normal behaviors are learned via AR modeling. Be-

lief networks were used to compute certain posterior probabilities, given some

deviations from the normal behavior. However, their belief network model is

over simplistic in that there is only one root node, which will explain whatever

anomalies as detected by the AR modeling.

Obviously, a more general belief network model is needed if we should di-

agnose the symptoms and give out explanations (rather than detection) of the

current deviation from the normal behavior. After observing symptoms, such

initial evidence is propagated and the posterior probability of any possible can-

didates being faulty can be calculated. It would be ideal if we can locate the

fault with efforts up to this. But most of the time, similar to what happens

in medical diagnosis, we need more information to help pinpoint the fault. So

naturally, we need to know what to do next and when to stop.

In [31], Huard and Lazar used a more general belief network model with

multiple root nodes as the candidate faults. They also presented a dynamic pro-

gramming (DP) formulation for the network troubleshooting problem. However,
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single fault assumption was made, which limits the applicability.

In our work, we develop a framework that supports fault diagnosis for com-

munication networks. General belief network models with multiple root nodes

are chosen as the knowledge representation scheme. We handle multiple faults

and formulate the fault diagnosis procedure as a Partially Observable Markov

Decision Processes (POMDP) problem with optimal stopping. To help solve the

problem, we introduce the notion of right diagnosis for optimal stopping and

provide a dynamic, heuristic strategy for test sequence generation.

1.2 Contributions

Based on the above motivations, this dissertation is devoted to the design of

an automated, intelligent and distributed fault and performance management

system for communication networks. The system architecture is based on a

distributed and flexible agent paradigm, and we use Bayesian belief networks

as the framework for knowledge representation and evidence propagation. Both

hard and soft faults are integrated and we propose a dynamic heuristic strategy

for test sequence generation.

Adaptive, Distributed Network Monitoring and Control

We choose the mobile code technology, in particular remote evaluation and code

on demand paradigms, to help implement a distributed, extensible framework

for supporting adaptive, dynamic network monitoring and control. To make it

possible for agents to exist in heterogeneous environments, there needs to be

a standard infrastructure on each system where they need to be hosted. Then
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agents may be developed as if they will be always on the same machine–the

Virtual Machine, which could be but not limited to Java Virtual Machine (JVM).

In our work, we use either JVM or C/C++ dynamic linkage technology to serve

as the Virtual Machine under different situations, see our papers [32, 33, 34].

The focus of our work is on three aspects. First, the design of the standard

infrastructure, or Virtual Machine, based on which agents could be created,

deployed, managed and initiated to run. Second, the collection API for our

delegated agents to collect data from network elements. Third, the callback

mechanism through which the functionality of the delegated agents or even the

native software could be extended. We propose three system designs based on

such ideas.

Our first design uses full-blown JVM in both manager and network element

site and assumes the presence of MIBs. It is a proof-of-concept design and is

suitable for network elements equipped with powerful computing and memory

capabilities, i.e. routers and ATM switches. Here we use the off-the-shelf JVM

and we do not need to access the network element native software directly;

instead, we need only to access the MIBs that store the raw monitoring data.

Our prototype system works well, which encouraged us to research further into

the Virtual Machines and collection API issues.

In our second design we consider the situations where there is no MIB em-

bedded with network elements. We still use JVM but here our focus is on the

network elements equipped with limited computing and memory capabilities.

Specific versions of JVM are considered. For the delegated Java agents to ac-

cess the native software, Java Native Interface (JNI) is exploited and a directory

containing addresses of the native global variables and function pointers is set
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up. The processing logic of the delegated agents could be extended by creating

new agents with the desirable functionality, followed by deploying them to the

network elements to replace the old agents. To extend the native software func-

tionality, we carry out function replacement by swapping the function pointers

of the Java agents and the corresponding native code functions.

Further, in our third design we remove the convenient JVM for those network

elements equipped with multiple processors and address spaces. The focus here

is to use dynamic linkage technology to emulate the Virtual Machine concept.

The delegated agents are dynamically linked to the native code by the C/C++

run-time environment. The collection API in this case is very thin since all that

is needed is to access the native code directly. The extension of functionality is

similar as the second design, with the difference that we do not need JNI in this

case. This design is suitable for those resource limited network elements that

run over a real-time operating system and will not use Java as the native code

development.

A Framework for Fault and Performance Management

The managed network is divided into several domains [35] and for each domain,

there is an intelligent agent attached to it, which is responsible for this domain’s

fault management. Each agent is called a “Domain Diagnostic Agent (DDA)”

with the goals of monitoring the health of the domain and diagnosing the faults

in a cost-efficient manner. Belief network models are embedded in such a DDA

as the probabilistic fault models. Both hard and soft faults can be naturally

incorporated in a belief network model. A domain is an abstract notion, for

example it might be a subnet, a cluster, a host or a member of a functional
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partition. For those problems that none of the individual agent can solve, there

is a mechanism by which the agents can report to the coordinator and share the

information in order to get a global view and solve it cooperatively. So the whole

system is, from the agent point of view, a distributed, cooperative multi-agent

system. This framework is quite general and can be incorporated into many

network management paradigms, like the traditional client-server (CS) based

architecture, and the more recent mobile-code based framework as discussed

above. Our previous publications on this work can be found in [36, 37].

Statistical Parameter Learning for Belief Networks

When building a belief network model, initially both the network structure and

the associated CPTs can be provided by human experts as the prior information.

In many applications, however, such information is not available. In addition,

different experts may treat the systems in various ways and thus give different

and sometimes conflicting assessments. In such cases, the network structure and

corresponding CPTs can be estimated using empirical data and we refer to this

process as learning. Even if such prior information does exist, it is still desirable

to validate and improve the model using data.

In our work [38], we address the problem of parameter learning for belief

networks with fixed structure. Both complete and incomplete (data) observa-

tions are included. Given complete data, we describe the simple problem of

single parameter learning for intuition and then expand to belief networks un-

der appropriate system decomposition. If the observations are incomplete, we

adopt the idea of Expectation-Maximization (EM) and derive a uniform learn-

ing algorithm. Further, we study the rate of convergence via the derivation of
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Jacobian matrices of our algorithm and provide a guideline for choosing step

size. Our simulation results show that the learned values are relatively close to

the true values. This algorithm is suitable for both batch and on-line mode for

real applications.

Dynamic Test Generation with Optimal Stopping

When using belief networks as the knowledge representation scheme and infer-

ence engine for the problem domain, we identify in our recent paper [39] two

fundamental questions: When can I say that I get the right diagnosis and stop?

If right diagnosis has not been obtained yet, which test should I choose next?

The first question is tackled by the notion of right diagnosis via intervention,

and we solve the second problem based on a dynamic decision theoretic strategy.

Simulation shows that our strategy works well for the diagnosis purpose.

This framework is quite general. Belief network models have very rich ex-

pressive capability and further, the belief network model and the associated

decision making algorithm could exist at any management station in a network

management system.

Due to the event correlation procedure prior to the diagnosis process, only

a small fraction of the so many alarms generated in a big problem domain is

chosen as input to a belief network model. Thus, the diagnosis based on such

condensed events tackles much less symptoms, which makes our framework and

algorithm scalable and run fast.

Moreover, our framework is robust to noise and incomplete data. By na-

ture, belief network models handle the problem of uncertainty in the cause and

effect relationship among propositions. In terms of observation noise, spurious
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alarms can be easily tackled in the event correlation phase; if the input events

are not complete, i.e., one or more of the condensed events from the event cor-

relation process is lost, the lost events can be easily demanded by our dynamic

troubleshooting strategy if such lost events are calculated as relevant for fur-

ther diagnosis. Further, we observe from our experience of statistical parameter

learning that, in terms of fault diagnosis, the true and learned belief networks

would give the same test sequences and average cost under most of the symptom

patterns, and we conclude that such diagnostic belief network models are not so

sensitive to the parameters.

After a test node is chosen, the observation for this test may take advantage

of the traditional SNMP paradigm by polling appropriate MIB variables; or in

our case, delegated (mobile) agents could be sent to the network elements to

collect the data, as discussed above.

Note that as evidence accumulates, we may input them one by one followed

by a propagation right after each evidence-input, or we may input them once

altogether and do only one propagation. This provides us the flexibility for either

on-line diagnosis or off-line diagnosis/analysis.

1.3 Organization

The rest of the dissertation is organized as follows. In chapter 2, we describe the

distributed, extensible framework for dynamic network monitoring and control.

In chapter 3, we give a brief introduction of what belief networks are as the back-

ground knowledge and discuss why we choose belief networks as the probabilistic

fault model for our purpose. In chapter 4, we describe the system architecture

and function definitions of our framework. We also include the discussion of
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event correlation as the preprocessing procedure before using belief networks,

and outline the steps to construct such belief network models. We present our

work of statistical learning for belief networks in chapter 5, and then in chapter

6 we discuss the fault diagnosis problems and solutions using belief networks.

Finally, chapter 7 summarizes this dissertation and suggests future research.
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Chapter 2

On System Designs for Adaptive,

Distributed Network Monitoring and

Control

The increasing complexity and importance of communication networks have

given rise to a steadily high demand for advanced network management. Network

management system handles problems related to the configurability, reliability,

efficiency, security and accountability of the managed distributed computing en-

vironments. Accurate and effective monitoring and control is fundamental and

critical for all network management functional areas. In this chapter, we present

our distributed, extensible framework for supporting adaptive, dynamic network

monitoring and control. We choose the mobile code technology, in particular

remote evaluation and code on demand paradigms, to help implement such a

framework.
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2.1 Mobile Code Design Paradigms

To understand mobile code technology, we first present some basic concepts that

are an abstraction of the entities that constitute a software system. In particular,

we introduce three architectural concepts: components, interactions, and sites

[40].

Components are the constituents of a software architecture. They can be fur-

ther divided into code components, that encapsulate the know-how to perform

a particular computation, resource component, that represent data or devices

used during the computation, and computational components, that are active

executors capable to carry out a computation, as specified by a correspond-

ing know-how. Interactions are events that involve two or more components,

e.g., a message exchanged among two computational components. Sites host

components and support the execution of computational components. A site

represents the intuitive notion of location. Interactions among components re-

siding at the same site are considered less expensive than interactions taking

place among components located in different sites. In addition, a computation

can be actually carried out only when the know-how describing the computation,

the resources used during the computation, and the computational components

responsible for execution are located at the same site.

Design paradigms are described in terms of interaction patterns that define

the relocation of and coordination among the components needed to perform

a service. We will consider a scenario where a computational component A,

located at site SA needs the results of a service. We assume the existence of

another site SB, which will be involved in the accomplishment of the service.

We identify three main design paradigms exploiting code mobility: remote eval-
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Table 2.1: Mobile Code Design Paradigms

Paradigm
Before After

SA SB SA SB

Client Server A K h, Resource, B A K h, Resource, B

Remote Evaluation K h, A Resource, B A K h, Resource, B

Code on Demand Resource, A K h, B Resource, K h, A B

Mobile Agent K h, A R — K h, Resource, A

uation, code on demand, and mobile agent. These paradigms are characterized

by the location of components before and after the execution of the service, by

the computational component which is responsible for execution of code, and

by the location where the computation of the service actually take place. These

paradigms are compared with the traditional client-server paradigm. Table 2.1

shows the location of the components before and after the service execution [40],

where K h stands for Know how. For each paradigm, the computational com-

ponent in bold face is the one that executes the code. Components in italics are

those that have been moved. Also see figure 2.1, where NMS stands for network

management station, Req stands for request, and Rep stands for Reply.

The client-server (CS) paradigm is well known and widely used. In this

paradigm, a computational component B (the server) offering a set of services

is placed at site SB. Resources and know-how needed for service execution are

hosted by site SB as well. The client component A, located at site SA, requests

the execution of a service with an interaction with the server component B. As

a response, B performs the requested service by executing the corresponding

know-how and accessing the involved resources co-located with B. In general,
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the service produces some sort of results that will be delivered back to the client

with an additional interaction.

In the remote evaluation (REV) paradigm, a component A has the know-how

necessary to perform the service but it lacks the resources required, which happen

to be located at a remote site SB. Consequently, A sends the service know-how

to a computational component B located at the remote site. B, in turn, executes

the code using the resources available there. An additional interaction delivers

the results back to component A.

In the code on demand (COD) paradigm, component A is already able to

access the resources it needs, which co-located with it at SA. However, no

information about how to manipulate such resources is available at site SA.
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Thus, A interacts with a component B at SB by requesting the service know-

how, which is located at SB as well. A second interaction takes place when B

delivers the know-how to A, that can subsequently execute it.

In the mobile agent (MA) paradigm, the service know-how is owned by A,

which is initially hosted by SA, but some of the required resources are located

on SB. Hence, A migrates to SB carrying the know-how and possibly some

intermediate results. After it has moved to SB, A completes the service using

the resources available there. The mobile agent paradigm is different from other

mobile code paradigms since the associated interactions involve the mobility of

an existing computational component. In other words, while in REV and COD

the focus is on the transfer of code between components, in the MA paradigm a

whole computational component is moved to a remote site, along with its state,

the code it needs, and some resources required to perform the task.

The client-server paradigm is static with respect to code and location. Once

created, components cannot change either their location or their code during

their lifetime. Therefore, the type of interaction and its quality (local or remote)

cannot change. Mobile code paradigms overcome these limits by providing com-

ponent mobility. By changing their location, components may change dynam-

ically the quality of interaction, reducing interaction costs. To this end, the

REV and MA paradigms allow the execution of code on a remote site, encom-

passing local interactions with components located there. In addition, the COD

paradigm enables computational components to retrieve code from other remote

components, providing a flexible way to extend dynamically their behavior and

the types of interactions they support.
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2.2 Mobile Code for Network Management

The world of network management research can be split roughly in two worlds:

management of IP networks, where the Simple Network Management Protocol

(SNMP) [19, 20] proposed by IETF is the dominant protocol, and management of

ISO networks, based on the Common Management Information Protocol (CMIP)

[19]. Both protocols are based on a CS paradigm where a network management

station (the client) polls information from agents (the servers) residing on the

network devices. Each agent1 is in charge of managing a management infor-

mation base (MIB)2, a hierarchical information base that stores the relevant

parameters for the corresponding device. In this setting, all the computation

related to management, e.g., statistics, is demanded to the management sta-

tion. Polling is performed using very low level primitives—basically get and

set of atomic values in the MIB. This fine-grained CS interaction leads to the

generation of intense traffic and computational overload on the management

station. This centralized architecture is particularly inefficient during periods

of heavy congestion, when management becoming important. In fact, during

these periods the management station increases its interactions with the devices

and possibly uploads configuration changes, thus increasing congestion. In turn,

congestion, as an abnormal status, is likely to trigger notifications to the man-

agement station, which worsen network overload. Due to this situation, access

1Despite the name, management agents are conventional programs that cannot move and

in general do not exhibit a great deal of ingelligence

2MIB is actually the term used for information base in SNMP only. CMIP uses the term

management information tree (MIT) database instead. Hereafter, we will ignore the difference

for the sake of simplicity.
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to devices in the congested area becomes difficult and slow.

These problems have been addressed by IETF and ISO with modifications

of their management architecture. For instance, SNMPv2 introduced hierar-

chical decentralization through the concept of proxy agents. A proxy agent is

responsible for the management of a pool of devices (towards which it acts as

a client) on behalf of the network management station (towards which it acts

as a server). Another protocol derived from SNMP, called Remote MONitor-

ing (RMON) [22], assumes the existence of stand-alone dedicated devices called

probes. Each probe hosts an agent able to monitor ”global” information flowing

through links rather than information ”local” to a device. Although these de-

centralization features improve the situation, experimentation showed that they

do not provide the desired level of decentralization needed to cope with large

networks. In the sequel, we analyze if and how mobile code design paradigms

can provide a suitable alternative to the CS paradigm fostered by SNMP. Let us

begin with the CS paradigm.

The rationale for the management architecture proposed in SNMP and CMIP,

which provides very low-granularity primitives, is to keep the agents on the device

small and easily implementable, keeping all the complexity on the management

station. Nevertheless, this is going to dramatically increase congestion and de-

crease performance. For instance, tables are often used to store information into

devices. To search a value in a table using a CS approach, either the table has

to be transferred to the management station and searched there for the desired

value, or the agent has to be modified to provide a new search service. Neither

solution is desirable. The former leads to bandwidth waste for large tables. The

second increases the size of the agent as a large number of routines are imple-
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mented, maybe without a substantial payoff if the routines are used only now

and then.

The REV paradigm could be used to pack together the set of primitive op-

erations describing the search and send them on the device holding the table for

local interaction3. After execution, only the target value should be sent back—

thus performing semantic compression of data. This solution is likely to save

bandwidth at least for big tables and small routines. As an aside, this solution

provides a desirable side effect: it raises the level of abstraction of the opera-

tions available to the network manager. One could envision a scenario where

the manager builds her own management procedure upon lower level primitives,

stores them on the management station, and invokes their remote evaluation on

the appropriate device whenever needed.

On the other hand, the capability to retain the state across several hops im-

plicit in an MA design adds a new dimension to the benefits achievable through

an REV design: autonomy. In the REV design, each remote evaluation on

a device must be initiated explicitly by the management station. In the MA

paradigm, the management station can exploit the capability of a mobile com-

ponent to retain its state and demand to it the retrieval of information from a

specified pool of devices. Thus it can delegate to it the decision about when and

where to migrate, according to its current state. Whether this is actually im-

proving traffic load is still unclear at this point, because the state of the mobile

component is likely to grow from hop to hop.

The COD paradigm provides the capability to extend dynamically the set of

3We assume the presence of a run-time support for mobile code on network devices. This

run-time support is just a kind of Virtual Machine.
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services offered by a device. This is convenient if many identical queries have

to be performed on a device: once the code to perform the primitive queries

locally is installed, it can be remotely invoked by the management station. On

the other hand, if few different queries have to be performed, COD does not help

that much: either a REV or MA paradigm needs to be exploited. In our work,

we choose REV and COD paradigms.

In the next section, we discuss some related work in terms of decentralized

network management. Some of them fall into the category of mobile code, while

some of them do not. But they are still discussed here to help us obtain a better

picture of the relative positioning of different technologies.

2.3 Related Work in Network Management

Management by Delegation

Management by Delegation (MbD) [21] is one of the earliest efforts towards

decentralization and increased flexibility of management functionality, and it

greatly influenced later research and exploration along this direction [41, 42].

MbD identifies an architecture for the dynamic uploading of management scripts

on network devices using a combination of REV and CS paradigms. The main

advantage of this approach is that it is language independent. However, the

proof-of-concept MbD system was implemented with a proprietary server envi-

ronment and we hardly see any working systems that are built upon this pro-

prietary environment. Also, the MbD server environment is so comprehensive

and complicated that it can turn out to be an ”overkill” in most real-world ap-

plications. Still, we must give credit to MbD because it can be considered a

25



precursor of the ideas discussed in this chapter. The major difference is that

we have adopted the standard Java or C/C++ platform and, from the very be-

ginning, aimed to build a portable, simple, yet powerful framework that can be

easily understood, implemented and enhanced.

Flexible Agents and AgentX

In [43], Mountzia discussed temporal aspects of the delegation process and an-

alyzed many issues concerning the application of the delegation concept in in-

tegrated network management. This framework is close to our system designs

and it provided some helpful tips for our work. However, we also need to tackle

the problem of extending the functionality of the native processes, which incurs

many other issues, such as native collection API, callback mechanisms, etc.. In

Internet community, RFC 2741 [44] defines a standardized framework for ex-

tensible SNMP agents. It defines processing entities called master agents and

subagents, a protocol (AgentX) for the communication between them, and the

elements of procedure by which the extensible agent processes SNMP protocol

messages. RFC 2742 [45] defines the associated Management Information Base

(MIB) that uses the AgentX protocol. In our work, however, we need to face

such situations that there is no MIB embedded in network elements, i.e. small

satellite terminals, and again, we tackle the problem of native process extension.

Mobile Agents

Another approach that enables dynamic downloading of functionality is provided

by mobile agents [46, 47, 48], as discussed above. Languages that are used

to develop mobile agents include Java [49], Tcl/Tk [50], and Telescript [51],
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among others, and using mobile agents in decentralized and intelligent network

management is a great leap from client-server based management pattern. Our

system exploits the idea of REV and COD rather than mobile agents (in the sense

of existence of an itinerary), and assumes a management server in each device

concerned. Comparing with their mobile agent counterparts, the behaviors of

our agents are much easier to understand and anticipate. Since our agents could

also be implemented via native code, they are less straightforward, but more

powerful.

Web-based Network Management

We are by no means the first people thinking of using Java technology in net-

work management [52, 53]. Web-based Network Management is a well-justified

idea that attempts to provide uniform management services through such com-

mon client-side interface as Web browsers. Java Management API Architecture

(JMAPI) provides a single device-specific, platform independent management

applet, written in Java, that allows a network administrator to manage a net-

work device with Remote Method Invocation (RMI). In this architecture, vendors

save the cost of supporting many add-ons on multiple platforms, and the loss of

revenue incurred by scrapping add-ons is covered by selling embedded Hyper-

Text Transfer Protocol (HTTP) servers on a per-device basis. In our work, we

have used Java for a totally different purpose, which is not to facilitate client-side

presentation or Web integration, but to use Java’s native support for distributed

computing, remote class downloading and object serialization to implement dy-

namic and intelligent network monitoring. REV and COD paradigms are used.

However, it makes perfect sense to include Web-based front-ends in our systems.
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CORBA

The Object Management Group (OMG), faced with the issue of interoperability

in the object-oriented world, addressed it by standardizing the Object Manage-

ment Architecture, often referred to by its main component: Common Object

Request Broker Architecture (CORBA). Since OSI is object-oriented (and so

is CMIP) and SNMP entities map easily on objects, it took little time for re-

searchers to start integrating CORBA with existing network management envi-

ronments. In principle, the extension of a management agent can be achieved

with traditional technology based on CS paradigm, like in some CORBA-based

approaches. This solution presents some relevant drawbacks. First, one could

argue that the reason why the primitives offered by management agents are so

poor is that agents must be lightweight, since they can be embedded in net-

work devices equipped with limited computational resources. In this setting,

adding management primitives to agents is just not desirable. Even if adequate

computational resources are available, another relevant issue is the frequency of

invocation of primitives. A function may be used only now and then, e.g., be-

cause its execution is needed only during periods of heavy congestion, or because

its code may change slightly according to operation conditions. In these cases,

hard-wiring the function into the agent just makes it bigger, wasting device re-

sources without appreciable gain. In general, the dynamic nature of management

operations demands for dynamic customizability of agent primitives, and mobile

code provides the technology needed to enhance network management with the

degree of flexibility needed to cope such problems.
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2.4 Architecture

In our work here, we exploit the REV and COD paradigm, delegate some agents

to the network elements, and manage these delegated agents. The focus of the

research is the design of a dynamic adaptable distributed architecture for the net-

work monitoring system, with communications between the adaptable network

element management agents and the manager-coordinator for all the required in-

teractions. The architecture will provide all the necessary mechanisms, languages

and protocols for the dynamic definition of both the manager-to-agent network

management view definition and the internal agent-to-network-element collec-

tion method definition. We also define an internal network element API, which

will be used for the collection of the management information. The adaptable

network element management agent will use that API, so that internal collec-

tion methods can be changed dynamically by the manager-coordinator while the

whole system is in operation. Figure 2.2 depicts the specific components of our

network monitoring system. These are the Network Elements, the Adaptable

Network Element Management Agents and the Manager-Coordinator.

The network elements consist of the managed objects. The adaptable network

element management agent provides the network Manager-Coordinator with an

information view of the supported network element management information.

Such an agent possesses an API, called Collection API, by which the agent

can dynamically change the way the information is collected from the network

element. Specific real resources can be selected for monitoring and also the

frequency can be accordingly adapted, according to the current monitored status

of the network and the management applications requirements.

The gathered monitored information is processed by the network Manager-
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Coordinator and an even higher-level view is offered to network fault and per-

formance management applications. The network Manager-Coordinator coor-

dinates the dynamic update of the information views, provided by the agents,

by specifying the specific filtering expressions and the various threshold values.

When a threshold crossing is detected an asynchronous notification will be for-

warded to the Manager-Coordinator. This event-based paradigm for network

monitoring results in huge reduction of monitoring traffic, since statistics are no

more transferred periodically from agents to manager.

The dynamic control of the monitoring system will be based on decision

making and knowledge embedded in the network manager-coordinator. This

will enable the network manager-coordinator to take decisions that: send to the

network elements agent programs that can re-direct the data collection of the
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elements, change the logic of the processing within the elements, and even di-

rect the elements to execute tests or collect new types of data. Similar levels of

intelligence will be embedded in the fault and performance management appli-

cations. We will use belief networks as the basic structure for implementing this

intelligence and the associated learning.

2.5 Design Considerations

This section discusses the design considerations for this adaptive distributed

network monitoring system. Here we focus on the system architecture, API, the

way agents could be created, deployed, and managed, and so on.

The design should consist of a set of facilities that allow a remote manager to

collect data from the network element in such a way that changes to the collec-

tion method can be made at run-time. Additionally, it allows run-time extension

of the network element behavior at statically defined points within the network

element code through callbacks. The embedded environment requires the dele-

gated agent(s) to function with limited computational and memory resources at

high data rates.

Agent Management

From the point of view of the manager, it is important to be able to manage the

delegated agents. Management of the agents includes deploying and terminating

them. It is also essential that the agents be able to send messages back to the

manager. The manager should be able to send commands to the agents as well,

perhaps to adjust some parameter of the agents. Figure 2.5 identifies the agent
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management functions.

• Distribute Logic as Agents: Sends agent collection logic across the network

from the Manager-Coordinator to the network element. Must support

dynamic linkage onto the network element.

• Terminate Agent: For an agent that has been deployed by invoking the

Distribute Logic as Agents use case and still exists in the system, causes

the Agent to be removed from the system.

• Control Agents: For agents that have been deployed with the Distribute

Logic as Agents use case, send a command to the Agent instructing it to

perform a generic action. The actual command to be performed will be

determined by the specific command and Agent implementations.

• Provide Feedback from Agents: For an agent that has been deployed by

invoking the Distribute Logic as Agents use case and still exists in the

system, causes feedback to be sent from the agent back to the manager

that created it.

Agent Functions

From the point of view of the deployed agents, being able to read values and write

values from and to the network element is critical. Also, it is necessary for the

agents to be able to collect data across arbitrary data structures. Navigating

these data types, such as queues and hashtables, could usually be performed

through some native API associated with the abstract data type in the native

processes. For this purpose, we shall include a facility to allow agents to call
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functions defined in the network element itself. Figure 2.5 identifies the main

use cases that the agent performs.

• Read Values: For an agent, which has been deployed using the Distribute

Logic as Agents use case and has the address of what data it is looking to

read, read values from the address space of the Network Element.

• Write Values: For an agent, which has been deployed using the Distribute

Logic as Agents use case and has the address of what data it is looking to

write, writes values into the memory space of the Network Element.

• Call Functions on the Network Element: Suppose an agent that is going

to do the actual function call has been deployed. Invoke a native C/C++

function defined in the Network Element.
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Collection API

To enable the above functions, we need an interface between the network element

native software and the delegated agent, with which the agent can define the

specific set of resources that are considered useful to be monitored. The collection

API must be able to support a range of data structures like queues and hash-

tables.

If we know the address of any variable, we can read or assign its value. Of

course, this implies that we know the type of variable we are dealing with, which

probably requires the source code to be available. To access variables in such a

way requires that we can find the addresses of the variables of interest. This is

accomplished by examining the symbol table of the compiled code.

For the symbol table examination to work, we require that there is some

way to extract addresses from the compiled code. For example, Solaris UNIX

provides an ’nm’ (name mangle) utility that allows the listing of symbols in an

executable. We could use such utilities to create a directory of variables. A

34



directory service will provide variable lookup by name; it also includes addresses

of functions and function pointers. This address extraction is also possible with

standard dynamic linkage mechanisms as provided by VxWorks [54] and Solaris.

On Extensions and Callbacks

As we stated in chapter 1, we could dynamically extend the functionality of

the delegated agents or even the native software. The awareness of the need

for extension is from human, not from the delegated agents or native processes

themselves. It is the administrator again that determines what functionality to

add.

For the delegated agents, since the manager has full control of the agents’

lifecycle, it is always a good option for the manager to create new agents with

appropriately added functionality to replace the old ones by killing the old agents

and deploying new agents. All the development is at the manager site and there

is no need to recompile any code at the network element site.

For native software, on the other hand, we don’t have the luxury to put extra

code off-line onto the original code at the manager site and deploy to network

elements as a whole piece, without any recompilation. Here, the native code was

already compiled and fixed; what we can do at the manager site is only to design

and deploy the added code in its own fragment. We need a way to make sure

that this added code could cooperate with the original code to have expected

performance.

First, callback hooks are defined at certain places in the native code. Such

hooks could be the places where the developer is reasonably suspicious that ad-

ditional functionality may be needed later, but what he/she does not yet know
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at the time of software development. Defining a hook could mean putting an

empty function at a certain place in the native code. But theoretically, all func-

tions in the native code could be thought of as suspects, even though we would

usually not be so suspicious. Such hooks represent the possible places to add

new functionality and they are the only locations where additional functionality

could possibly be integrated.

If callbacks are determined as needed by administrator, the defined callbacks

will be deployed and dynamically linked into the network element code by re-

placing the corresponding empty function at appropriate hook. Obviously, we

need access to the function pointers in order to achieve the function replacement.

Such function pointers could be obtained by the directory service or dynamic

linkage mechanisms as described above. Then, in the native software, this added

code would be executed the next time this particular hook is encountered. Figure

2.5 illustrates these ideas.

• Declare Callback: The Network Element declares the hooks in its native

processes for the callbacks to hook up.

• Define Callback Operation: Given that the Network Element has invoked

the Declare Callback use case, the Manger-Coordinator defines a proce-

dure to be used whenever a particular callback is invoked. Such a proce-

dure is delegated to the corresponding Network Element by invoking the

Distribute Logic as Agents use case

• Perform Callback: Causes a procedure defined by the Manager-Coordinator

and deployed as an agent to be called by the Network Element.

To better understand callback mechanisms, we model software processes us-
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ing communicating finite state machines [55, 56]. A finite state machine (FSM)

consists of a finite set of states with one initial state, input set of the machine,

and transition function, which is a partial function from the states and inputs to

its states. An extended finite state machine (EFSM) introduces state variables

in addition to the explicit states. These variables can take on a number of val-

ues themselves and they are treated as implicit states. The complete set of the

states, or global state, of a process instance is now the union of the explicit and

implicit states. When performing analysis, however, our focus is mainly on sys-

tem state, which consists of explicit states, plus the status of enabled transitions

from those states. The problem of state explosion is avoided as such.

Each native process is modeled as an EFSM. Each process instance has its

own memory space that is under its own control. No other process instances

are allowed to change the values of its variables. Such variables are called local

variables. Local variables are further categorized as either state variables or

temporary variables. State variables are those implicit states that represent

the information accumulated and retained by a process. State variables are

persistent, meaning that from the perspective of each process, they retain their
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value over time. One example is the variable that captures some certain statistics

of interest, e.g. number of packets in the queue. Temporary variables are used

to store information that does not require persistence. For example, an integer

variable used as the index of a loop is typically treated as a temporary variable.

Apart from local variables, we also define some variables that are visible to all

process models and they are called shared variables. Shared variables could be

typically implemented via header files, in a C/C++ programming environment,

and they are used as a communication mechanism among the process instances.

Another way to model inter-process communication is message passing via input

buffers. The management procedure of the input queue could also be modeled

as an EFSM and to this end, we claim that our communications between EFSMs

are all through shared variables.

There are no clear rules on the use of explicit states and state variables, as

this is often a matter of design and depend very much on particular application.

In our software process modeling, we use explicit states to represent the top-level

modes or stages that a process can enter. Such a mode could be any waiting or

inactive status, or it could be a decision place that leads to different situations.

To facilitate callbacks, we also identify those places where some unanticipated

situations might happen and where we might later put added functionality. We

call these places callback hooks. Specifically, we associate each callback hook with

two states: one is called pre-callback state and the other post-callback state.

There is a transition from pre-callback state to post-callback state, with TRUE

as the predicate and the callback function as the action associated with this

transition. At the time of software process design, the callback functions could

be just empty functions, and the pre-callback state and post-callback state look
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identical in the sense that all the accessible local/shared variables are the same.

Right after each post-callback state, we put a decision state to accommodate

the possible multiple branches the process may lead to. The different branches

defined over local/shared variables are mutual exclusive and exhaustive.

The parameters in the declaration of such empty functions are visible to an

external entity. Symbol table examination via directory service or dynamic link-

age mechanisms, as discussed above, provides a scheme to access the shared vari-

ables and the stack. The external callback function will use these local/shared

variables to fulfill some added logic, and probably, some changes will be made on

them since the function call is by reference. After this added external function

is executed, the post-callback state will usually be different from that before

this external callback function execution, in terms of the enabling branches from

the decision state that follows. Such a mutual exclusive and exhaustive decision

state ensures that there will always be a valid progress route for the process to

move ahead, with or without addled logic.

Many callback places in a process model may use the same function call,

like DoCallbacks (CallbackID, shared variables, state variables, temporary variables),

and we assign for each callback hook a unique CallbackID for identification. In

our second and third system designs to be discussed in the next section, we proof-

tested this idea of extension via callbacks using function replacement. Essentially,

the callbacks extended the processing logic of the original state machine.

Conceptually, our callback mechanism is similar to the idea of protocol boost-

ers [57]. It is a supporting agent and by itself is not a process or protocol. Beyond

protocol boosters, it handles some unanticipated situations. To make sure that

the augmented system work well for both original and new conditions, we need

39



to investigate some certain syntactic and semantic properties using system state

analysis, based on the identification of states as discussed above. Such issues are

beyond the scope of this thesis.

2.6 Three System Designs

2.6.1 Java-based System Design with MIB

Taken individually, the characteristics of Java can be found in a variety of soft-

ware development platforms. What’s completely new is the manner in which

Java technology and its runtime environment have combined them to produce a

flexible and powerful programming system.

• Code on Demand: The dynamic feature of our framework requires support

for code-on-demand (CoD) paradigm, i.e., the network element manage-

ment agent can download and link on-the-fly the code from some class

server to perform a given task. Traditionally, CoD is only supported by

mobile code languages (MCL), such as Telescript [51]and Agent Tcl [50],

for mobile agent programming. With the dynamic class loading and linking

ability, Java is actually a weak MCL that directly supports CoD.

• Distributed Computing: The interactions between manager applications

and network element management agents require distributed computing

support from the programming language. Java provides native distributed

programming API through Remote Method Invocation (RMI). Compared

with other distributed programming platforms such as DCOM or CORBA,

Java RMI is the easiest to learn and use.
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• Cross-platform Compatibility: Without a common platform, we have to

write code with the same or similar functions for each of these platforms

separately, which is very costly, time-consuming and error-prone. Java’s

architecture-neutral and portable ability makes it an ideal platform base

for a hybrid system like our network-monitoring framework.

In this design, agents are Java codes created at the Manager-Coordinator

site and deployed to the network elements via RMI. We assume that JVM is

available both at Manager-Coordinator site and network element site.

In our first design here, we focus on legacy systems where SNMP is used.

The SNMP agents collect raw data from network elements and store those data

into Management Information Base (MIB). Our work here is to design a Java-

based Extensible Management Server (JEMS) that runs as a server process at

the network elements to host the delegated Java agents, which in turn, could

access the MIBs and carry out their predetermined functionality. Figure 2.6.1

depicts the architecture of JEMS.

Remote Delegation Interface (RDI) is the interface through which manage-

ment applications can remotely delegate Java objects, exchange information with

these objects and control their execution. Management Information Tree (MIT)

is a container that holds Java objects in a tree structure. Two kinds of objects

are stored in the MIT. Intelligent Management Objects (IMO) are delegated by

remote managers to the JEMS; they perform monitoring and control functions,

and interact with remote managers via the RDI. INFormation Objects (INFOs)

store management information in an object-oriented way; they are used by IMOs

to implement management functions. Delegation service Provider (DSP) is an

RMI server object that uses the MIT and the class loader to implement the RDI;
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it provides the delegation service needed by remote managers to delegate, control

and communicate with IMOs. Class loader is an internal Java object used by

the DSP to load, either locally or from some class server (a.k.a. bytecode server)

on the network, those classes that are needed to instantiate corresponding del-

egated objects. MIB Accessor is another internal Java object used by INFOs

to exchange low-level management information with the local MIBs. For more

information about this system design, we refer to Xi’s master thesis [58].

2.6.2 Java-based System Design without MIB

The previous design is suitable for network elements equipped with MIBs, i.e.

routers and switches. In many cases, however, network elements are not equipped

with such MIBs. Even worse, these network elements may be equipped with only

minimum amount of memory and computing resources, e.g. VSAT terminals for
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satellite communication networks. This Java-based design and the next native

code based design are for such situations. One important issue of using Java

in this case is that the network element side JVM has to be lightweight. We

simply could not assume that we could ship the whole suite of the standard

JVM down there. Specific versions of JVM are needed. For example, if the real-

time operating system of the network elements were VxWorks [54], Personal Java

suite was ported onto VxWorks. Another alternative is the so-called KVM [59],

or Kilobyte Virtual Machine, that encapsulates only the core JVM and APIs.

Such a KVM suite would typically require about 150KB memory, which is not

stringent.

At the manager site, on the other hand, we could install as much sophisticated

a suite of Java system as we need since the manager station would typically

possess quite enough memory and computing abilities. Yet we have to make

sure that the functionality of all the Java agents created here can be supported

by the network element side embedded Java system.

As to the collection API, Java Native Interface (JNI) could be utilized to

help the communication between Java agents and the native C/C++ processes

embedded in network elements. With addresses of functions and function point-

ers, we can provide callbacks and function replacement. For a function that

is accessed through a function pointer, we can replace the function, by simply

redirecting the pointer to our own replacement code. In the same way, we can

provide a callback service. A function pointer can be declared in a native pro-

cess, which calls this function pointer whenever it wants a callback. The function

pointer in the beginning points to a null operation. Only when the Java code

replaces the function will the callback be ready. Finally, we come full circle with
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the communication between Java and the target process by allowing a Java client

to call functions from the target process. As mentioned previously, the directory

service also has addresses of functions and the Java client can call these functions

using JNI and the function addresses.

In summary, we use global variables as shared memory. So any variables of

interest to the Java client should be global, and any functions to be replaced

should be accessed through a global function pointer. Function pointers should

be declared as a hook for us to create callbacks. Finally, we assume there is some

way of extracting memory addresses from the symbol table similar to the name

mangle utility in Unix.

2.6.3 System Design based on Native Code Technology

The last design based on Java technology assumes that the global variables and

the processes are in a common address space. If, however, the network elements

have multiple processors and separate address spaces, we have a different situa-

tion. Simply delegating Java agents to each address space would incur little extra

work, but if we wish to change the native processes’ logic and do the callbacks,

things get worse. In this situation, the only way for a native C/C++ code to

perform a callback onto Java is for a JVM to be running on each processor. This

does not seem practical. Also, in order for Java to interact with native C/C++

processes, it is necessary to use JNI, which incurs a great deal of overhead. This

interface is quite limited and not particularly easy to use.

A native C/C++ implementation has neither the multiple JVM burden, nor

the overhead and difficulty of a JNI implementation. And here we use native

C/C++ codes in the system design. In order to read, write or call functions, the
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ordinary dereferencing of the pointers or function pointers will suffice, assuming

that the Agent has the correct addresses in the memory of the network element.

This design requires Inter Process Communication (IPC) in two distinct

places. One is between the network element and the management site, and

the other is between the processes running on the network element in different

address spaces. For the former, it seems sensible to use Remote Procedure Call

(RPC) or just an ordinary TCP/IP socket. The IPC between processes on the

network element however, should not use sockets, which have much more over-

head than required. We use shared memory based message queues with some

semaphores to handle the IPC on the network element.

The network element code links the Agent code dynamically, so the network

element resolves Agent symbols dynamically through ordinary dynamic linkage

mechanisms. However, the Agent code does not have a dynamic mechanism

to support the lookup of symbols in the target process. The solution to this

problem is to look at the statically defined symbol table of the process residing

in the executable code. As stated above, Solaris UNIX provides an ’nm’ (name

mangle) utility that allows the listing of symbols in an executable. Since the

Agent code shall be defined in C/C++, we can provide a feature that takes the

output of ’nm’ and construct a directory based on it. Once again, this could

be done via dynamic linkage mechanisms. Extensions are realized via function

replacement, as in the previous design.

2.7 Tradeoffs between System Designs

During the processes of our systems designs, we encountered many issues that

we need to balance between various design options. Choosing Java or native
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code technology is one of the most important considerations. Here we list the

advantages and disadvantages of using Java or native code for the system designs.

Table 2.2: Java System Design

Advantages Disadvantages

• Distributed computing via RMI • One memory space assumption

• Dynamic class loading • JVM memory footprint

• JVM availability and portability • Callbacks are cumbersome

• Mobile computing support • Overhead of JNI

• Exceptions handling • Inflexible low-level synchronization

Table 2.3: Native Code System Design

Advantages Disadvantages

• Allows multiple processors • No RMI support

• Clear and neat design • Handles IPC explicitly

• Callbacks via dynamic linkage • No outsource dynamic class loading

• No JNI overhead • No portability

• Flexible low-level synchronization • Explicit exceptions handling

2.8 Traffic Analysis of the Proposed System

In this section, we derive a model for the traffic generated by network manage-

ment. It is rather general, and has to be adapted to the particular management

scenario where the manager operates. This scenario must take into account the

actual management protocols in place, as well as the technology actually used to
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implement a given paradigm. This section borrows many statements from the

paper by Baldi and Picco [60].

Let N denote the number of managed devices. The complexity of the man-

agement task is taken into account by the number Q of queries performed on the

uniform data access interface, e.g., MIB. The transmission overhead introduced

by protocol encapsulation, and possibly traffic control or connection setup, is

taken into account down to the network layer. If a chunk of data of size X is

to be transmitted at the application layer, we represent the actual amount of

data exchanged at the network layer as X ′ = η(X)X where η(X) > 1. η(X) is

called the overhead function since it accounts for the control information (proto-

col overhead) added to X by the network and the above layers. In the following,

we write ηX in place of η(X)X in order to simplify formulae.

2.8.1 Model for the Overall Traffic

We derive here a model for the traffic generated by a management task that

involves retrieving a set of data from managed devices. We assume that the

same management operations are executed on each device. This is not necessarily

the case for every management task, but allows for a simpler notation without

compromising the generality and significance of what can be inferred from the

model.

With the traditional client-server paradigm, the NMS requests an operation

to the management agent by sending a request message to it. We assume that

such information is of size Iq. In order to perform the management task, Q

request messages must be sent to each of the N managed devices. Device n
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answers the qth request with a reply whose size is Rqn. The overall traffic is then

TCS =
N∑
n=1

Q∑
q=1

(ηCSIq + η̃CSRqn). (2.1)

If the REV paradigm is exploited, the Q requests are embedded in a code

fragment of size CREV sent to managed device n. Remote evaluation of the code

produces the Q results Rqn which are sent back collectively to the NMS. This

pairwise interaction has to take place for each of the N managed devices. The

overall traffic generated is then given by

TREV =
N∑
n=1

(ηREVCREV + η̃REV

Q∑
q=1

Rqn). (2.2)

In the MA paradigm, the NMS unleashes a mobile component that visits

each of the N nodes and collects information locally. We model the code and

the portion of the state needed for its execution (CMA) as separate from the

portion of the state relevant to the application. The latter grows as long as this

agent travels from node to node. In fact, if we denote with SMA,n the size of the

state of the agent during the trip towards node n, then

SMA,n =


0 if n = 1∑n−1
m=1

∑Q
q=1Rqm if n > 1

(2.3)

After information on the last node has been collected, the mobile agent sends

back to the NMS all the results collected. Thus the overall traffic generated is

given by

TMA =
N∑
n=1

ηMA(CREV + SMA,n) + η̃MA

N∑
n=1

Q∑
q=1

Rqn. (2.4)

With the COD paradigm, the NMS requests an operation by sending a mes-

sage that contains the operation signature, ICOD. If the operation has already

been installed on the managed node, a reply is sent which contains the result of
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the Q queries, like in a REV implementation. On the other hand, if the code for

the operation has not been installed yet, the agent replies with a message of size

Ifetch requesting the dynamic download. The code, of size CCOD, is transferred

and linked on the agent device, and it becomes available for future invocations,

and the corresponding operation is performed. Consequently, the expression of

generated traffic at equilibrium is:

TCOD,stable =
N∑
n=1

(ηCODICOD + η̃COD

Q∑
q=1

Rqn). (2.5)

During the setup phase, the generated traffic is:

TCOD,setup =
N∑
n=1

(η̃CODIfetch + ηCODCCOD). (2.6)

The overall traffic with a setup phase is simply TCOD = TCOD,stable + TCOD,setup.

2.8.2 Evaluations on the Overall Traffic

Let us first compare CS and REV paradigms. The REV paradigm is preferable

than CS paradigm only if TCS ≥ TREV . After elaboration of (2.1) and (2.2) and

let Ī = 1
Q

∑Q
q=1 Iq, and R̄ = 1

Q

∑Q
q=1Rqn, we obtain

NQηCS Ī +NQη̃CSR̄ ≥ N(ηREVCREV + η̃REVQR̄).

It is likely that Qη̃CSR̄ ≥ η̃REVQR̄ since usually a fixed overhead is associated

to each packet and thus, the longer the message being segmented, the smaller

the relative overhead. Hence, if more results R̄ can be transmitted together in a

single message, the overhead is likely to be smaller, although depending on the

protocol used to implement communications in CS and REV. We call the differ-

ence in the overhead introduced to send the results of the queries ∆OCS,REV ≥ 0,

and REV is more convenient than CS if

ηREVCREV ≤ ∆OCS,REV +QηCS Ī, (2.7)
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that is, if the size of the message containing the code to be evaluated remotely

is smaller than the overall size of the message requests needed in a CS paradigm

plus the difference in overhead introduced when transmitting the result back.

Clearly, REV is convenient when the number of instructions Q needed to perform

a query is high and CREV effectively compacts the representation of the local

interactions Iq within the code, e.g., using loop control structures.

By applying the same reasoning and assumptions, we see that a MA imple-

mentation always generate more traffic than a REV one. From (2.2) and (2.4)

we obtain

NηMACMA + η̃MAQNR̄ +
N∑
n=1

ηMAQ(n− 1)R̄ ≥ N(ηREVCREV + η̃REVQR̄).

If Q is sufficiently large and η̃REV = η̃MA, we have η̃MAQNR̄ ≈ Nη̃REVQR̄.

Without loss of generality, let ηMA = ηREV . Since usually CMA > CREV , we

could easily see that the above inequality always holds. That is, REV is always

more convenient than MA, because the latter must carry the state which is

growing at every hop.

The application of COD paradigm depends on the frequency of invocation

which has not been considered yet. So far, we have given the expression of

the traffic generated for a single execution of a management task. However,

in general it may be interesting to consider how this varies over U different

invocations. For the other paradigms, this additional parameter does not affect

the expression of the traffic. So for p ∈ {CS,REV,MA}, Tp(U) = UTp . And

the traffic generated by a COD paradigm is

TCOD(U) = TCOD,setup + UTCOD,stable.

Calculation of TREV (U) ≥ TCOD(U) under the likely assumptions that Ī ≈

50



ICOD ≈ Ifetch and η̃MAQR̄ ≈ η̃REVQR̄ yields

ηREVCREV ≥ U + 1

U
ηCODĪ +

1

U
ηCODCCOD.

Clearly, if U is large, i.e. the primitive is invoked many times before being up-

graded or discarded, the inequality above can be approximated by ηREVCREV ≥
ηCODĪ, which is always satisfied, the threshold being a REV code composed by

a single instruction. So if a function is used many times, caching its code saves

bandwidth. That is why we have chosen to combine REV and COD paradigms

and ship some of the processing intelligence and make them resident to the net-

work elements in order to save the bandwidth. For those functions that are used

only now and then, REV paradigm suffices.

2.8.3 Application to Satellite Communication Networks

Now let us look at a more realistic case for our hub-based satellite communication

network. Suppose we want to manage only the terminals. Terminals commu-

nicate with each other through an up-link and a down-link. A natural way to

relate network traffic with the communication cost associated to the links is to

assign to each link a weighting cost coefficient 0 ≤ λl ≤ 1. For each terminal

n, let λnh denote the cost coefficient of the up-link to the hub and λhn denote

the cost coefficient of down-link. The value of the cost coefficients have to be

determined by the administrator according to the notion of cost associated to

the link, and may be actually a combination of several factors. For instance, a

high cost may be due to high latency or low-bandwidth on the link, or to the

fact that a link connected to the NMS should be kept as unloaded as possible, or

to security considerations. As discussed before, MA paradigm is not considered

here, and we list the cost related to the overall traffic generated by the other
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three paradigms as follows:

KCS =
N∑
n=1

λhn

Q∑
q=1

ηCSIq +
N∑
n=1

λnh

Q∑
q=1

η̃CSRqn (2.8)

KREV =
N∑
n=1

λhnηREVCREV +
N∑
n=1

λnhη̃REV

Q∑
q=1

Rqn (2.9)

KCOD,stable =
N∑
n=1

λhnηCODICOD +
N∑
n=1

λnhη̃COD

Q∑
q=1

Rqn (2.10)

KCOD,setup =
N∑
n=1

λnhη̃CODIfetch +
N∑
n=1

λhnηCODCCOD. (2.11)

To compare KCS ≥ KREV , we elaborate (2.8) (2.9) and obtain

N∑
n=1

λhn(ηREVCREV − ηCSQĪ) ≤
N∑
n=1

λnh(Qη̃CSR̄− η̃REVQR̄),

which says that the down-link weighted difference between the size of the code to

be evaluated in REV and the overall size of the message requests in CS is smaller

than the up-link weighted difference in overhead introduced when transmitting

the results back. The right hand side of the inequality is positive, as discussed

before. Clearly, REV is convenient when the number of instructions Q needed

to perform a query is high and CREV effectively compacts the representation of

the local interactions Iq within the code.

2.9 Conclusions

In this chapter, we presented a distributed, extensible framework for supporting

adaptive, dynamic network monitoring and control. After researching the major

design paradigms and alternative technologies, we have chosen the mobile code

technology, in particular REV and COD paradigms, to help implement such a

framework. The focus of our work has been on three aspects. First, the design
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of the standard infrastructure, or Virtual Machine, based on which agents could

be created, deployed, managed and initiated to run. Second, the collection API

for our delegated agents to collect data from network elements. Third, the

communicating finite state machine based callback mechanism through which

the functionality of the delegated agents or even the native software could be

extended. We proposed three system designs based on such ideas.

Our first design, as discussed in section 2.6.1, uses full-blown JVM in both

manager and network element site and assumes the presence of MIBs. It is a

proof-of-concept design and is suitable for network elements equipped with pow-

erful computing and memory capabilities, i.e. routers and ATM switches. Here

we use the off-the-shelf JVM and we do not need to access the network element

native software directly; instead, we need only to access the MIBs that store the

raw monitoring data. Our prototype system works well, which encouraged us to

research further into the Virtual Machines and collection API issues.

In our second design, as shown in section 2.6.2, we consider the situations

where there is no MIB embedded with network elements. We still use JVM

but here our focus is on the network elements equipped with limited computing

and memory capabilities. Specific versions of JVM are considered. For the

delegated Java agents to access the native software, Java Native Interface (JNI)

is exploited and a directory containing addresses of the native global variables

and function pointers is set up. The processing logic of the delegated agents could

be extended by creating new agents with the desirable functionality, followed by

deploying them to the network elements to replace the old agents. To extend the

native software functionality, we carry out function replacement by swapping the

function pointers of the Java agents and the corresponding native code functions.
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Further, in our third design discussed in section 2.6.3, we remove the con-

venient JVM for those network elements equipped with multiple processors and

address spaces. The focus here is to use dynamic linkage technology to emulate

the Virtual Machine concept. The delegated agents are dynamically linked to

the native code by the C/C++ run-time environment. The collection API in

this case is very thin since all that is needed is to access the native code directly.

The extension of functionality is similar as the second design, with the difference

that we do not need JNI in this case. It is a neat design with respect to a pure

C/C++ environment, but without JVM, it loses Java’s portability. This design

is suitable for those resource limited network elements that run over a real-time

operating system and will not use Java as the native code development. An im-

portant advantage of this design is that large amount of data can be processed

quickly via this native code callback mechanism, as compared with Java-based

designs.

Our system designs could be easily adapted to accommodate the possible

hierarchical networks and, consequently, hierarchical network management ar-

chitecture. We could simply treat the manager-coordinator, shown in figure 2.2,

as a mid-level manager that reports to a higher-level manager. This mid-level

manager acts as agent role for the higher-level manager, and as manager role for

the managed network domains.

Now that we have the framework for adaptive, distributed network mon-

itoring and control, our next step will be focused on the intelligence part of

network management. In particular, we are interested in fault and performance

management using such a framework.
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Chapter 3

Belief Network as the Probabilistic

Fault Model

In this chapter, we first give a brief introduction to belief networks, including the

definition, semantics and inference algorithm. Then, we discuss the reason why

we choose belief networks as the probabilistic fault model for our fault diagnosis

purpose.

3.1 A Brief Introduction to Belief Networks

3.1.1 Definition

A belief network, also called a Bayesian network or a causal network, is a graph-

ical representation of cause-and-effect relationships within a problem domain.

More formally [26],

Definition 3.1.1 A belief network B=(V, L, P ) is a Directed Acyclic Graph

(DAG) in which the nodes V represent variables of interest (propositions), the

set of directed links L represent the causal influence among the variables and the
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parents of a node are all those nodes with arrows pointing to it, and the strength

of an influence is represented by conditional probabilities tables (CPTs) attached

to each cluster of parent-child nodes in the network.

Let us look at one example. Suppose you have a new burglar alarm installed

at home. It is fairly reliable in detecting a burglary, but also responds on occa-

sion to minor earthquakes. You also have two neighbors, John and Mary, who

have promised to call you at work if they hear the alarm. John always calls

when he hears the alarm, but sometimes confuses the telephone ringing with the

alarm and calls then, too. Mary, on the other hand, rather likes loud music and

sometimes misses the alarm altogether. Given the evidence of who has or has

not called, we would like to estimate the probability of a burglary. This simple

scenario is illustrated in figure 3.1 [61]. The letters B,E,A, J , and M stand

for Burglary, Earthquake, Alarm, JohnCall, and MaryCall, respectively. Node

B and E do not have any parents, and the tables associated with them simply

represent the prior probabilities of Burglary or Earthquake. Note that we omit

the entries P (B̄) and P (Ē) in the tables since they can be trivially obtained

from P (B) and P (E). Node A has two parents, B and E, and the conditional

probability table represents the probabilities of alarm going off under different

configurations of parent nodes. When there is both burglary and earthquake,

with 0.95 probability the alarm will go off. If there is burglary there, but no

earthquake, the probability is still 0.95. This reflects our understanding that,

if in a geographical area where severe earthquake is very rare (surely not Los

Angeles), earthquakes are usually mild and they do not increase the chance for

the alarm to go off as long as there is burglary inside the house. However, earth-

quake will play a role under the situation of no burglary, and we see that the
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chance for the alarm to go off is 0.29, considerably larger than 0, but far not as

comparable as the influence from burglary. Finally, the alarm will rarely go off

if there is neither burglary or earthquake, with a probability of 0.001.

Burglary P(B)

Alarm

.001

P(E)

.002

MaryCalls

Earthquake

T
F

B   E      P(A)    

T   T      
T   F
F   T
F   F

.95

.95

.29
0.001

JohnCalls
 .90
 .05

A    P(M)

 .70
 .01F

T

A     P(J)

Figure 3.1: An example of Belief Network

3.1.2 The Semantics of Belief Networks

Representation of Joint Probabilities

A belief network for problem domain {x1, ..., xn} represents the joint probability

distribution (JPD) over those random variables. Based on the chain rule of

probability, we have

p(x1, ..., xn) =
n∏
i=1

p(xi|x1, ..., xi−1). (3.1)

Given a DAG G and a JPD P over a set x = {x1, ..., xn} of discrete variables,

we say that G represents P if there is a one-to-one correspondence between the
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variables in x and the nodes of G, such that

p(x1, ..., xn) =
n∏
i=1

p(xi|Πi). (3.2)

If we order the nodes in such a way that the order of a node is larger than

those of its parents and smaller than those of its children (the so-called topological

ordering), we have

p(xi|x1, ..., xi−1) = p(xi|Πi), (3.3)

which means given its parent set Πi ⊆ {x1, ..., xi−1}, the set of variables that

render xi, each variable xi is conditionally independent of all its other prede-

cessors {x1, ..., xi−1}\Πi. In other words, for any node in the DAG, given its

parents, that node is conditionally independent of any other node that is not

its descendent. This conditional independence makes a belief network model a

compact representation of the joint probability distribution P over the interested

variables.

Representation of Conditional Independence Relations

We have described above the conditional independence of a node and its prede-

cessors, given its parents. But, is this the only and general case of conditional

independence? In other words, given a set of evidence nodes E, is it possible to

“read off” whether a set of nodes in X is independent of another set Y , where

X and Y are not necessarily parents and children? Fortunately, the answer is

yes and the methods are provided by the notion of d-separation, which means

direction-dependent separation [26]. It is an important notion in designing in-

ference algorithms.

Definition 3.1.2 Let X, Y and Z be three disjoint subsets of nodes in a DAG

G, then Z is said to d-separate X and Y , iff along every undirected path from
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each node in X to each node in Y there is an intermediate node A such that either

(1) A is a head-to-head node (with converging arrows) in the path, and neither

A nor its descendents are in Z, or (2) A is in Z and A is not a head-to-head

node.

(2)

(1)

(3)

YZX
A

A

A

Figure 3.2: An Illustration of d-separation

The importance of d-separation is that, in a belief network, X and Y are

conditionally independent given Z if and only if Z d-separates X from Y . To

better understand this notion, we enumerate all of the possible cases, as shown

in figure 3.2. In case (1), or the so-called serial connections case, we say evidence

A will block node X and Y if it is initiated. In case (2), or the so-called diverging

connections case, evidence A will block the communications between its children,

node X and Y in this case, if it is initiated. In case (3), node A is a converging

node and the communications between its parents will be open if it is initiated.
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3.1.3 Inference in Belief Networks

By now we can say that a belief network simulates the mechanism that operate

in the environment and thus allows for various kinds of inferences (also called

evidence propagation). The question here is: How can one infer the (prob-

abilities of) values of one or more network variables, given observed values of

others? Or, in mathematics, we want to find P (Q = q|E = e), where Q is the

query variable set and E is the set of evidence variables. Based on the choice of

Q and E, there are four distinct kinds of inference patterns, see figure 3.3.

• Diagnosis inferences: From effects to causes, also called backward infer-

ence. For example: “What is the most probable explanations for the given

set of evidence?”

• Causal inferences: From causes to effects, also called forward inferences.

For example: “Having observed A, what is the expectation of B?”

• Inter-causal inferences: Between causes of a common effect. For exam-

ple: “If C’s parents are A and B, then what is the expectation of B given

both A and C?” Namely, what is the belief of the occurrence of one cause

on the effect given that the other cause is true? The answer is that the

presence of one makes the other less likely (explaining away).

• Mixed inferences: combining two or more of the above.

One of the most widely accepted exact propagation algorithm is based on a

secondary structure called junction tree. Such an algorithm is quite general and

can be used for both a polytree1 and a multiply-connected network. It is used

1We call a tree as polytree (also singly connected network) if every node in the tree may

have more than one parents.
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(Explaining Away)

Figure 3.3: An Illustration of four inference patterns

in HUGIN [62], the expert system shell we adopted in this thesis. We give a

brief introduction of this algorithm based on [63] in the next section. For more

information, we refer to [63, 25, 64].

3.2 Exact Evidence Propagation by Junction

Trees

In this section we give a brief introduction of the object-oriented version of

the computational scheme proposed by Lauritzen and Spiegelhalter [64]. The

essential idea of this method is local computation on a secondary structure,

called junction tree, derived from the original probabilistic graphical model.

3.2.1 Introduction

A belief network (BN) is constructed over a universe U , consisting of a set of

nodes each node having a finite set of states. The set of parents of A is denoted

by pa(A) and fm(A) denotes the family pa(A)
⋃{A}.
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Let V ⊆ U . The space of V is the Cartesian product of the state sets of the

nodes of V and is denoted by Sp(V ). For later notational convenience we think

of the probability tables as functions, and denote them by the greek letters φ

and ψ. If A ∈ U then φA = P (A|pa(A)) maps Sp(fm(A)) into the unit interval

[0, 1]. Later it becomes convenient to consider functions that are not normalized

and therefore take on arbitrary non-negative values. So in the sequel, φ and ψ

denote such functions.

Let U be the universe of nodes for a BN. We define the (a priori) joint

probability function φU as the product

φU =
∏
A∈U

φA.

Evidence

Let V be a set of nodes. By evidence on V we mean a function Ev : Sp(V ) → R0.

Thus evidence is represented as a likelihood function, giving relative weights to

elements in the space of V . In the particular case, where EV is a function into

{0, 1} it represents a statement that some elements of Sp(V ) are impossible. In

that case we call EV a finding. Typically a finding is a statement that a certain

node is in one particular state.

If the prior joint distribution function for the BN is φ then the posterior joint

probability function is defined to be µ(φ∗EV ) where µ is a normalizing constant.

The Calculation Problem

Given a BN with universe U , a set of (pieces of) evidence, and let A ∈ U . What

is the probability distribution for A given the evidence?

In principle it is possible to calculate φU , multiply it with the evidence func-
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tions, and then to marginalize the resulting function to A. However, this calcu-

lation is linear in the cardinality of Sp(U) and in practice intractable even for

small universe. We therefore have to exploit the local structure of the network.

3.2.2 Trees of Belief Universe

The aim of the implementation of efficient methods for solving the calculation

problem is to have a set of objects which can send messages to each other and

can perform actions as results of received messages. In order to avoid a global

control structure it is convenient to have the objects organized in a tree such

that messages only can be passed between neighbors in the tree. Then a global

operation can be started in any object and successive message passing to neigh-

boring objects will spread the operation to the entire tree and stop by itself when

this is done. Another effect would be that the objects can perform the tasks in

parallel and thus enjoy the advantages of parallel distributed computing.

Basic Notations

A tree of belief universes consists of a collection C of sets of nodes organized

in a tree. The intersection of neighbors in the tree are called separators. The

collection of separators is called S. Both the universes and the separators have

belief potentials φW attached to them, where φW maps Sp(W ) to R0. The joint

system belief φU is defined as a function on Sp(U) given by

φU =

∏
V ∈C φV∏
S∈S φS

.

A belief potential φW is said to be normalized if
∑
W φW = 1. A normalized tree

of belief universes is one where all belief potentials are normalized.
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Construction

Now we are ready to construct the tree structures representing the same joint

probability function as BNs. Let N be a BN with universe U and probability

functions

φA : Sp(fm(A)) → R0, A ∈ U.

Let further T be a tree of belief universes with collection C and separators S
constructed such that

1. to each A ∈ U we assign a V ∈ C with fm(A) ⊆ V ;

2. for V ∈ C let A, . . . , B be the nodes to which V is assigned. Let

φV = φA ∗ . . . ∗ φB;

3. for all S ∈ S let φS be any constant positive function.

Note that to each A ∈ U there might be several V ∈ C such that fm(A) ⊆ V

but we only assign one of them to A. From the construction it is easy to see

that the joint system belief for T is proportional to the joint probability function

for N and that the quotient between them is the product of the values for the

potentials of the separators. Now the basic structure is established. The belief

universes are the objects and the separators are the communication channels.

Next we define the basic operations for the objects.

Absorption

Let T be a tree of belief universes with collection C and separators S. Let V ∈ C
and let W1, . . . ,Wm be neighbors of V with separators S1, . . . , Sm respectively.
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The universe V is said to absorb from W1, . . . ,Wm if the belief potentials φSi

and φV are changed to φ′Si
and φ′V , where

φ′Si
=

∑
Wi\V

φWi
, i = 1, . . . , m

φ′V = φV ∗ (φ′S1
/φS1) ∗ . . . ∗ (φ′Sm

/φSm).

After an absorption the belief potential for Si is the marginal of Wi with

respect to Si. We also have that

φV /(φS1 ∗ . . . ∗ φSm) = φ′V /(φ
′
S1
∗ . . . ∗ φ′Sm

)

and hence the joint system belief is invariant under absorption.

Entering Evidence

Let T be a tree of belief universes and V ⊆ U . Let EV be an evidence function.

This can be entered to T if there is a W ∈ C such that V ⊆ W . This is done

simply by multiplying φW by EV . If T is constructed from a belief network N

as specified above then the posterior joint system belief for T is proportional to

the posterior joint probability function for N .

Collecting Evidence

Each V ∈ C is given the action COLLECTEVIDENCE: When COLLECTEVIDENCE in

V is called from a neighbor W then V calls COLLECTEVIDENCE in all its other

neighbors and when they have finished their COLLECTEVIDENCE, V absorbs from

them. The process takes the depth first search (DFS) paradigm in graphs [65].
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Distributing Evidence

Each V ∈ C is given the action DISTRIBUTEEVIDENCE: When DISTRIBUTEEVIDENCE

is called in V from a neighborW then V absorbs fromW and calls DISTRIBUTEEVIDENCE

in all its other neighbors. This procedure also takes the depth first search

paradigm (DFS) in graphs [65].

Local Consistency

A tree of belief universes is said to be locally consistent if whenever V and W

are neighbors with separator S then

∑
V \S

φV ∝ φS ∝
∑
W\S

φW .

An important prerequisite for the methods is the following:

Lemma 3.2.1 Let V be any belief universe in a tree of belief universes. If first

COLLECTEVIDENCE is evoked from V and then DISTRIBUTEEVIDENCE is evoked

from V , the resulting tree of belief universes will be locally consistent.

3.2.3 Junction Trees

What we aim for is a tree of belief universes such that the probability distri-

butions can be directly inferred from the belief potentials without having to

calculate the joint system belief. That is: If W ⊆ V then
∑
V \W φV is pro-

portional to the probability distribution for W . In order to ensure this, local

consistency is not sufficient. For example, if W ⊆ V1 and W ⊆ V2, then local

consistency does not automatically ensure that

∑
V1\W

φV1 ∝
∑
V2\W

φV2
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unless V1 and V2 are neighbors in the tree. We therefore define a tree of belief

universes to be globally consistent if for each V,W ∈ C

∑
V \W

φV =
∑
W\V

φW

that is, φV and φW coincide on V ∩W . Clearly, a consistent tree will always be

locally consistent but the converse is false in general.

Call a tree of belief universes a junction tree if for any V,W ∈ C and for any

separator S on the path between V and W we have V ∩W ⊆ S. The important

fact is that the junction tree property ensures that the converse to hold. In

other words, a locally consistent junction tree is consistent. Now we have the

key result of the method:

Theorem 3.2.2 Let T be a consistent junction tree of belief universes with col-

lection C. Let φU be the joint system belief for T and let V ∈ C. Then

∑
U\V

φU = φV .

At this point we have overcome the calculation problem stated in section 3.2.1.

The theorem shows that it is not necessary to calculate and marginalize φU in

order to find the belief in a particular node. When we have a consistent junction

tree the joint probability function is for each universe V proportional to the belief

potential for V . We can now find the belief in any node A ∈ V by marginalizing

φV to A and then normalize the result.

When evidence arrives to the BN, it is entered to the junction tree as de-

scribed in section 3.2.2. Then the junction tree is made consistent by means of

the operations COLLECTEVIDENCE and DISTRIBUTEEVIDENCE and posterior prob-

abilities can be found by the above procedure.
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The above discussion adds a constraint on the transformation of a BN to a

tree of universes: The tree must be a junction tree. We brief the transformation

procedure in the next section.

3.2.4 From BN to Junction Tree

When a BN model is completed, a junction tree T can be constructed to facilitate

the efficient inference. This involves a moralization of the graph: for each node,

links are added between all of its parents (if they are not connected already) and

directions are removed.

The moral graph is then triangulated: Links are added until every cycle of

length more than three has a chord. Based on this triangulation the junction tree

is formed: The collection C is the set of cliques in the triangulated graph (a clique

is a maximal set of nodes all of which are pairwise linked). Given the cliques the

junction tree can be found through a maximal spanning tree algorithm [25].

The size of the cliques determines the runtime behavior of the system, so the

triangulation is the single most important step in the transformation. In order

to optimize this, heuristic methods have been developed to obtain a small total

clique size [66].

The moralization of the graph ensures that for each node A a set V ∈ C exists

such that fm(A) ⊆ V . Hence the construction in section 3.2.2 can be used and

the joint system belief for T will be proportional to the joint probability function

for the BN.

For more information about this junction tree based inference algorithm, we

refer to [67, 63, 25, 64].
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3.2.5 Remarks

It is shown in [68] that exact evidence propagation in an arbitrary belief net-

work is NP-hard. Even approximate inference (using Monte Carlo simulation)

is also NP-hard if treated in general [69]. For many applications, however, the

networks are small enough (or can be simplified sufficiently) so that these com-

plexity results are not fatal. For applications where the usual inference methods

are impractical, we usually develop techniques customer-tailored to particular

network topologies, or particular inference queries. So specifying efficiently and

accurately the structure as well as CPT for belief networks entails both keen

engineering insights of the problem domain and the indispensable good sense of

simplification to obtain the appropriate trading-off. It is still somewhat an art.

3.3 Why Belief Networks?

3.3.1 Efficient Uncertainty Management

The attempts to model humans inferential reasoning, namely the mechanism by

which people integrate data from multiple sources and come up with a coherent

interpretation of the data, have motivated the popular approach that involves

constructing an ”intelligent agent” that functions as a narrowly focused expert

for a particular problem domain. While the past decades have seen some im-

portant contributions of expert systems in medical diagnosis and engineering

applications, problematic expert system design issues still remain. Dealing with

uncertainty is among the most important since uncertainty is the rule, not the

exception, in most practical applications. This is based on two observations:

• The concrete knowledge, or the observed evidence from which reasoning
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will begin, is not accurate.

• The abstract knowledge, namely the knowledge stored in the expert sys-

tems as the model of human reasoning, is probabilistic rather than deter-

ministic.

Therefore a natural starting point would be to cast the reasoning process

in the framework of probability theory and statistics. However, cautions must

be taken if this casting is interpreted in a textbook view of probability theory

[70]. For example, if we assume that human knowledge is represented by a JPD,

p(x1, ..., xn), on a set of random variables (propositions), x1, ..., xn, then the task

of reasoning given evidence e1, ..., ek is nothing but computing the probability of

a small set of hypotheses p(H1, ..., Hm|e1, ..., ek)—the belief of the hypotheses

given the set of evidence. So one may conclude that given JPD, such kind of

computing is merely arithmetic labor.

However, this view turns out to be a rather distorted picture of human reason-

ing and computing queries in this way is cumbersome at least, if not intractable

at all. For example, if we are to encode explicitly for binary variables x1, ..., xn an

arbitrary JPD p(x1, ..., xn) on a computer, we will have to build up a table with

2n entries. Even if there is some economical way to compact this table, there

still remains the problem of manipulating it to obtain queries on propositions of

interest.

Human reasoning, on the contrary, acts differently in that probabilistic infer-

ence on a small set of propositions is executed swiftly and reliably while judging

the likelihood of the conjunction of a large number of propositions turns out to be

difficult. This suggests that the elementary building blocks of human knowledge

are not the entries of a JPD table but, rather, the low-order marginal prob-
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abilities and conditional probabilities defined “locally” over some small set of

propositions. It is further observed that an expert will feel more at ease to iden-

tify the dependence relationship between propositions than to give the numerical

estimate of the conditional probability. This suggests that the dependence struc-

ture is more essential to human reasoning than the actual value. Noting also that

the nature of dependence relationships between propositions resemble in many

aspects that of connectivity in graphs, we can naturally represent such kind of

relationship via more explicit graph approaches, which leads to belief networks.

As mentioned above, for any node in the DAG, given its parents, that node is

conditionally independent of any other node that is not its descendent. Suppose

each node in a belief network model B has not more than k parents, then the

total number of table entries needed to represent the JPD is only n2k, rather

than 2n, where n is the total number of variables in B. When the belief network

model is fairly sparse with small k, this is a huge saving.

3.3.2 General Expressiveness

A belief network model is very general and powerful in terms of expressive capa-

bility. Many of the current modeling techniques used for fault diagnosis purposes

in various application domains can be easily adapted to belief network models.

This is no wonder: people usually need to model the causal relationships among

propositions to help infer and diagnose the problems at hand, and such causal

relationships are typically represented using a directed graph. A belief network

model contains such a directed graph, and the conditional probability tables

make it more general.

In electric circuit fault diagnosis, for example, a component is comprised of
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many logic gates such as AND, OR, XOR, etc. These simple logics can be easily

modeled using a belief network model for diagnosis purposes: each input and

output is represented by a node (variable); the output variables depend on the

input variables, and thus the input variables are parents for them in the belief

network; the CPT associated with each output variable is simply the truth table

as indicated by the logic. The cascade/combination of such simple logic gates

can be similarly modeled this way, see for example [71].

Now let us look at one network element in a communication network envi-

ronment. Such a network element could be a router, switch, hub, workstation,

or a satellite terminal. Such an equipment is typically comprised of many hard-

ware and/or software components that relate to each other in some way. The

right functioning of this equipment depends on the correct cooperation of the

related components. One component failure may incur a chain effect and lead

the equipment to malfunction. These relationships among the components can

also be naturally modeled using a belief network model.

We can further treat the network elements, linked via communication links2,

as comprising components and we go to a higher abstraction level—a networking

scenario. As mentioned before, the task of fault management is to detect, diag-

nosis and correct the possible faults during network operations, and our focus

is on fault diagnosis issues. Fault diagnosis entails modeling of the events3 and

possible causes. One important class of causal analysis is to study the dependent

relationship among the propositions and thus the so-called dependency graph is

utilized for the fault diagnosis [72][5]. A dependency graph models one aspect

2We do not usually look inside a communication link for causal analysis.

3We assume here that such events are condensed ones after the correlation procedure as

defined in section 4.3.
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of the managed system: Its nodes (objects) reflect the managed objects (MOs)

of the system. Its edges reflect the functional dependencies between MOs. “An

object A depends on an object B” means that a failure in B can cause a failure

in A. There are no attributes or methods or other relations than dependency. A

dependency graph can also be easily adapted to a belief network model: nodes

in a dependency graph correspond to nodes in a belief network, links in a de-

pendency graph correspond to those in a belief network with the semantics that

a child is dependent on its parents. The belief network model is more general in

that it can capture the probabilistic relationships easily, and the manipulation

of the belief network model is efficient. Another graph-based model for causal

analysis is the so-called causal graph presented by Kliger et.al. in a widely cited

paper [17]. Such a model can also be converted to a belief network model in a

similar way.

Dreo presented in [2] some methodologies for the correlation of trouble tickets

and she studied the fault diagnosis problem from the service-oriented point of

view. A service, used by an end user, is described with a set of subservices which

themselves may be represented with a set of subservices. A subservice in layer N

provides its functionality to the service on layer N−1, and uses some subservices

on layer N+1. Relations between the services and subservices are represented in

a service graph . Vertices in the service graph represent services and subservices,

while the directed edges represent the relation that a service “uses” the contained

subservices for the provision of its functionality. Due to the recursive nature of

the service description, and the existing service hierarchies, the service graph

has to be layered. The root vertices of the service graph represent services as

used by end users, and are placed on the refinement layer 0. When a user senses
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some service problem, either no service or service quality degradation, he/she

then sends out a trouble report to the service provider. After some preliminary

correlation4, the fault diagnosis procedure essentially starts from the reported

service and inspects the subsequent subservices on some particular branches as

indicated in the service graph, until a leaf vertex is reached. Again, a belief

network model can be easily obtained from a service graph: vertices keep the

same; the directed edges in a service graph is adapted by reversing the arrow

direction; and CPTs are provided for each vertex to represent quantitatively

the dependent relation. The CPTs make the belief network model more general

in terms of expressiveness. Moreover, the service graph model assumes that

the entity represented by each vertex can be tested in a straightforward way,

which limits its applicability on many other situations where there exist some

unobservable issues needed to be modeled also. As we will see in chapter 6, our

belief network model can easily handle such a problem.

In Telecommunications Management Network (TMN) specifications [73], the

management functionality in general can be divided into four logical manage-

ment layers: Network Element Management Layer, Network Management Layer,

Service Management Layer, and Business Management Layer. These four layers

apply to fault management and we can see from the above discussion that belief

network models can cover the modeling needs for the fault diagnosis purposes of

all the first three layers. The belief network models are general and very expres-

sive, and since the inception in the mid 1980s, they have become the standard

schemes for knowledge representation under uncertainty in many fault diagnosis

4Such event correlation basically classify the trouble reports into several groups according

to their possible common subservices.
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applications [74, 24, 75, 14, 26, 76, 71, 77].

3.4 Conclusions

In summary, we can say that a belief network is a good framework to integrate

experts’ prior knowledge and statistical data and it constitutes a model of the

environment rather than, as in many other knowledge representation schemes,

a model of the reasoning process. Actually, it simulates the mechanism that

operate in the environment and thus allows for various kinds of inferences. The

contributions of belief networks can be summarized as follows [78]:

• Natural and key technology for diagnosis

• Foundation for better, more coherent expert systems

• Supporting new approaches to planning and action modeling

– planning using Markov decision processes

– new framework for reinforcement learning

• New techniques for learning models from data. See also chapter 5 and [79].

In our work, we assume that our belief network contain only discrete vari-

ables, and we will see some belief network examples modeling fault diagnosis

scenarios in communication networks in the later chapters.

Note that the introduction above is by no means complete or exhaustive. It is

supposed to provide background knowledge on what a belief network is, what it

can do and how. For more information in this area, we refer to [80, 81, 25, 82, 26].
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Chapter 4

A Framework for Intelligent,

Distributed Fault and Performance

Management

In this chapter, we first describe the system architecture of our intelligent, dis-

tributed fault and performance management system and give the function def-

initions for each system component. We then discuss some issues to use belief

networks as the probabilistic fault models in one of the components.

4.1 System Architecture

Figure 4.1 shows the architecture of our intelligent fault and performance man-

agement system. The managed network is divided into several domains [35] and

for each domain, there is an intelligent agent attached to it, which is respon-

sible for this domain’s fault management. A domain is an abstract notion, for

example it might be a subnet, a cluster, a host or a member of a functional

partition. For those problems that none of the individual agent can solve, there
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is a mechanism by which the agents can report to the coordinator and share

the information in order to get a wider view and solve it cooperatively. Such

a coordinator could be the topmost management entity closely watched by an

operator, or it could also be another higher layer DDA that models the problem

domain in a more abstract level. So the whole system is, from the agent point

of view, a distributed, hierarchical cooperative multi-agent system.

Network &Domains

 Coordinator

DDADDA DDA

Figure 4.1: Architecture of Integrated, Intelligent Fault Management

Each agent is called a “Domain Diagnostic Agent (DDA)” with the goals of

monitoring the health of the domain and diagnosing the faults in a cost-efficient

manner. The percepts (inputs) of a DDA are the measured data, alarms or user

reports1 while the action it can take is to report the domain’s health, possible

causes and suggestive test sequence. The environment it faces is discrete and

1The term user refers to customer of a network provider, than of service provider to be

discussed in chapter 6.
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stochastic in nature. A DDA consists of the following components, as shown in

Figure 4.2.

• Intelligent Monitoring and Detection Assistant (IMDA)— The role of the

IMDA is to monitor and analyze the measured data, alarms and user trou-

ble reports.

• Intelligent Domain Trouble-shooting Assistant (IDTA)—The role of the

IDTA is to, based on the symptoms reported by IMDA, find the most

possible causes and come up with the suggestive test sequence.

• Intelligent Communication Assistant (ICA)—The role of the ICA is to help

the DDA to send messages in cases of global problems.

IDTA

ICA

DDA

IMDA IMDA

...

Figure 4.2: Components of a DDA

78



4.2 Function Definitions

4.2.1 Intelligent Monitoring and Detection Assistant

In a DDA, an IMDA is in the lowest level and serves to interface with Network

Element Agents (NEA, as defined by SNMP or CMIP and supposed to provide

operation information, for example) and user reports. There may be many such

IMDAs delegated and distributed around the network environment, as discussed

in chapter 2, and each one provides symptoms2 information to the IDTA, as

described below and illustrated in Figure 4.3. TTS stands for Trouble Ticket

System.

. . .

IMDA

PDN PDN

domain

. . .NE NE

TTS

User Reports

Figure 4.3: Illustration of an IMDA

Input

The input of an IMDA may include measured data from network elements, in-

cluding IMDA’s periodic polling and the alarms sent by the NEA, and the user

trouble reports. So we integrate the information from both the network and the

2Such symptoms are the condensed events as described in section 4.3.

79



user point of view.

Output

The output of an IMDA is the activation status of the output nodes, each of

which is called a Problem Definition Node (PDN) and acts to represent a certain

type of symptoms. Again, such symptoms are the condensed events from the

preprocessing procedure as discussed in section 4.3. The PDNs will in turn serve

as the input for IDTA. We define five activation levels for each output node in

order to reflect the severity of such a symptom type. The five severity levels are

“alarm”, “major”, “minor”, “warning” and “normal”, respectively.

Functions

The function of an IMDA is to monitor the assigned managed object, analyze

the measured data, correlate the alarms sent by the NEA and the user trouble

reports, and output the condensed events. An IMDA will periodically poll the

network element for operation information and execute on-line data analysis,

which may include, but not limited to, threshold checking, ratio computation,

change detection, trend analysis. Such analysis will generate alarms which are

in turn correlated together with the alarms generated by the managed network

element itself and user reports to generate the condensed events. In the analysis

procedure of an IMDA, there must be some representation of normal behavior

for the monitored variables in order to decide whether to issue an alarm or not.

Such representations are usually called system (behavior) models and they can

be set up in various ways, such as Auto Regressive (AR) modeling, Finite State

Machines (FSM), or neural networks.
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4.2.2 Intelligent Domain Trouble-shooting Assistant

The IDTA is located above the delegated IMDAs and acts as the trouble-shooter

for the symptoms reported from the IMDAs. It includes a probabilistic expert

system, which is basically a belief network database. Based on the activation

status of the PDNs, a sub-belief network is extracted from the database and

then the inference and trouble-shooting begin, as described below and shown in

Figure 4.4.

Scheduling of the input PDNs

Database

Probabilistic

PDN PDN

.  .  .

extracted 
belief
network inference

making
decision

working memory

IDTA

Figure 4.4: Illustration of an IDTA
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Input

The input to an IDTA is the activation status of the PDNs as reported from

the delegated IMDAs. Such inputs are the results of the event correlation pro-

cess embedded in the IMDAs that condense the original alarms/events and user

reports.

Output

The output of an IDTA consists of primary causes and the suggested test se-

quence. We tackles the fault diagnosis problems in chapter 6.

Functions

The IDTA functions include scheduling of the PDNs, extraction of the sub-belief

network (model construction), inference and trouble-shooting.

• Scheduling of the PDNs: At the same time, there might be more than one

PDNs that are not in the “normal” state. As described before, there are

five severity levels for each PDN’s value. The alarms are to be considered

with highest priority and the warnings the least (the “normal” status incurs

no diagnosis at all ). So there should be a mechanism to discriminate the

severity levels and determine the PDNs for which the sub-belief network

will be extracted. For example, in a case where PDN one is in alarm status

and PDN two is in minor status, it might be more desirable to take care

of PDN one only instead of considering both of them (let alone PDN two

only). The scheduling algorithm will be studied elsewhere. Note that this

should be a quick and easy one since the purpose of IDFM is not scheduling

anyway.
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• Belief network extraction (model construction): For the selected PDNs, a

sub-belief network can be extracted into the working memory. This can be

done using the idea of d-separation as introduced in chapter 3. One such

example can be found in [83].

• Inference and trouble-shooting: Given the extracted belief network (con-

structed model) B, the beliefs of any non-PDN nodes to be faulty can be

calculated through backward inference based on which static or dynamic

trouble-shooting strategies can be adopted to generate the test sequence.

See Chapter 6 for details.

Re-action and Pro-action

Re-actions are embodied in the handling of the alarms. For pro-actions, however,

we have two implications. First, since the “abnormal” PDNs with status other

than “alarm” can also be dealt with, the diagnosis afterwards is actually proac-

tive in the sense that it is dealing with something before it really goes wrong.

Second, the belief network nodes are not restricted to be physical entities, they

can also be “logical” or performance nodes, such as “link congestion”, so that

“soft” faults can also be included.

The rest of this dissertation is focused on fault diagnosis issues using belief

networks.

4.2.3 Intelligent Communication Assistant

When the problems cannot be solved by any of the individual DDAs, it is the

role of the ICA to report the problems to an upper layer, where correlation and

coordination can be done and a conclusion can be drawn from a global point
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of view. ICA is an optional component and in many cases we could use IDTA

directly to report to an upper entity. The ICA is illustrated in Figure 4.5.

Input Evaluation

Most probable causes and test
results obtained from IDTA

Information Compression

Communication Interface

To Coordinator

Figure 4.5: Illustration of an ICA

Input

Results of belief computations (the most probable causes) for various extracted

belief networks and results from test sequences.

Output

Compressed versions of symptom statistics and of the results given as inputs.

The output is then transmitted to a coordinator in the upper layer via some

communication links.

Functions

The ICA functions include assessment of the value of the results from belief com-

putations and test sequences (Input Evaluation). This evaluation will decide to
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what extent it is worthwhile to transmit these results to an upper layer. Only

the most relevant results will be transmitted. In addition, the ICA will have

a function to select features and compress the data describing valuable inputs

(Information Compression). The evaluation and compression will help reduce

the amount of data to be transmitted and thus reduce the bandwidth overhead

for such communications. Finally, the ICA must include a function which will

decide where to send the compressed descriptions and how to communicate with

minimum overhead with the upper layer (Communication Interface). To under-

stand such selected and compressed information (encoded data), the coordinator

receiving such information must share with ICA the same encoding-decoding

protocol.

We do not address ICAs in this dissertation.

4.3 Event Correlations in IMDA before using

Belief Networks

In the context of network management, a fault is defined as a cause for malfunc-

tioning. Faults are responsible for making it difficult or preventing the normal

functioning of a system and they manifest themselves through errors, that is,

deviations in relation to the normal operation of the system. An alarm consists

of a notification of the occurrence of a specific event, which may or may not

represent an error. In the sequel, we use event and alarm interchangeably. As

mentioned in chapter 1, a single fault can generate a lot of alarms in a variety

of domains, and multiple faults will make things even worse. Several factors

contribute to this situation [4]:
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• A device may generate several alarms due to a single fault.

• A fault may be intrinsically intermittent, which implies in the sending of

a notification at each new occurrence.

• The fault of a component may result in the sending of an alarm notification

each time the service supplied by this component if invoked.

• A single fault may be detected by multiple network components, each one

of them emitting an alarm notification.

• The fault of a given component may affect several other components, caus-

ing the fault’s propagation.

Not all these alarms are useful and we can not afford to input all these

alarms to our belief network models for fault diagnosis. Therefore it is highly

desirable to utilize some preprocessing on these original alarms before we start

the real diagnosis procedure. We call this preprocessing event correlation, which

is a conceptual interpretation of multiple alarms such that new meanings are

assigned to these alarms [16]. The output events from such correlation processing

are called condensed events. Such correlation procedures are executed in the

delegated Intelligent Monitoring and Detection Assistants (IMDA), as described

in section 4.1, and the condensed events are just the output status of the Problem

Definition Nodes (PDN) described there. Several types of correlation may be

identified [84], according to the operations executed on the alarms. The most

important of these operations are detailed as follows.
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Compression

Event compression is the task of reducing multiple occurrence of identical events

into a single representative of the events. No number of occurrences of the event

is taken into account. The meaning of the compression correlation is almost

identical to the single event a, except that additional contextual information is

assigned to the event to indicate that this event happened more than once.

Filtering

Event (alarm) filtering is the most widely used operation to reduce the number

of alarms presented to the operator. If some parameter p(a) of alarm a, e.g.,

priority, type, location of the network element, time stamp, etc., does not fall

into the set of predefined legitimate values H , then alarm a is simply discarded

or sent into a log file. The decision to filter alarm a out or not is based solely on

the specific characteristics of alarm a. In more sophisticated cases, set H could

be dynamic and depend on user-specific criterion or criterion calculated by the

system. For an example, see the adaptive threshold in [15].

Suppression

Event suppression is a context-sensitive process in which event a is temporar-

ily inhibited depending on the dynamic operational context C of the network

management process. The context C is determined by the presence of other

event(s), network management resources, management priorities, or other exter-

nal requirements. The change in the operational context could lead to exhibition

of the suppressed event. Temporary suppression of multiple events and control

of the order of their exhibition is a basis for dynamic focus monitoring of the
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network management process.

Counting

Counting consists of generating a new alarm each time the number of occurrences

of a given type of event surpass a previously established threshold.

Generalization

Event generalization is a correlation in which event a is replaced by its super class

b. Event generalization has a potentially high utility for network management.

It allows one to deviate from a low-level perspective of network events and view

situations from a higher level. As an example, in the simultaneous occurrence of

the alarm corresponding to all the routes that utilize a certain cable as a physical

media, each one of the original alarms may be replaced by an alarm indicating

a defect in the cable; next, through a compression operation, all the repeated

alarms may be replaced by a single alarm.

Specialization

Event specification is an opposite procedure to event generalization. It substi-

tutes an event with a more specific subclass of this event. This operation does not

add any new information besides the ones that were already implicitly present in

the original alarms and in the configuration database, but it is useful in making

evident the consequences that an event in a given management layer may cause

in the higher management layer. As an example of possible specification, the

correlation system may generate, whenever a determined path is interrupted, an

alarm for each one of the services affected by the interruption. Thus, through
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specification, the consequences of the telecommunications services management

layer will be made evident.

Temporal Relation

Temporal relations T between events a and b allow them to be correlated de-

pending on the order and time of their arrival. Several temporal relationships

may be identified, utilizing concepts like AFTER, FOLLOW, BEFORE, PRECEDE,

DURING, START, FINISH, COINCIDE, OVERLAP .

Clustering

Event clustering allows the creation of complex correlation patterns using logical

operators ∧ (and), ∨ (or), and ¬ (not) over component terms. The terms in the

pattern could be primary network events, previously defined correlations, or

tests of network connectivity. Clustering consists of generating a new alarm

based on the detection of an established complex correlation patterns on the

received alarms. The clustering operation may also take into account the result

of other correlations and the result of tests carried out in the network.

In summary, event correlation supports the following network management tasks

[16, 84]:

• Reduction of the information load presented to the network operations

staff by dynamic focus monitoring and context-sensitive event suppression

(filtering).

• Increasing the semantic content of information presented to the network

operations staff by aggregation and generalization of events.
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• Real-time network fault isolation, causal fault diagnosis, and suggestion of

corrective actions.

• Analysis of the ramification of events, prediction of network behavior, and

trend analysis.

• Long-term correlation of historic event log files and network behavior trend

analysis.

4.4 Construction of a Belief Network Model

With the condensed events at hand, we would like to build a belief network model

for the diagnosis purpose. This entails setting up both the DAG structure and

the associated CPTs.

First, we identify the set of random variables that will be used to represent

in the belief network model the causes and symptoms of the current managed

problem domain. The condensed events are the manifestations or symptoms of

the hidden faults. From the causal semantics of the directed links of a belief

network model, there should be directed paths from the vertices corresponding

to the faults to those corresponding to the condensed events. For a node rep-

resenting a condensed event, if its parent is another condensed event, we call

this child event a derived event and we just delete this node from the model.

After this pruning, all of our event nodes are leaf nodes. For a fault node, if

its parents are some other fault nodes, we call it a derived fault node. We call

a fault node without any parent3 an ultimate fault node. In our work, we only

consider the ultimate fault nodes. Besides root nodes and leaf nodes, we also

3A root node in graph theory terminology
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have some intermediate nodes that help mediating the modeling, see chapter 6

for more information.

The granularity of the belief network is decided by the system designer, and

depends also on the requirement on how precise the fault diagnosis should be.

A higher granularity is requested if it is necessary to localize the fault more

precisely.

The parameters in the CPTs associated with each node can be initially as-

signed by human experts. Since human will usually feel less at ease to give the

numerical estimate of the conditional probabilities, we can provide a table map-

ping from frequency-describing words to numerical values for the human experts

to choose from. One example of such a table is shown in Table 4.1. Such initial

setups can be further validated and improved using statistical data, see chapter

5 for details.

Table 4.1: From frequency-describing words to numerical values

Always 1

Almost Always 0.9

Quite Often 0.8

Often 0.7

Likely 0.6

Half and half 0.5

Less Likely 0.4

Sometimes 0.3

Occasionally 0.2

Seldom 0.1

Never 0
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In summary, the construction of a belief network model consists of the fol-

lowing steps [61]:

• Choose the set of random variables that describe the domain

• Give order numbers to the random variables using topological ordering

• While there are still variables left:

– Pick a random variable and add a node representing it

– Choose parents for it as the minimal set of nodes already in the net-

work such that (3.3) is satisfied

– Specify the CPT for it

Since each node is only connected to earlier nodes, this construction method

guarantees that the network is acyclic. Furthermore, it is both complete and

consistent [70].

4.5 Conclusions

The framework proposed in this chapter is quite general and can be incorporated

into many network management paradigms, like the traditional client-server (CS)

based architecture, and the more recent mobile-code based framework.

Integration with a Client-Server based Management Plat-

form

A conventional network management system consists of two classes of compo-

nents: managers and agents. Applications in the management station assume
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the manager role; Agents are server processes running in each involved man-

ageable network entity. These agents collect network device data, store them

in some format, and support a management protocol, e.g., SNMP. Manager ap-

plications retrieve data from element agents by sending corresponding requests

over the management protocol. Most of the current commercial network and

system management platforms take this paradigm.

In this setup, our components all reside above the management platform as

management applications. The IMDAs are not delegated agents to the network

elements; they are simply data handling processes. The IDTAs serve to find the

right diagnosis and the notion of domain is still valid. We do not usually need

to use ICAs in such situations. Figure 4.6 illustrates such ideas. Note that we

also integrate the trouble ticket system here. From architectural point of view, a

TTS is a management application upon a management platform. The gateway

is an application between platform and a TTS that collects alarm information

issued from the platform and generate trouble tickets. It should be noted that

an end user has no access to the management platform. He/she can only submit

trouble reports, and be informed about the progress of fault recovery.

Integration with a Mobile Code based Management Frame-

work

In chapter 2, we discuss three mobile code based design paradigms, i.e., remote

evaluation, code on demand and mobile agent, in the development of distributed

applications. In particular, for network management purposes, we combine the

remote evaluation and code on demand paradigms and propose the adaptive

distributed network monitoring and control framework for supporting fault and
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Figure 4.6: Integration with a traditional management platform

performance management. In this setup, we distribute some monitoring intelli-

gence via our delegated agents to the network elements for some local compu-

tation. The computed results are reported back to the manager-coordinator for

higher level processing.

Our components discussed in this chapter fit naturally into such a framework.

In fact, the IMDAs are just the delegated agents in this framework, and IDTAs

usually reside on the manager-coordinator site.

The rest of this dissertation focuses on the functionality of an IDTA.
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Chapter 5

Statistical Parameter Learning for

Belief Networks based on Expectation

Maximization Method

5.1 Introduction

In previous discussions we assumed that both the network structure and the

associated CPTs can be provided by human experts as the prior information.

In many applications, however, such information is not available. In addition,

different experts may treat the systems in various ways and thus give different

and sometimes conflicting assessments. In such cases, the network structure and

corresponding CPTs can be estimated using empirical data and we refer to this

process as learning [85, 79, 86]. Even if such prior information does exist, it is

still desirable to validate and improve the model using data.

In this chapter, we address the problem of parameter learning under fixed

structure. Both complete and incomplete (data) observations are included.

Given complete data, we describe the simple problem of single parameter learn-

95



ing for intuition and then expand to belief networks under appropriate system

decomposition. If the observations are incomplete, we first estimate the missing

observations and treat them as though they are ”real” observations, based on

which the parameter learning can be executed as in complete data case. We de-

rive a uniform algorithm based on this idea for incomplete data case and present

the convergence and optimality properties.

Before we proceed to the learning problems, we give the following definitions

which are used throughout this chapter. First, we repeat the definition of belief

network for convenient reference.

Definition 5.1.1 A belief network is a Directed Acyclic Graph (DAG) G =

(X,E, P ) in which: The nodes X represent variables of interest (propositions);

The set of directed links or arrows E represent the causal influence among the

variables; The strength of an influence is represented by conditional probabilities

attached to each cluster of parent-child nodes in the network.

We let X = [X1, . . . , Xn], where each random variable Xi takes values from

finite alphabet Ai. Xi = xi means random variable Xi assumes the value xi. If

we know that Xi assumes its jth value from Ai, we write Xi = xji .

Definition 5.1.2 An observation is an instantiation x = [x1, . . . , xn] of X, with

x ∈ Rn and assume values in A
4
= A1×, . . . ,×An.

Definition 5.1.3 If every node in X is observed, we call x a complete observa-

tion, or a complete data set. Each such an x is called a configuration.

Definition 5.1.4 If there are some random variables in X that are not instan-

tiated, such an observation is called an incomplete data.
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Definition 5.1.5 The instantiated set of nodes S ⊆ X forms the evidence set,

while N = X\S is called the non-evidential set.

In cases of full observation, S = X; but in practice, mostly S ⊂ X, which

means incomplete data.

Definition 5.1.6 If we mark the nodes in X that belongs to S with ∗ and those

in N with ?, then we form the observation schema S+. Each instantiation of the

schema is called an evidence under schema S+.

For example, in a 5 node belief network which takes only binary values, such

a schema is S = (∗, ?, ?, ∗, ∗) and one possible instantiation is (0, ?, ?, 1, 0)T .

Definition 5.1.7 Suppose we have a batch of observations D = [D1, . . . , DL]

with each Di ∈ Rn complying with schema S+
i . If S+

i ≡ S+
j , ∀i, j = 1, . . . , L, we

say D is a uniform batch of observations. If, on the other hand, S+
i may or may

not be the same as S+
j for i 6= j, we say D is a hybrid-schema observation set.

5.2 Parameter Learning under Complete Data

In this section, we begin with the simple one-parameter learning case, then we

move to multi-variable parameter learning in belief networks.

5.2.1 Simple Parameter Learning

Imagine we have a (not necessarily fair) coin, and we conduct experiments

whereby we flip the coin in the air, and it comes to land as either head or

tail. We assume that different tosses are independent and that, in each toss, the
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probability of the coin landing heads is some underlying unknown real number

θ. Our goal here is to estimate θ based on the outcomes of the experiments.

Define the likelihood function as Pθ(D) = θh(1− θ)t, which is the probability

with which we get a particular data set D with h heads and t tails given that the

probability θ has a certain value. It is straightforward to verify that the value

of θ which maximizes Pθ(D) is h
h+t

. This is called maximum likelihood (ML)

estimate for θ.

ML estimate is the expectation of Bayesian estimate and ML estimate ap-

proaches to Bayesian estimate when sample size becomes unboundedly large

(which means prior belief becomes less and less important as the data accumu-

late). Given ML estimate, it is straightforward to obtain the hyper-parameters

for Dirichlet distribution in Bayesian analysis.

The usefulness of the coin flipping here lies in the fact that: If, by some

decomposition mechanism, we can break a complex problem into multiple in-

dependent single parameter learning problems, then we can use the flip coin

techniques here for each of them; And, such computations would be possibly

done in a distributed manner.

5.2.2 Parameter Learning for a Belief Network

System Decomposition

Suppose data D = [D1, . . . , DL] are generated independently from some under-

lying distribution, with each Di = [x1[i], . . . , xn[i]]
T . The problem here is to find

the CPT parameters θ that best model the data. The parameter θ is actually a

3-dimensional matrix, with its element θijk defined as the probability that vari-

able Xi takes on its jth possible value assignment given its parents Πi takes on
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their kth possible value assignment, or

θijk = P (Xi = xji |Πi = πki ). (5.1)

We assume here that θijk > 0, ∀ i, j, k, and Pθ(D) continuous with θ. If we

define L(θ;D) = Pθ(D) as the likelihood function given some parameter θ, the

Maximum Log-Likelihood formulation for the problem is:



maxθ logL(θ;D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]

(5.2)

Moreover, we have:

L(θ;D) =
L∏
l=1

Pθ(x1[l], . . . , xn[l])

=
L∏
l=1

n∏
i=1

Pθi
(xi[l]|Πi[l])

=
n∏
i=1

L∏
l=1

Pθi
(xi[l]|Πi[l])

=
n∏
i=1

Li(θi;D), (5.3)

where Li(θi;D)
4
=
∏L
l=1 Pθi

(xi[l]|Πi[l]). The first equality comes from the fact

that D consists of independent observations and the second equality follows

(3.2). θi is a 2-dimensional matrix, with rows occupied by its possible values and

columns defined according to its parents’ status. From (5.3) we get

logL(θ;D) =
n∑
i=1

logLi(θi;D). (5.4)

The above derivation gives us a decomposition of the belief networks learning

problem based on independent observations. Namely, the maximum likelihood
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solutions of (5.2) are just those achieved by the sum of the solutions from the

following independent estimation problems:

For each Xi ∈ X: 

maxθi
logLi(θi;D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]

(5.5)

For each Li(θi;D), we make further decomposition as follows.

Definition 5.2.1 The set of nodes Si = (Xi,Πi) forms the extracted schema

for node Xi. Xi assumes values from Ai. Πi takes values from
∏
Xj∈Πi

Aj. Let

K = |∏Xj∈Πi
Aj|.

Definition 5.2.2 Group Gik is the set of instantiations of Si in D with Πi = πki .

The number of elements in Gik is Nik = |Gik| =
∑L
l=1 I{πk

i |Dl}, where I{πk
i |Dl} is

the indicator function defined as:

I{z|Dl} =


1 if z occurs in Dl

0 otherwise
(5.6)

and
∑
kNik = L.

Definition 5.2.3 In Gik, Gijk is the set of instantiations where Xi = xji , and

Nijk = |Gijk| =
∑L
l=1 I{xj

i ,π
k
i |Dl}, number of elements in Gijk with

∑Ai
j=1Nijk =

Nik.

So the decomposition is:

Li(θi;D) =
L∏
l=1

Pθi
(xi[l]|Πi[l])
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=
K∏

k=1,{Πi=πk
i }

|Ai|∏
j=1,{Xi=x

j
i |Πi=πk

i }
θ
Nijk

ijk

=
K∏

k=1,{Πi=πk
i }
Lki (θi;D), (5.7)

or

logLi(θi;D) =
K∑

k=1,{Πi=πk
i }

logLki (θi;D), (5.8)

where Lki (θi;D) =
∏|Ai|
j=1,{Xi=x

j
i |Πi=πk

i }
θ
Nijk

ijk is just the likelihood function of multi-

nomial distribution under parameter θ.

Then the ML solutions of (5.5) are again those achieved by the sum of the

solutions from the following independent estimation problems:

For each Πi = πki , 

maxθi
logLki (θi;D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]

(5.9)

Or equivalently, by defining rj = θijk, yj = Nijk, and L̃(r;D) =
∏|Ai|
j=1 r

yj

j , we

consider the maximum log-likelihood problem,

For each Πi = πki , 

maxr log L̃(r;D)

s.t.
∑
j rj = 1, and

rj ∈ [0, 1]

(5.10)

which is just a generalization of the simple parameter learning problem discussed

in section 5.2.1.

The decomposition logL(θ;D) =
∑n
i=1

∑K
k=1,{Πi=πk

i } logLki (θi;D) first exploits

the conditional independence structure embedded in belief networks and helps
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to reduce the problem to n independent ML estimate problems; then, each such

problem is further decomposed as shown in (5.7). We can thus do the learning

in a “local” and distributed manner.

Parameter Estimation

In this section, we derive the ML estimates for problem (5.10) and provide the

optimality results. For some concepts of estimation theory, we refer to [87].

Lemma 5.2.4 Given complete data set D, log L̃(r;D) is negative and strictly

concave in r = [r1, . . . , r|Ai|].

Proof. Let J = |Ai| and define function f : RJ → R1 as

f(r) = log L̃(r;D)

=
J−1∑
j=1

yj log rj + yJ log(1−
J−1∑
j=1

rj). (5.11)

Obviously, log L̃(r;D) < 0.

Let r = λα + (1− λ)β, where α and β satisfy the constraints in (5.10) and

0 < λ < 1. Since log(x) is strictly concave in x, we have

f(λα+ (1− λ)β) > λ
J−1∑
j=1

yj logαj + (1− λ)
J−1∑
j=1

yj log βj

+λyJ log(1−
J−1∑
j=1

αj) + (1− λ)yJ log(1−
J−1∑
j=1

βj)

= λf(α) + (1− α)f(β). (5.12)

⇒ Strictly concave.

Lemma 5.2.5 Given complete data set D, logL(θ;D) is negative and strictly

concave in θ = {θijk}.
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Proof.

logL(θ;D) =
n∑
i=1

K∑
k=1,{Πi=πk

i }
logLki (θi;D),

where each logLki (θi;D) is negative and strictly concave in θijk. We conclude that

the sum of those negative (and thus non-cancelling), strictly concave functions

is also negative and strictly concave in θijk, ∀ i, j, k, or, concave in θ.

Lemma 5.2.6 The maximum likelihood solution for problem (5.10) is

rj = yj/
J∑
j=1

yj, (5.13)

where yj = Nijk, as defined in definition 5.2.3.

Proof. Use the f notation as above and obtain the Likelihood Equations

∂f

∂rj
= 0, j = 1, . . . , J. (5.14)

From (5.11) it is straightforward to get J − 1 independent equations:

yj
rj

=
yJ

1−∑J−1
i=1 ri

, ∀j = 1, . . . , J − 1, (5.15)

from which it is easy to obtain that rj = yj/
∑J
j=1 yj, and we can check that

rj ∈ [0, 1] and
∑J
j rj = 1. By lemma 5.2.4, we know such stationary points are

global maxima (because log L̃(r;D) is strictly concave).

Lemma 5.2.7 The ML estimates for problem (5.10) are minimum variance un-

biased estimators (MVUE).

Proof. Given data set D, suppose Xi’s J possible values are [y1, . . . , yJ ]
T , if

we look at node Xi under Πi = πki . The multinomial distribution is

pψ(y) =
(
∑J
i=1 yi)!∏J
i=1 yi!

J∏
i=1

ψyi
i (5.16)
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Then for an underlying set of ψ, we have for estimator ψ̂j(y) = yj/
∑J
i=1 yi

Eψ{ψ̂j(y)} =
N∑

yj=0

yj
N

N !

yj!
ψ
yj

j

∑
yi

(
∑

i6=j
yi)=N−yj

1∏
i6=j yi!

∏
i6=j

ψyi
i (N

4
=

J∑
i=1

yi)

=
1

N

N∑
yj=0

yj

(
N

yj

)
ψ
yj

j (1− ψj)
N−yj

=
1

N
Nψj = ψj . (5.17)

From (5.16), we have

∂ log pψ(y)

∂ψj
=
yj
ψj
− N − yj

1− ψj
. (5.18)

Then the Fisher information and variance are,

Iψ = −Eψ{∂
2 log pψ(y)

∂2ψj
}

= Eψ{ yj
ψ2
j

+
N − yj

(1− ψj)2
}

= N/ψj(1− ψj), (5.19)

V arψ{yj/N} =
1

N2
Eψ{y2

j} − E2{yj/N}

= ψj(1− ψj)/N = 1/Iψ. (5.20)

⇒ MVUE (achieves Cramer Rao Lower Bound, CRLB).

5.3 Parameter Learning under Incomplete Data

using EM Algorithm

In this section, we first brief the idea of EM algorithm, followed by the derivation

for belief networks and the discussion of convergence and optimality properties.
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5.3.1 A Brief Description of EM Algorithm

EM algorithm is broadly applicable for computing maximum likelihood estimates

from incomplete data. Each iteration consists of an expectation step followed by

a maximization step, and hence the name [88, 89].

Suppose we have two sample spaces X and Y with many-to-one mapping

X → Y , where x can not be observed directly, but instead, only through y. Let

the family of sampling densities depending on Φ for X and Y are fΦ(x) and

gΦ(y), respectively. We call fΦ(x) as the complete data specification and gΦ(y)

as the incomplete data specification, with the following relation:

gΦ(y) =
∫
X (y)

fΦ(x)dx, (5.21)

where X (y) is the set of x ∈ X that corresponds to y. EM algorithm aims to

find a value of Φ that maximizes gΦ(y) given an observed y, but does so by

making essential use of fΦ(x). When fΦ(x) belongs to an exponential family, we

have the EM algorithm:

Let Φ(p) denotes the current value of Φ after p cycles, then for the next cycle:

E-step: Estimate the complete-data sufficient statistics t(x) by

t(p) = EΦ(p){t(x)|y} (5.22)

M-step: Determine Φ(p+1) as the solution of the equations

EΦ{t(x)} = t(p) (5.23)

5.3.2 EM Algorithm for Belief Networks

Suppose we have a batch of observations D = [D1, . . . , DL] with each Di ∈ Rn

complying with schema S+
i . D may or may not be uniform. The objective is to
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find the most likely underlying parameter θ that can best model the incomplete

observations, namely 

maxθ logPθ(D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]

(5.24)

and we wish to do this via the maximization of an associated complete data prob-

lem. The idea is that we first estimate and “fill” the missing values based on the

evidence and current guess of the parameters, after which we treat them as the

real data and apply the ML principle to do the parameter learning. The estima-

tion of the missing values are called Expectation-step (or E-step) and the param-

eter learning step is called Maximization-step (or M-step). It is straightforward

to see that a multinomial distribution pψ(y) =
(
∑J

j=1
yj)!∏J

j=1
yj !

∏J
j=1 ψ

yj

j belongs to the

exponential family and the sufficient statistics is just the set {yj}, j = 1, . . . , J .

E-step: For each sample Dl, we want to estimate the values for those nodes

corresponding to “?” mark in schema S+
l and thus get the augmented data set

C(Dl). Let Nl be the set of nodes marked as “?” in schema S+
l , then given

Dl, there are all together
∏
m∈Nl

|Am| cases in the augmented data set C(Dl).

For any entry D+
l (q) ∈ C(Dl), q = 1, . . . ,

∏
m∈Nl

|Am|, the evidential nodes

are “clamped” as in observation Dl, while the non-evidential nodes take the qth

combination from the
∏
m∈Nl

|Am| choices. We use Q to denote
∏
m∈Nl

|Am| in

the sequel for convenience. Then under the current guess θ̃, Pθ̃(D
+
l (q)) can be

computed using (3.2), and the probability of D+
l (q) given Dl is

Pθ̃(D
+
l (q)|Dl) =

Pθ̃(D
+
l (q))∑

q Pθ̃(D
+
l (q))

. (5.25)

M-step: For augmented data set C(Dl) where each entry is a complete

observation, we can either average over those entries or find the most-probable
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entry to serve as the complete data set for the ML estimator. At this time,

we consider the averaging method, by which we weigh each D+
l (q) according to

(5.25) within each Dl.

So the associated problem is: for complete data set C(D) = [C(D1), . . . , C(DL)],

maxθ log P̄θ(C(D))

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]

(5.26)

where

log P̄θ(C(D)) =
L∑
l=1

log P̄θ(C(Dl))

=
L∑
l=1

Q∑
q=1

Pθ̃(D
+
l (q)|Dl) logPθ(D

+
l (q))

=
n∑
i=1

L∑
l=1

Q∑
q=1

Pθ̃(D
+
l (q)|Dl) logPθi

(Xi(D
+
l (q))|Πi(D

+
l (q))).(5.27)

Compare (5.27) with (5.4), we can take similar decompositions and by lemma

5.2.6 we have for node Xi under Πi = πki ,

θ̂ijk =
Ñijk

Ñik

, (5.28)

where Ñijk and Ñik can be obtained as in definition 5.2.2 and 5.2.3, except that

the complete data D+
l (q) is weighed by Pθ̃(D

+
l (q)|Dl). So

θ̂ijk =

∑L
l=1

∑Q
q=1 I{xj

i ,π
k
i |D+

l
(q)}Pθ̃(D

+
l (q)|Dl)∑L

l=1

∑Q
q=1 I{πk

i |D+
l

(q)}Pθ̃(D
+
l (q)|Dl)

, (5.29)

where θ̃ is the current set of parameters and I{z|D+
l

(q)} is defined as

I{z|D+
l

(q)} =


1 if z occurs in D+

l (q)

0 otherwise
(5.30)
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One may easily observe that such augmentation is of combinatorial complex-

ity, and even when Ai = {0, 1}, ∀i , the entries for C(Dl) would be 2|Nl|, which

makes the computation in (5.29) intractable in most cases.

However, notice that

Pθ̃(x
j
i , π

k
i |Dl) =

Q∑
q=1

I{xj
i ,π

k
i |D+

l
(q)}Pθ̃(D

+
l (q)|Dl), (5.31)

Pθ̃(π
k
i |Dl) =

Q∑
q=1

I{πk
i |D+

l
(q)}Pθ̃(D

+
l (q)|Dl), (5.32)

we can simplify (5.29) as

θ̂ijk =

∑L
l=1 Pθ̃(x

j
i , π

k
i |Dl)∑L

l=1 Pθ̃(π
k
i |Dl)

, (5.33)

where Pθ̃(x
j
i , π

k
i |Dl) and Pθ̃(π

k
i |Dl) can be calculated using standard inference al-

gorithm given D [80, 70, 26]. So we don’t need to do the augmentation explicitly

and hence avoid the combinatorial complexity. Compare (5.33) with (5.13), we

can see that we just replace the “hard” counting measures yj, ∀j ∈ J in (5.13)

with the “soft” estimation Pθ̃(x
j
i , π

k
i |Dl) for yj, ∀j ∈ J . By lemma 5.2.7, (5.33)

is the MVUE estimator for the complete data augmented using θ̃.

Now we got the ML estimates for problem (5.26). Recall that our goal is to

find the ML estimates that best model the incomplete data set D, we treat the

estimates θ̂ as the current guess of true parameter θ and do the E-step and M-

step again. Repeat such process and we get the EM algorithm for discrete-valued

belief network. If we define operator H(ψ) as

H(ψ)(ijk) =

∑L
l=1 Pψ(x

j
i , π

k
i |Dl)∑L

l=1 Pψ(π
k
i |Dl)

, (5.34)

then the EM process can be summarized as the iteration

θ̃(p+1) = H(θ̃(p)), (5.35)
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for some initial θ̃(0). The EM algorithm can be thought of finding the fixed

point of operator H , and, hopefully, such fixed point θ̃∗ is just the best set of

parameters that model the data set D.

More generally, we can extend (5.35) to the small-step size version of itera-

tion, which falls within the stochastic approximation framework [90][91][92][93],

as shown below:

θ̃(p+1) = (1− γp)θ̃
(p) + γpH(θ̃(p)), (5.36)

where γp ∈ [0, 1]. Obviously, if γp = 0, θ̃(p+1) = θ̃(p) and we ignores the influence

from data; if γp = 1, however, we get (5.35) as a special case. We assume from

now on the nontrivial case where γp > 0.

If we define operator M(ψ) as

M(ψ) = (1− γ)ψ + γH(ψ), (5.37)

with ψ appropriately chosen, then the EM algorithm can be summarized as the

iteration

θ̃(p+1) = M(θ̃(p)), (5.38)

and the goal here is to find the fixed point θ̃∗ of operator M .

5.3.3 Optimality and Convergence

Lemma 5.3.1 For one sample D = [D1], the algorithm θ̃(p+1) = H(θ̃(p)) makes

logL(θ;D) non-decrease for each iteration.

Proof. The following proof resembles that in [89]. Let Y denote the observed

nodes and Z denote the non-observed nodes. So logL(θ;D) = logL(θ;Y = y),

and X = [Y, Z]. Given those nodes in Y “clamped” as indicated in D1, we

can obtain θ̃(p) by using the augmented complete data set X = X(y), where
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X(y) denotes the multiple cases of X that contains Y = y. Such X(y) may be

governed by some unknown parameter set θ, which we want to estimate using

ML principle at M-step. For simplicity, we use Y to denote Y = y. For

logL(θ;Y ) = logPθ(Y ) = logPθ(X(y))− logPθ(X(y)|Y ), (5.39)

we take expectation with respect to the conditional probability density of X

given Y under current parameter set θ̃(p), and get

Eθ̃(p){logPθ(Y )} = logPθ(Y )

= Eθ̃(p){logPθ(X(y))} − Eθ̃(p){logPθ(X(y)|Y )}

= Q(θ, θ̃(p))− T (θ, θ̃(p)), (5.40)

where Q(θ, θ̃(p)) = Eθ̃(p){logPθ(X(y))}, T (θ, θ̃(p)) = Eθ̃(p){logPθ(X(y)|Y )}.
At M-step, as described in section 5.3.2, we use the ML principle to find the

most probable parameter based on the complete data set X(y), each entry of

which is appropriately weighed according to its conditional density under θ̃(p).

θ̃(p+1) = arg max
θ
Q(θ, θ̃(p))

= arg max
θ

∑
x∈X(y)

pθ̃(p)(x|y) logPθ(x). (5.41)

and therefore,

Q(θ̃(p+1), θ̃(p)) ≥ Q(θ̃(p), θ̃(p)). (5.42)

Also for any θ,

T (θ, θ̃(p))− T (θ̃(p), θ̃(p)) = Eθ̃(p){log
Pθ(X|Y )

Pθ̃(p)(X|Y )
}

= −D(θ̃(p)||θ)

≤ 0, (5.43)

where D(θ̃(p)||θ) ≥ 0 is the relative entropy between Pθ̃(p)(X|Y ) and Pθ(X|Y ),

see [94]. By (5.42) and (5.43), we obtain logL(θ̃(p+1);D) ≥ logL(θ̃(p);D).
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Lemma 5.3.2 For independent uniform D = [D1, . . . , DL] with each Di ∈ Rn

complying with the same schema S+, the algorithm θ̃(p+1) = H(θ̃(p)) makes

logL(θ;D) non-decrease for each iteration.

Proof. At E-step, we can obtain for each Dl the augmentation and thus the

complete data set C(D) under θ̃(p). Let D+ = C(D). Observing that D1, . . . , DL

are independent observations and also, each D+
l is obtained independently of

Dm, m 6= l, we have

logPθ(Dl) = logPθ(D
+
l )− logPθ(D

+
l |Dl). (5.44)

Take expectation with respect to the conditional probability density of D+
l

given Dl under θ̃(p), we get

logPθ(Dl) = Eθ̃(p){logPθ(D
+
l )} −Eθ̃(p){logPθ(D

+
l |Dl)}

= Ql(θ, θ̃
(p))− Tl(θ, θ̃

(p)), (5.45)

where Ql(θ, θ̃
(p)) = Eθ̃(p){logPθ(D

+
l )} and Tl(θ, θ̃

(p)) = Eθ̃(p){logPθ(D
+
l |Dl)}.

Then for each Dl under θ̃(p), we have

logL(θ;D) =
∑
l

Ql(θ, θ̃
(p))−∑

l

Tl(θ, θ̃
(p)), (5.46)

where

Ql(θ, θ̃
(p)) =

∑
q

Pθ̃(p)(D+
l (q)|Dl) logPθ(D

+
l (q)). (5.47)

Like in Lemma 5.3.1, Tl(θ, θ̃
(p)) ≤ Tl(θ̃

(p), θ̃(p)), for any θ 6= θ̃(p), so we have

∑
l

Tl(θ, θ̃
(p)) ≤∑

l

Tl(θ̃
(p), θ̃(p)). (5.48)

At M-step, θ̃(p+1) = arg maxθ Eθ̃(p){logPθ(D
+)}, where

Eθ̃(p){logPθ(D
+)} =

∑
l

Ql(θ, θ̃
(p)). (5.49)
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Thus we can see that

∑
l

Ql(θ̃
(p+1), θ̃(p)) ≥∑

l

Ql(θ̃
(p), θ̃(p)). (5.50)

Combine (5.46), (5.48) and (5.50) we get logL(θ̃(p+1);D) ≥ logL(θ̃(p);D).

Lemma 5.3.3 For independent nonuniform D = [D1, . . . , DL] with each Di ∈
Rn complying with schema S+

i ,the algorithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D)

non-decrease for each iteration.

Proof. For formulae (5.44)–(5.50), we did not use the assumption of uniform

data, the proof above can be adapted here.

Proposition 5.3.1 Given independent (but not necessarily uniform) data set

D = [D1, . . . , DL], the algorithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D) non-decrease

for each iteration, or logL(H(θ̃(p));D) ≥ logL(θ̃(p);D).

Proof. The proof is straightforward from Lemma 5.3.1, 5.3.2 and 5.3.3.

Proposition 5.3.2 Given independent (but not necessarily uniform) data set

D = [D1, . . . , DL], the algorithm θ̃(p+1) = M(θ̃(p)) makes L(θ;D) non-decrease

for each iteration.

Proof. We rewrite (5.46) as

logL(θ;D) = Q(θ, θ̃(p))− T (θ, θ̃(p)) (5.51)

where Q(θ, θ̃(p)) =
∑
lQl(θ, θ̃

(p)), T (θ, θ̃(p)) =
∑
l Tl(θ, θ̃

(p)).

We have as usual for any θ 6= θ̃(p),

T (θ, θ̃(p)) ≤ T (θ̃(p), θ̃(p)). (5.52)

112



For Q(θ, θ̃(p)), we have

Q(θ, θ̃(p)) =
∑
l

∑
q

Pθ̃(p)(D+
l (q)|Dl) logPθ(D

+
l (q)). (5.53)

By lemma 5.2.5 we see that each logPθ(D
+
l (q)) is negative and strictly con-

cave in θ. We conclude that Q(θ, θ̃(p)) is also negative and strictly concave since

it is a linear combination of them. So for operator M with γp ∈ (0, 1],

Q(M(θ̃(p)), θ̃(p)) = Q((1− γp)θ̃
(p) + γpH(θ̃(p)), θ̃(p))

≥ (1− γp)Q(θ̃(p), θ̃(p)) + γpQ(H(θ̃(p)), θ̃(p)) by concavity

≥ (1− γp)Q(θ̃(p), θ̃(p)) + γpQ(θ̃(p), θ̃(p)) by proposition 5.3.1

= Q(θ̃(p), θ̃(p)). (5.54)

Combine (5.52) and (5.54) we see that logL(M(θ̃(p));D) ≥ logL(θ̃(p);D).

Proposition 5.3.3 The algorithm θ̃(p+1) = M(θ̃(p)) will make logL(θ;D) con-

verge to logL(θ∗;D), where θ∗ is the fixed point of operator M , and θ∗ is the

local maxima.

Proof. From proposition 5.3.2 we see that logL(θ;D) is non-decreasing un-

der operator M ; also from lemma 5.2.5, we know that logL(θ;D) < 0, bounded

above. So the sequence {logL(θ;D)} under M converges to the limit, say

logL∗(θ;D). For continuous (and thus measurable) function logL(θ;D), let

θ∗ be the set of parameters corresponding to logL∗(θ;D), or logL(θ∗;D) =

logL∗(θ;D). From logL(θ(p+1);D)− logL(θ(p);D) −→ 0 and logL(θ(p+1);D) ≥
logL(θ(p);D), we see that ∇ logL(θ(p);D) −→ 0 and so θ∗ is a stationary point.

Now we turn to prove that θ∗ is the fixed point of operator M .

For the constrained optimization problem (5.24), we exploit the Lagrange
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Multiplier method [95] and define the Lagrangian as

L = logPθ(D)− λ(
∑
j′
θij′k − 1), (5.55)

which implies that ∂L/∂θijk = ∂log Pθ(D)/∂θijk − λ.

The gradient ∂log Pθ(D)/∂θijk can be computed locally by using information

that is available in the normal course of belief network calculations.

∂ logPθ(D)

∂θijk
=

L∑
l=1

∂ logPθ(Dl)

∂θijk

=
L∑
l=1

∂Pθ(Dl)/∂θijk
Pθ(Dl)

. (5.56)

In order to get an expression in terms of information local to the parameter

θijk, we introduce Xi and Πi by averaging over their possible values:

∂Pθ(Dl)/∂θijk
Pθ(Dl)

=

∂
∂θijk

(∑
j′,k′ Pθ(Dl|xj′i , πk′i )Pθ(x

j′
i , π

k′
i )
)

Pθ(Dl)

=

∂
∂θijk

(∑
j′,k′ Pθ(Dl|xj′i , πk′i )Pθ(x

j′
i |πk′i )Pθ(π

k′
i )
)

Pθ(Dl)
. (5.57)

Observe that the important property of this expression is that θijk appears

only in one term in the summation: the term for j′ = j, k′ = k . For this term,

Pθ(x
j′
i |πk′i ) is just θijk, so we have

∂Pθ(Dl)/∂θijk
Pθ(Dl)

=
Pθ(Dl|xji , πki )Pθ(πki )

Pθ(Dl)

=
Pθ(x

j
i , π

k
i |Dl)Pθ(Dl)Pθ(π

k
i )

Pθ(x
j
i , π

k
i )Pθ(Dl)

=
Pθ(x

j
i , π

k
i |Dl)

Pθ(x
j
i |πki )

=
Pθ(x

j
i , π

k
i |Dl)

θijk
. (5.58)

Since θ∗ is the stationary point, we have [∂log Pθ(D)/∂θijk − λ] θ=θ∗ = 0, or

L∑
l

Pθ∗(x
j
i , π

k
i |Dl)

θ∗ijk
− λ = 0, (5.59)
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λθ∗ijk =
L∑
l

Pθ∗(x
j
i , π

k
i |Dl) ⇒

λ
∑
j

θ∗ijk =
L∑
l

∑
j

Pθ∗(x
j
i , π

k
i |Dl) ⇒

λ =
L∑
l=1

Pθ∗(π
k
i |Dl). (5.60)

so we have θ∗ijk =
∑L
l Pθ∗(x

j
i , π

k
i |Dl)/λ =

∑L
l Pθ∗(x

j
i , π

k
i |Dl)/

∑L
l Pθ∗(π

k
i |Dl), or

θ∗ is the fixed point for operator H .

It is straightforward to check that θ∗ = M(θ∗), and θ∗ is the local maxima.

Theorem 5.3.4 After convergence, θ∗ is the MVUE for augmented complete

data C(D).

Proof. By lemma 5.2.7, we see that after every iteration, θ̃(p+1) is MVUE for

C(D) obtained under θ̃(p). θ∗ is the fixed point and thus MVUE.

5.3.4 Convergence Rate and Choice of Step Size

For the 3-dimensional matrix θ, we define ψ = θik, which is a J × 1 vector with

ψj = θijk as the jth component. We study the convergence rate problem of

matrix θ by looking at each such ψ. It can be shown that at the neighborhood

of ψ∗,

ψ(p+1) − ψ∗ ≈ J(ψ∗)(ψ(p) − ψ∗), (5.61)

where J(ψ∗) is the Jacobian matrix and the rate of convergence is defined as

ν = lim
p→∞

‖ ψ(p+1) − ψ∗ ‖
‖ ψ(p) − ψ∗ ‖ . (5.62)

Usually, under some regularity conditions, the rate of convergence is

ν = λmax(J(ψ∗)) the largest eigenvalue of J(ψ∗). (5.63)
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Let JH(ψ) and JM(ψ) denote the Jacobian matrices under operator H and M ,

respectively. To obtain JH(ψ) and JM (ψ) under ψ = ψ∗, we make the following

definitions first.

Definition 5.3.5 The gradient vector of logL(θ;D) with respect to ψ is

S(D;ψ) = ∂ logL(θ;D)/∂ψ =
∑
l

S(Dl;ψ). (5.64)

We can see from (5.58) that

S(D;ψ)(j) =
∑
l

Pθ(x
j
i , π

k
i |Dl)/θijk. (5.65)

Definition 5.3.6 The gradient vector of logLc(θ;D
+) with respect to ψ is

Sc(D
+;ψ) = ∂ logLc(θ;D

+)/∂ψ. (5.66)

Similarly we have

Sc(D
+;ψ) =

∑
l

Sc(D
+
l ;ψ) (5.67)

where Sc(D
+
l ;ψ) = ∂ logLc(θ;D

+
l )/∂ψ, and as in (5.58)

Sc(D
+
l ;ψ)(j) =

1

θijk
Pθ(x

j
i , π

k
i |D+

l ). (5.68)

Lemma 5.3.7 S(D;ψ) = Eθ{Sc(D+;ψ)|D} =
[
∂
∂ψ
Q(θ, θ(p))

]
θ=θ(p)

.

Proof.

S(Dl;ψ)(j) =
1

θijk
Pθ(x

j
i , π

k
i |Dl)

=
1

θijk

∑
q

Pθ(D
+
l (q)|Dl)Pθ(x

j
i , π

k
i |D+

l (q))

=
1

θijk
Eθ
{
Pθ(x

j
i , π

k
i |D+

l )
}

= Eθ
{
Sc(D

+
l ;ψ)(j)

}
(5.69)

Given current θ(p), Q(θ, θ(p)) =
∑
l Eθ(p)

{
logPθ(D

+
l )
}

and so

∂

∂θijk
Q(θ, θ(p)) =

∑
l

Eθ(p)

{
∂

∂θijk
logPθ(D

+
l )

}
(5.70)

and we obtain the proof.
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Definition 5.3.8 The negative of Hessian matrix under incomplete data is

I(ψ;D) = −∂2 logL(θ;D)/∂ψ∂ψT .

Definition 5.3.9 The negative of Hessian matrix under complete data is

Ic(ψ;D+) = −∂2 logLc(θ;D
+)/∂ψ∂ψT .

Lemma 5.3.10 I(ψ;D) = Ic(ψ;D)− Im(ψ;D), where Ic(ψ;D)
4
= Eθ{Ic(ψ;D+)|D}

and Im(ψ;D)
4
= Eθ{∂2 logPθ(D

+|D)/∂ψ∂ψT}.

Proof. This lemma is called the missing information principle. The following

proof is adapted from [96]. Since L(θ;D) =
∑
l logLc(θ;D

+)−∑l logPθ(D
+
l |Dl),

I(ψ;D) = Eθ{I(ψ;D)|D}

= −∑
l

∑
q

Pθ(D
+
l (q)|Dl)∂

2 logLc(θ;D
+
l (q))/∂ψ∂ψT

+
∑
l

∑
q

Pθ(D
+
l (q)|Dl)∂

2 logPθ(D
+
l (q)|Dl)/∂ψ∂ψ

T

= Eθ{Ic(ψ;D+)|D}+ Eθ{∂2 logPθ(D
+|D)/∂ψ∂ψT}. (5.71)

⇒ I(ψ;D) = Ic(ψ;D)− Im(ψ;D).

Lemma 5.3.11 For operator H, JH(ψ∗) = Ic−1(ψ∗;D) Im(ψ∗;D).

Proof. This lemma is adapted from Dempster’s original work on EM al-

gorithm [88]. By proposition 5.3.3 we know that S(D;ψ∗) = 0 and at the

neighborhood of ψ∗,

S(D;ψ∗) ≈ S(D;ψ(p))− I(ψ(p);D)(ψ∗ − ψ(p)) ⇒

ψ∗ ≈ ψ(p) + I−1(ψ(p);D)S(D;ψ(p)) (5.72)
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At M-step, for Q(ψ, ψ(p)) =
∑
l

∑
q Pθ(p)(D+

l (q)|Dl) logPθ(D
+
l (q)) we have

0 = [∂Q(ψ, ψ(p))/∂ψ]ψ=ψ(p+1)

≈ [∂Q(ψ, ψ(p))/∂ψ]ψ=ψ(p)︸ ︷︷ ︸
S(D;ψ(p))by lemma 5.3.7

+ [∂2Q(ψ, ψ(p))/∂ψ∂ψT ]ψ=ψ(p) (ψ(p+1) − ψ(p))

= S(D;ψ(p))− Ic(ψ(p);D)(ψ(p+1) − ψ(p)) ⇒

S(D;ψ(p)) ≈ Ic(ψ(p);D)(ψ(p+1) − ψ(p)). (5.73)

From (5.72) and (5.73) we have

ψ∗ − ψ(p) ≈ I−1(ψ(p);D)Ic(ψ(p);D)(ψ(p+1) − ψ(p)) ⇒

ψ(p+1) − ψ∗ ≈ [IJ − I−1
c (ψ(p);D)I(ψ(p);D)](ψ(p) − ψ∗)

≈ [IJ − I−1
c (ψ∗;D)I(ψ∗;D)](ψ(p) − ψ∗)

≈ I−1
c (ψ∗;D)Im(ψ∗;D)(ψ(p) − ψ∗). by lemma 5.3.10(5.74)

⇒ JH(ψ∗) = I−1
c (ψ∗;D)Im(ψ∗;D).

Lemma 5.3.12 Im(ψ∗;D) =
∑
l

∑
q Pθ(D

+
l (q)|Dl)Sc(D

+
l (q);ψ)STc (D+

l (q);ψ)−∑
l S(Dl;ψ)ST (Dl;ψ).

Proof. This lemma is adapted from that proposed by Louis in 1982 [97].

I(ψ;D) = −∂S(D;ψ)/∂ψ

= −∑
l

∂S(Dl;ψ)/∂ψ = −∑
l

∂[
∂L(θ;Dl)/∂ψ

L(θ;Dl)
] /∂ψ

= −∑
l

∂[

∑
q ∂Lc(θ;D

+
l (q))/∂ψ

L(θ;Dl)
] /∂ψ

= −∑
l

∑
q

∂2Lc(θ;D
+
l (q))/∂ψ∂ψT

L(θ;Dl)

+
∑
l

[∑
q ∂Lc(θ;D

+
l (q)) /∂ψ

L(θ;Dl)

] [∑
q ∂Lc(θ;D

+
l (q)) /∂ψ

L(θ;Dl)

]T
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= −∑
l

∑
q

∂2Lc(θ;D
+
l (q)) /∂ψ∂ψT

L(θ;Dl)
+
∑
l

S(Dl;ψ)ST (Dl;ψ)

= −∑
l

∑
q

[
∂2 logLc(θ;D

+
l (q)) /∂ψ∂ψT

] L(θ;D+
l (q))

L(θ;Dl)

−∑
l

∑
q

[
∂Lc(θ;D

+
l (q)) /∂ψ

Lc(θ;D
+
l (q))

] [
∂Lc(θ;D

+
l (q)) /∂ψ

Lc(θ;D
+
l (q))

]T
+
∑
l

S(Dl;ψ)ST (Dl;ψ)

=
∑
l

∑
q

Ic(ψ;D+
l (q))Pθ(D

+
l (q)|Dl)

−∑
l

∑
q

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ)Pθ(D
+
l (q)|Dl)

+
∑
l

S(Dl;ψ)ST (Dl;ψ). (5.75)

Since
∑
l

∑
q Ic(ψ;D+

l (q))Pθ(D
+
l (q)|Dl) = I(ψ;D), and by lemma 5.3.10 we

finish the proof.

So at the neighborhood of θ∗, we can now compute the Jacobian matrix.

Proposition 5.3.4 Given independent (but not necessarily uniform) data set

D = [D1, . . . , DL], the EM algorithm under H operator gives

Ic(ψ∗;D) = diag

{∑
l

Pθ(x
j
i , π

k
i |Dl)/θ

2
ijk

}
.

Proof. Obviously, Ic(ψ;D+
l (q)) = −∂Sc(D+

l (q);ψ) /∂ψ, where Sc(D
+
l (q);ψ)(j) =

Iθ(x
j
i , π

k
i |D+

l (q)) /θijk. So for j 6= j′, ∂Sc(D+
l (q);ψ)(j)/∂ψj′ = 0 and

Ic(ψ;D) =
∑
l

∑
q

Pθ(D
+
l (q)|Dl) Ic(ψ;D+

l (q))

=
∑
l

∑
q

Pθ(D
+
l (q)|Dl) diag{Iθ(xji , πki |D+

l (q)) /θ2
ijk}

= diag

{∑
l

∑
q

Pθ(D
+
l (q)|Dl) Iθ(x

j
i , π

k
i |D+

l (q)) / θ2
ijk

}

= diag

{∑
l

Pθ(x
j
i , π

k
i |Dl)/θ

2
ijk

}
. (5.76)

We define aj
4
=
∑
l Pθ(x

j
i , π

k
i |Dl)/θ

2
ijk j = 1, . . . , J, for convenience.
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Proposition 5.3.5 If we let V =
∑
l S(Dl;ψ)ST (Dl;ψ), then

Im(ψ∗;D) = diag{aj} − V.

Proof. From Sc(D
+
l (q);ψ)(j) = Iθ(x

j
i , π

k
i |D+

l (q)) /θijk, we get

Iθ(x
j
i , π

k
i |D+

l (q)) Iθ(x
j′
i , π

k
i |D+

l (q)) = 0, ∀j′ 6= j

and thus

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ) = diag{Iθ(xji , πki |D+
l (q)) / θ2

ijk}, (5.77)

and similarly we have

∑
l

∑
q

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ)Pθ(D
+
l (q)|Dl) = diag {aj} . (5.78)

Since S(Dl;ψ)(j) = Pθ(x
j
i , π

k
i |Dl)|θijk, we have for matrix V = {vms}:

vms =



∑
l
Pθ(xm

i ,π
k
i |Dl)Pθ(xs

i ,π
k
i |Dl)

θimk θisk
if m 6= s

∑
l
P 2

θ (xm
i ,π

k
i |Dl)

θ2
imk

if m = s

(5.79)

Proposition 5.3.6 Given independent (but not necessarily uniform) data set

D = [D1, . . . , DL], the Jacobian matrix under H operator is

JH(ψ∗) = IJ − diag{1/aj} V.

Proof.

JH(ψ∗) = I−1
c (ψ∗;D) Im(ψ∗;D)

= diag{1/aj} [diag{aj} − V ]

= IJ − diag{1/aj} V. (5.80)
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We define W̄ = diag{1/aj} V, and for each of its element,

w̄mm =
θ2
imk∑

l Pθ(x
m
i , π

k
i |Dl)

∑
l P

2
θ (xmi , π

k
i |Dl)

θ2
imk

=

∑
l P

2
θ (xmi , π

k
i |Dl)∑

l Pθ(x
m
i , π

k
i |Dl)

(5.81)

w̄ms =
θ2
imk∑

l Pθ(x
m
i , π

k
i |Dl)

∑
l Pθ(x

m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)

θimk θisk

=
θimk

θisk
∑
l Pθ(x

m
i , π

k
i |Dl)

∑
l

Pθ(x
m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)

=

∑
l Pθ(x

m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)∑

l Pθ(x
s
i , π

k
i |Dl)

, (5.82)

based on the fact that if θ = θ∗, θimk =
∑
l Pθ(x

m
i , π

k
i |Dl) /

∑
l Pθ(π

k
i |Dl) under

operator H . If we define wjl = Pθ(x
j
i , π

k
i |Dl) at θ = θ∗, it is easy to see that

W̄ = W Λ, where Λ = diag {1/∑l wjl} and

W =



∑
l w

2
1l

∑
l w1lw2l . . .

∑
l w1lwJl∑

l w1lw2l
∑
l w

2
2l . . .

∑
l w1lwJl

...
...

. . .
...∑

l w1lwJl
∑
l w1lw2l . . .

∑
l w

2
Jl


(5.83)

Obviously, W =
∑
l wlw

T
l where wTl = [w1l, . . . , wJl].

Proposition 5.3.7 Given independent (but not necessarily uniform) data set

D = [D1, . . . , DL], the Jacobian matrix under M operator is

JM (ψ∗) = IJ − γW Λ.

Proof. For operator M , we have

JM(ψ∗) = (1− γ)IJ + γJH(ψ∗)

= IJ − γW Λ. (5.84)
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To study the eigenvalues of JM(ψ∗), we first look at those of W Λ. It is

straightforward to see that for any non-zero vector ξ ∈ RJ ,

λmax(W̄ ) = max
ξ

(ξ,
∑
l wlw

T
l Λ ξ)

(ξ, ξ)

= max
ξ

∑
l

(ξ, wlw
T
l Λ ξ)

(ξ, ξ)︸ ︷︷ ︸
≤λmax(wlw

T
l

Λ)

≤ ∑
l

λmax(wlw
T
l Λ) and, (5.85)

λmin(W̄ ) = min
ξ

(ξ,
∑
l wlw

T
l Λ ξ)

(ξ, ξ)

= min
ξ

∑
l

(ξ, wlw
T
l Λ ξ)

(ξ, ξ)︸ ︷︷ ︸
≥λmin(wlw

T
l

Λ)

≥ ∑
l

λmin(wlw
T
l Λ), (5.86)

and so we have the following lemma.

Lemma 5.3.13 λmax(wlw
T
l Λ) =

∑
j w

2
jl/
∑
l wjl, λmin(wlw

T
l Λ) = 0

Proof. If we let Λ = diag {ρj} with ρj > 0 (this condition stands true if data

sample size L is large enough), then for any non-zero ξ ∈ RJ , we have

∑
l

ξTwlw
T
l Λξ =

∑
l

(ξ1w1l + . . .+ ξJwJl) (ρ1ξ1w1l + . . .+ ρJξJwJl)

≥ ∑
l

(
√
ρ1ξ1w1l + . . .+

√
ρJξjwjl)

2 ≥ 0. (5.87)

So matrix wlw
T
l Λ is positive semi-definite, with all of its eigenvalues non-

negative. Note also that in wlw
T
l Λ, each row is of a constant factor of any other

row, we see that [98]

det (wlw
T
l Λ) =

∏
j

λj(wlw
T
l Λ) = 0 (5.88)

and λmin(wlw
T
l Λ) = 0. It is also shown in [98] that rank one matrix wlw

T
l Λ has

at most one non-zero eigenvalue and it is wTl Λwl, if exists.
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Theorem 5.3.14 λmax(J
M(ψ∗)) ≤ 1, λmin(J

M(ψ∗)) ≥ 0 under M operator

with 0 < γ ≤ min( 1∑
l
Pθ∗(πk

i |Dl)
, 1).

Proof.

λmax(W̄ ) ≤ ∑
l

λmax(wlw
T
l Λ)

=
∑
j

(∑
l

w2
jl/
∑
m

wjm

)

≤ ∑
j

[
(
∑
l

wjl)
2/
∑
m

wjm

]

=
∑
l

∑
j

Pθ∗(x
j
i , π

k
i |Dl)

=
∑
l

Pθ∗(π
k
i |Dl) (5.89)

λmin(W̄ ) ≥∑
l

λmin(wlw
T
l Λ) = 0 (5.90)

Then for operatorM with 0 < γ ≤ min( 1∑
l
Pθ∗(πk

i |Dl)
, 1), we have λmax(J

M(ψ∗)) =

1− γλmin(W̄ ) ≤ 1 and λmin(J
M(ψ∗)) = 1− γλmax(W̄ ) ≥ 0.

This theorem states that, with 0 < γ ≤ min( 1∑
l
Pθ∗(πk

i |Dl)
, 1), operator M

will make the parameter sequence converge to the local maxima θ∗ at the neigh-

borhood of θ∗. It is important to note that in the beginning of the iterations

when
∑
l Pθ(π

k
i |Dl) is still small, we can choose the step size γ close to 1, which

means gross adjustment of the parameters according to the data. As iterations

go along and
∑
l Pθ(π

k
i |Dl) becomes larger, we are required to decrease our step

sizes and put less weight to the information from data for finer adjustment of the

estimates. Further, if there is random noise associated with the H operator, the

effect of the noise on the variance of the estimates become vanishingly small and

the possibility of convergence remains open, if we allow the step size to decrease

to zero. In general, if we consider vector ψ ∈ RJ , for every component j, the
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choice of γp(j) usually needs to fulfill the following conditions [99]:

γp(j) ≥ 0 (5.91)
∞∑
p=0

γp(j) = ∞ with probability 1 (5.92)

∞∑
p=0

γ2
p(j) < ∞ with probability 1 (5.93)

5.4 Simulation Results

We use the following belief network example to show the effectiveness of the EM

learning algorithms. Consider the example network shown in figure 5.1.

probe a

L2 C

D

SW2SW1
L1

A

B

Figure 5.1: Example Network

Two switches SW1 and SW2 are connected to each other via link L1. Ma-

chines A and B are connected to SW1 and they would communicate with ma-

chines C and D, which are connected to switch SW2. We have a probe a hooked

at the end of SW2 to measure the traffic throughput going out of SW2. Suppose

the information we could obtain during network operation include whether or

not: SW1 alarm is normal, A could connect SW2, B could connect SW2, A

could connect C, C could connect SW1, throughput at probe a is normal, and

D could connect SW1. The possible faults are identified as: SW1 works normal

or not, L1 normal or congested, SW2 normal or not, and source pumped from C
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to L2 is normal or not. We set up a belief network model for such situations, and

figure 5.2 shows the structure of this belief network. The conditional probability

distributions of each node are shown in figure 5.3, 5.4, 5.5, and 5.6.

L1
yes
no

D_Conn_SW1
yes
no

L2_Cong
yes
noL1_SW2

yes
no

Src_C_L2
yes
no

SW2
yes
no

B_Conn_SW2
yes
no

SW1_L1
yes
no

SW1
yes
no

Thru_Prob_A
yes
no

C_Conn_SW1
yes
no

A_Conn_SW2
yes
no

A_Conn_C
yes
no

SW1_Indicator
yes
no

Figure 5.2: Belief Network for the Example Network

To show the effectiveness of the EM learning algorithm, we generate the

experiment data using the true distribution probabilities as shown above. For

the four root nodes, the chances of generating data is shown in table 5.1. No

hidden node data are generated. One segment of the generated data file is shown

in table 5.2. We generate 3000 samples using this schema, and extract 70% of

the samples as the training set, with the remaining 30% samples as the testing

set. The step sizes are chosen according to the requirements discussed in the

previous section.

The initial conditional probability distributions of the example belief network

are shown in figure 5.7, 5.8, 5.9, and 5.10. It could be seen that such distributions

are more flat than their true counterparts.
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Table 5.1: Chances of generating data for root nodes

SW1 SW2 L1 Src C L2

0.9 0.95 0.8 0.9

Table 5.2: Segment of the generated file

L1 S C L2 SW2 D C SW1 SW1 B C SW2 Th P A C C SW1 A C SW2 A C C SW1 Ind

”yes” ”no” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes”

”yes” ”no” ”no” ”no” ”no” ”yes” ”yes” ”yes”

”no” ”no” ”no” ”yes” ”yes” ”no” ”no” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”no” ”yes” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”no” ”yes” ”yes” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes”

”no” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”no” ”yes” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes”

”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”yes” ”no” ”yes”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Using the data as generated above, we carry out the EM learning procedure

and monitor the trend of the likelihood under current estimate. If two consec-

utive likelihood estimates only differ in a negligible way, the learning process

stops. Figure 5.11 shows the trend of the likelihood and the accumulated gross

error in the learning process, where the likelihood is

logPθ(D) =
L∑
l=1

logPθ(Dl),

and the gross error is ∑
i

∑
k

∑
j

|θ̂ijk − θijk|.

We see that the likelihood for both the training data and the testing data

monotonously increase as the learning process gets along. This is a sharp dis-

tinction with other learning methods, for example multi-layer perceptron (MLP)

type neural networks [100], where the so-called over-fitting phenomenon exists.

Typically, in these methods, when the performance of the learning process on

the training data improves to some certain point, the performance on the test

testing data begins to deteriorate. So in order to make the learning entity to

both fits well the training data and generalize well on the testing data, the over-

all performance measure should take into account those on both training and

testing data. In our case, we are happy to see that such over-fitting does not

exist. Also, the gross error monotonously decreases as learning proceeds.

The learned conditional probability distributions are shown in figure 5.12,

5.13, 5.14, 5.15. By comparing with figure 5.3, 5.4, 5.5, and 5.6, we could see

that the learned results are relatively close to the true values.
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5.5 Conclusions

In this chapter, we addressed the problem of parameter learning for belief net-

works with fixed structure. Both complete and incomplete (data) observations

were included. Given complete data, we describe the simple problem of sin-

gle parameter learning for intuition and then expand to belief networks under

appropriate system decomposition. If the observations are incomplete, we first

estimate the missing observations and treat them as though they are ”real” ob-

servations, based on which the parameter learning can be executed as in complete

data case. We derived a uniform algorithm based on this idea for incomplete

data case. Further, we studied the rate of convergence via the derivation of

Jacobian matrices of our algorithm and provided a guideline for choosing step

size. Our simulation results show that the learned values are relatively close

to the true values. It is further observed that, in terms of fault diagnosis1, the

true and learned belief networks would give the same test sequences and average

cost under most of the symptom patterns, and we conclude that such diagnostic

belief network models are not sensitive to the parameters.

The above algorithm is derived based on batch data and the updating proce-

dure is assumed to be executed in a batch mode. This is appropriate for many

cases where there are batch files available for off-line training. However, our

algorithm is not limited to batch mode only. By setting L = 1 in formula (5.34),

we obtain the on-line version of the H operator

H(ψ)(ijk) =
Pψ(x

j
i , π

k
i |Dl)

Pψ(πki |Dl)
.

Surely, such updating only occurs for those cases when Pψ(π
k
i |Dl) > 0.

1to be discussed in the next chapter
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In fact, our algorithm can be used in both batch and on-line mode for a real

application. Batch mode learning helps tune the concerned belief model to the

bulk of domain data, e.g. log files of related events. On-line mode helps fine-tune

the parameters as new data becomes available.
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Figure 5.3: Root Nodes Conditional Probability Distributions
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Figure 5.7: Initial Root Nodes Conditional Probability Distributions
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Figure 5.12: Learned Root Nodes Conditional Probability Distributions
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Figure 5.13: Learned Hidden Nodes Conditional Probability Distributions
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Figure 5.14: Learned Leaf Nodes Conditional Probability Distributions–1

1 2 3 4 5 6 7 8
0

0.5

1
A_Conn_C

initial
true
em

1 2 3 4 5 6 7 8
0

0.5

1
C_Conn_SW1

initial
true
em

1 2 3 4 5 6 7 8
0

0.5

1
D_Conn_SW1

initial
true
em

Figure 5.15: Learned Leaf Nodes Conditional Probability Distributions–2
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Chapter 6

Fault Diagnosis Problems and Solutions

using Belief Networks

6.1 An Intuitive Example

Suppose we are handling the problem call failure and identify the possible causes

as follows: Server, link and switch may fail, and there might be heavy traffic that

causes the network congestion. Luckily, we have access to the alarms associated

with link failure and switch failure. This scenario is modeled as a belief network,

as shown in figure 6.1. Each node takes binary value and the table associated

with it represents the conditional probability distribution, given its parent nodes’

instantiations. Without any observations, the initial marginal probabilities of

each node are shown in figure 6.2.

Now suppose we observe that there are call failures. We wish to infer the

most probable cause for this symptom from the belief network model. To do this,

we input this evidence, execute the belief propagation, and obtain the updated

beliefs of each non-evidential node, as shown in figure 6.3. Note that for each

candidate fault node, namely Link Failure, Server Failure, Heavy Traffic and Switch
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Figure 6.1: An example Belief Network

Failure, the probability of being faulty is increased. If we also observe link alarms,

then we hope that this extra information could help locate the most probable

fault, see figure 6.4. As we would have expected, the evidence of link alarms

distinguishes Link Failure as the most probable fault, which also ”explains away”

other possible candidates in the sense that their updated beliefs are decreased,

as compared with those in figure 6.3.

The above example shows the sketch of doing diagnosis using belief networks:

obtain evidence, update beliefs, obtain evidence again, and so on. This is active

diagnosis in that we are seeking more information on the fly during diagnosis.

We will discuss this process in more details next.
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Figure 6.2: Initial marginal probabilities

6.2 Problem Definition

In communication networks, probes are attached to some hardware/software

components to get operation status. Typically the raw data returned from the

probes will be grouped into vector form d ∈ Rn and then processed to get some

aggregated values (e.g. average, peak value, etc.). A statistics is a function from

Rn to R that maps the raw data vector d to a real number. Such statistics

will usually be quantified and represented using discrete values. We use 0 to

represent normal status, and other positive integers to represent abnormal status

with different level of severity. A node v in a belief network model B=(V, L, P )

is called observable if and only if it represents the health status of a statistics, or

corresponds to a user report. The set of observable nodes is denoted by O. The

non-observable set is simply Õ = V \O. We restrict these observable nodes to be

leaf nodes only, and vice versa. The regular evidence set R contains those nodes

138



Link Alarm
yes
no

21
79

Link Failure
yes
no

17
83

Switch Alarm
yes
no

5
95

Switch Failure
yes
no

3
97

Call Failure
yes
no

100
-

Net Congestion
yes
no

75
25

Server Failure
yes
no

7
93

Heavy Traffic
yes
no

55
45

Figure 6.3: Updated beliefs after observing Call Failure

that we observe during regular network monitoring operations. Each r ∈ R is

called a symptom node. The test set ST contains all other observable nodes

that are not currently in R, namely ST = O \ R. The fault set F is the set of

root nodes, and they are not observable, F ⊆ Õ. We restrict that all root nodes

are binary valued. The hidden node set H contains all nodes in Õ but not in

fault set F , H = Õ \ F . Hidden nodes are intermediate nodes between faults

and symptoms and we don’t usually put queries on them during diagnosis.

Within a certain time window, the problem domain is said to be working in

normal status with respect to regular evidence set R if and only if every node

in R takes value 0, or vector r = 0, where r = (r1, r2, . . . , r|R|). The problem

domain is said to be working in abnormal status with respect to regular evidence

set R if and only if there is at least one r ∈ R whose value is other than 0. There

might be cases when multiple symptom nodes in R take nonzero values. The
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Figure 6.4: Updated beliefs after observing Call Failure and Link Alarm

syndrome with respect to regular evidence set R is simply the nonzero vector r.

Any syndrome can trigger the diagnosis process.

After fault diagnosis is triggered, the initial evidence is propagated and the

posterior probability of any f ∈ F being faulty can be calculated. It would be

ideal if we can locate the fault with efforts up to this. But most of the time,

similar to what happens in medical diagnosis, we need more information to help

pinpoint the fault. So naturally, we identify two important problems associated

with belief network based fault diagnosis: When can I say that I get the right

diagnosis and stop? If right diagnosis has not been obtained yet, which test

should I choose next? We address these two problems in the next sections. In

our work, we postulate that all the observations and tests are constrained within

the belief network model.
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6.3 Right Diagnosis via Intervention

Consider what a human usually think during diagnosis. After obtaining one pos-

sible reason, one may naturally ask, for example, “Will the problematic circuit

work normally if I replace this suspicious component with a good one?” He/she

then goes ahead and sees what will happen after the replacement. If the syn-

drome disappears, one can claim that he/she actually found and trouble-shooted

the fault. If the problem domain is tiny, not very complex, and the replacement

burden is light, this paradigm will work well. But for communication networks,

the story is totally different. We would like to do intelligent diagnosis via com-

putation, rather than brutal replacement before we are very confident what the

fault is.

To do this, we need to distinguish between two kinds of semantics for the

instantiation of a node in a belief network: passive observation and active set-

ting. All the instantiations of nodes we have talked about so far are passive

observations, and we would like to know the consequences of, and the possible

causes for such observations. The alternative semantics is that we can also set

the value of a node via active experiment. One example is the above question,

where external reasons (the human diagnoser) explain why the suspicious com-

ponent becomes good and thus all the parent nodes for this node should not

count as causes during belief updating. Other belief updating like evaluating

consequences, however, are not influenced by this active setting. This external

force is called intervention in [101].

With this set semantics, we could do virtual replacement in our belief net-

work model. For simplicity, we assume here that the single symptom node is

S1. For each node in F , we could get its posterior probability of being faulty
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given S1 = 1. Let f = argmaxg∈FP (g = 1|S1 = 1), and we would evaluate

P (S1 = 0|setting(f = 0)). Other nodes in F are treated as background vari-

ables and they keep at the same status as what has just been updated. In our

work, we introduce the so-called intervention belief network to help this virtual

replacement.

Definition 6.3.1 An intervention belief network B̃= (V ,L,P , S ,Fs) is obtained

from the original belief network B= (V ,L,P) with the same V , L, P . S is the

symptom set and Fs ∈ F is the set of suspicious nodes. We compute for each

s ∈ S the probability P (s = 0|setting(Fs = 0)) using B̃.

For our particular example above, the virtual replacement procedure is as

follows. First, in B= (V ,L,P), update for each node fi ∈ F the probability

pi
4
= P (fi = 1|S1 = 1). Suppose f1 = argmaxg∈FP (g = 1|S1 = 1). Then

in intervention belief network B̃ = (V, L, P, S1, f1), set node f1 = 0, and with

P (fi = 1) = pi, i = 2, · · · , |F |, compute P (S1 = 0|setting(f1 = 0)). See

figure 6.5 for an illustration, where we only have two root nodes F and G. F

corresponds to f1 here.

To determine whether or not this virtual replacement has led S1 to an accept-

able status, we need a reference value for the computed P (S1 = 0|setting(f1 =

0)) to compare with. Without any evidence input, the belief network model B
itself gives the marginal probability of each leaf node to be normal. We use these

values as the reference in our work.

Definition 6.3.2 Given a small number ε, we say that node S1 becomes ε -

normal via intervention on f1 if and only if P (S1 = 0) − P (S1 = 0|setting(f1 =

0)) < ε.
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Figure 6.5: Example of An Intervention Network

Note that during diagnosis process, some of the testing nodes chosen may al-

ready manifested themselves as values other than “normal”. These nodes should

also be included in intervention network B̃.

Definition 6.3.3 A nonempty set of suspicious nodes Fs is called the explana-

tion or right diagnosis if and only if every node in set S, including both initial

and newly-found symptoms, becomes ε-normal if we set every node in Fs to

normal in the intervention belief network B̃ = (V, L, P, S, Fs). It is when Fs

explains the set S that we terminate the diagnosis process.

6.4 Decision Theoretic Fault Diagnosis Strate-

gies

We formulate the test selection procedure as a partially observable Markov de-

cision processes (POMDP) problem with optimal stopping. At each decision

epoch, we could either choose a node to test or stop there. Test is rarely free,

and termination incurs some costs. The goal is to find a good test sequence
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and the right time to stop. We will show that by choosing termination cost

appropriately, the optimal stopping rule matches our notion of right diagnosis.

6.4.1 POMDP Formulation

State Space S

The state is the status of the root nodes F = {F1, . . . , F|F |}, and for a particular

s ∈ S = 2|F |, s = {f1, . . . , f|F |}. We use Sk to denote the state at time k. In

our diagnosis case, the current state, which is unobservable, does not change

regardless what tests will be chosen. The goal of diagnosis is to identify this

state by using initial symptoms and subsequent test results. So here we have

P (Sk+1|Sk) =


1 ifSk+1 = Sk

0 otherwise
(6.1)

History Process

If we choose one test per decision epoch, the time step set is defined as N =

{1, 2, . . . , |ST |}. The active evidence set AE contains the nodes that are instan-

tiated during the process of diagnosis. Initially AE = R and it expands as more

test nodes in ST are added into it. Nodes in AE are not to be considered for

future use. The candidate test set Cst contains the nodes in ST that are avail-

able to be chosen and tested. Initially Cst = ST and it shrinks as instantiated

nodes are removed from it. The action set A = Cst ∪ {STOP}. Let Zat denote

the value obtained by observing at, and we define the history process up to time

k as Ik = (Z0, (a1, Za1), . . . , (ak, Zak
)) , where Z0 =

(
(r1, Zr1), . . . , (r|R|, Zr|R|)

)
represents the regular evidence set and corresponding instantiations. Ik grows

with diagnosis and obviously, Ik = (Ik−1, (ak, Zak
)), the Markov property. We
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can simply take Ik as the state at time k and obtain a completely observable

Markov decision problem. But the growing state process makes this approach

impractical.

Belief / Information State

Given Ik, we define bk = P (F|Ik) as the probability distribution of states in S. It

is proven that bk is a sufficient statistics that contains all information embedded

in the history process for control, and we call it belief or information state

[102, 103]. Using Bayes rule, we can easily verify that the process {bk} is also

Markov. If we choose bk as the state at time k, we avoid the growth of the state

space; but now, the state space is continuous, and we call it Bc. In our case, if

we are given Ik, ak, andZak
, the next belief state bk+1 is uniquely determined via

belief network propagation, and we define Ψ(bk, ak, Zak
)
4
= Pr(bk+1|bk, ak, Zak

).

If we let X = Bc∪{T} and xk be the state at time k, then the augmented states

evolve according to

xk+1 =


Ψ(xk, ak, Zak

) if xk 6= T and ak 6= STOP

T if xk = T or (xk 6= T and ak = STOP )
(6.2)

The observation model for ak 6= STOP is P (Zak
|Ik, ak) = Pr(ak = Zak

|Ik).

Choosing Suspicious Nodes

After we obtain xk, it will not suffice to give out this probability distribution

directly as the result. What is needed is the explanation. To see if we could ob-

tain the explanation as defined above, we need to extract from xk the suspicious

nodes. However, it is always an important issue to determine how many suspi-

cious nodes we should choose from the fault set F . In our belief network model
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and the parallel intervention model, we should be discreet in choosing multiple

nodes. If we simply choose all nodes in F and do the intervention, the symptom

nodes will all become ε-normal for sure. But clearly, calling every node in F as

faulty is not acceptable; One of the most important aspects of fault diagnosis in

general is to bias among the many possible faults and locate the real one(s)! In

our work, we tried two schemes.

In the first scheme, we compute for each node in F the probability of being

faulty given Ik, and sort them in a descending order, say p1 ≥ p2 ≥ · · · ≥ p|F |. We

only choose the first j nodes such that
∑j
k=1 pk/

∑|F |
k=1 pk ≥ η, where η ∈ (0, 1).

It should not be close to 1, since in that case, we would have to choose almost

all nodes in F . In our work, we choose 0.4 initially. If we could not find the

right diagnosis, we increase η by a small amount so that more root nodes could

emerge as the candidates. By doing this, we are not limiting ourselves to the

single fault scenario. This scheme is intuitive, Ik suffices to provide information

for each node in F , and it is not necessary to calculate xk. However, it is very

hard to choose a good η that works well without knowing in advance how many

faults there might be.

The second scheme makes use of xk. We first compute the belief state and

get a table that contains the joint distribution of the root nodes given Ik. Then

we choose the largest entry from the table and mark the index of the entry. The

suspicious nodes are obtained from the index. For example, if we only have four

root nodes and the binary string corresponding to the index of the largest entry

is 0101, then the second and fourth nodes are chosen. In this scheme, there is no

need to find a good η, and it adapts to multiple causes easily. The drawback is

that extra storage space is needed for the joint distribution table. If the number
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of root nodes is small, this is a preferable scheme.

Cost Structure

There is an immediate cost associated with each si ∈ ST . The cost function

C(si, t) entails careful deliberation about many factors like the difficulty and

time to be consumed for the test, etc. Here we assume that the cost function is

of form C(si). This is usually the case in that the cost is normally associated

with the test itself only, and the test itself does not usually change with time.

Also, we wish to diagnose promptly and we penalize on diagnosis steps. If

ak = STOP at time k, no penalty. Otherwise, we penalize this extra step using

function g(k). Here, we simply take g(k) = 1 for all k. At time k with state

xk 6= T , if we choose ak = STOP , we incur t(xk) as the termination cost.

Note that t(T ) = 0. Given xk 6= T and suspicious node set Fs, we compute

t(xk) as follows. First, in original belie network, let K = F \ Fs and compute

for each node in K the probability of being faulty as qi
4
= Pr(Ki = 1|Ik).

Second, in intervention network, set the root nodes that correspond to those

in K with the same probabilities as those in {qi}, and set the root nodes that

correspond to those in Fs to state ”normal”. Finally, in intervention network for

each node Si in the active symptom set S, and for some given small ε, define

∆ = P (Si = 0)− P (Si = 0|Setting root nodes as above). If ∆ < ε, tSi
(xk) = 0,

else tSi
(xk) = CONST [∆ − ε ], where CONST is a constant to make tSi

(xk)

large. The total cost is t(xk) =
∑
Si∈S tSi

(xk). So, the immediate cost of choosing

action ak at time k with state xk 6= T is

gk(xk, ak) =


c(ak) + g(k) if ak 6= STOP

t(xk) otherwise
(6.3)
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At the last step N , the terminal cost gN(xN) is defined as

gN(xN) =


t(xN) if xN 6= T

0 otherwise
(6.4)

Note that both gk(xk, ak) and gN(xN ) are deterministic functions. Now we have

the finite horizon problem

min
ak,k=0,...,N−1

{
gN(xN ) +

N−1∑
k=0

gk(xk, ak)

}
. (6.5)

6.4.2 Solution for the Problem

Define Jk(xk) as the cost-to-go at state xk and time k [103]. At termination

state T , Jk(T ) = 0, ∀k = 0, . . . , N − 1. For xk 6= T , we have the dynamic

programming algorithm:

JN(xN ) = gN(xN ) (6.6)

Jk(xk) = min

t(xk), min
ak∈Ak

[ c(ak) + g(k) +
∑
j

P (ak = j|Ik)Jk+1(Ψ(xk, ak, Zak
= j)) ]


(6.7)

So the optimal stopping policy is: Choose STOP if

t(xk) ≤ min
ak∈Ak

[ c(ak) + g(k) +
∑
j

P (ak = j|Ik)Jk+1(Ψ(xk, ak, Zak
= j)) ] , (6.8)

at current state xk and time k. If we choose t(xk), as shown above, such that

t(xk) = 0 in the case of right diagnosis and let t(xk) be very large otherwise,

then the optimal stopping policy is: STOP if and only if we obtain the right

diagnosis. Now let us look at the test selection strategies.

To solve the problem (6.5) using the dynamic programming update (6.7), the

continuous state space is the major obstacle. It would be very desirable if we

could find some structures for the value function or optimal policy. In one class
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of problems [104], the optimal value function for the finite horizon problem is

piecewise linear and concave. Thus we could represent the value functions using

a set of discrete vectors and avoid the direct handling of the continuous space.

Unfortunately, we don’t have this good property in our problem, and we need

to seek to approximate methods. As discussed above, we need to extract from

state xk 6= T the suspicious node set Fs. We ignore those root nodes that are

not very fault-prone and this is our first approximation. Now, given that Fs does

not explain the current active symptoms, we need some heuristics to help choose

the next test. Let us begin with a simpler problem for intuition.

Suppose the concern here is to locate the single faulty component. There

are symptoms indicating the malfunction (e.g. car doesn’t start) and for each

possible faulty component there is a direct test associated with it. The cost for

testing component i is ci. Based on the symptoms, we obtain Pi, the probability

that component i is in failure, for every component. We are supposed to test

those components one at a time. As soon as one component fails its associated

test, we claim that we find the single fault and stop. By interchange argument

[103], it is easy to see that in an optimal strategy, all elements must be in non-

decreasing sequence of c/P values, see also [105].

Our problem is different from this scenario in the following aspects. It tackles

failures while our problem integrates both hard and soft faults. It assumes the

existence of direct test while we don’t have that luxury. For a communication

network environment which is distributed, complex and heterogeneous, it is im-

possible to predefine and store a direct test for each possible cause. Actually one

of the goals here is to generate dynamically the test sequence on the fly. In our

setup, right diagnosis is determined through computation, rather than brutal
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replacement. Finally, our algorithm should be able to tackle multiple faults.

But the c/P algorithm does provide insight in that it reflects the following

observation: in order to minimize the total cost, people are more likely to try

those more fault-prone, cheaper components before the less-probable, expensive

ones. In our diagnosis algorithm, we wish to find an appropriate test node st

if Fs could not explain the active symptom set S. In particular, we would like

to choose the test node from candidate test set Cst that is cheapest and most

relevant to Fs. To achieve this, we need a measure for relevance between a test

node in Cst and a fault node in Fs.

Definition 6.4.1 Given Ik, the relevance of random variable Y relative to ran-

dom variable X is defined as

R(X;Y |Ik) =
I(X;Y |Ik)
H(X|Ik) .

H(X|Ik) = −∑x∈X p(x|Ik) log p(x|Ik) is the conditional entropy of a random

variable X, I(X;Y |Ik) =
∑
x∈X

∑
y∈Y p(x, y|Ik) log p(x,y|Ik)

p(x|Ik)p(y|Ik)
is the conditional

mutual information between random variable X and Y [94]. R(X;Y |Ik) ∈ [0, 1]

indicates to what extent Y can provide information about X. R(X;Y |Ik) = 1

means that Y can uniquely determine X, while R(X;Y |Ik) = 0 indicates that Y

and X are independent, given current Ik. Note that R(X;Y |Ik) 6= R(Y ;X|Ik).
More generally,

Definition 6.4.2 Given Ik, the relevance of random variable Y relative to a set

of random variables X is

R(X;Y |Ik) =
I(X;Y |Ik)
H(X|Ik) ,

where H(X|Ik) and I(X;Y |Ik) are defined similarly as above.
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With the relevance measure, our next test node given Ik at time k is simply

st = argmaxg∈CstR(Fs; g)/c(g), (6.9)

and our fault diagnosis process is summarized as algorithm 6.4.2, also shown in

figure 6.6.

Belif Network
Suspicious NodesPropagation Suspicious Nodes

Intervention on

Right
Diagnosis?

Termination

Get Next
Test Node

N

Y

Observation a(k)Z(a(k))

F_sI_k
Choosing

Original Belief Network Intervention Network

Figure 6.6: Illustration of the diagnosis process using intervention belief network

6.5 Simulation

To illustrate the effectiveness of our fault diagnosis algorithm, consider the ex-

ample network in figure 6.7. Two switches SW1 and SW2 are connected via

link L1. We have a probe a hooked at the end of SW2 to measure the traffic

throughput going out of SW2. Suppose the information we could obtain during

network operation include whether or not: SW1 alarm is normal, A could con-

nect SW2, B could connect SW2, A could connect C, C could connect SW1,
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Algorithm 1 Fault Diagnosis Procedure

• Step 1. Initialization

– Set time step tp = 0, AE = R, Cst = ST .

– Input evidence by setting the nodes in set AE according to current

active values ae.

• Step 2. Belief Propagation in belief network B and get the set of suspicious

nodes Fs according to scheme one or two.

• Step 3. Set the root nodes in B̃= (V ,L,P , S ,Fs) accordingly, and execute

the intervention. If Fs explains S, update total cost and TERMINATE.

• Step 4. Get next testing node

– If Cst = Φ, update total cost and give out the set Fs and say ”Didn’t

find the right diagnosis, but here is the list of possible faults in de-

creasing order”.

– Else: Get node st according to (6.9).

• Step 5. Observing test node st and get observation Zst

– Input this evidence st = Zst to original belief network B. Update tp,

Cst, and AE .

– Goto Step 2.
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throughput at probe a is normal, and D could connect SW1. The possible faults

are identified as: SW1 works normal or not, L1 normal or congested, SW2 nor-

mal or not, and source pumped from C to L2 is normal or not. We set up a

belief network model for such situations, and figure 6.8 shows the structure and

initial probability distributions.

probe a

L2 C

D

SW2SW1
L1

A

B

Figure 6.7: Example Network
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Figure 6.8: Belief Network for Example Network

Let us look at one diagnosis scenario. Suppose we observe that A Conn SW2

goes wrong, and we get the updated distribution as shown in figure 6.9. We see

that SW1 is the suspicious node and the intervention result is P (A Conn SW2 =

yes|Intervention) = 0.78. Initially, P (A Conn SW2 = yes) = 0.83, and we
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have not yet got the right diagnosis for ε = 0.4. Based on our test selection

scheme, node SW1 Indicator is chosen and the observation of it is “normal”.

The updated distribution is shown in figure 6.10. Again, L1 is intervened and no

right diagnosis is obtained. The next node selected this time is A Conn C and

the observation is “abnormal”. We got the updated distribution again in figure

6.11. If we intervene node L1, we have P (A Conn SW2 = yes|Intervention) =

0.87 > 0.83, and we obtain the right diagnosis!
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Figure 6.9: After A Conn SW2 Goes Wrong

As a comparison to our node selection scheme, we use the random scheme

meaning that each time we need a test node, we simply choose one uniformly

from all current available nodes in Cst. In our simulation, the outcome of chosen

test node st is uniformly generated as either 0 or 1. The costs for testing each

leaf node is shown in Table 6.1, with 40 as the penalty for not being able to

find the right diagnosis. Table 6.2 shows for three scenarios the comparisons

of the two test generation schemes with 2000 runs, which take only about 40

milliseconds per run for each scenario on a SUN Ultra2 running Solaris 8. We see

that node selection via relevance is much better than that via random selection.
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Figure 6.10: After SW1 Indicator Observed as normal

Simulations on other scenarios present similar results, which we do not list here.

Table 6.1: Cost for All Leaf Nodes

SW1 Indicator A Conn SW2 B Conn SW2 A Conn C Thru Prob A C Conn SW1 D Conn SW1

2 1 7 1 3 1 3

6.6 Service Failure Diagnosis

The previous example and discussions are presented from the network point

view. In this section, we extend our method to service failure diagnosis.

6.6.1 Network-Oriented and Service-Oriented Views

In Telecommunication Management Network (TMN) specifications, the ITU-T

defined a ”Logical Layered Architecture” - LLA [73]. According to this model,

some of the most important aspects of the management process are utilized as
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Figure 6.11: After A Conn C Observed as Abnormal

Table 6.2: Comparison of Node Selection Schemes

Symptom Nodes
Random Selection Relevance Selection

Avg. Cost Success Rate Avg. Cost Success Rate

A Conn SW2 15.38 84.5% 9.13 94%

A Conn C 26.21 70.1% 14.22 88%

A Conn SW2 and A Conn C 24.68 67.8% 3 100%

criteria for the grouping of the functionality of the operation support systems

(OSF) according to the four logical management layers:

• Network Element Management Layer

In this layer, the functions referring to the management of individual net-

work elements or to the network element groups are situated. The OSFs of

this layer provides, to the OSFs of the upper layer, the access to the func-

tionality of network elements and to the implementation of relationships

among these elements.
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• Network Management Layer

Supported by the functionality of the network elements management layer,

an OSF of this layer aims at the management of a network as a whole, which

is typically distributed over an extensive geographical area. It is also the

objectives of this layer to provide the upper layer with a network vision

which is independent of the technologies utilized in its implementation.

Since they have a global vision of the managed network, the OSFs of

this layer are able to know, monitor and control the utilization of the

network resources, thus guaranteeing its functioning according to adequate

performance standards and service quality.

• Services Management Layer

In this layer, the OSFs aim at knowing, monitoring and controlling the

contractual aspects of the services offered to the clients, including the re-

ceipt, processing and closing of service orders and complaints.

This layer provides the main point of contact of clients with the service

provider and so it must have updated and precise information on the ac-

tivation and deactivation of services, the quality of these services and the

occurrence of failures in the rendering of these services.

• Business Management Layer

One of the goals of the OSFs of this layer is the interaction with other

OSFs, in order to obtain a better utilization of the telecommunications

resources, under the business point of view, which consists of searching the

best return over the investment. Other attributions of the OSFs of this

layer include the support to the decision processes related to the realization

of new investments and to the allocation of resources (human and material)
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for the operation, administration and maintenance of telecommunications

resources.

OSFs with fault management functionality can exist in various layers, and

as we stated in chapter 3, belief networks can cover the modeling needs for fault

diagnosis purposes of all the first three layers.

Our previous examples and discussions focus on the fault diagnosis issues in

the network management layer, where the events are collected from the network

or system point of view. Such a view relates to network-specific information

about topology and connections between network elements and it also applies to

network element layer fault diagnosis in a device-oriented manner.

In the service management layer, however, the events are usually collected

not from the viewpoint of their underlying network system, rather, they are

collected from service point of view.

In a telecommunications environment, we have to deal with an end user (cus-

tomer), a service provider and a network provider. Consider a large customer,

maybe a bank or an inter-continental enterprise, that has internal computing

systems at a number of locations, and subscribes to the network services offered

by one or more communication network service providers. The services provided

by these providers, though specialized based on specific customer needs and tar-

iffs, are nonetheless formed from common networking resources or facilities (e.g.,

high-capacity optical fiber and shared public switches, etc.) maintained by net-

work providers.

The end users are usually furnished with service surveillance tools that help

them monitor the status of their offered services according to the contractual

aspects of the services. In cases of service failure, either no service or degradation

158



of service, the end users report troubles to the service provider. Such reports

represent troubles in terms of user services and they are typically stored in some

database(s) at the service provider site.

The service provider has information about the services it offers to the cus-

tomers and may be able to do some correlation and diagnosis based on reports

from multiple customers for particular services, according to some internal fault

model.

The network people think of the troubles in terms of the operation of net-

work facilities, not service or customer terms. Our previous examples take this

viewpoint.

Thus, in service layer fault diagnosis, we need to correlate the user’s view,

thinking in terms of user services (e.g. file transfer, QoS parameters, etc.),

and the personnel’s view, mostly thinking in terms of supportive services (e.g.

reachability, IP, Database, naming, etc.) within a service hierarchy. Such a

service hierarchy typically spans multiple protocol layers (application, tcp, ip,

etc. ) and it can be represented by a belief network. Our fault diagnosis method

discussed in this chapter can then take effect.

6.6.2 From Service Dependency to Belief Network

From the service-oriented point of view, a service, used by an end user, is de-

scribed with a set of subservices which themselves may be represented with a set

of subservices. A subservice in layer N provides its functionality to the service

on layer N − 1, and uses some subservices on layer N + 1. Relations between

the services and subservices are represented in a service graph . Vertices in the

service graph represent services and subservices, while the directed edges repre-
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sent the relation that a service “uses” the contained subservices for the provision

of its functionality. Due to the recursive nature of the service description, and

the existing service hierarchies, the service graph has to be layered. The root

vertices of the service graph represent services as used by end users, and are

placed on the refinement layer 0. When a user senses some service problem,

either no service or service quality degradation, he/she then sends out a trouble

report to the service provider. Fault documentation and diagnosis will happen

at the service provider site.

In [2] the fault diagnosis procedure essentially starts from the reported service

and inspects the subsequent subservices on some particular branches as indicated

in the service graph, until a leaf vertex is reached. Here, we use belief network

as the probabilistic fault model to encapsulate the inherent uncertainty among

the services and subservices. Our fault diagnosis method can handle multiple

faults and facilitate efficient query generation for the customer report database.

The conversion from a service graph to a belief network is straightforward.

Vertices keep the same. The directed edges in a service graph is adapted by re-

versing the arrow direction. And CPTs are provided for each vertex to represent

quantitatively the dependent relation. See figures 6.12 and 6.13 for a service

graph and a converted belief network.

6.6.3 Service Failure Diagnosis using Belief Networks

Given a belief network model for the service dependency, we can apply our

decision-theoretic diagnosis strategy discussed in this chapter to pinpoint the

most likely cause, up to the granularity of the current model. By appropriately

assigning the step cost and termination cost, we could stop as soon as one root
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Figure 6.12: An Example Service Graph
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Figure 6.13: Belief Network Model from Service Graph

node1 is identified with only one round of inference. This emulates the work in

[2].

Further, we could choose appropriately the step and termination cost such

that multiple steps could be taken and multiple causes could be identified. This

entails cleverly choosing and checking other types of services that possibly share

some subservices with current problematic service(s). A query to the customer

trouble database(s) can be automatically generated based on the selection of the

next test node. See figure 6.14 for an illustration.

Recent work at IBM [106, 107] about problem determination for application

1leaf node in [2].
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Figure 6.14: Service Failure Diagnosis using Belief Networks

services in an e-commerce environment uses similar ideas as that presented in this

chapter. They use dependency graphs to encode the service hierarchy and the

diagnosis is based on computing a basis set from the dependency chart (matrix)

derived from the dependency graph. The basis set contains the candidate causes

for current malfunctions and it could be large initially. Then, similar to my

work, they have a parallel simulation model of the dependency graph based on

which such candidate causes are set to faulty and see if they lead to the original

symptoms. If so, correct diagnosis is claimed; if not, this set is shrinked via some

elimination mechanism. This procedure is called fault injection.

Our work also use the parallel simulation model, the intervention belief net-

work, and our idea of right diagnosis is based on setting the suspicious nodes

to be normal. Further, we are cautious in choosing multiple candidate causes

and our set of suspicious nodes is increased, rather than shrinked with rounds of

diagnosis. This is based on our belief that symptoms are mostly due to one or
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at most a few causes. Moreover, we propose the decision-theoretic test genera-

tion scheme, which facilitates efficient network element monitoring or automatic

database query generation. Our method is a novel approach in the service failure

diagnosis research area.

6.6.4 Remarks

The different views discussed above lead to interesting thoughts regarding belief

network constructions for fault diagnosis. The network view focuses on the

operation status of the network components, and such status depend on various

layers of protocol parameters, all the way up to network users behavior. These

will all serve as ancestral nodes in the constructed belief network model, with

various status nodes of network components as the leaf nodes. On the other

hand, the service-oriented view starts from customer’s service trouble report.

Customer’s services depend on subservices in a recursive way, all the way down

to network facilities. Consequently, customer services will be the descendent

nodes.

The seemingly reverse order of the two kinds of belief networks raise in-

teresting questions. For example, what problems are best handled by dealing

only with network-oriented models? What problems are best handled only with

the service-oriented models? Further, since the services depend on the network

resources eventually, can we build belief network models that can encapsulate

belief networks built from both views, in some object-oriented manner, and the

diagnosis can be carried out by their cooperation? What would be the commu-

nication scheme that ensures the validity? Further, is it worth doing this? These

are open research questions.
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6.7 Conclusions

In this chapter, we presented a framework that supports intelligent fault and

performance management for communication networks. We used belief networks

as the knowledge representation scheme and inference engine for the problem

domain. The optimal stopping problem is tackled by using the notion of right

diagnosis via intervention, and test selection is based on a heuristic dynamic

strategy. Simulation shows that this scheme is much superior than a random

selection scheme. Note that as evidence accumulates, we may input them one

by one followed by a propagation right after each evidence-input, as we have

shown in this chapter, or we may input them once altogether and do only one

propagation. This provides us the flexibility for either on-line diagnosis or off-line

diagnosis/analysis.

This framework is quite general. As discussed in section 3.3, belief network

models have very rich expressive capability and can encompass various graph-

based fault models like dependency graph, service graph and causal graph. The

causes and effects are not necessary to be linked in a direct way; hidden and

complex dependencies can be modeled easily. Further, the belief network model

and the associated decision making algorithm could exist at any management

station in a network management system.

Due to the event correlation procedure prior to the diagnosis process, only

a small fraction of the so many alarms generated in a big problem domain is

chosen as input to a belief network model. Thus, the diagnosis based on such

condensed events tackles much less symptoms, which makes our framework and

algorithm scalable and run fast.

Moreover, our framework is robust to noise and incomplete data. By na-
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ture, belief network models handle the problem of uncertainty in the cause and

effect relationship among propositions. Based on probability theory and the lo-

cal conditional independence structure, a belief network model is a compact way

for knowledge representation under uncertainty and facilitates efficient inference

over the random variables included therein. In terms of observation noise, spu-

rious alarms can be easily tackled in the event correlation phase; if the input

events are not complete, i.e., one or more of the condensed events from the event

correlation process is lost, the lost events can be easily demanded by our dynamic

troubleshooting strategy if such lost events are calculated as relevant for further

diagnosis. By the term of model noise, we mean the model is not accurate in

describing some causal relations. Then during diagnosis we will find that our

model can not give out solutions that lead to right diagnosis in many situations.

This can be solved by analyzing logs and correcting the corresponding belief

network model, both improving the structure and the associated parameters.

Further, we observe from our experience of statistical parameter learning that,

in terms of fault diagnosis, the true and learned belief networks would give the

same test sequences and average cost under most of the symptom patterns, and

we conclude that such diagnostic belief network models are not so sensitive to

the parameters.

After a test node is chosen, the observation for this test may take advantage

of the traditional SNMP paradigm by polling appropriate MIB variables; or in

our case, delegated (mobile) agents could be sent to the network elements to

collect the data by using the management by delegation paradigm [108, 21]. As

one example of such an agent-based environment, the authors presented in [33]

a couple of system designs for adaptive, distributed network monitoring and
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control. See also Chapter 2.
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Chapter 7

Conclusions and Future Work

In this dissertation, we presented our design of an intelligent, distributed fault

and performance management system for communication networks. The archi-

tecture is based on a distributed agent paradigm, with belief networks as the

framework for knowledge representation and evidence propagation.

The dissertation consists of four major parts. First, we choose the mobile

code technology to help implement a distributed, extensible framework for sup-

porting adaptive, dynamic network monitoring and control. The focus of our

work is on three aspects. First, the design of the standard infrastructure, or

Virtual Machine, based on which agents could be created, deployed, managed

and initiated to run. Second, the collection API for our delegated agents to

collect data from network elements. Third, the communicating finite state ma-

chine based callback mechanism through which the functionality of the delegated

agents or even the native software could be extended. We propose three system

designs based on such ideas.

Second, we propose a distributed framework for intelligent fault management

purpose. The managed network is divided into several domains and for each

domain, there is an intelligent agent attached to it, which is responsible for this
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domain’s fault management tasks. Belief network models are embedded in such

an agent as the probabilistic fault models. For those problems that none of the

individual agent can solve, there is a mechanism by which the agents can report

to the coordinator and share the information in order to get a global view and

solve it cooperatively.

Third, we address the problem of parameter learning for belief networks with

fixed structure. Based on the idea of Expectation-Maximization (EM), we derive

a uniform learning algorithm under incomplete observations. Further, we study

the rate of convergence via the derivation of Jacobian matrices of our algorithm

and provide a guideline for choosing step size. Our simulation results show

that the learned values are relatively close to the true values. This algorithm is

suitable for both batch and on-line mode.

Finally, when using belief networks as the fault models, we identify two fun-

damental questions: When can I say that I get the right diagnosis and stop?

If right diagnosis has not been obtained yet, which test should I choose next?

The first question is tackled by the notion of right diagnosis via intervention,

and we solve the second problem based on a dynamic decision theoretic strategy.

Simulation shows that our strategy works well for the diagnosis purpose. This

framework is general, flexible, scalable and robust.

The work accomplished in this dissertation can be illustrated in figure 7.1.

Network elements are equipped with some intelligence and API to facilitate

hosting environment to delegated agents for the local monitoring and control.

Belief network models are built by the incorporation of human expertise and

empirical data, based on which evidence propagation and decision making are

carried out. The information about the selected test node in the belief network
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is then obtained through the adaptive monitoring framework, whereby another

round of diagnosis can take place. Illustration of the service failure diagnosis has

been shown in figure 6.14.

Suggestive TestsEvidence

Belief Networks
Decision Making

AgencyAgent Listener Create

DeploymentReporting

Network Element

Native Processes on VxWorks

Node Manager

Native Process API

 Data
  Human 
Expertise

Figure 7.1: Whole Figure

Future research remains in the following aspects.

• Formal Modeling for Function Extensions

In chapter 2 we presented the concept of function extension and change of

logic by using pointer replacement and defining callback hooks appropri-

ately. To ensure the correctness of these procedures, we propose to model

the processing logic using extended state machines and do system state

analysis on these state machines.
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Further, in many applications, there is the need for the coexistence, com-

munication and cooperation between equipments of different generations.

One example is in Satellite communication networks where different ver-

sions of terminals, equipped with possibly different processing capabilities

about compression, encapsulation, etc., need to coexist and communicate

with each other. In such cases, we need to specify the design guidelines for

state machines to make sure that such designed state machines are both

backward compatible and forward extensible.

• Extensions to Multi-Layer Fault Diagnosis

The methodologies presented in chapter 6 are presumably to be used within

an intelligent domain trouble-shooting assistant (IDTA). However, such

ideas can be extended to multi-layer fault diagnosis cases where the hier-

archical belief network models comply with some appropriate constraints.

In particular, in the network management layer, we could further divide the

problem domain into multiple layers according to the inherent hierarchical

architecture of a communication network (e.g. LAN, subnet, network,

etc.). For each layer, we associate belief network models for fault diagnosis

purposes.

Conceptually, belief networks are used in each layer to model the cause-

and-effect relations of the propositions of interest within its own layer of

view. Such belief networks, each of which models a component within

this layer N , provide to the upper layer N + 1 the access to the necessary

information of these belief networks for the upper layer belief networks to

obtain a larger view. On the other hand, a belief network model of each

layer N (except the bottom layer) also receives such necessary information
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from some belief networks of layer N − 1. The top layer has the global

view of the whole managed domain.

We notice that components1 typically interact in a network environment.

Components of the same hierarchy are each modeled by a belief network

model of this layer, while the interactions among such components and the

semantics of such interactions are modeled by upper layer belief networks

with a coarser view. So in terms of our multi-layer belief networks, all the

interactions among components are through vertically directed links. The

interfacing nodes in the constructed hierarchical belief network should form

various d-sepsets, as defined in [76], and each component belief network

should be specified in an object-oriented manner [109]. Further, how should

we combine both the network and service point of view?

• Improving the Dynamic Strategy

The dynamic heuristic strategy could be improved via reinforcement learn-

ing [99, 110], and in particular, Q-learning techniques [111]. The idea is

that, by interacting with the environment, the decision making module

could accumulate experience and improves its performance. We could use

the above dynamic strategy as the starting point. One possible problem

when using Q-learning is that we need to represent each state explicitly to

store the associated learned value. As we discussed above, this might be

intractable due to the increasing history or continuous state space. How-

ever, by noticing that there will be many cases that our diagnosis could

1The term component is used here in a general and abstract sense. It could be a host,

switch, a LAN, or a subnet, etc., that will interact with other peer components to form a

higher layer component.
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stop within only a couple of steps, we should be able truncate the expand-

ing state space (using history process) significantly. We could start from a

small example, like the one taken in chapter 6. It is shown [99, 110, 111]

that such dynamic trial-and-error mechanism lead to optimal policies and

we hope that we can discover some structure in the optimal policies de-

rived from the simple example. It would be ideal if we can extend such a

structure to a general case.
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