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model with unknown state transition and output transition matrices. The cardinality
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is determined by the value of a positive parameter which is allowed to decay to zero
at aconstant rate. Asthe parameter decays to zero the control convergesto an optimal
control for amoving horizon risk sensitive criterion.

The main contribution of the dissertation isthe presentation of a stochastic approxi-
mation proof for the asymptotic convergence of the algorithm for combined estimation

and control. The proof requires the development of a potential theory for the Markov



chain that captures the combined dynamics of the hidden Markov model, the estimator
and the control algorithm. The potential kernel associated with this chain is shown
to be regular with respect to variation in the plant estimates which influence the ker-
nel both directly though the estimation algorithm, and indirectly through the control
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Chapter 1

| ntroduction

This dissertation addresses the problem of designing estimators for partially-observed
feedback-control systems that optimize a risk sensitive cost functional. The difficult
part of this problem isthe provision of assurances both that the estimator convergesto
the true estimate of the model, and that the controller converges to the optimal risk-
sensitive control.

Theoretical considerationswere the major influence for the choice of problem. The
simple structure of afinite state hidden Markov model permits extensive analysis, and
reveals clearly the interaction between the part of the system that implements optimal
control, and the part that implements model estimation. For example, the notion of per-
sistent excitation has a precise formulation in the system studied here as a requirement
on the control policy that ensures a primitivity condition on a Markov chain, and the
formulation of the estimator convergence problem as a stochastic approximation prob-
lem providesinsight into why the control algorithm needs to be regular with respect to
parameter variations in the model.

The work in this dissertation potentially has direct application to control problems
for systems that are intrinsically difficult to model. Under these circumstances the

combination of arisk-sensitive control strategy with a coarse finite state system model



developed from input-output data may give better performance than control based on
a poor a priori model. The estimation algorithms and the analysis developed in this
dissertation would apply directly to such a circumstance.

The dissertation draws on ideas from control theory, stochastic approximation, and
ergodic theory for discrete-time Markov processes. This introduction selectively ref-
erences this broad literature focusing on the sources of the main ideas that directly
motivate the current work, the works that contribute to the formulation and solution of
the central problem in the dissertation, and the works that have strongly influenced the
dissertation through discussions of broader issues.

The problem of combined estimation and control has|ong been studied in thefields
of adaptive control, stochastic control, and intelligent control. One of the earliest for-
mulations of the problem was made by Feldbaum [13] who recognized that when de-
signing an optimal control for aplant with unknown model, thereisatrade-off between
the cost of acquiring additional information, and the cost of using a suboptimal control
designed from an imperfect model. Feldbaum formulated the identification problem
in a stochastic framework, and combined maximum likelihood estimates of the model
from the input-output data with control algorithms that minimized an accrued cost.
Feldbaum (or his trandator) coined the name “Dual Control Problem” to describe the
interaction between estimation and optimal control, and provided an apt nautical anal-
ogy by using the term “sounding” to describe the way that variation in the choice of
plant inputs provides data for the model estimation process.

Following Feldbaum’swork, a number of authorsinvestigated the problem of com-
bined control and estimation in a variety of frameworks including Sworder [42] who
investigated the interaction between optimal control and estimation for alinear system

with a quadratic cost functional, and Witten [53] who looked at the conflict between



estimation and control for a two-armed bandit problem. Witten points out that the
“Dual Control Problem” isinfact ageneral systems problem that occursin any system
where “the need to balance the costs of further exploratory activity against the costs of
poor system knowledge creates a basic conflict that can not be avoided”.

The early work on combined estimation and control spawned the field of adaptive
control which followed two variations. The model reference adaptive control schemes
are deterministic schemes which use Lyapunov theory to prove convergence of either
the model estimates or the system trgjectory. In apair of papers[30, 31] Narendraand
Kudva summarize earlier work and present a sound methodology for the linear, finite
dimensional, time invariant case. More recent work of authors such as Kokotovich et
al. cast the deterministic adaptive control problem in a nonlinear setting which gives
new insight into the problems of convergence, and allows the techniques developed
for linear systemsto be extended to certain classes of nonlinear systems— particularly
systemsthat are feedback linearizable. An important aspect of the work of Kokotovich
et al. isthe use of perturbation analysisto separate the fast dynamics of the plant from
the slower dynamics of the estimator. A similar classification of the parts of the system
by their characteristic time-scales applies to the system considered in thisthesis.

A second approach to adaptive control is the self tuning regulator of Astrom and
Wittenmark [3]. These authors take a point of view closer to that of Fieldbaum (op.
cit.) and cast the combined estimation and control problem in a stochastic setting by
introducing a noise disturbance into the linear system. The authors estimate unknown
system parameters with a recursive least squares algorithm, and regulate the variance
of the output process with aminimum variance controller. The self tuning regul ator has
additional importance as one of the stochastic approximation problems that Ljung[ 26,

25] chose as examples to illustrate an analysis technique that was latter dubbed “ The



ODE Method”. A more recent variant of the same technique forms the basis of the
analysisin this dissertation.

At the same time that the field of adaptive control was developing, workers in
a parallel field that has come to be known as intelligent control were applying the
results of work on machine learning to the “Dual Control Problem”. The grand aim
of intelligent control is to address the following statement of C.E. Shannon and J.
McCarthy which is taken from the preface to 1956 monograph “Automata Studies’
[39].

“Among the most challenging questions of our time are the corre-
sponding analytic and synthetic problems: How does the brain function?

Can we design a machine that will simulate the brain?’

Animportant difference between theintelligent control approach and the adaptive con-
trol approach is that while in adative control the primary emphasisis on showing con-
vergence of a parameterized estimated model to a*“true” model, the primary emphasis
in intelligent control is on learning a control strategy that improves an observed per-
fomance metric, such as an incremental cost, often without explicit reference to an
underlying system model. A good example isthe work of Widrow et al. on amachine
that learns an optimal strategy for the game of blackjack [51]. The automata that the
authors describe has two parts: The first part implements a decision rule by passing

aweighted sum of input stimuli through an output step-nonlinearity (a structure sim-

11t scarcely seems credible that McCulloch and Pitts[29] published their famous mechanistic model
of neural activity in 1943, but the date of this event is a good indication of the extent to which engineers
in the second half of this century have looked to anthropomorphic biological analogy as a source of
inspiration and justification for their work. Another influential early expression of this programis the

book “Cybernetics’ by Norbet Wiener [52]



ilar to that of the McCulloch-Pitts neuron). This decision element is augmented with
an adaptive critic, an architecture that adaptively adjusts the input weights of the de-
cision element based on a comparison of recent average performance with long-term
average performance. The authors analyze the convergence properties of this system
with a probabilistic argument. The ideas that underly the adaptive critic have been
developed by a number of authors. The work on temporal difference learning by Sut-
ton [41] and on Q-learning by Watkins and Dayan [45] falls into this category, and
from a control point of view? there is the work of Werbos [46, 47] which explicitly
links adaptive critics with dynamic programming. Werbos points out that the adaptive
critic part of the architecture computes an approximation to a value function (or, in
alternative architectures, an approximation to the gradient of avalue function) and that
the actor part of the architecture provides a feedback control policy implemented as a
mapping from an observed state to a choice of control. The critic influences the actor
by adjusting parameters in the actor architecture so that the updated control policy has
an estimated value function that is smaller at each value of the state than the value
function for the existing control policy. In the language of reinforcement learning, the
updatesin the parameters of the critic architecture are value iterations, and the updates
in the parameters for the actor architecture are policy iterations.

Work on reinforcement learning and intelligent control has lead to some spectac-
ular successes in recent years both in applications and in theoretical understanding
of the algorithms [12, 8]. Stochastic approximation techniques have proved to be an
important tool for obtaining convergence proofs for the architectures [44]

The simplicity of finite state models makes them an attractive choice for system

2Barto et al. [5] present areview that links the work of researchersin Al to parallel work of control

theorists



models. Bertsekas and Tsitsiklis [8] and many workers in Al use controllers that are
either explicitly or implicitly formulated asfinite state models. The advantage of finite
state models for these applications is that the dynamic programming equation satis-
fied by an optimal state feedback policy has computable, exact solutions. In the case
of optimal output feedback policies for partially observed systems the dynamic pro-
gramming equation is perfomed on a finite dimensional information state rather than
afinite state set, but even here structural propeties of the solution to the dynamic pro-
gramming equation provide a way to economically calculate exact solutions for finite
horizon problems[14].

Motivation to look at partially observed problems comes from atraditional control
theory view of systems structure. Feedback control is based on the premise that his-
tories of observed system signals contain information that enables the construction of
optimal future trgjectoriesfor controllable system parameters. A control algorithmisa
mapping from the histories of output signalsto input signals which represent planned
future control parameter trgjectories. Since signal histories are difficult objects to ma-
nipulate, the control mappings from output signals to input signals are constructed in
two stages. The first stage is an information compression stage which maps an output
signa history onto a state which is a simpler object, often a point on a finite dimen-
sional manifold. The state encodes the useful information about the history output
signals. The second stage is a mapping from the state to the input parameters. The
advantage of this factored approach is that when the state-space is well chosen, the
selection of an optimal map between the state-space and the system’s control param-
etersis asimpler problem then the original problem of choosing an optimal mapping
between an output signal space and a space of input signals.

The useful information in the signal spaces of stochastic systems is contained in



the probability distributions which determine the signal statistics. A mapping from an
output signal process of a stochastic system to a state signal process should preserve
relevant information from the output signal process in the marginal distribution of the
state trgjectory. In an optimal control problem, the information of interest that the
output process provides is the conditional expectation of the cost, conditioned on the
past values of the output process. A choice of a state process with the property that
the marginal distribution of the state process provides a set of sufficient statistics for
this conditional expectation is called an information state[49, 50, 19, 4]. The struc-
ture of an information state depends on the forms of both the cost functional and the
stochastic system. In the case of the linear quadratic Gaussian regul ator problem, alin-
ear system with a additivei.i.d. Gaussian state and output noise processes and a cost
functional that is a quadratic function of the state and input processes, the minimum
mean sguare error estimate of the state process provides an information state which is
avector space that isisomorphic to the underlying state space. Thisfact underliesthe
certainty equivalence principle for the linear quadratic Gaussian regulator. In general,
the structure of an information state is not so simple. In the case of the hidden Markov
model with arisk sensitive cost functional, the information space is isomorphic to a
gpace of functions defined on the state space of the underlying Markov model. This
situation istypical of quite general control problems, and provides a strong theoretical
motivation for the study of risk-sensitive control for finite state, hidden Markov mod-
els as a simple setting for control problems that exhibit important features of a much
broader class of stochastic control problems.

Combined estimation and control of a hidden Markov model isinteresting because
it retains the aspects of the dual control problem that are common to diverse areas

in control theory, yet discards the sophisticated structural features that differentiate



problems in one area from problems in another. The objective of the research in this
dissertation is to gain a thorough understanding of the analysis of the dua control
problem for this reduced system in the hope that the methods developed to attack
the problem at the simple level will trandate to equivalent methods for complicated
systems with more sophisticated structure. In light of this objective the dissertation
attempts to present a solution to the analysis problem in terms of general abstract
frameworks that, with luck, will transcend the simple setting.

The design of estimators for the parameters of a hidden Markov model is a long-
standing problem in estimation theory. Thefirst treatment of the properties of the max-
imum likelihood estimator is that of Baum and Petrie [6]. The authors show that the
maximum likelihood estimator minimizes the entropy of the observed process. They
then define arelative entropy function and devise an algorithm that minimizes the rel-
ative entropy function. This algorithm is the EM method. The classic EM algorithm
isan iterative algorithm that works by making sequential passes though the data set, at
each pass the estimate of the model parametersis used to compute the rel ative entropy
of the output process as a function of the model parameters, and minimizer of thisrel-
ative entropy function is chosen as the the updated parameter estimate. Krishnmurthy
and Mooreg[21] use work of Titterington[43] to develop arecursive version of the EM
algorithm. A simple adaptation of this recusive algorithm is used in Chapter 3 as the
basis for arecursive estimator.

The use of a recursive estimator gives the combined control estimation problem
the character of a stochastic approximation algorithm. Thisis the point of view from
which the dissertation atacks the analysis of the convergence properties of the system.
Stochastic approximation algorithms go back at least asfar asthe work of Robbinsand

Munro [35] on the algorithm that bears their names, but the style of analysis pursued



here originates in the work of Ljung [25] who introduced the ODE technique for anal-
ysis of convergence. The book of Kushner and Clark [22], which became a standard
reference for the subject, extends the method introduced by Ljung to more general
noise models, treats weak convergence of the algorithm as well as a.s. convergence of
the paths, and considers constrained systems. The essential idea in the ODE method
is to view the sequence of iterates from the stochastic approximation algorithm as a
noisy, discrete approximation to a continuous ordinary differential equation. A mar-
tingale argument bounds the culmulative error of the approximation, and a Lyapunov
argument establishes convergence of the associated ODE. An advantage of selecting
an estimation algorithm based on minimization of arelative entropy isthat the entropy
function becomes a good candidate for the Lyapunov function in the ODE method.
Since the work of Kushner and Clark on stochastic approximation algorithms the
field has grown very large. In the more recent book of Benveniste et al. [7], the au-
thors present an analysis of a general stochastic approximation algorithm that uses a
potential theory of the underlying Markov chain® to bound the cumulative error. The
authors are able to relax many of the requirements that earlier analyses placed on the
stochastic approximation algorithms, in particular their treatment allows the evolution
of the stochastic approximation to be generated by discontinuous functions. This dis-
sertation directly uses the convergence results from Benveniste et a. [7] to establish
the main convergence theorems for the combined estimation and control problem.
Adaptive control problems are a natural source of examples for stochastic approx-
imation methods. Ljung [25] applies his ODE method in one of his first applications
to the analysis of the asymptotic properties of Astrom’s self regulating tuner. More

recently a number of authors have analyzed systems that are quite similar to the sys-

3A good account of the potential theory for Markov chainsis the book by Revuz[34]



tem considered in this dissertation. Arapostathis and Marcus analyze an adaptive es-
timation agorithm for a partially observed Markov chain in [2]. LeGland and Mevel
[24, 23] use similar methods to treat more general systems. In a series of papers
[15, 16, 1, 17] Fernandéz-Gaucherand et al. pose the problem of jointly estimating the
parameters for the partialy observed Markov chain while executing a control policy
that is optimal for an average cost functional in the limit as the parameter estimates
converge to the true model. The analysis uses Stochastic Approximation methods to
show convergence of the estimates, and an argument similar to that of Shwartz and
Makowski [40] to prove convegence of the control to the optimal control for the exact
model. The example used is a very simple two state model of a production problem
taken from the operations research literature [37] and [48]. A feature common to all
the work cited is the extent of the technical difficulties that the authors encountered in
their analysis of a seemingly simple problem. In particular, the analysis of underly-
ing Markov chains for the adaptive control problems is complicated, and, at least in
the case of Fernandéz-Gaucherand et al., the discontinuous nature of the optimal con-
trols for the discounted problem prevents a straight forward application of the theory
developed by Shwartz and Makowski.

The convergence analysis of the combined estimation and control problem in this
dissertation adds two important innovations to the approaches of Arapostathis and
Marcus [2] and Le Gland and Mevel [23]. Here the analysis combines the control
and observation process with the state process to form an enlarged Markov chain. In
addition, the requirement for optimality in the control is slightly relaxed, and a close-
to-optimal randomized control strategy replaces the optimal strategy. If 0 is used to
denote an estimate of the hidden Markov model parameters, then the randomized con-

trol is a conditional probability distribution vg(du|yk k+a, tkk+a). This conditional

10



distribution is computed as a Gibbs distribution using the value function as a Hamil-
tonian. A temperture parameter in the Gibbs distribution determines the differencein
cost between the randomized contol and an optimal control. By using a randomized
strategy, the analysis avoids the problems that Fernandéz-Gaucherand et al. encoun-
tered with discontinuities in the control. The manner in which the control strategy is
chosen ensures that the augmented Markov chain consisting of state, output and input
processes is irreducible, and that the control strategy depends continuously on 6, the
estimate of the hidden Markov model parameters.

The dissertation also introduces an innovative structure for the Markov process
that provides the random perturbation in the stochastic approximation formulation. A
problem that arises when applying the stochastic approximation framework to the com-
bined estimation and control problem is how to divide the structure of the estimator
between the random process that provides the perturbations, and the parameter values
that congtitute the iterates in the stochastic approximation. The output, state, and in-
put processes provide a minimal set of sufficient statistics for the controlled hidden
Markov model, and it is clear that these processes, which combine to form a Markov
chain, should be grouped with the random component of the stochastic approximation.
Likewise, the iterates of the estimates of the state transition and output matrices should
be grouped with the iterates in the stochastic approximation. The problem comes with
the recursively defined estimator quantities that comprise the state information in the
estimator. These quantities are the recursive estimates of state occupation probabilities
and state transition probabilities in the controlled system’s underlying Markov chain.
The approach that the dissertation takes is to include these quantities with the random
component rather than with the iterates of the stochastic approximation agorithm.

This decision makes the problem of finding a Lyapunov function for the stochastic

11



approximation problem easier at the expense of making the problem of analysing the
cumulative error from the random perturbations harder.

A large portion of the new material in the dissertation deals with the analysis of
the Markov process that provides the random perturbations in the stochastic approxi-
mation problem. The Markov process factors into a subchain that provides sufficient
statistics for the whole process, and factors that evolve on products of probability sim-
plexes by random transformations that are functions of the sub-chain. The structure
isidentical to that of arandom walk, except that the statistics of the random transfor-
mations are governed by a Markov chain rather than an iid process. This dissertation
coins the phrase “Markov modulated random walk” for this new stochastic structure.
The analysis of the culmulative error in the stochastic approximation problem requires
apotential theory for the Markov process, and an important contribution of the disser-
tation is the development of the necessary ergodic theory for the Markov modulated
random walks.

The dissertation is structured in seven chapters, the first of which is this introduc-
tion. Chapter two introduces the controlled hidden Markov model that is the central
object of the combined control and estimation problem, and introduces an algorithm
for computing finite-horizon, risk-sensitive controllersfor such systems. Chapter three
introduces the estimator component of the combined control and estimation algorithm.
Chapters four, five and six present the analysis of the convergence properties of the
combined control and estimation algorithm. Chapter four reformulates the problem as
a stochastic approximation problem, introduces the Markov modulated random walks
that provide the structure of the perturbation component of the stochastic approxima-
tion formulation, describes the application of the ODE method, and formulates the

assumptions that are used by the the ODE method’s convergence theorem. Chapter

12



five develops the potential theory that is needed to verify the assumptions that ap-
ply to the stochastic approximation problem’s Markov chain. Chapter six exihibits a
Lyapunov function for the stochastic aproximation problem, and formulates the main
convergence results for the combined control and estimation problem. The seventhth

chapter provides conclusions and comments about the work.
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Chapter 2

Formulation and solution of therisk sensitive control

problem

In this dissertation system models use a state chosen from a finite state-space X to
characterize a system at a moment in time. The cardinality of the finite state-space
is IV, and the states are represented by unit vectors {e,, ...,ex} of RY. A discrete
time stochastic process with values in the state space X models the evolution of the
system in time. The underlying probabilistic structure is an abstract probability space
(2, F, P), whichischosen with the understanding that the sigmaalgebraJ containsall
sigma algebras of interest. For example,the state process, =;, [ = 0,1, 2, ..., induces
afiltration X; on F as follows. For afixed [, the X, is the smallest sigma algebra
contained in 3 on which the finite products of random variables (z;,, ... ,z;,, i, <)
are all measurable functions on €2, and X, isthe smallest sigma algebra generated by

U2, X;. The processz; isaMarkov chain if it satisfies

P($l+1 | xl) = P($l+1 | CUl)-
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The state transition matrix for a Markov chain is the matrix A;, a function of time [,

with entries defined by
Al;ij = P(l’prl =€y | I = 6,‘). (21)

At eachtime therows of A, are probability densitieson X. A specification of both a
distribution for the random variable z, the initial state in the model, and the values for
the entries in the transition matrices A; completely determines a probability measure
P onthesigmaalgebra X ..

A controlled hidden Markov model consists of afinite set of controls U with car-
dinality P, afinite set of outputs Y with cardinality M, afinite state set X with cardi-
nality NV, and the following rules for generating a state process and an output process
from an input sequence u,. A Markov transition matrix A, is associated with each
control u, so that a sequence of controls, u;, and an initia state, =, will generate a

Markov chain, x;, with transition probabilities governed by the transition matrices
Al;ij = Aul;ij [l = 0, 1, P (22)

The finite set of outputs Y is represented by {ey, ... , ey}, the set of unit vectorsin
RM . The output sequence y; is arandom processthat has valuesin Y. The distribution
for the process y; is determined by the distribution of the state process, and by the
conditional probabilities
Py = e | 11 = €;) = Bip. (2.3)

where B;; isa N x M matrix with rows that are probability densities over Y.

A fundamental assumption that holds throughout the dissertation isthat there exists
aconstant p > 0 such that

Ay > p Vi, j,suchthat1 <i,j < N,andVu € U

(2.4)
B > p Viimsuchthatl <i< Nandl1<m< M

15



This strong assumption ssimplifies many of the ergodicity results and convergence
proofs that are presented in the dissertation. In particular, the lower bound on the
values of A, ensures that the Markov chain generated by A, is both recurrent and
irreducible. In many instances weaker assumptionswill lead to the same results at the
cost of more intricate arguments. Seneta[38] provides adetailed account of recurrence
structures and ergodic theorems for finite Markov chains.

Let M denote the space of probability distributions on U endowed with the weak
topology?, and M,, denote the compact subset of distributionsthat satisfy u{u} > n for
al v € U. A randomized control policy of length K is a specification of a sequence of
probability distributions 1, pt1, - - . , x 1, Where u; isthe distribution of values taken
by the random variable ;.

The output process y; and the input process «; generate filtrations Y, and U; on JF;
the filtration generated by the combined state and output processes is denoted §,, and
the filtration O, is the filtration generated by the sequence of pairs (u; 1,¥;). O, can
be interpreted as a time-indexed specification of the information that past records of
the input and output processes provide about the system. Given some filtration &, a
deterministic control policy corresponds to the degenerate case when the conditional
distributions P(u,; | F;) have point support, an open loop policy has 1, a measurable
function of the initial condition X, for all [, a state feedback policy has ., adapted
to the filtration X;, and an output feedback policy has ., adapted to the observation
filtration O;.

A control policy i = fug, i1, ---, fii 1 iNducesaprobability distribution on G i with

Throughout the dissertation weak topology on probability measures should be understood in the
sense of probability theory. From the point of view of analysis this would be a weak* topology. Since
U isfinitethisdistinction is not important in thisinstance, asin either case the topology is the topology

induced by the Euclidean normin R”
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density

K-1

P*(ug -1, .1, Yo,ic) = (Trc, By ) wo, mo) | [ (@, Awwria) (@, Bun) (wa, ).
1=0

(2.5)
The products in the angle brackets are the normal Euclidean inner products, and g is
the probability distribution for the random variable x.

A risk sensitive control problem is defined on a hidden Markov model by specify-
ing a cost functional with a particular form. Given arunning cost, ¢(x, u), whichisa
function of both the state and the input, and afinal cost ¢ ;(x), which is a function of
the state only, the finite horizon, risk sensitive cost associated with ¢, ¢ ¢, risk v and
horizon K is the functional

g (u) = E* lexp% <¢f<xK) e u))] . (26)

=0

The expectation is taken with respect to the distribution P* in (2.5). If 9t isaclass
of control policies, then a solution to the risk sensitive control problem is a control
policy p; € 9t that minimizes J”(u). The important class of control policiesin this
dissertation isthe class of output feedback policies. A control policy y.; isarandomized
output feedback policy when for any [, and for any f : U — R, the random variable
{1y, f) is measurable with respect to the sigma-algebra O, in the observation filtration.

A search for an optimal feedback policy encounters an immediate difficulty. Be-
causetheincremental cost isexpressed as afunction of the state process, an application
of dynamic programming produces a control policy that is adapted to the statefiltration
X;, but not to the observationfiltration O,. Thisdifficulty isresolved by areformulation
of the dynamics of the plant and the associated cost function. The new plant dynamics
generate a state process that is adapted to the observation filtration, while maintain-

ing invariance between the two formulations of the cost of an output feedback policy.
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The state in the new state process is called an information state, and the corresponding
dynamics are called the information state dynamics.

The information state dynamics are generated by taking conditional expectations
of the accrued cost up to the present time that are conditioned with respect to the o-
algebrasin the output filtration O,. Manipulation of conditional expectations produces
arecursive formulathat governs the evolution of the information state dynamics. Ma-
nipulation of the conditional expectations is greatly simplified when the o-algebras
generated by the marginal distributions in the observation process {y,} are mutually
independent, and independent of the marginal distributions {x} under the underly-
ing probability measure. Consequently, a new probability measure P that meets this
requirement is defined on (2, F) by the densities

1 |

PT(UO,K—laxO,Ka?JO,K) = M<$0,7T0> H M<xl;Aulxl+1><ula,ul>'

=0
The importance of this definition lies in the properties that the process i, possesses
with respect to the conditional probability distribution that is formed by conditioning
P ontheinput o-algebra U 5. With respect to this conditional distribution, the output
process y;. isi.i.d. For each k the distribution of v, isgivenby Pf(y, = e,,,) = 1/M for
1 < m < M. Furthermore, under the measure P’ the distributions for the processes
Y and x are mutually independent. The measure P* is absolutely continuous with

respect to Pt on each sigmaalgebra §;,, and has Radon Nikodym derivative

dpPH s
ey :AK:HM<1‘Z,BQZ>.
Pt Sk 1=0

The risk sensitive cost function with risk v and horizon K iswrittenin termsof P as

AK exp% (¢f(!1]}() + z_: gb(xl,ul))] .

=0

J'(n) = Ef
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The appropriate notion of state for the risk-sensitive output-feedback control prob-
lem is the information state which, at each time £, is a function on the state-space X

defined by

k-1
1
ol(z) = Ef [[{ku}Ak exp (; gb(xl,ul)) | Ok] )
1=0

Comparison of this expression with the expression for the conditional expectation un-
der a change of measure given in the conditional Bayes theorem of Elliot et al. [11,
Theorem 3.2] reveadls the information state o, to be an un-normalized conditional ex-
pectation of the component of the cost that is incurred before time k. The expectation
is taken with respect to the P* measure, and is conditioned on both the o-algebra Oy,
and theevent z;, = x.

The finite horizon cost functional is expressed in terms of the information state by

the following formulawhich is derived in Appendix B.
I () = E" [{ok (), exp(d5(-) /7)) - (2.7)
Theinitia value of the information state is
o () = (mo, z) Mz, By), (2.8)

and a recursion that describes the evolution of the information state is calculated as
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follows:

k—1
1
O—Z(.ZU”) — ET [{mk:x”}Ak) exp <; E ¢(xl7ul)) | ok
=0

= E" | Ig,—omy exp(¢ (w1, ug—1)/7) M (zk, Byx)
] 1 k—2
Aprexp <— Z (i, Uz)) | ok] (2.9)
v =0
=> ((fU, Ay, 2") exp(o(z, ug 1) /)M (2", By)

k—2
1
[{xk_lza:}Ak—l exp (; Z ¢($l, ul)) | Ok—l] )
=0

The last step in the derivation relies on the mutual independence of the processes x,

Ef

and y;, under the conditional probability?. The need for independence hereisthereason
for the particular choice of PT. If the information state is represented as a vector on

RY, then the recursion can be written in the form
o = S(Ug—1, Yr)Ok—1, (2.10)
in which the matrix X (u, y) is given by the formula

(u,y) = M diag((-, By)) A, diag(exp(1/7 ¢(-, u))) (2.11)

with the understanding that vectorsin RY are formed by applying the functions (-, By)
and exp(1/v ¢(-,u)) tothe N basisvectors{es, ... ,e,}.

In summary, Equation (2.10) describesalinear dynamic system with astate process
o, that isvector valued and O, adapted. The cost functional J7(p) on theinput policy

1 is expressed as a functional on the information state at the final time o i by (2.7). A

2|_oéve'stextbook [28] provides a good account of the methods for manipulating conditional expec-

tations
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feedback controller on the information state process determines a control policy that
is O,-adapted, and consequently is an output-feedback control for the hidden Markov
model formulation of the problem.

If A!, and B’ are estimates for the matrices A and B, and o, is an approximation to

the information state at time O, then

U;c = E,(Uk—b yk) e E,(ula yz)El(an y1)00

isan estimate of o, theinformation state at time k. Thisestimateisonly useful when it
comes with assurances that the estimate converges as £ — oo, and that the estimators
oy are regular with respect to variation in the estimates A/, and B’. The following
results establish convergence and regularity of the estimates.

The operators X (u,y) are examples of positive operators which map the cone
K ={ceR' :0, >0, 1< < N}intoitself. The projective pseudo-metric
d(o,0') = sup, ;log(o07/0;0}) is useful when studying ergodicity properties of pos-
itive operatorson K. Thesets P, = {0’ € K : d(o,0") = 0} form a partition of X,
and the quotient space is a complete metric space that is homeomorphic to the RV !
plane. In general, the quotient space will be identified with the probability ssmplex
© ={o € X:)> 0, =1}. Thefollowing result from Nussbaum [32] relates the
projective metric restricted to the probability smplex to the metric induced by the L,

norm || - ||
Lemmal. If z,y € K satisfy ||z]| = ||y|| = 1, then
|z =yl < 3(exp(d(z,y)) — 1)

The next two lemmas prove ergodicity and regularity results for the operator .
The ergodicity property proved in the first lemma is the weak ergodicity of Seneta

[38], the averaging trick used to get the contraction goes back to Markov.
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Lemma 2. For any choice of u and y. The operator (u, y) isa strict contraction on
the space {oc € R : 0; > 0, 1 < i < N} with respect to the projective pseudo-
metric d(o, o') = sup; ;log(o;07/0;07). The operator induced by ¥(u,y) on the real
projective space 2 iswell defined, denote this operator by 3(u, ). Finally, the ranges

of £(u, y) liein a compact set.

Proof. For any u, y, the operator X (u, ) commutes with homotheties®.

The operators defined component-wise by
o; — (e;, By)o;
1
g; — —gb(ei,u)az-
v

are both isometries with respect to the projective pseudo-metric. That o — Ao isa

contraction follows from the following averaging argument. For al ¢,

(Auo—)z _ Zj AU;jio-] o Z usz]
(AUT)Z Zk Au;kiTk Zk w;kiTk 7_]

Let P, = % then the entries of P, ; are strictly positive, the rows sum to 1,

and

AusjiTj gj
= P .t <
E:Z }:ZJ] wp%

k u kiTk Tj
Consequently,
(Ay0); 9j
su sup —
R
For some constant p that depends on the entriesin A,,, but satisfies0 < p < 1. 0J

Flemming and Hernandez-Hernandez, [ 18] write the information state o as a prod-

uct o = rf. Thefirst factor r = ||, is a positive real number. The second factor,

SHomotheties are contractions and dilations.
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0 = o/|o|, lies on the probability simplex which is given the topology induced by the
projective pseudo-metric d defined in Lemma 2. The simplex is identified with the
projective plane ©. This decomposition gives a useful geometric view of the space
of information states as a linear fibration with the projective plane © as base space
and the positive reals R as fiber. It is a consequence of Lemma 2 that the information
state recursion defined by the operator ¥ has a decomposition as the product © ® 1|
The first factor, 3, which acts on the base space, is the contraction operator defined
inLemma2, and |X| : © x R — R isthe multiplicative operator on the fibre that is
defined by (6,7) — r|X(a(6))].

The following lemma establishes regularity of the operator Y with respect to per-

turbationsin A, and B.*

Lemma 3. Suppose that the operators A", diag(exp(1/v¢(-,u))) and B are all uni-
formly bounded by the constant C,. If A" and B’ are perturbations of A and B that

satisfy |[AT — A'T| < ¢, and | B — B'| < e then, for any information state o € R

S (u, y)o — T'(u, y)o| < 2¢CYlo]

4In the next lemma, and throughout the dissertation multiplicative constants are denoted by the
symbol C'. Subscriptswill differentiate between different constants that appear in asingle context, such
as the following lemma, but the subscripts will not remain consistent between a result that is presented

in one context and used in another.
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Proof. Let max{|B — B'|,|A, — A}| : u € U} < ¢, thenforo € RY,
| (u, y)o—X"(u, y)o|
= | diag((-, By))A, diag(exp(1/96(-,u)))o
— diag((-, B'y)) A, diag(exp(1/7¢(-, u)))o]|
= | diag((-, (B — B')y))A, diag(exp(1/7y¢(, u)))o
+diag((-, B'y)) (A}, — A,) " diag(exp(1/74(-, u)))o]|

< 2¢C3|o].
U

The interpretation of the information state as an un-normalized conditional expec-
tation of the cost accrued up to the present time, conditioned on the values for the
present state, would seem to indicate that an estimate for the information state must
reflect the entire history of the system. While this is true of the information state as
awhole, the fibration o = rf separates the distant past from the recent history. The
historical values of incurred costs are accrued in the fibre r, and the recent history of
the system dynamics is stored in the base point 6. It will turn out that the optimal
feedback control will depend only on 4, the projection of the information state into
the base-space. So, equipped with this clairvoyance, a buffer containing the last A
observations of the input and output processes u; and y; before the present time &, and
estimates A/, and B’ of the system kernels A,, and B, define an estimate of the factor

0. of information state at time &, by the finite recursion
pa=(1/N)1
92—%—1 = Z'(ul,yl)ﬁg, k—A S l S k—1.
Lemma 2 and Lemma 3 combine to produce the following bound for the error in

the estimate.
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Proposition 4. If the buffer length A can be chosen arbitrarily large, thentheerror in

the estimate for the information state is bounded by
0r — 0] < eCy

Where C, isa constant, and ¢ isa uniformbound on theinduced L' norms| A, — AT,

and |B — B'|.

Proof. Define the operators 33, .;, and &}, by the products

~

Z/\)ll..lz - XA}(“’ZQ? yl2) et E(uh? yll)

igl.iz = El(ulm ylz) cee El(uha yl1)7

then the following inequalities yield a bound on the error in the estimate.

o< S/ /
0 — O] =Xk Ak 10k a =S Ak 10k a

k=2
= Z Ez..m@LA,,zgka — Ez+1..k71227¢.z+1 ;cfA
I=k—A
k=2
= (El“k_12;€,A“19k—A - El..k—IE;cfA..le;cfA
I=k—A
+ il,,k_lf};,A“l%,A — il-{-l..k—li;c—A..lJrlg;cfA)
k—2
< Ap”D + Z p"leC1D
I=k—A
2
< Ap®D + 1 eCiD
- P

D and p are fixed constants, consequently, provided Cs is chosen to satisfy Cy, >
p*D/(1 — p), the estimate in the statement of the proposition will hold for all suffi-

ciently large A. O

The reason for defining an information state isto convert the output feedback prob-

lem to an equivalent, fully observed, state feedback problem which is easier to solve.
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Baras and James [4] use the following dynamic programming argument to compute

optimal deterministic control. They define a time-dependent value function S7 (o, 1)

by

S0 = min_ B (0%().60) o] =0], 0<i<K, (212

uy.. w1 €U

and associate with thisvalue function the time-dependent dynamic programming equa-

tion

S7(0,1) = min BV [S7(S7 (u, y141)0, 1 + 1) | 0]
uelU (2.13)

570, K) = {o(-), ¢(-))-
The following theorem from [4] establishes that the deterministic control policy
that at each step chooses the control that minimizes the expectation in (2.12) is an

optimal feedback control policy on the information state recursion.

Theorem 5. The value function S” defined by (2.12) isthe unique solution to the dy-
namic programming equation (2.13). Conversely, assumethat S” isthe solution of the
dynamic programming equation (2.13). Suppose that .* is a policy such that for each
[ =0,...,k—1,uf = uj(o]) € M, where u; (o) achieves the minimum in (2.13).
Then p* isan optimal output feedback controller for the risk-sensitive stochastic con-

trol problem with cost functional (2.6).

Given a hidden Markov model, and a risk-sensitive cost function, Theorem 5 to-
gether with the information state recursion (2.10) provide an agorithm for calculating
optimal, deterministic output feedback controllers. A standard objection to dynamic
programming methods is that the dynamic programming equations are expensive to
solve, especidly in the time dependent case. But Fernandez-Gaucherand and Marcus

[14] show that in the finite horizon, finite state case, the case considered here, the value
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function is a concave piece-wise linear function of the finite-dimensional information
state, and the direct use of dynamic programming to solve the optimal risk-sensitive
control problem isfeasible for modest sized state-spaces.

An obvious, but erroneous, approach to the problem posed in this dissertation,
the problem of combined estimation and control, is to simply compute an optimal,
deterministic control with the current estimate of the system model, and update the
control policy as the model is updated with successive iterations of the estimation
algorithm. This approach faces two problems. The first is the problem of persistent
excitation. The parameter estimation algorithm relies on the statistical information
that it receives from observations of input and output values to reconstruct the state
and output transition matrices. If an optimal control is used, the control algorithm
avoids states with high costs, and consequently transitions to and from these states are
poorly represented in the statistical information available to the parameter estimation
algorithm. The second problem is that the mapping between a system model and the
optimal control for that model is often ill-conditioned, asmall change in the model can
produce alarge changein the optimal control. In the case of finite valued deterministic
controlsit is hard to imagine any sort of non-trivial topology on the control space that
would make the optimal control problem well-conditioned. Both these problems are
avoided by the use of randomized approximationsto the optimal risk-sensitive control,
rather than the deterministic optimal control itself. These randomized policies are
created by solving arandomized regularization of the dynamic programming equation
(2.13), the equation that is satisfied by the optimal, deterministic information-state
feedback controller.

For afinite horizon K, recursively define a value function Vi (o, 1) depending on

the information state o and thetime 0 < [ < K asfollows:
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. At thefina time K the value function is defined by
Vi (o, K) = (0, ¢¢("))

. given the value function at time [ + 1, define an energy functional on the infor-

mation state o and the control « by

H(o,u,l) = E![log Vi (S(u, y)o, 1 +1)]

. Require that the randomized feedback control at time ! be distributed according

to the conditional Gibbs distribution with density given by
-1 _H(Ua u, l)
vi(o;du) = Z1(0) ™" exp — du (2.14)
In which the partition function 7, (o) is defined as

(o) = /U exp (W) du.

. Define the value function recursion by
Vi) = [ V(S g)or 1+ oo du) (215)
U

The following theorem lists basic properties of the control policy that are needed

later for the proof of combined estimation and control.

Theorem 6. The policy v satisfies the following properties

(i) Thepolicyisastrictly positivemeasure on U (needed for ergodicity resultslater)

(if) The policy is continuous with respect to changes in the HMM. (Needed later to

prove regularity results for potential kernels)
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(iii) Inthelimit asn — 0 the randomized policy converges (in the weak topology) to

the finite horizon, deterministic policy of Theorem 5.
Proof. The proof follows from the definition of the control policy.
(i) Thisisaconsequence of boundedness of the value function.

(ii) For afixed value of 7, the measures v;(o; du) are continuous® functions of the
energy functional H, which in turn is a continuous function of the information
state 0. (The partition function Z;(o) is bounded away from zero.) A backward
recursive argument proves that the energy functional is continuous with respect
to variationsin the hidden Markov model parameters, A,, and B, and Proposition
4 establishes continuity of the the information state with respect to variationsin
the hidden Markov mode!.

(iif) Thisisan application of asimple form of Laplace's approximation theorem.
O

While Theorem 6 is adequate for the purposes of this dissertation, it is not a very
satisfactory result from a control theory point of view. An intuitive justification for
considering afinite horizon control is that as the length of the horizon K is extended,
the control converges to an invariant value. But while it is easy to prove the theorem
for afixed value of K, itisnot so easy to produce a proof that provides estimates that
are uniform for arbitrarily large values values of K. In effect what is needed isaform
of backwards ergodicity result that says that as the length of the horizon is increased,

the influence of the choice of final cost ¢ on the control policy diminishes. Flemming

5Since the space of measures over afinite set of discrete points is a finite dimensional vector space,

a precise definition of the metric on the space of measuresis not required.
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and Hernandez-Hernandez have proved just such a result for the deterministic case.
Thisresult allowed them to define an analogue to the optimal average cost control that
occursasalarge horizon limit of thefinite horizon policy for quadratic cost functionals.
Unfortunately the method that Flemming and Hernandez-Hernandez use, which relies
on the transformation of the optimal control problem to an equivalent dynamic game
problem, does not have an obvious analogue for the stochastic regularization presented
above. The remainder of this section demonstrates how an adaption of the method
that Fleming and Hernandez-Hernandez use leads to a nonlinear eigenvalue problem
formulation for the average cost limit to the regularized problem.

The argument starts by postulating that the average cost problem is well-posed
in the sense that in the limit as K becomes large, the solutions Vi (o,0) are well

approximated by
Vi (0,0) =~ rexp(pK + W (0)). (2.16)

This assumption implies the existence of a fixed point equation that must be satisfied
by W (#) and p if this asymptotic limit isto hold.

When |o| = 1, o can be identified with a canonical injection of a point § € O,
and in the sequel, when ¢ is used to denote a point in the information-state space, this

injection is understood. Assume that equation (2.16) holds exactly, thenfor 6 € ©,

Vi (0,0) = exp(pK + W (0))

Vi+1(0,0) = exp(p(K + 1) + W(0)) (2.17)

Let w(f) = exp(W(0)), g(u,y,0) = |X(u,y)o| and G(u,y, o) = log g(u,y, o), then
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the recursive definition of the value function implies that

VK+1(E(U7 y)a, 1) = VK(E(U, y)a, 0)
= V(| (, y)o|S(u, )6, 0)

= e’ g(u, y,0)w(E(u,y)b) (2.18)

Equation (2.17) yields a simplified expression for the measure vy (o; du). When the

horizonis K + 1,
(EL(Vie(S(u,y)oy 1+ 1)) " du

iy (B y)+1)) " du
(El[g(u,y,a)w(i(u,y)e)])l/n du

o (EZ[g(u,y,a)w(i(u,y)e)])_” " du

Which isindependent of K.

vo(o;du) =

(2.19)

Equations (2.17) and (2.18) yield the following implicit equation for the function

W and the quantity p.

i) = [ Ellaf.5,0)(S(w.1)0))en(0: du) (220
Define the nonlinear, homogeneous of degree 1 operator A by

(Aw)() = [ ELlgCu,v,0)u (S, 1)0)]eo(6: ). (221

Then the fixed point equation (2.20) can be written as the non-linear eigenvalue equa-

tion
Aw =e"Pw (2.22)
The operator A isnonlinear because the argument w appears both explicitly intheinte-

grand on theright hand side of equation (2.21), and implicitly in the measure v (0; du).
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The search for awell posed solution to the average cost control problem is equiva-
lent to establishing the existence of stable solutionsto this non-linear eigenval ue prob-
lem. Genera non-linear eigenvalue problems are notorioudly difficult to solve, but the
positive, and homogeneous properties of the operator in this case provide hope that
this problem is tractable. Ergodicity results for non-linear operators are an area of ac-
tive research, and authors such as Nussbaum [32] have provided results for families of

operators that are similar to the operator in equation (2.22).
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Chapter 3

Estimating the parametersfor the hidden Markov

model

This chapter introduces an algorithm for on-line estimation of the hidden Markov
model parameters. An architecture for the combined controller and estimator isillus-
trated in Figure 3.1. The estimator monitors the system inputs and outputs, estimates,
on-line, a hidden Markov model for the plant, and feeds this estimate to the controller
algorithm. This controller algorithm uses the estimate to compute the value of the op-
erators (2.11), which it in turn uses in the value function recursion (2.15) that is the
basis of the computation of the feedback control policy.

The estimation agorithm and its derivation are taken from Krishnamurthy and
Moore[21] with small adaptations that account for the differences between the models
treated by Krishnamurthy and Moore and controlled hidden Markov model considered
here. The derivation takes the form of a formal stochastic approximation to the max-
imum likelihood estimator and produces an algorithm that is similar to the standard
expectation maximization algorithm. Where the expectation maximization algorithm
repeatedly processesthe entire data-set, the algorithm derived here uses a shifting win-

dow of the datato recursively update filtered estimates of the model parameters.
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Controller -~

Figure 3.1: Controller Architecture

Let the symbol )\ denote an unconstrained choice of parameters for the hidden
Markov model. The transition matrices A,, and B are specified completely by the pa-
rameters A, and through them \ determines a probability measure on (2, F). Given
an input sequence uy . .. ux—1, and amodel A, let f(yox | A) be the probability dis-
tribution function for the sequence of outputs v, ... ,yx. If \* isa particular choice
of model, then a convexity arguement based on Jensen’s inequality proves that the

Kullback Leibler measure
J(A) = Ellog f(yox | A) | A

has a global maximum at A\ = \* provided that equality almost everywhere between
f(yor | A) and f(yor | A*) impliesthat A = A\*. Consequently, an algorithm that pro-
duces a sequence of estimates ), with the property that .J()\;) converges to the global
maximum .J(A*) will converge to the maximum likelihood estimate of the model pa-
rameters. Unfortunately, given an observation process v, it is not easy to obtain
recursive estimates for the log-likelihoods log f (o | A), instead, log-likelihoods of

the combined output and state processes are used. Specifically, Krishnamurthy and



Moore show that if A and \' are two parameter values, and

(N, A) = Ellog f(zok: Yo | A) | Yo N

Qk()‘la )‘) = E[Qk()‘l7 )‘) | )‘*]

then Q. (N, \) > Qi (N, \) impliesthat J()\) > J()\'). This observation leads to the

following off-line expectation maximization algorithm: Estimate A, ; by
)‘H-l = m)?;iX Q()\l, )\)

The )\, are the models at consecutive passes through the data.
A sequential algorithm that gives a sequence of stochastic approximations to the

model parameters \* using an observation sequence of length K is: Estimate A, by
Aoyl = max Qpr1(Ag, A).
with
Qppt1(Ag, A) = Elog f(zok+1,Yok+1 | A) | Yo,k Ak] (3.1)

and Ay = (A, Ao, ..., ). Thistime )\, is the estimate of the model based on log-
likelihoods of the combined state and output sequence x x, ¥o,x, and the probability
measure used in evaluating the conditional expectation in (3.1) is the empirical mea-

sure generated by the conditional distributions

~

Ul—l;i,j(l A k) Au(o) = Au

flrr=¢j |11 =€)

A~

A
Bin(iNk)  B(0)=B

fly=em|z1=1¢)

f(xo)

I
>

in which 4, B and # are initiad estimates of the state transition matrix, the output

matrix and the density of theinitial state, and A(l A k) and B(l A k) are the estimates
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of the state transition matrix and output transition matrix computed either from the
parameter estimate A\, when [ < k, or from the parameter estimate A\, when( > k.
The first two terms of the Taylor's expansion for Q.1 (A, -) about A, are
T 041 (Ag, )
0\ N

T 0?Qpp1 (Mg, A)
O\2

Qg1 (Aky A) = Qg1 (Mg, Ak) + (A — )

+=(A =) (A= X). (32)

A=A,

1
2

Let A\, bethevalue of \ that maximizes the right hand side of (3.2), then

Aes1 = e + L () S (M, Yrs) (33)

in which I, the Fisher information matrix for the combined output and state pro-
cesses, isgiven by Ii 1 (\r) = —02Qk11/0N?|s=s,, and S(Ax, yk+1), the score at time
kisgivenby S(Ag, Yk+1) = 041 /0 x=n, - If App1 — A issmall, then A, isaclose
approximation to the value of A that maximizes Q1 (Ag, A).

To proceed requires an explicit expression for Q and its derivatives in terms of
the parameter estimates \;. If A, and B are the matrices associated with a particular
choice of A, and 7 is the estimate of the initial state distribution, then the probability

density for the state and output processis

f(yo,/c+1,$o,k+1 | )\) = f(yk+1,xk+1 | Yo,k L0,k )\)f(yo,k,xo,k | )\)

= <xk+17Byk+1><xk;Aukxk+1>f(y0,kax0,k | )\)
k
= (w0, Byo)(m, z0) | [(w111, Byia) (wt, Auisa)

=0
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Taking logarithms givest
log f(Yok+1s Togsr | A) = Z Z anj(k +1) log Ay
7 i u

+ Z Zmi’m(lﬁ + 1) lOg Bi,m =+ Z 561‘ (aj‘o) logﬂ'i,

in which ngfj(k) is the number of transitionsfrom z;,_; = e;, ;1 = utoz; = ¢; in
the state sequence z x, and m; ,, (k) is the number of timesz; = ¢; and y; = e, In
the combined sequences =, yo,,. Taking conditional expectations with respect to the

probability measure induced by the sequence of model estimates A, gives

E[log f(yO,kJrl;xO,kJrl | )\) | Yo,K Ak]

= ZEW% =¢;) | Yo,k A]logm;

Z (3.4)
- Z Z Z log Ay;i i E[ng;(k +1) | yo,ic, Ax]
(3 Vi u

+ Z Z lOg Bi,mE[mi,m(k + 1) | yO,K, Ak]

Define the conditional densities (j x4, and vy xa, by

C1|K,Ak(i,j) = f(ﬂﬁz =€5,Tj—1 = € | yO,KaAk)

V() = flor = e | Yo, Ak),

then in terms of ¢ and ~y the conditional expectations on the right hand side of equation

15, () is used throughout the dissertation to denote the Dirac delta, i.e. the distribution on the space

in which x takes values, with unit mass supported at the point a.
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(3.4) are:

k
E[nfg(k) | Zlo,K,Ak] = Zf(% =€5,T—1 = € | yO,KaAk)5u(ul71)

=1

= ZCZ\KAk iy J)0u(wi—1)

E[mim(k) [ yo,x, Al = Z f(xr = e | yo,i, Ak)Oe,, (1)
1=0

= Z%\KM ey yl)
E[dc; (7o) | vo,x, Akl = f(zo = €i | yo,i, M) = Yoix .0, (7)

Substituting the above expressions for the conditional expectations into the right hand

side of equation (3.4) gives

k+1
Q1 (Ak, A) Z%\KAk 10g7fz+ZZZQ|KAk i, ) log(e, Au,_,€5)
J
k+1
+ )0 e, (6) log{es, Byr). (3.5
i 1=0

Equation (3.5) expresses Q in a suitable form for the calculation of the gradient
term and the Fisher information matrix that appear in the update equation — equation
(3.3). Working from (3.5), Q1 (Ag, A) iswrittenin terms of Q. (A, \) as

Qg1 (Agy A) = Qe (Ag, A)

YO G (i) logles, Auef) + Y Yestien, (1) log{eq, Bypsr).

(]
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and differentiation with respect to )\ gives the score vector:

0Q Ap, A
S()‘kaykJrl) = M

12D N
an(Ak,)\) . 8log<el,Au €; >
k
310 e;, B
+Z%+1|KAk i B i) :
A=A

Under the assumptions that Qk(Ak, A) = Qr(Ag_1,\), and that )\, is close to the min-
imizer of Qx (A1, A) thefirst term is close to zero, and the score is closely approxi-

mated by

, 810 €, Ay €
S(Aks Ye41) ZZCkaAk i,7) & O\ - J>

A=A,

810 e;, B
+ Z%HIK A, (7 B Yei1)

o (3.6)

A=)

The choice of entries for the matrices A, and B is constrained by the Markov
conditionsthat > i A, =1and)’ B, = 1. Consequently, themodel (A4,, B) can
be expressed in terms of avector A with dimension P x N x (N —1)+ N x (M —1).
The components of A are indexed as \ = (/\ZA;, AP ), and the form of Qi (Ag, )
ensures that the gradient and Hessian have corresponding structure. For a given choice
of u and i theindex j in )\A“ skipsonevaueg; intherange1 < ¢; < N, similarly, the

index m in )\B skipsone valuep; intherange1 < p; < M. The matrix entries A,,;;

and B;,, are expressed in terms of the parameters A= and \? by the formulae

Ayij = A J# Bim =\, m#pi
3.7
uzq_l—Z)\ ll’_l_z)‘zm’ (3.7)
]#Lh mipl
First derivativeswith respect to \ are
o 9 0 o 2 9
a)\f]“ N 0Au;i,j 0Au;i,qi 6)\fm N 6Bl,m GBi,pi
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and the second derivatives are

0? 0? 0* 0? 0*
_ N _ S
6A{};2 aAu;i,j2 aAu;i,qz‘z a)\f; a)‘fj% aAu;i,qz? 17
A s ¢ m 4 m!
OB 2 OBim®  0Bip’ ONZROAD, 0By,

Theparameters A,,; ; and B; ,,, occur in separate terms of the expressionfor Q1 (Ag, A).
As aresult, the form of )\ induces corresponding block structures on the score vector
S (Mg, yr+1) and the Fisher information matrix 1,1 (\;). Evaluating the partial deriva-
tivesin the score vector gives:
SO yer1) = [S™ O yrr1), ST\ wesn)] (3.8)
with one S4+ block for each input « € U. Each block S4« is given by
S (A yigr) = [S14(1), 5(2), ..., SM(N)]T (3.9)

SAH(Z) = [SAu(ia 1)7 s 78Au(i7Qi - 1)78Au(i7Qi + 1)7 s 78Au(i7N)]T

(3.10)
with
sU0, 1) = 9ig — Gia T F U (3.11)
gij = —Ck“j’“ UIPYY (3.12)
RN
Likewise, the block S? is given by
SP(Nyk) = [S7(1),57(2),..., SE(N)]" (3.13)

SPE) = [sP(i,1), ..., (i, pi — 1), 8% (i, pi + 1),..., s (i, M)]"  (3.14)

with
sP(i,m) = him — hip, m # p; (3.15)
) (316)
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The delta functions that occur in the score vector come from the inner products in
summands of equation (3.6). At each time £ the output y, selects one column of the
matrix B to be updated, and the input «, selects one transition matrix A,,, . If y = e,
the first term in equation (3.15) is non-zero, if y, = e,, the second term is selected,
and if y,, is something else, then s” (i, m) = 0 at that particular value of k.

The Fisher information matrix [, ., hasablock diagonal structure
I (A) = diag(llfﬁ()‘)a [/il()‘)) (3.17)
again, thereis one 7+ block for each u € U. Each block 74+ hasthe form

Ii (A) = diag(Py, ..., Py),

with
Py = M; +Cj,
M; = diag(pij), 1<j<N; j#a, (3.18)
and
k+1 .
O (uy—
. (zu G (1 1) n) | 3.19)
Ausij
For each i, C;isan (N — 1) x (N — 1) matrix with identical elementsall equal to
. 1/2
¢ = (Z;Hll ClK,Ak(Z;Zi)5u(Ull)> ‘ (3.20)
Ao
u5,4q;
A standard matrix inversion Lemma |20, p. 655] produces expressionsfor the inverses
of the blocks P;,
X\
Pl =M <—2 +> ) FF' (3.21)
¢ J#ai Hisj
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inwhich F; isan N — 1 dimensional column vector with entriesuiyjfl,j # q;. These
inversesare used to construct the blocks 7, ~!intheinverse of the Fisher information
matrix.

Anidentical derivation for an expression for the block 1 ,ﬂfl of the inverse of the

Fisher information matrix in terms of blocks ;' resultsin

P

1 . _
Ich—i—l = diag(Q; ") (3.22)
T
Q7l =N - (F + Z ” EE] (3.23)
¢ m#p; Lm
k+1 .
)
l/i’m — (le ’y”_I;Ak(ZZ) fm (yl) (324)
k+1 . 1/2
i df,
di — (Zl_l fy”];/\k(;) fpl (yl) (3.25)

with E; an M — 1 dimensional column vector with entriesv; ., ™', m # p;.
Substituting the explicit expressions for the score vectors (3.8 — 3.16), and the
Fisher information matrices (3.17 — 3.25) into the parameter update equation (3.3)
produces a formula for A, in terms of A, and the conditional densities Ci11/x A,
and 411k, - Substituting this estimate in (3.7) gives the following formulae for the

updates of the transition matrix estimate.

1 N— ,r 7,7 ¢
Ausij(k +1) = Augij (k) + (gi,j - M) :

i’j ZT:I lu’iﬂ'il
i,j=1...N;
M (3.26)
1 hir i,r
Bim(k +1) = Bip (k) + i — % ,
Yim Zr:l Vi,ril

1=1...N, m=1...M,
Equations (3.26) along with (3.12, 3.15, 3.19, 3.24) give estimates for the hidden

Markov model parameters in terms of the conditional densities (.1 kA, and Y41k 4,
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and reduce the problem of deriving recursive estimators for the hidden Markov model
parametersto the problem of finding recursive formulae for these densities. Moore and
Krishnamurthy tackle this problem by applying methods similar to those used in the
backwards-forwards recursions of the standard EM algorithm described by Rabiner
[33].

Two auxiliary distributions

aun, (1) = flor = e | you, Ak)
Bira, () = Wi | 21 = €5, M)

are introduced. ay,,(7), which isthe conditional density of the state at time [ condi-

tioned on the prior observations, is computed by the recursive formula,

_ Zz’(ejv B(l N k)yl>Aul—1;ij(l A k)al—”/\k (7')
Zj > (e, BUA Ky Auy i (LA K)ouyja, (i)

Therecursion isinitialized with

i, (7) (3.27)

(ej, B(0)yo)m;
>, (i, B(0)yo)T;

Bika, (1) is computed with the backwards recursion

QoA (]) =

BZ|K:Ak(i) = Z BH‘”K:Ak (j)Auz+1;ij((l + 2) N k) <6i7 B((l + 1) A k)yl+1> (328)

whichisinitialized with S x4, (1) = 1. Thedensities(jx,a, andy;k,a, are expressed

interms of o and 3 by the formulae

Qg (t,0) = flor = ej, 21 = € | Yo,i5 M)
o aan (D) Au i (EAE) Broarea, ()
i tueta, (D Au i (UAR)Bioaea, (7)
. > Buriag () Augis ((+ 1) A ) aua, (7)
T ) = S e () A+ 1) A Ry, @

(3.29)

(3.30)
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Details of the derivations of these formulae are given in Appendix A.

The derivation given in this chapter closely follows the development of the basic
recursive estimation algorithm described by Krishnamurthy and Moore [21]. In the
same paper the authors make two changes to the algorithm that improve its imple-
mentation. The first change is to use afixed length buffer of “future” observations to
calculate the a-posteriori probabilities 3. Instead of computing 3y, , the a-posteriori
probability for the entire observation sequence form [ to K, a buffer of A observa-
tionsis used, and 3k, is replaced by the a-posteriori probabilities 3;;;,.4,4, Which
are calculated from the next A observations. The effect of this change is to produce
afixed-lag recursive estimator. The use of the interval A for both the fixed-lag in the
estimator and the buffer length for the information state estimate in the controller is an
intentional simplification in notation. Although the collusion of the intervals does not
affect the asymptotic properties of the algorithm, in practice the lengths need not, and
probably should not, be identical.

The second change that Krishnamurthy and M oore proposeistheincorporation of a
“forgetting factor” in the computation of the Fisher information matrices. Specificaly,

the expressions defining 1, ¢, v, and d in equations (3.19, 3.20, 3.24, 3.25) and are

replaced by
(S P G (6,08 = W)
Hij = 1
3,7
. 1/2
— Z;zrll pkilHCl\K,Ak(% ¢i)o (w1 = u)
C;, = A —
U32,qi
(S P e ()3 = fn)
l/i,m — 2 3
, 1/2
d; = Zfill pkile\K,Ak ()0(y = fpz)
Z Blzpzz

Another way to implement “exponential forgetting” isthe following. Let « be afixed



positive integer, and write the update equation (3.26) for the transition matrix estimate
Ayij (k) as

1 Z,]«V_ gi,r/ﬂi,r
Auij(k+1) = Ayj (k) + — | 915 — =5 1
’Ull?] ZT:I IU/ivr

_ A 1 1 X Giw (pin ) (E + K))
= Auii (k) + 7 + £ i/ (k + k) ( SN (/4 R)) ) '

(3.31)

When k& >> &, the quantity 1, ,/(k + «) is an empirical estimate of the probability
of occurrence of the transition u, = u, xy = ¢; — x;1 = e,. An alternative way to

estimate this probability is with the recursive estimator

Zipr = 2y + (1= p)ou(ur) (Crlkran, — Z5), (3.32)

thematrix element Z} , (i, ) givesthefrequency estimatethat correspondsto s, / (k+
r). Substitute Z;! , (i, r) for p;,/(k + x) inthe second line of (3.31) to give a new re-

cursive update for the transition matrix estimates

1 1 > g”/(Z (i
Ausij(k +1) = Ay (k) + —— i —

Tf )> . (333)

The corresponding update equation for the estimates B;,,, (k) is

Bin(k+1) = Bin(k) + i = (i o (hm _ % (;;/(fkr()l), 7“1)> . (339

with I';, being the recursively defined quantity

Tiir =T+ (1= p)(Veipsan,ys — D) (3.35)
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Chapter 4

Analysisof the control and estimation algorithm.

Part 1. Stochastic approximation formulation.

The next three chapters present an anaysis of the combined control and estimation
algorithm as a stochastic approximation algorithm. The first section of this chapter
reformulates the combined control and estimation problem in new compact notation
that emphasis the division of the system structure between a Markov process and the
parameter trgjectory of a stochastic difference equation. The section introduces a new
stochastic structure called a Markov modulated random walk, and provides a decom-
position of the Markov process in terms of these structures and an underlying finite
Markov chain. The second section in the chapter provides an overview of the ODE
method, and formulates the assumptions from the premise of the convergence theo-
rems in terms of the specific structure of the combined estimation and control prob-
lem. Verification of three of the seven assumtions presented in this chapter requires

nontrivial analysis. The next two chapters present this analysis.

46



4.1 Decomposition of the Markov chain

The analysis of the combined control and estimation algorithm proceeds by the identi-
fication and exploitation of structure in the complex Markov process that is associated
with the algorithm. The state-space of this Markov process has two levels of factor-
ization. At each level the Markov process is expressed as a product of an embedded
Markov process that provides a sufficient statistic for the large process, and a depen-
dent structure, a Markov modulated random walk, that is defined as follows.

Consider a discrete-time Markov process {7} } that takes values in a state space
T = 8 x G that isaproduct of aset S and a semigroup &. Assume that the set §
and the semigroup G each have measurable structures that are compatible with the
sigmaalgebraon T. Let T}, have components T}, = (Sk, sx), where { S, } isaMarkov
process in § with transition kernel T1(.Sy; dSk+1). If there exists a measurable function
g : 8 — & such that for dl k, s, = g(Sk)sk—1, then the random process {s;} is the
Markov modulated random walk generated by the Markov process { S }, and the map
qg.

The transition kernel for the process {7}, } iSII(15; d1}) = 0g(s,)s. (55)11(Sa; diSh),
where T1(S,; dSp) is the transition kernel for the Markov process S;. The meaning of
this notation becomes clearer when the action of the kernel on afunction is considered.

If f: 7T — R isameasurable function, then

E[f(T}) | T,] = / F(T)IL(T,: dT;) = / F(Ss 9(Ss)50)IL(Su: dS5)

If the map induced by the function ¢ on the space of measures (the push-forward of
g) iswritten as d, g, then du, = [d.g](I1(S,;dSp)) is a sequence of time dependent

probability kernels on &, and the marginal distribution for s, conditioned on 7}, =
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(Sk, si) is given by the kernel TI(S,, s4; dsy) = d, * duy(sy). Inthe special casein
which the kernel TI(S,; dS,) = 1(S,)dv(Ss) isindependent of S,, the push-forward
duy, = [d,g](dv) = du is aconstant measure, and the Markov random walk s is a
conventional random walk (with independent increments) on the semigroup &.
Turning now to the chain that underlies the combined control estimation problem,
itistime for some new notation. Let k£ € N be the instant in time after the controller
has read the value of the k’th output ¥, but before the £’th input «; is computed.

Define the following random variables:

X} =z isthe state of the controlled hidden Markov model defined in Section 2. X}
takes values in a finite set of size N which is represented by the N canonical

basisvectorsin RYV.

Xp = ug—nx—1 ISabuffer containing the last A values for the control «. The control
takes values in a finite set of size P, and the values of X} are represented by
elements of the set formed by taking Cartesian products of length A of copies of

the set of canonical basisvectorsin R” .

X! = yk—as1 iSabuffer containing the last A values for the output (including the
k'th value). The output takes values in a finite set of size M, and the values of
X} are represented by elements of the set formed by taking Cartesian products

of length A of copies of the set of canonical basisvectorsin RV .

Xp = ag_ap—a+1 IS buffer of length two containing the values for the time-lagged
empirical density for the state calculated at times £ and k£ — 1. Denote the proba-

bility simplex over the state by ¢, then X * takes valuesin the Cartesian product

1The convolution of two measures . and v defined on asemigroup & is the measure defined by the

formula « v(f) = g £(9h) diu(g)d(h)
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O x Q2.

X ,ﬁ is the empirical estimate of the density for the conditional joint distribution of
successive states in the Markov chain, conditioned on the value of the input at
the transition. Let ¢ denote the probability simplex in RY”, then the densities
of joint distributions of successive states take valuesin ¢, and X takes values

in the Cartesian product of P copies of Q¢.

X, isthe empirical estimate of the density for the distribution of the state of the
Markov chain conditioned on the associated output. X takes values in the

Cartesian product of M copies of Q“.

Throughout the remainder of the dissertation n-dimensional probability simplices
(2 are identified with subsets of real projective space P". Thisidentification ssmplifies
formulas such as those for the filter equations by removing the need to keep track of
normalizing constants. Conversely, if X € P, then an expression such as min; X*
should be interpreted as applying to arepresentation of X as a point in the probability
simplex €.

Let X; = (X7, X, X7) be the product of the discrete random variables, and let
X, = (X7, X XY, X2, X5, X)) be the product of all the random variables. The
evolution of the discrete time random process X, captures the combined dynamics of
the controlled hidden Markov model that formsthe plant, the control algorithm, and the
estimator. The random variables X* and X¥ which represent buffers of length A are
used both in both the estimator and the control algorithms. There is no reason, other
than convenience, why the lag in the estimator algorithm, which is used to smooth
the a-posteriori estimates of the state occupation and state transition, should be the

same length as the buffer that is used by the moving horizon controller to compute the
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current value for the information state.

The range spaces for the random variables will be denoted by the corresponding
script symbols, so, for example, X denotes the finite set of values taken by the process
Xi, Xo = Q2 x Qv is the continuous range space for the random variable X, and
X, the range space for the complete process X, is acomplicated space formed from a
finite number of disconnected continuous components.

The following proposition summarizes the information available about the evolu-
tion, and the proof provides a detailed decomposition of the structure in the transition

kernel.

Proposition 7. The random process { X} is Markoy, the chain { X} is a Markov
sub-chain, and for all /, the random variable X, together with the chain { X}, & > [}

form a set of sufficient statisticsfor the process { Xy, k£ > [}.

Proof. The proof proceeds by using the formulae from previous chapters to write ex-
plicit expressions for the Markov transition kernels Iy (X; d.X') and Iy (X ; dX).

The dynamics of the discrete chain is determined from the description of the con-
trolled hidden Markov model and the control algorithm in Chapter 2. Recalling the
definitions of X, X*, and X¥, X, € X has a representation as a tensor product of

canonical basis vectors

Xe=2.0y, ®u,' ®y, ' ©u,”®...0y, " ®@u,®, (4.2)

s0if X = X, thenz, = xy, y," = yp—; and u,’ = wuy_;. The factor X, can only
take a finite number of values. The distribution of the sequence of discrete random
variables X, is determined by a transition kernel I1,(X,; dX,) that depends only on
the discrete part of the random variable X,. This transition kernel can be written as

alarge, sparse, stochastic matrix M of rank N(M P)~. If the rows and columns of
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M are indexed by the finite set of values that form the range of X, then a formula for
the entry M j((: can be determined from the definitions of the controlled Markov chain
transition matrices given in equations (2.1), (2.2), (2.3), and from the randomized,

moving-horizon, output-feedback control strategy vg.

MY — (x4, Au;mbﬂma, By?)(vg(yg, ugl, . ,ya_A+1 u_A), ub_1>

Xa ]

X 00 (U )0zt (0, 2) o 0ymana (yy B0, man (1, ) (42)

That M isstochastic followsfrom A,, and B being stochastic, and from the fact that v
takes vector valuesthat are probability densities over thefinite input set U. The matrix
M depends on the parameter 6 solely through the feedback strategy v,.

The evolution of the continuous factors of X is determined by the estimation al-
gorithm presented in Chapter 3. Write X = (X! X*%), X¢ = (X1 ... X¢P)
and X7 = (X7 ..., X"M) s0 X% and X7™ take values in the probability sim-
plex Q and X¢” takes values in the probability simplex Q¢. Let X* = Q* x Q,
W= Q6 x - x Q¢ and X7 = Qo x M x Qe For S € {X, X<, 0}, let &(S)
denote the semigroup of (not necessarily invertible) affine transformations of S into
itself. The evolution of the random processes X, X¢ and X" are described directly
in terms of the action of elements of Markov modulated random walks on the affine
spaces X, X¢, and, X7. Define themaps ¢® : X — &(X?), ¢¢ : X x X* — &S(X¢)
and g7 : X x X* — &(X7) by

(g*(X)X*)' =diag(B(0)y > A (0)X™',  (¢*(X)X*)?=X>" (43
(64(X, X)X = (1 — g, (u™)) XP + g6, (u™>)¢ (4.4)

(¢"(X, X)X = (1 = ¢be,, (y )XV + qbe,, (y =)y (4.5)
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with ¢ and ~ defined by

.. X?’QAu;ijﬁj_A
= i X% A B2 N 9
i) = 2 5_A+1(j)4u;inf’l : | @7
D5 20y BTG ) Augiy X3 u—y— A1

and 3~ calculated from the buffered input and output values X “ and X¥ by the back-

ward recursion

5—([-{-1),1’ _ Zﬁ_l’jAu;ijBi,m [0=1 (4.8)
J

u=u—"em=y=!
The map g comes directly from the recursion (3.27), the equations for 5, ¢ and
~ come from (3.28 — 3.30), and the mappings ¢¢ and ¢” come from equations (3.32)
and (3.35), the recursive formulae for empirical estimates of the conditional densities
X¢ and X7. The ranges of these maps all lie in semigroups of affine transformations
on the appropriate probability simplices.
The mappings defined in (4.3-4.5) give rise to Markov modulated random walks
(Xg, 52), (Xg, X2, 5%), and (X, X2, s7) through the definitions,
so = Ia sp = g%(Xp)sp,
s =Tw  si =98N, X5t
sg = Incv s = g7 (X, X)s)_,
and the random processes X ¢, X¢ and X" obey evolution equations that are deter-

mined by the actions of transformations which are randomly drawn from the corre-

sponding semi-groups s®, s¢ and s7.

X = s X¢ X;

_ ¢ ¢
41 = Sl+1X0 X/

_ S v
+1 = Sl+1X0-

Equations (4.2) and (4.3-4.5) combined with the formulafor the transition kernel of a

Markov modulated random walk yield the following explicit expression for the kernel
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Ty(X,; dXy).

[p(Xo; dXp) = ME*Scen (X5)3a s, o (X5)

< 11 0scn it xoyxer 5™ T 0p0m ez, xpxm (X7™) - (49)

P m

The claims that the chain { X} is Markov and that the discrete sub-chain with the
initial state forms a set of sufficient statistics both follow from the form of the kernel

(4.9). O

The following definitions for the measures in the convolution kernels complete the
notational definitionsfor the Markov modulated random walks that were introduced in

Proposition 7.

pip = [dug®| (Mg (Xp1; X))
i, = [deg 1Mo (Xpor, X 15 (X, X7)))
g = [deg" 1 (Mg (X 1, Xit 5 d( X5, X7)))
Finally, let S isan affine space, and &(8) isthe semigroup of affine transformations
of S intoitself. The following definitions map random walks defined on the semigroup

S(8), to random walks in the affine space 8. The orbit of a point S, € 8 under the

action of the semigroup & is described by the continuous map
05, : 6(8) — 8
05, (g) = 950

where the product ¢S, is the image of the point S, under the transformation g. The
orbit mapping og, induces a continuous mapping d,og, from the space of measures

on the semi-group to the space of measures on the affine space, and the sequence of
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conditional distributions T1*(gy; dg,) map to a sequence of conditional distributions
I1%(Sy; dSy) through the equations

H(So; dSlc) = d*Oso Hk(go; dgk)-

For a more concrete picture of the situation, recall that objects in the spaces X¢,
X¢, and X" are empirical estimates of distributions associated with the discrete chain
X. The random walks on the semigroups &(X®), &(X¢), and &(X") induce stochas-
tic processes on the corresponding spaces of empirical estimates. These stochastic
processes are the sequences of empirical estimates that are generated by the recursive

estimation algortihm.

4.2 A stochastic approximation formulation of the esti-
mation algorithm

The notation that was introduced in the preceding section for the description of the
underlying Markov chain permitsacompact representation of the estimation algorithm
intheform of ageneral stochastic approximation algorithm. Let x be apositiveinteger,
and let v, = k + k. Using the notation of Benveniste et al., the parameter update

equation becomes
9/9—1—1 = 9k + ’)/]H_lH(gk, Xk) (410)

Given initial values X, = X and 6, = 6 for the state of the Markov chain, and the
value of the parameter estimates, the recursion (4.10) and the transition kernel (4.9)
define a distribution Py 4 for the chain (6, X). The particular form of H (6, X})
ensures that the values 6, which are a sequence of estimates for the entries in the

matrices A, and B, satisfy the constraints required of probability kernels.



Equation (4.10) summarizes the two recursive equations (3.33, 3.34). When writ-
ten in the new notation of this chapter, the part of H (6, X}) that updates the estimates

of the state transition matrices A, is:

Al (ZN Alsir (C(i,j)_cu',r)))
X5 (i,) r=L XC(0r) \Aui;  Augir
ZN Abir
r=1 Xg (i)

Su(u ™) (4.11)

while the part that updates of the estimates for the output transition matrix B is
B, M B} (1) (1)
st (S0 st (B — 2))
M B}
Zr:l X7 (i,r)

in which v~ and y~2*! are the buffered values of input and output, and ¢ and v are

S, (y=2h)

(4.12)

given by equations (4.6) and (4.7).

Examination of equations (4.11) and (4.12) indicates that, for fixed X € X, the
function § ~» H(6,X) is uniformly bounded on § € ©. If, on the other hand, ¢
is a fixed point in ©, then the function X ~» H(#, X) blowsup as X — 9X. In
particular, as X¢(i,7) — 0, the terms in (4.11) that update the estimate A,,.;; have
growth O(1/X¢(4, 7)). Similarly, as X7 (i, m) — 0, the termsin (4.12) that update the
estimate B;,, have growth O(1/X¢(i, j)).

Equation (4.10) is in the form of the general stochastic approximation algorithm
considered by Benveniste et al. [7, Part2, equation 1.1.1]

Ori1 = Ok + YVir 1 H (O, Xi) + Vi1 (0, Xio).- (4.13)

In the particular case of equation (4.10), the function p isidentically zero. Part 2 of the
book by Benveniste et al. [7] presents ageneral analysis of the convergence properties
of this algorithm, and eventually this dissertation will use theorems from that work
to establish the convergence of the combined estimation and control algorithm. The

premises of the major theorems in Part 2 of Benveniste et al. rely on a set of seven
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non-trivial assumptions about the random process X, the generator function H (0, X),
and the sequence of step-sizes v,. A maor objective of the work in this dissertation
is to establish a theoretical framework for the combined estimation and control prob-
lem that supports the assumptions on which the stochastic approximation results of
Benveniste et al. rely. The three most problematic assumptions that Benveniste et al.
require form the conclusions of the theorems presented in the next couple of chapters.
The remainder of this chapter outlines the major ideasin the stochastic approximation
theory presented by Benveniste et al. and introduces the theory’s seven basic assump-
tionsin the contexts in which Benveniste et al. use them to advance the theory.

The fit between the general stochastic approximation theory of Benveniste et al.
and the convergence problem presented in this dissertation is not perfect. Whereas
Benveniste et al. alow the random processes X, and ¢, to evolve in Euclidean spaces,
here z;, € X and §, € ©, where X and © are both Cartesian products of compact
subsets of Euclidean spaces. The difference in the range of ¢ is not very important.
Uniform boundedness of the function H (6, X') with respect to # means that the nat-
ural embedding of © into an appropriately dimensioned Euclidean space provides a
suitable metric structure for the stochastic approximation theory. The case for X is
different, H(#, X') blowsup as X — 90X at an asymptotic rate that isinversely propor-
tional to the Euclidean distance between X and the boundary 0X. Under the natural
embedding of X into a Euclidean space, the function H (6, X) is neither locally Lips-
chitz with respect to X, nor isit bounded by afunction of polynomial growth, and both
deficiencies create problems for the stochastic approximation theory. The solution is
to choose a metric for the space X that better suits the requirements of the stochastic
approximation analysis. An appropriate metric for X is a hyperbolic metric that ef-

fectively puts the boundary 0X at an infinite distance from pointsin the interior of X.
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Specifically, the following definitions define a suitable metric 0y : X x X — R for the

space X.
oo Xa 7£ Xb
0 (Xg, Xp) =
max{aa(Xg7Xl?)7 DC(X(§7 Xl?)? 0 (XgaXl:/)} Xa - Xb
where

Xol(; Xa,l ! X
0, (XY X) = max {logsup ( ‘;1(2) I;I(Z )> , log sup ( -
X0 (1) Xao (i) it \X,"

1,8

1<p<P 0,5, 5 X ’p(ij

3201 s, o (20570

ngp ..
0(X$, X$) = max {log sup z (iJ
b

S— | ~—
> | <
SN T
—~ |
o~ o~
m\. <,
N2 N2
~_—
—

1< 1,1 ?

The selection of ahyperbolic metric on X affects the forms of the statementsin the
theory that use growth bounds or moment conditions. Where, in [7], Benveniste et al.
use agrowth bound of the form | f(X)| < C(1 + | X |*) for some non-negative integer
s, the appropriate bound here will be an expression of the form | f(X)| < Mp(X)

with 8,(X) defined asfollows. For X € X*, X¢ € X¢ and X7 € X" define

Bs(X%) = max {sup|Xa1( )| sup|X°"2(i)|’”}

S1+s2=s

(X)) = max { sup | XSP(4, 751’}
300 = s {Tsup Y005

Bs(X7) = rnax {Hsup|X7’ )|~ Sm}

L Sm=§

andif X = (X, X% X¢ X7) € X, let

Bs(X) = max {f, (X8, (X)B,, (X)}. (4.14)

sa+s<+57:s
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Accordingly, where Benveniste et al. use amoment condition of the form
/Hk(Xo; dXy)| X3! < C,
the appropriate moment condition here will be

/H’“(Xo;ka)ﬁq(Xk) < C.

Much of the ergodic theory presented in the next chapter relies on notions of weak
convergence of measures, and it isimportant to devel op the theory in the context of an
appropriate space of test functions. A key requirement for the stochastic approximation
theory is the existence of a potentia theory for the Markov transition kernel on a
suitable function space. A suitable function space, in this context is one that includes
the family of generators H (6, -) which are considered as functions of the state-space
X. The potential theory rests on the weak ergodicity theory for the chain X, and the
choice of a space of test functions in the ergodicity theory determines the function
space in which the potentia theory is applicable.

The setting that Benveniste et al. use is the following. Markov chain states are
represented by variables z = (z,¢) € R* x E with E afinite set. Given g, afunction

onR* x E, and aconstant p > 0, they define

_ o lg(z,e)]
Hg“OO,p - SX(I; 1+ |x|p
[g] _ sup |g(f1§'1,€)_g(f172,€)|
p=

er#es,eck |T1 — T2 (1 + |21 [P 4 |22[P)
Li(p) = {9 : [g], < +o0}

Ny(9) = sup{ligllcop+1: 9]}

The space of test functions that is used to develop the ergodic theory is the space of

Borel functionson R* x E that are bounded, and Lipschitz, and the space of functions
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for which the potential theory is developed is the space Li(Q, L1, Lo, p1, p2) Which is
defined asfollows.
Let Q be acompact subset of R?, and, given afunction f(#, z,¢e) onR? x R* x E,

let f, denote the function (z,e) — f(6,z,e). A function f(0,z,e) is of the class

Li(Q,Ll,L2,p1,p2) if
(i) forall 6 € Q, N, (fs) < Ly
(i) foradl 6,0, € Q, al (a;,e) eRF x E,

|F (01,7, €) = [(02, 7, €)| < La|fh — 02/(1 + [2]*),

and Li((Q) denotesthe set of functions f which belongto Li(Q, L1, La, p1, p2) for some
valuesof L, Ly, p; and p,.

The important features of the spaces Li(Q, L1, L», p1, p2) are that weighted inte-
grals of the functions with respect to finite measures are always bounded, and that
functionsin the space display a uniform regularity with respect to afamily of weighted
Lipschitz semi-norms. Appropriate definitions for the context of a hyperbolic geome-

try on the space X are:

_ o g(X)]
||g||00,17 - Sli,p Bp(X)

2

l9(X1) — g(Xy)|

l9]» = ;;%2 (X1, Xo) (Bp(X1) + Bp(X2))
X1=X>

Li(p) = {9 : lg], < +o0}

Ny(g) = sup{ligllcop+1, 9]}

The definition of the space Li(Q, L1, Lo, p1,p2) is admost the same as the definition

that Benveniste et al. use with the Euclidean metrics, only condition (ii) becomes
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(ii) foral 0,6, € Q,dl X € X,

| f(01, X) = f(02, X)| < Lo|0 — 02]5,,(X),

The development of the stochastic approximation theory in Benveniste et al. [7]
relies only on the metric properties of the Euclidean metric, not on the specific form.
As a conseguence, the extension from the Euclidean theory to the more general metric
theory requires nothing more than the substitutions of appropriate metrics, moments,
and function seminorms.

Benveniste et al. employ the ODE method first used by Ljung [25] to analyze the
asymptotic properties of the algorithm. This method associates the random sequence
of successive parameter estimates, 6, with a piece-wise constant path 6(¢), t > 0 .
The mapping between the index k& and the time parameter ¢ is determined by the step

Sizes vy, and relies on the assumption:

Assumption 1. [7, p. 213, A.1] (v;):en IS @ decreasing sequence (in the broad sense)

of positive real numberssuchthat >, v, = +o0.

Thisis certainly true of the sequence v, = 1/x + [ which is decreasing, and has diver-
gent partial sums. The path 0(t) is parameterized as follows. An increasing sequence
of timest,, isdefined by ¢, = 0, and the sequence of partial sumst, = Zle . A par-
tial inverse mapping m : R — N isdefined on theinterval [0, co) by m(t) = sup{% :
k < t}, and the path 0(t) is defined by 0(t) = 0,,(1).

The analysisis broken down into two logical tasks. Thefirst task isto show that for
any length of time 7", the piecewise constant trajectories §(¢) approximate solutions of

an associated ordinary differential equation

d/dtO(t) = h(0(t)), t>to, 0O(ty) = ao (4.15)
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on the interval [ty,t, + T, and that the error in the approximation can be made ar-
bitrarily small provided ¢, is chosen large enough. The second task is to show that
equation (4.15) has astable equilibrium solution at §(¢) = 6, where d, isthetrue vaue
of the parameter. The successful completion of these two tasks permits the inference
that the recursion (4.10) converges to the true parameter at least when initialized in a
neighborhood of the true value.

In practice, the division between the tasks is not so precise. Benveniste et al. use
a Lyapunov technique to demonstrate stability of the ODE. So, rather than proving
convergence of the iterates of the stochastic formulae to trgectories, they show that
an evaluation of the Lyapunov function on the iterates of the approximation algorithm
0, produces a sequence in R that converges to a sequence formed by evaluating the
Lyapunov function at points 6(t;) sampled from the trgjectory of the ODE. In other
words, the authors show that for any length of time T, and for ¢, sufficiently large, the
values of the Lyapunov function and itsfirst two derivatives evaluated on the trgjectory
0(t) stay arbitrarily close to values evaluated on corresponding points of 6(¢) on the
interval [to, %o + 7). With an assumption of uniformly bounded derivatives for the
Lyapunov function, an application of the mean value theorem provides the means of
dealing with this added complexity.

Let §(¢; , to, ao) denote the solution of equation (4.15) with initial condition 0(ty) =
ayp, then the set of equations:

é(to) = é[) = Qo é(t) = ém(t) (4 16)

Op = Op 1+ 7k+1h(§k)

provides a variable step-size, Euler approximation to the trajectories 0(t; , ty, ag). The

accumulated error between the Euler scheme and the random sequence after K steps
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ex =Y € (4.17)
with

€k = Opp1 — O — Ve h(Ok)

= o1 (H (01, X)) — h(6y)). (4.18)

In light of equations (4.17) and (4.18), it is possible to rephrase the application of
the ODE method as the problem of first selecting a generator h, for a stable ODE, and
then bounding the mean of the square of the accumulated conditional error E[e2| X, 0]
on a sufficiently large set of trajectories 6. The first step in the solution is to assume
that on D, an open subset of ©, the random quantity H (#, X') has the form of a stable
generator h(6) with added noise that can be eliminated by averaging H (6, X ) with re-
spect to the random variable X. The problem of bounding the mean square cumulative
error isthen a problem of analyzing time averages of the error process ¢;. This analy-
sisrequires careful restriction of the possible form of the probability distribution of the
error process e . The next two assumptionsfrom Benveniste et al. restrict the form of
the probability law for e indirectly through restrictions on the stochastic structure of

the process X, and the growth in X of the function H (¢, X).

Assumption 2. [7, p. 213, A.2] There exists a family {II, : # € R?} of transition
probabilities Ty (x, A) on R* such that, for any Borel subset A of R*, we have

P[Xn—l—l €A | Fn] = Han(Xn,A)

Assumption 3. [7, p. 216, A.3] For any Compact subset () of D, there exist constants
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C1, Cs, ¢1, and ¢, (depending on @), such that for all € 9, and all n we have

[H(0,2)| < Ci(1 +[z]")

|Pu (0, )| < Co(1 + [2]*)

Proposition 7, and equations (3.33) and (3.34) establish that the process X; and
the function H (6, X) in the parameter update equation (4.10) satisfy the following

variations of Assumptions2 and 3.

Assumption 2-bis. There exists a family {II, : § € ©} of transition probabilities

ITy(X, A) on X such that, for any Borel subset A of X, we have
PlXip € Al K] =1y, (X;, A)

Assumption 3-bis. For any Compact subset ) of D, there exist constants C';, and

q1,(depending on (), such that for all & € @, and all n we have
[H (0, X)| < C15,(X)

For a specific trgjectory 6, the error e, depends on the sequence of parameter
estimates {0, 0 < k < K}, theiterates of the Markov chain {X;, 0 < k < K},
the parameter « in the formulafor ~;, and K, the number of steps taken. Unbound-
ednessin the factors H (0, Xi11) — h(6x) as X, — 0X, and divergence of the series
> Ve Mean that the summations (4.17) are not absolutely convergent for all trgjecto-
ries. The problem of unboundedness in the summands is circumvented by modifying
the argument of the expectation E[e% | X, 6] to include only those parts of each trajec-
tory where H (6, X;11) — h(0,) remains small, and the second problem, which stems
from the divergence of the series ), 74, is circumvented (after some work) with a
martingale convergence theorem that takes advantage of the centralizing tendency in

the distribution of the sum of random variables. The use of these two devices produces
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two results. Thefirst isan approximation result for the expected error that isafunction
of theinitial value X, and is conditioned on the behavior of the trgjectories #,. The
second is an estimate of the probability that a trgjectory starting with initial value ¢,
remains well behaved.

The factor H (0, Xx11) — h(0x) that appears in each summand of the cumulative
error becomes large when X, lies close to the boundary of X, in particular, when
the empirical densities X,ﬁﬂ(z‘,j) and X, , have minima close to 0. The effect of
excursions of X, ; towards 9X on the expected cumulated error are mitigated by the
use of a stopping rule on the incremental error process ¢,. The stopping rule rejects
from the computation of the expectation terms in the error summation that come from
parts of the trgjectory 6, that are likely to be associated with problematic points X in
the accompanying chain. The stopping rule is based on two criteria. Thefirst criterion
relies on the selection of a compact set ©¢ C © and stopping time 7, (0°¢) = inf{k :
0, ¢ ©°}. The second criterion relies on the selection of a positive constant ¢, and
uses the stopping time 75 (¢) = inf{k > 1, |6x — 0x_1| > €}. Each sample path of the
process (0, Xy) is stopped at the smaller of the two stopping times, which isitself a
stopping time 7 (e, Q) = min{7,(©°), 72(¢) }. The original expression for the expected
cumulative error, E[e%| Xy, 6] is replaced by anew expression

E [sup I(k < 7(¢,0%) €7 | Xo, 0o]. (4.19)

k<K

In the modified expression for the expected cumulative error, the value for the cumu-
lative error that each trgjectory contributes to the expectation is the maximum value
that the partial cumulative errors can take given that the summation stops when the

tragjectory either hits the stopping condition, or the index reaches the upper limit K.



Notice, for instance, that the expression (4.19) bounds the expression
E[I(k < 71(e,0%) €2 | Xo, 6o]

which is the conditional expectation of the cumulative error accumulated over the in-
terval 0 < | < k, and conditioned on the event that k£ < 7(e, ©°).

The proof that the stochastic approximation iterates converge in probability to the
approximate trajectories of the underlying ODE relies on bounding both the error ex-
pression (4.19) and the probability of the event k£ < 7(¢, ©¢). The following assump-
tion on the moments of the Kernels T} (X,; d.X}), and on the regularity of the kernels
with respect to both X, and the parameter 6 restrict the distribution of trajectories suf-
ficiently that the bound on the expected error (4.19) and the probability that atrajectory
satisfies the stopping rule P(k < 7(e, ©¢)) both remain small.

In the Euclidean case the form of the assumption is:

Assumption 4. [7, p. 290, A'.5] For all ¢ > 1, and for any compact subset ) of D,

thereexist r € N, and constantsa < 1, C4, Cy, K, and K5, such that

() sup/HQ(Xa; dXp)| Xp|? < @] X, |7+ Cy
eQ

(i) sup / Ty (X dX,) [ X0]7 < Co| Xt + Cy
0cqQ

For any Borel function g on X such that [¢g], < oo

(iii) sup Hog(X1) — Ilag(X2)| < Ki[glg| X1 — Xa|(1 + | X3 |? + [X2[7)
For all 6,6’ € 9, and for any Borel function g with [g], < oo

(iv) pg(X) — Iy g(X)] < Ko[gly|0 — ¢'|(1 + | X7

In the hyperbolic geometry the assumption becomes:
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Assumption 4-bis. For all ¢ > 1, and for any compact subset ) of D, there exist

r € N, and constantsa < 1, C, Cy, K;, and K5, such that

(M) sup / [T (X s dX3) 3, (X3) < 8,(Xa) + Cy
eQ

(i) sup / Ty (Xas dX3) B, (X0) < CoBy(Xa) + C
0cqQ

For any Borel function g on X such that [¢], < oo

(iif) sup a9 (X1) — Tpg(X5)| < Ka[g]g0( Xy, X2)(B,(X1) + 5,(X2))

For all 6,6’ € Q, and for any Borel function g with [g], < oo
(iv) pg(X) — My g(X)| < Ka[g]el0 — 0" 5411 (X))

With control on both the conditional error (4.19) and the probability of the event
k < 7(e,0°), atwo step procedure establishes the approximation result. The first
step establishes that the expected error after K iterations of the algorithm converges
as K — oo to afinite limit that depends on the choices of ©¢ and . The second step
establishes two things. First, that the probability that the trgjectory 6, remainsinside
the set ©¢ convergesto 1 asx — oo, solong asf, lieswell inside ©¢. Second, that the
[imit on the error estimates from the first step convergeto 0 as k — oc.

The sum is divided into two parts, one with partial sums that form a Martingale
sequence with bounded second moments, and another which converges absolutely.
The method that Benveniste et al. use to accomplish this decomposition rests on the
observation that if the difference H (0, Xx11) — h(0y) that appearsin equation (4.18)

iswritten as the right hand side of a Poisson equation

(I = p(X))vg = H(0, X) — h(8), (4.20)
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then the error termsin equation (4.18) can be rewritten in terms of the solutionsvy(Xy,)
and conditional expectations (filtered observations) of the solutions I1, (X )vy evau-
ated at points on the chain. If solutions vy, to equation (4.20) exist on a region of
state-space that includes each of the points X, in the Markov chain, then a substitution

of eguation (4.20) into the expression for the error gives
K-1

e = Y (vo, (Xk) — (g, ve] (X))
= Mg, (Xo) — Yrvo,_, (Xx—1)

+ Z 'Yk+2'U9k+1(Xk+l) — Yet1[Io, 09, ] (Xk)
k=0

= 1199y (Xo) — Yo, (XK 1)

=

+ Yk (Uek (Xk+1) - [Hgkv‘%](Xk))

k=0
K-1 1

+ ; T 2(00k+1(Xk+1) — Vg, (Xk41))
K—-1

+

/N

Ve+2 — 7/c+1> vy, (Xk+1)

Bl
(=)

The sequence of partial sums associated with the summation in the third term form
a martingale which is bounded in mean sgquare, and an application of Doob’s L? in-
equality [36, p. 152] establishes convergence of the seriesto afinite limit. An assump-
tion of Lipschitz regularity of the solutions to the Poisson equation with respect to
variation in 6 produces O(k~2) bounds on the terms in the second summation on the
right hand side, and a uniform boundedness assumption for the solutionson aregionin
state-space that includes the chain X, yields O(k~2) bounds on the terms of the third
summations.

Of course, an important prerequisite to the success of this approach isthe existence

of solutionsto the Poisson equation (4.20) which are locally Lipschitz with respect to
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the parameter 0, and Benveniste et al. make the following assumption.

Assumption 5. [7, p. 216, A.4] There existsa function h on D, and for each§ € D a

function v,(-) on R* such that
(i) hislocally Lipschitzon D;
(ii) (I —TIy)vg = Hy — h() for all 6 € D;

(iii) for all compact subsets () of D, there exist constantsC's, Cy, g3, g4, A € [1/2,1],

such that for all 6,0" € @)

og(X)| < C3(1 + |X]%)

TTyug(X) — Mpvg (X)| < Cyld — 0/ (1 + | X|%)

Once again, the statement of the bounds in the assumption need to be adjusted for

a hyperbolic geometry. The modified assumptionis:

Assumption 5-bis. Let D be an open subset of ©. There exists a function / on the

interior of D, and, for each § € D, afunction vy(-) on X such that
(i) hislocally Lipschitzon D;
(i) (I —Iy)vg = Hy — h(0) for all 6 € D;

(iii) for all compact subsets () of D, there exist constants C'y, Cs, g2, g3, A € [1/2,1],

such that for all 6,0" € @)

[09(X)| < G2y, (X)

Hgvg(X) — Mgrvg (X)| < C3]0 — 0|, (X)
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Much of the next chapter is devoted to establishing this prerequisite in the context
of the combined estimation and control problem. The problem of finding solutionsto
the Poisson equation is at the root of the branch of probability called potential theory,
and examination of a case where the potential theory iswell established indicates the
direction in which to proceed. When X, is a positive Harris recurrent, and aperiodic
Markov chain with invariant distribution m, then the range of the Potential opera-
tor (I — Ily) is contained in the space of continuous functions {f : my(f) = 0}.
An application of the measure 1y as a functional to both sides of Equation (4.20)
fixes the generator h(6) of the ODE to be uy(H (0, -)). Furthermore, the same con-
ditions on the chain X, guarantee that if f is a function on the state space which
satisfies 19(f) = 0, then the series S_¥[IT! f](X) converges pointwise, and the func-
tion vy (X) = lim, SSVITHH (9, -) — h(F))(X) exists, and is a solution to the Poisson
equation. Unfortunately the chain that was described in Section 4.1 does not have
the Harris recurrence property, and the Potential theory for Harris chains [34] is not
applicable, however there are other means of demonstrating geometric ergodicity for
sequence of kernels I1,, and these prove to be good enough to establish existence and
regularity of solutionsto the Poisson equation.

Benveniste et al. develop the ODE theory for a general step size . In order to
ensure that a summation equivalent to (4.17) isfinite, they require that, in addition to

satisfying Assumption 1, the step size should satisfy the following.
Assumption 6. [7, p. 301] Thereexistsa > 1 suchthat ) 7 < +oc.

When v, = 1/(k + ) and « is any positive integer, any choice of a witha > 1
satisfies the assumption.
The second task in the ODE method is the proof that the approximating ODE has

asymptotically stable solutions in a neighborhood of a stable equilibrium that corre-
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sponds to the value of the true parameter in the stochastic estimation problem. This
proof is a classical problem in non-linear ODEs and is solved with an appropriate
Lyapunov function. Benveniste et al. formally assume the existence of a Lyapanov

function as follows.

Assumption 7. [7, p. 233] There exists a positive function U of class C2 on D such

that U(§) — C < +ooif — 0D or |f| — +ooand U(A) < C for § € D satisfying
U'0)-h(0) <0foralbeD (4.21)

The natural choice of Lyapunov function for the case that this dissertation presents
isthe Kullback-L eibler entropy function for the estimation problem. Section 6.1 shows
that a Lyapunov function that is based on the Kullback-L eibler entropy function satis-

fies Assumption 7.
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Chapter 5

Analysisof the control and estimation algorithm.

Part 2. Potential theory for the Markov process.

The analysis of this chapter verifies that Assumptions (A.4) and (A.5) of the previ-
ous chapter are satisfied by the combined estimation and control problem. Both of
these assumptions are concerned with ergodic properties of the Markov processin the
stochastic approximation scheme, and this chapter develops the ergodic theory that
is required for the analysis. The first section provides an ergodic theory for the dis-
crete subchain. Apart from the requirement that the invariant vector should be regular
with respect to perturbations in the state transition matrix, the theroy in this section is
standard. The second section develops an ergodic theory for the Markov modulated
random processes. The material in this section is new. Finaly, the third section uses

the results of the first two sectionsto verify that the assumptions hold.

5.1 Ergodictheory for the discrete subchain

A potential theory for the chain X, is established by considering first the discrete sub-

chain X using methods developed by Arapostathis and Marcus [2] and Le Gland and
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Mevel [23]. The principa difference between the problemstreated in these two papers
and the problem treated hereisthat here the transition kernels 1T, depend on the param-
eter A through the control algorithm. Consequently, regularity properties of the kernels
with respect to the parameter 6 are needed along with geometric ergodic propertiesin
order to apply the potential theory in the stochastic approximation analysis.

The first task isto establish that the Markov chain { X} isirreducible and acyclic.
Thisisdone by establishing conditions on the transition matrices A ,,, the output matrix
B, and the control policy v(du; uy a, y1,4) that ensure that the matrix A/ is primitive.

The state space X is a finite set which can be mapped onto a finite rectangle in a
2A+3 dimensional lattice. Thelattice structure correspondsto the product structure on
the state space which is described in Section 4.1, equation (4.1). The transition kernel,
which has the matrix representation defined in equation (4.2), defines a directed graph

on the | attice rectangl e via the mapping
X, =X if MY >0

The problem of determining whether the kernel H(Xa; df(b) = M isprimitiveisequiv-

alent to the problem of determining connectedness of the associated graph.

Lemma8. The kernel is primitive with index of primitivity = if and only if any point
on the directed graph is connected to any other by a path that traverses r, or fewer,

edges.

Proof. Let ¢ and b be any two indices of the matrix M, and Suppose that the corre-

sponding vertices on the lattice v, and v, are connected by a path
Vg —> U] VU2 —> ... 2> Up_1 —> UV

with r edges, then, giving the matrix indicesthe same |abel s as the vertices, the product
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My M2 ... My»  ispositive, and the forward product M" satisfies
(M7o= 3o MM M
z’l,...,ir,leic

2 My, My ... My

>0

Conversely, if (M™)® > 0 then for at least one choice of index set {i1, is, . .. , i, 1} the
product M4 Mff . ijfl is positive. Consequently thepath v, — v — vy — ... —
v,_1 — v, With vertices vy, . . . v,_; corresponding to theindicesiy, ... ,i,_; connects

the vertex v, to v, by a path that traverses r edges. O

BRYRu, Ry QU Ry, Rt ... Ry, ST @uyt

Ta®Y, QU QYU Ry, Quy ®...0y,

xa®yaf(A71)®uJ(Afl)®y;A®u5A®y2®u2®...®y;

1,90 Wy u' Y2 0u’® ...y A Qu

Figure 5.1: Path construction for Proposition 9

Proposition 9. Let A, and B be the state transition and output matrices for a con-

trolled hidden Markov model with entries that satisfy the inequalities

Au;ij >0 B, >0
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for some constant § > 0. Fix 7y > 0 and let {X,,} be the discrete chain defined in
Section 4.1 and determined by the finite-horizon, risk-sensitive control algorithm de-
scribed in Chapter 2. Then, thetransition kernel I1( X, ; d.X,;) associated with the chain
{X,} is primitive with index of primitivity A + 1, and the chain itself is irreducible

and acyclic.

Proof. Consider thedirected graphinduced by the discretetransition kernel I1( X, ; d.X;)
on the state space X. The result will follow from Lemma 8 provided that the nodes
in this graph representing any two points X, and X, in X are connected by a path
containing A + 1 or fewer links.

Any two nodes corresponding to points X, and X, are connected by alink provided

that I1(X,; {X,}) = Mj;b > 0. Recall the explicit representation from equation (4.2)

M)?’: = <l’a, Aub—l.’L'b><.’L'a, By2><’U9(y2, u;l, cee ay;AJrla UJ?A): U;1>

a

X 0y (Y )0,1 (uy?) - 0, aea (g 20, ae (0 )

The assumptions in the premise of the proposition directly ensure that the first two
factors are non-zero, and indirectly ensure that the third factor is non-zero through an
application of Theorem 6. The remaining factors all have the form 5Zé(zfj1) with z
substituted by « or y as appropriate, and these factors are non zero only if 2! = zg—l.
Consequently, a link connects the node representing X, to the one representing X, if
andonly if u; ' = ug "V and g, ' =y, TV foral twith1 <1 < A

Now let X, and X, be two arbitrary pointsin X, then the path illustrated in Figure
5.1 connects the node representing X, to the node representing X, in lessthan A + 1

links. O

Primitivity of thediscrete kernel impliesthat the kernel isrecurrent with asinglere-

currence class, and is a sufficient condition for the Perron-Frobenius theorem to apply.

74



Specifically, the following proposition listswell known facts about primitive transition
kernelsfor finite state Markov chains. Proofs are given in Seneta [38], Revuz [34] and

Le Gland and Metivier [23]

Proposition 10. Let H(X; df() be a primitive kernel on a finite discrete space X. The

following are true:
(i) Theeigenvalue 1 has strictly positive left and right eigenvectors.

(if) The eigenvectors associated with the eigenvalue 1. are unique up to multiplica-

tion by a scalar, The left eigenvector v isthe invariant measure for the kernel.
(iii) 1isasmpleroot of the characteristic equation for II.
(iv) 1 > r > |A|, for any eigenvalue \ # 1.
(v) Thekernel isboth recurrent and acyclic

(vi) The kernel is ergodic. There exists ¢ € (0,1) such that for any probability

measure v, on X, |v, 11" — v| < ¢

(vii) The kernel possessesawell defined potential theory. In particular if f : X — R
is a bounded function on X (in fact, a bounded vector in R™) then the Poisson

equation

has a solution

The following lemma provides a basis for regularity results for the discrete kernel
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Lemma 11. The eigenvector corresponding to the Perron-Frobenius eigenvalue of a

primitive stochastic matrix M is a continuous function of the matrix parameters.

Proof. Assumethat [M — M'| = ¢, andlet A = 1/¢(M — M’), then the rows of A

sumto 0, and |A| = 1. From the Perron-Frobenius theorem
lv— | = lim |y, M* — v, (M + eA)¥|,
k—o00
and,

[V MF—v, (M + eA)"|

k
= v, M’“—M'“rZei Z MUAMR . AMY

=1 Ly4etl;
=k—1i

k—1
<e ZyaMl AN Z Z v MU AM™ . AMY
=0 Iy 441
=k—1

The bound |M! — 1v| < Kyc! where K is a constant independent of M, and 0 <
¢ < 1, produces abound |AM'| < K,c!. Applying this bound to each term in the first
summation on the right hand side of the inequality gives a bound for the summation
as awhole of eK, with K, a constant depending on M but not on k. Assume that
eK, < 1, then repeated use of the bound |AM'| < K, c' inthe inner summation of the

second term on the right hand side of the inequality gives the bound

k
|Z > v MUAMR AMY <Y e Y MU JAM®] .| AMY|

= Ip 441 =2 ly+-+1;
=k—1 =k—1
k k—1i
<Y Y K
1=2 =0
< EK? L
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abound that is again independent of k. So for any primitive stochastic matrix M, itis
possible to choose K > max{ K, K>}, and ¢, > 0, both dependent on M such that if

M’ isaprimitive stochastic matrix satisfying |M — M'| < e for some e < ¢, then
lv — V| < Ke
0]

Recall the situation that the dissertation addresses. the control of a plant that is
described by a hidden Markov model with fixed, but unknown, state transition matrices
A, and output matrix B. The control is computed using the stochastic approximation
to the finite-horizon dynamic programming algorithm that was introduced in Chapter 2
along with an estimate for the plant transition matrices that is denoted by the variable
6. 1If 6 is fixed, then the evolution of the controlled plant is described by a time-
invariant Markov chain with a finite state set that is represented in (4.1) as a tensor
product of canonical basisvectors. The evolution of the processisgoverned by akernel
ITy(X;; dX,1) which has amatrix representation M ;éf with entries that depend on the
choice of ¢ only through the factor (ve(y?, u;t, ..., y, 2+ u,2),uy ') in equation
(4.2). Proposition 10, Lemma 11, and the fact that the control policy v, is Lipschitz
continuous with respect to the estimate # combine to establish the conclusions of the

following Proposition.

Proposition 12. Let A, and B be state and output transition matrices for a controlled

hidden Markov model that satisfy the conditions in the premise of Proposition 9.

(i) If 6 is an estimate for the hidden Markov model parameters, X is the state
space for the Markov chain that describes the evolution of the controlled hidden

Markov model, then the transition kernel for the Markov chain I1,(X;, dX; 1)
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has an invariant measure 7y, and for any positive constant D, there exists a pos-
itive constant K; and a constant p in theinterval 0 < p < 1 such that for all

¢ : X — R bounded by D, for all X,, e X, andfor all n > 0

(I139)(X,) — Do(g)| < DK, p"

(ii) There exists a positive constants K, and ¢,, such that that if # and 6’ are two
estimates for the hidden Markov model parameterswith |0 — 0’| < e < ¢, then
the invariant measures 7y and 7y associated with the transition kernels I1, and

1y satisfy

vy — l7.9/| < Kse

5.2 Ergodictheory for random walks on semi-groups

Proposition 7 characterizes the transition kernel for the continuous part of the chain
X in terms of Markov modulated random walks. In the case where the underlying
Markov chain is ergodic, the asymptotic properties of the random walk associated with
theinvariant distribution of the underlying chain determines the asymptotic properties
for the Markov modulated random walk. This section develops a potential theory
for random walks on semigroups and then shows how this theory can be extended to
Markov modulated random walks.

Let G be atopological semigroup with identity e, let p be a metric on G that is
compatible with the topology. The metric is right invariant if, for any h, hs, g € 6,

p(hig, hag) = p(hy, hs). A member g € & iscontractiveif, for any g, g» € 6,

p(991,992) < p(g1, 92),
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and is strictly contractive if the inequality is strict. An element g, € & has zero rank
if fordl g € &, gog = go. The elements of zero rank form a semigroup (without
identity) sinceif g, € & isof zero rank thenfor al g € &, ggo has zero rank.

In al the propositions & isafinite dimensional topological semigroup with identity
¢, and metric p. The sub-semigroup of elements of zero rank is &, and there exists a
continuous function ¢ : & — [0, 1] with¢(e) = 1, and ¢(g) = 0 for all g € &,.

A randomwalk on G isasequence of random variables gg, g1, - - ., g; taking values
in &. The distribution of g, is determined by the marginal probability measure .,
and the process distribution on the whole sequence is determined by the sequence of
Markov convolution kernelsI1(g;; dgi+1) = d(dg, * fu+1)(g9i+1). When the generators
i1, 2, - .. areidentical distributions, the random walk is homogeneous.

A random walk on & is contractive if under each of the measures p;, [ > 1, the
elements of G are contractive with probability 1. The random walk is strongly con-
tractive if it is contractive, and there exist constants 0 < ¢y < 1,and1 > ¢; > 0
such that for each [ > 1 there existsa set H; C supp g With 1 (H;) > ¢, and for all

h € :}Cl!gl792 € 6’

p(hgi, hga) < cop(gi, g2)- (5.1)

A third, dlightly weaker, definition for a contractive random walk is a consequence of

the following observation.

Lemma 13. If a sequence of measures y;, [ = 1,2. .., each with support on a semi-
group &, generates a contractive random walk then the sequence of measures formed
by taking  convolution products, 11, = fuk,*." .* fik—1)-+1 alSO generatesa contractive

randomwalk on &.

A random walk is r-strongly contractive if the random walk generated by the r-

convolution product 1, is strongly contractive.
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Lemma 14. Let g, be an r-strongly contractive randomwalk, and let ¢, and ¢; bethe
constants defined in (5.1). Then, for all ¢, in the interval ¢j' < ¢ < 1, there exists

(with probability 1) a constant K > 0 such that for all £ > K, andfor all g,¢' € &,

p(9r9, geg’) < Fplg, 9").

Proof. Let g, = hihi_1 ... hshq, then the definition of an r-strongly contractive ran-

dom walk implies the following (random) bound
[k/r]
log p(919, 9k9') Z log(co)Lac, (h:) + log p(g, 9')

- [ﬂ log(co) ([ﬂ h [k:z/? 19{1(hi)> +logp(g.9)

where 14, istheindicator function for the set J{; with the property that for al ¢;, g, €
S and h € H; theinequality in (5.1) holds. Since y;(H;) > ¢, The process 14, (h;)
is bounded below by a Bernoulli process which at each i takes the value 1 with proba-

bility ¢;. From the strong law of large numbers

fk/ﬂ
klggo - Z 15¢(hi) > ¢ amost surely,

and it follows that for any ¢ > 0 there exists K such that for any £ > K,

fk/ﬂ
lim — Z 1g¢(h H) + ¢ (5.2

k—oo k
Given cintheinterval ¢j' < ¢ < 1, choosee = ¢; — (logc/logcy), then0 < € < ¢y,

and

p(9k9, 9kg") < ¢ p(g, ") (5.3)
foral £k > K. O

One approach to the analysis of the asymptotic behavior of a random walk on the

semigroup is to embed the open subset of non-singular elements of the semigroup

80



inside a suitable group, and then to use the established theory for random walks on
groups [34] to provide results for the embedded semigroup. The following example
demonstrates that this approach is not productive, and provides motivation for the the-
ory that follows.

Let 2 bethe group of invertible affine transformations of the V dimensional hyper-
plane in RY that contains the probability simplex Q(V), and let T be the semigroup
of affine transformations in 2 that map (V) into itself. Define a metric on 2 by
P91, g2) = SUP,peq(n) [91m — gam| sothat 2A isatopological group with respect to the
topology induced by p. Recall? that arandom walk {g;} on the topological group 2 is
topologically recurrent if for every open set O C 2l that contains the group’s identity

element,

Pllimsup{g, € O}] = 1. (5.4)

k— 00

Otherwiseit istransient.

Proposition 15. Let g, be an r-strongly contractive randomwalk on ¥ with transition
kernel I1(g,, dgy) = d(dy, * 11)(gs). Then, when considered as a random walk on the
group 2, g istopologically transient. In fact, if T, denotes the sub semigroup of zero-

rank elements, than any set compactly contained in ¥ \ ¥, istransient with respect to

k-

Proof. Defineafunctiony : € — R by

v(g9) = sup p(991,992)/p(91, 92), (5.5)
g1,92€X

then ~ is continuous with respect to the metric p, -y takes values on the interval [0, 1],

+ maps the identity to the value 1, and if v(g) = 0, then ¢ has rank zero. Since the

1See, for example, Revuz. [34]
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random walk g, is r-strongly contractive, and it follows from Lemma 14 that for all
1 > ¢ > ¢y, with probability 1 there exists a positive K such that for all £ > K and
foral g,¢9' € T, p(grg, grg’) < Fp(g, g'). Consequently, for al k > K

v(gx) = sup p(gL,gfg) <=0 ask — oo. (5.6)

ag P9, 9)
if H be aneighborhood of the semigroup identity that is compactly containedin T\ ¥,
then v is bounded away from 0 in 3, and the exponential bound on ~(gy) in (5.6)

ensures (with probability 1) that g, hits H only finitely many times. O

Lemma 14 and Proposition 15 are similar in spirit to the exponential forgetting
results of, for example, Le Gland and Mevel [23].

An obvious corollary of Proposition 15 and the compactness of the sub-semigroup
of zero-rank elementsisthat if the contractive random walk has arecurrent set, it must
be contained in the sub-semigroup of rank zero elements. This observation indicates
a key shortcoming in using the group embedding approach as the basis for a poten-
tial theory. While the potential kernel associated with the random walk is proper? on
the sub-semigroup of invertible elements, it is no longer proper when the elements of
deficient rank are included. The group embedding approach of Proposition 15 pushes
the singular set out to a boundary, and therefore avoids the central issue, which isthe
characterization of the asymptotic behavior of the random walk. The failure of the
group embedding approach highlights the problems caused by an absence of continu-

ous inverses, an inherent feature of semigroup structures.

2If (E, &) isameasurable space, then akernel K : E x & — R isproper if there exists an increasing
sequence of sets E,, with E = UE,, such that for all n, K (-, E,) isbounded. If P isa positive kernel
on (E, &), then the potential kernel associated with P isdefinedby G = I + P + P?.... When the
sequence converges (in an appropriate operator topology), the potential kernel is a left inverse to the

Poisson operator f — (I — P)f. See Revuz. [34]
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Another approach is needed, one which directly attacks the problem of determin-
ing an appropriate setting in which random walks on semigroups exhibit recurrence
properties. If P(x;dzx) is a probability kernel with respect to the measurable space
(E, &), and h isafunction on E that takes valuesin theinterval [0, 1], then the gener-
alized resolvent associated with P and the function 4 is the kernel U, (x; dx) given by
the series

Uy =Y (PL_y)"P
n>0

where the operator /,_, isdefined by [1, . f](z) = (1 — h(z)) f(x) (see Revuz [34]).
The series is guaranteed to converge uniformly with respect to = and in the variational
topology with respect to the space of measures on € when the function h takes values
inthe openinterval (0, 1). The potential kernel G associated with a general probability
kernel P isformally defined by G = I + U,.

The notion of v-irreducibility is central to the standard development of a potential

theory for Markov chains.

Definition 1. (Revuz [34, Definition 2.1]) A chain X on a measure space (E, £) is
said to be v-irreducible if there exists a probability measure v on € which is absolutely
continuous with respect to U.(z, -) for all x € E and all constant functions ¢ taking a

valuein (0,1).

The importance of this notion is that if a Markov chain is v-irreducible for some
measure v, then either the potential kernel for the chain is strictly proper, or the chain

isrecurrent in the following sense[34].

Definition 2. A chain X defined on a measure space (E, €) is said to be recurrent in

the sense of Harris if there exists a positive, o-finite, invariant measure m such that
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m(A) > 0 impliesthat

Px,

n=1
for all z in E.

A chain that is Harris recurrent is clearly m-irreducible when m is the invariant
measure postulated in the definition.

The key to establishing a recurrence theory for random walks on semigroups lies
in identifying the short coming in these definitions. Let the transition kernel for the
random walk be ¢, * p(z) for some measure 1. supported on the invertible elements of
G, and let v be any measure supported on the set &, of elements with zero rank, then
v issingular with respect to U..(z; dx) whenever x isan invertible element of &. Since
an invariant measure for the random walk must be supported on &, the random walk
cannot be Harris recurrent, since thiswould imply irreducibility as well. The problem
lies in the implicit choice of total variation norm as the topology of convergence for
sequences of measures, and the solution is to look for a topology on the space of
measures that supports convergence of a sequence of measures to a measure that is
mutually singular to every measure in the sequence.

An appropriate family of topologies for a suitable recurrence theory are topolo-
gies generated by various notions of weak convergence of probability measures. |f
FE is a metric space, C'(F), the space of bounded, continuous linear functions that
map E to R, then a sequence of bounded linear functionas A\, : C'(E) — R con-
verges to a bounded linear functional A in the weak-x topology if, for any f € C'(E),
limy, o0 | Ak (f)—A(f)| — 0. When the bounded linear functional s are probability mea-
sures the convergence is generally called weak convergence. Under the weak topology
on probability measures, the notion analogous to the notion of v-irreducibility given

in Definition 1 isthe following.



Definition 3. A chain X on a measure space (F, €) issaid to be weakly v-irreducible
if there exists a probability measure v on € such that for all z € F and all constant
functions c taking a valuein (0, 1), theimplication U.(x, -)h = 0 = vh = 0 holds for

all non-negative continuous functionsh : £ — R.

The properties of the weak topology on the space of probability distributions is
standard probability theory and can be found, for example, in Loeve [27]. Aspects
of the theory, and small embellishments that are pertinent in the present context are
introduced in the following paragraphs.

The choice of the function space C'(FE), the continuous bounded functions, deter-
mineswhich sequences of measures converge in the weak topology. If alarger function
space is chosen, then the corresponding weak topology is larger, and fewer measures
converge. In particular, let 5 : E — R be a positive, continuous function bounded
away from zero, let C3(E') be the space of functions f : E — R that are bounded by
f(X) < KB(X) for some constant K, then C3(E) will denote the space of bounded
linear functionals on C'3(E£) with the topology of weak-x convergence. The following
lemma has the fortunate consequence that topological properties of the space C*(E)

also aso properties of C3(E)
Lemma 16. Thetwo spaces C*(E) and C';(E) are homeomorphic

Proof. The mapping () — p(31+) isan open continuous bijection between the two

spaces. O

Let E" denote the Cartesian product of n copiesof FE. If X € E”, then X =
(X1,...,X,) hasn components, and each component liesin a copy of the space E. If

f: E — Risaweighting function on E, then define 5 : (E™) — R by

BX) = sup{B(X1),..., B(Xn)}.
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The function space Cs(E™) and the dual space of measures C';(E™) are natural exten-
sions of the spaces C'3(F) and C3(E).

Although the view of probability measures as linear functionals on a topological
vector space is not a drastic departure from the standard presentation of probability
theory, some care needs to be exercised in the definitions of distribution density func-
tions. Conditional densities and probability kernels are of particular importancein the
context of this work. Given a probability space (2, ¥, P), a second sigma agebra
F, C F, and ametric space E with weight function 3, let S : 2 — E bean & mea
surable random variable with a probability distribution 1. € C;(E) that is absolutely
continuous with respect to P. The conditional density for the conditional distribution
of S, conditioned with respect to F,, maps any function f € C(E) to an F; mea-
surable function on 2, and any point w € (2 to a probability measure in C*(E). The

conditional density, which iswritten as p(S|w), is defined through the identity

//f ) dpu(S|w) dP(w /f Pw). VAeT,

The existence of aconditional density isultimately aconsequence of the Radon Nikodym
theorem, which ensures the existence of the conditional expectation E[f(S)|F]. This
conditional expectation hasarepresentation asan F; measurablefunctionw — E[f(S)|x],
and, for fixed z, this function is a positive, bounded, linear functional on C'3(E) with
the property that E[1|z] = 1. Consequently, for each z, the linear functional has a
representation as a probability density .(S|z) € C3(E).

The definition of the conditional density .(S|x) corresponds to Doob’s definition
of a conditional density in the weak sense [10]. The most important examples of a
conditional density in the present work are probability kernels® T1(S,; dS,) where the

o-algebra JF; is generated by a second random variable S, : Q) — FE.

3Note that the order of the arguments of a probability kernel is the reverse of the order of the ar-
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When the underlying space (in this case the semigroup &) is Polish?, the restric-
tion of the weak topology to the probability simplex is metrizable, and, in fact, is the
topology induced by the Lévy metric

') = mind () < 0 (F7) 4.5 0l () < () + 9
VF closed subset of Q}

where F'° denotes a § neighborhood about the closed set F' defined in a metric that is
compatible with the topology on &. (A proof of this result is given by Deuschel and
Stroock [9, p. 65] who attribute the result to Lévy and Prohorov.) The definition of the

Lévy metric can be reworded as follows:

Proposition 17. Let 1 and i/ be two measures on &, then d(u, ') < 6 if and only if
for any closed set F' C 2 one of the following inequalitiesistrue
WF) < p/(F) < p(F°) +96
W(F) < p(F) < p(F°)+6
It isadirect consequence of Lemma 16 that the topologies C';(F) are also metriz-
able. Theinequalitiesin Proposition 17, and the definition of the Lévy metric become
p(1rB) < W (1pB) < p(1psB) + 06
1 (1pB) < p(1pB) < p'(1psB) +6

The next lemma and proposition are used later to establish regularity results. The

lemma presents a characterization of the Lévy metric in terms of Lipschitz functions.

guments in a conditional density. Whereas ;(S|w) is a conditional density on the random varigble S
conditioned on the elements of the sigma-algebra of the random variable w, I1(S ,; dSy) is adensity on
the random variable S, conditioned on elements of the sigma-algebra of the random variable S ,.

4A complete separable metric space
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Again, to cope with spaces of functions with bounded growth, the definition of aLips-
chitz function isaltered so that the Lipschitz constant isweighted by the growth bound.
Let £ be a metric space with metric p, and let 5 : £ — R be a positive continuous
weight function that is bounded away from 0. A function f : E — R isLipschitz with

respect to 3 if there existsaconstant Ly suchthat VX, X, € E

|f(X1) = f(X2)| < Lyp(X1, Xo)(B(X1) + B(X2))

Lemma 18. let 1, and 1/ be two measures on &, and suppose that for any Lipschitz

function f with Lipschitz constant L ;,

1(f) — W' (f)] < eLy

thend(u, p') < /e

Proof. Let p beametric on G that is compatible with the topology, let F' be a closed
subset of S, choose§ > /¢, andlet h : & — [0, 1] be the function

e

B(g) geF

h(9) =4 1p(g, E\ F?)B(g) g€ (E\F)NF’

0 geE\F

\

Then h is Lipschitz with L, = 1/4, and

w(1pB) < p(h) < p'(h) +eLy < (' (LpsB) + €Ly < p'(1psB) + 0.

The other inequality in the definition, and hence the proof of the proposition is demon-

strated by the same argument with . and " swapped. O

Proposition 19. Let v bea measureon a set S, let £ be a metric space with metric p,

and a weight function 5, andlet g : 8§ — F and ¢’ : § — E be two mappings from
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8 to F that satisfy v(5 o g) < M, and v(f o g) < M for some constant M/ > 0. Let
p = ldyglv and i/ = [d.g'|v be the two measures on E induced by v and the maps ¢

and ¢'. Then,

d(p, ') < \/S;ligpup(g(s),g’(s))

Proof. Let f be Lipschitz with respect to 5 on £, and have Lipschitz constant L ¢, then

lnf — ' fl=1v(fog)—v(fogd)l
= |v(fog—fog)l

<Ly sup p(g(5),4'(5))

SEsupp v

and the result follows from an application of Lemma 18. O

The Lévy Metric is convex in the following sense

Proposition 20. Let {p, : @ € A} and {u!, : « € A} be two families of probability
measuresin C3(E) that are indexed by the same countable set A, and that satisfy the
inequalities dg(jta, p1,) < 60 for fixed 0. If p = 3" capta, @nd p' = cqpl, Wherec,

is any sequence of non-negative numbersthat satisfy > ¢, = 1, then dg(p, 1) < 6.

Proof. Let F' be a closed measurable subset of £/, and B C A contain the indicesin
A that satisfy 11, (1p8) < p)(1pB3) < pa(1psfB) + . Theindicesin A \ B satisfy

to(1rB) < pa(1pB) < 4o (1ps ) + 6. Define

Hb = an/laa /~L;) = an,ulom Ha = Z Calta, and :U':L = Z CaﬁL:x'

aEB aEB acA\B acA\B

If c, = ZQGA\B coandcy, =) pcathenc, +c, =1,

1p(1rB) < py(1rB) < py(1psB) + (5.7)

and  15(1rB) < p1a(1FB) < p1g(1ps B) + cod. (5.8)
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Supposethat 1i(1r3) = pus(1rB) + pa(1rB) < p(1rB) + po(1rB) = 1/ (1£B), then
it follows from the second of the inequalitiesin (5.7) that 1), (1r0) < (1) + 0,
and it follows from the first of the inequalitiesin (5.8) that 1! (1x5) < pe(1pf) <

ta(1ps 3) + 0. Consequently
16(1rB) + pa(1pB) < py(1pB) + 1, (1pB) < p1y(1ps B) + pa(1psB) + 6. (5.9)

If, on the other hand, /L(lFﬁ) = ,U/b(lFB) + /La(lFﬁ) > :U’;)(IFB) + /L:z(lFﬁ) =

p'(113), then asymmetric argument implies that

1y (1eB) + e (1rB) < pp(1pB) + pa(1pB) < py(1psB) + pig(1ps 3) + 6. (5.10)

One or the other of (5.9) or (5.10) is true for any choice of a measurable set F', and

therefore ds(p, 1) < 9. O

Thefollowing proposition uses Lemma 18 to establish aresult about independence

that will be useful later.

Proposition 21. Let x, y, and z be three random variables taking values in a metric
space E with an associated function space Cs(E). The probability measuresthat z, y,
and z generateon F/, and the measures generated by thejoint distributionsare all mea-
suresin C3(E), and are written as pu(x), p(y), p(w, 2), etc. Conditional distributions
arewritten p(z|z), etc.

If the conditional distributions ;u(z|y, x) and u(z|y) satisfy pu(z|y, ) = p(z|y), and
if themap p(z|y) : Cs(E) — Cp(E) is bounded with respect to Lipschitz seminorms,
with bound M, then

d(p(z, 2), 2)p(z)) </ Md(p(z,y), plz)uw(y)).
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Proof. Let f € Cs(E) with Lipschitz constant L.
/f(x,z) du(x,z):/f(x,z) du(x,y, 2)
— [ 1.2 dutalyz)auty )

_ // f(@, 2) du(z|y)dp(z]y)dp(y)

- ///f(x,z) dp(zly)dp(z|y)du(y)
N // fx, 2) dulzly)dp(z, y).

Also,

/fxzdu )dp(z // f(,2) dp(z)dp(zly)dp(y)

:///f z, 2) dp(z|y)dp(z)du(y).

Let g(z.y) = [ f(=,2) du(z]y), then

\ [ 1. dute 2= [[ 562 duterint:

< ‘/g(fc,y) du(z, y) —//g(x,y) dp(x)dp(y)

< Lyd(p(,y), (@) pu(y)) < MLyd(pu(, y), p(z)u(y))-

It followsfrom Lemma 18 that

d(p(z, 2), (@) p(2)) < VMd(u(z, y), plz)uy))
0

Returning to the problem of establishing v-irreducibility and recurrency for ran-
dom walks on semigroups, given a semigroup &, let Ky C & be a compact subset of

G, and let G be a set of measureson S. If g € Ko, and piq, . .., [, @remeasuresin G,
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define
k
Mgo ke = Mk % === % [lg % g . (5.11)

The measures m,,, ;, are the marginal distributions of a random walk g, with starting

value gy, and the generalized resolvent U, in Definition 3 is given by the formula

o0

(goidg) = Fmygy .

k=1

If go isfixed, the sum converges to a Radon measurewhen 0 < ¢ < 1.

One approach to establishing v-irreducibility of the random walks is to examine
the limit set of the sequence of measures m, ;. v-irreducibility is easily established
when this limit set is independent of the initial point g,. Relative compactness of the
sequence of measures in the weak topology ensures the existence of a limit set, but
rather than demonstrating relative compactness directly, it is easier to deal with the
notion of tightness.

The standard definition of tightnessfor a set of probability measures, and the asso-

ciated compactness theorem are quoted from Loeve:

Definition 4 ([27, p194]). Let X be a metric space with Borel field S. A family P of
probability measureson § is said to be tight if for every ¢ > 0 there isa compact K,

suchthat P(X \ K) < efor all P € .

Thefollowing proposition relates tightness of afamily of measuresto relative com-

pactnessin the weak topol ogy.

Proposition 22 ([27, p195]). Let X be a separable complete metric space. Then a
family P of probability measures onits Borel field 8 isrelatively compact in the C'*(X)
topology if and only if P istight. In fact the “ if” part holds for general metric spaces
X.
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To ensure tightness of the set of measures m,; in the random walk, a suitable
primitivity condition is imposed on the sequences of generates i1, jiz . ... The primi-
tivity condition restricts the the permissible sequences of generatorsto aset § C NY.
The difficult part of establishing arecurrence theory for afamily of random walksisto
impose primitivity conditions on the generator sequences in the family that are strong
enough to ensure tightnessin the set of measures m , ;,, yet weak enough to be satisfied
by an interesting set of random walks.

The following definition and lemma provide sufficient conditions on the generators
of arandom walk g, for the sequence of probability measures m,, ; to be tight under

the standard definition.

Definition 5. A sequence p1, 1o . . . Of generators for a random walk on a semigroup
G isp-strongly primitiveif there existsa compact subset K C G that isabsorbing from
theleft®, and aconstant 0 < 7 < 1 suchthat uk (S\ K) < n, when pif = g -+ =% ey

isthe convolution product of any p consecutive measures fromthe sequence ji+, ps, . . . .

In the case of a homogeneous walk with initial point ¢, the measures in the se-
guence of generators 1.1, 1o areidentical. The generator measure 1 isp-primitiveif the

sequence (1 = i, o = i, ... iSprimitive. The following lemmais typical of results

SK isabsorbing fromtheleftif foral g € &, andal g, € K, g9 € K. Recall that the semigroups
have representations as affine transformation groups acting on projective space. This thesis adopts the
convention of writing these representations with the semigroup element acting on the object from the
projective space from the left. So, for example, if g1, ¢go,. .., gr are successive affine transformations
on avector z in a projective space, then the orbit of = is {z, g1z, g2q1z, ..., gr...g2912}. Some
confusion inevitably arises when the projective space is a finite dimensional probability space, and the
affine map is a probability kernel that is represented by a matrix of finite rank. In this case the usual
convention isto write the vector as arow vector, and to have the transition kernel act on the row vector

by right matrix multiplication.
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that relate primitivity of the generators to tightness of the set of iterated kernels.

Lemma 23. If g, isarandomwalk with a p-strongly primitive generator p, andinitial

point gy, then the family of measures {my, ; : k£ > 0} istight.
Proof. A generalization of the lemmais proved below. O

The definition of tightness extends, with some modification, to the weighted topol o-
giesintroduced earlier. Let C3(X) be the dual space of bounded linear functionals on
C3(X), again with the weak-+ topology generated by the topology on C'3(X). A defi-

nition of tightness that is appropriate for this weaker topology is the following.

Definition 6. Let 5 : X — R be a continuous positive function. A family of measures
P is tight with respect to the C';(X) topology if for all e there exists a compact set
K. C X suchthat P(1x\x.3) < eforall P e P.

In the case where 3 is a constant function equal to 1, tightness with respect to the
C; topology is equivalent to the standard definition of tightness. The corresponding

compactness proposition is the following.

Proposition 24. Let X be a separable complete metric space with Borel o-algebra
8, and let 3 be a continuous positive function on X that is bounded away from 0. A
family P of probability measures on the Borel field S is relatively compact in the weak

topology of C'3(X) if and only if P istight with respect to C'5(X).

Proof. The mapping y(-) — u(8-) is ahomeomorphism between the measure spaces
C3(X) and C*(X). The same mapping maps families of measures in C';(X) that are
tight with respect to 3, to familiesin C'*(X) that are tight under the standard definition.

It follows that the proposition is a direct consequence of Proposition 22. O
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A requirement for p-strong primitivity of the sequence of generators i1, pa, . .. IS
no longer sufficient to ensure tightness of the sequence of measures m gy, 1, mgy, 2 - .-
in the larger weighted topologies. Extra conditions such as the one included in the

premise of the following lemma are needed.

Lemma?25. LetG = iy, uo, ... beap-strongly primitive sequence of generatorswith
uniformly bounded support, let » and H be the constant and compact set that are
associated with the definition of p-strong primitivity, and let « = sup{f(g) : g €

Uneg supp p}- If an'/P < 1 then the measures
Mgy = gy * [h1 %+ =+ % [

are tight with respect to 3. Infact, let K, = {g € & : (g9) < d'c} where ¢ =
max{/(go), maxe g f(h)}. Then K isan increasing sequence of compact sets such

that UK, = &, and
M go(Levi, ) < Clan''7)". (5.12)
Proof. From the definition of the measuresm, 4,

M go (K1 \ K1) < mige gy (6 \ Ko q)
<1—P(grip---Gri29r+1 € H for some
re{k—l—p—l—l,...,k—p—l,k—p})
=1- (1 —P(9r+p---gr+29r+1 ¢ H, forall
re{k—l—p—l—l,...,k—p—1,k—p})>
< P<9r+p---gr+29r+1 ¢ H forall

rE{k—Ll/p—ljp,...,k—2p,k—p})

— nLl/pfl/pJ < n(l72p)/p
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Consider now the quantity mg x(1e\k,). It follows from the definition of K, that
gr € K for every sample path, so if £ < [ thenm ;(1e\x,5) = 0. Whenk > [, the

above estimates of my, 4, (K \ K1) give:

k
mk,go(l(‘s\Kl/g) S kaygo(lKr+l\K7‘/B)

r=l

k
S ka,go (Kr+1 \ KT)UJTJFIC

r=l

k
<c Z n(r72p)/par+1

r=I

k—I
= C— 6”71/1) ZZ 1/1’
r=0

a 1/p\l

Since, by assumption, an'/? < 1, the right hand side is smaller than any fixed ¢ > 0
provided [ is sufficiently large. The choice of [, and by implication &; dependson ¢, ,

n, and a, but not on &. O

The topology C'3(&) is the appropriate topology for a useful recurrence theory. A

geometric forgetting result equivalent to Lemma (15) is

Proposition 26. Let g, be an r-strongly contractive Markov randomwalk on the semi-
group & with generator p, let 5 be a strictly positive continuous function on G, and let
f : & — R beafunction with magnitude bounded by | f| < M g and whichis Lipschitz
with respect to 3 with Lipschitz constant L ;. Then, there exist constants1 > ¢, > 0,

and C' > 0, both independent of f such that for any g, g, € &

|(mgo,l - mg{),l)f| < CLfcép(gm 96) (513)

Proof. Because g; is r-strongly contractive, there existsaset H C & with - - - %

pw(H) =n > 0,and aconstant 0 < ¢ < 1 such that p(hg, hg') < cp(g,qg’) for all
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g, € &. Forall >0,

((mgyg — mg ) f| < / iy - higo) — f(hihiy ... hug)|
S

du(hy)dp(hy 1) ... du(hy).
l/r]
< Lyp(90, 90) Z (LZ/ZTJ> (1 —p)l/rl=

= Lyp(g0, 90)(1 = (1 = c)m) /"]
The result followswhen ¢y = (1 — (1 — ¢)p)"and C = (1 — (1 — ¢)n) % O

The following proposition forms the basis for a recurrence theory for r-strongly

contractive, and p-strongly primitive random walks on semigroups.

Proposition 27. Let & be a semigroup with a metric p that is compatible with the
semigroup operator, and a positive weight function /5 that has compact sub-level sets,
and is bounded away from zero. Let g, be a homogeneous random walk on G with
Markov transition kernel II(g,; dgy) = d(dy, * 1t)(gs). If the walk is r-strongly con-
tractive, the generator p is p-strongly primitive, » and p are finite, positive integers r
and p, and the walk satisfies the conditionsin the premise of Lemma 25, then there ex-
ists a probability measure m with support contained in G, the elements of zero rank,
such that m isinvariant with respect to the transition kernel. Furthermore, if f isany
positive function that is bounded by f(g) < Mf(g), that is Lipschitzwith respect to 3

with Lipschitz constant L 7, and that satisfies m(f) > 0, then:

P!Jo

> o) = oo] =1 (5.14)
k=1
independent of the choice of g,.

Proof. Since g, satisfies the premise of Lemma 25, the sequence of measures m

is tight with respect to the C;(&) topology for any g, in a compact subset of &.
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It follows from Proposition 24 that the sequence of measures is relatively compact
in C5(6), that is, each infinite subsequence of m,, , has a sub-subsequence m, 4
that converges to a measure m,,. Consider two convergent subsequences mg, ), and
Mg,.q (k) that have limiting measures m, and my. If my, # my, then there exists a
Lipschitz continuous function f uniformly bounded on & by f(g) < Mf3(g), and a
congtant e such that |m;(f) — mq(f)| = ¢ > 0. Choose k, sufficiently large that
Mgo,q (k) (f) = Mo qe) ()| > €/2forall k > ko, and pug,1(1e\x, 2M B) < €/4. With-
out loss of generality, assumethat ¢’ (k) > ¢(k) for al k£, sofor al k thereexistsi;, > 0

such that ¢'(k) = q(k) + Iy, and 1114y ey = o % o % g9 1, Then,

|(mgo,q’(k) - mgo,q(k))ﬂ = |(p* 9k) % B Mg 1y, — H* 9(k) x H* 5go)f|

S/ (/If(hqw)hq(k)—l---hlg) — [ (hqyg(ry-1 - - - h1go)|
9EK,

du(hg)dp(hy—1) - . .du(hﬁ) dmg, 1, (9) + €/4.

It follows from Proposition 26 that the inner integral converges to 0 with increasing
k uniformly with respect to all ¢ € Kj,. This contradicts the hypothesis that it is
possible to choose a Lipschitz function f form Cs (&) that separates the measures m,
and m,.

S0, it is a consequence of Proposition 26, and the tightness of the sequence of
measures, that m,, ;. convergesin C';(&) to aunique measurem, that m isindependent
of theinitial point g,, and that the convergence is uniform when g, is chosen from a
compact subset of &. In addition, it follows from the method of construction that m
is invariant with respect to the random walk kernel, and from Proposition 15 that the
support of m iscontained in the set of zero rank elements, G,,.

Agan, let f : © — R be a positive function that is Lipschitz with respect to /5,
with Lipschitz constant L ;, and bounded by |f| < Mf. Let f, = f A M 3,, sothat f,
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isastrictly increasing sequence of Lipschitz functions that are integrable with respect

to to the measure m. For each r,

oo > m(fr) = klggo mgo,k(fr) Vgo

= klggo 590Hk(f7") >0

Since, by the monotone convergence theorem, m(f,) — m(f), there exists ry, € > 0
and positive integer £, such that for al » > rq and k > kq, 690H’“(fr) > e. For any
go € 6,if w < ethen Py [f,(gr) < w] <c<lwhenc= (MB, —e€)/(MB, —w),

and for any positive integersn, and p

> frlgn) < pw
n=1

Pgo

ko (no+p)
< Py, Z fr(gn) < pw

n0+P
< Py | Y Felgnro) < pw] :

Thesum S04 £, (gur,) < pw only if f,(gix,) < w for at least ng valuesi, 1 < i <
no + p. If n < ny, let K,, denote the set of ordered mappings (i) from the integers

1 < i < nintotheintegers kg, 2k, . .. (no + p)ko, then

no+p
Py, Zfrgn <pw]<z " Py lfilowy) <w 1<i<n]  (5.15)
n=no k(i)eX,
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The probability in the summation is estimated by

Py lfr(gkey) <w, 1<i<n]

- / dPgo (gk(n), Jk(n—1), - - -gk(1))

{f(gr(i))<w, 1<i<n}

ng(nfl) [f(gk(n)) < w]

/{f(gk(i))<w, 1<i<n—1}
dpgo (gk(n—1)7 Jk(n—2) - - - ,gk(1))

S C/ dpgo (gk(n—1)7 gk(n—Q) e 7gk(1))
{f(gry)<w, 1<i<n—1}

<c"

substituting this estimate back in (5.15) gives

no+p

> Frlgn) <pw] <>y e

n=no k(i)eX,

Pgo

For any fixed p, the bound on the right can be made arbitrarily small by letting n, —

00. S0, there exists w > 0 such that for every r > rq and for al p > 0,

Zfr(gk) < pw] =0

k=1

P

go

And a second application of the monotone convergence theorem, thistimeto the prob-

ability measure on the random walk, yields the result. O

Proposition 27 demonstrates a condition that is similar to Harris recurrence and
potentialy provides the basis for a potential theory for random walks on semigroups
that mirrors the analogous theory for Harris recurrent random walks on groups [34].

Thislevel of generality is not required in the present application because the range of
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the Poisson operator is restricted to a Lipschitz space. The existence of the invariant
measure m, which is established by Proposition 27, and the geometric ergodicity re-
sult in Proposition 26 proveto be enough when extended to Markov modulated random
walks. Eventually an application of the resultsfrom Part |1, Chapter 2 of Benveniste et
al. [7] will give a satisfactory potential theory for the purpose of establishing conver-
gence of the stochastic approximation.

In addition to the existence of an invariant measure, and the geometric ergodicity
result of Proposition 26, the stochastic approximation theory that was introduced in
Chapter 4 requires that the solution to the Poisson equation, equation (4.20), with a
Lipschitz function on the right hand side should be regular with respect to variation in
the parameter 6. The next lemma and proposition are the key results in establishing

thisregularity.

Lemma 28. Let S be a compact subset of a manifold that has a regular embedding in
an N-dimensional space. Let p be a metric on the manifold that is compatible with the
manifold topology, let d be the associated Lévy metric, and let K = 2% — 1. If ; and
' are two measures supported on S and separated by d(u, ') < 4§, then there existsa

decomposition

W= fiat e, =Y+ g,
such that 11o(S), u(S) < K06, pa(S) = u,(S) for al «, and if g; € supp p,, and

g2 € supp p,, then p(gy, g2) < K.

Proof. Tilethe set S with atessellation with the following properties:

(@) The tessdllation can be partitioned into M sets, where M is a finite number
independent of ¢, in such away that every pair of tiles in the same set of the

partition are separated by a distance greater than 20 /6.
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(b) Eachtilein the tessellation has minimum diameter of at least 21 6.

(c) Each tilein the tessellation has maximum diameter that is bounded by a fixed

multiple of 6.

One way to achieve this tessellation isfirst, to regularly embed the manifold in a Eu-
clidean space R, and then generate the tessellation with a cubic subdivision of the
N-dimensional embedding space, each cube having sides of length 2V+1§. The result
is a tessellation with a partition of size M = 2%, each cell in the partition is a cube
with minimum diameter 21/, and maximum diameter v/ N2M 6.

Label the M setsin the partition P; with 7 taking odd valuesi = 2m — 1, m =
1,..., M, andlabel thetilesinthetessellation S,,. Consider thefirst set in the partition,
P;, and divide the tiles in this set into two subsets. A tile S, remains in P, when
u(Sa) > 1/(S.), and atile S, that satisfy the opposite inequality 11(S.) < 1/(Sa) IS
transferred to anew set P.

Consider, now the set P;, and split thisset into two subsets, 2, and R; . Placein ),
thetiles S, € P, for which /(S.) < u(S,) < ¢/(S?%), and placein R, the tiles from
the P, that satisfy p/(S2) < u(Sa) < 1/'(S2) + 4. It follows from the characterization
of the Lévy metric in Proposition 17 that every tilein P; ends up in either Q); or R;.

For every a suchthat S, € @1, let ji, = pls, and let p;, = p'1s, + calgs\s, Where

(S = #(S0)
T WD) = H(S)

For every a such that S, € Ry, let py, = p'lgs, &t o = dapials, Where d, =

1 (S%)/p(Sa). Finaly, let g = p — > s, cr, Mar then another application of Propo-
sition 17, the fact that any two tilesin R, are separated by a minimum distance greater
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than 26, and the fact that (S,,) — 1/ (S2) > 0 together establish that

MI(U{Sa Sa € Rl}) = Z{M(Sa) - /L,(Sg) 1 Sq € Rl}
= (U{Sa : Sq € Ri}) — 1/ ((U{Sa : Sa € R1})?)

< 0.

At this point in the construction there exists a positive measure 1;, and two sets
of positive measures {1, }, and {4/, } indexed by theset A; = {« : S, € P}, with
the properties that: for all o € Ay, po < p, and p, < 1/, the support of each ! is
contained in S? (the 6 neighborhood of S,,), the support of each i, iscontainedin S,,,
116,(S) = pa(S), the support of y, is contained inthe set (Jg . p Sas p1(S) < 6, and
for any measurableset F' C | J Sa, p(F) = u1(F)+>_ po(F) and (/ (F) = > ul (F).

Move now, to the tiles S, in the set P,. A symmetric construction to that used
for the tilesin P, produces a positive measure 1, and two sets of positive measures
pe and pl indexed by the set A, = {a : S, € P}, with the properties that: for all
a € Ay, pto < i, pil, < ', the support of each y,, is contained in S?, the support of
each 1/, iscontained in S, 1, (S) = pa(S), the support of ., is contained in the set
Us,cp, Sas 112(S) < 0, and for any measurable set /' C |J Sa, u(F) = > 1o (F) and
W (F) = po(F) + Y i, (F).

Redefine pasp—) " c 4, Ha—pand ' asp' =3 o4, te,— 2. NOW, d(p, ') < 20
and the same procedure as before resultsin measures 13, ju, o @nd p, with supportin
the sets associated with partition P;. Continue in thisway through all of the remaining
partitions Ps through Poy—y. Let g = g+ s - - -+ ponr—1 @d g = pro+pg -+ =+ pionr,
then pg, g, pa, and pl, provide the required partitions. If K = 2V — 1 then the
measures 1io(.S) and i, (S) are both bounded by K§, and for any «, if g; € supp pa,

and go € supp p,, then p(gi, ga) < K6. O
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Proposition 29. Let G be a semigroup that is a finite dimensional manifold. Let p be
a metric that is compatible with the manifold topology, and suppose that left multipli-
cation in the semigroup is r-strongly contractive with respect to p. Let 5 be a positive
weighting function on & that has compact sub-level sets, and is bounded away from
zero. Let 1, be a sequence of measures on G with support contained in a compact set

S of diameter D, and let y; satisfy the following two properties:

(i) There existsd > 0 such that if . is a second sequence, and VI, supp p; C S,

and d(u, p;) < 6, then ) isp-strongly primitive with respect to 5.

(if) The inhomogeneous random walk g, with initial point g, € &, and transition

kernel II(g;; gi+1) = d(J, * fu)(g914+1) IS Strongly contractive.

For go € K, definemyg, = 0, * 11 % -+ % L.

Giveng, € 6,and{x, [ =1,2,...}, asecond sequence of measuresthat satisfies
condition (i), let g; be the non-homogeneous random walk with initial point g, and
transition kernels I1(g;; gi+1) = d(d, * ;) (g9141), and define a second sequence of
MeasUres my, . = g, * fiy * . %. % 1y

There exists a constant C' such that for g, € &, and any function f that is Lipschitz

with respect to 3 with Lipschitz constant L,

Mgy i (f) — My, x(f)] < 6CLyB(g0). (5.16)

Proof. The proof beginswith an expansion of the left hand side of theinequality (5.16)
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asan integral.

_ ‘/ Fh - T1g0) g (i) - dpsn () — dpt (B - - dpt, (h)

> / Fh - - hago)dp(hy) - . . dpy(hy)dpy_ (hi—y) .. . dyd, (hy)

— dpy(hy) - . - dpigr (higa)dpg(ha) - - dpdy (ha)

(5.17)

Let ;1 = hy_1 ... higo, then an application of Fubini’s theorem to the [™ term in the

summation yields an iterated integral

S 100w i) at) = )| (o),

Write the inner integral as

Ii(gi—1) = /f(hk, oo g dpw(he) - - dpgy (hige) dpg (By)

—/f(hk,---,hzgz1)dﬂk(hk)---duz+1(hl+1)dﬂg(hz) (5.18)

By hypothesis, for all I, the measures 1, and y; are separated in the Lévy metric by
d(p, p;) < 9, and an application of Lemma 28 produces a decomposition for the

measures 1, and /.

= HatHo, M= ety
where 1p(S), 1y (&) < C10, pe(6) = ul, (&) for al «, and if h; € supp p, and

hj € supp p!, then p(hy, b)) < Cy0. Note that the particular decomposition varies with

[, but this dependency on [ is dropped in the notation.
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Substituting the decomposition into (5.18) gives

L )| = (/ i g )dpu(h) - dpa(huss)daa ()

/f o higia)dp () - dﬂl+1(hl+1)dﬂ&(hz))>
T / F(hi - g (h) - dpaies (b )dpao(h)

/f gy dpu(hy) - - - dpug (Pas ) dpag ()

(5.19)

Using the equality 1, (&) = 1/, (&), the summand in the summation can be rewritten

/ Flhe - huge )dpa(he) - dprs (hes)dpia ()

- /f(hk g dpg(hee) - dpgg (hog) dpg (Be)

(/f RNy f(hk---hﬁgz—l)dlﬁk(hk)---dﬂz+1(hz+1)) dpta(he)dpig (hy)
(5.20)

The Lipschitz property of f allows the inner integral to be bounded by a function of

g1 asfollows;

‘/(f(hk o hgies) — Flh B dia(he) - dias (hiss)
<L | ol gy b B 28(he . . har
< f/P( k 191-1, by, 191 1)hef?h%;} B(hy, Gi-1)

dp(he) - . . dp(hig)

Since left multiplication in the semigroup is contractive, it follows from Lemma 14

and the conditions on the supports of 1, and ., that

p(hk Ca hlglfla hk Ca h;gl,l) S Ck7l+15
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and

‘/(f(hk chugia) = fhwe - hgi))dpg(hy) - (heyga)

<O LeBi(gi-1) (5.21)
with

(gi1) = 2/121255 cohga)dpg(hy) - dpga(hig).

The bound in (5.21) is independent of A,;, so summing equation (5.20) over « givesa

bound on the summation on the right hand side of (5.19) of

(/f cohigi—)dp () - dpggr (husa) dpa ()

— / f(he oo hugiy)dpr(he) - - -duz+1(hl+1)d%(hl))> ‘

<O LeBi(g1) (5.22)

A similar argument produces a bound on the last two terms on the right hand side

of equation (5.19).
‘/f o Tugia)dp () - dpugr (Bas ) dpo ()
[ 0 g i) dps B i 1)
S% f/ p(hg .o hugiy, b Bggi 1) (B - - hugi—1) + B(hwe - .- higi—1))

x dpu(hee) - dpua (hgn)dpso (he) dpg (hy)

Thistime p(h;, h;) < D, and

p(hk C hlglfl, hk Ce h;glfl) S CkililD
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S0, using the bounds 1y (&) < § and (&) < 6,

‘ / F (i hugis) dp(he) . - dpios (his ) dpio ()
/f higiea)dp (hye) - - - dpugr (hag) dpag (hy)
1 k—1—1 i
< 5C DBi(gi-1) Lo (6)po(6)
< CF Ly Bi(gi-), (5.23)

for some constant C' that isindependent of /.

Combining (5.22) and (5.23) produces a bound in (5.19) produces
Ii(gi-1) < CF 6Ly Bi(gi1),

and a corresponding bound on the I’ th term in the summation on theright side of (5.17)

of
/fz(gz—ﬂdm;o,z_l(gz—l) < CCk_l_lfSLf/Bz(gz—l)dm;0,1_1(9z—1)
< CHF L (1= aym) ™ Blgo) (5.24)

With each term in the summation on the right hand side of (5.17) bound by (5.24),

summation over [ gives a bound for the left hand side of

(Mo (f) = Ml ()] < COL; (1 = a/77) " Bl0) (5.25)

1 —
and a suitable redefinition of the constant C' completes the proof. O

The following corollary to Proposition 29 is a consequence of Proposition.

Corollary 30. Wththe same conditionson G asimposed in Proposition 29, let ;" and
1’ be two measures on & that both satisfy the conditionsimposed on 4 in the premise

of Proposition 29. Let m and m' be invariant measures with respect to the Markov
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transition kernels I1(g,; dgy) = d(6,, * 11)(gs) @and II'(gq; dgs) = d(64, * 1')(gs), the
existence of which are predicated in the conclusion of Proposition 27. If p and '
are separated in the Lévy metric by d(u, ') < 6, then there exists a constant C,

independent of § such that if f isa Lipschitz function with Lipschitz constant L ¢,
Im(f) =m/(f)] < CL¢S
Proof. A direct application of the Proposition gives the bound

|mgo e (f) — m;O,k(f)| < CLs0/(g0)-

However, it follows from Proposition 27 that both m, » and m;_, have weak limits
that are independent of the initial point gy, and as a consequence, taking the limit as

k — oo, and redefining the constant C' gives
Im(f) =m/(f)] < CL¢S
O

The proposition also provides a method to deal with perturbations of random walks

that introduce a small amount of dependence between successive increments.

Corollary 31. Let ;1 be the generator for a Markov random walk on a semigroup &,
and let ;. and & satisfy the conditions of Proposition 29. Let h — u(h) be a mapping
from & to C(6) such that for all h € &, d(p, pu(h)) < 4, and define a second (non-
Markov) random walk with transition kernel I1(g;; dg;41) = 04, * p1(hi—1), Where hy_,
is the increment between g;_; and g;. Then, if the measure my, . is the probability
distribution of the £’th point in the walk with generator 4 conditioned on the initial
point go, and m;,_ , the corresponding distribution for the walk with transition kernels

constructed fromthe measures y.(h;), then

Mo,k (f) = my, k()] < CL;3B(go)
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Proof. The proof of the corollary isaready contained in the proof of the theorem. [
A second conseguence of Lemma 28 is the following Proposition

Proposition 32. Let I1(g,; dgs) = (d,, * 1) (dgs) beatransition kernel of a contractive
random walk on an M-dimensional semigroup &, and let 1 have compact support.

Definea mapping I1 : C3(&) — C3(6) by

ma(dga) — Lma(dga)n(ga; dgb) = mb(dgb)

IT is a uniformly continuous mapping with respect to the Lévy metric of the subspace
of compactly supported measures onto itself. Further, if P = {II,,} is the family of
such contractive kernels indexed by the compactly supported generator 1, then P isan

equicontinuous family.

Proof. Let m, and m/!, be two compactly supported measures on & that are separated

by d(mg, m.) = 6. Let K =2 — 1, and let

m! = Z My + My my = Z Maa + Mao (5.26)

Be two decompositionsthat having the properties of the decompositionsin the conclu-
sion of Lemma 28. Since the map induced by the kernel 11 is linear, m,; and m; have

decompositions
my =S by my = e + g
where my, = mgq * pand my, = m,, * p. Thefollowing conclusions areimmediate
Mpa(G) = my, (6) and my(S) = my(S) < K. (5.27)

In addition, let £’ be a measurable subset of G, and let g, = hg, € E for someh €

supp u, and g, € my,. Since left multiplication by an element of the support of i isa
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contractionin &, it followsthat g, = hg., € EX° for al ¢, that satisfy p(g.,, g.) < K§.
But it is a property of the decompositionsin (5.26) that all g/, € suppm,,, lie within
Ko of g,. Asaconsequence of this argument, the analogous argument with the roles

of primed and non-primed variables reversed, and the first of the conclusionsin (5.27)

Mpa(E) < My (B) < mpa (EX?)

or i (F) < mual(B) < miy (B)
And summing over the index o gives

my(E) < my(E) < my(EX?)

or my(E) < my(F) < my(EX?)

This statement together with the second of the conclusionsin (5.27) leads to the con-
clusion that d(m,, m;) < Ko and therefore the first conclusion of the proposition: that
the mapping II is continuous. The second conclusion of the Proposition, that P is an
equicontinuous family, is a consequence of the independence of the constant K with

respect to the kernel I1. O

In the theorems that follow 7, = (Sk, gx) is a Markov modulated random walk.
The random process Sy, isadiscrete time Markov process that takes valuesin ametric
space (8, ps), and has transition kernel T1(S,; dSy). The process g, takes values in
the semigroup & with metric ps, and has dynamics determined by the equation g, =
9(Sk)gr_1, where g : § — & isabounded Lipschitz continuous function with respect
to ps and ps. The function g generates continuousmapsd,.g : C3.(S) — Cj_ (&) and
d*g : Css(6) — Cs,(S), where 5s : § — R and g : & — R are weight functions

on the metric space § and the semigroup G.
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Theorem 33. Let I1(S,; dS,) be the transition kernel for a Markov process Sy on 8
with an invariant measure v. Let v, be the marginal distribution for the initial value

Sy, and let Sy, satisfy the geometric ergodicity condition
dg(Hk(SO; dSk), l/) < Clckﬁg(SO)

and the regularity condition ds (v, 11, 1,11) < C'ds(v1, v2) Y1, 2 € C5(S).
Suppose that the map g : 8 — & and the chain S, generate a Markov random

walk with transition kernel

I1(Sk, gk; dgk+1) = 0, * [dug](IL(Sk; dSk11)),

and suppose also that the sequence of measures [d,g](I1(Sk; dSk+1)) is p-strongly
primitive and r-strongly contractive with probability 1.
Then, there exists a measure m, and positive constants C' and c with0 < ¢ < 1

such that for any Lipschitzfunction f : & — R with Lipschitz constant L ;

[T (So, 903 dge) (f) — m(f)] < CLyc*Bes(g0)Bs(So)

Proof. The proof uses an appropriate grouping of increments to show that the Markov
modul ated random walk is well approximated by a second random walk with indepen-
dent, identically distributed increments.

Let f be Lipschitz with respect to 3. The quantity T1¥(Sy, go; dgi)(f) can be ex-
plicitly written as the iterated integra

/f(g(Sk)g(Sk_1) - 9(51)90)I1(So; dS1) . . . 1L(Sk—2; dSk—1)IL(Sk-1; dSk) (5.28)

Write k£ = jl + r. The interpretation of this decomposition is that the random walk

is alowed to run for r increments, and after that the increments are compounded in

112



groups of /. Use this decomposition to rewrite the integral in (5.28) as

/ FORERS ) B g )T (Si—1yrs A(Stjr, BE)IT (Sig=2) 405 A(Sii—1)4r B 1))

tee HZ(ST; d(Sl+7‘7 hll))Hr (507 9o; d(Sra gr))
where

hi = 9(Sisr)9(Satr—1) - - 9(Sig-1yr1)  forl <i<j. (5.29)

Forany Sy € 8, thekernel I1(Sp; d(S;, h')) actson aLipschitzfunction f : Gx§ — R

by the formula

/f(Sl, hl)Hl(So; (S, hl)) = /f(Sl;g(Sl) - g(SOIL(S-1;dS)) - . . TI(Sp; dSh).

The essential stepsin the proof compute appropriate valuesfor the remainder » and the
divisor .

The value of r determines the the length of the initial transient. If S, the initial
value of the Markov process, is restricted to a compact subset of S, then during the
transient the sequences of measures 117 (S,; dS,), 0 < j < r, converge to a ball of
radius § about v, the invariant measure of the transition kernel I1(S,; dS). The con-
vergence is uniform in the initial value S,. Meanwhile, the position of the Random
walk hjhj_q...g0,0 < j < riscontrolled by the a-priori bounds of Lemma9. This
bound is a result of p-strong primitivity of the Markov random walk, and a bound on

therange of themap ¢ : S — 6.

Lemma 34. For all 6 > 0 there exists r, sufficiently large that for all S, € 8, and for
all £ > r, ds(I1(Sp; dSk),v) < . Also, almost surely, Be(g,) < C/d Bs(So)Bes(g0)
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Proof. A premise of the theorem states that there exists areal constant C' > 0 and a

positive integer ¢ such that for all Sy € 8,

ds(I1¥(So; dSi), v) < Cc"Bs(Sp)
Choose r so that

Cc"Bs(So) < 6 < C'Bs(Sy),

then the condition on therange of ¢ : § — & impliesthat

Be(g:) < a"Bes(g0)
< Ccr,lﬁe(go)
C

< 338(50)56 (90)

with an appropriate re-definition of the constant C'. O

Turning now to the divisor /, define the [-cumulants of the random walk by

he = higrhivsr—1 -« Ba-vyiers2hotieren, 0> 1

The value of the divisor [ should be large enough that, under the process distribution
for the Markov modulated random walk, successive [-cumulants are close to being
independently and identically distributed.

First an auxiliary lemma.

Lemma 35. Under the conditions of the premise of the theorem the probability mea-

sures v i, that describe thejoint distributions of S, and Sj, satisfy

dg (Vo g, Vo @ v) < Oyt
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Proof. Let f € Cs(8%) with |f| < 3, then

£ (S0, Sk) dvox(So, Sk) — | f(So, Sk) dvo(So)dv(Sk)
J /

_ ‘/ (F(So, Si) T1*(So; dSk) — £(So, Si) di(Se))duo(So)

< /Clckﬁ(So) dvy(So) = Cac,

when Cy = C1vy(5). Sincethe only condition on the choice of f isthe uniform bound,

the result follows. O

Lemma36. For all k, let v, = TI(Sp; dSk) denote the distribution of the random
variable S;,. For [ sufficiently large, there exists a measure ;! on &, and constants

¢, > 0 suchthat if dg(v; ., v) < 6, then
de (I (Sisr, Git+r; A9t 1y4r)s AlOgs,, * 1] (Gas1yer)) < €
almost surely with respect to the distribution of g, € & and S;;, € 8.

Proof. Renumber the indices so that the index il + r becomes 0, and the index (i +
1) + r becomes [, and partition the interval [ as! = [; + l,. The proof rests on two
claims.

Claim 1. For al § > 0, there exists [, such that the joint distribution of Sy, and

hll = g(Sll) satisfies
d(10(S0)deg " (So; )] (a), diro(So) ® dug[V](hay)) < 6, (5.30)

where v isthe invariant distribution for the kernel I1(S,; d.S).
Claim 2: Let M C C3(6) be atight family of measures. For al n there exists I, a
measure 14;,, and aconstant C' that depends on /5, such that for all conditional measures

m(-|-) taking values m(-|S) € M, and for al ¢, if d(v',v) < § then

d(('m(-|-)I1"” (So, g% dh"), u,) < CS +1n. (5.31)
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The following argument uses the two claims to prove the lemma. The assump-
tions of p-primitivity for the generators d, g[vx|, and boundedness for the map g, to-
gether with Lemma 25 ensure that the measures m,;, lie in a tight family, irrespec-
tive of the value of [;. So, given § > 0, choose n = §/2 and use Claim 2 to
compute [y, 1, and C' such that the inequality (5.31) holds when m = m,,, and
v' = v;,. Now choose ¢ such that C'§ = ¢/4, and use Claim 1, and the assumption that
ds(T1%(Sp; dS;,),v) < CckBs(Sy) to compute avalue [; such that both the inequality
(5.30) holds, and d(v;,,v) < §. Since the map T14(Sy,, e; d(h'2) : C3(6) — Cs(6)
is a contraction with respect to Lipschitz seminorms, Proposition 21 implies that the
conclusion of thelemmaistruewith ! = 1 + [, and p; = fu,.

Proof of claim 1: To provethefirst claim, choose f : § x & — R to be afunction
that is Lipschitz with respect to s in the first variable, and Lipschitz with respect to
fe in the second variable. Define a second functione : 8§ x § — R by e(S,, Sy) =
f(Sa, g(Sp)). Sinceg : 8§ — & isLipschitz, the function e isalso Lipschitz. Allowing
the two measures that form the argument to the Lévy metric on the left hand side of

(5.30) to act on the function f gives
/ £ (Sor 91 )dvn(So) g T (503 ) (g1,) = / (S0, S1)dwo (So) T (S0; S0, )
and

/f(So,gzl)dVo(So)d*g[V(-)](gzl) =/6(So,5z)d7/o(50)dl/(5z1)-

If 1o, and vy @ v are written out explicitly as dvg(So)IT (So; d.S,) and duy(So)dv(Sy,)

then Lemma 35 states that

d(dvy(So)TT'(So; dS,, ), dve(So)dv(Sy,)) < Ce
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for some constantsC' > 0 and 0 < ¢ < 1. Therefore, it follows from Lemma 18 that
for every value§ > 0, there existsavaluefor [; sufficiently large that inequality (5.30)
holds.

Proof of claim 2: Let m be ameasure in C5(&), and v and v be two measures
in C3(8) and let TI((Sa, 9a); d(Sh, g5)) be atransition kernel for a Markov modulated

random walk, then

/ F() (o @m)TE (S, 1¥); d(Sr, 1))~ / F(H) (vom)TT *((Sy., h); d(Sp, 1))

— Z ( / F(h') 65 (dSk)TI(Sk; dSkr1) v (dSy) (m x dyg[ds,]) (dhF ) T

1
VaS

(8)
18 / F(H) va(dSe)TL(Sk: dSyar) v (dSL) (m » dygl5s, ) (dhH) T4

/ F(h') va(dSp)TI(Sk; dSk41) vy (dSy) (m * deglds ]) (dhH1) TIF

Va

- /f(hl) Vo (dSk)TI(Sk; dSk11) b5, (dSy,) (m * d*g[5s;€])(dhk+1) Hlkl)

Performing the integration with respect to Sy, in thefirst pair of terms, and with respect

to .S}, inthe second pair of terms gives, with condensed notation,

/ F(H) (V' @m)TI*((Sy, h¥); d(S1, H))— / F () (veom) T ((Sp, 14); d(S0, 1Y)

_Z/</f (W) 0, @ m'Tl ., — /f l/a(X)mHk_'_l)ya(dS]g)
+Z/ (/f ) T ® ' 4y — /f ua®mHk+1)u (dS) (5.32)

The measures that are factors in the tensor products on the right hand side are defined

asfollows. In thefirst term, the measures are functions of S;,

1
= U(SpdSien). o= s / TT(Sk: dS1) dva(Se),

and m’:m*ég(g;c).
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Whilein the second term, the measures are functions of Sy,

d !
7 =TSy dSks),  m = 77"*” (*g)[”a], and i = m * 0ys,).

Write the left hand side of equation (5.32) as [T *(6 R)](f), where — k isthe number
of terms in TI'*, the iterated kernel, ¢ is the bound on the distance d(v, '), and R
is a bound on the support of m. Examine the expressions for the measures 7 and ©'.
It is true that for any o, and for any S, € supp vy, d(ds;,Va/va(8)) < Kd(V',v),
and therefore d(v', ) < C¢ for some constant C' that is independent of v and v/'.
The premise of the proposition contains the assumption that the kernel TI(.S,; dSy) is
contractive with respect to the Lévy metric. It is a consequence of this assumption
that the magnitude of the first term on the right hand side of (5.32) is bounded by
[T'=*=1(C 0 R)](f) for some constant C'.

Examine the expressionsfor the measures i and 2. Thebound d(ds; , va/va(8)) <
Kd(v',v), and Proposition 32 implies that d(m, m') < C6. SinceI1(S,, ga; d(Sh, g))
isakernel for acontractive random walk, it follows again from Proposition 32 that the
second term in on the right hand side of (5.32) is bounded by C,9.

An application of these observationsto the expression in equation (5.32) produces

the recursive bound
[TFOR)(f) < [T HCOR)(f) + Cad
Computing the recursion for £ iterations gives the bound

k
[T'*(0R)](f) < CFSR+ Y C,Ci~'6 < CEC3RG.
=1
Now let mg(:|-) : 8 — C3(&) be a conditional measure that takes values in the

tight family of measures M. Let p denote the metric on &. The tightness condition

means that there exists acompact set K C & such that m(-|5)[81e\x] < €/2 outside
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a set of measure 0 on 8. Let py, = vI12(Sy, e;dh'?). The left hand side of (5.31),

written as an integral, is bounded by

‘/f(hlz)y'(dso)m(dho|SO))HZ2(SO,ho;dhl2)—/f(hb)%(dhlz)

< ‘/f(hl2)u’(d50)m(dh0|So))Hl2(So,ho;dhl2)

— / F(R2) (dSy)IT"2(Sy, e; dh™?)

+‘/f(hl2)u'(dso)nl2(so,e; dh'2) — f(R™)v(dS,)TT"2(Sy, ¢; dh?)

Thefirst difference on the right hand side has the form of the left hand side of equation
(5.32). Since K iscompact D = sup{d(e, g) : g € K} isfinite, and the r-contractive
property of the Markov modulated random walk provides a bound for the second dif-

ference. O

The theorem now follows from an application of Corollary 31. All that remains
is to demonstrate how the requirements in the premises of the corollary are fulfilled.
Consider again the original Markov modulated random walk ¢, with modulating pro-
cess Sy. Lemmas 34 and 36, state that for any 6 > 0, provided & is sufficiently large,
it is possible to choose a factorization £ = [j + r with divisor [ and a remainder r
suchthat s (g,) < (C/0)Bs(g0)Ps(So), andif g’ denotes thewalk g, left shifted by »
terms, and rewritten with increments grouped in groups of /, then the transition kernel

for ¢!, which can be written as
H(Sr+jl7 gé, dg§+1) = 595 * H(Sr+jl7 héa ')7

satisfies d(H(SHﬂ,g;-;dg;H),égé x ') < 6, where dyy(h) = vII®2(-,e;dh) is the
measure defined in the proof of Lemma 36. So provided 1! has the contractive and

primitivity properties required by Corollary 31, the theorem is proved. O

119



Theorem 33 gives an ergodicity result for the Markov modulated random walk gy,
but the estimator problem requires an analogous result for the Markov process (S, gx)
that combines the modulating process S, with the random walk that it generates. The

following result describes the situation when the modulating process S, isi.i.d.

Proposition 37. Let S, beani.i.d. processwith distribution v, and let g, be the ran-
dom walk generated by the associated measure 1 = [d,g|v with invariant distribution

m. Then the combined process (S, gx) is ergodic, and has an invariant distribution

0N (S5 95) Given by (m x5, (9)(S5)
Proof. First, demonstrate that (m = d,s,) (g;))v(Sy) isan invariant distribution.
(1 5 3y50) (9)) V(S ) T[S a3 (St 90)1 (S, 1)
= (. By (0)(Se) [ £(Sh ), * s an) ()
= [ ssuaa / (B By o 85, (S.) ) (0)a(52)
= [ £ gu)dm % s an)v ()

= /f(Sb,gb)d(m % 0g05)) (06)dV(Sh)

Geometric convergence is demonstrated as follows. Let f : § x & — R be Lipschitz
(in both its variables), and let 1(S,, g.) = [ f(Sb, gb)d(dg, * 64(Sh))(gs)dv(Sy), then

h is Lipschitz with Lipschitz constant L, = K Ly, and

ITT* (S0, go; d(Sb, g6)).f — /f(Sb,gb)(m * Og(5,) (96))dv ()|
_ ‘ / F (S G0)d(S0 5 105 £ 5 11 % By — % Gy500) (00)d(Sh)

= |mgo,kh — mh| S KLka
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The case when (Sk, gx) isaMarkov modulated walk introduces additional complexity.
While the invariant distribution of g, coincides with the invariant distribution of the
random walk generated by v, theinvariant distribution of S, the same correspondence
does not hold for the invariant distribution of the combined process. Asaconsequence,
the proof of existence and regularity results for the combined process requires a new

approach.

Theorem 38. Let g, bea Markov modulated randomwalk generated by a Markov pro-
cess Sy. Quppose that process S, and the map ¢ satisfy the conditions in the premise
of Theorem 33, and that v, the invariant measure for the random walk on 8, is com-
pactly supported. Then the Markov process (Sy, g) has an invariant distribution m,
and there exist positive constants ¢ € (0, 1) and K such that for any Lipschitz function

f:8 x 6 — R, with Lipschitz constant L,

1% (Sas ga; d(Sh, b)) f — mf| < KLyc*Be(ga)Bs(Sa) (5.33)

Proof. Let f : $x& — R beLipschitz continuouswith Lipschitz constant L ;. Let S,

a € A bealfinite partition of asubset of S that satisfies the following three conditions.

(i) SIPP7 C UaSa
(i) v(84) >0 Vo
(iii) diag(S,) < & Va

The existence of such a partition is a consequence of the compactness of the support
of v. For each o € A, let f, be the approximation to the restriction of f to the set
S. x 6 that isformed by averaging f over theset §,. So, for S € Sandg € &

v(1s,f(-,9))

fa(Sag):]-Sa(S)® l/(sa)
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Since f is Lipschitz, theerror | f — > f.1s,| isuniformly bounded on | 8, x &.

ol

Define a sequence of random times %, (1) by the condition that Sj,, ;) isthe I’th
element of the sequence Sy, that liesin 8,,. Ergodicity of the chain Sy, ensures that the
values in the sequence k() are finite with probability 1. For each « define a family
of distributionsn,, on the positivereal numbersz € R* by ny(x) = P[{k = kq(kx)}]
then . (=) issupported onthediscreteset {z : © = I/k, | <=k}, limg_,oc E[np(x)] =
v(8,) and alarge deviation result gives a bound that is exponential in k for the proba-
bility P, [|l/k — va| > €].

Let R,; € IIS be the Markov chain that is constructed by forming the random

length Cartesian products
Roy = (Skays1, "=0TR O S, 14)).

Geometric ergodicity of the Markov process R, follows from the geometric ergodicity

of the underlying process S;.. Defineamap g : [1S — & by
9(R1) = 9(Skay41) - - - 9(Skati1))
a sequence of measures: 1, on G by
pu = [d.g]TT' (Ro; -)
and a sequence of transition kernels I1!,(g,; dg,) by the convolution product
fo(ga; dgy) = Ogy * i1 % =+ = % fUy

The transition kernels TT., define a Markov modulated random walk on G with R; as
the modulating Markov process. Let m,, = lim;_,q IT',(g4; dgs), Theorem 33 ensures

both the existence of the following geometric bound

IT14.(Sa, 9a3 dgi) (f) = ma(f)] < CaLycaBe(9a)Bs(Sa).
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For sufficiently large k, the kernel T1%((S,, g4); d(Ss, g5)) can be approximated to
within afixed multiple of 6 by

((Saaga) Sbagb f ZZP Hl (gaadgb)f

~ Z o)Ma fa

Where the large deviation result for the random time &, and the geometric ergodicity

of the random walk have been used in the second approximation. O

Corollary 39. LetIIy(S,;dS,) and ITj, (S,; dS) both satisfy the conditions of Lemma
33 for some measures v and v’ separated in the Lévy metric by d(v, V') < Ky|0 — ¢'|.
Then there exists a constant K such that for any Lipschitz function f : § x & — R

with Lipschitz constant L,

115 (S0, go; d(Sk, g1)) (f) — 115 (S0, go; d( Sk, gx)) (f)] < KLg|0 — 0'|Be(9a)Bs(Sa)
(5.34)

Proof. Letm,,  andm; , bethe measures defined in the proof of Proposition 27.

ITT5(So, go; d(Sk, &) (f) — I (So, go; d(Sk gx)) (f)]
< |5 (So, go; A(Sk, 9i)) () — Mgy i ()] + Mgy e () — Mg 1 (f)]

+ |migy 1 (f) — T (So, 905 d(Sks 98)) ()]

The result is a consequence of the preceding theorem and Corollary 30. O

5.3 Potential Theory for the Underlying Chain

This section combines the results from the first two sections in this chapter with the

description of estimator Markov chain from the first section of Chapter 4 to prove
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that assumptions 4-bis and 5-bis from section 2 of Chapter 4 hold for the combined
estimation and control stochastic approximation problem. Throughout this section )
is assumed to be a compact subset of the interior of the parameter space ©, and the
parameter 6 € () isassumed to be afixed point in Q. In particular, this means that the
entriesin the matrices A, (#) and B(#), the estimates of the underlying state transition

matrices A,, and the ouptut matrix B are bounded away from zero by

Z’J’u

where 6(Q) > 0 isa constant that depends on the choice of the compact set Q. Also,
the standing assumptions from Chapter 2 about the underlying Markov model hold.

Namely, there exists 6 > 0 such that

1nf Au;ij ) and 1nf Bi, > 6,

Z’J’u

and ), the randomization parameter in the control algorithm (2.14), is strictly positive.
Thefirst task is to establish that the characterization of the Markov chain X, that was
given in Section 1 of Chapter 4 fits the requirements of the theory in Section 2 of this
chapter.

Recall that the state space for the Markov chain has a projective structure
X X x X 5 X, (5.35)

and that the Markov transition kernel TI(X,,dX,) is constructed from the discrete
kernel TI(X,, dX,) by using the actions of Markov modulated random walks on the
sets X, X¢ and X7. The Markov modul ated walks are generated by the maps

T L 609 (5.36)
X x X L9 & (x¢) @ S(X). (5.37)
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Where ¢¢ ® g7, the outer group product of the two maps ¢¢ and ¢”, factors into two

Markov modulated random walks

T x X 25 &(x9) (5.39)
T x X L (%) (5.39)

The product semigroup G(X¢) ® &(X7) is a ‘block-diagonal’ sub-semigroup of the
semigroup &(X¢ x X7).

The Markov modulated random walk theory appliesto both levels of the projective
structurein (5.35), and the application of the theory to each level is considered in turn.
The random walk generated by (5.36) is considered first. The underlying chain here
is the discrete chain X, that was analyzed in the first section of this chapter. Propo-
sition 12 establishes that the transition kernel for the discrete chain TI( X,; dX,) has
an invariant distribution 77y, and that the sequence of kernels IT'(X,; dX,) converges
uniformly in X,, and geometrically in [ to the invariant measure. The mapping (5.36)
with ¢* : X — &(Q%) defined by (4.3) induces a mapping d, ¢g® from measures on
X to measures on &(2*). The map d, ¢* along with the Markov chain X, with tran-
sition kernel H(f( o dX ») generates a sequence of generators for a Markov modulated

random walk on & through the formula
p = dog® T (K15 dXp). (5.40)

For X € X* = (X', X?), let 3,(X) = max{sup; | X} |~%, sup, | X?|~*}, and define
ametric p, : 6(X*) x &(X*) — R by

04(90X, g2 X
palg1,92) = sup 2a(guX, g2X)

XeXa 51 (X) (541)

Lemma 40. The sequence of generators 1, defined in equation (5.40) are r-strongly

contractive and p-strongly primitive. Withr = p = 2.
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Proof. If g € supp 1, then g = g*(X) for some X € X. Consequently, if X € X* is

written as an ordered pair X = (X!, X?), then

(9X)' = g*(X)X" = diag(B(0)y **") A, a(0) X"
(5.42)

(9X)? = X",
Recall that the factors X' and X? are points in the probability simplex Q2 which
carries a hyperbolic metric, and is embedded in the projective plane. When 6 € @,
left multiplication by the diagonal matrix diag(B(#)y —“+1), considered as an operator
on the projective plane, is an isometry on Q¢ with the hyperbolic metric, and left
multiplication by the matrix AJ,A (0), isastrict contraction. Consequently, there exists
aconstant ¢, that depends on the choice of the compact set ¢ through the bound §(Q),
that satisfies the bounds 0 < ¢ < 1, and that supports the following statement. For all

X € X, foral g1, g, € &(X*), and for all g € supp pu

0.(991X,992X) < c04(91X, g2.X)

DC( X7 X DC( .X, X
N (991X, 992 )<C sup (91X, g2X)

B(X)  XeXxe B(X) = cp(g1, g2)-

The right hand side of the inequality is independent of X, so, taking the supremum of

the left hand side over X givesthe bound

p(991,992) < cp(g1, 92).

Because this inequality holds for all ¢ in the support of y, it follows that the random
walk isastrict contraction, and therefore a strong contraction.

Define 3, (g) = sup yexe (3(g.X)/B(X)). Let K be asubset of & defined by

K={ge&:flo) < ;)
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for somed > 0. If g1, 9o € K, then

p(g1,92) = sup sup | log ((91X)§ (ng)j) 5(X)1]

XeXe i, (QZX)é (ng)é'

< sup sup | log (M) B(X) t +1log (%gz)l()ﬁ) 5(X)1]

xexe il | (91X)} (92X);
(=20 X)) oy (1=2(0X)Y) ] 2
STy Y T er 1]

K isabounded closed subset of & with respect to the metric 9, and is therefore com-
pact.

Returning to the structure of themap ¢%; X — &(X®) that isdescribed in equations
(5.42), let g,, g2 € Range(g®). Given an arbitrary point X, € X%, let X; = ¢; X,, and
Xy = g21 Xy. If X and X, are written again as ordered pairs X; = (X{, X?) and
X, = (X3, X2) then, it follows from the requirement that A,,.;;(6) > ¢ for al u, 7 and
j that sup, | X ;|~* < 1/4, and therefore that 3,(X;) < 1/4. Not only is K absorbing
from theright, but the random walk g, is strictly p-primitive with p = 2, and therefore

strongly p-primitive. O

Fix X € X,,andlet oy : 6(X,) — X, denote the mapping oxg — ¢gX. Since
the members of the semigroup G(X,,) are al continuous transformations on X,,, it
follows that oy is a continuous map for all X € X,. The map oy, and the derived
maps d*ox : C'(X,) — C(6(X,)), the pullback on the space of bounded continuous
functions, and d,ox : C*(6(X,)) — C*(X,), the push-forward on the dual space of
Radon measures provide mechanisms to map the properties of random walks on the
semigroup &(X,,) to the properties of random sequences on the base space X,,.

The metricso,, on X, and p, on S(X), theweight functions /3, and the Lipschitz-
style seminorms for functions in C'(X,,) and &(X,,) are defined in a way that allow

properties of a random walk g, on the group to be mapped to properties of a corre-
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sponding random sequence X, on the space X,.

Lemma4l. Given 5 : X, — R beaweighting functionon X, let

B(g) = sup ((B(9X))/B(X))

XeXq

be the corresponding weight on the semigroup S(X,,). Define a seminorm -] 5, on the

space of continuous functions C'(X,,) by

s = sup —— LX) — J(X2)]
X1#£X> D(Xl?X2)(5(X1) + 6(X2))

and an analogous seminormon C(&(X)) by

. |f(g1) = f(go)]
Mo = o o 0 (Blan) + A

Then, [d*ox(f)]s < [f]s for all functions f : X — R with finite seminorm [ f] .

Proof. Let X be any element of X,,, and g,, g» € &(X,).

[d*ox (£)I(ga) = [d"ox ()](g0)| = [F(9aX) = f(90X)]

< fl50ala, X, ) 25 LA

S [f]ﬁpa(gaa gb) (B(ga) + B(Qb))

) sx)

Proposition 42. Let 0 € Q.

(i) The Markov process (X;, X*) with transition kernel
My(Xa, X35 d(Xp, X)) = Mféﬁxg’l (X;’Q)‘Sga()%b)xg“l (X"

has an invariant measure v%.
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(if) There exist positive constants K, and ¢ with 0 < ¢ < 1 such that for any Lips-

chitzfunction f : X x X* — R with Lipschitz constant L,
|H§(Xa;X3§ d(Xb,X,f‘))f —vOf| < KLgc

(i) Let ¢ be a second point in ), then there exists a positive constant K such that
for any Lipschitz function f : X x X® — R with Lipschitz constant L 7, and for

al k£ >0,

[T (X, X35 (X, X)) f — T (X, X553 d(Xo, X3) f] < K Lg|0 — 0

Proof. Asindicated in Proposition 7, the Markov chain (X;, X*) has adecomposition
asaproduct of adiscretetime Markov chain X, and the action of aMarkov modulated
random walk s; on the space X* = Q% x Q. The Markov modulated random walk is

defined on the semigroup &(2*), and has the transition kernel
Mg(Xa, sa dsy) = 05, * [deg®)(Tg(Xos ) (dsy)- (5.43)

The proof of the proposition relies on an application of Theorem 38, and the first
order of businessisto verify that the premises of that theorem are satisfied. Consider
the following properties of the Markov modulated process with the transition kernel of

equation (5.43):

(i) Since the space of the modulating process, § = X, is finite and discrete, it triv-
ialy satisfies the requirements that there exist ametrico : S x § - Rand a
weight function 5. The space of measures C'; (X) isafinite dimensional vector
space, the probability distributions form a finite dimensional probability sim-
plex, and the Levy metric d isjust the metric induced by the finite dimensional

supremum norm.
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(i) From Proposition 12, TI(S,; dS;) = M, has an invariant distribution vy, and

there exist constants C' and ¢ such that for all X,
d(Hk(Xo, ka), VjC) < CCkBX(Xo)

(iii) & = 6(Q), and pg is the metric defined in equation (5.41). Since X is finite,
the map g, : X — &(Q*) istrivialy Lipschitz continuous with respect to the

metric ps and any metric on X that is compatible with the discrete topology.

(iv) The Markov chain X, generates a Markov modulated random walk on &(Q2)
through the map ¢ : X — &(02*). Lemma 40 demonstrates that the Markov

random walk is both p-primitive and r-contractive withp = r = 2.

Items (i) — (iv) establish the premises of Theorem 38, and an application of the
theorem provesthat the transition kernel in (5.43) has an invariant measure m®, that the
projection of the support of m® onto the semigroup & (X®) iscontained in G (X®), the
sub-semigroup of zero-rank elements, and that the iterated kernels of the random walk
converge geometrically to the invariant measure in the weak topology of probability
measures on the semigroup.

Consider now the map

oxe : G(X) = X°

oxo(s) = sXg

The derived map d,oxo : C*(6)(X*) — C*(X*) maps measures on the semigroup
to measures on the affine space X®. For example, the convolution kernel 6,, * m®
evaluated at s, = I on G(X*) mapsto the kernel s X& dm(s) on X°.

If the Markov modulated random walk s; isinitidlized at s, = I, then the Markov

process (X;, X{*) can be written as (X}, oxa (si-1), 0xa (s1)), and the sequence of de-
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rived maps
C*(X) 255 0 (&%) L2 o (X
provides an aternative formulafor the transition kernel (42):

Iy (Xo, X&5 d(Xy, X))
- M))?(: 6/\’3"1 (XbOé’Z)&ga(,\?b)Xg,l (Xba’l) df(b dX;'

= M0 yea (X3%) [duoxa] (57 () * [dag®) (TTg(X o5 ) (X5) dX, d X

The advantage of the second, factored form of the kernel is that asymptotic prop-
erties of the iterated kernel can be derived directly from the properties of the iterated
kernel for the Markov modulated random walk on the semi-group. In particular, the
push-forward, v* = d,o(m*®) isthe invariant measure proclaimed in statement (i) of
the proposition, and the convergence estimate (5.33) in Theorem 38 combined with
Lemma41 establishes the estimate in statement (ii). The second conclusion of Propo-
sition 12 combined with Corollary 39 and Lemma 41 establishes statement (iii) of the

proposition. O

Corollary 43. The projection of the support of the invariant measure v onto the

gpace X“ is compactly contained in the interior of X

Proof. Sincef € ), acompact setintheinterior of ©, theentriesinthematrices A, ()
and B(#) are all bounded away from 0. Consequently, the mapping on X“ that is gen-
erated by any g € supp p® (this mapping is written out explicitly in equation (5.42))
hasarangethat isasubset of X¢, acompact subset of X* defined by X ¢ > ¢ for some
constant ¢ > 0 and for all X* € X, andfori = 1,2. If g € &,(X*), h € supp p%,

and X € X, then ox. (hg) € X, and the claim follows. O
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Consider now the map in Equation (5.39). The following paragraphs apply the
Markov modulated random walk theory to this map. The families of affine transfor-
mations g¢ (X, X*) : X¢ — X¢ and ¢7(X, X) : X7 — X are defined in equations
(4.4) and (4.5) by the formulae

g (X, X)X = (1 — g6, (u )X + qd,, (u2)¢ (5.44)

g X, XNO)XT™ = (1 — b, (™)X ™ + ¢b., (™). (5.45)

The transformations depend on X ¢ through the smoothed distribution estimates ¢ €
Q¢ and v € Q" which are defined by equations (4.6) and (4.7)

¢l = X2 Ay (0) 852
> X A (0)87%]
P XA Ay (O)X

DTS BAT() A (0) X

The smoothing quantities 5~ and 3~ (**1) are defined recursively by the formulae in

b

u=y A+l

equation (4.8)

B0 = Zﬁ’l’jAu;ijW)Bi,m(g) =1
J

u=u~"!em=y~!

Since the parameter ¢ lies in the compact set (), all the components of the matrices
A, (0) and B(#) are bounded away from zero. Also, from Corollary 43, the compo-
nents of X 2 are bounded away from zero when (X, X) € supp v®. Thesefactslead

to the following corollary to Proposition 42.

Corollary 44. Let () beacompact subset of ©, let g € @, and let (X,X“) € supp v°.
then the smoothed distribution estimates ¢ and -y, which are functions of X, X* and 6,

are uniformly bounded away from zero by a bound that is a function of () and supp v .
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Define weight functions 3, : X¢ — R and 3, : X — R by

Be(X) = min min | X<#9] 2
p 1]

Bv(X’Y) — min Hljn |X’Y,m;i|_1
m 2

The weight functions 3. and 3, together with the metrics 9, and v, on the spaces X¢

and X7 generate metrics on the semigroups &(X¢) and &(X7) through the definitions

max, 0 ((9aX)", (9:X)")

pc(9ar gp) = sup

xexc Be(X)
_ max, 0,((g.X)?, (s X)™)
01(Gas 95) = sup 5,(X)

The following proposition uses these metrics to characterize the contractive nature of

the random walks generated by ¢¢ and ¢".

Proposition 45. The Markov modulated random walks on &(X¢) and G(X”) gener-
ated by the maps g¢ : X x X* — &(X¢), g7 : X x X* — &(X7), and the Markov chain
(X 1, X ) from Proposition 42 are p-strong contractions with respect to the metrics p

and p, whenp > P.

Proof. Consider first the random walk on &(X¢) that is generated by p¢ = d, g (v%).
The semigroup & (X¢) isthe outer product of P copies of the group &(92¢) of transfor-
mations on §2¢, the probability simplex on RV*V | If ¢ isin the support of the measure
©é, then g = ¢¢(X®) for some X € supp v?, and, repeating the definition of ¢¢ in

equation (5.44), for any X¢ € X,
gEP(X, X)XP = (1 — q0e, (u=2))XP + q0e, (u=2)C.

Equation (4.4) has P components, each one a transformation of one of the P com-

ponents of the space X*. For each value of (X, X®), u can take only one of the P
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valuese,, so P — 1 of the components in equation (4.4) represent the identity transfor-

mation, and one component is the transformation
g (X, X)X = (1 - q) X +¢¢ (5.46)

Let g, and g, be two elements of G(X¢), let X¢ be an arbitrary point in X¢, and let
X¢ =g, X¢and X{ = g, X¢.

ac(gc’p(X,X“)XC’p g ,p(X XO‘)XC”’)
X§wid ij 1 — ) xowid’ i'5'
— sup log 7l ) (Lo R ) g )
ij,i’j’ X »D; J _|_ qu] (1 _ q)Xavpa J + qCZ]

Now, if (XS /X574 > 1, then

(=X 4q¢ (1= g) X (Xgm 1)

(1— q)XSPY + qCii (1— q) X574 q¢ii \ XoP

Xg,p;ij ‘
s |1+ NP L

and, since both the factors that form the argument of the logarithm on the right hand

side of (5.47) are greater than 1,
0 (g (X, XY XEP, o7 (X, X)X T) < ede(XEP, Xp7), (5.48)

where

(1-— q)XC,p;ij >

¢ = sup sup ((1 X 4 gCl

XCeX$ ping
By Corollary 44, ¢ is bounded away from 0, and so there exists a bound ¢, which
depends only on ¢ and the compact sets () C © and supp v*, and which satisfies
0<c<c¢ < 1foradl le € Q. Asaconsequence it is permissible to reinterpret the

multiplier ¢ ininequality (5.48) as a constant less than 1.
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Consider again the mapping in equation (5.44). All P of the component trans-
formations are contractions, and one is a strict contraction. It follows from the re-
sult in Theorem 6 that proves strict positivity of the control measures dv(u), that if
(Xe, X2), - -+, (Xpyp, X2, p) @ P consecutive pointsin therandom process (X, X2),

then for any X¢, X} € X¢ the element
9= 0"(Xesr, Xitip) -+ g°(Xi, X7) € S(X9)

satisfies the inequality max, 9. ((gX$)?, (gX$)P) < emax, 0, (XS$P, X5*) with pos-
itive probability. In particular, when X¢ = ¢,X¢, and X; = ¢,X¢ for arbitrary
Ja> 9 € S(X°), and for arbitrary X € X¢,

maxp Dﬁ((ggaXC)pa (gngC)p) < cmaxp DC((gan)p, (ngC)p)
Be(X€) - Be(X€)

with positive probability. Taking a supremum over X ¢ first on the right hand side, and

then on the left hand side yields the result that the random walk generated by ¢¢ is
p-strongly contractivefor al p > P.
The proof that the random walk on &(X”) generated by 17 = d,g”(v®) is m-

strongly contractive for all m > M follows an analogous argument. O

Define aweight function ;. : X¢ x X7 — R by
Bey(X) = max{]sup X7 [ sup X771,
Y212y my
and ametric on the product space X¢ x X by
0c, (X5, X7), (X3, X}) = max{oc (X¢, X¢), 0, (X7, X))},
The corresponding metric on the semigroup &(X¢ x X7) is,

DC’Y (gaX7 ng)
ay = su )
Pe(9a: 90) XEX’YE v Bey(X)
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and the following corollary to Proposition 45 is a consequence of the block structure

of the direct product map ¢¢ ® ¢”.

Corollary 46. The Markov modulated randomwalk on G(X¢ x X7) generated by the
map ¢¢ ® g7 : X x X* — &(X¢) x &(X7), and the Markov chain (X, X¢) from
Proposition 42 is a p-strong contraction with respect to the metrics p., whenp > P.

Strong contractivity of the random walksis not enough to ensure geometric ergod-
icity. In addition, the random walks have to satisfy the primitivity condition from the
premise of Lemma 25.

Defineaweighting function 5 : (X¢)®&(X") — R onthesemigroupby 3(g) =
SUP xexcaxr Bey(9X)/Bey(X). Let K, beacompact neighborhood of supp (v, ), where
v, istheinvariant distribution on X* postulated in Proposition 42.

Define arandom sequence of generators ., by
i, = dalg® © g (ITF((Xo, Xg); d( X, X§))) (5.49)

Lemma 47. The sequence of generators 1, satisfies the premises of Lemma 25 with

probability 1. In particular, with probability 1:

1. The sequence ji, ps, . - . IS R-strongly primitive, where R = max{P, M}, P is
the cardinality of the finite control set, and M isthe cardinality of the finite ob-
servation space. |.e. there exist a left absorbing compact set K, and a constant

0 < n < 1 suchthat for all £,
[ * Pr1 % ook ey r(6\ K) <.
2. The sequence of measures /i1, ji2, . . . has uniformly bounded support, and if

a = sup{3(g) : g € Upsupp i},

then an'/® < 1.
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Proof. Since the map ¢¢7 = ¢¢ ® ¢” is atensor product into the outer product of
semigroups &(X¢) ® G(X7), it is permissible to prove the lemma one map at atime.
The methods of proof for each of the two maps ¢¢ and ¢ are essentially the same, and

only the proof for the map ¢¢ is given.
Part 1. P-strong primitivity.
Consider the map g¢#(X, X@) : X¢ — X¢

g (X, X)X = (1 — qde, (u™®)) X + ¢C. (5.50)

With ¢, whichisafunction of X and X, defined by
a,2 —A
Zij Xz'aQAu;ijﬁ;A

and 5~ defined by the backwards recursion

: (5.51)

u=y—4

B =3 8 A (0)Bim(6)
J

u=u"!em=y~!

with 3° = 1. Recall that the parameter 0 is restricted to a domain ) with the prop-
erty that A,;;(6) > 6(Q) and B;,(0) > 6(Q). The constant 6(()) lies within the
bounds 0 < §(Q) < 1/min{N, M} and depends only on the choice of domain ().
Consequently,

min B; Y = min Y 877 A45(0) By (0)
J

u=u~lem=y~!
> Nmin ;' min A, (6) min By, (6)
7 17 ,m

> N6(Q)* min 5}

J

> 6(Q)min 3, ".

J
Induction on the index [ gives 3~ > §(Q)*, and a similar argument gives an upper

bound of 372 < N2.
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The denominator in (5.51) is a convex combination of the components of 3~ and
istherefore bounded aboveby N2. Also, if (X, X) lieinacompact subset of X x X,
then Xf"Z > ¢ for come positive constant ¢, and the numerator in (5.51) is bounded
below by ¢d(Q)2*!. It followsthat the components of ¢ are uniformly bounded below
by a bound that depends on the choice of the parameter set (), and the support of the
random variable X .

The facts that the invariant distribution v, has compact support, that the initial
point X' is restricted to a compact subset of X, and that the kernel for the Markov
modulated random walk on &(X®) is strongly contractive together imply that the ran-
dom process X' isrestricted to a compact subset of X*. Consequently, if (X, X&) is
the underlying Markov process for the Markov modulated process on G(X¢) ® G (X7)
and ¢}, isthe random sequence of empirical distributions generated from (X K, X)) by
equation (5.51), then the components of all of the ¢, are uniformly bounded below
with probability 1. Call thislower bound c.

Now consider a sequence of generators iy, * i1 * pgsrp—1, Where P is the car-
dinality of the set from which the controls u,, are drawn, and each generator y; isthe
projection of the generator defined in (5.49) onto C'5(S(X¢)). Let R C X¢ be the set
of points X¢ € X¢ such that min,; ; X*/ > ¢. R isacompact subset of X¢. Let K
be the the subset of the semigroup &(X¢) consisting of elements with representations
amapsong : X¢ — R. K isacompact subset of G(X¢) that is absorbing from
the left. Furthermore, as a result of the uniform bound on the random sequence (y,

the restriction that the control distributions v, are strictly positive, and the form of the

mapping (5.50)
fik * s * -1 (S(X) \ K) <p <1

for some constant 1, and the Markov random walk generated by g is strongly primi-
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tive.

Part 2: The growth condition.

Fix &, and consider more closely the measure
e = dyge (I ((Xo, X§); d(X, X))

Each semigroup element ¢ € supp p has is a direct product of P factors. Each
factor has arepresentation as a transformation from one of the P identical probability
simplices X¢? into itself. If uy, # e,, the map on the p'th simplex is the identity, if
uy, = e, themap on the p’th simplexis X? — (1 — ¢) X? + ¢ where ¢ isafunction of
apoint (X, X2) inthe support of the kernel TT#((X,, X&); d(Xy, X2)). Thefirst part
of the proof demonstrated that there exists a constant ¢ > 0 such that with probability

1, and for any k, min; ; ("7 > c. Consider the quantity 3(g), when g € supp ju:

= su HlgX) = su maxw
5(g)_X613)C 5(X) _XEID)C p 5(Xp)

The P—1 factorsof ¢ that aretheidentity satisfy (¢.X)? = X?,and ((9X)?)/5(XP) =

1 for al X. For the other factor (¢ X)? = (1 — q)X? + ¢, and

B((gX)") = max((g.X)") "

%)

= max((1 — q)(XP7) +¢¢7) " < (1 — ¢) max(XP7) ' 4 g/c.
1,J 2y
Also, since min; ; X7 < 1/N?,
B(gX)P)/B(XP) <1—q+gN?/c

and 3(g) < a = max{1,1 — ¢+ qN?/c}.
Since 3 : &(X¢) — R is continuous with respect to the metric p on &(X¢), the

existence of the bound a implies that the set U, supp . is bounded. Furthermore
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from the form of the bound it is clear that a sufficiently small choice of ¢ will causethe
bound to liearbitrarily closeto 1. In particular, when ¢ issufficiently small, an/? < 1.

O
Proposition 48. Letf € Q.

(i) The Markov process X, = (Xl,Xﬁ,Xf,Xﬂ) with transition kernel

Mg(Xa; dXp) = M3 6o (X370 a5y xot (X5

X H 5g<,p(j(b,xlg)xgm (ng,p) H 5g7sm(Xb,X§‘)Xg’m (Xz:/m)

P m

has an invariant measure v.

(if) There exist positive constants K, and ¢ with 0 < ¢ < 1 such that for any (-

Lipschitzfunction f : X — R with Lipschitz constant L ¢,
|H§(Xa; dXp)f —vf] < KLfck52(Xa)
(i) Let ¢ be a second point in ), then there exists a positive constant K such that

for any 3;-Lipschitz function f : X’ — R with Lipschitz constant L ¢, and for all
k>0,

5 (X o5 dX4) f = G (Xo; dX) | < K Lg|0 = 0] 52(X,)
Proof. The proof follows the same argument as the proof of Proposition 42, only here

the sequence of derived maps that factor the kernel are

ds(g¢

y v dxOx ¢y xv
OF (X x X2y L2, g (008 % 7Y SN, (¢ ),

and the Markov process (X, X®) generates a Markov modulated random walk on

S(X¢ x X7) with transition kernel

I(sq; dsp) = [05, * du(g° ® g7)](dsp).
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Once again the argument in the proof depends on applications of Theorem 38 and

Corollary 39. The proof begins by establishing that the conditions that form the

premises of these results hold.

(i)

(i1)

(iii)

The space $ = X x X supportsa metricd : $ x $ — R and a weight function
Bs.

Define the metric by
0((Xa, X(?)? (va Xba)) =

and the weight function by
B(X, X)) = inf [X*(i)| !
Z’]

Let d be the Lévy metric that is induced on the probability measures in C';(8)
by the definition of 0, in . The kernel T1(.S,; dS,) has a compactly supported,
invariant distribution v, and there exists constants C' and ¢ with 0 < ¢ < 1 such

that for all X,

d(I1(Sp; dSk), v) < Cc*B(So).

Proposition 42 proves the existence of the invariant measure v, and in combina-
tion with Lemma 18 establishes the geometric bound on the convergence of the
iterated kernelsin the Lévy metric. Corollary 43 establishes that the support of

the measure is compact.

The mappings ¢¢ and ¢” defined in equations (5.44) and (5.45) are Lipschitz
continuous with respect to the metric @ on X x X*, and the metrics p¢ and p, on

S(X¢) and &(X”) respectively.
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The map ¢¢ is defined in equation 5.44 by the formula
P (X, X)XP = (1 — qéep(u’A))Xg’p + qéep(u’A)C

with

Cij _ X?QAU;Z'J'(H)B;A
Zi,j X?’ZAU;U(G)B;A

u=u—4

If (X,, X2) and (X, X&) are two pointsin the domain of ¢, then
p(gC(Xa,Xg“),gg(Xb,Xf)) < CD((Xme% (XINXI?)) = o0

for any C > 0 unless X, = X,. Assumethat X, = X, = X, and con-
sider the action of ¢¢(X,, X) and ¢¢(X,, X*) on the component X” of some
X € X6 Ifu™™ # e, then [g¢(X,, XO)X]P = [¢¢(Xp, XP)X]P = XP,
and the only component of ¢¢ (Xb, X)X that makes a contribution to the dis-
tance p(g¢(X,, X2), g°(X3, X)) is the component corresponding to u 2. For
this component, [¢¢(X,, X&) X]? = (1 — ¢)X? + ¢(,, and [¢°(X;, X)X P =

(1 —q)XP + q¢p. Itisaways the case that

(L= @) XF +9C) (1 - ) X]) +a6”) Gl
i ij P i’ < max ij ~i'g
i3 (1= q) X5 + ¢/ ) (1 — @) XB, 4+ qGa”) — utd’ (¢

and since
Ll o2 va,2
Cig? XXy
ij 7 v va,2
b Se Xb,i Xa,i’
it followsthat

plg*(X, X7), 6°(X, X3)) < o((X, X7), (X, X7))

Which establishes Lipschitz continuity with a Lipschitz constant lessthan 1.

An analogous argument proves case for the map ¢”.
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(iv) The Markov modulated random walks generated by Markov process (X, X®)
and the maps ¢¢ and ¢” are both p-primitive and r-contractive. In the case of
the Markov modulated randomwalk on G(X¢), p = r = P, and in the case of

the Markov modulated randomwalk on &(X?), p=r =M
Proposition 45 and Lemma 47 prove this statement.

Statements (i) — (iv) establish that the premises of Theorem 38 hold, and the re-
mainder of the proof is entirely analogous to the corresponding proof of Proposi-

tion 42 O

The geometric ergodicity and regularity results in Propositions 42 and 48 provide
the basis for establishing Assumption 4-bis on the boundedness of moments, and As-
sumption 5 about the existence of weak solutionsto the Poisson equation. The moment

condition is dealt with first in the following lemmas and proposition.

Lemmad9. Let § € (Q, a compact subset of ©, and let v be the invariant measure
that was postulated in Proposition 48, then the projections of the support of ~ onto the
spaces X, X¢ and X7 are bounded with respect to the hyperbolic metrics 2,,, o, and
0,
Proof. The case for the projection onto X“ is a direct consequence of Corollary 43,
the case for the projection onto X¢ is proved here, and the case for the projection onto
X7 can be proved in acompletely anal ogous fashion.

Let 4 = d,g¢ @ g7 (v*). If s € supp u, then the component of s that operates on
X¢isg¢(X, X*) for some (X, X*) € supp »°. If the mapping ¢¢ iswritten explicitly,

then the action of s on the p’th simplex in X¢ is described by the equation
sXOP = gSP(X, X)X P (5.52)

= (1 —qde, (u’A))Xg’p + q6ep(u’A)C (5.53)
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The proof of Proposition 45 established that the components of the quantity ¢ appear-
ing inthe right hand side of equation (5.52) are all bounded away from zero by abound
e that depends only on Q. Consequently, if X, is atrgectory governed by a random
walk generated by the measure 1, and if the a-priori lower bound on the components
of the projection of the initial point in the walk, X, onto the p’th component of X¢
is 0, then each time during the walk that u;7® = ¢, the lower bound on X {7, for
k > 1, moves closer to e by afactor (1 — ¢). When the u;® = e, the mapping
s1 = g¢(X;, Xp) istheidentity and X{* = sX 5% = X[h.

The randomized control for the underlying controlled hidden Markov model is
constrained so that the distribution of input valuesv,_x (e,) > n > 0 for any p and any

time/ > A. Consequently, under the invariant measure v,
(X, XY um® =¢,}) >, (5.54)

and under the measure 1, ju{s : sXP # XSP} > 1.
Finally, each point in the support of v isthe range of a zero-rank mapping in the

support of the invariant distribution m, and for any integer &,
mo= gk ok FIMES o wom,

It follows from a zero-one law argument that for any p, if X¢? is the projection of
a point in the support of v onto the p’'th simplex in the space X¢, then for any i, j
XOPit > ¢, Since the points of supp v are bounded away from the boundary of X¢ in
the Euclidean metric, it follows that supp v is bounded with respect to the hyperbolic

metric o.. O

Lemmab50. Let As be afamily of probability measuresthat are defined on X and that

have support in a § neighborhood of supp v, with respect to the metric 0. For each
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positive integer ¢, the set of moments

{/5Q(X) dA(X) M€ Ag}
is bounded by a bound that depends only on ¢, supp v and 6.

Proof. Since supp v isacompact set with respect to the metric v, ad neighborhood
of supp v isaso compact. The weight functions 3,(.X') are al continuous with respect
to the metric o, and consequently for every ¢, 3, is bounded on the § neighborhood
of supp v. It follows that for each ¢ the ¢g-th moments with respect to measuresin A

are uniformly bounded by the the same bound. O

Lemmabl. Fix 6, € @, choose X, € X, and consider the probability space of
Markov chain trajectoriesthat start at X, and have statistics consistent with the ker-
nel I1y(X; dX). Let v betheinvariant distribution for ITy(X; dX), then:
(i) thedistance
sup (X, Xp)

Xp€Esupp v

is uniformly bounded for all trajectories, and
(i) for all ¢ > 0, thereexistsconstants1 > ¢ > 0 and C' > 0 such that
P[o(X;,suppv) > €] < C¢
Proof.
(i) Let supy, cqupp» (X1, Xp) = d. Written out in terms of its components, X; =
(X, X X f , X/'). Since each of the continuous components is determined by the

action of an r-strongly contractive semigroup for a large enough integer r, and the

measure v isinvariant under the action of the kernel 11y, it followsthat for all [ > 0

sup (X, Xp) <d

XpEsupp v
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on every trgjectory X.

(i) For each trajectory X starting at X, Choose X, € supp v, with X} = X,
and let X be atrajectory generated by the same Markov modulated random walks as
generate X, but with initial point X; = X,. The tragjectory X; remains within supp v
(w.p.1), and since the random walks are r-strongly contractive, and hence contractive,
0(X, suppv) < (X}, X/) (w.p.1). Also, from the definition of r-strongly contractive
walk, there exist constants 0 < ¢y < 1 and 0 < ¢, < 1 such that for all trajectories,

and for al {
P[D(XlJrraXl,-l-r) < CUD(XthI) |Xl7XlI] > €

Choose K > (Ine —Ind)/ In ¢y, then the binomial theorem gives,
(1
P (X, suppv) > €] < Z (k) Al —e) "

k=0

Choosing ¢ = /(1 —¢;), and C sufficiently large yields the required geometric
bound. O

The following proposition establishes that Assumption 4-bis holds.

Proposition 52. For all ¢ > 1, and for any compact subset  of D, thereexist r € N,

and constantsa < 1, Cy, Cy, K, and K5, such that

(l) sup/Hz(Xa; de)ﬁq(Xb) S O_éﬁq(Xa) + Cl
eQ

(i) sup / Ty (Xas dX3) B, (X0) < CoBy(Xa) + C
0cqQ

For any Borel function g on X such that [¢], < oo

(iii) 31618 [Tlyg(X:1) — Ipg(Xa)| < Ki[g]0(X1, Xo)(B,(X1) + By(X2))

For all 6, 6" € , and for any Borel function g with [¢], < oo

(iv) Mpg(X) — Ty g(X)| < K2[g]gl0 — '] 841 (X))
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Proof. For every 6 € @, thekernel TI(X,; dX}) has an invariant measure vy, and as
aconsequence of Lemma49, the set S = Uy supp v iscompact. So, for any d > 0,

the set
Se={XeX:0X,S5) <d}

|s also compact, and for any values of ¢ and d the weighting function 3, is bounded on
Sy

For each X, € X, define d, = supy.40(X,,X).. Because, for al § € @, the
Markov transition kernel 11, is a contractive random walk on X, it follows that all

trgectories that start at X, must remain inside the set S,. The bound

B, = sup [,(X)
X€S,

is afunction of B,, and as (3,(X,) — oo, theratio 5,(X,)/B, — 1. Fix d, so that
the bound B = sup y ¢, ,(X) is sufficiently large that if X, € X, and B, > B, then
Bg(Xa)/Ba < 2.

Fix X,. Asaresult of Lemma51, it is possible to choose r sufficiently large that
foral § € Q, P[X, ¢ S4 < 1/4. The weight 3, is bounded on the set X \ S,
by 25,(X,), and on the set S, by B. Substituting these estimates into the integral in
the left hand side of inequality (i) produces the bound on the right hand side when
a =1/2,and C, = B. In addition, because B, < 25,(X,), inequality (ii) holds when

the bound on the right hand side has C'; = 2. O

The final task in this chapter is to prove that Assumption 5-bis holds for the the
specific case of the estimator Markov chain. This is done with an appropriate adap-
tation of a theorem from Benveniste et al. [7]. The theorem uses an assumption of
geometric ergodicity for the Markov chain to establish an appropriate Potential The-

ory for the Markov transition kernel. The central object in the Potential Theory isthe
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integral equation
(I —Tlp)ve = fo — h(0),

which is known as the Poisson equation. The quoted theorem establishes conditions
under which aregular family of regular solutions exist for the parameterized integral
equation. The parameterized transition kernel is (I1y, 0 € @), and it acts on the state
space R¥ x E. The definitions for the norms and function spaces used in the statement

of the theorem were given in Section 4.2.

Theorem 53. [7, Part Il, Chapter 2, Theorem5] Given p; > 0, po > 0, assume that

there exist positive constants K, K», K3, q1, g2, p < 1 such that:
(i) forall g € Li(p1),0 € Q,n >0, z;, and z,:

[M5g(z1) — g (z2)| < Kip" Ny (9) (1 + [21]" + [z2]™)

(i) forall# € @, n >0, z,andall m < ¢q; V o,
sup/Hg(x, e;drider) (1 4+ |2|™) < Ko(1 + |z™)
(i) for all g € Li(p1),0,0' € Q,n >0, z,

MT59(2) — Mg(2)] < KsNp, (9)10 — 0'|(1 + [|*)

Then for any function f(#, z) of class Li(Q, L1, L», p1, p2), there exist functions h(6),

vg(-) and constants C';, Cy, C'(A), 0 < A < 1 depending only on the L, p;, such that:
() for all 6,0" € @, |h(0) — h(0")| < C1|0 — 0]

(jj) forall 0 € Q, |vg(z,e)| < Co(1 + |z|9)
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(jjj) forall 8,0 € Q al X € (0,1) and for s = max(ps, q1, ¢2)
vg(z,e) — vp(x,e)| < C(N)|0 =0 (14 |z]°)
|H9V9(l‘, 6) — Hell/gl(l‘, 6)| S C()\)w — 9,|)\(1 + |$|s)
(V) (I —Ip)vg = fo — h(H)

A statement of the theorem that is appropriate to the current situation and termi-

nology isthe following.

Theorem 53-bis. Givenp, > 0, p» > 0, assumethat there exist positive constants K,

KQ! K?n (h, q2, p < 1 SUCh that

(i) for all g € Li(p1),0 € Q,n >0, Xy, and X5:
5 9(X1) — Mpg(Xs)| < Kip" Ny, (9)(Bg (X1) + By, (X2))
(i) forall e Q,n>0,X,andal m < ¢q; V ¢,

sup [ 10X, 0Xi)5,(Xs) < Kafi (X,
X

(iii) Forall g € Li(p1), 6,6/ € Q,n >0, X € X,

Iyg(X) — I} g(X)| < K3N,,(9)]|0 — 0'|84,(X)

Then for any function (0, X) of classLi(Q, L1, Ly, p1, p2), there exist functions 1.(6),
vg(+) and constants C'y, Cy, C'(A), 0 < A < 1 depending only on the L, p;, such that:

() forall 0,0" € Q, |h(0) — h(0")| < C1|0 — 0]

() forall 0 € @, [vg(X)| < Cf5,, (X)
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(jjj) forall 8,0 € Q al A € (0,1) and for s = max(p2, ¢1, ¢2),
[09(X) — vpr (X)| < C(N)|O = 0'*Bo(X)

My (X) — Mg (X)| < C(N)]0 — 0'[*B,(X)

(v) (I —TIlp)vg = fo — h(0)

If D is an open subset of the parameter space ©, then on examining Equations
(3.33) and (3.34) and the definition of the class L(Q, L1, Lo, p1, p2) that for any point
6 € D the function H(6, X) in Equation (4.10) is of class L(Q, L1, Ly, p1, po) for
some compact set () C D that contains #, for p; = p, = 1, and for choices of ., and
L, that depend on Q. Consequently, provided that the premise of Theorem 53-bisis
valid, the conclusions imply that each of the conditions in Assumption 5-bis hold. It
remains only to show that the conditionsin the premise of Theorem 53-bis are indeed

satisfied for the estimator Markov chain.

Proposition 54. Given that p; = p, = 1, there exist constants K, K, K3, q1, g2 and
p such that the Markov process X with transition function given by equation (4.9)

satisfies conditions (i) (ii) and (iii) in the premise of Theorem 53-bis

Proof. The proof follows from earlier results: From Proposition 48 the Markov pro-
cess X, with transition function given by equation (4.9) has an invariant measure v,

and if f isaf;-Lipschitz function, then
115 (Xa; dXo) f — vf| < KLy By(Xo)
It follows from the triangle inequality that if X'; and X, are two pointsin X, then
L5 f(X1) = T f(Xo)| < [I(X15dX) f — T5( X3 dXo) f]
< KLpc"(B2(X1) + f2(X2))

< K" Ny, (1) (B2(X1) + B2(Xa)).
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when p; = 1. The step to the last inequality uses the bound L; < N;(f). The first
inequality in the premise of Theorem 53-bis holdswith ¢; = 2.

The second inequality in the premise of Theorem 53-bisisimplied by inequality (ii)
in Proposition 52, and conclusion (iii) of Proposition 48 establishesthethird inequality

in the premise of Theorem 53-bis. O
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Chapter 6

Analysisof the control and estimation algorithm.

Part 3. Convergence of the stochastic approximation.

This chapter completes the analysis of the convergence properties of the combined
control and estimation algorithm that started in Chapter 4. The first section in this
chapter verifies Assumption (A.7) from Chapter 4 for the combined estimation and
control agorithm by exhibiting a suitable Lyapunov function. The second section of
this chapter quotes an appropriate stochastic approximation theorem from Benveniste
et al. [7], and adapts the theory to the specific requirements of the estimation and
control problem. The section then formally states the main convergence results for the
estimation and control problem presented in the dissertation. These results are a direct

consequence of the stochastic approximation convergence theorem.

6.1 ThelLyapunov Function

This section deal swith the second of the two tasks mentioned in the outline of the ODE
method in Section 4.2, the task of proving asymptotic stability of the associated ODE.

A Lyapunov functionisgiven for the ODE. The choice of Lyapunov function isguided
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by the derivation of the recursive estimation algorithm as a stochastic approximation
to a second order minimization algorithm for the function Q(\) = E[log f (o, Yo.x)]-
Recall that the logarithm of the probability density for the process distribution of

{zk, yx } With model #()\) is given by the formula
log f(Yokr1s Togsr | A) = Z Z Znuzy(k + 1) log Au;i j
7 i U
+ Z Z Mim(k + 1) log B; m + Z de; (z0) log ;,

The components X ¢“(i, j) and X" (i) of the state vector X provide empirical re-
ceding horizon estimates of the values of the transition and occupation frequencies
nusij(K)/k and m; ., (k) /k, and if 6* = 6(\*) denotes the unknown values of the con-
strained parametersfor the controlled hidden Markov model, then the Leibler Kullback
measure for the distribution of £ observations of the full information processis approx-

imated (for large k) by

— Ep-[log f(yos+1, Tok+1 | A)]

~ —k Ey- Z X,gfl (4,7) log Ay,ij + Z XM (i) log By | -

Usty] i,m

Define U () to be the approximation to the relative entropy rate

U(6) = —my- (Z X5 (i, j) log Aysg + > X7 (i) log Bi,m) (6.1)

U,i,j i,m
The next two lemmas show that U () has the properties needed for a Lyapunov func-

tion.
Lemma 55. The Lyapunov function has continuous first and second derivatives.

The proof of this lemma is follows the proof that Baum and Petrie use in [6] to

establish differentiability of the entropy rate function for a hidden Markov model. The
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idea of the proof is to use the strong ergodicity properties of the Markov chain to ap-
proximate the expectation with respect to the invariant measure in equation (6.1) with
the converging sequence of conditional expectationsthat are generated by the Markov
transition kernel. A combination of this approximation argument and a standard con-
vergence theorem from Lebesgue integration theory justifies the transposition of dif-
ferentiation operators with the expectation operator in the expression for the Lyapunov

function (equation (6.1)).

Lemmab56. Let €2 denote the (linear) manifold of values taken by the model A, B,
and let VU be the gradient of the function U on €2, then there exists an open neigh-

borhood O of * in U such that for all 8 € O,
VaUly - me(H(X,0)) <0 (6.2)
with equality holding only when 6 = 0*

Proof. Choose for local coordinates on €2 the same unconstrained parameterization
that was used in Chapter 3, equation (3.7), and for each row of the matrix A, let ¢; be
the index of the element in the row that does not appear in the parameter A(6). The
structure of the manifold €2 ensures that the scalar product in (6.2) can be expressed as
a sum with one term in the sum for each of the matrices A, and B. The gradient of U
isgiven by

~VaoU(0) = Vq my- (Z Xg(i,j) log Ay j + Y X™(i) log B,»,m)

U,i,j i,m
and when the gradient is represented in the basis induced by the local co-ordinates,
the (u;47)"th component, j # ¢;, which is the component corresponding to the matrix
entry A,.;; isgiven by the expression.

mo-[ X5 (0,5)]  mo-[X5" (i, 43)]

Au;ij Auﬂ‘]i
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The stochastic flow H (X, #) in equation (6.2) is defined in Section 4.2 as the up-
date of the parameter estimates given in equations (3.33, 3.34). Using the same block
structures that were introduced for the score vector and Fisher information matrix in

Chapter 3, if j # ¢;, the (u; i5)"th component of the flow H (X, 0) is
P_fl (C(laj)5 —A(u) . C(l %)5 _ ( ))

' Au ij “ Au g
_ Ai 3ig (27] 5u A( ) . C(iaqi)(su*A(u)
X6 u(Z, ]) Au,z] Au;ilh‘
N -1
. A'zzj, _ Tluyg Z A121, sel
Xeu(i, j) Xou(i,0)

AZ sl C(Z7 l)5u—A (U,) C(% Qi)éu—A (U,)
8 (% X6 u(lﬂ l) ( AU;il - AU;iqz' >>

The quantities A,,.;; in this formula are components of the parameter § € 2, and ¢ is

the function of the random variable X given by equation (4.6). On expansion of the

second term, the right hand side of the equation becomes

AU?i C(Z’ qi)(su*A (u) A’IZL L al AZ sl - al C(lv l)(su*A(U)
JXg’u(iaj) a XC“(Z],]) <zz:1: X¢u(i, 1) ZXC,M—(Z’,Z)A“;” :

=1

The expression for the flow and the expression for the gradient, VU, are substituted

into theinner product on theright hand side of (6.2). The sum of thetermswith indices

(u;i5), j # qi IS

m Mo (X5 (i, 1))C (6 1)0u-0 (1) AwigC (i )8, (w)mo- (X(i, ¢1))
[Z§( X§7(0.4) Auia X4 (i, ) )
= Aizl e G (2, 1)0y-2 )
- (; X<“(z,l)) (; XCu(i, 1) “”)

Abii [ me(X5V(0,4)  me- (X5 (i, 01)
. (Z Xg’u(iaj) ( Au;ij - Au;iqi )) ]

J7q
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Fix v and ¢, and consider a single term of the first summation. An expansion of the
second term in the argument of the 5 summation leads to a simplified expression
N

Y g ( (X5 (i, 5))C (1, ) 0y—a (u) Auwgigmo- (X5 (i, 4))
Z XCu(i, §) - (Z XGu(i, 5) )

N A2 B
9 (lz e 1)) (Z o Ra) )Awl> 63)
First consider the case when # = 6*. It follows from the consistency of the empiri-
cal estimator X¢ that mg. (X¢“(4, 7)) = (i) Ay.;; Where 7 (i) is the invariant measure
of the probability kernel A,. Making this substitution in (6.3) givesthe value O for all
u and ;.

For the case when 6 # 0*, define a discrete probability measure on N points by

assigning to the point j the mass

P A?Ll] al A?Lzl B
T X Gu(g, 5) ;XC“(Z,Z) ’

then for fixed ¢ and u, the expression (6.3) becomes

Al mo- (X5 (i, 5))C(i, §)
i) 2 m(z P
_ng* RGE)) p§: P]). (6.4)

Define afamily of random variables e(u; i, 1) by X¢“(i,1) = Ayum(i)(1 + €(u;i,1)).
Under the probability distribution my, €(u;4,1) is a zero-mean random variable with
higher moments controlled by the estimator parameter ¢ in equation (4.4). When u

and ; are fixed, the random variable P; has an expansion

PyZAu,z]( G(U,Z,j) uuzaj ZAUZlE U,Z,l ( (U,Z,j))), (65)
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and the expected value of the differencein (6.4) with respect to the measure m, hasan
approximation
mg- (X5 (1, 7))¢ (i ) mo-(X5"(i, 7)) ¢(ij)
mﬂ(z QAZ PJ—Z Ae.. PJZ P
. u;e) .

u;ig

J

Mo~ g’“ i
:Zmﬂ(f(iaj)é(U;i,j))ﬁi+Z (iu.ij( 7))

X mg(zl:C(i, D Ausge( i, ) = €0, e, 5) ), (66)

where 71, = 3, my-(X§5"(4,1)). Recal that the random variable ¢(i,7) is an a-
posteriori probability calculated from the prior X ¢%(i, j), so bias in ((i, j) is pro-
portional to biasin X ¢“(i, 5), and the quantity m({ (i, j)e(u; i, 7)) isstrictly positive.
In addition, mg<zl (i, l)Au;ij> = my(¢(4,7)), and since A,,;; and (i, 1) are both
bounded away from zero, the first term on the right hand side of (6.6) dominates the
second provided that A} ;. /A,;; is not too large. Since A;;; is bounded away from
zero, provided that ¢ is sufficiently small that the linear terms in the approximation

(6.5) dominate the higher order terms, there exists O an open neighborhood of A*

such that the inequality (6.2) holdsfor all A € O O

Proposition 57. Let #* be the value in the parameter space © that maps onto the state
transition and output matrices defined in equations (2.2) and (2.3), and let m, be the
invariant distribution for the Markov kernel T1,(X,; dX}) defined in equation (4.9).
The stochastic approximation problem with update equation (4.10) satisfies Assump-
tion 7 of Chapter 4 when h(6) = my(H (X, 0)) and U(0) is defined by equation (6.1).

Proof. Lemma 55 established regularity of the function U, and Lemma 56 establishes
that the directional derivative of U in the direction of /(f) is non positive in an open

neighborhood of #*. The assumption is satisfied for any open set D that is compactly
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contained in the open neighborhood of #* on which the directional derivative of U is

non-negative. O

6.2 Thestochastic approximation result.

Convergence of the combined estimation and control argument is established by the
direct application of a stochastic approximation result from Benveniste et al.. Most
of the work in the dissertation is directed towards establishing that the assumptionsin
the premise of the theorem hold in the particular case of the stochastic approximation
problem posed in Section 4.2.

The stochastic approximation scheme that Benveniste et al. treat is described by

the equation
9n+1 — en + 7n+1H(9n7 Xn+1) + 772L+1pn+1 (ena Xn+1)- (67)

Let P,, denote the distribution of (X, 6;) with Xg = z, 6, = a, and let F be a

compact subset of D that satisfies:
F={0;U(0) <} 2>{0:;U'(0) - h(d) = 0} (6.8)

Let o be the exponent that assumption (A.6) postulates, and define gy () = sup{2, 2(a—

1)}. Theorem 17 from part |1, Chapter 3 of Benveniste et al. states the following:*

Theorem 58. [7, p. 304, Theorem 17] We assume (A.1), (A.2), (A.3), (A4), (A.5),
(A.6) and (A.7), and suppose that F' is a compact set satisfying (6.8). Then, for any

compact subset @ of D, and ¢ > ¢o(«), there exist constants B, s, such that for all

1The statement of the theorem is altered to keep referencesin the statement of the theorem consistent

with labeling scheme in the Dissertation
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a € Qandall z € RF:

P, . (0 convergesto F) > 1 — B(1 + |z|*) ZV;WZ-

k>1

The assumptions (A.1) — (A.7) in the premise of the theorem are the seven as-
sumptionslisted in Section 4.2. The multiplicative constant B and the exponent s are
functions of @, but independent of X,. In particular, s is afunction of the exponents
in assumptions (A.4) and (A.5).

Both the assumptionsin Theorem 58 and the theorem itself are stated in terms of a
discrete-time Markov process that evolves on the Euclidean space R*. The following
restatement of the theorem extends its applicability to discrete time Markov processes

that evolve in the more general metric spaces that this dissertation uses.

Theorem 58-bis. Assume that Assumptions 1, 2-bis, 3-bis, 4-bis, 5-bis, 6 and 7 from
Section 4.2 all hold for some open set D that is compactly contained in ©. Suppose,
also, that F' isa compact set that satisfies (6.8). Then for any compact subset () of D,
and ¢ > 1, there exist constants B and s, such that for all a € @, andall X € X:

Px (0, convergesto F) > 1 — BB,(X) > 4t
k>1

Theorem 58-bis is the key ingredient in the proof of the main results of the dis-
sertation. The results are posed in the notation of Chapters 2 and 3. Let © denote
the space of possible values for state transition matrices A,, and output matrices B of
the controlled, finite state, finite output, hidden Markov model from Chapter 2. © isa
subset of alinear sub-manifold in afinite dimensional Euclidean space, and inherits a
topology from the Euclidean space. Elements of © are denoted by (A, B). Given a
control policy that determines « (k) asafunction of previousoutputsy (k) and aninitial
state ., the hidden Markov model together with the control policy and an initial value

x for the hidden Markov model state determine the statistics of theinput process u(k),
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and the output process y(k). The input and output processes u (k) and y(k) together
with initial valuesfor the recursively defined quantities o, Z and T, an initial estimate
6(0) = (A,(0), B(0)), and the recursive estimation equations (3.33) and (3.34) deter-
mine a sequence of estimates (k) = (A, (k), B(k)) for 8*. Thissequence of estimates

depends on the parameter « through the recursive estimation equations.

Theorem 59. Let A? and B* satisfy theinequalitiesin equation (2.4), choose theran-
domized, finite-horizon, risk-sensitive output-feedback control policy defined in equa-
tion (2.14), and let the elements of the initial valuesfor «, Z and I' be bounded away
from0. Thereexists D C ©, an open neighborhood of 6* = (A%, B*) such that if Q is
a compact subset of D, and O is an open neighborhood of *, and 0 < ¢ < 1 thenif
6o = (A,(0), B(0)) € @, and « is sufficiently small, the sequence of estimates (k) is

eventually contained in the set O with probability bounded below by 1 — e.

Proof. Provided the assumptions in the premise of Theorem 58-bis hold, the conclu-
sion of Theorem 59 is a consequence of the conclusion of Theorem 58-bis For, if 6*
isthe point in parameter space corresponding to (A}, B*), then #* isaloca minimum
of the Lyapunov function U, which is twice differentiable in a neighborhood of 6*.
Consequently, if O is an open neighborhood of 6*, then for ¢ sufficiently small, there
existsacompact set set F' = {0 : U(#) < U(6*) + 0} suchthat FF C O. From the
conclusion of Theorem 58-bis,
Py (0 convergesto F) > 1 — BB,(X) > ™,
k>1

and for any ¢ > 0 the inequality Bj,(X) Z,@ 7,1*’1 < € holds provided that « is
sufficiently small.

The only remaining task is the checking of the assumptionsin the premise of The-

orem 58-bis. Assumptions 1 is the assumption that >+, is divergent. This is true
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sincey, = 1/(k + k). Assumption 2-bis is the assumption that the random perturba-
tions in the stochastic approximation algorithm have statistics that are governed by a
discrete time Markov Process. Proposition 7 demonstrates thisin the current context.
Assumption 3-bis bounds the size of the generator H (6, X) in equation (4.10) as the
the random perturbation X becomes ‘large’. It is clear from the form of equations
(4.11) and (4.12), and the definition of weighting function 5,(X) in equation (4.14)
that there exists a constant C' independent of X such that |H (0, X)| < C3:(X), and
that Assumption 3-bisis satisfied. Assumption 4-bis places bounds on the moments of
the iterated kernels of the Markov chains, and Assumption 5-bis asserts the existence
of regular solutions to the Poisson equation (I — T1y)vy = Hy — h(#). Propositions
52 and 54 establish that these assumptions hold. Assumption 6 requires that the series
>y issummable for somea > 1. Sincey, = 1/(x + k), thisistruefor any « > 1.
Finally, Proposition 57 proves the existence of the Lyapunov function that Assumption

7 requires. O

Theorem 59 and theorem 6 together prove the existence of an assymptotically-
optimal, risk-sensitive, output feedback controller for a finite-state, partially-observed

hidden Markov model with unknown state transition and output matrices.
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Chapter 7

Conclusion

Thework contained in this dissertation is directed towards a single result: a proof that,
with a careful choice of initial parameters, an adaptive control policy for a restricted,
simple class of systems has good asymptotic behavior. The result is not a strong one,
and fallswell short of thelong term objective: the development of aunifying theory for
thedual control problem that isapplicableto the variety of applicationsdiscussedinthe
introduction. This state of affairsleadsto the question “Is the result worth the effort?”.
The answer to the question is “Yes!”. The dissertation approaches the dua control
problem in a setting that is sophisticated enough to exhibit some of the problems that
make the analysis difficult, yet simple enough that the analysisistractable. The benefit
of this approach lies not in the convergence result itself, but in the insights that the
analysis gives about dual control problemsin general, and in the potential application
of methods developed for the simple problem to broader classes of problems. This
final chapter reviewsthe analysisin the dissertation, commenting on the problems that
the analysis avoids, the insights that the analysis provides, and how new techniques

might be developed to treat more general problems.
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The Formulation of the Control problem:

There is an inconsistency in the definition of the control problem in Chapter 2. The
problem is posed as an output feedback problem, without knowledge of the state tran-
sition and output matrices, yet the incremental cost is given as a function of the state
and input. A more natural exposition of the problem would specify the incremental
cost as a separate output process of the system, providing additional information that
isnot available for feedback control.

A home heating control providesan example of such a problem. The processes that
the controller on the wall observes is the temperature at the controller’s thermostat.
The incremental cost process is a combination of a measure of discomfort for the
occupants of the house, and the gas bill that comes every couple of months. The
variablesthat comprise the incremental cost are not directly available to the controller,
and the observation processthat is availableto the controller does not provide sufficient
statistics for the incremental cost process.

Anoutput feedback problem posed inthisway provides no guide to the state model.
Given a cost criterion such as quadratic mean, risk sensitive, or minimax, the ‘natu-
ral’ way to approach the control and estimation problem is to choose the space for
the information state, and estimate the information state recursion operator in equa-
tion (2.10) directly, and use the dynamic programming equation (2.13) to compute the
optimal control. The finite state model with an incremental cost function provides a
tractable alternative to the difficult problem of directly estimating the information state
recursion. The formation in Chapter 2 simplifies the problem one stage further by as-
suming that the cost functional is known a-priori. This simplification permits the use

of an existing estimation algorithm in Chapter 3.
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Randomized Palicies:

The use of a Gibbs distribution for the randomized policy in equation (2.14) ensures
both continuity of the policy with respect to perturbations in the estimated model, and
“persistent excitation” in away that naturally avoids costly choices of control.

The notion of persistent excitation in adaptive and intelligent control captures the
idea that if an adaptive controller is to converge to an optimal policy, then the con-
troller needs to ‘explore’ the state space to determine an empirical estimates for the
cost function and before deciding which action minimizes the incremental cost. The
analysis in this dissertation shows that the concept of persistent excitation is closely
tied to the ergodicity properties of the chain X which includes the state process of
the underlying model. Propositions 9 and 10 use the good support properties of the
family of randomized policiesv,(u) to prove primitivity of the kernel I1(X,; d.X,), the
existence of an invariant measure # for I1, and the weak convergence of the sequence
of densities 1,I1* to the invariant density 7. The ergodicity result for the kernel of
the chain X implies that the chain is recurrent on the entire state space and provides
a concrete meaning to the concept of persistent excitation. It is quite easy to trace in
the analysis of Section 5.3 the contribution of persistent excitation to the the conver-
gence result for the combined control and estimation algorithm. Proposition 42 uses
the ergodicity result for the kernel of the chain X to derive a similar ergodicity result
for the chain (X, X), and Proposition 48 uses the result for (X, X®) in turn to prove
geometric ergodicity for the full chain (X, X, X7, X¢). Propositions 52 and 54 use
the ergodicity result for the full chain to establish Assumptions 4-bis and 5-bis of the
stochastic approximation theorem, Theorem 58-bis

In addition to providing a policy that satisfies the requirement of persistent exci-

tation, the Gibbs policy ensures continuity of the control with respect to variationsin
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the model estimates. This condition on the control, which is intuitively a practical
requirement for an adaptive control system, is aso a requirement for the stochastic
approximation convergence proof. Continuity in this instance can be precisely inter-
preted by imposing a Levy metric on the space of distributions for the randomized
controls, and any convenient metric on the model parameters. The continuity result
for the control policy propagates through the analysis in a fashion similar to the pro-
pogation of the persistent excitation condition, and ultimately forms a component of
the result that establishes Assumption 5-bis of the stochastic approximation theorem.
Stochastic Approximation Formulation:

The essence of the ODE approach to stochastic approximation results is to divide the
evolution into a deterministic component and a stochastic component. The determin-
istic component is interpreted as a discrete approximation to a stable ODE with an
associated Lyapunov function, and the random component is interpreted as a random
perturbation acting on the ODE trajectories. The two difficult problems are the deter-
mination of a Lyapunov function for the auxiliary ODE, and the proof that the error
accumulated by the random perturbations does not affect the eventual convergence of
the trgjectories. In practical applications of the ODE method such as the application
to the problem in this dissertation provide a degree of choice over where to draw the
line between the deterministic and stochastic components of the decomposition. Asso-
ciated with this choice is a tradeoff between the difficulty of determining a Lyapunov
function, and the difficulty of bounding the cumulative random error. This dissertation
chooses to make the Lyapunov problem easy at the expense of the problem of bound-
ing the error. A suitable Lyapunov function falls out of the derivation of the estimation
algorithm in Chapter 3. The estimation is a second order gradient search for the min-

imum of the Leibler Kullback measure for the full information process, and Chapter
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6.2 uses an approximation to the relative entropy rate for a Lyapunov function.

The cost of this approach of that the is that the occupation frequency estimators
which are denoted by Z;!,, and I';,; in Chapter 3 become part of the ‘random per-
turbation’ even though these objects are deterministic functions of the much simpler
Markov chain X. In the problem that this dissertation addresses the Markov chain X
is afinite state Markov chain with a primitive kernel, and this simple chain provides
sufficient statisticsfor the full Markov chain X which evolves over acomplex topol og-
ical sum of projective spaces. The geometric decomposition of the chain X in Chapter
4.1, and the new resultsthat establish a potential theory for Markov modulated random
walks in Chapter 5 provide the tools that manage the complexity of X.

Potential Theory for the Estimator Markov Chain.

The potentia theory for the estimator chain, which is developed in Chapters 4.1 and
5, provides much of the origina material in the dissertation as well as much of the
detailed argument. The two aspects of the work that are unusual are the need for
regularity results with respect to model variations, and the unusual structure of the
random walks.

Ergodic theory for Markov modulated random walks on semigroupsis new. Previ-
ous authors such as Marcus, and Le Gland and Mevel have used theory of inhomoge-
neous products of matrices (Seneta) to get ergodic results. The approach taken hereis
more precise, and fits well with the established theory of random walks on groups. A
major difference between the group theory and the semigroup theory is the choice of
metric on the measure space. The singularity of limit distributions in the semi-group
case forces the use of aweak measure topology for the ergodic theory. In addition, the
hyperbolic metric on the distribution supports means that the weak topology has to be

weighted appropriately.
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The key to a successful ergodic theory is a definition of primitivity in the gen-
erator that matches the notion of tightness in the measure topology. In this respect
Definition 5 and the growth condition in Lemma 25 are the key requirements for the
existence of invariant measures. In cases where the underlying models have more
structure and less forgiving primitivity assumptions, more care will be needed herein
establishing that suitable primitivity conditions hold for the corresponding estimator
state processes.

Lemma 28 is the important result both for moving from random walks to Markov
modulated random walks, and for establishing regularity of the invariant measures
with respect to parametric variations in the parameter. The compactness argument
can be relaxed in the presence of tightness, and this provides the key to extending the
argument to more general spaces.

Asymptotic Convergence and Domains of Attraction: The ODE method is ulti-
mately an asymptotic method. If the evolving system is close to a stabl e attractor, then
it will converge to the attractor. While such results are important, they are also pro-
foundly unsatisfactory. In practical applications an estimate of the size and location of
the domains of attraction is equally important for system design. Unfortunately good
estimates are generally hard to come by, but in this case the approximation (6.6) in
the proof of Lemma 56 provides guidance. The auxiliary ODE converges provided
that ¢ is small enough that the linear term dominates higher order termsin the expan-
sion (6.5). This condition confirms the intuitive knowledge that small step sizes help

convergence.
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Appendix A

Recursive formulae for the empirical densities  and ~

This appendix provides detailed derivations of the recursive formulae given in Section

3

Curag(,5) = f(or = ej, 221 = €; | Yo, Mk)

— f(l'[ = €5, T1-1 = €, Yo,K | Alc)
Zi,j flai = €5, T1—1 = €, Yo,K | Ag)

The density in the numerator is evaluated by
f(xl =€;,T1-1 = €, Yo,K | Ak)
=flrr=ej,yk | vio1 =€, Yoy—1, MAe) [ (o1 = €, you-1 | Ae) (AL
with
f(xz =€, YLK | Ti—1 = €, Y011, Ak)
= f(yl,K | T, = €y, Ak)f(xz =€j | Ti—1 = €, Yo,1—1, Ak)
= [y | 11 = ej, Ap) Au_ i (LA K). (A.2)
Substituting (A.2) in (A.1) yields:
flrr =ej, 21 =€, Y0,k | Ak)

= Ay ii(UNE)fyk | v =ej, Ap) f(ir =€, yo-1 | Ax) (A.3)
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Let

aun, (1) = for = ei, you | Ak)

au, (1) = flar = ei | you, M) = %

B, (7)) = fWis,kx | 2141 = €5, Ag).
Note that, as a consequence of the definition of the empirical densities, if £ > [ then
anya, (1) = auya, (2).
Using the expressionsfor o« and /5 in (A.3) gives
flor=ej, 11 = e, yox | Ak) = Gu1,a, (1) Auy i (LA K) Brzijieon,, (7)
and

Queag (5 9) = flo = ey mi-1 = € | yo,ic, Ai)
_ M-y (2) Ay i (LA K)Brnea, ()
Zi,j Q1,014 (i)AUl—Uij(l N k)ﬁlfl\K,Ak (])

(A.4)

Equation (A.4) gives an expression for ¢ in terms of the forward and backward esti-
mates « and 5. An analogous expression is obtained for the other empirical density

asfollows:

%|K,Ak(i) = f(xl = €; | Yo,K » Ak)

_ flxr = e, yo,x | Ak)
Zi f(ﬂCz = €, Yo,K | Ak)
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in which

f(@r=eiyor | Ak) = Zf(%ﬂ = ej, v = e, Yo,x | Ar)

J

= Zf(%ﬂ = ej, Y | 2= ei, M) [z = e, you | Ax)
J

= Flysni | @1 = ej, M) Augig ((L+ 1) A k)
J

[z = ei, you | Aw)
= Z Brring (7) Augig ((+ 1) A k)auya, (7).
J

Putting thistogether gives

) — s B A (0 1) A By, (1)
A S S B () Awrg (L + 1) A B)ya, (1)

All that remainsis the derivation of the recursive formulae for oo and /3.

(A.5)

aun,(7) = fle = e; | yog, Ax)
= flar=ej,m1 = e | Yos, Ax)

i Zl f(yl,xz =€ | Ti—1 = €i,/\k)f($z-1 =€ | yo,z—l,Ak)
B Zj ZZ f(yl,DCz =€ | Ti—1 = €i,Ak)f(IZ—1 =€ | yo,z-1,/\k)
o 2oiley, BUAR)y) Auy_ i (LA K)o yja, (2)

0 ile, BUNR)y) Auy_ i (LA R)au_yja, (7)

with

aoia, (7) = f(xo = €; | Yo, Ax)
_ (e, B(O)yo);
>,(es, B(0)yo)m;
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Finally, g is calculated using the backward recursion

5Z\K,Ak(i) = f(yz+1,K | Tiy1 = €4, Ak)

= Z W2, Y, Trvo = €5 | Trn = €5, Ag)
j

= Z o, T = €5 | w1 = €, M) f (Y41, | w10 = €3, Ag)
J

= Z Wi | T2 = €, 1141 = €5, Ay)
J
X f(271+2 =E€j | Ti41 = €4, Ak)f(yl-i-la | Ti41 = €4, Ak)

= B, () Auis(L+2) AR) e, B+ 1) A k)yie)
j
with

5K|K7Ak(i) =1L
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Appendix B

Derivation of cost functional for information state

dynamics

This appendix contains a derivation of the expression for the cost functional given
in Equation 2.7. The result depends on a fundamental lemma which gives a formula
for the transformation induced on a conditional expectation by a transformation in the
underlying measure. Elliot et a. call thislemmathe conditional Bayes' theorem, and
giveaproof foritin[11].

Let (Q2, X, P) be a probability space, and let Y be a sub-sigma algebra of X. Let
f(z) be arandom variable on (2, X), and recall that E [f () | Y], the conditional ex-
pectation of f(x) with respect to Y, isdefined asthe unique Y measurable function that

satisfies the equation

/ 1yE[f(z) | Y] dPy = / f@)dP  YY ey,

where dPy in the integral on the left-hand side is the restriction of the measure dP to
the sgmaalgebra Y. Existence and uniqueness of conditional expectationsis guaran-

teed by the Radon Nikodym theorem.

Lemma60. Let P be a second probability measure on (€2, X). Suppose that P is
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absolutely continuous with respect to P, and that dP = A dP?, then:

E'[Af(x) | Y]

E[f(z)]Y]= Ef[A[Y]

Proof. Consider first the restricted measures d Py and dPJ .ForanyY €Y,

/1ydPy:/1ydP
:/lyAdP*

_ / 1yE'[A | Y] dP)]

and it followsthat dPy = Ef [A | Y] dP]. Again, let Y be any element of Y, and f(z)

be arandom variable on (2, X).
[ wEU@ 9B A Y ar) = [ LB |y
= / 1y f(z) dP
= / 1yAf(x)dP!
~ [ 1B (@) | Y] ar]
O

Returning to the notation of Section 2, recall that the information state is defined

by the formula

o} (z) = Ef

1 k—1
]{Ik:m}Ak exp§ (Z ¢($l,ul)) | 9k] .

=0

With the use of the lemma and the formula for the information state, the cost function
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is rewritten in terms of the information state as follows

9(w) =B |8 | Lnemey exp /7 (65(ex) + Xl o(ur, 1)) | Y|
=B [%; exp(65(e)/)

B! [Tippe A exp (17505 00 20) | Y] /B (A | Y]

E |3, exp(@y(e)/1)% () /B [Ax | Y]]

s exp(oy(es) /7 /B! A | Y|
B [Arc{ok (), exp(67((-))/) /BT [k | Y] | Y] |
(%), exp(97 () /1B Ak | Y] /BT [Axc | Y]]

() exp(r()/7)] -
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