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This dissertation formulates and solves a combined estimation and optimal control

problem for a finite-state, discrete-time, partially observed, controlled, hidden Markov

model with unknown state transition and output transition matrices. The cardinality

of the state and the cost structure are assumed known. The control implemented at

each step is a randomized approximation to an optimal risk-sensitive control, and is

calculated with the current value of the plant estimates. The degree of randomization

is determined by the value of a positive parameter which is allowed to decay to zero

at a constant rate. As the parameter decays to zero the control converges to an optimal

control for a moving horizon risk sensitive criterion.

The main contribution of the dissertation is the presentation of a stochastic approxi-

mation proof for the asymptotic convergence of the algorithm for combined estimation

and control. The proof requires the development of a potential theory for the Markov



chain that captures the combined dynamics of the hidden Markov model, the estimator

and the control algorithm. The potential kernel associated with this chain is shown

to be regular with respect to variation in the plant estimates which influence the ker-

nel both directly though the estimation algorithm, and indirectly through the control

algorithm.
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Chapter 1

Introduction

This dissertation addresses the problem of designing estimators for partially-observed

feedback-control systems that optimize a risk sensitive cost functional. The difficult

part of this problem is the provision of assurances both that the estimator converges to

the true estimate of the model, and that the controller converges to the optimal risk-

sensitive control.

Theoretical considerations were the major influence for the choice of problem. The

simple structure of a finite state hidden Markov model permits extensive analysis, and

reveals clearly the interaction between the part of the system that implements optimal

control, and the part that implements model estimation. For example, the notion of per-

sistent excitation has a precise formulation in the system studied here as a requirement

on the control policy that ensures a primitivity condition on a Markov chain, and the

formulation of the estimator convergence problem as a stochastic approximation prob-

lem provides insight into why the control algorithm needs to be regular with respect to

parameter variations in the model.

The work in this dissertation potentially has direct application to control problems

for systems that are intrinsically difficult to model. Under these circumstances the

combination of a risk-sensitive control strategy with a coarse finite state system model
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developed from input-output data may give better performance than control based on

a poor a priori model. The estimation algorithms and the analysis developed in this

dissertation would apply directly to such a circumstance.

The dissertation draws on ideas from control theory, stochastic approximation, and

ergodic theory for discrete-time Markov processes. This introduction selectively ref-

erences this broad literature focusing on the sources of the main ideas that directly

motivate the current work, the works that contribute to the formulation and solution of

the central problem in the dissertation, and the works that have strongly influenced the

dissertation through discussions of broader issues.

The problem of combined estimation and control has long been studied in the fields

of adaptive control, stochastic control, and intelligent control. One of the earliest for-

mulations of the problem was made by Feldbaum [13] who recognized that when de-

signing an optimal control for a plant with unknown model, there is a trade-off between

the cost of acquiring additional information, and the cost of using a suboptimal control

designed from an imperfect model. Feldbaum formulated the identification problem

in a stochastic framework, and combined maximum likelihood estimates of the model

from the input-output data with control algorithms that minimized an accrued cost.

Feldbaum (or his translator) coined the name “Dual Control Problem” to describe the

interaction between estimation and optimal control, and provided an apt nautical anal-

ogy by using the term “sounding” to describe the way that variation in the choice of

plant inputs provides data for the model estimation process.

Following Feldbaum’s work, a number of authors investigated the problem of com-

bined control and estimation in a variety of frameworks including Sworder [42] who

investigated the interaction between optimal control and estimation for a linear system

with a quadratic cost functional, and Witten [53] who looked at the conflict between
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estimation and control for a two-armed bandit problem. Witten points out that the

“Dual Control Problem” is in fact a general systems problem that occurs in any system

where “the need to balance the costs of further exploratory activity against the costs of

poor system knowledge creates a basic conflict that can not be avoided”.

The early work on combined estimation and control spawned the field of adaptive

control which followed two variations. The model reference adaptive control schemes

are deterministic schemes which use Lyapunov theory to prove convergence of either

the model estimates or the system trajectory. In a pair of papers [30, 31] Narendra and

Kudva summarize earlier work and present a sound methodology for the linear, finite

dimensional, time invariant case. More recent work of authors such as Kokotovich et

al. cast the deterministic adaptive control problem in a nonlinear setting which gives

new insight into the problems of convergence, and allows the techniques developed

for linear systems to be extended to certain classes of nonlinear systems — particularly

systems that are feedback linearizable. An important aspect of the work of Kokotovich

et al. is the use of perturbation analysis to separate the fast dynamics of the plant from

the slower dynamics of the estimator. A similar classification of the parts of the system

by their characteristic time-scales applies to the system considered in this thesis.

A second approach to adaptive control is the self tuning regulator of Astrom and

Wittenmark [3]. These authors take a point of view closer to that of Fieldbaum (op.

cit.) and cast the combined estimation and control problem in a stochastic setting by

introducing a noise disturbance into the linear system. The authors estimate unknown

system parameters with a recursive least squares algorithm, and regulate the variance

of the output process with a minimum variance controller. The self tuning regulator has

additional importance as one of the stochastic approximation problems that Ljung[26,

25] chose as examples to illustrate an analysis technique that was latter dubbed “The
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ODE Method”. A more recent variant of the same technique forms the basis of the

analysis in this dissertation.

At the same time that the field of adaptive control was developing, workers in

a parallel field that has come to be known as intelligent control1 were applying the

results of work on machine learning to the “Dual Control Problem”. The grand aim

of intelligent control is to address the following statement of C.E. Shannon and J.

McCarthy which is taken from the preface to 1956 monograph “Automata Studies”

[39].

“Among the most challenging questions of our time are the corre-

sponding analytic and synthetic problems: How does the brain function?

Can we design a machine that will simulate the brain?”

An important difference between the intelligent control approach and the adaptive con-

trol approach is that while in adative control the primary emphasis is on showing con-

vergence of a parameterized estimated model to a “true” model, the primary emphasis

in intelligent control is on learning a control strategy that improves an observed per-

fomance metric, such as an incremental cost, often without explicit reference to an

underlying system model. A good example is the work of Widrow et al. on a machine

that learns an optimal strategy for the game of blackjack [51]. The automata that the

authors describe has two parts: The first part implements a decision rule by passing

a weighted sum of input stimuli through an output step-nonlinearity (a structure sim-

1It scarcely seems credible that McCulloch and Pitts[29] published their famous mechanistic model

of neural activity in 1943, but the date of this event is a good indication of the extent to which engineers

in the second half of this century have looked to anthropomorphic biological analogy as a source of

inspiration and justification for their work. Another influential early expression of this program is the

book “Cybernetics” by Norbet Wiener [52]

4



ilar to that of the McCulloch-Pitts neuron). This decision element is augmented with

an adaptive critic, an architecture that adaptively adjusts the input weights of the de-

cision element based on a comparison of recent average performance with long-term

average performance. The authors analyze the convergence properties of this system

with a probabilistic argument. The ideas that underly the adaptive critic have been

developed by a number of authors. The work on temporal difference learning by Sut-

ton [41] and on Q-learning by Watkins and Dayan [45] falls into this category, and

from a control point of view2 there is the work of Werbos [46, 47] which explicitly

links adaptive critics with dynamic programming. Werbos points out that the adaptive

critic part of the architecture computes an approximation to a value function (or, in

alternative architectures, an approximation to the gradient of a value function) and that

the actor part of the architecture provides a feedback control policy implemented as a

mapping from an observed state to a choice of control. The critic influences the actor

by adjusting parameters in the actor architecture so that the updated control policy has

an estimated value function that is smaller at each value of the state than the value

function for the existing control policy. In the language of reinforcement learning, the

updates in the parameters of the critic architecture are value iterations, and the updates

in the parameters for the actor architecture are policy iterations.

Work on reinforcement learning and intelligent control has lead to some spectac-

ular successes in recent years both in applications and in theoretical understanding

of the algorithms [12, 8]. Stochastic approximation techniques have proved to be an

important tool for obtaining convergence proofs for the architectures [44]

The simplicity of finite state models makes them an attractive choice for system

2Barto et al. [5] present a review that links the work of researchers in AI to parallel work of control

theorists
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models. Bertsekas and Tsitsiklis [8] and many workers in AI use controllers that are

either explicitly or implicitly formulated as finite state models. The advantage of finite

state models for these applications is that the dynamic programming equation satis-

fied by an optimal state feedback policy has computable, exact solutions. In the case

of optimal output feedback policies for partially observed systems the dynamic pro-

gramming equation is perfomed on a finite dimensional information state rather than

a finite state set, but even here structural propeties of the solution to the dynamic pro-

gramming equation provide a way to economically calculate exact solutions for finite

horizon problems [14].

Motivation to look at partially observed problems comes from a traditional control

theory view of systems structure. Feedback control is based on the premise that his-

tories of observed system signals contain information that enables the construction of

optimal future trajectories for controllable system parameters. A control algorithm is a

mapping from the histories of output signals to input signals which represent planned

future control parameter trajectories. Since signal histories are difficult objects to ma-

nipulate, the control mappings from output signals to input signals are constructed in

two stages. The first stage is an information compression stage which maps an output

signal history onto a state which is a simpler object, often a point on a finite dimen-

sional manifold. The state encodes the useful information about the history output

signals. The second stage is a mapping from the state to the input parameters. The

advantage of this factored approach is that when the state-space is well chosen, the

selection of an optimal map between the state-space and the system’s control param-

eters is a simpler problem then the original problem of choosing an optimal mapping

between an output signal space and a space of input signals.

The useful information in the signal spaces of stochastic systems is contained in
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the probability distributions which determine the signal statistics. A mapping from an

output signal process of a stochastic system to a state signal process should preserve

relevant information from the output signal process in the marginal distribution of the

state trajectory. In an optimal control problem, the information of interest that the

output process provides is the conditional expectation of the cost, conditioned on the

past values of the output process. A choice of a state process with the property that

the marginal distribution of the state process provides a set of sufficient statistics for

this conditional expectation is called an information state[49, 50, 19, 4]. The struc-

ture of an information state depends on the forms of both the cost functional and the

stochastic system. In the case of the linear quadratic Gaussian regulator problem, a lin-

ear system with a additive i.i.d. Gaussian state and output noise processes and a cost

functional that is a quadratic function of the state and input processes, the minimum

mean square error estimate of the state process provides an information state which is

a vector space that is isomorphic to the underlying state space. This fact underlies the

certainty equivalence principle for the linear quadratic Gaussian regulator. In general,

the structure of an information state is not so simple. In the case of the hidden Markov

model with a risk sensitive cost functional, the information space is isomorphic to a

space of functions defined on the state space of the underlying Markov model. This

situation is typical of quite general control problems, and provides a strong theoretical

motivation for the study of risk-sensitive control for finite state, hidden Markov mod-

els as a simple setting for control problems that exhibit important features of a much

broader class of stochastic control problems.

Combined estimation and control of a hidden Markov model is interesting because

it retains the aspects of the dual control problem that are common to diverse areas

in control theory, yet discards the sophisticated structural features that differentiate
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problems in one area from problems in another. The objective of the research in this

dissertation is to gain a thorough understanding of the analysis of the dual control

problem for this reduced system in the hope that the methods developed to attack

the problem at the simple level will translate to equivalent methods for complicated

systems with more sophisticated structure. In light of this objective the dissertation

attempts to present a solution to the analysis problem in terms of general abstract

frameworks that, with luck, will transcend the simple setting.

The design of estimators for the parameters of a hidden Markov model is a long-

standing problem in estimation theory. The first treatment of the properties of the max-

imum likelihood estimator is that of Baum and Petrie [6]. The authors show that the

maximum likelihood estimator minimizes the entropy of the observed process. They

then define a relative entropy function and devise an algorithm that minimizes the rel-

ative entropy function. This algorithm is the EM method. The classic EM algorithm

is an iterative algorithm that works by making sequential passes though the data set, at

each pass the estimate of the model parameters is used to compute the relative entropy

of the output process as a function of the model parameters, and minimizer of this rel-

ative entropy function is chosen as the the updated parameter estimate. Krishnmurthy

and Moore[21] use work of Titterington[43] to develop a recursive version of the EM

algorithm. A simple adaptation of this recusive algorithm is used in Chapter 3 as the

basis for a recursive estimator.

The use of a recursive estimator gives the combined control estimation problem

the character of a stochastic approximation algorithm. This is the point of view from

which the dissertation atacks the analysis of the convergence properties of the system.

Stochastic approximation algorithms go back at least as far as the work of Robbins and

Munro [35] on the algorithm that bears their names, but the style of analysis pursued
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here originates in the work of Ljung [25] who introduced the ODE technique for anal-

ysis of convergence. The book of Kushner and Clark [22], which became a standard

reference for the subject, extends the method introduced by Ljung to more general

noise models, treats weak convergence of the algorithm as well as a.s. convergence of

the paths, and considers constrained systems. The essential idea in the ODE method

is to view the sequence of iterates from the stochastic approximation algorithm as a

noisy, discrete approximation to a continuous ordinary differential equation. A mar-

tingale argument bounds the culmulative error of the approximation, and a Lyapunov

argument establishes convergence of the associated ODE. An advantage of selecting

an estimation algorithm based on minimization of a relative entropy is that the entropy

function becomes a good candidate for the Lyapunov function in the ODE method.

Since the work of Kushner and Clark on stochastic approximation algorithms the

field has grown very large. In the more recent book of Benveniste et al. [7], the au-

thors present an analysis of a general stochastic approximation algorithm that uses a

potential theory of the underlying Markov chain3 to bound the cumulative error. The

authors are able to relax many of the requirements that earlier analyses placed on the

stochastic approximation algorithms, in particular their treatment allows the evolution

of the stochastic approximation to be generated by discontinuous functions. This dis-

sertation directly uses the convergence results from Benveniste et al. [7] to establish

the main convergence theorems for the combined estimation and control problem.

Adaptive control problems are a natural source of examples for stochastic approx-

imation methods. Ljung [25] applies his ODE method in one of his first applications

to the analysis of the asymptotic properties of Aström’s self regulating tuner. More

recently a number of authors have analyzed systems that are quite similar to the sys-

3A good account of the potential theory for Markov chains is the book by Revuz[34]
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tem considered in this dissertation. Arapostathis and Marcus analyze an adaptive es-

timation algorithm for a partially observed Markov chain in [2]. LeGland and Mevel

[24, 23] use similar methods to treat more general systems. In a series of papers

[15, 16, 1, 17] Fernandéz-Gaucherand et al. pose the problem of jointly estimating the

parameters for the partially observed Markov chain while executing a control policy

that is optimal for an average cost functional in the limit as the parameter estimates

converge to the true model. The analysis uses Stochastic Approximation methods to

show convergence of the estimates, and an argument similar to that of Shwartz and

Makowski [40] to prove convegence of the control to the optimal control for the exact

model. The example used is a very simple two state model of a production problem

taken from the operations research literature [37] and [48]. A feature common to all

the work cited is the extent of the technical difficulties that the authors encountered in

their analysis of a seemingly simple problem. In particular, the analysis of underly-

ing Markov chains for the adaptive control problems is complicated, and, at least in

the case of Fernandéz-Gaucherand et al., the discontinuous nature of the optimal con-

trols for the discounted problem prevents a straight forward application of the theory

developed by Shwartz and Makowski.

The convergence analysis of the combined estimation and control problem in this

dissertation adds two important innovations to the approaches of Arapostathis and

Marcus [2] and Le Gland and Mevel [23]. Here the analysis combines the control

and observation process with the state process to form an enlarged Markov chain. In

addition, the requirement for optimality in the control is slightly relaxed, and a close-

to-optimal randomized control strategy replaces the optimal strategy. If � is used to

denote an estimate of the hidden Markov model parameters, then the randomized con-

trol is a conditional probability distribution ��(dujyk;k+�; uk;k+�). This conditional
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distribution is computed as a Gibbs distribution using the value function as a Hamil-

tonian. A temperture parameter in the Gibbs distribution determines the difference in

cost between the randomized contol and an optimal control. By using a randomized

strategy, the analysis avoids the problems that Fernandéz-Gaucherand et al. encoun-

tered with discontinuities in the control. The manner in which the control strategy is

chosen ensures that the augmented Markov chain consisting of state, output and input

processes is irreducible, and that the control strategy depends continuously on �, the

estimate of the hidden Markov model parameters.

The dissertation also introduces an innovative structure for the Markov process

that provides the random perturbation in the stochastic approximation formulation. A

problem that arises when applying the stochastic approximation framework to the com-

bined estimation and control problem is how to divide the structure of the estimator

between the random process that provides the perturbations, and the parameter values

that constitute the iterates in the stochastic approximation. The output, state, and in-

put processes provide a minimal set of sufficient statistics for the controlled hidden

Markov model, and it is clear that these processes, which combine to form a Markov

chain, should be grouped with the random component of the stochastic approximation.

Likewise, the iterates of the estimates of the state transition and output matrices should

be grouped with the iterates in the stochastic approximation. The problem comes with

the recursively defined estimator quantities that comprise the state information in the

estimator. These quantities are the recursive estimates of state occupation probabilities

and state transition probabilities in the controlled system’s underlying Markov chain.

The approach that the dissertation takes is to include these quantities with the random

component rather than with the iterates of the stochastic approximation algorithm.

This decision makes the problem of finding a Lyapunov function for the stochastic
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approximation problem easier at the expense of making the problem of analysing the

cumulative error from the random perturbations harder.

A large portion of the new material in the dissertation deals with the analysis of

the Markov process that provides the random perturbations in the stochastic approxi-

mation problem. The Markov process factors into a subchain that provides sufficient

statistics for the whole process, and factors that evolve on products of probability sim-

plexes by random transformations that are functions of the sub-chain. The structure

is identical to that of a random walk, except that the statistics of the random transfor-

mations are governed by a Markov chain rather than an iid process. This dissertation

coins the phrase “Markov modulated random walk” for this new stochastic structure.

The analysis of the culmulative error in the stochastic approximation problem requires

a potential theory for the Markov process, and an important contribution of the disser-

tation is the development of the necessary ergodic theory for the Markov modulated

random walks.

The dissertation is structured in seven chapters, the first of which is this introduc-

tion. Chapter two introduces the controlled hidden Markov model that is the central

object of the combined control and estimation problem, and introduces an algorithm

for computing finite-horizon, risk-sensitive controllers for such systems. Chapter three

introduces the estimator component of the combined control and estimation algorithm.

Chapters four, five and six present the analysis of the convergence properties of the

combined control and estimation algorithm. Chapter four reformulates the problem as

a stochastic approximation problem, introduces the Markov modulated random walks

that provide the structure of the perturbation component of the stochastic approxima-

tion formulation, describes the application of the ODE method, and formulates the

assumptions that are used by the the ODE method’s convergence theorem. Chapter
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five develops the potential theory that is needed to verify the assumptions that ap-

ply to the stochastic approximation problem’s Markov chain. Chapter six exihibits a

Lyapunov function for the stochastic aproximation problem, and formulates the main

convergence results for the combined control and estimation problem. The seventhth

chapter provides conclusions and comments about the work.
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Chapter 2

Formulation and solution of the risk sensitive control

problem

In this dissertation system models use a state chosen from a finite state-space X to

characterize a system at a moment in time. The cardinality of the finite state-space

is N , and the states are represented by unit vectors fe1; :::; eNg of RN . A discrete

time stochastic process with values in the state space X models the evolution of the

system in time. The underlying probabilistic structure is an abstract probability space

(
;F; P ), which is chosen with the understanding that the sigma algebraF contains all

sigma algebras of interest. For example,the state process, xl; l = 0; 1; 2; :::, induces

a filtration Xl on F as follows. For a fixed l, the Xl is the smallest sigma algebra

contained in F on which the finite products of random variables (xi1 ; : : : ; xip , ip < l)

are all measurable functions on 
, and X1 is the smallest sigma algebra generated by

[1l=0Xl. The process xl is a Markov chain if it satisfies

P (xl+1 j Xl) = P (xl+1 j xl):
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The state transition matrix for a Markov chain is the matrix Al, a function of time l,

with entries defined by

Al;ij = P (xl+1 = ej j xl = ei): (2.1)

At each time l the rows of Al are probability densities on X . A specification of both a

distribution for the random variable x0, the initial state in the model, and the values for

the entries in the transition matrices Al completely determines a probability measure

P on the sigma algebra X1.

A controlled hidden Markov model consists of a finite set of controls U with car-

dinality P , a finite set of outputs Y with cardinality M , a finite state set X with cardi-

nality N , and the following rules for generating a state process and an output process

from an input sequence uk. A Markov transition matrix Au is associated with each

control u, so that a sequence of controls, ul, and an initial state, x0, will generate a

Markov chain, xl, with transition probabilities governed by the transition matrices

Al;ij = Aul;ij l = 0; 1; ::: : (2.2)

The finite set of outputs Y is represented by fe1; : : : ; eMg, the set of unit vectors in

R
M . The output sequence yl is a random process that has values in Y . The distribution

for the process yl is determined by the distribution of the state process, and by the

conditional probabilities

P (yl = em j xl = ei) = Bim: (2.3)

where Bij is a N �M matrix with rows that are probability densities over Y .

A fundamental assumption that holds throughout the dissertation is that there exists

a constant � > 0 such that

Au;ij > � 8i; j; such that 1 � i; j � N , and 8u 2 U

Bim > � 8i;m such that 1 � i � N and 1 � m �M

(2.4)
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This strong assumption simplifies many of the ergodicity results and convergence

proofs that are presented in the dissertation. In particular, the lower bound on the

values of Au ensures that the Markov chain generated by Aul is both recurrent and

irreducible. In many instances weaker assumptions will lead to the same results at the

cost of more intricate arguments. Seneta [38] provides a detailed account of recurrence

structures and ergodic theorems for finite Markov chains.

Let M denote the space of probability distributions on U endowed with the weak

topology1, andM� denote the compact subset of distributions that satisfy �fug � � for

all u 2 U . A randomized control policy of length K is a specification of a sequence of

probability distributions �0; �1; : : : ; �K�1, where �l is the distribution of values taken

by the random variable ul.

The output process yl and the input process ul generate filtrations Yl and Ul on F;

the filtration generated by the combined state and output processes is denoted Gl, and

the filtration Ol is the filtration generated by the sequence of pairs (ul�1; yl). Ol can

be interpreted as a time-indexed specification of the information that past records of

the input and output processes provide about the system. Given some filtration F l, a

deterministic control policy corresponds to the degenerate case when the conditional

distributions P (ul j Fl) have point support, an open loop policy has �l a measurable

function of the initial condition X0 for all l, a state feedback policy has �l adapted

to the filtration Xl, and an output feedback policy has �l adapted to the observation

filtration Ol.

A control policy � = �0; �1; :::; �K�1 induces a probability distribution on GK with

1Throughout the dissertation weak topology on probability measures should be understood in the

sense of probability theory. From the point of view of analysis this would be a weak* topology. Since

U is finite this distinction is not important in this instance, as in either case the topology is the topology

induced by the Euclidean norm in RP
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density

P �(u0;K�1; x0;K; y0;K) = hxK; ByKihx0; �0i
K�1Y
l=0

hxl; Aulxl+1ihxl; Bylihul; �li:

(2.5)

The products in the angle brackets are the normal Euclidean inner products, and �0 is

the probability distribution for the random variable x0.

A risk sensitive control problem is defined on a hidden Markov model by specify-

ing a cost functional with a particular form. Given a running cost, �(x; u), which is a

function of both the state and the input, and a final cost �f(x), which is a function of

the state only, the finite horizon, risk sensitive cost associated with �, �f , risk 
 and

horizon K is the functional

J
(�) = E�

"
exp

1




 
�f(xK) +

K�1X
l=0

�(xl; ul)

!#
: (2.6)

The expectation is taken with respect to the distribution P � in (2.5). If M is a class

of control policies, then a solution to the risk sensitive control problem is a control

policy ��k 2 M that minimizes J
(�). The important class of control policies in this

dissertation is the class of output feedback policies. A control policy � l is a randomized

output feedback policy when for any l, and for any f : U ! R, the random variable

h�l; fi is measurable with respect to the sigma-algebra Ol in the observation filtration.

A search for an optimal feedback policy encounters an immediate difficulty. Be-

cause the incremental cost is expressed as a function of the state process, an application

of dynamic programming produces a control policy that is adapted to the state filtration

Xl, but not to the observation filtrationOl. This difficulty is resolved by a reformulation

of the dynamics of the plant and the associated cost function. The new plant dynamics

generate a state process that is adapted to the observation filtration, while maintain-

ing invariance between the two formulations of the cost of an output feedback policy.
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The state in the new state process is called an information state, and the corresponding

dynamics are called the information state dynamics.

The information state dynamics are generated by taking conditional expectations

of the accrued cost up to the present time that are conditioned with respect to the �-

algebras in the output filtration Ok. Manipulation of conditional expectations produces

a recursive formula that governs the evolution of the information state dynamics. Ma-

nipulation of the conditional expectations is greatly simplified when the �-algebras

generated by the marginal distributions in the observation process fykg are mutually

independent, and independent of the marginal distributions fxkg under the underly-

ing probability measure. Consequently, a new probability measure P y that meets this

requirement is defined on (
;F) by the densities

P y(u0;K�1; x0;K; y0;K) =
1

M
hx0; �0i

K�1Y
l=0

1

M
hxl; Aulxl+1ihul; �li:

The importance of this definition lies in the properties that the process yk possesses

with respect to the conditional probability distribution that is formed by conditioning

P y on the input �-algebra UK . With respect to this conditional distribution, the output

process yk is i.i.d. For each k the distribution of yk is given by P y(yk = em) = 1=M for

1 � m � M . Furthermore, under the measure P y the distributions for the processes

yk and xk are mutually independent. The measure P � is absolutely continuous with

respect to P y on each sigma algebra Gk, and has Radon Nikodym derivative

dP �

dP y

����
Gk

= �K =
KY
l=0

Mhxl; Byli:

The risk sensitive cost function with risk 
 and horizon K is written in terms of P y as

J
(�) = Ey

"
�K exp

1




 
�f(xK) +

K�1X
l=0

�(xl; ul)

!#
:
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The appropriate notion of state for the risk-sensitive output-feedback control prob-

lem is the information state which, at each time k, is a function on the state-space X

defined by

�


k(x) = Ey

"
Ifxk=xg�k exp

 
1




k�1X
l=0

�(xl; ul)

!
j Ok

#
:

Comparison of this expression with the expression for the conditional expectation un-

der a change of measure given in the conditional Bayes theorem of Elliot et al. [11,

Theorem 3.2] reveals the information state �k to be an un-normalized conditional ex-

pectation of the component of the cost that is incurred before time k. The expectation

is taken with respect to the P � measure, and is conditioned on both the �-algebra Ok

and the event xk = x.

The finite horizon cost functional is expressed in terms of the information state by

the following formula which is derived in Appendix B.

J
(�) = Ey

h
h�
K(�); exp(�f(�)=
)i

i
: (2.7)

The initial value of the information state is

�
0 (x) = h�0; xiMhx;By0i; (2.8)

and a recursion that describes the evolution of the information state is calculated as
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follows:

�


k(x

00) = E
y

"
Ifxk=x00g�k exp

 
1




k�1X
l=0

�(xl; ul)

!
j Ok

#

= E
y

"
Ifxk=x00g exp(�(xk�1; uk�1)=
)Mhxk; Byki

�k�1 exp

 
1




k�2X
l=0

�(xl; ul)

!
j Ok

#

=
X
x

 
hx;Auk�1

x00i exp(�(x; uk�1)=
)Mhx00; Byki

E
y

"
Ifxk�1=xg�k�1 exp

 
1




k�2X
l=0

�(xl; ul)

!
j Ok�1

#!

(2.9)

The last step in the derivation relies on the mutual independence of the processes xk

and yk under the conditional probability2. The need for independence here is the reason

for the particular choice of P y. If the information state is represented as a vector on

R
N , then the recursion can be written in the form

�k = �(uk�1; yk)�k�1; (2.10)

in which the matrix �(u; y) is given by the formula

�(u; y) = M diag(h�; Byi)A>

u diag(exp(1=
 �(�; u))) (2.11)

with the understanding that vectors in RN are formed by applying the functions h�; Byi
and exp(1=
 �(�; u)) to the N basis vectors fe1; : : : ; eng.

In summary, Equation (2.10) describes a linear dynamic system with a state process

�
k that is vector valued and Ok adapted. The cost functional J
(�) on the input policy

� is expressed as a functional on the information state at the final time �K by (2.7). A

2Loève’s textbook [28] provides a good account of the methods for manipulating conditional expec-

tations
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feedback controller on the information state process determines a control policy that

is Ok-adapted, and consequently is an output-feedback control for the hidden Markov

model formulation of the problem.

If A0

u and B0 are estimates for the matrices A and B, and �0 is an approximation to

the information state at time 0, then

�0k = �0(uk�1; yk) : : :�
0(u1; y2)�

0(u0; y1)�0

is an estimate of �k, the information state at time k. This estimate is only useful when it

comes with assurances that the estimate converges as k !1, and that the estimators

�k are regular with respect to variation in the estimates A0

u and B0. The following

results establish convergence and regularity of the estimates.

The operators �(u; y) are examples of positive operators which map the cone

K = f� 2 R
N : �i > 0; 1 � i � Ng into itself. The projective pseudo-metric

d(�; �0) = supi;j log(�i�
0

j=�j�
0

i) is useful when studying ergodicity properties of pos-

itive operators on K. The sets P� = f�0 2 K : d(�; �0) = 0g form a partition of K,

and the quotient space is a complete metric space that is homeomorphic to the RN�1

plane. In general, the quotient space will be identified with the probability simplex

� = f� 2 K :
P

i �i = 1g. The following result from Nussbaum [32] relates the

projective metric restricted to the probability simplex to the metric induced by the L1

norm k � k

Lemma 1. If x; y 2 K satisfy kxk = kyk = 1, then

kx� yk � 3(exp(d(x; y))� 1)

The next two lemmas prove ergodicity and regularity results for the operator �.

The ergodicity property proved in the first lemma is the weak ergodicity of Seneta

[38], the averaging trick used to get the contraction goes back to Markov.

21



Lemma 2. For any choice of u and y. The operator �(u; y) is a strict contraction on

the space f� 2 R
N : �i > 0; 1 � i � Ng with respect to the projective pseudo-

metric d(�; �0) = supi;j log(�i�
0

j=�j�
0

i). The operator induced by �(u; y) on the real

projective space 
 is well defined, denote this operator by �̂(u; y). Finally, the ranges

of �̂(u; y) lie in a compact set.

Proof. For any u, y, the operator �(u; y) commutes with homotheties3.

The operators defined component-wise by

�i ! hei; Byi�i
�i ! 1



�(ei; u)�i

are both isometries with respect to the projective pseudo-metric. That � ! A>

u � is a

contraction follows from the following averaging argument. For all i,

(Au�)i
(Au�)i

=

P
j Au;ji�jP
k Au;ki�k

=
X
j

Au;ji�jP
k Au;ki�k

�j

�j

Let Pi;j =
Au;ji�jP
k
Au;ki�k

, then the entries of Pi;j are strictly positive, the rows sum to 1,

and

X
j

Au;ji�jP
k Au;ki�k

�j

�j
=
X
j

Pi;j
�j

�j
< sup

j

�j

�j
:

Consequently,

sup
i

(Au�)i
(Au�)i

� � sup
j

�j

�j
:

For some constant � that depends on the entries in Au, but satisfies 0 � � < 1.

Flemming and Hernández-Hernández, [18] write the information state � as a prod-

uct � = r�. The first factor r = j�j, is a positive real number. The second factor,

3Homotheties are contractions and dilations.
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� = �=j�j, lies on the probability simplex which is given the topology induced by the

projective pseudo-metric d defined in Lemma 2. The simplex is identified with the

projective plane �. This decomposition gives a useful geometric view of the space

of information states as a linear fibration with the projective plane � as base space

and the positive reals R as fiber. It is a consequence of Lemma 2 that the information

state recursion defined by the operator � has a decomposition as the product �̂
 j�j.
The first factor, �̂, which acts on the base space, is the contraction operator defined

in Lemma 2, and j�j : � � R ! R is the multiplicative operator on the fibre that is

defined by (�; r)! rj�(�(�))j.
The following lemma establishes regularity of the operator � with respect to per-

turbations in Au and B.4

Lemma 3. Suppose that the operators A>

u , diag(exp(1=
�(�; u))) and B are all uni-

formly bounded by the constant C1. If A0 and B0 are perturbations of A and B that

satisfy jA> � A0>j < �, and jB �B0j < � then, for any information state � 2 R
+N

j�(u; y)� � �0(u; y)�j < 2�C2
1 j�j

4In the next lemma, and throughout the dissertation multiplicative constants are denoted by the

symbol C. Subscripts will differentiate between different constants that appear in a single context, such

as the following lemma, but the subscripts will not remain consistent between a result that is presented

in one context and used in another.
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Proof. Let maxfjB �B 0j; jAu � A0

uj : u 2 Ug < �, then for � 2 R
N ,

j�(u; y)���0(u; y)�j

= j diag(h�; Byi)A>

u diag(exp(1=
�(�; u)))�

� diag(h�; B0yi)A0>

u diag(exp(1=
�(�; u)))�j

= j diag(h�; (B � B0)yi)A>

u diag(exp(1=
�(�; u)))�

+ diag(h�; B0yi)(A0

u � Au)
> diag(exp(1=
�(�; u)))�j

� 2�C2
1 j�j:

The interpretation of the information state as an un-normalized conditional expec-

tation of the cost accrued up to the present time, conditioned on the values for the

present state, would seem to indicate that an estimate for the information state must

reflect the entire history of the system. While this is true of the information state as

a whole, the fibration � = r� separates the distant past from the recent history. The

historical values of incurred costs are accrued in the fibre r, and the recent history of

the system dynamics is stored in the base point �. It will turn out that the optimal

feedback control will depend only on �, the projection of the information state into

the base-space. So, equipped with this clairvoyance, a buffer containing the last �

observations of the input and output processes ul and yl before the present time k, and

estimates A0

u and B0 of the system kernels Au and B, define an estimate of the factor

�k of information state at time k, by the finite recursion

�0k�� = (1=N) 1

�0l+1 = �0(ul; yl)�
0

l; k �� � l � k � 1:

Lemma 2 and Lemma 3 combine to produce the following bound for the error in

the estimate.
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Proposition 4. If the buffer length � can be chosen arbitrarily large, then the error in

the estimate for the information state is bounded by

j�k � �0kj < �C2

Where C2 is a constant, and � is a uniform bound on the induced L1 norms jA>

u �A0>

u j,
and jB � B0j.

Proof. Define the operators �̂l1 :: l2 and �̂0

l1:: l2
by the products

�̂l1:: l2 = �̂(ul2 ; yl2) : : : �̂(ul1; yl1)

�̂0

l1:: l2
= �̂0(ul2; yl2) : : : �̂

0(ul1 ; yl1);

then the following inequalities yield a bound on the error in the estimate.

j�k � �0kj = �̂k��:: k�1�k�� � �̂0

k��:: k�1�
0

k��

=
k�2X

l=k��

�̂l:: k�1�̂
0

k��:: l�k�� � �̂l+1:: k�1�̂
0

k��:: l+1�
0

k��

=
k�2X

l=k��

�
�̂l:: k�1�̂

0

k��:: l�k�� � �̂l:: k�1�̂
0

k��:: l�
0

k��

+ �̂l:: k�1�̂
0

k��:: l�
0

k�� � �̂l+1:: k�1�̂
0

k��:: l+1�
0

k��

�

� ���D +
k�2X

l=k��

�k�l�C1D

� ���D +
�2

1� �
�C1D

D and � are fixed constants, consequently, provided C2 is chosen to satisfy C2 >

�2D=(1 � �), the estimate in the statement of the proposition will hold for all suffi-

ciently large �.

The reason for defining an information state is to convert the output feedback prob-

lem to an equivalent, fully observed, state feedback problem which is easier to solve.
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Baras and James [4] use the following dynamic programming argument to compute

optimal deterministic control. They define a time-dependent value function S 
(�; l)

by

S
(�; l) = min
ul:::uK�12U

E
y [h�
K(�); �f(�)i j �
l = �] ; 0 � l < K; (2.12)

and associate with this value function the time-dependent dynamic programming equa-

tion 8><
>:

S
(�; l) = min
u2U

E
y [S
(�
(u; yl+1)�; l + 1) j �]

S
(�;K) = h�(�); �f(�)i:
(2.13)

The following theorem from [4] establishes that the deterministic control policy

that at each step chooses the control that minimizes the expectation in (2.12) is an

optimal feedback control policy on the information state recursion.

Theorem 5. The value function S
 defined by (2.12) is the unique solution to the dy-

namic programming equation (2.13). Conversely, assume that S 
 is the solution of the

dynamic programming equation (2.13). Suppose that �� is a policy such that for each

l = 0; : : : ; k � 1; u�l = �u�l (�


l ) 2 M, where �u�l (�) achieves the minimum in (2.13).

Then �� is an optimal output feedback controller for the risk-sensitive stochastic con-

trol problem with cost functional (2.6).

Given a hidden Markov model, and a risk-sensitive cost function, Theorem 5 to-

gether with the information state recursion (2.10) provide an algorithm for calculating

optimal, deterministic output feedback controllers. A standard objection to dynamic

programming methods is that the dynamic programming equations are expensive to

solve, especially in the time dependent case. But Fernández-Gaucherand and Marcus

[14] show that in the finite horizon, finite state case, the case considered here, the value

26



function is a concave piece-wise linear function of the finite-dimensional information

state, and the direct use of dynamic programming to solve the optimal risk-sensitive

control problem is feasible for modest sized state-spaces.

An obvious, but erroneous, approach to the problem posed in this dissertation,

the problem of combined estimation and control, is to simply compute an optimal,

deterministic control with the current estimate of the system model, and update the

control policy as the model is updated with successive iterations of the estimation

algorithm. This approach faces two problems. The first is the problem of persistent

excitation. The parameter estimation algorithm relies on the statistical information

that it receives from observations of input and output values to reconstruct the state

and output transition matrices. If an optimal control is used, the control algorithm

avoids states with high costs, and consequently transitions to and from these states are

poorly represented in the statistical information available to the parameter estimation

algorithm. The second problem is that the mapping between a system model and the

optimal control for that model is often ill-conditioned, a small change in the model can

produce a large change in the optimal control. In the case of finite valued deterministic

controls it is hard to imagine any sort of non-trivial topology on the control space that

would make the optimal control problem well-conditioned. Both these problems are

avoided by the use of randomized approximations to the optimal risk-sensitive control,

rather than the deterministic optimal control itself. These randomized policies are

created by solving a randomized regularization of the dynamic programming equation

(2.13), the equation that is satisfied by the optimal, deterministic information-state

feedback controller.

For a finite horizon K, recursively define a value function VK(�; l) depending on

the information state � and the time 0 � l � K as follows:
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1. At the final time K the value function is defined by

VK(�;K) = h�; �f(�)i

2. given the value function at time l + 1, define an energy functional on the infor-

mation state � and the control u by

H(�; u; l) = Ey

u[logVK(�(u; y)�; l + 1)]

3. Require that the randomized feedback control at time l be distributed according

to the conditional Gibbs distribution with density given by

�l(�; du) = Zl(�)
�1 exp

��H(�; u; l)

�

�
du (2.14)

In which the partition function Zl(�) is defined as

Zl(�) =

Z
U

exp

��H(�; u; l)

�

�
du:

4. Define the value function recursion by

VK(�; l) =

Z
U

Ey

u[VK(�(u; y)�; l + 1)]�l(�; du) (2.15)

The following theorem lists basic properties of the control policy that are needed

later for the proof of combined estimation and control.

Theorem 6. The policy � satisfies the following properties

(i) The policy is a strictly positive measure onU (needed for ergodicity results later)

(ii) The policy is continuous with respect to changes in the HMM. (Needed later to

prove regularity results for potential kernels)
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(iii) In the limit as � ! 0 the randomized policy converges (in the weak topology) to

the finite horizon, deterministic policy of Theorem 5.

Proof. The proof follows from the definition of the control policy.

(i) This is a consequence of boundedness of the value function.

(ii) For a fixed value of �, the measures �l(�; du) are continuous5 functions of the

energy functional H , which in turn is a continuous function of the information

state �. (The partition function Zl(�) is bounded away from zero.) A backward

recursive argument proves that the energy functional is continuous with respect

to variations in the hidden Markov model parameters, Au andB, and Proposition

4 establishes continuity of the the information state with respect to variations in

the hidden Markov model.

(iii) This is an application of a simple form of Laplace’s approximation theorem.

While Theorem 6 is adequate for the purposes of this dissertation, it is not a very

satisfactory result from a control theory point of view. An intuitive justification for

considering a finite horizon control is that as the length of the horizon K is extended,

the control converges to an invariant value. But while it is easy to prove the theorem

for a fixed value of K, it is not so easy to produce a proof that provides estimates that

are uniform for arbitrarily large values values of K. In effect what is needed is a form

of backwards ergodicity result that says that as the length of the horizon is increased,

the influence of the choice of final cost �f on the control policy diminishes. Flemming

5Since the space of measures over a finite set of discrete points is a finite dimensional vector space,

a precise definition of the metric on the space of measures is not required.
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and Hernández-Hernández have proved just such a result for the deterministic case.

This result allowed them to define an analogue to the optimal average cost control that

occurs as a large horizon limit of the finite horizon policy for quadratic cost functionals.

Unfortunately the method that Flemming and Hernández-Hernández use, which relies

on the transformation of the optimal control problem to an equivalent dynamic game

problem, does not have an obvious analogue for the stochastic regularization presented

above. The remainder of this section demonstrates how an adaption of the method

that Fleming and Hernández-Hernández use leads to a nonlinear eigenvalue problem

formulation for the average cost limit to the regularized problem.

The argument starts by postulating that the average cost problem is well-posed

in the sense that in the limit as K becomes large, the solutions VK(�; 0) are well

approximated by

VK(�; 0) � r exp(�K +W (�)): (2.16)

This assumption implies the existence of a fixed point equation that must be satisfied

by W (�) and � if this asymptotic limit is to hold.

When j�j = 1, � can be identified with a canonical injection of a point � 2 �,

and in the sequel, when � is used to denote a point in the information-state space, this

injection is understood. Assume that equation (2.16) holds exactly, then for � 2 �,

VK(�; 0) = exp(�K +W (�))

VK+1(�; 0) = exp(�(K + 1) +W (�)) (2.17)

Let w(�) = exp(W (�)), g(u; y; �) = j�(u; y)�j and G(u; y; �) = log g(u; y; �), then
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the recursive definition of the value function implies that

VK+1(�(u; y)�; 1) = VK(�(u; y)�; 0)

= VK(j�(u; y)�j�̂(u; y)�; 0)

= e�Kg(u; y; �)w(�̂(u; y)�) (2.18)

Equation (2.17) yields a simplified expression for the measure �0(�; du). When the

horizon is K + 1,

�0(�; du) =

�
Ey

u(VK(�(u; y)�; l + 1))
��1=�

duR
U

�
Ey
u(VK(�(u; y)�; l + 1))

��1=�
du

=

�
Ey

u[g(u; y; �)w(�̂(u; y)�)]
��1=�

du

R
U

�
Ey
u[g(u; y; �)w(�̂(u; y)�)]

��1=�
du

(2.19)

Which is independent of K.

Equations (2.17) and (2.18) yield the following implicit equation for the function

W and the quantity �.

e�w(�) =

Z
Ey

u[g(u; y; �)w(�̂(u; y)�)]�0(�; du) (2.20)

Define the nonlinear, homogeneous of degree 1 operator � by

[�w](�) =

Z
Ey

u[g(u; y; �)w(�̂(u; y)�)]�0(�; du): (2.21)

Then the fixed point equation (2.20) can be written as the non-linear eigenvalue equa-

tion

�w = e��w (2.22)

The operator � is nonlinear because the argument w appears both explicitly in the inte-

grand on the right hand side of equation (2.21), and implicitly in the measure �0(�; du).
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The search for a well posed solution to the average cost control problem is equiva-

lent to establishing the existence of stable solutions to this non-linear eigenvalue prob-

lem. General non-linear eigenvalue problems are notoriously difficult to solve, but the

positive, and homogeneous properties of the operator in this case provide hope that

this problem is tractable. Ergodicity results for non-linear operators are an area of ac-

tive research, and authors such as Nussbaum [32] have provided results for families of

operators that are similar to the operator in equation (2.22).
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Chapter 3

Estimating the parameters for the hidden Markov

model

This chapter introduces an algorithm for on-line estimation of the hidden Markov

model parameters. An architecture for the combined controller and estimator is illus-

trated in Figure 3.1. The estimator monitors the system inputs and outputs, estimates,

on-line, a hidden Markov model for the plant, and feeds this estimate to the controller

algorithm. This controller algorithm uses the estimate to compute the value of the op-

erators (2.11), which it in turn uses in the value function recursion (2.15) that is the

basis of the computation of the feedback control policy.

The estimation algorithm and its derivation are taken from Krishnamurthy and

Moore [21] with small adaptations that account for the differences between the models

treated by Krishnamurthy and Moore and controlled hidden Markov model considered

here. The derivation takes the form of a formal stochastic approximation to the max-

imum likelihood estimator and produces an algorithm that is similar to the standard

expectation maximization algorithm. Where the expectation maximization algorithm

repeatedly processes the entire data-set, the algorithm derived here uses a shifting win-

dow of the data to recursively update filtered estimates of the model parameters.
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Plant

   HMM
Estimator

Controller

y(k)u(k)

A(k),B(k)

Figure 3.1: Controller Architecture

Let the symbol � denote an unconstrained choice of parameters for the hidden

Markov model. The transition matrices Au and B are specified completely by the pa-

rameters �, and through them � determines a probability measure on (
;F). Given

an input sequence u0 : : : uK�1, and a model �, let f(y0;k j �) be the probability dis-

tribution function for the sequence of outputs y0; : : : ; yK . If �� is a particular choice

of model, then a convexity arguement based on Jensen’s inequality proves that the

Kullback Leibler measure

J(�) = E[log f(y0;k j �) j ��]

has a global maximum at � = �� provided that equality almost everywhere between

f(y0;k j �) and f(y0;k j ��) implies that � = ��. Consequently, an algorithm that pro-

duces a sequence of estimates �k with the property that J(�k) converges to the global

maximum J(��) will converge to the maximum likelihood estimate of the model pa-

rameters. Unfortunately, given an observation process y0;k, it is not easy to obtain

recursive estimates for the log-likelihoods log f(y0;k j �), instead, log-likelihoods of

the combined output and state processes are used. Specifically, Krishnamurthy and
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Moore show that if � and �0 are two parameter values, and

Qk(�
0; �) = E[log f(x0;k; y0;k j �) j y0;k; �0]

�Qk(�
0; �) = E[Qk(�

0; �) j ��]

then �Qk(�
0; �) > �Qk(�

0; �0) implies that J(�) > J(�0). This observation leads to the

following off-line expectation maximization algorithm: Estimate � l+1 by

�l+1 = max
�
Q(�l; �):

The �l are the models at consecutive passes through the data.

A sequential algorithm that gives a sequence of stochastic approximations to the

model parameters �� using an observation sequence of length K is: Estimate �k+1 by

�k+1 = max
�
Qk+1(�k; �):

with

Qk+1(�k; �) = E[log f(x0;k+1; y0;k+1 j �) j y0;K;�k] (3.1)

and �k = (�1; �2; : : : ; �k). This time �k is the estimate of the model based on log-

likelihoods of the combined state and output sequence x0;k; y0;k, and the probability

measure used in evaluating the conditional expectation in (3.1) is the empirical mea-

sure generated by the conditional distributions

f(xl = ej j xl�1 = ei) = Aul�1;i;j(l ^ k) Au(0) = Âu

f(yl = em j xl = ei) = Bi;m(l ^ k) B(0) = B̂

f(x0) = �̂

in which Â, B̂ and �̂ are initial estimates of the state transition matrix, the output

matrix and the density of the initial state, and A(l ^ k) and B(l ^ k) are the estimates
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of the state transition matrix and output transition matrix computed either from the

parameter estimate �l when l < k, or from the parameter estimate �k when l � k.

The first two terms of the Taylor’s expansion for Qk+1(�k; �) about �k are

Qk+1(�k; �) � Qk+1(�k; �k) + (�� �k)
>
@Qk+1(�k; �)

@�

����
�=�k

+
1

2
(�� �k)

>
@2Qk+1(�k; �)

@�2

����
�=�k

(�� �k): (3.2)

Let �k+1 be the value of � that maximizes the right hand side of (3.2), then

�k+1 = �k + I�1k+1(�k)S(�k; yk+1) (3.3)

in which Ik+1, the Fisher information matrix for the combined output and state pro-

cesses, is given by Ik+1(�k) = �@2Qk+1=@�2j�=�k , and S(�k; yk+1), the score at time

k is given by S(�k; yk+1) = @Qk+1=@�j�=�k . If �k+1��k is small, then �k+1 is a close

approximation to the value of � that maximizes Qk+1(�k; �).

To proceed requires an explicit expression for Q and its derivatives in terms of

the parameter estimates �l. If Au and B are the matrices associated with a particular

choice of �, and � is the estimate of the initial state distribution, then the probability

density for the state and output process is

f(y0;k+1; x0;k+1 j �) = f(yk+1; xk+1 j y0;k; x0;k; �)f(y0;k; x0;k j �)

= hxk+1; Byk+1ihxk; Aukxk+1if(y0;k; x0;k j �)

= hx0; By0ih�; x0i
kY
l=0

hxl+1; Byl+1ihxl; Aulxl+1i
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Taking logarithms gives1

log f(y0;k+1; x0;k+1 j �) =
X
i

X
j

X
u

nui;j(k + 1) logAu;i;j

+
X
i

X
m

mi;m(k + 1) logBi;m +
X
i

Æei(x0) log�i;

in which nui;j(k) is the number of transitions from xl�1 = ei, ul�1 = u to xl = ej in

the state sequence x0;k, and mi;m(k) is the number of times xl = ei and yl = em in

the combined sequences x0;k; y0;k. Taking conditional expectations with respect to the

probability measure induced by the sequence of model estimates �l gives

E[log f(y0;k+1; x0;k+1 j �) j y0;K;�k]

=
X
i

E[Æ(x0 = ei) j y0;K;�k] log�i

+
X
i

X
j

X
u

logAu;i;jE[n
u
i;j(k + 1) j y0;K;�k]

+
X
i

X
m

logBi;mE[mi;m(k + 1) j y0;K;�k]:

(3.4)

Define the conditional densities �ljK;�k and 
ljK;�k by

�ljK;�k(i; j) = f(xl = ej; xl�1 = ei j y0;K;�k)


ljK;�k(i) = f(xl = ei j y0;K;�k);

then in terms of � and 
 the conditional expectations on the right hand side of equation

1Æa(x) is used throughout the dissertation to denote the Dirac delta, i.e. the distribution on the space

in which x takes values, with unit mass supported at the point a.
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(3.4) are:

E[nui;j(k) j y0;K;�k] =
kX
l=1

f(xl = ej; xl�1 = ei j y0;K;�k)Æu(ul�1)

=
kX
l=0

�ljK;�k(i; j)Æu(ul�1)

E[mi;m(k) j y0;K;�k] =
kX
l=0

f(xl = ei j y0;K;�k)Æem(yl)

=
kX
l=0


ljK;�k(i)Æem(yl)

E[Æei(x0) j y0;K;�k] = f(x0 = ei j y0;K;�k) = 
0jK;�k(i)

Substituting the above expressions for the conditional expectations into the right hand

side of equation (3.4) gives

Qk+1(�k; �) =
X
i


0jK;�k(i) log �i +
X
i

X
j

k+1X
l=1

�ljK;�k(i; j) loghei; Aul�1
eji

+
X
i

k+1X
l=0


ljK;�k(i) loghei; Byli: (3.5)

Equation (3.5) expresses Q in a suitable form for the calculation of the gradient

term and the Fisher information matrix that appear in the update equation — equation

(3.3). Working from (3.5), Qk+1(�k; �) is written in terms of Qk(�k; �) as

Qk+1(�k; �) = Qk(�k; �)

+
X
i

X
j

�k+1jK;�k(i; j) loghei; Au1eji+
X
i


k+1jK;�k(i) loghei; Byk+1i:
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and differentiation with respect to � gives the score vector:

S(�k; yk+1) =
@Qk+1(�k; �)

@�

����
�=�k

=
@Qk(�k; �)

@�

����
�=�k

+
X
i

X
j

�k+1jK;�k(i; j)
@ loghei; Aukeji

@�

����
�=�k

+
X
i


k+1jK;�k(i)
@ loghei; Byk+1i

@�

����
�=�k

:

Under the assumptions that Qk(�k; �) � Qk(�k�1; �), and that �k is close to the min-

imizer of Qk(�k�1; �) the first term is close to zero, and the score is closely approxi-

mated by

S(�k; yk+1) �
X
i

X
j

�k+1jK;�k(i; j)
@ loghei; Aukeji

@�

����
�=�k

+
X
i


k+1jK;�k(i)
@ loghei; Byk+1i

@�

����
�=�k

: (3.6)

The choice of entries for the matrices Au and B is constrained by the Markov

conditions that
P

j Au;ij = 1 and
P

mBi;m = 1. Consequently, the model (Au; B) can

be expressed in terms of a vector � with dimension P �N � (N � 1)+N � (M � 1).

The components of � are indexed as � = (�Au

i;j ; �
B
i;m), and the form of Qk+1(�k; �)

ensures that the gradient and Hessian have corresponding structure. For a given choice

of u and i the index j in �Au

i;j skips one value qi in the range 1 � qi � N , similarly, the

index m in �Bi;m skips one value pi in the range 1 � pi � M . The matrix entries Au;ij

and Bim are expressed in terms of the parameters �Au and �B by the formulae

Au;ij = �Au

i;j j 6= qi

Au;iqi = 1�
X
j=1
j 6=qi

�Au

i;j

Bim = �Bi;m m 6= pi

Bipi = 1�
X
m=1
m6=pi

�Bi;m;
(3.7)

First derivatives with respect to � are

@

@�Au

i;j

=
@

@Au;i;j

� @

@Au;i;qi

@

@�Bi;m
=

@

@Bi;m

� @

@Bi;pi
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and the second derivatives are

@2

@�Au

i;j

2
=

@2

@Au;i;j
2
+

@2

@Au;i;qi
2

@2

@�Bi;m
2
=

@2

@Bi;m
2
+

@2

@Bi;pi
2

@2

@�Au

i;j @�
Au

i;j0

=
@2

@Au;i;qi
2

j 6= j 0

@2

@�Bi;m@�
B
i;m0

=
@2

@Bi;pi
2

m 6= m0

The parametersAu;i;j andBi;m occur in separate terms of the expression forQk+1(�k; �).

As a result, the form of � induces corresponding block structures on the score vector

S(�k; yk+1) and the Fisher information matrix Ik+1(�k). Evaluating the partial deriva-

tives in the score vector gives:

S(�; yk+1) = [SAu(�; yk+1); S
B(�; yk+1)]

> (3.8)

with one SAu block for each input u 2 U . Each block SAu is given by

SAu(�; yk+1) = [SAu(1); SAu(2); : : : ; SAu(N)]> (3.9)

SAu(i) = [sAu(i; 1); : : : ; sAu(i; qi � 1); sAu(i; qi + 1); : : : ; sAu(i; N)]>

(3.10)

with

sAu(i; j) = gi;j � gi;qi j 6= qi (3.11)

gi;j =
�k+1jK;�k(i; j)

Au;i;j

Æu(uk): (3.12)

Likewise, the block SB is given by

SB(�; yk+1) = [SB(1); SB(2); : : : ; SB(N)]> (3.13)

SB(i) = [sB(i; 1); : : : ; sB(i; pi � 1); sB(i; pi + 1); : : : ; sB(i;M)]> (3.14)

with

sB(i;m) = hi;m � hi;pi m 6= pi (3.15)

hi;m =

k+1jK;�k(i)

Bi;m

Æ(yk+1 = fm): (3.16)
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The delta functions that occur in the score vector come from the inner products in

summands of equation (3.6). At each time k the output yk selects one column of the

matrix B to be updated, and the input uk selects one transition matrix Auk . If yk = em

the first term in equation (3.15) is non-zero, if yk = epi the second term is selected,

and if yk is something else, then sB(i;m) = 0 at that particular value of k.

The Fisher information matrix Ik+1 has a block diagonal structure

Ik+1(�) = diag(IAu

k+1(�); I
B
k+1(�)) (3.17)

again, there is one IAu block for each u 2 U . Each block IAu has the form

IAu

k+1(�) = diag(P1; : : : ; PN);

with

Pi = Mi + Ci;

Mi = diag(�i;j); 1 < j < N ; j 6= qi; (3.18)

and

�i;j =

 Pk+1
l=1 �ljK;�k(i; j)Æu(ul�1)

Au;i;j
2

!
: (3.19)

For each i, Ci is an (N � 1)� (N � 1) matrix with identical elements all equal to

ci =

 Pk+1
l=1 �ljK;�k(i; qi)Æu(ul�1)

Au;i;qi
2

!1=2

: (3.20)

A standard matrix inversion Lemma [20, p. 655] produces expressions for the inverses

of the blocks Pi,

P�1
i = M�1

i �
 

1

ci2
+

NX
j 6=qi

1

�i;j

!�1

FiF
>

i (3.21)
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in which Fi is an N � 1 dimensional column vector with entries �i;j
�1, j 6= qi. These

inverses are used to construct the blocks IAu

k+1

�1
in the inverse of the Fisher information

matrix.

An identical derivation for an expression for the block IBk+1
�1

of the inverse of the

Fisher information matrix in terms of blocks Q�1
i results in

IBk+1
�1

= diag(Q�1
i ) (3.22)

Q�1
i = N�1

i �
 

1

di
2
+

MX
m6=pi

1

�i;m

!�1

EiE
>

i (3.23)

�i;m =

 Pk+1
l=1 
ljK;�k(i)Æfm(yl)

Bi;m
2

!
(3.24)

di =

 Pk+1
l=1 
ljK;�k(i)Æfpi (yl)

Bi;pi
2

!1=2

(3.25)

with Ei an M � 1 dimensional column vector with entries �i;m�1, m 6= pi.

Substituting the explicit expressions for the score vectors (3.8 – 3.16), and the

Fisher information matrices (3.17 – 3.25) into the parameter update equation (3.3)

produces a formula for �k+1 in terms of �k and the conditional densities �k+1jK;�k,

and 
k+1jK;�k. Substituting this estimate in (3.7) gives the following formulae for the

updates of the transition matrix estimate.

Au;ij(k + 1) = Au;ij(k) +
1

�i;j

 
gi;j �

PN
r=1 gi;r=�i;rPN
r=1 �i;r

�1

!
`;

i; j = 1 : : : N ;

Bim(k + 1) = Bim(k) +
1

�i;m

 
hi;m �

PM
r=1 hi;r=�i;rPM
r=1 �i;r

�1

!
;

i = 1 : : : N; m = 1 : : :M ;

(3.26)

Equations (3.26) along with (3.12, 3.15, 3.19, 3.24) give estimates for the hidden

Markov model parameters in terms of the conditional densities �k+1jK;�k and 
k+1jK;�k
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and reduce the problem of deriving recursive estimators for the hidden Markov model

parameters to the problem of finding recursive formulae for these densities. Moore and

Krishnamurthy tackle this problem by applying methods similar to those used in the

backwards-forwards recursions of the standard EM algorithm described by Rabiner

[33].

Two auxiliary distributions

�lj�k(i) = f(xl = ei j y0;l;�k)

�ljK;�k(j) = f(yl+1;K j xl+1 = ej;�k)

are introduced. �lj�k(j), which is the conditional density of the state at time l condi-

tioned on the prior observations, is computed by the recursive formula,

�lj�k(j) =

P
ihej; B(l ^ k)yliAul�1;ij(l ^ k)�l�1j�k(i)P

j

P
ihej; B(l ^ k)yliAul�1;ij(l ^ k)�l�1j�k(i)

: (3.27)

The recursion is initialized with

�0j�k(j) =
hej; B(0)y0i�jP
jhej; B(0)y0i�j :

�ljK;�k(i) is computed with the backwards recursion

�ljK;�k(i) =
X
j

�l+1jK;�k(j)Aul+1;ij((l + 2) ^ k)hei; B((l + 1) ^ k)yl+1i (3.28)

which is initialized with �KjK;�k(i) = 1. The densities �ljK;�k and 
ljK;�k are expressed

in terms of � and � by the formulae

�ljK;�k(i; j) = f(xl = ej; xl�1 = ei j y0;K;�k)

=
�l�1;�k(i)Aul�1;ij(l ^ k)�l�1jK;�k(j)P
i;j �l�1;�l�1

(i)Aul�1;ij(l ^ k)�l�1jK;�k(j)
(3.29)


ljK;�k(i) =

P
j �l;Kj�k(j)Aul;ij((l + 1) ^ k)�l;j�k(i)P

i

P
j �l;Kj�k(j)Aul;ij((l + 1) ^ k)�l;j�k(i)

: (3.30)
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Details of the derivations of these formulae are given in Appendix A.

The derivation given in this chapter closely follows the development of the basic

recursive estimation algorithm described by Krishnamurthy and Moore [21]. In the

same paper the authors make two changes to the algorithm that improve its imple-

mentation. The first change is to use a fixed length buffer of “future” observations to

calculate the a-posteriori probabilities �. Instead of computing �ljK;�k , the a-posteriori

probability for the entire observation sequence form l to K, a buffer of � observa-

tions is used, and �ljK;�k is replaced by the a-posteriori probabilities �ljl+�;�k which

are calculated from the next � observations. The effect of this change is to produce

a fixed-lag recursive estimator. The use of the interval � for both the fixed-lag in the

estimator and the buffer length for the information state estimate in the controller is an

intentional simplification in notation. Although the collusion of the intervals does not

affect the asymptotic properties of the algorithm, in practice the lengths need not, and

probably should not, be identical.

The second change that Krishnamurthy and Moore propose is the incorporation of a

“forgetting factor” in the computation of the Fisher information matrices. Specifically,

the expressions defining �, c, �, and d in equations (3.19, 3.20, 3.24, 3.25) and are

replaced by

�i;j =

 Pk+1
l=1 �

k�l+1�ljK;�k(i; j)Æ(ul�1 = u)

Au;i;j
2

!

ci =

 Pk+1
l=1 �

k�l+1�ljK;�k(i; qi)Æ(ul�1 = u)

Au;i;qi
2

!1=2

�i;m =

 Pk+1
l=1 �

k�l+1
ljK;�k(i)Æ(yl = fm)

Bi;m
2

!

di =

 Pk+1
l=1 �

k�l+1
ljK;�k(i)Æ(yl = fpi)

Bi;pi
2

!1=2

Another way to implement “exponential forgetting” is the following. Let � be a fixed
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positive integer, and write the update equation (3.26) for the transition matrix estimate

Au;ij(k) as

Au;ij(k + 1) = Au;ij(k) +
1

�i;j

 
gi;j �

PN
r=1 gi;r=�i;rPN
r=1 �i;r

�1

!

= Au;ij(k) +
1

k + �

1

�i;j=(k + �)

 
gi;j �

PN
r=1 gi;r=(�i;r=(k + �))PN
r=1 (�i;r=(k + �))�1

!
:

(3.31)

When k >> �, the quantity �i;r=(k + �) is an empirical estimate of the probability

of occurrence of the transition uk = u; xk = ei ! xk+1 = er. An alternative way to

estimate this probability is with the recursive estimator

Zu
k+1 = Zu

k + (1� �)Æu(uk)(�kjk+�;�k � Zu
k ); (3.32)

the matrix elementZu
k+1(i; r) gives the frequency estimate that corresponds to �i;r=(k+

�). Substitute Zu
k+1(i; r) for �i;r=(k + �) in the second line of (3.31) to give a new re-

cursive update for the transition matrix estimates

Au;ij(k + 1) = Au;ij(k) +
1

k + �

1

Zu
k (i; j)

 
gi;j �

PN
r=1 gi;r=(Z

u
k (i; r))PN

r=1 (Z
u
k (i; r))

�1

!
: (3.33)

The corresponding update equation for the estimates Bim(k) is

Bim(k + 1) = Bim(k) +
1

k + �

1

�k(i;m)

 
hi;m �

PM
r=1 hi;r=�k(i; r)PM
r=1 (�k(i; r))

�1

!
; (3.34)

with �k being the recursively defined quantity

�k+1 = �k + (1� �)(
kjk+�;�ky
>

k � �k) (3.35)
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Chapter 4

Analysis of the control and estimation algorithm.

Part 1: Stochastic approximation formulation.

The next three chapters present an analysis of the combined control and estimation

algorithm as a stochastic approximation algorithm. The first section of this chapter

reformulates the combined control and estimation problem in new compact notation

that emphasis the division of the system structure between a Markov process and the

parameter trajectory of a stochastic difference equation. The section introduces a new

stochastic structure called a Markov modulated random walk, and provides a decom-

position of the Markov process in terms of these structures and an underlying finite

Markov chain. The second section in the chapter provides an overview of the ODE

method, and formulates the assumptions from the premise of the convergence theo-

rems in terms of the specific structure of the combined estimation and control prob-

lem. Verification of three of the seven assumtions presented in this chapter requires

nontrivial analysis. The next two chapters present this analysis.
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4.1 Decomposition of the Markov chain

The analysis of the combined control and estimation algorithm proceeds by the identi-

fication and exploitation of structure in the complex Markov process that is associated

with the algorithm. The state-space of this Markov process has two levels of factor-

ization. At each level the Markov process is expressed as a product of an embedded

Markov process that provides a sufficient statistic for the large process, and a depen-

dent structure, a Markov modulated random walk, that is defined as follows.

Consider a discrete-time Markov process fTkg that takes values in a state space

T = S � S that is a product of a set S and a semigroup S. Assume that the set S

and the semigroup S each have measurable structures that are compatible with the

sigma algebra on T. Let Tk have components Tk = (Sk; sk), where fSkg is a Markov

process in S with transition kernel �(Sk; dSk+1). If there exists a measurable function

g : S ! S such that for all k, sk = g(Sk)sk�1, then the random process fskg is the

Markov modulated random walk generated by the Markov process fSkg, and the map

g.

The transition kernel for the process fTkg is �(Ta; dTb) = Æg(Sb)sa(sb)�(Sa; dSb),

where �(Sa; dSb) is the transition kernel for the Markov process Sk. The meaning of

this notation becomes clearer when the action of the kernel on a function is considered.

If f : T! R is a measurable function, then

E[f(Tb) j Ta] =
Z

f(Tb)�(Ta; dTb) =

Z
f(Sb; g(Sb)sa)�(Sa; dSb)

If the map induced by the function g on the space of measures (the push-forward of

g) is written as d?g, then d�b = [d?g](�(Sa; dSb)) is a sequence of time dependent

probability kernels on S, and the marginal distribution for sk+1 conditioned on Tk =
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(Sk; sk) is given by the kernel1 �(Sa; sa; dsb) = Æsa � d�b(sb). In the special case in

which the kernel �(Sa; dSb) = 1(Sa)d�(Sb) is independent of Sa, the push-forward

d�b = [d?g](d�) = d� is a constant measure, and the Markov random walk sk is a

conventional random walk (with independent increments) on the semigroup S.

Turning now to the chain that underlies the combined control estimation problem,

it is time for some new notation. Let k 2 N be the instant in time after the controller

has read the value of the k’th output yk, but before the k’th input uk is computed.

Define the following random variables:

Xx
k = xk is the state of the controlled hidden Markov model defined in Section 2. X x

k

takes values in a finite set of size N which is represented by the N canonical

basis vectors in RN .

Xu
k = uk��;k�1 is a buffer containing the last � values for the control u. The control

takes values in a finite set of size P , and the values of Xu
k are represented by

elements of the set formed by taking Cartesian products of length � of copies of

the set of canonical basis vectors in RP .

Xy
k = yk��+1;k is a buffer containing the last � values for the output (including the

k’th value). The output takes values in a finite set of size M , and the values of

Xy
k are represented by elements of the set formed by taking Cartesian products

of length � of copies of the set of canonical basis vectors in RM .

X�
k = �k��;k��+1 is buffer of length two containing the values for the time-lagged

empirical density for the state calculated at times k and k�1. Denote the proba-

bility simplex over the state by 
�, thenX� takes values in the Cartesian product

1The convolution of two measures � and � defined on a semigroupS is the measure defined by the

formula � � �(f) =
R
S�S

f(gh) d�(g)d�(h)
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� � 
�.

X�
k is the empirical estimate of the density for the conditional joint distribution of

successive states in the Markov chain, conditioned on the value of the input at

the transition. Let 
� denote the probability simplex in RN2

, then the densities

of joint distributions of successive states take values in 
� , and X�
k takes values

in the Cartesian product of P copies of 
� .

X


k is the empirical estimate of the density for the distribution of the state of the

Markov chain conditioned on the associated output. X 

k takes values in the

Cartesian product of M copies of 
�.

Throughout the remainder of the dissertation n-dimensional probability simplices


 are identified with subsets of real projective space Pn. This identification simplifies

formulas such as those for the filter equations by removing the need to keep track of

normalizing constants. Conversely, if X 2 P
n, then an expression such as miniX

i

should be interpreted as applying to a representation of X as a point in the probability

simplex 
.

Let ~Xk = (Xx
k ; X

u
k ; X

y
k ) be the product of the discrete random variables, and let

Xk = (Xx
k ; X

u
k ; X

y
k ; X

�
k ; X

�
k ; X



k ) be the product of all the random variables. The

evolution of the discrete time random process Xk captures the combined dynamics of

the controlled hidden Markov model that forms the plant, the control algorithm, and the

estimator. The random variables Xu and Xy which represent buffers of length � are

used both in both the estimator and the control algorithms. There is no reason, other

than convenience, why the lag in the estimator algorithm, which is used to smooth

the a-posteriori estimates of the state occupation and state transition, should be the

same length as the buffer that is used by the moving horizon controller to compute the
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current value for the information state.

The range spaces for the random variables will be denoted by the corresponding

script symbols, so, for example, ~X denotes the finite set of values taken by the process

~Xk, X� = 
� � 
� is the continuous range space for the random variable X�, and

X, the range space for the complete process Xk, is a complicated space formed from a

finite number of disconnected continuous components.

The following proposition summarizes the information available about the evolu-

tion, and the proof provides a detailed decomposition of the structure in the transition

kernel.

Proposition 7. The random process fXkg is Markov, the chain f ~Xkg is a Markov

sub-chain, and for all l, the random variable Xl, together with the chain f ~Xk; k � lg
form a set of sufficient statistics for the process fXk; k � lg.

Proof. The proof proceeds by using the formulae from previous chapters to write ex-

plicit expressions for the Markov transition kernels ��( ~X; d ~X) and ��(X; dX).

The dynamics of the discrete chain is determined from the description of the con-

trolled hidden Markov model and the control algorithm in Chapter 2. Recalling the

definitions of Xx, Xu, and Xy, ~Xa 2 ~X has a representation as a tensor product of

canonical basis vectors

~Xa = xa 
 y0a 
 u�1a 
 y�1a 
 u�2a 
 : : :
 y��+1
a 
 u��a ; (4.1)

so if ~Xk = ~Xa then xa = xk, y�ia = yk�i and u�ia = uk�i. The factor ~Xa can only

take a finite number of values. The distribution of the sequence of discrete random

variables ~Xk is determined by a transition kernel ��(Xa; d ~Xb) that depends only on

the discrete part of the random variable Xa. This transition kernel can be written as

a large, sparse, stochastic matrix M of rank N(MP )�. If the rows and columns of
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M are indexed by the finite set of values that form the range of ~X , then a formula for

the entry M
~Xa

~Xb

can be determined from the definitions of the controlled Markov chain

transition matrices given in equations (2.1), (2.2), (2.3), and from the randomized,

moving-horizon, output-feedback control strategy ��.

M
~Xb

~Xa

= hxa; Au�1
b

xbihxa; By0b ih��(y0a; u�1a ; : : : ; y��+1
a ; u��a ); u�1b i

� Æy0
a
(y�1b )Æu�1

a
(u�2b ) : : : Æy��+2

a
(y��+1

b )Æu��+1
a

(u��b ) (4.2)

That M is stochastic follows from Au and B being stochastic, and from the fact that �

takes vector values that are probability densities over the finite input set U . The matrix

M depends on the parameter � solely through the feedback strategy ��.

The evolution of the continuous factors of X is determined by the estimation al-

gorithm presented in Chapter 3. Write X� = (X�;1; X�;2), X� = (X�;1; : : : ; X�;P )

and X
 = (X
;1; : : : ; X
;M) so X�;i and X
;m take values in the probability sim-

plex 
� and X�;p takes values in the probability simplex 
� . Let X� = 
� � 
�,

X� = 
� � P� � � � 
� and X
 = 
� � M� � � � 
�. For S 2 fX�;X� ;X
g, let S(S)

denote the semigroup of (not necessarily invertible) affine transformations of S into

itself. The evolution of the random processes X�, X� and X
 are described directly

in terms of the action of elements of Markov modulated random walks on the affine

spaces X�, X� , and, X
 . Define the maps g� : ~X ! S(X�), g� : ~X � X� ! S(X�)

and g
 : ~X� X� ! S(X
) by

(g�( ~X)X�)1 = diag(B(�)y��+1)A>

u��(�)X�;1; (g�( ~X)X�)2 = X�;1 (4.3)

(g�( ~X;X�)X�)p = (1� qÆep(u
��))X�;p + qÆep(u

��)� (4.4)

(g
( ~X;X�)X
)m = (1� qÆem(y
��))X
;m + qÆem(y

��)
 (4.5)
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with � and 
 defined by

�(i; j) =
X

�;2
i Au;ij�

��
jP

i;jX
�;2
i Au;ij�

��
j

�����
u=u��

(4.6)


(i) =

P
j �

��+1(j)Au;ijX
�;1
iP

i

P
j �

��+1(j)Au;ijX
�;1
i

�����
u=u��+1

; (4.7)

and ��l calculated from the buffered input and output values Xu and Xy by the back-

ward recursion

��(l+1);i =
X
j

��l;jAu;ijBi;m

�����
u=u�l;em=y�l

�0 = 1 (4.8)

The map g� comes directly from the recursion (3.27), the equations for ��l, � and


 come from (3.28 – 3.30), and the mappings g� and g
 come from equations (3.32)

and (3.35), the recursive formulae for empirical estimates of the conditional densities

X� and X
 . The ranges of these maps all lie in semigroups of affine transformations

on the appropriate probability simplices.

The mappings defined in (4.3–4.5) give rise to Markov modulated random walks

( ~Xk; s
�
k ), ( ~Xk; X

�
k ; s

�
k), and ( ~Xk; X

�
k ; s



k) through the definitions,

s�0 = IX� s�k = g�( ~Xk)s
�
k�1

s�0 = IX� s�k = g�( ~Xk; X
�
k )s

�
k�1

s
0 = IX
 s
k = g
( ~Xk; X
�
k )s



k�1

and the random processes X�, X� and X
 obey evolution equations that are deter-

mined by the actions of transformations which are randomly drawn from the corre-

sponding semi-groups s�, s� and s
 .

X�
l+1 = s�l+1X

�
0 X�

l+1 = s�l+1X
�
0 X


l+1 = s�l+1X


0 :

Equations (4.2) and (4.3–4.5) combined with the formula for the transition kernel of a

Markov modulated random walk yield the following explicit expression for the kernel
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��(Xa; dXb).

��(Xa; dXb) = M
~Xa

~Xb

ÆX�;1
a

(X�;2
b )Æg�( ~Xb)X

�;1
a

(X�;1
b )

�
Y
p

Æ
g�;p( ~Xb;X

�

b
)X�;p

a

(X�;p
b )
Y
m

Æg
;m( ~Xb;X
�

b
)X


;m

a
(X
;m

b ) (4.9)

The claims that the chain fXkg is Markov and that the discrete sub-chain with the

initial state forms a set of sufficient statistics both follow from the form of the kernel

(4.9).

The following definitions for the measures in the convolution kernels complete the

notational definitions for the Markov modulated random walks that were introduced in

Proposition 7.

��k = [d�g
�](��( ~Xk�1; d ~Xk))

�
�
k = [d�g

�](��( ~Xk�1; X
�
k�1; d( ~Xk; X

�
k )))

�
k = [d�g

](��( ~Xk�1; X

�
k�1; d( ~Xk; X

�
k )))

Finally, let S is an affine space, andS(S) is the semigroup of affine transformations

of S into itself. The following definitions map random walks defined on the semigroup

S(S), to random walks in the affine space S. The orbit of a point S0 2 S under the

action of the semigroupS is described by the continuous map

oS0 : S(S)! S

oS0(g) = gS0

where the product gS0 is the image of the point S0 under the transformation g. The

orbit mapping oS0 induces a continuous mapping d?oS0 from the space of measures

on the semi-group to the space of measures on the affine space, and the sequence of
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conditional distributions �k(g0; dgk) map to a sequence of conditional distributions

�k(S0; dSk) through the equations

�(S0; dSk) = d?oS0 �
k(g0; dgk):

For a more concrete picture of the situation, recall that objects in the spaces X�,

X� , and X
 are empirical estimates of distributions associated with the discrete chain

~Xk. The random walks on the semigroupsS(X�),S(X�), andS(X
) induce stochas-

tic processes on the corresponding spaces of empirical estimates. These stochastic

processes are the sequences of empirical estimates that are generated by the recursive

estimation algortihm.

4.2 A stochastic approximation formulation of the esti-

mation algorithm

The notation that was introduced in the preceding section for the description of the

underlying Markov chain permits a compact representation of the estimation algorithm

in the form of a general stochastic approximation algorithm. Let � be a positive integer,

and let 
k = k + �. Using the notation of Benveniste et al., the parameter update

equation becomes

�k+1 = �k + 
k+1H(�k; Xk): (4.10)

Given initial values X0 = X and �0 = � for the state of the Markov chain, and the

value of the parameter estimates, the recursion (4.10) and the transition kernel (4.9)

define a distribution PX;� for the chain (�k; Xk). The particular form of H(�k; Xk)

ensures that the values �k, which are a sequence of estimates for the entries in the

matrices Au and B, satisfy the constraints required of probability kernels.
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Equation (4.10) summarizes the two recursive equations (3.33, 3.34). When writ-

ten in the new notation of this chapter, the part of H(�k; Xk) that updates the estimates

of the state transition matrices Au is:

Æu(u
��)

A2
u;ij

X�

k
(i;j)

�PN
r=1

A2
u;ir

X�

k
(i;r)

�
�(i;j)

Au;ij
� �(i;r)

Au;ir

��
PN

r=1

A2
u;ir

X
�

k
(i;r)

(4.11)

while the part that updates of the estimates for the output transition matrix B is

Æfr(y
��+1)

B2
im

X


k
(i;m)

�PM
r=1

B2
ir

X


k
(i;r)

�

(i)

Bim

� 
(i)

Bir

��
PM

r=1

B2
ir

X



k
(i;r)

(4.12)

in which u�� and y��+1 are the buffered values of input and output, and � and 
 are

given by equations (4.6) and (4.7).

Examination of equations (4.11) and (4.12) indicates that, for fixed X 2 X, the

function �  H(�;X) is uniformly bounded on � 2 �. If, on the other hand, �

is a fixed point in �, then the function X  H(�;X) blows up as X ! @X. In

particular, as X�(i; j) ! 0, the terms in (4.11) that update the estimate Au;ij have

growth O(1=X�(i; j)). Similarly, as X
(i;m)! 0, the terms in (4.12) that update the

estimate Bim have growth O(1=X�(i; j)).

Equation (4.10) is in the form of the general stochastic approximation algorithm

considered by Benveniste et al. [7, Part2, equation 1.1.1]

�k+1 = �k + 
k+1H(�k; Xk) + 
2k+1�k(�k; Xk): (4.13)

In the particular case of equation (4.10), the function � is identically zero. Part 2 of the

book by Benveniste et al. [7] presents a general analysis of the convergence properties

of this algorithm, and eventually this dissertation will use theorems from that work

to establish the convergence of the combined estimation and control algorithm. The

premises of the major theorems in Part 2 of Benveniste et al. rely on a set of seven
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non-trivial assumptions about the random process Xk, the generator functionH(�;X),

and the sequence of step-sizes 
k. A major objective of the work in this dissertation

is to establish a theoretical framework for the combined estimation and control prob-

lem that supports the assumptions on which the stochastic approximation results of

Benveniste et al. rely. The three most problematic assumptions that Benveniste et al.

require form the conclusions of the theorems presented in the next couple of chapters.

The remainder of this chapter outlines the major ideas in the stochastic approximation

theory presented by Benveniste et al. and introduces the theory’s seven basic assump-

tions in the contexts in which Benveniste et al. use them to advance the theory.

The fit between the general stochastic approximation theory of Benveniste et al.

and the convergence problem presented in this dissertation is not perfect. Whereas

Benveniste et al. allow the random processes Xl and �l to evolve in Euclidean spaces,

here xl 2 X and �l 2 �, where X and � are both Cartesian products of compact

subsets of Euclidean spaces. The difference in the range of � is not very important.

Uniform boundedness of the function H(�;X) with respect to � means that the nat-

ural embedding of � into an appropriately dimensioned Euclidean space provides a

suitable metric structure for the stochastic approximation theory. The case for X is

different, H(�;X) blows up as X ! @X at an asymptotic rate that is inversely propor-

tional to the Euclidean distance between X and the boundary @X. Under the natural

embedding of X into a Euclidean space, the function H(�;X) is neither locally Lips-

chitz with respect to X , nor is it bounded by a function of polynomial growth, and both

deficiencies create problems for the stochastic approximation theory. The solution is

to choose a metric for the space X that better suits the requirements of the stochastic

approximation analysis. An appropriate metric for X is a hyperbolic metric that ef-

fectively puts the boundary @X at an infinite distance from points in the interior of X.
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Specifically, the following definitions define a suitable metric dX : X�X! R for the

space X.

dX(Xa; Xb) =

8>><
>>:
1 ~Xa 6= ~Xb

maxfd�(X�
a ; X

�
b ); d�(X

�
a ; X

�
b ); d
(X



a ; X



b )g ~Xa = ~Xb

where

d�(X
�
a ; X

�
b ) = max

�
log sup

i;i0

�
X�;1

a (i)

X
�;1
b (i)

X�;1
b (i0)

X
�;1
a (i0)

�
; log sup

i;i0

�
X�;2

a (i)

X
�;2
b (i)

X�;2
b (i0)

X
�;2
a (i0)

��

d�(X
�
a ; X

�
b ) = max

1�p�P

(
log sup

i;j;i0;j0

 
X�;p

a (ij)

X�;p
b (ij)

X�;p
b (i0j 0)

X�;p
a (i0j 0)

!)

d
(X


a ; X



b ) = max

1�m�M

�
log sup

i;i0

�
X
;m

a (i)

X
;m
b (i)

X

;m
b (i0)

X
;m
a (i0)

��

The selection of a hyperbolic metric on X affects the forms of the statements in the

theory that use growth bounds or moment conditions. Where, in [7], Benveniste et al.

use a growth bound of the form jf(X)j < C(1 + jXjs) for some non-negative integer

s, the appropriate bound here will be an expression of the form jf(X)j < M�s(X)

with �s(X) defined as follows. For X� 2 X�, X� 2 X� and X
 2 X
 define

�s(X
�) = max

s1+s2=s

�
sup
i
jX�;1(i)j�s1 � sup

i

jX�;2(i)j�s2	
�s(X

�) = maxP
p
sp=s

nY
p

sup
i;j
jX�;p(i; j)j�sp

o

�s(X

) = maxP

m
sm=s

nY
m

sup
i
jX
;m(i)j�sm

o
;

and if X = ( ~X;X�; X�; X
) 2 X, let

�s(X) = max
s�+s�+s
=s

�
�s�(X

�)�s�(X
�)�s
(X


)
	
: (4.14)
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Accordingly, where Benveniste et al. use a moment condition of the form

Z
�k(X0; dXk)jXkjq < C;

the appropriate moment condition here will be

Z
�k(X0; dXk)�q(Xk) < C:

Much of the ergodic theory presented in the next chapter relies on notions of weak

convergence of measures, and it is important to develop the theory in the context of an

appropriate space of test functions. A key requirement for the stochastic approximation

theory is the existence of a potential theory for the Markov transition kernel on a

suitable function space. A suitable function space, in this context is one that includes

the family of generators H(�; �) which are considered as functions of the state-space

X. The potential theory rests on the weak ergodicity theory for the chain Xl, and the

choice of a space of test functions in the ergodicity theory determines the function

space in which the potential theory is applicable.

The setting that Benveniste et al. use is the following. Markov chain states are

represented by variables z = (x; e) 2 R
k � E with E a finite set. Given g, a function

on Rk � E, and a constant p � 0, they define

kgk1;p = sup
x;e

jg(x; e)j
1 + jxjp

[g]p = sup
x1 6=x2;e2E

jg(x1; e)� g(x2; e)j
jx1 � x2j(1 + jx1jp + jx2jp)

Li(p) = fg : [g]p < +1g

Np(g) = supfkgk1;p+1; [g]pg

The space of test functions that is used to develop the ergodic theory is the space of

Borel functions on Rk �E that are bounded, and Lipschitz, and the space of functions
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for which the potential theory is developed is the space Li(Q;L1; L2; p1; p2) which is

defined as follows.

Let Q be a compact subset of Rd , and, given a function f(�; x; e) on Rd �R
k �E,

let f� denote the function (x; e) ! f(�; x; e). A function f(�; x; e) is of the class

Li(Q;L1; L2; p1; p2) if

(i) for all � 2 Q, Np1(f�) � L1

(ii) for all �1; �2 2 Q, all (x; e) 2 R
k � E,

jf(�1; x; e)� f(�2; x; e)j � L2j�1 � �2j(1 + jxjp2);

and Li(Q) denotes the set of functions f which belong to Li(Q;L1; L2; p1; p2) for some

values of L1, L2, p1 and p2.

The important features of the spaces Li(Q;L1; L2; p1; p2) are that weighted inte-

grals of the functions with respect to finite measures are always bounded, and that

functions in the space display a uniform regularity with respect to a family of weighted

Lipschitz semi-norms. Appropriate definitions for the context of a hyperbolic geome-

try on the space X are:

kgk1;p = sup
X

jg(X)j
�p(X)

[g]p = sup
X1 6=X2

~X1= ~X2

jg(X1)� g(X2)j
d(X1; X2)(�p(X1) + �p(X2))

Li(p) = fg : [g]p < +1g

Np(g) = supfkgk1;p+1; [g]pg

The definition of the space Li(Q;L1; L2; p1; p2) is almost the same as the definition

that Benveniste et al. use with the Euclidean metrics, only condition (ii) becomes
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(ii) for all �1; �2 2 Q, all X 2 X,

jf(�1; X)� f(�2; X)j � L2j�1 � �2j�p2(X);

The development of the stochastic approximation theory in Benveniste et al. [7]

relies only on the metric properties of the Euclidean metric, not on the specific form.

As a consequence, the extension from the Euclidean theory to the more general metric

theory requires nothing more than the substitutions of appropriate metrics, moments,

and function seminorms.

Benveniste et al. employ the ODE method first used by Ljung [25] to analyze the

asymptotic properties of the algorithm. This method associates the random sequence

of successive parameter estimates, �k, with a piece-wise constant path �(t), t � 0 .

The mapping between the index k and the time parameter t is determined by the step

sizes 
k, and relies on the assumption:

Assumption 1. [7, p. 213, A.1] (
l)l2N is a decreasing sequence (in the broad sense)

of positive real numbers such that
P

l 
l = +1.

This is certainly true of the sequence 
l = 1=�+ l which is decreasing, and has diver-

gent partial sums. The path �(t) is parameterized as follows. An increasing sequence

of times tk is defined by t0 = 0, and the sequence of partial sums tk =
Pk

l=1 
l. A par-

tial inverse mapping m : R ! N is defined on the interval [0;1) by m(t) = supfk :

k � tg, and the path �(t) is defined by �(t) = �m(t).

The analysis is broken down into two logical tasks. The first task is to show that for

any length of time T , the piecewise constant trajectories �(t) approximate solutions of

an associated ordinary differential equation

d=dt ��(t) = h(��(t)); t � t0; ��(t0) = a0 (4.15)
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on the interval [t0; t0 + T ], and that the error in the approximation can be made ar-

bitrarily small provided t0 is chosen large enough. The second task is to show that

equation (4.15) has a stable equilibrium solution at ��(t) = �� where �� is the true value

of the parameter. The successful completion of these two tasks permits the inference

that the recursion (4.10) converges to the true parameter at least when initialized in a

neighborhood of the true value.

In practice, the division between the tasks is not so precise. Benveniste et al. use

a Lyapunov technique to demonstrate stability of the ODE. So, rather than proving

convergence of the iterates of the stochastic formulae to trajectories, they show that

an evaluation of the Lyapunov function on the iterates of the approximation algorithm

�k, produces a sequence in R that converges to a sequence formed by evaluating the

Lyapunov function at points ��(tk) sampled from the trajectory of the ODE. In other

words, the authors show that for any length of time T , and for t0 sufficiently large, the

values of the Lyapunov function and its first two derivatives evaluated on the trajectory

�(t) stay arbitrarily close to values evaluated on corresponding points of ��(t) on the

interval [t0; t0 + T ]. With an assumption of uniformly bounded derivatives for the

Lyapunov function, an application of the mean value theorem provides the means of

dealing with this added complexity.

Let ��(t; ; t0; a0) denote the solution of equation (4.15) with initial condition ��(t0) =

a0, then the set of equations:

��(t0) = ��0 = a0 ��(t) = ��m(t)

��k = ��k�1 + 
k+1h(��k)

(4.16)

provides a variable step-size, Euler approximation to the trajectories ��(t; ; t0; a0). The

accumulated error between the Euler scheme and the random sequence after K steps
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is

eK =
K�1X
k=1

�k (4.17)

with

�k = �k+1 � �k � 
k+1h(�k)

= 
k+1(H(�l; Xk)� h(�k)): (4.18)

In light of equations (4.17) and (4.18), it is possible to rephrase the application of

the ODE method as the problem of first selecting a generator h, for a stable ODE, and

then bounding the mean of the square of the accumulated conditional error E[e2K jX0; �0]

on a sufficiently large set of trajectories �k. The first step in the solution is to assume

that on D, an open subset of �, the random quantity H(�;X) has the form of a stable

generator h(�) with added noise that can be eliminated by averaging H(�;X) with re-

spect to the random variable X . The problem of bounding the mean square cumulative

error is then a problem of analyzing time averages of the error process �k. This analy-

sis requires careful restriction of the possible form of the probability distribution of the

error process eK . The next two assumptions from Benveniste et al. restrict the form of

the probability law for eK indirectly through restrictions on the stochastic structure of

the process Xk and the growth in X of the function H(�;X).

Assumption 2. [7, p. 213, A.2] There exists a family f�� : � 2 R
dg of transition

probabilities ��(x;A) on Rk such that, for any Borel subset A of Rk , we have

P [Xn+1 2 A j Fn] = ��n(Xn; A):

Assumption 3. [7, p. 216, A.3] For any Compact subset Q of D, there exist constants
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C1, C2, q1, and q2 (depending on Q), such that for all � 2 Q, and all n we have

jH(�; x)j � C1(1 + jxjq1)

j�n(�; x)j � C2(1 + jxjq2)

Proposition 7, and equations (3.33) and (3.34) establish that the process Xl and

the function H(�;X) in the parameter update equation (4.10) satisfy the following

variations of Assumptions 2 and 3.

Assumption 2-bis. There exists a family f�� : � 2 �g of transition probabilities

��(X;A) on X such that, for any Borel subset A of X, we have

P [Xl+1 2 A j Fl] = ��l(Xl; A)

Assumption 3-bis. For any Compact subset Q of D, there exist constants C1, and

q1,(depending on Q), such that for all � 2 Q, and all n we have

jH(�;X)j � C1�q1(X)

For a specific trajectory �k, the error eK depends on the sequence of parameter

estimates f�k; 0 < k < Kg, the iterates of the Markov chain fXk; 0 < k < Kg,

the parameter � in the formula for 
k, and K, the number of steps taken. Unbound-

edness in the factors H(�k; Xk+1) � h(�k) as Xk ! @X, and divergence of the seriesP
k 
k mean that the summations (4.17) are not absolutely convergent for all trajecto-

ries. The problem of unboundedness in the summands is circumvented by modifying

the argument of the expectation E[e2K jX0; �0] to include only those parts of each trajec-

tory where H(�k; Xk+1)� h(�k) remains small, and the second problem, which stems

from the divergence of the series
P

k 
k, is circumvented (after some work) with a

martingale convergence theorem that takes advantage of the centralizing tendency in

the distribution of the sum of random variables. The use of these two devices produces
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two results. The first is an approximation result for the expected error that is a function

of the initial value X0, and is conditioned on the behavior of the trajectories �k. The

second is an estimate of the probability that a trajectory starting with initial value �0

remains well behaved.

The factor H(�k; Xk+1) � h(�k) that appears in each summand of the cumulative

error becomes large when Xk+1 lies close to the boundary of X, in particular, when

the empirical densities X �
k+1(i; j) and X



k+1 have minima close to 0. The effect of

excursions of Xk+1 towards @X on the expected cumulated error are mitigated by the

use of a stopping rule on the incremental error process �k. The stopping rule rejects

from the computation of the expectation terms in the error summation that come from

parts of the trajectory �k that are likely to be associated with problematic points Xk in

the accompanying chain. The stopping rule is based on two criteria. The first criterion

relies on the selection of a compact set �c � � and stopping time �1(�c) = inffk :

�k 62 �cg. The second criterion relies on the selection of a positive constant �, and

uses the stopping time �2(�) = inffk � 1; j�k � �k�1j > �g. Each sample path of the

process (�k; Xk) is stopped at the smaller of the two stopping times, which is itself a

stopping time �(�; Q) = minf�1(�c); �2(�)g. The original expression for the expected

cumulative error, E[e2KjX0; �0] is replaced by a new expression

E [sup
k<K

I(k � �(�;�c)) e2k jX0; �0]: (4.19)

In the modified expression for the expected cumulative error, the value for the cumu-

lative error that each trajectory contributes to the expectation is the maximum value

that the partial cumulative errors can take given that the summation stops when the

trajectory either hits the stopping condition, or the index reaches the upper limit K.
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Notice, for instance, that the expression (4.19) bounds the expression

E [I(k � �(�;�c)) e2k jX0; �0]

which is the conditional expectation of the cumulative error accumulated over the in-

terval 0 < l < k, and conditioned on the event that k < �(�;�c).

The proof that the stochastic approximation iterates converge in probability to the

approximate trajectories of the underlying ODE relies on bounding both the error ex-

pression (4.19) and the probability of the event k < �(�;�c). The following assump-

tion on the moments of the Kernels �l
�(Xa; dXb), and on the regularity of the kernels

with respect to both Xa and the parameter � restrict the distribution of trajectories suf-

ficiently that the bound on the expected error (4.19) and the probability that a trajectory

satisfies the stopping rule P (k < �(�;�c)) both remain small.

In the Euclidean case the form of the assumption is:

Assumption 4. [7, p. 290, A0:5] For all q � 1, and for any compact subset Q of D,

there exist r 2 N , and constants �� < 1, C1, C2, K1, and K2, such that

sup
�2Q

Z
�r
�(Xa; dXb)jXbjq � ��jXajq + C1(i)

sup
�2Q

Z
��(Xa; dXb)jXbjq � C2jXajq + C1(ii)

For any Borel function g on X such that [g]q � 1

sup
�2Q

j��g(X1)� ��g(X2)j � K1[g]qjX1 �X2j(1 + jX1jq + jX2jq)(iii)

For all �; �0 2 Q, and for any Borel function g with [g]q � 1

j��g(X)� ��0g(X)j � K2[g]qj� � �0j(1 + jXjq+1)(iv)

In the hyperbolic geometry the assumption becomes:
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Assumption 4-bis. For all q � 1, and for any compact subset Q of D, there exist

r 2 N , and constants �� < 1, C1, C2, K1, and K2, such that

sup
�2Q

Z
�r
�(Xa; dXb)�q(Xb) � ���q(Xa) + C1(i)

sup
�2Q

Z
��(Xa; dXb)�q(Xb) � C2�q(Xa) + C1(ii)

For any Borel function g on X such that [g]q � 1

sup
�2Q

j��g(X1)� ��g(X2)j � K1[g]qd(X1; X2)(�q(X1) + �q(X2))(iii)

For all �; �0 2 Q, and for any Borel function g with [g]q � 1

j��g(X)� ��0g(X)j � K2[g]qj� � �0j�q+1(X))(iv)

With control on both the conditional error (4.19) and the probability of the event

k < �(�;�c), a two step procedure establishes the approximation result. The first

step establishes that the expected error after K iterations of the algorithm converges

as K ! 1 to a finite limit that depends on the choices of �c and �. The second step

establishes two things. First, that the probability that the trajectory �k remains inside

the set �c converges to 1 as �!1, so long as �0 lies well inside �c. Second, that the

limit on the error estimates from the first step converge to 0 as �!1.

The sum is divided into two parts, one with partial sums that form a Martingale

sequence with bounded second moments, and another which converges absolutely.

The method that Benveniste et al. use to accomplish this decomposition rests on the

observation that if the difference H(�k; Xk+1)� h(�k) that appears in equation (4.18)

is written as the right hand side of a Poisson equation

(I � ��(X))v� = H(�;X)� h(�); (4.20)
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then the error terms in equation (4.18) can be rewritten in terms of the solutions v�(Xk)

and conditional expectations (filtered observations) of the solutions ��(Xk)v� evalu-

ated at points on the chain. If solutions v�k to equation (4.20) exist on a region of

state-space that includes each of the points Xk in the Markov chain, then a substitution

of equation (4.20) into the expression for the error gives

eK =
K�1X
k=0


k(v�k(Xk)� [��kv�](Xk))

= 
1v�0(X0)� 
Kv�K�1
(XK�1)

+
K�1X
k=0


k+2v�k+1
(Xk+1)� 
k+1[��kv�k ](Xk)

= 
1v�0(X0)� 
Kv�K�1
(XK�1)

+
K�1X
k=0


k(v�k(Xk+1)� [��kv�k ](Xk))

+
K�1X
k=0

1

k + 2
(v�k+1

(Xk+1)� v�k(Xk+1))

+
K�1X
k=0

�

k+2 � 
k+1

�
v�k(Xk+1)

The sequence of partial sums associated with the summation in the third term form

a martingale which is bounded in mean square, and an application of Doob’s Lp in-

equality [36, p. 152] establishes convergence of the series to a finite limit. An assump-

tion of Lipschitz regularity of the solutions to the Poisson equation with respect to

variation in � produces O(k�2) bounds on the terms in the second summation on the

right hand side, and a uniform boundedness assumption for the solutions on a region in

state-space that includes the chain Xk yields O(k�2) bounds on the terms of the third

summations.

Of course, an important prerequisite to the success of this approach is the existence

of solutions to the Poisson equation (4.20) which are locally Lipschitz with respect to
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the parameter �, and Benveniste et al. make the following assumption.

Assumption 5. [7, p. 216, A.4] There exists a function h on D, and for each � 2 D a

function v�(�) on Rk such that

(i) h is locally Lipschitz on D;

(ii) (I � ��)v� = H� � h(�) for all � 2 D;

(iii) for all compact subsets Q of D, there exist constants C3, C4, q3, q4, � 2 [1=2; 1],

such that for all �; � 0 2 Q

jv�(X)j � C3(1 + jXjq3)

j��v�(X)� ��0v�0(X)j � C4j� � �0j�(1 + jXjq4)

Once again, the statement of the bounds in the assumption need to be adjusted for

a hyperbolic geometry. The modified assumption is:

Assumption 5-bis. Let D be an open subset of �. There exists a function h on the

interior of D, and, for each � 2 D, a function v�(�) on X such that

(i) h is locally Lipschitz on D;

(ii) (I � ��)v� = H� � h(�) for all � 2 D;

(iii) for all compact subsets Q of D, there exist constants C2, C3, q2, q3, � 2 [1=2; 1],

such that for all �; � 0 2 Q

jv�(X)j � C2�q2(X)

j��v�(X)� ��0v�0(X)j � C3j� � �0j��q3(X)
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Much of the next chapter is devoted to establishing this prerequisite in the context

of the combined estimation and control problem. The problem of finding solutions to

the Poisson equation is at the root of the branch of probability called potential theory,

and examination of a case where the potential theory is well established indicates the

direction in which to proceed. When Xk is a positive Harris recurrent, and aperiodic

Markov chain with invariant distribution m�, then the range of the Potential opera-

tor (I � ��) is contained in the space of continuous functions ff : m�(f) = 0g.

An application of the measure �� as a functional to both sides of Equation (4.20)

fixes the generator h(�) of the ODE to be ��(H(�; �)). Furthermore, the same con-

ditions on the chain Xk guarantee that if f is a function on the state space which

satisfies ��(f) = 0, then the series
Pk

1
[�lf ](X) converges pointwise, and the func-

tion v�(X) = limk

Pk
1
�l(H(�; �)� h(�))(X) exists, and is a solution to the Poisson

equation. Unfortunately the chain that was described in Section 4.1 does not have

the Harris recurrence property, and the Potential theory for Harris chains [34] is not

applicable, however there are other means of demonstrating geometric ergodicity for

sequence of kernels �l
�, and these prove to be good enough to establish existence and

regularity of solutions to the Poisson equation.

Benveniste et al. develop the ODE theory for a general step size 
k. In order to

ensure that a summation equivalent to (4.17) is finite, they require that, in addition to

satisfying Assumption 1, the step size should satisfy the following.

Assumption 6. [7, p. 301] There exists � > 1 such that
P


�k < +1.

When 
k = 1=(k + �) and � is any positive integer, any choice of � with � > 1

satisfies the assumption.

The second task in the ODE method is the proof that the approximating ODE has

asymptotically stable solutions in a neighborhood of a stable equilibrium that corre-
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sponds to the value of the true parameter in the stochastic estimation problem. This

proof is a classical problem in non-linear ODEs and is solved with an appropriate

Lyapunov function. Benveniste et al. formally assume the existence of a Lyapanov

function as follows.

Assumption 7. [7, p. 233] There exists a positive function U of class C 2 on D such

that U(�)! C � +1 if � ! @D or j�j ! +1 and U(�) < C for � 2 D satisfying

U 0(�) � h(�) � 0 for all � 2 D (4.21)

The natural choice of Lyapunov function for the case that this dissertation presents

is the Kullback-Leibler entropy function for the estimation problem. Section 6.1 shows

that a Lyapunov function that is based on the Kullback-Leibler entropy function satis-

fies Assumption 7.
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Chapter 5

Analysis of the control and estimation algorithm.

Part 2: Potential theory for the Markov process.

The analysis of this chapter verifies that Assumptions (A.4) and (A.5) of the previ-

ous chapter are satisfied by the combined estimation and control problem. Both of

these assumptions are concerned with ergodic properties of the Markov process in the

stochastic approximation scheme, and this chapter develops the ergodic theory that

is required for the analysis. The first section provides an ergodic theory for the dis-

crete subchain. Apart from the requirement that the invariant vector should be regular

with respect to perturbations in the state transition matrix, the theroy in this section is

standard. The second section develops an ergodic theory for the Markov modulated

random processes. The material in this section is new. Finally, the third section uses

the results of the first two sections to verify that the assumptions hold.

5.1 Ergodic theory for the discrete subchain

A potential theory for the chain Xk is established by considering first the discrete sub-

chain ~X using methods developed by Arapostathis and Marcus [2] and Le Gland and
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Mevel [23]. The principal difference between the problems treated in these two papers

and the problem treated here is that here the transition kernels �� depend on the param-

eter � through the control algorithm. Consequently, regularity properties of the kernels

with respect to the parameter � are needed along with geometric ergodic properties in

order to apply the potential theory in the stochastic approximation analysis.

The first task is to establish that the Markov chain f ~Xkg is irreducible and acyclic.

This is done by establishing conditions on the transition matrices Au, the output matrix

B, and the control policy �(du; u1;�; y1;�) that ensure that the matrix M is primitive.

The state space ~X is a finite set which can be mapped onto a finite rectangle in a

2�+3 dimensional lattice. The lattice structure corresponds to the product structure on

the state space which is described in Section 4.1, equation (4.1). The transition kernel,

which has the matrix representation defined in equation (4.2), defines a directed graph

on the lattice rectangle via the mapping

~Xa ! ~Xb if M
~Xb

~Xa

> 0

The problem of determining whether the kernel �( ~Xa; d ~Xb) = M is primitive is equiv-

alent to the problem of determining connectedness of the associated graph.

Lemma 8. The kernel is primitive with index of primitivity r if and only if any point

on the directed graph is connected to any other by a path that traverses r, or fewer,

edges.

Proof. Let a and b be any two indices of the matrix M , and Suppose that the corre-

sponding vertices on the lattice va and vb are connected by a path

va ! v1 ! v2 ! : : :! vr�1 ! vb

with r edges, then, giving the matrix indices the same labels as the vertices, the product
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Mv1
vaM

v2
v1
: : :Mvb

vr�1
is positive, and the forward product M r satisfies

(M r)ba =
X

i1;::: ;ir�12
~X

M i1
a M

i2
i1
: : :M ib

ir�1

�Mv1
va
Mv2

v1
: : :Mvb

vr�1

> 0

Conversely, if (M r)ba > 0 then for at least one choice of index set fi1; i2; : : : ; ir�1g the

product M i1
a M

i2
i1
: : :M ib

ir�1
is positive. Consequently the path va ! v1 ! v2 ! : : :!

vr�1 ! vb with vertices v1; : : : vr�1 corresponding to the indices i1; : : : ; ir�1 connects

the vertex va to vb by a path that traverses r edges.

xb 
 y0b 
 u�1b 
 y�1b 
 u�1b 
 y�2b 
 u�2b 
 : : :
 y��+1
b 
 u��b??y

xa 
 y��a 
 u��a 
 y0b 
 u0b 
 y�1b 
 u�1b 
 : : :
 y
�(��1)

b 
 u
�(��1)

b??y
xa 
 y

�(��1)
a 
 u

�(��1)
a 
 y��a 
 u��a 
 y0b 
 u0b 
 : : :
 y

�(��2)

b 
 u
�(��2)

b??y
: : :??y

xa 
 y0a 
 u0a 
 y�1a 
 u�1a 
 y�2a 
 u�2a 
 : : :
 y��a 
 u��a

Figure 5.1: Path construction for Proposition 9

Proposition 9. Let Au and B be the state transition and output matrices for a con-

trolled hidden Markov model with entries that satisfy the inequalities

Au;ij > Æ Bim > Æ
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for some constant Æ > 0. Fix � > 0 and let f ~Xng be the discrete chain defined in

Section 4.1 and determined by the finite-horizon, risk-sensitive control algorithm de-

scribed in Chapter 2. Then, the transition kernel �( ~Xa; d ~Xb) associated with the chain

f ~Xng is primitive with index of primitivity � + 1, and the chain itself is irreducible

and acyclic.

Proof. Consider the directed graph induced by the discrete transition kernel �( ~Xa; d ~Xb)

on the state space ~X. The result will follow from Lemma 8 provided that the nodes

in this graph representing any two points ~Xa and ~Xb in ~X are connected by a path

containing �+ 1 or fewer links.

Any two nodes corresponding to points ~Xa and ~Xb are connected by a link provided

that �( ~Xa; f ~Xbg) = M
~Xb

~Xa

> 0. Recall the explicit representation from equation (4.2)

M
~Xb

~Xa

= hxa; Au�1
b

xbihxa; By0b ih��(y0a; u�1a ; : : : ; y��+1
a ; u��a ); u�1b i

� Æy0
a
(y�1b )Æu�1

a
(u�2b ) : : : Æy��+2

a
(y��+1

b )Æu��+1
a

(u��b )

The assumptions in the premise of the proposition directly ensure that the first two

factors are non-zero, and indirectly ensure that the third factor is non-zero through an

application of Theorem 6. The remaining factors all have the form Æzla(z
l�1
b ) with z

substituted by u or y as appropriate, and these factors are non zero only if z la = zl�1b .

Consequently, a link connects the node representing ~Xa to the one representing ~Xb if

and only if u�lb = u
�(l+1)
a and y�lb = y

�(l+1)
b for all l with 1 � l � �

Now let ~Xa and ~Xb be two arbitrary points in ~X, then the path illustrated in Figure

5.1 connects the node representing ~Xa to the node representing ~Xb in less than �+ 1

links.

Primitivity of the discrete kernel implies that the kernel is recurrent with a single re-

currence class, and is a sufficient condition for the Perron-Frobenius theorem to apply.
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Specifically, the following proposition lists well known facts about primitive transition

kernels for finite state Markov chains. Proofs are given in Seneta [38], Revuz [34] and

Le Gland and Metivier [23]

Proposition 10. Let �( ~X; d ~X) be a primitive kernel on a finite discrete space ~X. The

following are true:

(i) The eigenvalue 1 has strictly positive left and right eigenvectors.

(ii) The eigenvectors associated with the eigenvalue 1. are unique up to multiplica-

tion by a scalar, The left eigenvector � is the invariant measure for the kernel.

(iii) 1 is a simple root of the characteristic equation for �.

(iv) 1 > r > j�j, for any eigenvalue � 6= 1.

(v) The kernel is both recurrent and acyclic

(vi) The kernel is ergodic. There exists c 2 (0; 1) such that for any probability

measure �a on ~X, j�a�n � �j < cn

(vii) The kernel possesses a well defined potential theory. In particular if f : ~X ! R

is a bounded function on ~X (in fact, a bounded vector in Rn ) then the Poisson

equation

(I � �)v( ~X) = f( ~X)� �(f)

has a solution

v( ~X) =
1X
0

�r(f � �(f)1)( ~X)

The following lemma provides a basis for regularity results for the discrete kernel
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Lemma 11. The eigenvector corresponding to the Perron-Frobenius eigenvalue of a

primitive stochastic matrix M is a continuous function of the matrix parameters.

Proof. Assume that jM �M 0j = �, and let � = 1=�(M �M 0), then the rows of �

sum to 0, and j�j = 1. From the Perron-Frobenius theorem

j� � � 0j = lim
k!1

j�aMk � �a(M + ��)kj;

and,

j�aMk��a(M + ��)kj

=

��������a
0
B@Mk �Mk +

kX
i=1

�i
X

l1+���+li
=k�i

M l1�M l2 : : :�M li

1
CA
�������

� �

�����
k�1X
l=0

�aM
l�Mk�l�1

�����+
�������

kX
i=2

�i
X

l1+���+li
=k�i

�aM
l1�M l2 : : :�M li

�������
The bound jM l � 1�j < K0c

l where K0 is a constant independent of M , and 0 <

c < 1, produces a bound j�M lj < K1c
l. Applying this bound to each term in the first

summation on the right hand side of the inequality gives a bound for the summation

as a whole of �K2 with K2 a constant depending on M but not on k. Assume that

�K1 < 1, then repeated use of the bound j�M lj < K1c
l in the inner summation of the

second term on the right hand side of the inequality gives the bound

j
kX
i=2

�i
X

l1+���+li
=k�i

�aM
l1�M l2 : : :�M li j �

kX
i=2

�i
X

l1+���+li
=k�i

jM l1 jj�M l2 j : : : j�M li j

�
kX
i=2

�i
k�iX
l=0

Ki
1c

k�i�l

� �2K2
1

1

(1� �K1)(1� �)

76



a bound that is again independent of k. So for any primitive stochastic matrix M , it is

possible to choose K > maxfK1; K2g, and �0 > 0, both dependent on M such that if

M 0 is a primitive stochastic matrix satisfying jM �M 0j < � for some � � �0 then

j� � � 0j < K�

Recall the situation that the dissertation addresses: the control of a plant that is

described by a hidden Markov model with fixed, but unknown, state transition matrices

Au, and output matrix B. The control is computed using the stochastic approximation

to the finite-horizon dynamic programming algorithm that was introduced in Chapter 2

along with an estimate for the plant transition matrices that is denoted by the variable

�. If � is fixed, then the evolution of the controlled plant is described by a time-

invariant Markov chain with a finite state set that is represented in (4.1) as a tensor

product of canonical basis vectors. The evolution of the process is governed by a kernel

��( ~Xl; d ~Xl+1) which has a matrix representation M
~Xb

~Xa

with entries that depend on the

choice of � only through the factor h��(y0a; u�1a ; : : : ; y��+1
a ; u��a ); u�1b i in equation

(4.2). Proposition 10, Lemma 11, and the fact that the control policy �� is Lipschitz

continuous with respect to the estimate � combine to establish the conclusions of the

following Proposition.

Proposition 12. Let Au and B be state and output transition matrices for a controlled

hidden Markov model that satisfy the conditions in the premise of Proposition 9.

(i) If � is an estimate for the hidden Markov model parameters, ~X is the state

space for the Markov chain that describes the evolution of the controlled hidden

Markov model, then the transition kernel for the Markov chain ��( ~Xl; d ~Xl+1)
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has an invariant measure ~��, and for any positive constant D, there exists a pos-

itive constant K1 and a constant � in the interval 0 < � < 1 such that for all

g : ~X! R bounded by D, for all ~Xa;2 ~X, and for all n > 0

j(�n
�g)( ~Xa)� ~��(g)j � DK1�

n

(ii) There exists a positive constants K2 and �0, such that that if � and � 0 are two

estimates for the hidden Markov model parameters with j� � � 0j < � � �0, then

the invariant measures ~�� and ~��0 associated with the transition kernels �� and

��0 satisfy

j~�� � ~��0 j < K2�

5.2 Ergodic theory for random walks on semi-groups

Proposition 7 characterizes the transition kernel for the continuous part of the chain

Xk in terms of Markov modulated random walks. In the case where the underlying

Markov chain is ergodic, the asymptotic properties of the random walk associated with

the invariant distribution of the underlying chain determines the asymptotic properties

for the Markov modulated random walk. This section develops a potential theory

for random walks on semigroups and then shows how this theory can be extended to

Markov modulated random walks.

Let S be a topological semigroup with identity e, let � be a metric on S that is

compatible with the topology. The metric is right invariant if, for any h1; h2; g 2 S,

�(h1g; h2g) = �(h1; h2). A member g 2 S is contractive if, for any g1; g2 2 S,

�(gg1; gg2) � �(g1; g2);
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and is strictly contractive if the inequality is strict. An element g0 2 S has zero rank

if for all g 2 S, g0g = g0. The elements of zero rank form a semigroup (without

identity) since if g0 2 S is of zero rank then for all g 2 S, gg0 has zero rank.

In all the propositionsS is a finite dimensional topological semigroup with identity

e, and metric �. The sub-semigroup of elements of zero rank is S0 and there exists a

continuous function c : S! [0; 1] with c(e) = 1, and c(g) = 0 for all g 2 S0.

A random walk onS is a sequence of random variables g0; g1; : : : ; gk taking values

in S. The distribution of g0 is determined by the marginal probability measure �0,

and the process distribution on the whole sequence is determined by the sequence of

Markov convolution kernels �(gl; dgl+1) = d(Ægl � �l+1)(gl+1). When the generators

�1; �2; : : : are identical distributions, the random walk is homogeneous.

A random walk on S is contractive if under each of the measures �l, l � 1, the

elements of S are contractive with probability 1. The random walk is strongly con-

tractive if it is contractive, and there exist constants 0 � c0 < 1, and 1 � c1 > 0

such that for each l � 1 there exists a set Hl � supp �l with �l(Hl) > c1, and for all

h 2 Hl, g1; g2 2 S,

�(hg1; hg2) � c0�(g1; g2): (5.1)

A third, slightly weaker, definition for a contractive random walk is a consequence of

the following observation.

Lemma 13. If a sequence of measures �l, l = 1; 2 : : : , each with support on a semi-

group S, generates a contractive random walk then the sequence of measures formed

by taking r convolution products, �rk = �kr� r: : :��(k�1)r+1 also generates a contractive

random walk on S.

A random walk is r-strongly contractive if the random walk generated by the r-

convolution product �rk is strongly contractive.
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Lemma 14. Let gk be an r-strongly contractive random walk, and let c0 and c1 be the

constants defined in (5.1). Then, for all c, in the interval cc10 < c < 1, there exists

(with probability 1) a constant K > 0 such that for all k > K, and for all g; g 0 2 S,

�(gkg; gkg
0) < ck�(g; g0).

Proof. Let gk = hkhk�1 : : : h2h1, then the definition of an r-strongly contractive ran-

dom walk implies the following (random) bound

log �(gkg; gkg
0) �

dk=reX
i=1

log(c0)1Hi
(hi) + log �(g; g0)

=

�
k

r

�
log(c0)

0
@�k

r

��1 dk=reX
i=1

1Hi
(hi)

1
A+ log �(g; g0)

where 1Hi
is the indicator function for the setHi with the property that for all g1; g2 2

S and h 2 Hi the inequality in (5.1) holds. Since �i(Hi) > c1, The process 1Hi
(hi)

is bounded below by a Bernoulli process which at each i takes the value 1 with proba-

bility c1. From the strong law of large numbers

lim
k!1

r

k

dk=reX
i=1

1H(hi) � c1 almost surely;

and it follows that for any � > 0 there exists K such that for any k > K,

lim
k!1

r

k

dk=reX
i=1

1H(hi) < �(H) + � (5.2)

Given c in the interval cc10 < c < 1, choose � = c1 � (log c= log c0), then 0 < � < c1,

and

�(gkg; gkg
0) < cdk=re�(g; g0) (5.3)

for all k > K.

One approach to the analysis of the asymptotic behavior of a random walk on the

semigroup is to embed the open subset of non-singular elements of the semigroup
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inside a suitable group, and then to use the established theory for random walks on

groups [34] to provide results for the embedded semigroup. The following example

demonstrates that this approach is not productive, and provides motivation for the the-

ory that follows.

LetA be the group of invertible affine transformations of the N dimensional hyper-

plane in RN that contains the probability simplex 
(N), and let T be the semigroup

of affine transformations in A that map 
(N) into itself. Define a metric on A by

�(g1; g2) = supm2
(N) jg1m�g2mj so thatA is a topological group with respect to the

topology induced by �. Recall1 that a random walk fgkg on the topological group A is

topologically recurrent if for every open set O � A that contains the group’s identity

element,

P [lim sup
k!1

fgk 2 Og] = 1: (5.4)

Otherwise it is transient.

Proposition 15. Let gk be an r-strongly contractive random walk on T with transition

kernel �(ga; dgb) = d(Æga � �)(gb). Then, when considered as a random walk on the

group A, gk is topologically transient. In fact, if T0 denotes the sub semigroup of zero-

rank elements, than any set compactly contained in T n T0 is transient with respect to

gk.

Proof. Define a function 
 : T! R by


(g) = sup
g1;g22T

�(gg1; gg2)=�(g1; g2); (5.5)

then 
 is continuous with respect to the metric �, 
 takes values on the interval [0; 1],


 maps the identity to the value 1, and if 
(g) = 0, then g has rank zero. Since the

1See, for example, Revuz. [34]
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random walk gk is r-strongly contractive, and it follows from Lemma 14 that for all

1 > c > c0, with probability 1 there exists a positive K such that for all k > K and

for all g; g0 2 T, �(gkg; gkg0) < ck�(g; g0). Consequently, for all k > K


(gk) = sup
g;g0

�(gkg; gkg
0)

�(g; g0)
� ck ! 0 as k !1: (5.6)

ifH be a neighborhood of the semigroup identity that is compactly contained in TnT0,

then 
 is bounded away from 0 in H, and the exponential bound on 
(gk) in (5.6)

ensures (with probability 1) that gk hitsH only finitely many times.

Lemma 14 and Proposition 15 are similar in spirit to the exponential forgetting

results of, for example, Le Gland and Mevel [23].

An obvious corollary of Proposition 15 and the compactness of the sub-semigroup

of zero-rank elements is that if the contractive random walk has a recurrent set, it must

be contained in the sub-semigroup of rank zero elements. This observation indicates

a key shortcoming in using the group embedding approach as the basis for a poten-

tial theory. While the potential kernel associated with the random walk is proper2 on

the sub-semigroup of invertible elements, it is no longer proper when the elements of

deficient rank are included. The group embedding approach of Proposition 15 pushes

the singular set out to a boundary, and therefore avoids the central issue, which is the

characterization of the asymptotic behavior of the random walk. The failure of the

group embedding approach highlights the problems caused by an absence of continu-

ous inverses, an inherent feature of semigroup structures.

2If (E;E) is a measurable space, then a kernelK : E�E! R is proper if there exists an increasing

sequence of sets En with E = [En such that for all n, K(�; En) is bounded. If P is a positive kernel

on (E;E), then the potential kernel associated with P is defined by G = I + P + P 2 : : : . When the

sequence converges (in an appropriate operator topology), the potential kernel is a left inverse to the

Poisson operator f ! (I � P )f . See Revuz. [34]
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Another approach is needed, one which directly attacks the problem of determin-

ing an appropriate setting in which random walks on semigroups exhibit recurrence

properties. If P (x; dx) is a probability kernel with respect to the measurable space

(E;E), and h is a function on E that takes values in the interval [0; 1], then the gener-

alized resolvent associated with P and the function h is the kernel Uh(x; dx) given by

the series

Uh =
X
n�0

(PI1�h)
nP

where the operator I1�h is defined by [I1�hf ](x) = (1� h(x))f(x) (see Revuz [34]).

The series is guaranteed to converge uniformly with respect to x and in the variational

topology with respect to the space of measures on E when the function h takes values

in the open interval (0; 1). The potential kernel G associated with a general probability

kernel P is formally defined by G = I + U0.

The notion of �-irreducibility is central to the standard development of a potential

theory for Markov chains.

Definition 1. (Revuz [34, Definition 2.1]) A chain X on a measure space (E;E) is

said to be �-irreducible if there exists a probability measure � on E which is absolutely

continuous with respect to Uc(x; �) for all x 2 E and all constant functions c taking a

value in (0; 1).

The importance of this notion is that if a Markov chain is �-irreducible for some

measure �, then either the potential kernel for the chain is strictly proper, or the chain

is recurrent in the following sense[34].

Definition 2. A chain X defined on a measure space (E;E) is said to be recurrent in

the sense of Harris if there exists a positive, �-finite, invariant measure m such that
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m(A) > 0 implies that

PX0

"
1X
n=1

1A(Xn) =1
#
= 1

for all x in E.

A chain that is Harris recurrent is clearly m-irreducible when m is the invariant

measure postulated in the definition.

The key to establishing a recurrence theory for random walks on semigroups lies

in identifying the short coming in these definitions. Let the transition kernel for the

random walk be Æx � �(x) for some measure � supported on the invertible elements of

S, and let � be any measure supported on the set S0 of elements with zero rank, then

� is singular with respect to Uc(x; dx) whenever x is an invertible element ofS. Since

an invariant measure for the random walk must be supported on S0, the random walk

cannot be Harris recurrent, since this would imply irreducibility as well. The problem

lies in the implicit choice of total variation norm as the topology of convergence for

sequences of measures, and the solution is to look for a topology on the space of

measures that supports convergence of a sequence of measures to a measure that is

mutually singular to every measure in the sequence.

An appropriate family of topologies for a suitable recurrence theory are topolo-

gies generated by various notions of weak convergence of probability measures. If

E is a metric space, C(E), the space of bounded, continuous linear functions that

map E to R, then a sequence of bounded linear functionals �k : C(E) ! R con-

verges to a bounded linear functional � in the weak-� topology if, for any f 2 C(E),

limk!1 j�k(f)��(f)j ! 0. When the bounded linear functionals are probability mea-

sures the convergence is generally called weak convergence. Under the weak topology

on probability measures, the notion analogous to the notion of �-irreducibility given

in Definition 1 is the following.
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Definition 3. A chain X on a measure space (E;E) is said to be weakly �-irreducible

if there exists a probability measure � on E such that for all x 2 E and all constant

functions c taking a value in (0; 1), the implication Uc(x; �)h = 0) �h = 0 holds for

all non-negative continuous functions h : E ! R.

The properties of the weak topology on the space of probability distributions is

standard probability theory and can be found, for example, in Loève [27]. Aspects

of the theory, and small embellishments that are pertinent in the present context are

introduced in the following paragraphs.

The choice of the function space C(E), the continuous bounded functions, deter-

mines which sequences of measures converge in the weak topology. If a larger function

space is chosen, then the corresponding weak topology is larger, and fewer measures

converge. In particular, let � : E ! R be a positive, continuous function bounded

away from zero, let C�(E) be the space of functions f : E ! R that are bounded by

f(X) < K�(X) for some constant K, then C�

�(E) will denote the space of bounded

linear functionals on C�(E) with the topology of weak-� convergence. The following

lemma has the fortunate consequence that topological properties of the space C �(E)

also also properties of C�

�(E)

Lemma 16. The two spaces C�(E) and C�

�(E) are homeomorphic

Proof. The mapping �(�)! �(��1�) is an open continuous bijection between the two

spaces.

Let En denote the Cartesian product of n copies of E. If X 2 En, then X =

(X1; : : : ; Xn) has n components, and each component lies in a copy of the space E. If

� : E ! R is a weighting function on E, then define � : (En)! R by

�(X) = supf�(X1); : : : ; �(Xn)g:
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The function space C�(E
n) and the dual space of measures C�

�(E
n) are natural exten-

sions of the spaces C�(E) and C�

�(E).

Although the view of probability measures as linear functionals on a topological

vector space is not a drastic departure from the standard presentation of probability

theory, some care needs to be exercised in the definitions of distribution density func-

tions. Conditional densities and probability kernels are of particular importance in the

context of this work. Given a probability space (
;F; P ), a second sigma algebra

F1 � F, and a metric space E with weight function �, let S : 
 ! E be an F mea-

surable random variable with a probability distribution � 2 C �

�(E) that is absolutely

continuous with respect to P . The conditional density for the conditional distribution

of S, conditioned with respect to F1, maps any function f 2 C�(E) to an F1 mea-

surable function on 
, and any point ! 2 
 to a probability measure in C �(E). The

conditional density, which is written as �(Sj!), is defined through the identityZ
A

Z
f(S) d�(Sj!) dP (!) =

Z
A

f(S(!)) dP (!): 8A 2 F1

The existence of a conditional density is ultimately a consequence of the Radon Nikodym

theorem, which ensures the existence of the conditional expectation E[f(S)jF1]. This

conditional expectation has a representation as anF1 measurable function! ! E[f(S)jx],
and, for fixed x, this function is a positive, bounded, linear functional on C�(E) with

the property that E[1jx] = 1. Consequently, for each x, the linear functional has a

representation as a probability density �(Sjx) 2 C�

�(E).

The definition of the conditional density �(Sjx) corresponds to Doob’s definition

of a conditional density in the weak sense [10]. The most important examples of a

conditional density in the present work are probability kernels3 �(Sa; dSb) where the

�-algebra F1 is generated by a second random variable Sa : 
! E.

3Note that the order of the arguments of a probability kernel is the reverse of the order of the ar-
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When the underlying space (in this case the semigroup S) is Polish4, the restric-

tion of the weak topology to the probability simplex is metrizable, and, in fact, is the

topology induced by the Lévy metric

d(�; �0) = min
Æ

�
�(F ) < �0(F Æ) + Æ and �0(F ) < �(F Æ) + Æ

8F closed subset of 


�

where F Æ denotes a Æ neighborhood about the closed set F defined in a metric that is

compatible with the topology on S. (A proof of this result is given by Deuschel and

Stroock [9, p. 65] who attribute the result to Lévy and Prohorov.) The definition of the

Lévy metric can be reworded as follows:

Proposition 17. Let � and �0 be two measures on S, then d(�; �0) < Æ if and only if

for any closed set F � 
 one of the following inequalities is true

�(F ) < �0(F ) < �(F Æ) + Æ

�0(F ) < �(F ) < �0(F Æ) + Æ

It is a direct consequence of Lemma 16 that the topologies C �

�(E) are also metriz-

able. The inequalities in Proposition 17, and the definition of the Lévy metric become

�(1F�) < �0(1F�) < �(1F Æ�) + Æ

�0(1F�) < �(1F�) < �0(1F Æ�) + Æ

The next lemma and proposition are used later to establish regularity results. The

lemma presents a characterization of the Lévy metric in terms of Lipschitz functions.

guments in a conditional density. Whereas �(Sj!) is a conditional density on the random variable S

conditioned on the elements of the sigma-algebra of the random variable !, �(S a; dSb) is a density on

the random variable Sb conditioned on elements of the sigma-algebra of the random variable S a.

4A complete separable metric space
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Again, to cope with spaces of functions with bounded growth, the definition of a Lips-

chitz function is altered so that the Lipschitz constant is weighted by the growth bound.

Let E be a metric space with metric �, and let � : E ! R be a positive continuous

weight function that is bounded away from 0. A function f : E ! R is Lipschitz with

respect to � if there exists a constant Lf such that 8X1; X2 2 E

jf(X1)� f(X2)j � Lf�(X1; X2)(�(X1) + �(X2))

Lemma 18. let � and �0 be two measures on S, and suppose that for any Lipschitz

function f with Lipschitz constant Lf ,

j�(f)� �0(f)j < �Lf

then d(�; �0) <
p
�

Proof. Let � be a metric on S that is compatible with the topology, let F be a closed

subset of S, choose Æ >
p
�, and let h : S! [0; 1] be the function

h(g) =

8>>>>>><
>>>>>>:

�(g) g 2 F

1

Æ
�(g; E n F Æ)�(g) g 2 (E n F ) \ F Æ

0 g 2 E n F

Then h is Lipschitz with Lh = 1=Æ, and

�(1F�) < �(h) � �0(h) + �Lh < �0(1F Æ�) + �Lh < �0(1F Æ�) + Æ:

The other inequality in the definition, and hence the proof of the proposition is demon-

strated by the same argument with � and �0 swapped.

Proposition 19. Let � be a measure on a set S, let E be a metric space with metric �,

and a weight function �, and let g : S ! E and g 0 : S ! E be two mappings from
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S to E that satisfy �(� Æ g) < M , and �(� Æ g) < M for some constant M > 0. Let

� = [d?g]� and �0 = [d?g
0]� be the two measures on E induced by � and the maps g

and g0. Then,

d(�; �0) <
r

sup
S2supp �

�(g(S); g0(S))

Proof. Let f be Lipschitz with respect to � on E, and have Lipschitz constant Lf , then

j�f � �0f j = j�(f Æ g)� �(f Æ g0)j

= j�(f Æ g � f Æ g0)j

� Lf sup
S2supp �

�(g(S); g0(S))

and the result follows from an application of Lemma 18.

The Lévy Metric is convex in the following sense

Proposition 20. Let f�� : � 2 Ag and f�0� : � 2 Ag be two families of probability

measures in C�

�(E) that are indexed by the same countable set A, and that satisfy the

inequalities d�(��; �0�) < Æ for fixed Æ. If � =
P

� c���, and �0 =
P

� c��
0

� where c�

is any sequence of non-negative numbers that satisfy
P

c� = 1, then d�(�; �0) < Æ.

Proof. Let F be a closed measurable subset of E, and B � A contain the indices in

A that satisfy ��(1F�) � �0�(1F�) � ��(1F Æ�) + Æ. The indices in A n B satisfy

�0�(1F�) < ��(1F�) � �0�(1F Æ�) + Æ: Define

�b =
X
�2B

c���; �0b =
X
�2B

c��
0

�; �a =
X

�2AnB

c���; and �0a =
X

�2AnB

c��
0

�:

If ca =
P

�2AnB c� and cb =
P

�2B c� then ca + cb = 1,

�b(1F�) � �0b(1F�) � �b(1F Æ�) + cbÆ; (5.7)

and �0a(1F�) < ��(1F�) � �0a(1F Æ�) + caÆ: (5.8)
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Suppose that �(1F�) = �b(1F�) + �a(1F�) < �0b(1F�) + �0a(1F�) = �0(1F�), then

it follows from the second of the inequalities in (5.7) that � 0b(1F�) � �b(1F Æ�) + Æ,

and it follows from the first of the inequalities in (5.8) that �0a(1F�) � �a(1F�) �
�a(1F Æ�) + Æ. Consequently

�b(1F�) + �a(1F�) < �0b(1F�) + �0a(1F�) � �b(1F Æ�) + �a(1F Æ�) + Æ: (5.9)

If, on the other hand, �(1F�) = �b(1F�) + �a(1F�) � �0b(1F�) + �0a(1F�) =

�0(1F�), then a symmetric argument implies that

�0b(1F�) + �0a(1F�) � �b(1F�) + �a(1F�) � �0b(1F Æ�) + �0a(1F Æ�) + Æ: (5.10)

One or the other of (5.9) or (5.10) is true for any choice of a measurable set F , and

therefore d�(�; �0) < Æ.

The following proposition uses Lemma 18 to establish a result about independence

that will be useful later.

Proposition 21. Let x, y, and z be three random variables taking values in a metric

space E with an associated function space C�(E). The probability measures that x, y,

and z generate onE, and the measures generated by the joint distributions are all mea-

sures in C�

�(E), and are written as �(x), �(y), �(x; z), etc. Conditional distributions

are written �(xjz), etc.

If the conditional distributions�(zjy; x) and �(zjy) satisfy �(zjy; x) = �(zjy), and

if the map �(zjy) : C�(E) ! C�(E) is bounded with respect to Lipschitz seminorms,

with bound M , then

d(�(x; z); �(x)�(z)) <
p
Md(�(x; y); �(x)�(y)):
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Proof. Let f 2 C�(E) with Lipschitz constant Lf .

Z
f(x; z) d�(x; z) =

Z
f(x; z) d�(x; y; z)

=

ZZ
f(x; z) d�(xjyz)d�(y; z)

=

ZZZ
f(x; z) d�(zjy)d�(xjy)d�(y)

=

ZZZ
f(x; z) d�(xjy)d�(zjy)d�(y)

=

ZZ
f(x; z) d�(zjy)d�(x; y):

Also,

ZZ
f(x; z) d�(x)d�(z) =

ZZZ
f(x; z) d�(x)d�(zjy)d�(y)

=

ZZZ
f(x; z) d�(zjy)d�(x)d�(y):

Let g(x; y) =
R
f(x; z) d�(zjy), then

����
Z

f(x; z) d�(x; z)�
ZZ

f(x; z) d�(x)d�(z)

����
�
����
Z

g(x; y) d�(x; y)�
ZZ

g(x; y) d�(x)d�(y)

����
� Lgd(�(x; y); �(x)�(y)) �MLfd(�(x; y); �(x)�(y)):

It follows from Lemma 18 that

d(�(x; z); �(x)�(z)) �
p
Md(�(x; y); �(x)�(y))

Returning to the problem of establishing �-irreducibility and recurrency for ran-

dom walks on semigroups, given a semigroup S, let K0 � S be a compact subset of

S, and let G be a set of measures on S. If g0 2 K0, and �1; : : : ; �k are measures in G,
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define

mg0;k = �k � k� � � � �1 � Æg0 : (5.11)

The measures mg0;k are the marginal distributions of a random walk gk with starting

value g0, and the generalized resolvent Uc in Definition 3 is given by the formula

Uc(g0; dg) =
1X
k=1

ckmg0;k:

If g0 is fixed, the sum converges to a Radon measure when 0 � c < 1.

One approach to establishing �-irreducibility of the random walks is to examine

the limit set of the sequence of measures mg0;k. �-irreducibility is easily established

when this limit set is independent of the initial point g0. Relative compactness of the

sequence of measures in the weak topology ensures the existence of a limit set, but

rather than demonstrating relative compactness directly, it is easier to deal with the

notion of tightness.

The standard definition of tightness for a set of probability measures, and the asso-

ciated compactness theorem are quoted from Loève:

Definition 4 ([27, p194]). Let X be a metric space with Borel field S. A family P of

probability measures on S is said to be tight if for every � > 0 there is a compact K�

such that P (X nK�) < � for all P 2 P.

The following proposition relates tightness of a family of measures to relative com-

pactness in the weak topology.

Proposition 22 ([27, p195]). Let X be a separable complete metric space. Then a

family P of probability measures on its Borel field S is relatively compact in the C �(X)

topology if and only if P is tight. In fact the “if” part holds for general metric spaces

X.
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To ensure tightness of the set of measures mg0;l in the random walk, a suitable

primitivity condition is imposed on the sequences of generates �1; �2 : : : . The primi-

tivity condition restricts the the permissible sequences of generators to a set S � N
G .

The difficult part of establishing a recurrence theory for a family of random walks is to

impose primitivity conditions on the generator sequences in the family that are strong

enough to ensure tightness in the set of measures mg0;k, yet weak enough to be satisfied

by an interesting set of random walks.

The following definition and lemma provide sufficient conditions on the generators

of a random walk gk for the sequence of probability measures mg0;k to be tight under

the standard definition.

Definition 5. A sequence �1; �2 : : : of generators for a random walk on a semigroup

S is p-strongly primitive if there exists a compact subsetK � S that is absorbing from

the left5, and a constant 0 � � < 1 such that �pk(SnK) < �, when �pk = �k�� � ���k+p
is the convolution product of any p consecutive measures from the sequence �1; �2; : : : .

In the case of a homogeneous walk with initial point g0, the measures in the se-

quence of generators �1; �2 are identical. The generator measure � is p-primitive if the

sequence �1 = �; �2 = �; : : : is primitive. The following lemma is typical of results

5K is absorbing from the left if for all g 2 S, and all ga 2 K, gag 2 K. Recall that the semigroups

have representations as affine transformation groups acting on projective space. This thesis adopts the

convention of writing these representations with the semigroup element acting on the object from the

projective space from the left. So, for example, if g1; g2; : : : ; gk are successive affine transformations

on a vector x in a projective space, then the orbit of x is fx; g1x; g2g1x; : : : ; gk : : : g2g1xg. Some

confusion inevitably arises when the projective space is a finite dimensional probability space, and the

affine map is a probability kernel that is represented by a matrix of finite rank. In this case the usual

convention is to write the vector as a row vector, and to have the transition kernel act on the row vector

by right matrix multiplication.
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that relate primitivity of the generators to tightness of the set of iterated kernels.

Lemma 23. If gk is a random walk with a p-strongly primitive generator �, and initial

point g0, then the family of measures fmg0;k : k � 0g is tight.

Proof. A generalization of the lemma is proved below.

The definition of tightness extends, with some modification, to the weighted topolo-

gies introduced earlier. Let C�

�(X) be the dual space of bounded linear functionals on

C�(X), again with the weak-� topology generated by the topology on C�(X). A defi-

nition of tightness that is appropriate for this weaker topology is the following.

Definition 6. Let � : X! R be a continuous positive function. A family of measures

P is tight with respect to the C�

�(X) topology if for all � there exists a compact set

K� � X such that P (1XnK�
�) < � for all P 2 P.

In the case where � is a constant function equal to 1, tightness with respect to the

C�

� topology is equivalent to the standard definition of tightness. The corresponding

compactness proposition is the following.

Proposition 24. Let X be a separable complete metric space with Borel �-algebra

S, and let � be a continuous positive function on X that is bounded away from 0. A

family P of probability measures on the Borel field S is relatively compact in the weak

topology of C�

�(X) if and only if P is tight with respect to C �

�(X).

Proof. The mapping �(�) 7! �(��) is a homeomorphism between the measure spaces

C�

�(X) and C�(X). The same mapping maps families of measures in C �

�(X) that are

tight with respect to �, to families in C �(X) that are tight under the standard definition.

It follows that the proposition is a direct consequence of Proposition 22.
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A requirement for p-strong primitivity of the sequence of generators �1; �2; : : : is

no longer sufficient to ensure tightness of the sequence of measures mg0;1; mg0;2 : : :

in the larger weighted topologies. Extra conditions such as the one included in the

premise of the following lemma are needed.

Lemma 25. Let G = �1; �2; : : : be a p-strongly primitive sequence of generators with

uniformly bounded support, let � and H be the constant and compact set that are

associated with the definition of p-strong primitivity, and let a = supf�(g) : g 2
[�2G supp �g. If a�1=p < 1 then the measures

mg0;l = Æg0 � �1 � � � � � �l

are tight with respect to �. In fact, let Kl = fg 2 S : �(g) < alcg where c =

maxf�(g0);maxh2H �(h)g. Then Kl is an increasing sequence of compact sets such

that [Kl = S, and

mk;g0(1SnKl
�) � C(a�1=p)l: (5.12)

Proof. From the definition of the measures ml;g0 ,

mk;g0(Kl nKl�1) � mk;g0(S nKl�1)

� 1� P (gr+p : : : gr+2gr+1 2 H for some

r 2 fk � l � p + 1; : : : ; k � p� 1; k � pg
�

= 1�
�
1� P

�
gr+p : : : gr+2gr+1 62 H; for all

r 2 fk � l � p + 1; : : : ; k � p� 1; k � pg
��

� P
�
gr+p : : : gr+2gr+1 62 H for all

r 2 fk � bl=p� 1cp; : : : ; k � 2p; k � pg
�

= �bl=p�1=pc � �(l�2p)=p
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Consider now the quantity mg;k(1SnKl
). It follows from the definition of Kk that

gk 2 Kk for every sample path, so if k < l then mg;k(1SnKl
�) = 0. When k � l, the

above estimates of mk;g0(Kl nKl�1) give:

mk;g0(1SnKl
�) �

kX
r=l

mk;g0(1Kr+1nKr
�)

�
kX
r=l

mk;g0(Kr+1 nKr)a
r+1c

� c

kX
r=l

�(r�2p)=par+1

= c
a

�2
(a�1=p)l

k�lX
r=0

(a�1=p)r

� c
a

(1� a�1=p)�2
(a�1=p)l

Since, by assumption, a�1=p < 1, the right hand side is smaller than any fixed � > 0

provided l is sufficiently large. The choice of l, and by implication Kl depends on c, �,

�, and a, but not on k.

The topology C�

�(S) is the appropriate topology for a useful recurrence theory. A

geometric forgetting result equivalent to Lemma (15) is

Proposition 26. Let gk be an r-strongly contractive Markov random walk on the semi-

groupS with generator �, let � be a strictly positive continuous function onS, and let

f : S! R be a function with magnitude bounded by jf j < M� and which is Lipschitz

with respect to � with Lipschitz constant Lf . Then, there exist constants 1 > c0 � 0,

and C > 0, both independent of f such that for any g0; g00 2 S

j(mg0;l �mg00;l
)f j < CLfc

l
0�(g0; g

0

0) (5.13)

Proof. Because gk is r-strongly contractive, there exists a set H � S with � � r� � � �
�(H) = � > 0, and a constant 0 � c < 1 such that �(hg; hg 0) < c�(g; g0) for all
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g; g0 2 S. For all l > 0,

j(mg0;l �mg00;l
)f j �

Z
S

jf(hlhl�1 : : : h1g0)� f(hlhl�1 : : : h1g)j

d�(hl)d�(hl�1) : : : d�(h1):

� Lf�(g0; g
0

0)

bl=rcX
i=0

�bl=rc
i

�
ci�i(1� �)bl=rc�i

= Lf�(g0; g
0

0)(1� (1� c)�)bl=rc

The result follows when c0 = (1� (1� c)�)1=r and C = (1� (1� c)�)�1.

The following proposition forms the basis for a recurrence theory for r-strongly

contractive, and p-strongly primitive random walks on semigroups.

Proposition 27. Let S be a semigroup with a metric � that is compatible with the

semigroup operator, and a positive weight function � that has compact sub-level sets,

and is bounded away from zero. Let gk be a homogeneous random walk on S with

Markov transition kernel �(ga; dgb) = d(Æga � �)(gb). If the walk is r-strongly con-

tractive, the generator � is p-strongly primitive, r and p are finite, positive integers r

and p, and the walk satisfies the conditions in the premise of Lemma 25, then there ex-

ists a probability measure m with support contained in S0, the elements of zero rank,

such that m is invariant with respect to the transition kernel. Furthermore, if f is any

positive function that is bounded by f(g) < M�(g), that is Lipschitz with respect to �

with Lipschitz constant Lf , and that satisfies m(f) > 0, then:

Pg0

"
1X
k=1

f(gk) =1
#
= 1 (5.14)

independent of the choice of g0.

Proof. Since gk satisfies the premise of Lemma 25, the sequence of measures mg0;k

is tight with respect to the C�

�(S) topology for any g0 in a compact subset of S.
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It follows from Proposition 24 that the sequence of measures is relatively compact

in C�

�(S), that is, each infinite subsequence of mg0;k has a sub-subsequence mg0;q(k)

that converges to a measure mq. Consider two convergent subsequences mg0;q(k), and

mg0;q0(k) that have limiting measures mq and mq0 . If mq 6= mq0 , then there exists a

Lipschitz continuous function f uniformly bounded on S by f(g) < M�(g), and a

constant � such that jm0

q(f) � mq(f)j = � > 0. Choose k0 sufficiently large that

jmg0;q0(k)(f)�mg0;q(k)(f)j > �=2 for all k > k0, and �g0;l(1SnKk0
2M�) < �=4. With-

out loss of generality, assume that q 0(k) > q(k) for all k, so for all k there exists lk � 0

such that q0(k) = q(k) + lk, and mg0;q0(k) = � � q(k)� � � � � �mg0;lk . Then,

j(mg0;q0(k) �mg0;q(k))f j = j(� � q(k): : : � � �mg0;lk � � � q(k): : : � � � Æg0)f j

�
Z
g2Kk0

 Z
jf(hq(k)hq(k)�1 : : : h1g)� f(hq(k)hq(k)�1 : : : h1g0)j

d�(hk)d�(hk�1) : : : d�(h1)

!
dmg0;lk(g) + �=4:

It follows from Proposition 26 that the inner integral converges to 0 with increasing

k uniformly with respect to all g 2 Kk0 . This contradicts the hypothesis that it is

possible to choose a Lipschitz function f form C�(S) that separates the measures mq

and mq0 .

So, it is a consequence of Proposition 26, and the tightness of the sequence of

measures, thatmg0;k converges inC�

�(S) to a unique measurem, thatm is independent

of the initial point g0, and that the convergence is uniform when g0 is chosen from a

compact subset of S. In addition, it follows from the method of construction that m

is invariant with respect to the random walk kernel, and from Proposition 15 that the

support of m is contained in the set of zero rank elements, S0.

Again, let f : S ! R be a positive function that is Lipschitz with respect to �,

with Lipschitz constant Lf , and bounded by jf j < M�. Let fr = f ^M�r, so that fr
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is a strictly increasing sequence of Lipschitz functions that are integrable with respect

to to the measure m. For each r,

1 > m(fr) = lim
k!1

mg0;k(fr) 8g0

= lim
k!1

Æg0�
k(fr) � 0

Since, by the monotone convergence theorem, m(fr) ! m(f), there exists r0, � > 0

and positive integer k0 such that for all r > r0 and k > k0, Æg0�
k(fr) � �. For any

g0 2 S, if w < � then Pg0[fr(gk) < w] < c < 1 when c = (M�r � �)=(M�r � w),

and for any positive integers n0 and p

Pg0

"
1X
n=1

fr(gn) < pw

#
< Pg0

2
4k0(n0+p)X

n=1

fr(gn) < pw

3
5

< Pg0

"
n0+pX
n=1

fr(gnk0) < pw

#
:

The sum
Pn0+p

n=1 fr(gnk0) < pw only if fr(gik0) < ! for at least n0 values i, 1 � i �
n0 + p. If n < n0, let Kn denote the set of ordered mappings k(i) from the integers

1 � i � n into the integers k0; 2k0; : : : (n0 + p)k0, then

Pg0

"
1X
n=1

fr(gn) < pw

#
<

n0+pX
n=n0

X
k(i)2Kn

Pg0
�
fr(gk(i)) < w 1 � i � n

�
(5.15)
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The probability in the summation is estimated by

Pg0[fr(gk(i)) < w; 1 � i � n]

=

Z
ff(gk(i))<w; 1�i�ng

dPg0(gk(n); gk(n�1); : : : gk(1))

=

Z
ff(gk(i))<w; 1�i�n�1g

Pgk(n�1)

�
f(gk(n)) < w

�

dPg0(gk(n�1); gk(n�2) : : : ; gk(1))

� c

Z
ff(gk(i))<w; 1�i�n�1g

dPg0(gk(n�1); gk(n�2) : : : ; gk(1))

� cn

substituting this estimate back in (5.15) gives

Pg0

"
1X
n=1

fr(gn) < pw

#
<

n0+pX
n=n0

X
k(i)2Kn

cn

<

n0+pX
n=n0

�
n0 + p

n

�
cn

< p
(n0 + p)p

p!
cn0

For any fixed p, the bound on the right can be made arbitrarily small by letting n0 !
1. So, there exists w > 0 such that for every r > r0 and for all p > 0,

Pg0

"
1X
k=1

fr(gk) < pw

#
= 0

And a second application of the monotone convergence theorem, this time to the prob-

ability measure on the random walk, yields the result.

Proposition 27 demonstrates a condition that is similar to Harris recurrence and

potentially provides the basis for a potential theory for random walks on semigroups

that mirrors the analogous theory for Harris recurrent random walks on groups [34].

This level of generality is not required in the present application because the range of
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the Poisson operator is restricted to a Lipschitz space. The existence of the invariant

measure m, which is established by Proposition 27, and the geometric ergodicity re-

sult in Proposition 26 prove to be enough when extended to Markov modulated random

walks. Eventually an application of the results from Part II, Chapter 2 of Benveniste et

al. [7] will give a satisfactory potential theory for the purpose of establishing conver-

gence of the stochastic approximation.

In addition to the existence of an invariant measure, and the geometric ergodicity

result of Proposition 26, the stochastic approximation theory that was introduced in

Chapter 4 requires that the solution to the Poisson equation, equation (4.20), with a

Lipschitz function on the right hand side should be regular with respect to variation in

the parameter �. The next lemma and proposition are the key results in establishing

this regularity.

Lemma 28. Let S be a compact subset of a manifold that has a regular embedding in

an N -dimensional space. Let � be a metric on the manifold that is compatible with the

manifold topology, let d be the associated Lévy metric, and let K = 2N � 1. If � and

�0 are two measures supported on S and separated by d(�; �0) < Æ, then there exists a

decomposition

� =
X
�

�� + �0; �0 =
X
�

�0� + �00;

such that �0(S); �00(S) < KÆ, ��(S) = �0�(S) for all �, and if g1 2 supp �� and

g2 2 supp �0� then �(g1; g2) < KÆ.

Proof. Tile the set S with a tessellation with the following properties:

(a) The tessellation can be partitioned into M sets, where M is a finite number

independent of Æ, in such a way that every pair of tiles in the same set of the

partition are separated by a distance greater than 2MÆ.
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(b) Each tile in the tessellation has minimum diameter of at least 2MÆ.

(c) Each tile in the tessellation has maximum diameter that is bounded by a fixed

multiple of Æ.

One way to achieve this tessellation is first, to regularly embed the manifold in a Eu-

clidean space RN , and then generate the tessellation with a cubic subdivision of the

N -dimensional embedding space, each cube having sides of length 2N+1Æ. The result

is a tessellation with a partition of size M = 2N , each cell in the partition is a cube

with minimum diameter 2MÆ, and maximum diameter
p
N2MÆ.

Label the M sets in the partition Pi with i taking odd values i = 2m � 1, m =

1; : : : ;M , and label the tiles in the tessellationS�. Consider the first set in the partition,

P1, and divide the tiles in this set into two subsets. A tile S� remains in P1 when

�(S�) � �0(S�), and a tile S� that satisfy the opposite inequality �(S�) < �0(S�) is

transferred to a new set P2.

Consider, now the set P1, and split this set into two subsets,Q1 andR1 . Place inQ1

the tiles S� 2 P1 for which �0(S�) � �(S�) � �0(SÆ
�), and place in R1, the tiles from

the P1 that satisfy �0(SÆ
�) < �(S�) � �0(SÆ

�) + Æ. It follows from the characterization

of the Lévy metric in Proposition 17 that every tile in P1 ends up in either Q1 or R1.

For every � such that S� 2 Q1, let �� = �1S� and let �0� = �01S� + c�1SÆ
�
nS� where

c� =
��(S�)� �0(S�)

�0(SÆ
�)� �0(S�)

:

For every � such that S� 2 R1, let �0� = �01SÆ
�
, let �� = d���1S� where d� =

�0�(S
Æ
�)=�(S�). Finally, let �1 = ��P�:S�2R1

��, then another application of Propo-

sition 17, the fact that any two tiles in R1 are separated by a minimum distance greater
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than 2Æ, and the fact that �(S�)� �0(SÆ
�) > 0 together establish that

�1([fS� : S� 2 R1g) =
X

f�(S�)� �0(SÆ
�) : S� 2 R1g

= �([fS� : S� 2 R1g)� �0(([fS� : S� 2 R1g)Æ)

< Æ:

At this point in the construction there exists a positive measure �1, and two sets

of positive measures f��g, and f�0�g indexed by the set A1 = f� : S� 2 P1g, with

the properties that: for all � 2 A1, �� < �, and �0� < �0, the support of each �0� is

contained in SÆ
� (the Æ neighborhood of S�), the support of each �� is contained in S�,

�0�(S) = ��(S), the support of �1 is contained in the set
S

S�2P1
S�, �1(S) � Æ, and

for any measurable set F � SS�, �(F ) = �1(F )+
P

��(F ) and �0(F ) =
P

�0�(F ).

Move now, to the tiles S� in the set P2. A symmetric construction to that used

for the tiles in P1 produces a positive measure �2, and two sets of positive measures

�� and �0� indexed by the set A2 = f� : S� 2 P2g, with the properties that: for all

� 2 A2, �� < �, �0� < �0, the support of each �� is contained in SÆ
�, the support of

each �0� is contained in S�, �0�(S) = ��(S), the support of �2 is contained in the setS
S�2P2

S�, �2(S) � Æ, and for any measurable set F � SS�, �(F ) =
P

��(F ) and

�0(F ) = �2(F ) +
P

�0�(F ).

Redefine � as ��P�2A1
����1 and �0 as �0�P�2A2

�0���2. Now, d(�; �0) < 2Æ

and the same procedure as before results in measures �3, �4, �� and �0� with support in

the sets associated with partition P3. Continue in this way through all of the remaining

partitionsP5 through P2M�1. Let �0 = �1+�3 � � �+�2M�1 and �00 = �2+�4 � � �+�2M ,

then �0, �00, ��, and �0� provide the required partitions. If K = 2N � 1 then the

measures �0(S) and �00(S) are both bounded by KÆ, and for any �, if g1 2 supp ��,

and g2 2 supp�0�, then �(g1; g2) < KÆ.
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Proposition 29. Let S be a semigroup that is a finite dimensional manifold. Let � be

a metric that is compatible with the manifold topology, and suppose that left multipli-

cation in the semigroup is r-strongly contractive with respect to �. Let � be a positive

weighting function on S that has compact sub-level sets, and is bounded away from

zero. Let �l be a sequence of measures on S with support contained in a compact set

S of diameter D, and let �l satisfy the following two properties:

(i) There exists Æ > 0 such that if �0l is a second sequence, and 8l, supp�0l � S,

and d(�l; �0l) < Æ, then �0l is p-strongly primitive with respect to �.

(ii) The inhomogeneous random walk gk with initial point g0 2 S, and transition

kernel �(gl; gl+1) = d(Ægl � �l)(gl+1) is strongly contractive.

For g0 2 K, define mg0;k = Æg0 � �1 � � � � � �k.

Given g0 2 S, and f�0l; l = 1; 2; : : :g, a second sequence of measures that satisfies

condition (i), let g 0l be the non-homogeneous random walk with initial point g0 and

transition kernels �(gl; gl+1) = d(Ægl � �0l)(gl+1), and define a second sequence of

measures m0

g0;k
= Æg0 � �01 � k: : : � �0k.

There exists a constant C such that for g0 2 S, and any function f that is Lipschitz

with respect to � with Lipschitz constant Lf ,

jmg0;k(f)�m0

g0;k
(f)j � ÆCLf�(g0): (5.16)

Proof. The proof begins with an expansion of the left hand side of the inequality (5.16)

104



as an integral.

jmg0;k(f)�m0

g0;k
(f)j

=

����
Z

f(hk : : : h1g0)d�k(hk) : : : d�1(h1)� d�0k(hk) : : : d�
0

1(h1)

����
=

�����
kX
l=1

Z
f(hk : : : h1g0)d�k(hk) : : : d�l(hl)d�

0

l�1(hl�1) : : : d�
0

1(h1)

� d�k(hk) : : : d�l+1(hl+1)d�
0

l(hl) : : : d�
0

1(h1)

�����
(5.17)

Let gl�1 = hl�1 : : : h1g0, then an application of Fubini’s theorem to the l th term in the

summation yields an iterated integral

Z �Z
f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)(d�l(hl)� d�0l(hl))

�
dm0

g0;l�1
(gl�1):

Write the inner integral as

Il(gl�1) =

Z
f(hk; : : : ; hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�l(hl)

�
Z

f(hk; : : : ; hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

l(hl) (5.18)

By hypothesis, for all l, the measures �l and �0l are separated in the Lévy metric by

d(�l; �
0

l) < Æ, and an application of Lemma 28 produces a decomposition for the

measures �l and �0l.

�l =
X
�

�� + �0; �0l =
X
�

�0� + �00

where �0(S); �00(S) < C1Æ, ��(S) = �0�(S) for all �, and if hl 2 supp �� and

h0l 2 supp �0� then �(hl; h0l) < C2Æ. Note that the particular decomposition varies with

l, but this dependency on l is dropped in the notation.
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Substituting the decomposition into (5.18) gives

jIl(gl�1)j =
�����
X
�

�Z
f(hk : : : hlgl�1)d�(hk) : : : d�(hl+1)d��(hl)

�
Z

f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

�(hl))

�

+

Z
f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�0(hl)

�
Z

f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

0(hl)

����
(5.19)

Using the equality ��(S) = �0�(S), the summand in the summation can be rewritten

asZ
f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d��(hl)

�
Z

f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

�(hl))

=
1

��(S)

Z �Z
f(hk : : : hlgl�1)� f(hk : : : h

0

lgl�1)d�k(hk) : : : d�l+1(hl+1)

�
d��(hl)d�

0

�(h
0

l)

(5.20)

The Lipschitz property of f allows the inner integral to be bounded by a function of

gl�1 as follows;

����
Z
(f(hk : : : hlgl�1)� f(hk : : : h

0

lgl�1))d�k(hk) : : : d�l+1(hl+1)

����
� Lf

Z
�(hk : : : hlgl�1; hk : : : h

0

lgl�1) max
h2fhl;h

0

l
g

2�(hk : : : hgl�1)

d�(hk) : : : d�(hl+1)

Since left multiplication in the semigroup is contractive, it follows from Lemma 14

and the conditions on the supports of �� and �0� that

�(hk : : : hlgl�1; hk : : : h
0

lgl�1) � ck�l+1Æ
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and

����
Z
(f(hk : : : hlgl�1)� f(hk : : : h

0

lgl�1))d�k(hk) : : : d�l+1(hl+1)

����
� Cck�l�1ÆLfBl(gl�1) (5.21)

with

Bl(gl�1) = 2

Z
max
h2S

�(hk : : : hgl�1)d�k(hk) : : : d�l+1(hl+1):

The bound in (5.21) is independent of hl, so summing equation (5.20) over � gives a

bound on the summation on the right hand side of (5.19) of�����
X
�

�Z
f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d��(hl)

�
Z

f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

�(hl))

�����
� Cck�l�1ÆLfBl(gl�1) (5.22)

A similar argument produces a bound on the last two terms on the right hand side

of equation (5.19).����
Z
f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�0(hl)

�
Z

f(hk : : : h
0

lgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

0(h
0

l)

����
� 1

Æ
Lf

Z
�(hk : : : hlgl�1; hk : : : h

0

lgl�1)(�(hk : : : hlgl�1) + �(hk : : : h
0

lgl�1))

� d�k(hk) : : : d�l+1(hl+1)d�0(hl)d�
0

0(h
0

l)

This time �(hl; h0l) < D, and

�(hk : : : hlgl�1; hk : : : h
0

lgl�1) � ck�l�1D
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so, using the bounds �0(S) < Æ and �00(S) < Æ,

����
Z

f(hk : : : hlgl�1)d�k(hk) : : : d�l+1(hl+1)d�0(hl)

�
Z

f(hk : : : h
0

lgl�1)d�k(hk) : : : d�l+1(hl+1)d�
0

0(h
0

l)

����
� 1

Æ
ck�l�1DBl(gl�1)Lf�0(S)�00(S)

� Cck�l�1ÆLfBl(gl�1); (5.23)

for some constant C that is independent of l.

Combining (5.22) and (5.23) produces a bound in (5.19) produces

Il(gl�1) � Cck�l�1ÆLfBl(gl�1);

and a corresponding bound on the l’th term in the summation on the right side of (5.17)

of

Z
Il(gl�1) dm

0

g0;l�1
(gl�1) � Cck�l�1ÆLf

Z
Bl(gl�1) dm

0

g0;l�1
(gl�1)

� Cck�l�1ÆLf

�
1� a

p
p
�
��1

�(g0) (5.24)

With each term in the summation on the right hand side of (5.17) bound by (5.24),

summation over l gives a bound for the left hand side of

jmg0;k(f)�m0

g0;k
(f)j � CÆLf

�
1� a

p
p
�
��1

�(g0)
c

1� c
; (5.25)

and a suitable redefinition of the constant C completes the proof.

The following corollary to Proposition 29 is a consequence of Proposition.

Corollary 30. With the same conditions onS as imposed in Proposition 29, let � 0 and

�0 be two measures on S that both satisfy the conditions imposed on � in the premise

of Proposition 29. Let m and m0 be invariant measures with respect to the Markov
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transition kernels �(ga; dgb) = d(Æga � �)(gb) and �0(ga; dgb) = d(Æga � �0)(gb), the

existence of which are predicated in the conclusion of Proposition 27. If � and � 0

are separated in the Lévy metric by d(�; �0) < Æ, then there exists a constant C,

independent of Æ such that if f is a Lipschitz function with Lipschitz constant Lf ,

jm(f)�m0(f)j � CLfÆ

Proof. A direct application of the Proposition gives the bound

jmg0;k(f)�m0

g0;k
(f)j � CLfÆ�(g0):

However, it follows from Proposition 27 that both mg0;k and m0

g0;k
have weak limits

that are independent of the initial point g0, and as a consequence, taking the limit as

k !1, and redefining the constant C gives

jm(f)�m0(f)j � CLfÆ

The proposition also provides a method to deal with perturbations of random walks

that introduce a small amount of dependence between successive increments.

Corollary 31. Let � be the generator for a Markov random walk on a semigroup S,

and let � and S satisfy the conditions of Proposition 29. Let h! �(h) be a mapping

from S to C?
�(S) such that for all h 2 S, d(�; �(h)) < Æ, and define a second (non-

Markov) random walk with transition kernel �(gl; dgl+1) = Ægl � �(hl�1), where hl�1

is the increment between gl�1 and gl. Then, if the measure mg0;k is the probability

distribution of the k’th point in the walk with generator � conditioned on the initial

point g0, and m0

g0;k
the corresponding distribution for the walk with transition kernels

constructed from the measures �(hl), then

jmg0;k(f)�m0

g0;k
(f)j � CLfÆ�(g0)
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Proof. The proof of the corollary is already contained in the proof of the theorem.

A second consequence of Lemma 28 is the following Proposition

Proposition 32. Let �(ga; dgb) = (Æga ��)(dgb) be a transition kernel of a contractive

random walk on an M -dimensional semigroup S, and let � have compact support.

Define a mapping � : C�

�(S)! C�

�(S) by

ma(dga)!
Z
S

ma(dga)�(ga; dgb) = mb(dgb)

� is a uniformly continuous mapping with respect to the Lévy metric of the subspace

of compactly supported measures onto itself. Further, if P = f��g is the family of

such contractive kernels indexed by the compactly supported generator �, then P is an

equicontinuous family.

Proof. Let ma and m0

a be two compactly supported measures on S that are separated

by d(ma; m
0

a) = Æ. Let K = 2M � 1, and let

m0

a =
X
�

m0

a� +m0

a0 ma =
X
�

ma� +ma0 (5.26)

Be two decompositions that having the properties of the decompositions in the conclu-

sion of Lemma 28. Since the map induced by the kernel � is linear, mb and m0

b have

decompositions

m0

b =
X
�

m0

b� +m0

b0 mb =
X
�

mb� +mb0

where mb� = ma� � � and m0

b� = m0

a� � �. The following conclusions are immediate

mb�(S) = m0

b�(S) and mb0(S) = m0

b0(S) < KÆ: (5.27)

In addition, let E be a measurable subset of S, and let gb = hga 2 E for some h 2
supp �, and ga 2 ma�. Since left multiplication by an element of the support of � is a
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contraction inS, it follows that g 0b = hg0a 2 EKÆ for all g0a that satisfy �(g0a; ga) < KÆ.

But it is a property of the decompositions in (5.26) that all g 0a 2 suppm0

a� lie within

KÆ of ga. As a consequence of this argument, the analogous argument with the roles

of primed and non-primed variables reversed, and the first of the conclusions in (5.27)

mb�(E) � m0

b�(E) � mb�(E
KÆ)

or m0

b�(E) � mb�(E) � m0

b�(E
KÆ)

And summing over the index � gives

mb(E) � m0

b(E) � mb(E
KÆ)

or m0

b(E) � mb(E) � m0

b(E
KÆ)

This statement together with the second of the conclusions in (5.27) leads to the con-

clusion that d(mb; m
0

b) < KÆ and therefore the first conclusion of the proposition: that

the mapping � is continuous. The second conclusion of the Proposition, that P is an

equicontinuous family, is a consequence of the independence of the constant K with

respect to the kernel �.

In the theorems that follow Tk = (Sk; gk) is a Markov modulated random walk.

The random process Sk, is a discrete time Markov process that takes values in a metric

space (S; �S), and has transition kernel �(Sa; dSb). The process gk takes values in

the semigroup S with metric �S, and has dynamics determined by the equation gk =

g(Sk)gk�1, where g : S! S is a bounded Lipschitz continuous function with respect

to �S and �S. The function g generates continuous maps d?g : C�

�S
(S)! C�

�S
(S) and

d?g : C�S(S) ! C�S(S), where �S : S ! R and �S : S ! R are weight functions

on the metric space S and the semigroup S.
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Theorem 33. Let �(Sa; dSb) be the transition kernel for a Markov process Sk on S

with an invariant measure �. Let �0 be the marginal distribution for the initial value

S0, and let Sk satisfy the geometric ergodicity condition

dS(�
k(S0; dSk); �) < C1c

k�S(S0)

and the regularity condition dS(�1�; �2�) < CdS(�1; �2) 8�1; �2 2 C�

�(S).

Suppose that the map g : S ! S and the chain Sk generate a Markov random

walk with transition kernel

�(Sk; gk; dgk+1) = Ægk � [d?g](�(Sk; dSk+1));

and suppose also that the sequence of measures [d?g](�(Sk; dSk+1)) is p-strongly

primitive and r-strongly contractive with probability 1.

Then, there exists a measure m, and positive constants C and c with 0 � c < 1

such that for any Lipschitz function f : S! R with Lipschitz constant Lf

j�k(S0; g0; dgk)(f)�m(f)j � CLfc
k�S(g0)�S(S0)

Proof. The proof uses an appropriate grouping of increments to show that the Markov

modulated random walk is well approximated by a second random walk with indepen-

dent, identically distributed increments.

Let f be Lipschitz with respect to �. The quantity �k(S0; g0; dgk)(f) can be ex-

plicitly written as the iterated integral

Z
f(g(Sk)g(Sk�1) : : : g(S1)g0)�(S0; dS1) : : :�(Sk�2; dSk�1)�(Sk�1; dSk) (5.28)

Write k = jl + r. The interpretation of this decomposition is that the random walk

is allowed to run for r increments, and after that the increments are compounded in
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groups of l. Use this decomposition to rewrite the integral in (5.28) as

Z
f(hljh

l
j�1 : : : h

l
1gr)�

l(Sl(j�1)+r; d(Slj+r; h
l
j))�

l(Sl(j�2)+r; d(Sl(j�1)+r; h
l
j�1))

: : :�l(Sr; d(Sl+r; h
l
1))�

r(S0; g0; d(Sr; gr))

where

hli = g(Sil+r)g(Sil+r�1) : : : g(Si(l�1)+r+1) for 1 � i � j: (5.29)

For any S0 2 S, the kernel �l(S0; d(Sl; h
l)) acts on a Lipschitz function f : S�S! R

by the formula

Z
f(Sl; h

l)�l(S0; d(Sl; h
l)) =

Z
f(Sl; g(Sl) : : : g(S1))�(Sl�1; dSl) : : :�(S0; dS1):

The essential steps in the proof compute appropriate values for the remainder r and the

divisor l.

The value of r determines the the length of the initial transient. If Sa, the initial

value of the Markov process, is restricted to a compact subset of S, then during the

transient the sequences of measures �j(Sa; dSb), 0 � j � r, converge to a ball of

radius Æ about �, the invariant measure of the transition kernel �(Sa; dSb). The con-

vergence is uniform in the initial value Sa. Meanwhile, the position of the Random

walk hjhj�1 : : : g0, 0 � j � r is controlled by the a-priori bounds of Lemma 9. This

bound is a result of p-strong primitivity of the Markov random walk, and a bound on

the range of the map g : S! S.

Lemma 34. For all Æ > 0 there exists r, sufficiently large that for all S0 2 S, and for

all k � r, dS(�(S0; dSk); �) < Æ. Also, almost surely, �S(gr) < C=Æ �S(S0)�S(g0)
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Proof. A premise of the theorem states that there exists a real constant C > 0 and a

positive integer c such that for all S0 2 S,

dS(�
k(S0; dSk); �) � Cck�S(S0)

Choose r so that

Ccr�S(S0) � Æ � Ccr�1�S(S0);

then the condition on the range of g : S! S implies that

�S(gr) � ar�S(g0)

� 1

ccr�1
�S(g0)

� C

Æ
�S(S0)�S(g0)

with an appropriate re-definition of the constant C.

Turning now to the divisor l, define the l-cumulants of the random walk by

hli = hil+rhil+r�1 : : : h(i�1)l+r+2h(i�1)l+r+1; i � 1:

The value of the divisor l should be large enough that, under the process distribution

for the Markov modulated random walk, successive l-cumulants are close to being

independently and identically distributed.

First an auxiliary lemma.

Lemma 35. Under the conditions of the premise of the theorem the probability mea-

sures �0;k that describe the joint distributions of S0 and Sk satisfy

d�(�0;k; �0 
 �) � C2c
k
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Proof. Let f 2 C�(S
2) with jf j � �, then����

Z
f(S0; Sk) d�0;k(S0; Sk)�

Z
f(S0; Sk) d�0(S0)d�(Sk)

����
=

����
Z �

f(S0; Sk) �
k(S0; dSk)� f(S0; Sk) d�(Sk)

�
d�0(S0)

����
�
Z

C1c
k�(S0) d�0(S0) = C2c

k;

when C2 = C1�0(�). Since the only condition on the choice of f is the uniform bound,

the result follows.

Lemma 36. For all k, let �k = �(S0; dSk) denote the distribution of the random

variable Sk. For l sufficiently large, there exists a measure �l on S, and constants

�; Æ > 0 such that if dS(�il+r; �) < Æ, then

dS(�
l(Sil+r; gil+r; dg(i+1)l+r); d[Ægil+r � �l](g(i+1)l+r)) < �

almost surely with respect to the distribution of gil+r 2 S and Sil+r 2 S.

Proof. Renumber the indices so that the index il + r becomes 0, and the index l(i +

1) + r becomes l, and partition the interval l as l = l1 + l2. The proof rests on two

claims.

Claim 1: For all Æ > 0, there exists l1 such that the joint distribution of S0, and

hl1 = g(Sl1) satisfies

d(�0(S0)d?g[�
l1(S0; �)](hl); d�0(S0)
 d?g[�](hl1)) � Æ; (5.30)

where � is the invariant distribution for the kernel �(Sa; dSb).

Claim 2: Let M � C�

�(S) be a tight family of measures. For all � there exists l2, a

measure �l2 , and a constantC that depends on l2, such that for all conditional measures

m(�j�) taking values m(�jS) 2M, and for all Æ, if d(� 0; �) < Æ then

d
�
(� 0m(�j�))�l2(S0; g

0; dhl2); �l2
�
< CÆ + �: (5.31)
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The following argument uses the two claims to prove the lemma. The assump-

tions of p-primitivity for the generators d?g[�k], and boundedness for the map g, to-

gether with Lemma 25 ensure that the measures ml1 lie in a tight family, irrespec-

tive of the value of l1. So, given Æ > 0, choose � = Æ=2 and use Claim 2 to

compute l2, �l2 and C such that the inequality (5.31) holds when m = ml1 , and

� 0 = �l1 . Now choose Æ such that CÆ = �=4, and use Claim 1, and the assumption that

dS(�
k(S0; dSl1); �) < Cck�S(S0) to compute a value l1 such that both the inequality

(5.30) holds, and d(�l1; �) < Æ. Since the map �l
2(Sl1 ; e; d(h

l2) : C�(S) ! C�(S)

is a contraction with respect to Lipschitz seminorms, Proposition 21 implies that the

conclusion of the lemma is true with l = l1 + l2 and �l = �l2 .

Proof of claim 1: To prove the first claim, choose f : S�S! R to be a function

that is Lipschitz with respect to �S in the first variable, and Lipschitz with respect to

�S in the second variable. Define a second function e : S � S ! R by e(Sa; Sb) =

f(Sa; g(Sb)). Since g : S! S is Lipschitz, the function e is also Lipschitz. Allowing

the two measures that form the argument to the Lévy metric on the left hand side of

(5.30) to act on the function f gives

Z
f(S0; gl1)d�0(S0)d?g[�

l1(S0; �)](gl1) =
Z

e(S0; Sl)d�0(S0)�
l(S0; dSl1)

and

Z
f(S0; gl1)d�0(S0)d?g[�(�)](gl1) =

Z
e(S0; Sl)d�0(S0)d�(Sl1):

If �0;k and �0
 � are written out explicitly as d�0(S0)�l(S0; dSl1) and d�0(S0)d�(Sl1)

then Lemma 35 states that

d(d�0(S0)�
l(S0; dSl1); d�0(S0)d�(Sl1)) < Ccl1
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for some constants C � 0 and 0 � c < 1. Therefore, it follows from Lemma 18 that

for every value Æ > 0, there exists a value for l1 sufficiently large that inequality (5.30)

holds.

Proof of claim 2: Let m be a measure in C�

�(S), and � and � 0 be two measures

in C�

�(S) and let �((Sa; ga); d(Sb; gb)) be a transition kernel for a Markov modulated

random walk, then

Z
f(hl) (� 0
m)�l�k((Sk; h

k); d(Sl; h
l))�

Z
f(hl) (�
m)�l�k((Sk; h

k); d(Sl; h
l))

=
X
�

�Z
f(hl) ÆS0

k
(dSk)�(Sk; dSk+1) �

0

�(dS
0

k)(m � d?g[ÆS0
k
])(dhk+1) �l�k�1

� 1

��(S)

Z
f(hl) ��(dSk)�(Sk; dSk+1) �

0

�(dS
0

k)(m � d?g[ÆS0
k
])(dhk+1) �l�k�1

+
1

��(S)

Z
f(hl) ��(dSk)�(Sk; dSk+1) �

0

�(dS
0

k)(m � d?g[ÆS0
k
])(dhk+1) �l�k�1

�
Z

f(hl) ��(dSk)�(Sk; dSk+1) ÆSk(dS
0

k)(m � d?g[ÆS0
k
])(dhk+1) �l�k�1

�

Performing the integration with respect to Sk in the first pair of terms, and with respect

to S 0k in the second pair of terms gives, with condensed notation,

Z
f(hl) (� 0
m)�l�k((Sk; h

k); d(Sl; h
l))�

Z
f(hl) (�
m)�l�k((Sk; h

k); d(Sl; h
l))

=
X
�

Z �Z
f(hl) �̂ 0� 
 ~m0�l

k+1 �
Z

f(hl)�̂� 
 ~m0�l
k+1

�
��(dS

0

k)

+
X
�

Z �Z
f(hl) ~�� 
 m̂0�l

k+1 �
Z

f(hl)~�� 
 m̂�l
k+1

�
� 0�(dSk) (5.32)

The measures that are factors in the tensor products on the right hand side are defined

as follows. In the first term, the measures are functions of S 0

k,

�̂ 0� = �(S 0k; dSk+1); �̂� =
1

��(S)

Z
�(Sk; dSk+1) d��(Sk);

and ~m0 = m � Æg(S0
k
):
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While in the second term, the measures are functions of Sk,

~� 0� = �(Sk; dSk+1); m̂0 =
m � d?g[� 0�]

��(S)
; and m̂ = m � Æg(Sk):

Write the left hand side of equation (5.32) as [T l�k(ÆR)](f), where l�k is the number

of terms in �l�k, the iterated kernel, Æ is the bound on the distance d(�; � 0), and R

is a bound on the support of m. Examine the expressions for the measures �̂ and �̂ 0.

It is true that for any �, and for any S 0k 2 supp � 0�, d(ÆS0
k
; ��=��(S)) < Kd(� 0; �),

and therefore d(�̂0; �̂) < CÆ for some constant C that is independent of � and � 0.

The premise of the proposition contains the assumption that the kernel �(Sa; dSb) is

contractive with respect to the Lévy metric. It is a consequence of this assumption

that the magnitude of the first term on the right hand side of (5.32) is bounded by

[T l�k�1(C1ÆR)](f) for some constant C1.

Examine the expressions for the measures m̂ and m̂0. The bound d(ÆS0
k
; ��=��(S)) <

Kd(� 0; �), and Proposition 32 implies that d(m̂; m̂0) < CÆ. Since �(Sa; ga; d(Sb; gb))

is a kernel for a contractive random walk, it follows again from Proposition 32 that the

second term in on the right hand side of (5.32) is bounded by C2Æ.

An application of these observations to the expression in equation (5.32) produces

the recursive bound

[T l�k(ÆR)](f) � [T l�k�1(C1ÆR)](f) + C2Æ

Computing the recursion for k iterations gives the bound

[T l�k(ÆR)](f) � Ck
1 ÆR +

kX
i=1

C2C
i�1
1 Æ < Ck

1C3RÆ:

Now let m0(�j�) : S ! C�

�(S) be a conditional measure that takes values in the

tight family of measures M. Let � denote the metric on S. The tightness condition

means that there exists a compact set K � S such that m(�jS)[�1SnK ] < �=2 outside
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a set of measure 0 on S. Let �l2 = ��l2(S0; e; dh
l2). The left hand side of (5.31),

written as an integral, is bounded by

����
Z
f(hl2)� 0(dS0)m(dh0jS0))�l2(S0; h

0; dhl2)�
Z

f(hl2)�l2(dh
l2)

����
�
����
Z

f(hl2)� 0(dS0)m(dh0jS0))�l2(S0; h
0; dhl2)

�
Z

f(hl2)� 0(dS0)�
l2(S0; e; dh

l2)

����
+

����
Z

f(hl2)� 0(dS0)�
l2(S0; e; dh

l2)� f(hl2)�(dS0)�
l2(S0; e; dh

l2)

����
The first difference on the right hand side has the form of the left hand side of equation

(5.32). Since K is compact D = supfd(e; g) : g 2 Kg is finite, and the r-contractive

property of the Markov modulated random walk provides a bound for the second dif-

ference.

The theorem now follows from an application of Corollary 31. All that remains

is to demonstrate how the requirements in the premises of the corollary are fulfilled.

Consider again the original Markov modulated random walk gk with modulating pro-

cess Sk. Lemmas 34 and 36, state that for any Æ > 0, provided k is sufficiently large,

it is possible to choose a factorization k = lj + r with divisor l and a remainder r

such that �S(gr) < (C=Æ)�S(g0)�S(S0), and if glj denotes the walk gk left shifted by r

terms, and rewritten with increments grouped in groups of l, then the transition kernel

for gl, which can be written as

�(Sr+jl; g
l
j; dg

l
j+1) = Ægl

j

� �(Sr+jl; hlj; �);

satisfies d(�(Sr+jl; g
l
j; dg

l
j+1); Ægl

j

� �l) < Æ, where d�l(h) = ��l2(�; e; dh) is the

measure defined in the proof of Lemma 36. So provided �l has the contractive and

primitivity properties required by Corollary 31, the theorem is proved.
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Theorem 33 gives an ergodicity result for the Markov modulated random walk gk,

but the estimator problem requires an analogous result for the Markov process (Sk; gk)

that combines the modulating process Sk with the random walk that it generates. The

following result describes the situation when the modulating process Sk is i.i.d.

Proposition 37. Let Sk be an i.i.d. process with distribution �, and let gk be the ran-

dom walk generated by the associated measure � = [d?g]� with invariant distribution

m. Then the combined process (Sk; gk) is ergodic, and has an invariant distribution

on (Sb; gb) given by (m � Æg(Sb)(gb))�(Sb)

Proof. First, demonstrate that (m � Æg(Sb)(gb))�(Sb) is an invariant distribution.

(m � Æg(Sa)(ga))�(Sa)�[Sa; ga; d(Sb; gb)]f(Sb; gb)

= (m � Æg(Sa)(ga))�(Sa)
Z

f(Sb; gb)d(Æga � Æg(Sb))(gb)d�(Sb)

=

Z
f(Sb; gb)d

�Z
(Æga � Æg(Sb))d(m � Æg(Sa))(ga)d�(Sa)

�
(gb)d�(Sb))

=

Z
f(Sb; gb)d(m � � � Æg(Sb))(gb)d�(Sb)

=

Z
f(Sb; gb)d(m � Æg(Sb))(gb)d�(Sb)

Geometric convergence is demonstrated as follows. Let f : S �S ! R be Lipschitz

(in both its variables), and let h(Sa; ga) =
R
f(Sb; gb)d(Æga � Æg(Sb))(gb)d�(Sb), then

h is Lipschitz with Lipschitz constant Lh = KLf , and

j�k(S0; g0; d(Sb; gb))f �
Z

f(Sb; gb)(m � Æg(Sb)(gb))d�(Sb)j

=

����
Z

f(Sb; gb)d(Æg0 � � � k�1: : : � � � Æg(Sb) �m � Æg(Sb))(gb)d�(Sb)
����

= jmg0;kh�mhj � KLfc
k
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The case when (Sk; gk) is a Markov modulated walk introduces additional complexity.

While the invariant distribution of gk coincides with the invariant distribution of the

random walk generated by �, the invariant distribution of Sk, the same correspondence

does not hold for the invariant distribution of the combined process. As a consequence,

the proof of existence and regularity results for the combined process requires a new

approach.

Theorem 38. Let gk be a Markov modulated random walk generated by a Markov pro-

cess Sk. Suppose that process Sk and the map g satisfy the conditions in the premise

of Theorem 33, and that �, the invariant measure for the random walk on S, is com-

pactly supported. Then the Markov process (Sk; gk) has an invariant distribution m,

and there exist positive constants c 2 (0; 1) and K such that for any Lipschitz function

f : S�S! R, with Lipschitz constant Lf ,

j�k(Sa; ga; d(Sb; gb))f �mf j � KLfc
k�S(ga)�S(Sa) (5.33)

Proof. Let f : S�S! R be Lipschitz continuous with Lipschitz constant Lf . Let S�,

� 2 A be a finite partition of a subset of S that satisfies the following three conditions.

(i) supp � � [�S�

(ii) �(S�) � 0 8�

(iii) diag(S�) < Æ 8�

The existence of such a partition is a consequence of the compactness of the support

of �. For each � 2 A, let f� be the approximation to the restriction of f to the set

S� �S that is formed by averaging f over the set S�. So, for S 2 S and g 2 S

f�(S; g) = 1S�(S)

�(1S�f(�; g))

�(S�)
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Since f is Lipschitz, the error jf �P� f�1S� j is uniformly bounded on
S
S� �S.

Define a sequence of random times k�(l) by the condition that Sk�(l) is the l’th

element of the sequence Sk that lies in S�. Ergodicity of the chain Sk ensures that the

values in the sequence k�(l) are finite with probability 1. For each � define a family

of distributions �k on the positive real numbers x 2 R
+ by �k(x) = P [fk = k�(kx)g]

then �k(x) is supported on the discrete set fx : x = l=k; l <= kg, limk!1E[�k(x)] =

�(S�) and a large deviation result gives a bound that is exponential in k for the proba-

bility P�k [jl=k � ��j > �].

Let R�;l 2 �S be the Markov chain that is constructed by forming the random

length Cartesian products

R�;l = (Sk�(l)+1;
k�(l+1)�k�(l): : : ; Sk�(l+1)):

Geometric ergodicity of the Markov process Rl follows from the geometric ergodicity

of the underlying process Sk. Define a map g : �S! S by

g(Rl) = g(Sk�(l)+1) : : : g(Sk�(l+1));

a sequence of measures: �l on S by

�l = [d�g]�
l(R0; �)

and a sequence of transition kernels �l
�(ga; dgb) by the convolution product

�l
�(ga; dgb) = Æga � �1 � � � � � �l

The transition kernels �l
� define a Markov modulated random walk on S with Rl as

the modulating Markov process. Let m� = liml!1�l
�(ga; dgb), Theorem 33 ensures

both the existence of the following geometric bound

j�l
�(Sa; ga; dgk)(f)�m�(f)j � C�Lfc

l
��S(ga)�S(Sa):

122



For sufficiently large k, the kernel �k((Sa; ga); d(Sb; gb)) can be approximated to

within a fixed multiple of Æ by

�k((Sa; ga); d(Sb; gb))f �
X
�

X
l

P [fk = k�(l)g]�l
�(ga; dgb)f�

�
X
�

�(S�)m�f�

Where the large deviation result for the random time k�, and the geometric ergodicity

of the random walk have been used in the second approximation.

Corollary 39. Let ��(Sa; dSb) and �0

�0(Sa; dSb) both satisfy the conditions of Lemma

33 for some measures � and � 0 separated in the Lévy metric by d(�; � 0) < K0j� � �0j.
Then there exists a constant K such that for any Lipschitz function f : S � S ! R

with Lipschitz constant Lf ,

j�k
�(S0; g0; d(Sk; gk))(f)� �k

�0(S0; g0; d(Sk; gk))(f)j � KLf j� � �0j�S(ga)�S(Sa)
(5.34)

Proof. Let mg0;k and m0

g0;k
be the measures defined in the proof of Proposition 27.

j�k
�(S0; g0; d(Sk; gk))(f)� �k

�0(S0; g0; d(Sk; gk))(f)j

� j�k
�(S0; g0; d(Sk; gk))(f)�mg0;k(f)j+ jmg0;k(f)�m0

g0;k
(f)j

+ jm0

g0;k
(f)� �k

�0(S0; g0; d(Sk; gk))(f)j

The result is a consequence of the preceding theorem and Corollary 30.

5.3 Potential Theory for the Underlying Chain

This section combines the results from the first two sections in this chapter with the

description of estimator Markov chain from the first section of Chapter 4 to prove
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that assumptions 4-bis and 5-bis from section 2 of Chapter 4 hold for the combined

estimation and control stochastic approximation problem. Throughout this section Q

is assumed to be a compact subset of the interior of the parameter space �, and the

parameter � 2 Q is assumed to be a fixed point in Q. In particular, this means that the

entries in the matrices Au(�) and B(�), the estimates of the underlying state transition

matrices Au, and the ouptut matrix B are bounded away from zero by

inf
i;j;u

Au;ij(�) > Æ(Q) and inf
i;m

Bim(�) > Æ(Q)

where Æ(Q) > 0 is a constant that depends on the choice of the compact set Q. Also,

the standing assumptions from Chapter 2 about the underlying Markov model hold.

Namely, there exists Æ > 0 such that

inf
i;j;u

Au;ij > Æ and inf
i;m

Bim > Æ;

and �, the randomization parameter in the control algorithm (2.14), is strictly positive.

The first task is to establish that the characterization of the Markov chain Xk that was

given in Section 1 of Chapter 4 fits the requirements of the theory in Section 2 of this

chapter.

Recall that the state space for the Markov chain has a projective structure

X
��! ~X� X� ��! ~X; (5.35)

and that the Markov transition kernel �(Xa; dXb) is constructed from the discrete

kernel �( ~Xa; d ~Xb) by using the actions of Markov modulated random walks on the

sets X�, X� and X
 . The Markov modulated walks are generated by the maps

~X
g��! S(
�) (5.36)

~X� X� g�
g
���! S(X�)
S(X
): (5.37)
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Where g� 
 g
 , the outer group product of the two maps g� and g
 , factors into two

Markov modulated random walks

~X� X� g��! S(X�) (5.38)

~X� X� g
�! S(X
): (5.39)

The product semigroup S(X�) 
 S(X
) is a ‘block-diagonal’ sub-semigroup of the

semigroup S(X� � X
).

The Markov modulated random walk theory applies to both levels of the projective

structure in (5.35), and the application of the theory to each level is considered in turn.

The random walk generated by (5.36) is considered first. The underlying chain here

is the discrete chain ~Xl that was analyzed in the first section of this chapter. Propo-

sition 12 establishes that the transition kernel for the discrete chain �( ~Xa; d ~Xb) has

an invariant distribution ~��, and that the sequence of kernels �l( ~Xa; d ~Xb) converges

uniformly in Xa, and geometrically in l to the invariant measure. The mapping (5.36)

with g� : ~X ! S(
�) defined by (4.3) induces a mapping d?g
� from measures on

~X to measures on S(
�). The map d?g
� along with the Markov chain ~Xk with tran-

sition kernel �( ~Xa; d ~Xb) generates a sequence of generators for a Markov modulated

random walk on S through the formula

�k = d?g
��( ~Xk�1; d ~Xk): (5.40)

For X 2 X� = (X1; X2), let �s(X) = maxfsupi jX1
i j�s; supi jX2

i j�sg, and define

a metric �� : S(X�)�S(X�)! R by

��(g1; g2) = sup
X2X�

d�(gaX; g2X)

�1(X)
: (5.41)

Lemma 40. The sequence of generators �k defined in equation (5.40) are r-strongly

contractive and p-strongly primitive. With r = p = 2.
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Proof. If g 2 supp �k, then g = g�( ~X) for some ~X 2 ~X. Consequently, if X 2 X� is

written as an ordered pair X = (X1; X2), then

(gX)1 = g�( ~X)X1 = diag(B(�)y��+1)A>

u��(�)X1

(gX)2 = X1:

(5.42)

Recall that the factors X1 and X2 are points in the probability simplex 
� which

carries a hyperbolic metric, and is embedded in the projective plane. When � 2 Q,

left multiplication by the diagonal matrix diag(B(�)y��+1), considered as an operator

on the projective plane, is an isometry on 
� with the hyperbolic metric, and left

multiplication by the matrixA>

u��(�), is a strict contraction. Consequently, there exists

a constant c, that depends on the choice of the compact set Q through the bound Æ(Q),

that satisfies the bounds 0 � c < 1, and that supports the following statement. For all

X 2 X�, for all g1; g2 2 S(X�), and for all g 2 supp �k

d�(gg1X; gg2X) � c d�(g1X; g2X)

) d�(gg1X; gg2X)

�(X)
� c sup

X2X�

d�(g1X; g2X)

�(X)
= c�(g1; g2):

The right hand side of the inequality is independent of X , so, taking the supremum of

the left hand side over X gives the bound

�(gg1; gg2) � c�(g1; g2):

Because this inequality holds for all g in the support of �, it follows that the random

walk is a strict contraction, and therefore a strong contraction.

Define �s(g) = supX2X�(�(gX)=�(X)). Let K be a subset of S defined by

K = fg 2 S : �s(g) � 1

Æ
g
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for some Æ > 0. If g1; g2 2 K, then

�(g1; g2) = sup
X2X�

sup
i;j;l

"
log

 
(g1X)li
(g2X)li

(g2X)lj
(g1X)lj

!
�(X)�1

#

� sup
X2X�

sup
i;j;l

"
log

 
1� (g1X)lj
(g1X)lj

!
�(X)�1 + log

�
1� (g2X)li
(g2X)li

�
�(X)�1

#

� sup
X2X�

sup
i;j;l

"
(1� 2(g1X)lj)

(g1X)lj
�(X)�1 +

(1� 2(g2X)li)

(g2X)li
�(X)�1

#
� 2

Æ

K is a bounded closed subset of S with respect to the metric d, and is therefore com-

pact.

Returning to the structure of the map g�; ~X ! S(X�) that is described in equations

(5.42), let g1; g2 2 Range(g�). Given an arbitrary point X0 2 X�, let X1 = g1X0, and

X2 = g2g1X0. If X1 and X2 are written again as ordered pairs X1 = (X1
1 ; X

2
1 ) and

X2 = (X1
2 ; X

2
2 ) then, it follows from the requirement that Au;ij(�) > Æ for all u; i and

j that supi jX1
1;ij�s < 1=Æ, and therefore that �s(X2) < 1=Æ. Not only is K absorbing

from the right, but the random walk gk is strictly p-primitive with p = 2, and therefore

strongly p-primitive.

Fix X 2 X�, and let oX : S(X�) ! X� denote the mapping oXg 7! gX . Since

the members of the semigroup S(X�) are all continuous transformations on Xa, it

follows that oX is a continuous map for all X 2 X�. The map oX , and the derived

maps d?oX : C(X�) ! C(S(X�)), the pullback on the space of bounded continuous

functions, and d?oX : C�(S(X�)) ! C�(X�), the push-forward on the dual space of

Radon measures provide mechanisms to map the properties of random walks on the

semigroup S(X�) to the properties of random sequences on the base space X�.

The metrics d� on X� and �� onS(X), the weight functions �s, and the Lipschitz-

style seminorms for functions in C(X�) and S(X�) are defined in a way that allow

properties of a random walk gk on the group to be mapped to properties of a corre-
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sponding random sequence Xk on the space Xa.

Lemma 41. Given � : X� ! R be a weighting function on X�, let

�(g) = sup
X2X�

((�(gX))=�(X))

be the corresponding weight on the semigroup S(X�). Define a seminorm [�]�s on the

space of continuous functions C(X�) by

[f ]� = sup
X1 6=X2

jf(X1)� f(X2)j
d(X1; X2)(�(X1) + �(X2))

and an analogous seminorm on C(S(X)) by

[f ]� = sup
g1 6=g2

jf(g1)� f(g2)j
�(g1; g2)(�(g1) + �(g2))

:

Then, [d?oX(f)]� � [f ]� for all functions f : X! R with finite seminorm [f ]�.

Proof. Let X be any element of X�, and ga; gb 2 S(X�).

j[d?oX(f)](ga)� [d?oX(f)](gb)j = jf(gaX)� f(gbX)j

� [f ]�d�(gaX; gbX)

�
�(gaX) + �(gbX)

�(X)

�
�(X)

� [f ]���(ga; gb)(�(ga) + �(gb))

Proposition 42. Let � 2 Q.

(i) The Markov process ( ~Xl; X
�
l ) with transition kernel

��( ~Xa; X
�
a ; d( ~Xb; X

�
b )) = M

~Xa

~Xb

ÆX�;1
a

(X�;2
b )Æg�( ~Xb)X

�;1
a

(X�;1
b )

has an invariant measure ��.
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(ii) There exist positive constants K, and c with 0 � c < 1 such that for any Lips-

chitz function f : ~X� X� ! R with Lipschitz constant Lf ,

j�k
�( ~Xa; X

�
a ; d( ~Xb; X

�
b ))f � ��f j � KLfc

k

(iii) Let �0 be a second point in Q, then there exists a positive constant K such that

for any Lipschitz function f : ~X� X� ! R with Lipschitz constant Lf , and for

all k > 0,

j�k
�( ~Xa; X

�
a ; d( ~Xb; X

�
b ))f � �k

�0( ~Xa; X
�
a ; d( ~Xb; X

�
b ))f j � KLf j� � �0j

Proof. As indicated in Proposition 7, the Markov chain ( ~Xl; X
�
l ) has a decomposition

as a product of a discrete time Markov chain ~Xl and the action of a Markov modulated

random walk sl on the space X� = 
� � 
�. The Markov modulated random walk is

defined on the semigroup S(
�), and has the transition kernel

��( ~Xa; sa; dsb) = Æsa � [d?g�](��( ~Xa; �))(dsb): (5.43)

The proof of the proposition relies on an application of Theorem 38, and the first

order of business is to verify that the premises of that theorem are satisfied. Consider

the following properties of the Markov modulated process with the transition kernel of

equation (5.43):

(i) Since the space of the modulating process, S = ~X, is finite and discrete, it triv-

ially satisfies the requirements that there exist a metric d : S � S ! R and a

weight function �S. The space of measures C�

�(
~X) is a finite dimensional vector

space, the probability distributions form a finite dimensional probability sim-

plex, and the Levy metric d is just the metric induced by the finite dimensional

supremum norm.
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(ii) From Proposition 12, �(Sa; dSb) = M
~Xa

~Xb
has an invariant distribution � ~X, and

there exist constants C and c such that for all ~X0,

d(�k( ~X0; d ~Xk); �~X) < Cck� ~X(
~X0)

(iii) S = S(
�), and �S is the metric defined in equation (5.41). Since ~X is finite,

the map g� : ~X ! S(
�) is trivially Lipschitz continuous with respect to the

metric �S and any metric on ~X that is compatible with the discrete topology.

(iv) The Markov chain ~Xk generates a Markov modulated random walk on S(
�)

through the map g� : ~X ! S(
�). Lemma 40 demonstrates that the Markov

random walk is both p-primitive and r-contractive with p = r = 2.

Items (i) – (iv) establish the premises of Theorem 38, and an application of the

theorem proves that the transition kernel in (5.43) has an invariant measurem�, that the

projection of the support of m� onto the semigroupS(X�) is contained inS0(X
�), the

sub-semigroup of zero-rank elements, and that the iterated kernels of the random walk

converge geometrically to the invariant measure in the weak topology of probability

measures on the semigroup.

Consider now the map

oX�
a
: S(X�)! X�

oX�
a
(s) = sX�

a

The derived map d?oX�
a
: C�(S)(X�) ! C�(X�) maps measures on the semigroup

to measures on the affine space X�. For example, the convolution kernel Æsa � m�

evaluated at sa = I on S(X�) maps to the kernel sX�
a dm(s) on X�.

If the Markov modulated random walk sl is initialized at s0 = I, then the Markov

process ( ~Xl; X
�
l ) can be written as ( ~Xl; oX�

a
(sl�1); oX�

a
(sl)), and the sequence of de-
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rived maps

C�(~X)
d?g���! C�(S(X�))

d?oX����! C�(X�)

provides an alternative formula for the transition kernel (42):

��( ~Xa; X
�
a ; d( ~Xb; X

�
b ))

= M
~Xa

~Xb

ÆX�;1
a

(X�;2
b )Æg�( ~Xb)X

�;1
a

(X�;1
b ) d ~Xb dX

�
b

= M
~Xa

~Xb

ÆX�;1
a

(X�;2
b )[d?oX�

a
](Æ1(�) � [d?g�](��( ~Xa; �)))(X�

b ) d ~Xb dX
�
b

The advantage of the second, factored form of the kernel is that asymptotic prop-

erties of the iterated kernel can be derived directly from the properties of the iterated

kernel for the Markov modulated random walk on the semi-group. In particular, the

push-forward, �� = d?o(m
�) is the invariant measure proclaimed in statement (i) of

the proposition, and the convergence estimate (5.33) in Theorem 38 combined with

Lemma 41 establishes the estimate in statement (ii). The second conclusion of Propo-

sition 12 combined with Corollary 39 and Lemma 41 establishes statement (iii) of the

proposition.

Corollary 43. The projection of the support of the invariant measure � � onto the

space X� is compactly contained in the interior of X�

Proof. Since � 2 Q, a compact set in the interior of �, the entries in the matricesAu(�)

and B(�) are all bounded away from 0. Consequently, the mapping on X� that is gen-

erated by any g 2 supp�� (this mapping is written out explicitly in equation (5.42))

has a range that is a subset ofX�
0 , a compact subset ofX� defined byX�;i > c for some

constant c > 0 and for all X� 2 X�, and for i = 1; 2. If g 2 S0(X
�), h 2 supp ��,

and X�
a 2 X�, then oX�

a
(hg) 2 X�

0 , and the claim follows.
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Consider now the map in Equation (5.39). The following paragraphs apply the

Markov modulated random walk theory to this map. The families of affine transfor-

mations g�( ~X;X�) : X� ! X� and g
( ~X;X�) : X
 ! X
 are defined in equations

(4.4) and (4.5) by the formulae

g�;p( ~X;X�)X�;p = (1� qÆep(u
��))X�;p + qÆep(u

��)� (5.44)

g
;m( ~X;X�)X
;m = (1� qÆem(y
��))X
;m + qÆem(y

��)
: (5.45)

The transformations depend on X� through the smoothed distribution estimates � 2

� and 
 2 

 which are defined by equations (4.6) and (4.7)

� ij =
X

�;2
i Au;ij(�)�

��
jP

i;jX
�;2
i Au;ij(�)�

��
j

�����
u=u��


i =

P
j �

��+1(j)Au;ij(�)X
�;1
iP

i

P
j �

��+1(j)Au;ij(�)X
�;1
i

�����
u=u��+1

;

The smoothing quantities ��� and ��(�+1) are defined recursively by the formulae in

equation (4.8)

��(l+1);i =
X
j

��l;jAu;ij(�)Bi;m(�)

�����
u=u�l;em=y�l

�0 = 1

Since the parameter � lies in the compact set Q, all the components of the matrices

Au(�) and B(�) are bounded away from zero. Also, from Corollary 43, the compo-

nents of X�;2 are bounded away from zero when ( ~X;X�) 2 supp ��. These facts lead

to the following corollary to Proposition 42.

Corollary 44. Let Q be a compact subset of �, let q 2 Q, and let ( ~X;X�) 2 supp ��.

then the smoothed distribution estimates � and 
, which are functions of ~X , X� and �,

are uniformly bounded away from zero by a bound that is a function of Q and supp � �.
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Define weight functions �� : X� ! R and �
 : X� ! R by

��(X
�) = min

p
min
ij
jX�;p;ijj�1

�
(X

) = min

m
min
i
jX
;m;ij�1

The weight functions �� and �
 together with the metrics d� and d
 on the spaces X�

and X
 generate metrics on the semigroupsS(X�) and S(X
) through the definitions

��(ga; gb) = sup
X2X�

maxp d�((gaX)p; (gbX)p)

��(X)

�
(ga; gb) = sup
X2X


maxp d
((gaX)p; (gbX)m)

�
(X)
:

The following proposition uses these metrics to characterize the contractive nature of

the random walks generated by g� and g
.

Proposition 45. The Markov modulated random walks on S(X�) and S(X
) gener-

ated by the maps g� : ~X�X� ! S(X�), g
 : ~X�X� ! S(X
), and the Markov chain

( ~Xk; X
�
k ) from Proposition 42 are p-strong contractions with respect to the metrics ��

and �
 when p > P .

Proof. Consider first the random walk on S(X�) that is generated by �� = d?g
�(��).

The semigroupS(X�) is the outer product of P copies of the groupS(
�) of transfor-

mations on 
� , the probability simplex on RN�N . If g is in the support of the measure

�� , then g = g�(X�) for some X� 2 supp ��, and, repeating the definition of g� in

equation (5.44), for any X� 2 X,

g�;p( ~X;X�)X�;p = (1� qÆep(u
��))X�;p + qÆep(u

��)�:

Equation (4.4) has P components, each one a transformation of one of the P com-

ponents of the space X�. For each value of ( ~X;X�), u can take only one of the P
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values ep, so P � 1 of the components in equation (4.4) represent the identity transfor-

mation, and one component is the transformation

g�;p( ~X;X�)X�;p = (1� q)X�;p + q� (5.46)

Let ga and gb be two elements of S(X�), let X� be an arbitrary point in X� , and let

X�
a = gaX

� and X�
b = gbX

� .

d�(g
�;p( ~X;X�)X�;p

a ; g�;p( ~X;X�)X�;p
b )

= sup
ij;i0j0

log

" 
(1� q)X�;p;ij

a + q� ij

(1� q)X�;p;ij
b + q� ij

! 
(1� q)X�;p;i0j0

b + q� i
0j0

(1� q)X�;p;i0j0
a + q� i0j0

!#
(5.47)

Now, if (X�;p;ij
a =X�;p;ij

b ) � 1, then

(1� q)X�;p;ij
a + q� ij

(1� q)X�;p;ij
b + q� ij

= 1 +
(1� q)X�;p;ij

b

(1� q)X�;p;ij
b + q� ij

 
X�;p;ij

a

X�;p;ij
b

� 1

!

�
 
1 +

 
X�;p;ij

a

X�;p;ij
b

� 1

!!c

;

and, since both the factors that form the argument of the logarithm on the right hand

side of (5.47) are greater than 1,

d�(g
�;p( ~X;X�)X�;p

a ; g�;p( ~X;X�)X�;p
b ) � c d�(X

�;p
a ; X�;p

b ); (5.48)

where

c = sup
X�2X�

sup
p;i;j

�
(1� q)X�;p;ij

(1� q)X�;p;ij + q� ij

�
:

By Corollary 44, � ij is bounded away from 0, and so there exists a bound c0 which

depends only on q and the compact sets Q � � and supp ��, and which satisfies

0 � c � c0 < 1 for all X�
b 2 
� . As a consequence it is permissible to reinterpret the

multiplier c in inequality (5.48) as a constant less than 1.
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Consider again the mapping in equation (5.44). All P of the component trans-

formations are contractions, and one is a strict contraction. It follows from the re-

sult in Theorem 6 that proves strict positivity of the control measures d�(u), that if

( ~Xk; X
�
k ); : : : ; (

~Xk+P ; X
�
k+P ) are P consecutive points in the random process ( ~Xk; X

�
k ),

then for any X�
a ; X

�
b 2 X� the element

g = g�( ~Xk+P ; X
�
k+P ) : : : g

�( ~Xk; X
�
k ) 2 S(X�)

satisfies the inequality maxp d�((gX
�
a)

p; (gX�
b )

p) < cmaxp d�(X
�;p
a ; X

�;p
b ) with pos-

itive probability. In particular, when X �
a = gaX

� , and X�
b = gbX

� for arbitrary

ga; gb 2 S(X�), and for arbitrary X 2 X� ,

maxp d�((ggaX
�)p; (ggbX

�)p)

��(X�)
� c

maxp d�((gaX
�)p; (gbX

�)p)

��(X�)

with positive probability. Taking a supremum over X � first on the right hand side, and

then on the left hand side yields the result that the random walk generated by g � is

p-strongly contractive for all p � P .

The proof that the random walk on S(X
) generated by �
 = d?g

(��) is m-

strongly contractive for all m �M follows an analogous argument.

Define a weight function ��
 : X� � X
 ! R by

��
(X) = maxfj sup
p;i;j

X�;p;i;jj�1; j sup
m;i

X
;m;ij�1g;

and a metric on the product space X� � X
 by

d�
((X
�
a ; X



a ); (X

�
b ; X



b )) = maxfd�(X�

a ; X
�
a); d
(X



a ; X



a )g;

The corresponding metric on the semigroup S(X� � X
) is,

��
(ga; gb) = sup
X2X
�X


d�
(gaX; gbX)

��
(X)
;
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and the following corollary to Proposition 45 is a consequence of the block structure

of the direct product map g� 
 g
.

Corollary 46. The Markov modulated random walk on S(X� �X
) generated by the

map g� 
 g
 : ~X � X� ! S(X�) � S(X
), and the Markov chain ( ~Xk; X
�
k ) from

Proposition 42 is a p-strong contraction with respect to the metrics ��
 when p > P .

Strong contractivity of the random walks is not enough to ensure geometric ergod-

icity. In addition, the random walks have to satisfy the primitivity condition from the

premise of Lemma 25.

Define a weighting function � : S(X �)
S(X
)! R on the semigroup by �(g) =

supX2X�
X
 ��
(gX)=��
(X). LetK� be a compact neighborhood of supp(��), where

�� is the invariant distribution on X� postulated in Proposition 42.

Define a random sequence of generators �k by

�k = d?[g
� 
 g
](�k(( ~X0; X

�
0 ); d( ~Xk; X

�
k ))) (5.49)

Lemma 47. The sequence of generators �k satisfies the premises of Lemma 25 with

probability 1. In particular, with probability 1:

1. The sequence �1; �2; : : : is R-strongly primitive, where R = maxfP;Mg, P is

the cardinality of the finite control set, and M is the cardinality of the finite ob-

servation space. I.e. there exist a left absorbing compact set K, and a constant

0 � � < 1 such that for all k,

�k � �k+1 � � � � � �k+R(S nK) � �:

2. The sequence of measures �1; �2; : : : has uniformly bounded support, and if

a = supf�(g) : g 2 [k supp�kg;

then a�1=R < 1.
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Proof. Since the map g�;
 = g� 
 g
 is a tensor product into the outer product of

semigroups S(X�) 
 S(X
), it is permissible to prove the lemma one map at a time.

The methods of proof for each of the two maps g� and g
 are essentially the same, and

only the proof for the map g� is given.

Part 1: P-strong primitivity.

Consider the map g�;p( ~X;X�) : X� ! X�

g�;p( ~X;X�)X�;p = (1� qÆep(u
��))X�;p + q�: (5.50)

With � , which is a function of ~X and X�, defined by

� ij =
X�;2

i Au;ij�
��
jP

ijX
�;2
i Au;ij�

��
j

�����
u=u��

; (5.51)

and ��� defined by the backwards recursion

�
�(l+1)
i =

X
j

��lj Au;ij(�)Bi;m(�)

����
u=u�l;em=y�l

:

with �0 = 1. Recall that the parameter � is restricted to a domain Q with the prop-

erty that Au;ij(�) � Æ(Q) and Bim(�) � Æ(Q). The constant Æ(Q) lies within the

bounds 0 < Æ(Q) < 1=minfN;Mg and depends only on the choice of domain Q.

Consequently,

min
i
�
�(l+1)
i = min

i

X
j

��lj Au;ij(�)Bi;m(�)
���
u=u�l;em=y�l

� N min
j

��lj min
ij

Au;ij(�)min
i;m

Bi;m(�)

� NÆ(Q)2min
j

��lj

� Æ(Q)min
j

��lj :

Induction on the index l gives ��� � Æ(Q)�, and a similar argument gives an upper

bound of ��� � N�.
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The denominator in (5.51) is a convex combination of the components of ��� and

is therefore bounded above byN�. Also, if ( ~X;X�) lie in a compact subset of ~X�X�,

then X
�;2
i � c for come positive constant c, and the numerator in (5.51) is bounded

below by cÆ(Q)�+1. It follows that the components of � are uniformly bounded below

by a bound that depends on the choice of the parameter set Q, and the support of the

random variable X�.

The facts that the invariant distribution �� has compact support, that the initial

point X�
0 is restricted to a compact subset of X�, and that the kernel for the Markov

modulated random walk on S(X�) is strongly contractive together imply that the ran-

dom process X�
k is restricted to a compact subset of X�. Consequently, if ( ~Xk; X

�
k ) is

the underlying Markov process for the Markov modulated process onS(X�)
S(X
)

and �k is the random sequence of empirical distributions generated from ( ~Xk; X
�
k ) by

equation (5.51), then the components of all of the �k are uniformly bounded below

with probability 1. Call this lower bound c.

Now consider a sequence of generators �k � �k+1 � �k+P�1, where P is the car-

dinality of the set from which the controls uk are drawn, and each generator �i is the

projection of the generator defined in (5.49) onto C?
�(S(X�)). Let R � X� be the set

of points X � 2 X� such that minp;i;jX
p;ij � c. R is a compact subset of X� . Let K

be the the subset of the semigroup S(X�) consisting of elements with representations

as maps on g : X� ! R. K is a compact subset of S(X�) that is absorbing from

the left. Furthermore, as a result of the uniform bound on the random sequence �k,

the restriction that the control distributions �k are strictly positive, and the form of the

mapping (5.50)

�k � �k+1 � �k+P�1(S(X�) nK) � � < 1

for some constant �, and the Markov random walk generated by g� is strongly primi-
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tive.

Part 2: The growth condition.

Fix k, and consider more closely the measure

�k = d?g�(�
k(( ~X0; X

�
0 ); d( ~Xk; X

�
k )))

Each semigroup element g 2 supp�k has is a direct product of P factors. Each

factor has a representation as a transformation from one of the P identical probability

simplices X�;p into itself. If uk 6= ep, the map on the p’th simplex is the identity, if

uk = ep the map on the p’th simplex is X p ! (1� q)Xp + � where � is a function of

a point ( ~Xk; X
�
k ) in the support of the kernel �k(( ~X0; X

�
0 ); d( ~Xk; X

�
k )). The first part

of the proof demonstrated that there exists a constant c > 0 such that with probability

1, and for any k, mini;j �
i;j > c. Consider the quantity �(g), when g 2 supp �k:

�(g) = sup
X2X

�(gX)

�(X)
= sup

X2X

max
p

�((gX)p)

�(Xp)

The P�1 factors of g that are the identity satisfy (gX)p = Xp, and �((gX)p)=�(Xp) =

1 for all X . For the other factor (gX)p = (1� q)Xp + q� , and

�((gX)p) = max
i;j

((gX)p;ij)�1

= max
i;j

((1� q)(Xp;ij) + q� ij)�1 � (1� q)max
i;j

(Xp;ij)�1 + q=c:

Also, since mini;jX
p;ij < 1=N2,

�((gX)p)=�(Xp) � 1� q + qN2=c

and �(g) � a = maxf1; 1� q + qN2=cg.

Since � : S(X�) ! R is continuous with respect to the metric � on S(X�), the

existence of the bound a implies that the set [k supp �k is bounded. Furthermore
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from the form of the bound it is clear that a sufficiently small choice of q will cause the

bound to lie arbitrarily close to 1. In particular, when q is sufficiently small, a�1=P < 1.

Proposition 48. Let � 2 Q.

(i) The Markov process Xl = ( ~Xl; X
�
l ; X

�
l ; X



l ) with transition kernel

��(Xa; dXb) = M
~Xa

~Xb

ÆX�;1
a

(X�;2
b )Æg�( ~Xb)X

�;1
a

(X�;1
b )

�
Y
p

Æ
g�;p( ~Xb;X

�

b
)X

�;p

a

(X�;p
b )

Y
m

Æg
;m( ~Xb;X
�

b
)X


;m

a
(X
;m

b )

has an invariant measure �.

(ii) There exist positive constants K, and c with 0 � c < 1 such that for any �1-

Lipschitz function f : X! R with Lipschitz constant Lf ,

j�k
�(Xa; dXb)f � �f j � KLfc

k�2(Xa)

(iii) Let �0 be a second point in Q, then there exists a positive constant K such that

for any �1-Lipschitz function f : X ! R with Lipschitz constant Lf , and for all

k > 0,

j�k
�(Xa; dXb)f � �k

�0(Xa; dXb)f j � KLf j� � �0j�2(Xa)

Proof. The proof follows the same argument as the proof of Proposition 42, only here

the sequence of derived maps that factor the kernel are

C�(~X� X�)
d?(g�
g
)������! C�

S(X� � X
)
d?o

X�
�X
������! C�(X� � X
);

and the Markov process ( ~X;X�) generates a Markov modulated random walk on

S(X� � X
) with transition kernel

�(sa; dsb) = [Æsa � d?(g� 
 g
)](dsb):
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Once again the argument in the proof depends on applications of Theorem 38 and

Corollary 39. The proof begins by establishing that the conditions that form the

premises of these results hold.

(i) The space S = ~X� X� supports a metric d : S� S! R and a weight function

�S.

Define the metric by

d(( ~Xa; X
�
a ); ( ~Xb; X

�
b )) =

8>><
>>:

~Xa = ~Xb d�(X
�
a ; X

�
b )

~Xa 6= ~Xb 1;

and the weight function by

�(( ~X;X�)) = inf
i;j
jX�;j(i)j�1

(ii) Let d be the Lévy metric that is induced on the probability measures in C �

�(S)

by the definition of d� in . The kernel �(Sa; dSb) has a compactly supported,

invariant distribution �, and there exists constants C and c with 0 � c < 1 such

that for all X0,

d(�(S0; dSk); �) < Cck�(S0):

Proposition 42 proves the existence of the invariant measure �, and in combina-

tion with Lemma 18 establishes the geometric bound on the convergence of the

iterated kernels in the Lévy metric. Corollary 43 establishes that the support of

the measure is compact.

(iii) The mappings g� and g
 defined in equations (5.44) and (5.45) are Lipschitz

continuous with respect to the metric d on ~X�X�, and the metrics �� and �
 on

S(X�) and S(X
) respectively.
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The map g� is defined in equation 5.44 by the formula

g�;p( ~X;X�)X�;p = (1� qÆep(u
��))X�;p + qÆep(u

��)�

with

� ij =
X

�;2
i Au;ij(�)�

��
jP

i;jX
�;2
i Au;ij(�)�

��
j

�����
u=u��

:

If ( ~Xa; X
�
a ) and ( ~Xb; X

�
b ) are two points in the domain of g� , then

�(g�( ~Xa; X
�
a ); g

�( ~Xb; X
�
b )) � C d(( ~Xa; X

�
a ); ( ~Xb; X

�
b )) =1

for any C > 0 unless ~Xa = ~Xb. Assume that ~Xa = ~Xb = ~X, and con-

sider the action of g�( ~Xa; X
�
a ) and g�( ~Xb; X

�
b ) on the component Xp of some

X 2 X� . If u�� 6= ep, then [g�( ~Xa; X
�
a )X]p = [g�( ~Xb; X

�
b )X]p = Xp,

and the only component of g�( ~Xb; X
�
b )X that makes a contribution to the dis-

tance �(g�( ~Xa; X
�
a ); g

�( ~Xb; X
�
b )) is the component corresponding to u��. For

this component, [g�( ~Xa; X
�
a )X]p = (1 � q)Xp + q�a, and [g�( ~Xb; X

�
b )X]p =

(1� q)Xp + q�b. It is always the case that

max
iji0j0

((1� q)Xp
ij + q� ija )((1� q)Xp

i0j0 + q� i
0j0

b )

((1� q)Xp
ij + q� ijb )((1� q)Xp

i0j0 + q� i
0j0
a )

� max
iji0j0

� ija �
i0j0

b

� ijb �
i0j0
a

;

and since

� ija �
i0j0

b

� ijb �
i0j0
a

=
X�;2

a;i X
�;2
b;i0

X
�;2
b;i X

�;2
a;i0

it follows that

�(g�( ~X;X�
a ); g

�( ~X;X�
b )) � d(( ~X;X�

a ); ( ~X;X�
b ))

Which establishes Lipschitz continuity with a Lipschitz constant less than 1.

An analogous argument proves case for the map g
 .
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(iv) The Markov modulated random walks generated by Markov process ( ~Xk; X
�)

and the maps g� and g
 are both p-primitive and r-contractive. In the case of

the Markov modulated random walk on S(X�), p = r = P , and in the case of

the Markov modulated random walk on S(X
), p = r = M

Proposition 45 and Lemma 47 prove this statement.

Statements (i) – (iv) establish that the premises of Theorem 38 hold, and the re-

mainder of the proof is entirely analogous to the corresponding proof of Proposi-

tion 42

The geometric ergodicity and regularity results in Propositions 42 and 48 provide

the basis for establishing Assumption 4-bis on the boundedness of moments, and As-

sumption 5 about the existence of weak solutions to the Poisson equation. The moment

condition is dealt with first in the following lemmas and proposition.

Lemma 49. Let � 2 Q, a compact subset of �, and let � be the invariant measure

that was postulated in Proposition 48, then the projections of the support of � onto the

spaces X�, X� and X
 are bounded with respect to the hyperbolic metrics d�, d� and

d
 .

Proof. The case for the projection onto X� is a direct consequence of Corollary 43,

the case for the projection onto X� is proved here, and the case for the projection onto

X
 can be proved in a completely analogous fashion.

Let � = d?g
� 
 g
(��). If s 2 supp�, then the component of s that operates on

X� is g�( ~X;X�) for some ( ~X;X�) 2 supp ��. If the mapping g� is written explicitly,

then the action of s on the p’th simplex in X� is described by the equation

sX�;p = g�;p( ~X;X�)X�;p (5.52)

= (1� qÆep(u
��))X�;p + qÆep(u

��)� (5.53)
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The proof of Proposition 45 established that the components of the quantity � appear-

ing in the right hand side of equation (5.52) are all bounded away from zero by a bound

� that depends only on Q. Consequently, if Xl is a trajectory governed by a random

walk generated by the measure �, and if the a-priori lower bound on the components

of the projection of the initial point in the walk, X0, onto the p’th component of X�

is 0, then each time during the walk that u��l = ep, the lower bound on X
�;p
k , for

k > l, moves closer to � by a factor (1 � q). When the u��l = ep, the mapping

sl = g�( ~Xl; X
�
l ) is the identity and X �;p

l = sX�;p
l�1 = X�;p

l�1.

The randomized control for the underlying controlled hidden Markov model is

constrained so that the distribution of input values �l��(ep) > � � 0 for any p and any

time l > �. Consequently, under the invariant measure ��,

��(f( ~X;X�) : u�� = epg) > �; (5.54)

and under the measure �, �fs : sX�;p 6= X�;pg > �.

Finally, each point in the support of � is the range of a zero-rank mapping in the

support of the invariant distribution m, and for any integer k,

m = � � � � k times: : : � � �m:

It follows from a zero-one law argument that for any p, if X �;p is the projection of

a point in the support of � onto the p’th simplex in the space X� , then for any i; j

X�;p;ij > �. Since the points of supp � are bounded away from the boundary of X� in

the Euclidean metric, it follows that supp � is bounded with respect to the hyperbolic

metric d� .

Lemma 50. Let �Æ be a family of probability measures that are defined on X and that

have support in a Æ neighborhood of supp �, with respect to the metric dX. For each
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positive integer q, the set of moments�Z
�q(X) d�(X) : � 2 �Æ

�

is bounded by a bound that depends only on q, supp � and Æ.

Proof. Since supp � is a compact set with respect to the metric dX, a Æ neighborhood

of supp � is also compact. The weight functions �q(X) are all continuous with respect

to the metric dX, and consequently for every q, �q is bounded on the Æ neighborhood

of supp �. It follows that for each q the q-th moments with respect to measures in �Æ

are uniformly bounded by the the same bound.

Lemma 51. Fix �0 2 Q, choose X0 2 X, and consider the probability space of

Markov chain trajectories that start at X0, and have statistics consistent with the ker-

nel ��(X; dX). Let � be the invariant distribution for ��(X; dX), then:

(i) the distance

sup
Xb2supp �

d(Xl; Xb)

is uniformly bounded for all trajectories, and

(ii) for all � > 0, there exists constants 1 > c � 0 and C > 0 such that

P [d(Xl; supp �) > �] � Ccl

Proof.

(i) Let supXb2supp �
d(Xl; Xb) = d. Written out in terms of its components, Xl =

( ~Xl; X
�
l ; X

�
l ; X



l ). Since each of the continuous components is determined by the

action of an r-strongly contractive semigroup for a large enough integer r, and the

measure � is invariant under the action of the kernel ��, it follows that for all l � 0

sup
Xb2supp �

d(Xl; Xb) < d
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on every trajectory Xl.

(ii) For each trajectory Xl starting at X0, Choose Xb 2 supp �, with ~X 0

b = ~X0,

and let X 0

l be a trajectory generated by the same Markov modulated random walks as

generate Xl, but with initial point X 0

0 = Xb. The trajectory X 0

l remains within supp �

(w.p.1), and since the random walks are r-strongly contractive, and hence contractive,

d(Xl; supp �) < d(Xl; X
0

l) (w.p.1). Also, from the definition of r-strongly contractive

walk, there exist constants 0 � c0 < 1 and 0 < c0 � 1 such that for all trajectories,

and for all l

P
�
d(Xl+r; X

0

l+r) < c0d(Xl; X
0

l) jXl; X
0

l

�
> c1

Choose K > (ln �� ln d)= ln c0, then the binomial theorem gives,

P [d(Xlr; supp �) � �] �
KX
k=0

�
l

k

�
ck1(1� c1)

l�k:

Choosing c =
r
p

(1� c1), and C sufficiently large yields the required geometric

bound.

The following proposition establishes that Assumption 4-bis holds.

Proposition 52. For all q � 1, and for any compact subset Q of D, there exist r 2 N ,

and constants �� < 1, C1, C2, K1, and K2, such that

sup
�2Q

Z
�r
�(Xa; dXb)�q(Xb) � ���q(Xa) + C1(i)

sup
�2Q

Z
��(Xa; dXb)�q(Xb) � C2�q(Xa) + C1(ii)

For any Borel function g on X such that [g]q � 1

sup
�2Q

j��g(X1)� ��g(X2)j � K1[g]qd(X1; X2)(�q(X1) + �q(X2))(iii)

For all �; �0 2 Q, and for any Borel function g with [g]q � 1

j��g(X)� ��0g(X)j � K2[g]qj� � �0j�q+1(X))(iv)
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Proof. For every � 2 Q, the kernel �(Xa; dXb) has an invariant measure �theta, and as

a consequence of Lemma 49, the set S = �[�2Q supp �� is compact. So, for any d > 0,

the set

Sd = fX 2 X : d(X;S) � dg

Is also compact, and for any values of q and d the weighting function �q is bounded on

Sd.

For each Xa 2 X, define da = supX2S d(Xa; X):. Because, for all � 2 Q, the

Markov transition kernel �� is a contractive random walk on X, it follows that all

trajectories that start at Xa must remain inside the set Sa. The bound

Ba = sup
X2Sa

�q(X)

is a function of Ba, and as �q(Xa) ! 1, the ratio �q(Xa)=Ba ! 1. Fix d, so that

the bound B = supX2Sd �q(X) is sufficiently large that if Xa 2 X, and Ba > B, then

�q(Xa)=Ba < 2.

Fix Xa. As a result of Lemma 51, it is possible to choose r sufficiently large that

for all � 2 Q, P [Xr =2 Sd] < 1=4. The weight �q is bounded on the set X n Sd
by 2�q(Xa), and on the set Sd by B. Substituting these estimates into the integral in

the left hand side of inequality (i) produces the bound on the right hand side when

�� = 1=2, and C1 = B. In addition, because Ba < 2�q(Xa), inequality (ii) holds when

the bound on the right hand side has C2 = 2.

The final task in this chapter is to prove that Assumption 5-bis holds for the the

specific case of the estimator Markov chain. This is done with an appropriate adap-

tation of a theorem from Benveniste et al. [7]. The theorem uses an assumption of

geometric ergodicity for the Markov chain to establish an appropriate Potential The-

ory for the Markov transition kernel. The central object in the Potential Theory is the
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integral equation

(I � ��)�� = f� � h(�);

which is known as the Poisson equation. The quoted theorem establishes conditions

under which a regular family of regular solutions exist for the parameterized integral

equation. The parameterized transition kernel is (��; � 2 Q), and it acts on the state

space Rk �E. The definitions for the norms and function spaces used in the statement

of the theorem were given in Section 4.2.

Theorem 53. [7, Part II, Chapter 2, Theorem 5 ] Given p1 � 0, p2 � 0, assume that

there exist positive constants K1, K2, K3, q1, q2, � < 1 such that:

(i) for all g 2 Li(p1), � 2 Q; n � 0, z1, and z2:

j�n
�g(z1)� �n

�g(z2)j � K1�
nNp1(g)(1 + jx1jq1 + jx2jq1)

(ii) for all � 2 Q, n � 0, z, and all m � q1 _ q2,

sup
e

Z
�n
� (x; e; dx1de1)(1 + jx1jm) � K2(1 + jxjm)

(iii) for all g 2 Li(p1), �; �0 2 Q, n � 0, z,

j�n
�g(z)� �n

�0g(z)j � K3Np1(g)j� � �0j(1 + jxjq2)

Then for any function f(�; z) of class Li(Q;L1; L2; p1; p2), there exist functions h(�),

��(�) and constants C1, C2, C(�), 0 < � < 1 depending only on the Lj , pj , such that:

(j) for all �; �0 2 Q, jh(�)� h(�0)j � C1j� � �0j

(jj) for all � 2 Q, j��(x; e)j � C2(1 + jxjq1)
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(jjj) for all �; �0 2 Q all � 2 (0; 1) and for s = max(p2; q1; q2)

j��(x; e)� ��0(x; e)j � C(�)j� � �0j�(1 + jxjs)

j����(x; e)� ��0��0(x; e)j � C(�)j� � �0j�(1 + jxjs)

(jv) (I � ��)�� = f� � h(�)

A statement of the theorem that is appropriate to the current situation and termi-

nology is the following.

Theorem 53-bis. Given p1 � 0, p2 � 0, assume that there exist positive constantsK1,

K2, K3, q1, q2, � < 1 such that:

(i) for all g 2 Li(p1), � 2 Q; n � 0, X1, and X2:

j�n
�g(X1)� �n

�g(X2)j � K1�
nNp1(g)(�q1(X1) + �q1(X2))

(ii) for all � 2 Q, n � 0, X , and all m � q1 _ q2,

sup
~X

Z
�n
� (Xa; dXb)�m(Xb) � K2�m(Xa)

(iii) For all g 2 Li(p1), �; �0 2 Q, n � 0, X 2 X,

j�n
�g(X)� �n

�0g(X)j � K3Np1(g)j� � �0j�q2(X)

Then for any function f(�;X) of class Li(Q;L1; L2; p1; p2), there exist functions h(�),

v�(�) and constants C1, C2, C(�), 0 < � < 1 depending only on the Lj , pj, such that:

(j) for all �; �0 2 Q, jh(�)� h(�0)j � C1j� � �0j

(jj) for all � 2 Q, jv�(X)j � C2�q1(X)
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(jjj) for all �; �0 2 Q all � 2 (0; 1) and for s = max(p2; q1; q2),

jv�(X)� v�0(X)j � C(�)j� � �0j��s(X)

j��v�(X)� ��0v�0(X)j � C(�)j� � �0j��s(X)

(jv) (I � ��)v� = f� � h(�)

If D is an open subset of the parameter space �, then on examining Equations

(3.33) and (3.34) and the definition of the class L(Q;L1; L2; p1; p2) that for any point

� 2 D the function H(�;X) in Equation (4.10) is of class L(Q;L1; L2; p1; p2) for

some compact set Q � D that contains �, for p1 = p2 = 1, and for choices of L1 and

L2 that depend on Q. Consequently, provided that the premise of Theorem 53-bis is

valid, the conclusions imply that each of the conditions in Assumption 5-bis hold. It

remains only to show that the conditions in the premise of Theorem 53-bis are indeed

satisfied for the estimator Markov chain.

Proposition 54. Given that p1 = p2 = 1, there exist constants K1, K2, K3, q1, q2 and

� such that the Markov process Xk with transition function given by equation (4.9)

satisfies conditions (i) (ii) and (iii) in the premise of Theorem 53-bis

Proof. The proof follows from earlier results: From Proposition 48 the Markov pro-

cess Xk with transition function given by equation (4.9) has an invariant measure �,

and if f is a �1-Lipschitz function, then

j�k
�(Xa; dXb)f � �f j � KLfc

k�2(Xa)

It follows from the triangle inequality that if X1 and X2 are two points in X, then

j�k
�f(X1)� �k

�f(X2)j � j�k
�(X1; dXb)f � �k

�(X1; dXb)f j

� KLfc
k(�2(X1) + �2(X2))

� KcnNp1(f)(�2(X1) + �2(X2)):
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when p1 = 1. The step to the last inequality uses the bound Lf < N1(f). The first

inequality in the premise of Theorem 53-bis holds with q1 = 2.

The second inequality in the premise of Theorem 53-bis is implied by inequality (ii)

in Proposition 52, and conclusion (iii) of Proposition 48 establishes the third inequality

in the premise of Theorem 53-bis.
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Chapter 6

Analysis of the control and estimation algorithm.

Part 3: Convergence of the stochastic approximation.

This chapter completes the analysis of the convergence properties of the combined

control and estimation algorithm that started in Chapter 4. The first section in this

chapter verifies Assumption (A.7) from Chapter 4 for the combined estimation and

control algorithm by exhibiting a suitable Lyapunov function. The second section of

this chapter quotes an appropriate stochastic approximation theorem from Benveniste

et al. [7], and adapts the theory to the specific requirements of the estimation and

control problem. The section then formally states the main convergence results for the

estimation and control problem presented in the dissertation. These results are a direct

consequence of the stochastic approximation convergence theorem.

6.1 The Lyapunov Function

This section deals with the second of the two tasks mentioned in the outline of the ODE

method in Section 4.2, the task of proving asymptotic stability of the associated ODE.

A Lyapunov function is given for the ODE. The choice of Lyapunov function is guided
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by the derivation of the recursive estimation algorithm as a stochastic approximation

to a second order minimization algorithm for the function Q(�) = E[log f(x0;k; y0;k)].

Recall that the logarithm of the probability density for the process distribution of

fxk; ykg with model �(�) is given by the formula

log f(y0;k+1; x0;k+1 j �) =
X
i

X
j

X
u

nu;i;j(k + 1) logAu;i;j

+
X
i

X
m

mi;m(k + 1) logBi;m +
X
i

Æei(x0) log�i;

The components X �;u
k (i; j) and X�;m

k (i) of the state vector X provide empirical re-

ceding horizon estimates of the values of the transition and occupation frequencies

nu;i;j(k)=k and mi;m(k)=k, and if �� = �(��) denotes the unknown values of the con-

strained parameters for the controlled hidden Markov model, then the Leibler Kullback

measure for the distribution of k observations of the full information process is approx-

imated (for large k) by

� E��[log f(y0;k+1; x0;k+1 j �)]

� �kE��

"X
u;i;j

X
�;u
k+1(i; j) logAu;i;j +

X
i;m

X

;m
k+1(i) logBi;m

#
:

Define U(�) to be the approximation to the relative entropy rate

U(�) = �m��

 X
u;i;j

X
�;u
� (i; j) logAu;i;j +

X
i;m

X

;m
� (i) logBi;m

!
(6.1)

The next two lemmas show that U(�) has the properties needed for a Lyapunov func-

tion.

Lemma 55. The Lyapunov function has continuous first and second derivatives.

The proof of this lemma is follows the proof that Baum and Petrie use in [6] to

establish differentiability of the entropy rate function for a hidden Markov model. The
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idea of the proof is to use the strong ergodicity properties of the Markov chain to ap-

proximate the expectation with respect to the invariant measure in equation (6.1) with

the converging sequence of conditional expectations that are generated by the Markov

transition kernel. A combination of this approximation argument and a standard con-

vergence theorem from Lebesgue integration theory justifies the transposition of dif-

ferentiation operators with the expectation operator in the expression for the Lyapunov

function (equation (6.1)).

Lemma 56. Let 
 denote the (linear) manifold of values taken by the model Au, B,

and let r
U be the gradient of the function U on 
, then there exists an open neigh-

borhood O of �� in U such that for all � 2 O,

r
U j� �m�(H(X; �)) � 0 (6.2)

with equality holding only when � = ��

Proof. Choose for local coordinates on 
 the same unconstrained parameterization

that was used in Chapter 3, equation (3.7), and for each row of the matrix Au let qi be

the index of the element in the row that does not appear in the parameter �(�). The

structure of the manifold 
 ensures that the scalar product in (6.2) can be expressed as

a sum with one term in the sum for each of the matrices Au and B. The gradient of U

is given by

�r
U(�) = r
 m��

 X
u;i;j

X�;u
� (i; j) logAu;i;j +

X
i;m

X
;m
� (i) logBi;m

!

and when the gradient is represented in the basis induced by the local co-ordinates,

the (u; ij)’th component, j 6= qi, which is the component corresponding to the matrix

entry Au;ij is given by the expression.

m��[X
�;u
� (i; j)]

Au;ij

� m��[X
�;u
� (i; qi)]

Au;iqi
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The stochastic flow H(X; �) in equation (6.2) is defined in Section 4.2 as the up-

date of the parameter estimates given in equations (3.33, 3.34). Using the same block

structures that were introduced for the score vector and Fisher information matrix in

Chapter 3, if j 6= qi, the (u; ij)’th component of the flow H(X; �) is

P�1
i

�
�(i; j)

Au;ij

Æu��(u)� �(i; qi)

Au;iqi

Æu��(u)

�

=
A2
u;ij

X�;u(i; j)

�
�(i; j)Æu��(u)

Au;ij

� �(i; qi)Æu��(u)

Au;iqi

�

� A2
u;ij

X�;u(i; j)

 
NX
l=1

A2
u;il

X�;u(i; l)

!�1

�
 X

l 6=qi

A2
u;il

X�;u(i; l)

�
�(i; l)Æu��(u)

Au;il

� �(i; qi)Æu��(u)

Au;iqi

�!

The quantities Au;ij in this formula are components of the parameter � 2 
, and � is

the function of the random variable X given by equation (4.6). On expansion of the

second term, the right hand side of the equation becomes

Au;ij�(i; qi)Æu��(u)

X�;u(i; j)
� A2

u;ij

X�;u(i; j)

 
NX
l=1

A2
u;il

X�;u(i; l)

!�1 NX
l=1

�(i; l)Æu��(u)

X�;u(i; l)
Au;il

!
:

The expression for the flow and the expression for the gradient, rU , are substituted

into the inner product on the right hand side of (6.2). The sum of the terms with indices

(u; ij), j 6= qi is

m�

"X
u;i

X
j 6=qi

 
m��(X

�;u
� (i; j))�(i; j)Æu��(u)

X�;u
� (i; j)

� Au;ij�(i; j)Æu��(u)m��(X
�;u(i; qi))

Au;iqiX
�;u(i; j)

!

�
 

NX
l=1

A2
u;il

X�;u(i; l)

!�1 NX
l=1

�(i; l)Æu��(u)

X�;u(i; l)
Au;il

!

�
 X
j 6=qi

A2
u;ij

X�;u(i; j)

 
m��(X

�;u
� (i; j))

Au;ij

� m��(X
�;u
� (i; qi))

Au;iqi

!!#
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Fix u and i, and consider a single term of the first summation. An expansion of the

second term in the argument of the j summation leads to a simplified expression

NX
j=1

m��(X
�;u
� (i; j))�(i; j)Æu��(u)

X�;u(i; j)
�
 

NX
j=1

Au;ijm��(X
�;u
� (i; j))

X�;u(i; j)

!

�
 

NX
l=1

A2
u;il

X�;u(i; l)

!�1 NX
l=1

�(i; l)Æu��(u)

X�;u(i; l)
Au;il

!
(6.3)

First consider the case when � = ��. It follows from the consistency of the empiri-

cal estimator X� that m��(X
�;u(i; j)) = �(i)Au;ij where �(i) is the invariant measure

of the probability kernel Au. Making this substitution in (6.3) gives the value 0 for all

u and i.

For the case when � 6= ��, define a discrete probability measure on N points by

assigning to the point j the mass

Pj =
A2
u;ij

X�;u(i; j)

 
NX
l=1

A2
u;il

X�;u(i; l)

!�1

;

then for fixed i and u, the expression (6.3) becomes

Æu��(u)
NX
l=1

A2
u;il

X�;u(i; l)

 X
j

m��(X
�;u
� (i; j))�(i; j)

A2
u;ij

Pj

�
X
j

m��(X
�;u
� (i; j))

Au;ij

Pj
X
j

�(i; j)

Au;ij

Pj

!
: (6.4)

Define a family of random variables �(u; i; l) by X �;u(i; l) = Au;il�(i)(1 + �(u; i; l)).

Under the probability distribution m�, �(u; i; l) is a zero-mean random variable with

higher moments controlled by the estimator parameter q in equation (4.4). When u

and i are fixed, the random variable Pj has an expansion

Pj = Au;ij

�
1� �(u; i; j) + �2(u; i; j)�

X
l

Au;il�
2(u; i; l) + o(�2(u; i; j))

�
; (6.5)
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and the expected value of the difference in (6.4) with respect to the measure m� has an

approximation

m�

�X
j

m��(X
�;u
� (i; j))�(i; j)

A2
u;ij

Pj �
X
j

m��(X
�;u
� (i; j))

Au;ij

Pj
X
j

�(i; j)

Au;ij

Pj

�

=
X
j

m�(�(i; j)�(u; i; j))�̂i +
X
j

m��(X
�;u
� (i; j))

Au;ij

�m�

�X
l

�(i; l)Au;ij�(u; i; j)� �(i; j)�(u; i; j)
�
; (6.6)

where �̂i =
P

lm��(X
�;u
� (i; l)). Recall that the random variable �(i; j) is an a-

posteriori probability calculated from the prior X �;u(i; j), so bias in �(i; j) is pro-

portional to bias in X �;u(i; j), and the quantity m�(�(i; j)�(u; i; j)) is strictly positive.

In addition, m�

�P
l �(i; l)Au;ij

�
= m�(�(i; j)), and since Au;ij and �(i; l) are both

bounded away from zero, the first term on the right hand side of (6.6) dominates the

second provided that A�

u;ij=Au;ij is not too large. Since A�

u;ij is bounded away from

zero, provided that q is sufficiently small that the linear terms in the approximation

(6.5) dominate the higher order terms, there exists O an open neighborhood of A�

such that the inequality (6.2) holds for all A 2 O

Proposition 57. Let �� be the value in the parameter space � that maps onto the state

transition and output matrices defined in equations (2.2) and (2.3), and let m� be the

invariant distribution for the Markov kernel ��(Xa; dXb) defined in equation (4.9).

The stochastic approximation problem with update equation (4.10) satisfies Assump-

tion 7 of Chapter 4 when h(�) = m�(H(X; �)) and U(�) is defined by equation (6.1).

Proof. Lemma 55 established regularity of the function U , and Lemma 56 establishes

that the directional derivative of U in the direction of h(�) is non positive in an open

neighborhood of ��. The assumption is satisfied for any open set D that is compactly
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contained in the open neighborhood of �� on which the directional derivative of U is

non-negative.

6.2 The stochastic approximation result.

Convergence of the combined estimation and control argument is established by the

direct application of a stochastic approximation result from Benveniste et al.. Most

of the work in the dissertation is directed towards establishing that the assumptions in

the premise of the theorem hold in the particular case of the stochastic approximation

problem posed in Section 4.2.

The stochastic approximation scheme that Benveniste et al. treat is described by

the equation

�n+1 = �n + 
n+1H(�n; Xn+1) + 
2n+1�n+1(�n; Xn+1): (6.7)

Let Px;a denote the distribution of (Xk; �k) with X0 = x, �0 = a, and let F be a

compact subset of D that satisfies:

F = f�;U(�) � c0g � f�;U 0(�) � h(�) = 0g (6.8)

Let � be the exponent that assumption (A.6) postulates, and define q0(�) = supf2; 2(��
1)g. Theorem 17 from part II, Chapter 3 of Benveniste et al. states the following:1

Theorem 58. [7, p. 304, Theorem 17] We assume (A.1), (A.2), (A.3), (A.4), (A.5),

(A.6) and (A.7), and suppose that F is a compact set satisfying (6.8). Then, for any

compact subset Q of D, and q � q0(�), there exist constants B, s, such that for all

1The statement of the theorem is altered to keep references in the statement of the theorem consistent

with labeling scheme in the Dissertation
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a 2 Q and all x 2 R
k :

Px;a(�k converges to F ) � 1�B(1 + jxjs)
X
k�1



1+q=2
k :

The assumptions (A.1) – (A.7) in the premise of the theorem are the seven as-

sumptions listed in Section 4.2. The multiplicative constant B and the exponent s are

functions of Q, but independent of X0. In particular, s is a function of the exponents

in assumptions (A.4) and (A.5).

Both the assumptions in Theorem 58 and the theorem itself are stated in terms of a

discrete-time Markov process that evolves on the Euclidean space Rk . The following

restatement of the theorem extends its applicability to discrete time Markov processes

that evolve in the more general metric spaces that this dissertation uses.

Theorem 58-bis. Assume that Assumptions 1, 2-bis, 3-bis, 4-bis, 5-bis, 6 and 7 from

Section 4.2 all hold for some open set D that is compactly contained in �. Suppose,

also, that F is a compact set that satisfies (6.8). Then for any compact subset Q of D,

and q � 1, there exist constants B and s, such that for all a 2 Q, and all X 2 X:

PX;a(�k converges to F ) � 1�B�s(X)
X
k�1


1+qk :

Theorem 58-bis is the key ingredient in the proof of the main results of the dis-

sertation. The results are posed in the notation of Chapters 2 and 3. Let � denote

the space of possible values for state transition matrices Au and output matrices B of

the controlled, finite state, finite output, hidden Markov model from Chapter 2. � is a

subset of a linear sub-manifold in a finite dimensional Euclidean space, and inherits a

topology from the Euclidean space. Elements of � are denoted by (Au; B). Given a

control policy that determines u(k) as a function of previous outputs y(k) and an initial

state x0, the hidden Markov model together with the control policy and an initial value

x0 for the hidden Markov model state determine the statistics of the input process u(k),
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and the output process y(k). The input and output processes u(k) and y(k) together

with initial values for the recursively defined quantities �, Z and �, an initial estimate

�(0) = (Au(0); B(0)), and the recursive estimation equations (3.33) and (3.34) deter-

mine a sequence of estimates �(k) = (Au(k); B(k)) for ��. This sequence of estimates

depends on the parameter � through the recursive estimation equations.

Theorem 59. Let A�

u and B� satisfy the inequalities in equation (2.4), choose the ran-

domized, finite-horizon, risk-sensitive output-feedback control policy defined in equa-

tion (2.14), and let the elements of the initial values for �, Z and � be bounded away

from 0. There exists D � �, an open neighborhood of �� = (A�

u; B
�) such that if Q is

a compact subset of D, and O is an open neighborhood of ��, and 0 < � � 1 then if

�0 = (Au(0); B(0)) 2 Q, and � is sufficiently small, the sequence of estimates �(k) is

eventually contained in the set O with probability bounded below by 1� �.

Proof. Provided the assumptions in the premise of Theorem 58-bis hold, the conclu-

sion of Theorem 59 is a consequence of the conclusion of Theorem 58-bis For, if ��

is the point in parameter space corresponding to (A�

u; B
�), then �� is a local minimum

of the Lyapunov function U , which is twice differentiable in a neighborhood of ��.

Consequently, if O is an open neighborhood of ��, then for Æ sufficiently small, there

exists a compact set set F = f� : U(�) � U(��) + Æg such that F � O. From the

conclusion of Theorem 58-bis,

PX;a(�k converges to F ) � 1� B�s(X)
X
k�1


1+qk ;

and for any � > 0 the inequality B�s(X)
P

k�1 

1+q
k < � holds provided that � is

sufficiently small.

The only remaining task is the checking of the assumptions in the premise of The-

orem 58-bis. Assumptions 1 is the assumption that
P


k is divergent. This is true
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since 
k = 1=(� + k). Assumption 2-bis is the assumption that the random perturba-

tions in the stochastic approximation algorithm have statistics that are governed by a

discrete time Markov Process. Proposition 7 demonstrates this in the current context.

Assumption 3-bis bounds the size of the generator H(�;X) in equation (4.10) as the

the random perturbation X becomes ‘large’. It is clear from the form of equations

(4.11) and (4.12), and the definition of weighting function �s(X) in equation (4.14)

that there exists a constant C independent of X such that jH(�;X)j < C�1(X), and

that Assumption 3-bis is satisfied. Assumption 4-bis places bounds on the moments of

the iterated kernels of the Markov chains, and Assumption 5-bis asserts the existence

of regular solutions to the Poisson equation (I � ��)v� = H� � h(�). Propositions

52 and 54 establish that these assumptions hold. Assumption 6 requires that the seriesP

�k is summable for some � > 1. Since 
k = 1=(� + k), this is true for any � > 1.

Finally, Proposition 57 proves the existence of the Lyapunov function that Assumption

7 requires.

Theorem 59 and theorem 6 together prove the existence of an assymptotically-

optimal, risk-sensitive, output feedback controller for a finite-state, partially-observed

hidden Markov model with unknown state transition and output matrices.
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Chapter 7

Conclusion

The work contained in this dissertation is directed towards a single result: a proof that,

with a careful choice of initial parameters, an adaptive control policy for a restricted,

simple class of systems has good asymptotic behavior. The result is not a strong one,

and falls well short of the long term objective: the development of a unifying theory for

the dual control problem that is applicable to the variety of applications discussed in the

introduction. This state of affairs leads to the question “Is the result worth the effort?”.

The answer to the question is “Yes!”. The dissertation approaches the dual control

problem in a setting that is sophisticated enough to exhibit some of the problems that

make the analysis difficult, yet simple enough that the analysis is tractable. The benefit

of this approach lies not in the convergence result itself, but in the insights that the

analysis gives about dual control problems in general, and in the potential application

of methods developed for the simple problem to broader classes of problems. This

final chapter reviews the analysis in the dissertation, commenting on the problems that

the analysis avoids, the insights that the analysis provides, and how new techniques

might be developed to treat more general problems.
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The Formulation of the Control problem:

There is an inconsistency in the definition of the control problem in Chapter 2. The

problem is posed as an output feedback problem, without knowledge of the state tran-

sition and output matrices, yet the incremental cost is given as a function of the state

and input. A more natural exposition of the problem would specify the incremental

cost as a separate output process of the system, providing additional information that

is not available for feedback control.

A home heating control provides an example of such a problem. The processes that

the controller on the wall observes is the temperature at the controller’s thermostat.

The incremental cost process is a combination of a measure of discomfort for the

occupants of the house, and the gas bill that comes every couple of months. The

variables that comprise the incremental cost are not directly available to the controller,

and the observation process that is available to the controller does not provide sufficient

statistics for the incremental cost process.

An output feedback problem posed in this way provides no guide to the state model.

Given a cost criterion such as quadratic mean, risk sensitive, or minimax, the ‘natu-

ral’ way to approach the control and estimation problem is to choose the space for

the information state, and estimate the information state recursion operator in equa-

tion (2.10) directly, and use the dynamic programming equation (2.13) to compute the

optimal control. The finite state model with an incremental cost function provides a

tractable alternative to the difficult problem of directly estimating the information state

recursion. The formation in Chapter 2 simplifies the problem one stage further by as-

suming that the cost functional is known a-priori. This simplification permits the use

of an existing estimation algorithm in Chapter 3.
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Randomized Policies:

The use of a Gibbs distribution for the randomized policy in equation (2.14) ensures

both continuity of the policy with respect to perturbations in the estimated model, and

“persistent excitation” in a way that naturally avoids costly choices of control.

The notion of persistent excitation in adaptive and intelligent control captures the

idea that if an adaptive controller is to converge to an optimal policy, then the con-

troller needs to ‘explore’ the state space to determine an empirical estimates for the

cost function and before deciding which action minimizes the incremental cost. The

analysis in this dissertation shows that the concept of persistent excitation is closely

tied to the ergodicity properties of the chain ~X which includes the state process of

the underlying model. Propositions 9 and 10 use the good support properties of the

family of randomized policies ��(u) to prove primitivity of the kernel �( ~Xa; d ~Xb), the

existence of an invariant measure ~� for �, and the weak convergence of the sequence

of densities �0�k to the invariant density ~�. The ergodicity result for the kernel of

the chain ~X implies that the chain is recurrent on the entire state space and provides

a concrete meaning to the concept of persistent excitation. It is quite easy to trace in

the analysis of Section 5.3 the contribution of persistent excitation to the the conver-

gence result for the combined control and estimation algorithm. Proposition 42 uses

the ergodicity result for the kernel of the chain ~X to derive a similar ergodicity result

for the chain ( ~X;X�), and Proposition 48 uses the result for ( ~X;X�) in turn to prove

geometric ergodicity for the full chain ( ~X;X�; X
; X�). Propositions 52 and 54 use

the ergodicity result for the full chain to establish Assumptions 4-bis and 5-bis of the

stochastic approximation theorem, Theorem 58-bis

In addition to providing a policy that satisfies the requirement of persistent exci-

tation, the Gibbs policy ensures continuity of the control with respect to variations in
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the model estimates. This condition on the control, which is intuitively a practical

requirement for an adaptive control system, is also a requirement for the stochastic

approximation convergence proof. Continuity in this instance can be precisely inter-

preted by imposing a Levy metric on the space of distributions for the randomized

controls, and any convenient metric on the model parameters. The continuity result

for the control policy propagates through the analysis in a fashion similar to the pro-

pogation of the persistent excitation condition, and ultimately forms a component of

the result that establishes Assumption 5-bis of the stochastic approximation theorem.

Stochastic Approximation Formulation:

The essence of the ODE approach to stochastic approximation results is to divide the

evolution into a deterministic component and a stochastic component. The determin-

istic component is interpreted as a discrete approximation to a stable ODE with an

associated Lyapunov function, and the random component is interpreted as a random

perturbation acting on the ODE trajectories. The two difficult problems are the deter-

mination of a Lyapunov function for the auxiliary ODE, and the proof that the error

accumulated by the random perturbations does not affect the eventual convergence of

the trajectories. In practical applications of the ODE method such as the application

to the problem in this dissertation provide a degree of choice over where to draw the

line between the deterministic and stochastic components of the decomposition. Asso-

ciated with this choice is a tradeoff between the difficulty of determining a Lyapunov

function, and the difficulty of bounding the cumulative random error. This dissertation

chooses to make the Lyapunov problem easy at the expense of the problem of bound-

ing the error. A suitable Lyapunov function falls out of the derivation of the estimation

algorithm in Chapter 3. The estimation is a second order gradient search for the min-

imum of the Leibler Kullback measure for the full information process, and Chapter
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6.2 uses an approximation to the relative entropy rate for a Lyapunov function.

The cost of this approach of that the is that the occupation frequency estimators

which are denoted by Zu
k+1 and �k+1 in Chapter 3 become part of the ‘random per-

turbation’ even though these objects are deterministic functions of the much simpler

Markov chain ~X . In the problem that this dissertation addresses the Markov chain ~X

is a finite state Markov chain with a primitive kernel, and this simple chain provides

sufficient statistics for the full Markov chain X which evolves over a complex topolog-

ical sum of projective spaces. The geometric decomposition of the chain X in Chapter

4.1, and the new results that establish a potential theory for Markov modulated random

walks in Chapter 5 provide the tools that manage the complexity of X .

Potential Theory for the Estimator Markov Chain.

The potential theory for the estimator chain, which is developed in Chapters 4.1 and

5, provides much of the original material in the dissertation as well as much of the

detailed argument. The two aspects of the work that are unusual are the need for

regularity results with respect to model variations, and the unusual structure of the

random walks.

Ergodic theory for Markov modulated random walks on semigroups is new. Previ-

ous authors such as Marcus, and Le Gland and Mevel have used theory of inhomoge-

neous products of matrices (Seneta) to get ergodic results. The approach taken here is

more precise, and fits well with the established theory of random walks on groups. A

major difference between the group theory and the semigroup theory is the choice of

metric on the measure space. The singularity of limit distributions in the semi-group

case forces the use of a weak measure topology for the ergodic theory. In addition, the

hyperbolic metric on the distribution supports means that the weak topology has to be

weighted appropriately.
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The key to a successful ergodic theory is a definition of primitivity in the gen-

erator that matches the notion of tightness in the measure topology. In this respect

Definition 5 and the growth condition in Lemma 25 are the key requirements for the

existence of invariant measures. In cases where the underlying models have more

structure and less forgiving primitivity assumptions, more care will be needed here in

establishing that suitable primitivity conditions hold for the corresponding estimator

state processes.

Lemma 28 is the important result both for moving from random walks to Markov

modulated random walks, and for establishing regularity of the invariant measures

with respect to parametric variations in the parameter. The compactness argument

can be relaxed in the presence of tightness, and this provides the key to extending the

argument to more general spaces.

Asymptotic Convergence and Domains of Attraction: The ODE method is ulti-

mately an asymptotic method. If the evolving system is close to a stable attractor, then

it will converge to the attractor. While such results are important, they are also pro-

foundly unsatisfactory. In practical applications an estimate of the size and location of

the domains of attraction is equally important for system design. Unfortunately good

estimates are generally hard to come by, but in this case the approximation (6.6) in

the proof of Lemma 56 provides guidance. The auxiliary ODE converges provided

that q is small enough that the linear term dominates higher order terms in the expan-

sion (6.5). This condition confirms the intuitive knowledge that small step sizes help

convergence.
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Appendix A

Recursive formulae for the empirical densities � and 


This appendix provides detailed derivations of the recursive formulae given in Section

3

�ljK;�k(i; j) = f(xl = ej; xl�1 = ei j y0;K;�k)

=
f(xl = ej; xl�1 = ei; y0;K j �k)P
i;j f(xi = ej; xl�1 = ei; y0;K j �k)

:

The density in the numerator is evaluated by

f(xl = ej; xl�1 = ei; y0;K j �k)

= f(xl = ej; yl;K j xl�1 = ei; y0;l�1;�k)f(xl�1 = ei; y0;l�1 j �k) (A.1)

with

f(xl = ej; yl;K j xl�1 = ei; y0;l�1;�k)

= f(yl;K j xl = ej;�k)f(xl = ej j xl�1 = ei; y0;l�1;�k)

= f(yl;K j xl = ej;�k)Aul�1;ij(l ^ k): (A.2)

Substituting (A.2) in (A.1) yields:

f(xl = ej; xl�1 = ei; y0;K j �k)

= Aul�1;ij(l ^ k)f(yl;K j xl = ej;�k)f(xl�1 = ei; y0;l�1 j �k) (A.3)
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Let

~�lj�k(i) = f(xl = ei; y0;l j �k)

�lj�k(i) = f(xl = ei j y0;l;�k) =
~�lj�k(i)P
i ~�lj�k(i)

�ljK;�k(j) = f(yl+1;K j xl+1 = ej;�k):

Note that, as a consequence of the definition of the empirical densities, if k � l then

�lj�k(i) = �lj�l(i):

Using the expressions for � and � in (A.3) gives

f(xl = ej; xl�1 = ei; y0;K j �k) = ~�l�1;�k(i)Aul�1;ij(l ^ k)�l�1jK;�k(j)

and

�ljK;�k(i; j) = f(xl = ej; xl�1 = ei j y0;K;�k)

=
�l�1;�k(i)Aul�1;ij(l ^ k)�l�1jK;�k(j)P
i;j �l�1;�l�1

(i)Aul�1;ij(l ^ k)�l�1jK;�k(j)
: (A.4)

Equation (A.4) gives an expression for � in terms of the forward and backward esti-

mates � and �. An analogous expression is obtained for the other empirical density 


as follows:


ljK;�k(i) = f(xl = ei j y0;K;�k)

=
f(xl = ei; y0;K j �k)P
i f(xl = ei; y0;K j �k)
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in which

f(xl = ei; y0;K j �k) =
X
j

f(xl+1 = ej; xl = ei; y0;K j �k)

=
X
j

f(xl+1 = ej; yl+1;K j xl = ei;�k)f(xl = ei; y0;l j �k)

=
X
j

f(yl+1;K j xl+1 = ej;�k)Aul;ij((l + 1) ^ k)

f(xl = ei; y0;l j �k)

=
X
j

�l;Kj�k(j)Aul;ij((l + 1) ^ k)~�lj�k(i):

Putting this together gives


ljK;�k(i) =

P
j �l;Kj�k(j)Aul;ij((l + 1) ^ k)�l;j�k(i)P

i

P
j �l;Kj�k(j)Aul;ij((l + 1) ^ k)�l;j�k(i)

(A.5)

All that remains is the derivation of the recursive formulae for � and �.

�lj�k(j) = f(xl = ej j y0;l;�k)

=
X
i

f(xl = ej; xl�1 = ei; j y0;l;�k)

=

P
i f(yl; xl = ej j xl�1 = ei;�k)f(xl�1 = ei j y0;l�1;�k)P

j

P
i f(yl; xl = ej j xl�1 = ei;�k)f(xl�1 = ei j y0;l�1;�k)

=

P
ihej; B(l ^ k)yliAul�1;ij(l ^ k)�l�1j�k(i)P

j

P
ihej; B(l ^ k)yliAul�1;ij(l ^ k)�l�1j�k(i)

with

�0j�k(j) = f(x0 = ej j y0;�k)

=
hej; B(0)y0i�jP
jhej; B(0)y0i�j :
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Finally, � is calculated using the backward recursion

�ljK;�k(i) = f(yl+1;K j xl+1 = ei;�k)

=
X
j

f(yl+2;K; yl+1; xl+2 = ej j xl+1 = ei;�k)

=
X
j

f(yl+2;K; xl+2 = ej j xl+1 = ei;�k)f(yl+1; j xl+1 = ei;�k)

=
X
j

f(yl+2;K j xl+2 = ej; xl+1 = ei;�k)

� f(xl+2 = ej j xl+1 = ei;�k)f(yl+1; j xl+1 = ei;�k)

=
X
j

�l+1jK;�k(j)Aul+1;ij((l + 2) ^ k)hei; B((l + 1) ^ k)yl+1i

with

�KjK;�k(i) = 1:
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Appendix B

Derivation of cost functional for information state

dynamics

This appendix contains a derivation of the expression for the cost functional given

in Equation 2.7. The result depends on a fundamental lemma which gives a formula

for the transformation induced on a conditional expectation by a transformation in the

underlying measure. Elliot et al. call this lemma the conditional Bayes’ theorem, and

give a proof for it in [11].

Let (
;X; P ) be a probability space, and let Y be a sub-sigma algebra of X. Let

f(x) be a random variable on (
;X), and recall that E [f(x) j Y], the conditional ex-

pectation of f(x) with respect to Y, is defined as the unique Ymeasurable function that

satisfies the equation

Z
1YE [f(x) j Y] dPY =

Z
f(x) dP 8Y 2 Y;

where dPY in the integral on the left-hand side is the restriction of the measure dP to

the sigma algebra Y. Existence and uniqueness of conditional expectations is guaran-

teed by the Radon Nikodym theorem.

Lemma 60. Let P y be a second probability measure on (
;X). Suppose that P is
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absolutely continuous with respect to P y, and that dP = � dP y, then:

E [f(x) j Y] = E
y [�f(x) j Y]
Ey [� j Y]

Proof. Consider first the restricted measures dPY and dP y

Y
. For any Y 2 Y,

Z
1Y dPY =

Z
1Y dP

=

Z
1Y� dP y

=

Z
1YE

y [� j Y] dP y

Y

and it follows that dPY = E
y [� j Y] dP y

Y
. Again, let Y be any element of Y, and f(x)

be a random variable on (
;X).

Z
1YE [f(x) j Y]Ey [� j Y] dP y

Y
=

Z
1YE [f(x) j Y] dPY

=

Z
1Y f(x) dP

=

Z
1Y�f(x) dP

y

=

Z
1YE

y [�f(x) j Y] dP y

Y

Returning to the notation of Section 2, recall that the information state is defined

by the formula

�


k(x) = E

y

"
Ifxk=xg�k exp

1




 
k�1X
l=0

�(xl; ul)

!
j Yk
#
:

With the use of the lemma and the formula for the information state, the cost function
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is rewritten in terms of the information state as follows

J
(u) = E

hP
jE

h
IfxK=ejg exp 1=


�
�f(xK) +

PK�1

l=0 �(ul; xl)
�
j YK

ii
= E

hP
j exp(�f (ej)=
)

E
y

h
IfxK=ejg�K exp

�
1=

PK�1

l=0 �(ul; xl)
�
j YK

i
=Ey [�K j YK ]

i
= E

hP
j exp(�f (ej)=
)�



K(ej)=E

y [�K j YK ]
i

= E
y

h
�Kh�
K; exp(�f(ej)=
i=Ey [�K j YK ]

i
= E

y

h
E
y
�
�Kh�
K(�); exp(�f((�))=
i=Ey [�K j YK ] j YK

�i
= E

y

h
h�
K(�); exp(�f (�)=
iEy [�K j YK ] =Ey [�K j YK]

i
= E

y

h
h�
K(�); exp(�f (�)=
i

i
:
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