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ABSTRACT

Titleof Thess TRAFFIC MODELS FOR HYBRID SATELLITE-
TERRESTRIAL NETWORKS

Degree Candidate: Bradley Alfred Barrett

Degree and year: Master of Science, 1999

Thess directed by: Professor John S. Baras
Ingtitute for Systems Research

While Hybrid Satdlite- Terrestrial Networks (HSTNs) have become a popular
method of providing internet connectivity, network dimensoning and performance
prediction problems in these networks—as in their terrestria counterparts—have remain
largely unsolved. A key hindrance to the resolution of these issues has been accurate,
tractable traffic models. While anumber of rather complex models have been proposed
for terrestrid network traffic, these have not been evaluated againgt HSTN traffic. And
further, recent studies have questioned whether these more complex models, while
datidticaly better fits, redly provide sSgnificantly better performance prediction.

We examine the question of how to model HSTN traffic for network
dimensioning and performance prediction, and in particular, how far ahead into the future
atraffic modd can be expected to accurately function. We investigate these issues by

directly comparing four of the most likely candideate statistical distributions—the



exponentid, log-normd, Weibull and Pareto. These digtributions arefit to two key traffic
parameters from real HSTN traffic traces (connection interarriva times and downl oaded
bytes), and their relative fits are compared using satistical techniques. We further
compare traffic modds built usng these digributionsin asmulated environment;
comparing performance predictions (over anumber of metrics) obtained from these

modéds to the actud results from our real-world traffic traces.
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Chapter 1 — Introduction

1.1  Motivation and Significance

With the explosive growth of the Internet, bandwidth demand has for the past
severd years exceeded supply at the network edge, particularly for home and small
business users. Conventiond remedies to the 56 — 128kbps ceiling of andog modems
and Integrated Services Digital Networks (ISDN)—Iong promised technologies such as
cable modems and Digital Subscriber Lines (DSL)—have languished in their deployment
for large sectors of users. Deployment of these technologies has, in addition, been
hampered by equipment and infrastructure costs as well as uncertainties in the market and
business case evauaions. Asaresult the “power” home Internet user, the
“tedlecommuter,” and the smal business have faced a paucity of connectivity options
available to them in the Sgnificant price and performance gap between ISDN (128kbps)
and T-1 (1.5Mbps) services. And while these broadband technol ogies have begun to be
more widdy deployed in the last year, a number of customers, in the U.S. and especidly
abroad, will remain outside their service areas for the near future,

While anumber of wirdess aternatives have been demongtrated, only one has

been widely deployed to date: hybrid satellite-terrestrid networks (HSTNs). The



DirecPC™ system, developed by Hughes Network Systems, isthe principa example of
thistechnology. The system provides a downstream bandwidth to its users of 400kbps or
more via asatellite channel. Upsiream bandwidth is provided over terrestrid telephone
lines via a conventional voiceband modem. However, because classic TCP/IPis not well
suited to satelite channdls, it, like dl HSTNs, must overcome severd technica hurdlesto
provide a comparable quality of service. This adds to the complexity of the gateways that
are responsible for forwarding traffic over the satellite. And while the problems—such as
long satdlite link delay and connection fairness—have been studied and addressed with
solutions like connection splitting (also called “ spoofing”)* and flow control;

performance prediction and network dimensioning problems have remained unsolved, in
part because traffic models for HSTN networks have not been fully studied.

Wide area network (WAN) traffic models have aso changed rapidly in recent
years, principaly dueto Internet traffic. The “burdtiness’ of packet arrivas, a dl time
scaes, has found expression in fractd mathematicd moddsfor traffic. To incorporate
the required long range dependence, a number of different satistical distributions have
been suggested for both interarriva times and durations. Recent studies have indicated,
however, that athough these more complex models more accurately characterize source
and network traffic, when that source traffic is fed through a queueing system the
resulting performance predictions (based on these more complex models) may offer only
limited additiond ingght or accuracy over those obtained from smpler, more traditiona

models. At the present state of andlys's, measurement and experimentation, we do not

1 We prefer the term “connection-splitting” asit better describes what takes place, and does not

also refer to amethod of security breach used by hackers, as does “ spoofing”.
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have a clear understanding of the implications or benefits of these more complex models
for network control, performance eva uation and resource alocation.

The question then arises as to how to model HSTN traffic for performance
prediction, and in particular, how far ahead into the future a traffic mode can be expected
to accurately function. We investigate these issues by directly comparing four of the
most likely candidate Satigticd digtributions—the exponentid, log-normd, Welbull and
Pareto. These digtributions arefit to two key traffic parameters from red HSTN traffic
traces (connection interarriva times and downloaded bytes), and their rdlative fits are
compared using daitica techniques. We further compare traffic models built using
these digtributions in a smulated environment; comparing performance predictions (over
anumber of metrics) obtained from these models to the actua results from our rea-world
traffic traces.

While terredtrid Internet traffic has been studied extensively recently [Pax94]
[WTSW97], it has typicdly been studied over rather smdl networks. There are now
severd World Wide Web sites with traffic traces from terrestria Internet available to
researchers [BU] [ITA]. However these traces are taken from networks that are neither
satellite/wirdess, nor commercid sze. Our research and investigation is among the very
few (but widdy required) studies that used actual data from alarge commercia service

providing hybrid Internet over satdllites.

1.2 Contributions of this Thess

The bags of thiswork isaseries of traffic traces taken from alarge, commercid
HSTN known as the DirecPC system. These traces, collected by the author, are used as

the heart of a comparative study of HSTN traffic models undertaken on aunique HSTN



smulation testbed constructed by the author in the OPNET discrete event network
amulaor. Thisthess presents the most complete study to date of HSTN Internet traffic
and its mogt suitable modds, and in addition offers subgtantia insght into the utility (and
limitations) of performance prediction viagaidicd traffic modesin the HSTN

environment.

1.2.1 Outline

We examine the gpplicability of various wide-areatraffic modd digtributionsin
the setting of hybrid satdllite-terrestria networks-- with a particular eye toward two
issues. fird, what we term the “margind utility” (thet is, the additiond benefit resulting
from their use) of newer “sdf-amilar” models over traditiond ones; and second, the
“lifetime’ of amodd (by thiswe mean how long it remains vaid after being fit).

We begin with areview of the bascs of hybrid satellite-terrestria networks with
an emphasis on their unique technica characteristicsin Chapter 2. The genera HSTN
topology is presented, aong with an explanation of the function of the key eements of
the HSTN Network Operations Center (NOC), including connection-splitting and flow
control.

Chapter 3 reviews the traffic mode s utilized in this study, and additiondly covers
results of recent comparative traffic modd studies. Beginning from a higtorica
perspective we trace the development of modern data network traffic models and
statigtica distributions. We present aso the parameter estimation techniques for each
digribution used in this sudy.

Three large traces were collected from an HSTN NOC, and used as the reference

for traffic mode comparison. Chapter 4 details the traffic traces used for the study, and



evauates the Satistica fit of our mode s to these traces. Comparisons between the
models and their fits are provided.

AnHSTN network testbed was created in the OPNET discrete event smulator.
Chapter 5 describes this smulation testbed and presents the results of our traffic model
evauations and comparisons performed with it.

Conclusions are presented in the find chapter.



Chapter 2 — Hybrid Internet

We shall describe Hughes Networks Systems (HNS) DirecPC as our example of a
hybrid satellite-terrestria Internet service. However, many of the technicd issueswe
discuss are applicable to dl systems providing TCP/IP network connectivity via

geodtationary satdlite(s).
21  Background

The DirecPC system provides Internet access to business and residential
cusomersviaa*“hybrid” network technology combining downstream satellite bandwidth
and conventionad upstream analog modem service. Downstream bandwidth is provided
on an unused 6MHz television channel on adirect broadcast video satellite. Upstream
bandwidith is provided via an ordinary telephone modem.

Figure 2.1 shows the typica DirecPC connection. The customer’s computer—by
convention caled a“hybrid host” (HH)—forwards al outbound packets over the modem
through an Internet Service Provider (1SP) to the DirecPC Network Operations Center
(NOC). The heart of the NOC is the hybrid gateway (HGW). The hybrid gateway

forwards packets to the chosen Internet server (1S). Packets comprising the server’s



response are received by the HGW, and forwarded back to the hybrid host over the
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Figure2.1 — Typical HSTN Configuration

Because the satellite Sits in a geostationary orbit, the link delay from the HGW to the HH
is gpproximately 250ms. The performance of conventiona TCP over thislong delay link

will be hindered by its rdaively smdl transmit window. The hybrid gateway addresses

this problem through the use of connection splitting. By acknowledging incoming

packets from the IS on behdf of the hybrid host (thus assuming responghility for their

DirecPC Network Operations Center (NOC)

reliable delivery to the HH), and using the large windows TCP option (Internet RFC 1072

[JB88]) over the satellite link, the “apparent” round trip time experienced by the IS can

be minimized. Thisresultsin the maximum achievable throughput. This goproach is




sometimes referred to as “ spoofing” because this act of pretending to be the HH

condtitutes a benign form of | P address spoofing.

2.2 Technical |ssues

This connection-splitting technique comes with a cost: considerable memory
requirements on the HGW. When a packet is received from an IS it must be enqueued in
asend buffer, to be forwarded to the HH. Once sent, acopy of the packet must be
maintained in aretranamit buffer while awaiting acknowledgment by the HH. Typicdly
the memory available for these buffersis divided equaly among al connections, with
caps on the total number of split connections and on the maximum amount of memory
alocated to any connection.

The Satdlite Gateway in the DirecPC system utilizes two priority queues for
scheduling packets destined to various users. 1P datagrams encapsulating any UDP
packets, or TCP segments from connections that have not exceeded their buffer threshold
in the HGW, are assigned to the higher priority queue. Those datagrams containing TCP
segments belonging to connections which have exceeded their buffer threshold onthe
HGW are assigned to the lower priority queue. All datagramsin the higher priority

queue are served before any in the lower priority queue.

2.3  Hybrid Internet Traffic Modeing

The connection-oriented nature of HSTN service affects traffic modeling for this
environment. All of the popular sgif-amilar time-series traffic modds—such as
Fractional Brownian Motion (FBM), Autoregressive, and Fractional Autoregressive
Integrated Moving Average (FARIMA )—describe packet arrivals for aggregated traffic,

but offer no framework for assigning individua packets to flows (or connections). These
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classes of models represent doubly-asymptotic modds of network traffic; both in the
sense of asympitotic for large (Smilar) numbers of users and in the sense of time
asymptotic. However inthe HSTN environment, we are interested in modeling traffic at
the connection level (meaning characterizing connection traffic), becausein any
smulation modd of the HSTN gateway (the HGW in the DirecPC scheme) we have to be
ableto input synthetic data (or red data) tagged by individud connections. Having fit an
FBM or aFARIMA mode to the aggregate traffic traces does not dlow usto distinguish
packets belonging to separate connections. Nevertheless, the traces we collected can
allow usto study individua or aggregete connections packets and their statistics and
related modds. Although these types of analyses were not undertaken in the present
study, the data we have collected would dlow for such studies in future efforts.

Since we can summarize each TCP connection by two characterigtics arriva time
and the number of bytes transferred, we sill have a broad class of models available to us.
Assuming independence of arriva times and bytes trandferred, we can fit any datistica
digributions we please to these two variables. We will fit atotal of 3 different
digributions to both the interarriva times and connection szes, though one of the

connection size digtributions will prove to be a very poor fit.



Chapter 3 — Network Traffic Models

From the earliest days of communication networks the development and
goplication of accurate, readily-agpplied traffic modds has been crucid to their successful
deployment and growth. Accurate (high-fiddity) network traffic models are needed for
planning and cost-effective dimengoning of network resources, and are the basis of
quality of service guarantees. Traffic modds have been afundamentd part of the success
of modern telephone systems—alowing companies to provide a service that, in terms of
reliability and cog, is (arguably) surpassed only by eectric power. But the heterogeneity
and complexity of wide area data networks and the applications generating their payloads
have frustrated attempts to derive and gpply smple traffic models for them. Much
progress has been made recently in developing statigtically accurate local-area and wide-
areangwork traffic models, but their applicability has been hampered by their
complexity. Furthermore, verification of ther vaidity for large scde networksis ill an

open question.

3.1 TrafficHistory: The Poisson Model

Communication traffic theory hasits roots in the engineering of early circuit

switched telephone networks. Pioneering work by M.C. Rorty of AT& T modeled

10



telephone cdls as having afixed length and cdculated cdl blocking probabilitiesusing a
binomia expansion of the probabilities of the occurrence or non-occurrence of individua
cdls. E.C. Maling dso with AT& T, expanded this modd when he independently
derived acdl arrivd processthat (it was soon discovered) had aready been described by
Siméon Poisson, whose name it cameto bear. It was this model, completed by the work
of A.K. Erlang of Denmark, who introduced the exponentid holding time, that became
the foundation of telephone traffic engineering [Fag75]. The exponentid distribution,

used for both the interarrival times and cal holding times, takes the form:

F(x)=1- ' (3-1)
with the corresponding density function:
f(x)=le'™ (3-2)

where| =E[x]™*. A unique characteristic of the processisthat the deviation is the same as
the mean. A Poisson processis Smply arandom arrival process with exponentialy
digributed interarrival times. The most distinctive fegture of this processisits
randomness—it is completely memoryless. Thismodd is eegant in that both the arriva
process and the holding time distributions are each defined by only one parameter.

Synthetic Poisson data may be generated by generated the required number of
samples, uniformly distributed between (0,1), i.e. u~U(0,1). Exponentialy distributed
sample vaues are then obtained through the transformetion:

x=F(u) (3-3)

where F (3 is the probakility distribution function (in this case equation (3-1)).

11



3.2 Toward Modern Traffic Modds

When computer networks first gppeared, the Erlang modd of Poisson cdl arrivals
and exponentidly distributed service times had ruled teletraffic for close to 50 years.
Equations such asthe Erlang “B” and “C” formulas, dong with other mathemétically
tractable and degantly derived results from queueing theory had lent themselves readily
and reliably to network engineering. Moreover they were perceived as dmost natural
laws. So origindly, and indeed for quite some time, despite the architectura and
goplication changes, very little thought was given to re-evaduating the suitability of
Poisson models to the traffic in the new networks that emerged in the last twenty years
[WPA8]. Cdl arrivaswere smply replaced with packet arrivals, and holding times with
“sarvice’ (or forwarding) times. Indeed, much of the early vaidation and peformance
comparison work on Ethernet and ring networks—familiar papers by Metcdfe and Boggs
[MB76], Bux [Bux81], and others—was based on thismodd. Thisis ill the
predominant model for packet traffic in network texts and university courses.

Over the years severa extensions of the Poisson model have been suggested to
improve its accuracy, including sums of multiple exponentia distributions, and Markov-
Modulated Poisson Processes (MMPPs) [Heff80]. Most have met with limited success,
largely because they Hill relied on the exponentia distribution. The MMPP modd for
ingtance has been successfully employed in the modding of packetized voice and data
traffic [HL86].

But it is now understood that the old rules do not apply to data networks. As
cause Willinger and Paxson identify four sgnificant ways in which data networks differ

from voice networks [WP98]:

12



data networks are packet based instead of circuit switched;

individua connection durations and bandwidth requirements are variable;
packets are buffered at points during transmission and may be dropped;
most network layer protocols contain end-to-end congestion control

mechanisms that introduce complex correlaions.

3.3 LongRange Dependence

In 1990, invedtigating the types of traffic expected on future broadband networks,
W. Leland and D. Wilson gathered the largest, most accurate interconnected LAN traffic
trace of itstime [LW9L]. Itstime-stamp precison and Size gave aview of time-scales
from milliseconds to months. The concluson from this trace was indisputable: wide area
traffic was bursty on much larger time scales than that provided for by Poisson-based
modeling [FL91], and this long range dependence, or “ sdf-amilarity” (to be defined
shortly) received much attention. In 1994 adew of papers arrived finding evidence of
sdf-amilarity in Ethernet traffic [LTWW4], ISDN traffic [GWH], variable-hit-rate
video traffic [BSTW94], Common Channe Signaling Networks [DMRW94], and
Internet traffic [PF94].

Theterm “sdf-amilarity” isaproperty of fracta processes, and in network traffic
refersto atime scale characterigtic: datistical Smilarity over awide range of time-scale
aggregations. That is, a continuous-time stochagtic process x(t) is Satigticdly sdf-damilar
with parameter H (0.5 £ H £ 1) if for any red a > 0, the process a™x(at) has the same
datistical properties as x(t) [Stal98]. Likewise adiscrete-time stochastic processis

second-order self-amilar if, for dl m, the m-aggregated time series:

13



km

ax) (3-4)

XM ={x{™ k=012Y4} (where x{™ = 1
Mizkm (m-1)
has the following variance and auttocorrelation relationships with the original series x™:

Var(x)

Var(x™) = and Rwm()® R (I) asm® ¥ (3-5, 6)

The “Hurs” parameter, H, is a measure of the degree of self-amilarity—or in other

words, how well the Satistical properties scale with respect to time. A value of 0.5
indicates no sdf-smilarity, and 1.0 perfect sdf-amilarity. The parameter b isthe
corresponding measure of salf-amilarity in the discrete time definition, and isrelated to
H asb=2(1-H) [LTWW4].

Long-range dependence, arelated phenomenon, is a dtatistical property of sdif-
amilar processes, and refers to a hyperbolicaly decaying autocovariance. Short-range
dependent processes such as the Poisson process have (much faster) exponentialy
decaying autocovariances. The more dowly decaying autocovariances of sdf-amilar
processes reflect the persistence of their burstiness through many time scales [Stal98].

Thefinding of sdf-amilarity does not immediately lead to atraffic modd, asit is
only agatistica property (of an infinite class of models). But matheméticians have long
known that saf-similar processes arise from the presence of so-cdled * heavy-taled’
digributionsin the sysem [Ma63]. A heavy-taled digribution is one which matches the
proportionality:

PT >t)p t? (0<g<2) (37
for t ® ¥ [HLF98]. Heavy-taled digributions have infinite variance and, for g < 1,

infinite mean.

14



The Welbull and Pareto digtributions (to be discussed later) are two heavy-talled
distributions which, when incorporated into traffic models, produce sdf-smilar behavior.
They can be used to model interarrival times or connection durations (message lengths)—
or both. Willinger, Tagqu, Sherman and Wilson have proven that the superposition of
many ON/OFF sources with strictly dternating ON- and OFF- periods, both of heavy-
talled digtribution, produces aggregate network traffic that is saf-amilar; they present

results showing that it dso closdy matches Ethernet LAN traffic [WTSW97].

34  Log-normal Distribution

Thelog-norma digtribution is sub-exponential, but does not have a grictly heavy-
talled probability dengty function. The definition of the log-normd ditribution is based
on the normd digribution, asfollows: giventhat Z = log( X) isnormaly distributed
(with zero mean), the random variable X shal be called log-normd. The log-normal
probability dendty function takes the form:

1 _(log-2)?

T = (x > 0) (3-9)

where z represents the mean, and s the standard deviation, of Z. These parameters can

f(x)=

then be estimated as they would be for anorma distribution (given outcomes X1, Xz, ...

Xn), by the maximum likelihood esimators.

(log( X,)-z )2 (3-9, 10)

('Dij) 8\
‘I_I moz

1g -
:—a|09(><,-) S
n =

These estimators are unbiased [JK70]. The mean and standard deviation of the

corresponding log-normd didribution X are thus:
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E(X) _&'T s, =€+ (¢ -1 (3-11, 12)

Thelog-normd didtribution is one of the earlier non-exponentia distributions to
be applied to network traffic modding. The log-normd ditribution has been suggested
in the moddling of phone cal durations [Bol94], local area network packet interarrivas
[MM85], and Telnet connection sizes (in packets) and FTP data connection spacing
[PF95]. We generate log-normd interarrival times and response sizes by transforming

unit norma samples u~N(0,1) viathe relation:
X =g (3-13)
35  Waelbull Digribution
The Weibull digribution is a popular heavy-talled digtribution in network traffic
modeling. The probability dendty function is:
f (x) =abx®le®’ (3-14)
and the digtribution function is
F(x)=1- e (3-15)

The maximum likelihood estimator for b is obtained by iteratively solving the equation

[K70]:
, " . "‘-1
b=A X logx, /B xp % B g ogx, G (3-16)
éei=1 ei=1 g ehizg a0

The egtimator for the parameter a isthen:

(3-17)
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We generate Welbull trace vaues in the same manner as the exponentia

digribution, usng the inverse of the Weibull distribution function (eg. 3-15).

3.6 Pareto Distribution

The Pareto digtribution is a very popular heavy-tailed distribution, with density

function:
ak®
f(x)= N (3-18)
(where k represents the minimum value) and distribution function:
F(x) =1- &9 (3-19)
exg

Thevaianceisinfiniteif a £ 2, and the meanisinfiniteif a £ 1; otherwise the mean and

sandard deviation are as follows:

_ak _ ak?
E[x] = —— and s, = \/(a @D (3-20, 21)

The parameter a isrelated to the Hurst parameter H asa=3-2H.
There are anumber of ways to fit the Pareto distribution, including least squares,
moments-based, maximum likelihood and iterative means [CM80], and Hurst parameter
egtimation via block packet count [HLF98]. We use the maximum likelihood estimator,
whichisasfollows

n-1

a=— - (3-22)
é log X, - nlogk

i=1

where K =mi n(X;). Thisestimator is unbiased.
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The Pareto digtribution has been used to model the sizes of web pages, disk file

szes, and FTP-data bursts [PF95].

3.7  Fit Comparison

When fitting distributions to actud tracesit is useful to have a discrepancy
measure—particularly one that alows fit comparisons between different distributions.
Weusethe| ? test used by Paxson, Feldman and others [Pax94], [Feld95]. Thistest
modifiesthe c? test to make its results independent of the number of binsused. To
review, the ¢ test proceeds as follows. Given n outcomes of arandom process X being

fit toamodd Z, we choose a partition of N equally spaced bins and define X; asthe
number of outcomesinbini. We further define p; as the proportion of distribution Z

fdlinginbini. The discrepancy measureis then:

& (X, - np)
CZ - ( i i 3-23
a " &2

Thismeasure is not independent of N, however, which presents problems when
trying to compare results across different traces. A modification, suggested by Pederson

and Johnson [PJ90], solvesthis problem. Wefirst compute:

& (X, - np)
K=g 2%/ 3-24
2w &

followed by the * degrees of freedom”:
df =N- 1- Est (3-25)
where Est is the number of parameters of Z being estimated from trace X. The new

discrepancy measure | 2 isthen:
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3-26

1 (3-26)

The standard deviation of | %is
¥ "4

N :\/de + 4n| 42r4nl +4T @27
n
- 5 , 3 0/,
where T =g ¢D’- 2DE +- D/ +-(D +E Jg [E (3-28)
i=1

Thusfar we have not discussed the bins, other than describing them as equally
gpaced. We use the following formulafor bin width, according to [Pax94]:

w=3.495 nY? (3-29)
The number of bins, N, is then determined from w and the range of X. Because the

number of outcomes will be very smdl in the bins near the tail, we follow [Feld95] and

combine dl binswith less than 5 outcomes.
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Chapter 4 — Traffic Traces and Modeling

4.1  DirecPC™ Trace(s)

For this study three sample traces were taken of actua DirecPC NOC traffic, dl
usng amodified verson of the tcpdump program [Jac98]. All traces were taken using a
Linux PC equipped with a 100 Base-T Ethernet adaptor and a high resolution (~10ns)
timer.> The network vantage point for the trace logging was a spanned port on the
primary NOC router, giving us access to dl packets passing between hosts on the NOC
LAN, aswell asal packetsinbound or outbound on the Internet links (two T-3s).

Referring back to Figure 2.1, we could have chosen to collect our trace at points
A, B, or C (or redly any combination of these, snce each of these links represents a hope
through the core router). The path between the HGW and the SGW (point C) isavirtud
LAN, and we excluded it from the port span, so our traces contain only the packets seen
a points A and B. This means that each packet inbound from a HH was actually logged

twice: oncein its tunneled form passing through point A to the HGW, and once inits

! The default timer granularity of tcpdump is only about 10ms, but patches are widely available to

improveit.
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norma form passng from the HGW to the Internet. For this study we ignored the
tunneled packets (point A) but this data was included in the trace to alow future Studies
of HH request patterns, etc.

The traces contain the first 100 bytes—beginning with the Ethernet header—of
each Ethernet frame observed on the network. Together they contain over 75 million
packets. In each casg, at trace termination tcpdump reported no dropped packets, so the
traces can be considered complete. Each trace was postprocessed using the tcp-reduce
script [Pax95] to produce one line summaries of each connection. Connections which
failed to complete the setup phase were discounted, as well as al connections involved in

updating the cache of DirecPC’'s Cacheflow caching appliance.

4.1.1 Trace SUmmaries

Trace one was taken on May 12, 1999, between the hours of 5 and 6pm Eastern
Time. Itis 3,473 seconds (0h:57m:53s) long and contains 86,062 complete TCP
connections. Trace two was taken on October 13, 1999 between the hours of 5 and 6pm
Eastern Time. It is 3,688 seconds (1h:01m:28s) long and contains 64,553 complete TCP
connections. Trace three was also taken on October 13, 1999 during the peak hours of
10:30pm - 12:30am Eastern Time. It is 7,396 seconds (2h:03m:16s) long and contains
140,667 complete TCP connections. These traces are summarized in Table 4.1. The
number of bytes shown reflects only the downstream direction, because it is this direction

we are concerned with.
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Trace WWW FTP-ar| FTP-data POP NNTP Other Total (Units)

73,205 386 648 5271 130 6,422 86,062 | Connections

1 852,949,541 | 227,390| 406,206,429 | 54,921,840 | 109,907,689 | 97,960,411 |1,522,173,300 | Bytes
85.06 % 0.45 0.75 6.12 % 0.15% 7.46 % 100.00 % | Connections

56.03 % 0.01 26.69 3.61% 7.22% 6.44 % 100.00 % | Bytes
53,754 310 601 3,661 133 6,094 64,553 | Connections

2 593,022,253 | 209,950| 170,624,961 | 56,103,608 | 314,068,168 | 323,321,547 |1,457,350,487 | Bytes
83.27% | 0.48% 0.93% 5.67 % 0.21% 9.44 % 100.00 % | Connections

40.69% | 0.01% 11.71% 3.85% 21.55% 22.19% 100.00 % | Bytes
123,561 1,708 1,719 4,663 551 8,465 140,667 | Connections

3 [1,711,701,945| 988,441 | 1,368,561,512 | 52,761,724 | 923,483,754 | 576,591,034 |4,634,088,410 | Bytes
87.84% | 1.21% 1.22% 3.31% 0.39 % 6.02 % 100.00 | Connections

36.94% | 0.02% 29.53 % 1.14% 19.93 % 12.44 % 100.00 | Bytes

Table4.1— Summary of traffic traces used

Upon examining the traces severd things are evident. Thefirg isthat the bulk of
the traffic is generated by two applications. the World Wide Web and File Transfer
Protocol. Second, thereisno Telnet or Rlogin traffic; which is because those low
bandwidth, fast response demanding applications are routed back over the telephone
network, to avoid incurring the satellite delay. Also notable is that FTP-data connections,
while few in number, are very largein Sze. The sameistruefor NNTP. And most
importantly, the sgnificant maority of the traffic is of varieties thet can be described as
angle-burst retrievals. That is, immediately upon connection-open asingle object is
downloaded (or perhaps a group of associated objects in immediate successon—i.e. e-
mail messages in the POP case) and the connection closes shortly thereafter. Only the
FTP-control, NNTP and Other? traffic varieties—comprising only about 10% of
connections and 30% of bytes—may contain periods of both bursts and lullsin

downgtream traffic. And for the largest NNTP connections the bursts vastly exceed the

2 In the case of trace 2 the unusually high amount of “Other” traffic can be attributed to one user
who was downloading multiple 15 megabyte files viathe “IRC” application—anal ogousto FTP and also
“single-burst”.
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luls. Hence we can conclude that the bulk of our traffic can be described as “single-

burst” downloads.

4.1.2 TraceVdidation

An assumption used in fitting traffic model s to these traces is the Satigtica
independence of connection arrival times and download Szes. Autocorrelation plots for
al three traces, shown in Figure 4.1, reved an adequate, though not particularly high,
degree of independence in the connection arriva times. For tracesland 2r(1) is
approximately 0.1, and for trace threeit is closer to 0.15. While these are smdl enough
to label our independence assumption vaid, we shdl pause to note here that they do
indicate the potential for success using connection level time-series models, were such

modds avallable.
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Trace 1: Autocorrelation
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Trace 2: Autocorrelation
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Figure4.1 — Connection Interarrival Autocorreations (for traces 1,2,3)

For the download Sizesthere is no question. Autocorrelation plots, shownin

Figure 4.2, indicate a high degree of independence for this variable.
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Trace 1

4.2

plot (highlighting the lower tails of the digtributions) in Figure 4.3.

Connection Interarrivals

Connection interarriva distributions for traces 1, 2 and 3 are shown on alinear
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Figure4.2 - Download Size Autocorréations (for traces 1,2,3)




Interarrival-time density histograms {linear acala)
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I
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Figure 4.3 —Distributionsof interarrivals (linear scale) (traces 1,2,3)

To better emphasize the talls, Figure 4.4 shows the same data on a semilog plot.
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Interarrival-time density histograms {semilog scale)

10 R R R R R R A S B 1
---------- PIIIIIIIIIIIIIIIIIIIDIIIIIIIIITIIII DI DI I I I IID Il —we— Trace
s S I S I 7 - B~
Ayt o oo poreees poreees s e o4 Traces |;

o 0.05 oA 0.15 0.2 0.25 0.3 0.25 0.4 0.45 0.5
At

Figure 4.4 — Distributions of interarrivals® (semilog scale) (traces 1,2,3)

Fitted exponentid, log-normal and Weibull distributions for traces 1, 2 and 3 are
shown in Figures 4.5, 4.6, and 4.7, respectively. All threetraces interarrivals are plainly
subexponentid; the fitted exponentid distributions obvioudy fail to capture their tall
behavior. The log-normd digtribution, on the other hand, istoo heavily-tailed, and dso
appearsto be apoor fit to dl three traces. Fortunately the Weibull digtribution, in dl

three cases, appears to be a good match.

3 Inthisand all distribution plotsin this work the |ast data point reflects the sum of the remaining

tail.

27



o Trace 1: Interarrival distribution fits
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Figure4.5 - Interarrival distribution of Trace 1
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o Trace 2: Interarrival distribution fits
10

""""""" RSP P PP P P
i e Trace2 ]
--oooo| - Exponential, p=0.05714

—— Log-normal, [=—3.79479, 5=1.759681
—C— Woeibull, x=20 24561, B=0.76665

Figure 4.6 - Interarrival distribution of Trace2
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Trace 3: Interarrival distribution fits
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Figure4.7 - Interarrival distribution of Trace 3

The suitability of the Weibull distribution is attested to by the resuilts of the | 2
test, shown in Table 4.2. For dl three traces the Weibull distribution outfits the
exponentiad and log-normd by ameasurable margin. The high vaue of 2 for the
exponentid fit to trace 3 isnot an error. Rather, it is proof of the subgtantidly sub-
exponentid tail of the connection interarrivals. Thelargest arriva interva contained in
trace 3is2.54 seconds. The expected number of exponentia arrivals (np; in equations (3-

23) and (3-24)) in the bin containing this value is on the order of 10°*2, which contributes

gretly tothesize of 1 2.
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Trace | Model | 2 s
Exponentia 2.037116e-01 | 1.551436e-02
1 Log-normd | 2.485222e-01 | 3.687781e-03
Waeahull 8.229092e-02 | 2.038071e-03
Exponentid 2.823670e-01 | 8.147982e-02
2 Log-normal 2.734092e-01 | 4.538923e-03
Waeibull 1.014115e-01 | 2.668935e-03
Exponentia 3.424973e+02 | 3.992822e+02
3 Log-normal 2.383435e-01 | 2.829614e-03
Waeibull 7.549240e-02 | 1.592505e-03

Table4.2 - Interarrival | 2 goodness of fit results

4.3  Bytesdownloaded (per connection)

Connection download sizes are considerably heavy-taled. Figure 4.8 showsthe

actud response Sze didributions of dl three traces, plotted againgt exponentid

digributions fit to each one. Thetails are enormous: for al three traces the upper 5% of

connections account for over 80% of all bytes downloaded. For this reason we

immediatdy diminate the exponentid distribution as a candidate, and focus on fitting the

three sub-exponentid digtributions to the download szes.
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Response size distributions with exponential maiches
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Figure 4.8 - Download size digtributions

Figure 4.9 showsfitted log-normal, Weibull and Pareto ditributions for the

download sizesin traces 1. Table 4.3 showsthe | 2 best fit results for the same fits
Thereis anoticegble problem. Though the conclusion that the log-normd didribution is
the best fit appearsto be correct, the fit results for the Weibull and Pareto distributions
aremideading. Thetal onthe Webull digribution isso large, in fact, thet itsmean is
over 10° bytes, though the mean download size of actua trace is gpproximately 1.7 10°.

The results for traces 2 and 3 proved to be smilarly disastrous. Our conclusion isthat the

|2 goodness-of-fit test, while very useful for comparing fits to the moderately heavy-
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talled interarriva data, is mideading when deding with such heavily-tailed data as the

download sizes. It gppearsto pendize a digtribution much more for underestimating the

upper tal than for overestimating it.

Trace 1: Response size distribution fits

-0~ Log-normal, £=7.15966, 5=2.15006 |]
—{— Weibull, 0=6.117e-04, B=0.10656
—O— Pareto, k=126, a=0.36553
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Size (byles) x 10
Figure4.9 - Trace 1 download sizes (bytes)
Model | 2 s
Log-normal 7.572985e-02 | 1.049059e-02
Weibull 2.095553e-01 | 2.410206e-03
Pareto 7.914014e-02 | 1.444359e-03

Table 4.3 — Download sizel ? goodness of fit resultsfor trace 1
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Thereisasmilar problem for the Pareto distribution. The Pareto distribution is
unique among the three because it has a non-zero minimum vaue. Higoricdly the
Pareto digtribution has been fit to the upper tails of atistica data, rather than entire
digtributions. Here we must choose the best way to apply the Pareto. Consequently, we
must fit the Pareto to an upper fraction of the entire data, but useit to modd the entire
digribution. Experimentsindicate that fitting the Pareto to the upper 90% of the
digtribution gives the best * goodness-of-fit” results when evauated againgt the entire data
set. For our tracesthisled to ak of about 130 bytes. Thisiswhat is shown in Figure 4.9.
However fitting the Pareto in this manner results in the same problem seen with the
Weibull—overestimation of the upper tail. Hence, for our work we will fit the Pareto to
the upper 20% of the download sze data. Thisleadsto ak of roughly hdf the mean
response size (8-10kbytes).

Figures4.10, 4.11, and 4.12 show the digtribution fits (using the new 20% Pareto)
for traces 1 through 3. For al three traces the log-norma distribution gppearsto be the
best fit, but the Pareto now gppears to be amore viable dternative. The Weibull isagain
shown, but only for comparison purposes. With sufficient evidence of its lack of fit to
download szes, we shdl diminate it from further consderation to modd thistraffic

variable.



o Trace 1. Response size distribution fits

..... r——r e

il —%— Trace 1

—1+ Log—normal, {=7.16510, 5=2.13282
—{— Weibull, 0=4.921e-04, B=0.20770
—O— Pareto, k=8513, a=1.13385

Size (bytes)

Figure 4.10 - Download sizefitsfor trace 1
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Trace 2. Response size distribution fits
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Figure4.11 - Download sizefitsfor trace 2
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Trace 3. Response size distribution fits
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Figure4.12 - Download sizefitsfor trace 3

44  Summary

In short, we have found the following: DirecPC HSTN traffic can be modeled a
the connection leve by fitting Satigtica digtributions to two key treffic variadbles. TCP
connection interarrival times, and downstream transmisson (“download’) szes. TCP
connection interarriva times are neither truly heavy-tailed, nor truly exponentid, but fal
somewhere in between, under the generd classfication of subexponentid. Exponentid,
log-normal and Weibull are al reasonable candidate distributions for the interarrival

times, with Weibull appearing to be the best fit.
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TCP download szes are extremely heavy-talled, and rather difficult to fit.
Standard goodness-of-fit tests are not only usdess, but even mideading for this variable.
With care, however, and using the approach we have show, agood fit can be obtained for
this variable with the log-norma and Pareto distributions.

Also of noteisthe fact that, snce the log-normd digtribution isthe best fit to the
download szes, they do not have infinite variance. This has important implications for

our modeing, implying that the prediction task should not be as difficult.
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Chapter 5—HSTN Testbed Smulations

51  Opnet HSTN Testbed

For the purpose of studying the utility of different traffic modelsin the HSTN
seiting, aflexible HSTN-like environment was needed. An HSTN smulation testbed was
congtructed using the OPNET discrete event smulator. The OPNET environment
provides complete, vaidated TCP/IP modds, dong with an isolated, fully configurable
setting in which to run smulations. Thisyields results that are both redligtic and
repeatable—which is necessary for the traffic model comparison undertaken.

The testbed was constructed as a genera model of an HSTN network. 1t is based
on the DirecPC scheme, but with some secondary behaviorsignored, and afew

parameters generalized.
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Figure5.1 — Opnet HSTN Testbed Networ k

The testbed itsdlf, shown in Figure 5.1, closdy resemblesasmple HSTN
network, containing one of each of the fundamental pieces of the system presented in
Figure2.1. Thereisaclient (HH), which sends outbound (request) packets to the hybrid
gateway (HGW) viaadidup PPP connection; six servers, which return responses to the
requests forwarded by the HGW; and a satellite gateway (SGW), through which the
hybrid gateway forwards the response packets back to the HH. All interconnecting links
are st to typicad vaues, with the satdlite link replaced with an equivaent point-to- point
link (250ms ddlay), for smplicity. Intermediate routers are eliminated because their

effect on the system is secondary.

511 Testbed Hybrid Gateway

In modeling the DirecPC Hybrid Gateway (HGW) there are severd sgnificant

functions which must incorporated to accurately mode the HGW behavior. Firs, the



modd must perform connection splitting/spoofing. Secondly, it must manage the number
of active connections, and the memory available to each for use as a retransmit buffer.
Thirdly it must advertise (to the sender) areceive window which isin compliance with
both the receiver's advertised window size, and its own available buffer space. Fourthly,
it must assgn “priorities’ to connections, based on whether or not they are overusing
their available buffer, and embed these priority tags for the Satellite Gateway (SGW) to

use.

The hybrid gateway (HGW) mode is a based on an earlier modd of a spoofing
gateway written at the Center for Satdllite and Hybrid Communication Networks
(CSHCN) at the University of Maryland and used in other Internet over satellite and
HSTN studies[KLBB99] [LKRB99]. Itisbuilt on abasic router modd, but with
extensive additions and modifications, including the addition of a TCP layer capable of
gpoofing/connection splitting. The [P layer is modified to examine datagram contents,
and forward al TCP segments up to the TCP layer, which is modified to spoof
acknowledgements and split connections. This earlier basic spoofing modd was
extended with additiond functiondity to duplicate al of the essentid behaviors of the

DirecPC hybrid gateway, including al those enumerated above.

5.1.2 Tesbed Satdlite Gateway

The satdllite gateway modd is essentialy a modified router, possessing only an
IP, and no TCP layer. Asin the DirecPC schemeit isatwo priority queueing syssem. To
determine an incoming packet’ s priority, the SGW examines the TCP header for a
priority assgnment given by the HGW. If the packet isnot TCP or contains no priority

tag, it will be assgned to the higher priority queue. Only when the higher priority queue
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isempty isthe lower priority queue served. By default the SGW is configured with
infinite queues, but is dso switchable to finite queue lengths (to study drop probabilities).

5.1.3 Tesbed Client/Server

Key to sudying traffic modds isincorporating traffic traces, whether previoudy
captured or synthetically generated, into the network. Thiswas accomplished in the
testbed by a ggnificant modification of the Generalized Network Application (GNA)
client and server models found in OPNET. The default GNA models generate common
TCP network traffic like HTTP, FTP and other traffic, but provide little flexibility for
incorporating other traffic models or gatistica distributions. A “tracefile’ gpplication
was added to the client and server models. This new application was written to produce
traffic from trace files containing interarriva and response Sze information. Desgnated
interarrival and response sze filenames were given, and the client node reads times and
gzes from them, scheduling requests to be made of the server. The client and servers
shown in the testbed are configured as “mega-devices’, that is, they have their packet
forwarding rates and other settings adjusted so that, in the case of the server, they can
accurately represent alarge number of servers, or in the case of the client, the entire
group of active DirecPC clients. (The presence of sx serversin the testbed isintended to

add ameasure of interleaving to the packets flowing into the HGW.)

5.2  Modding Studieson the HSTN Testbed

We seek to answer two questions about the models we have proposed for HSTNs.
First, how well do the different distribution combinations work for performance
prediction (and in particular, whet is the “margind utility” of the heavy-tailed

digtributions)? And second, once we have “trained” (meaning fit) our traffic modd on
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our most recent data, how long can the model be expected to remain vaid before the
datidica characterigtics of the arriving traffic change too much. The first question is one
broadly concerned with which modd (that is, combination of interarriva and response
sze digtributions) is best suited to HSTN traffic, and whether or not heavy-tailed
distributions provide significantly more accurate performance predictions. The second
asks what the expected lifetime of afitted mode might be, when being applied to
predicting traffic intengty or system performance for dynamic resource provisoning or
qudity of service (QoS) prediction.

521 Test Method

To answer these questions we set up the following test. All combinations of
interarriva and response Sze didtributions were fit to the first 30 minutes of traces 1, 2
and 3, exactly as detailed in Chapter 4, and synthetic traffic traces were generated for
each model. For each trace, the succeeding 2, 5 and 10 minutes of traffic were run on the
testbed, and separately 2, 5 and 10 minutes of each matching mode’ s synthetic treffic, as
well. For dl runsanumber of performance metrics were collected, to assess how well

each modd predicted traffic behavior.

5.2.2 Paformance Metrics

Evauating the predictive performance of traffic modes requires well chosen
metrics for comparison. The following metrics were collected for dl runs:
Peak throughput (in per-second intervals) on the satdllite link — thisdlows us
to gauge how well amodd captures traffic burdtiness;
Average throughput on the satdlite link — thisis an excellent gauge of a

mode’ s overal prediction of traffic intensty;
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Maximum combined queue length on the SGW — thisis an excdlent example
of ametric that would require accurate prediction for QoS provisioning;
Average combined queue length on the SGW — another measure of overal
traffic intensity;

Peak number of smultaneous connections on the HGW — an important
resource whose demand is desirable to predict;

Peak delivery delay of UDP “probe” packets sent from an IS to the HH (at

200ms intervals);
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Figure5.2 - Peak Throughput, Predicted vs. Actual (bytes/s)
Interarrival and Response size distributions
Trace | Future | Actua Trace | Exponential | Exponential | Log-normal | Log-normal Weibull Weibull
time Actud Trace | Log-normal Pareto Log-normal Pareto Log-normal Pareto
1 120s 5161200 4971840 3248984 2984992 2293712 5492160 2895440
300s 5250272 4971840 3679184 2984992 2293712 5492160 3524256
600s 5851256 4976080 4175616 3970296 2839512 6058843 4509336
2 120s 4335824 3929656 2935816 4035072 2494128 4770256 2838384
300s 4335824 3929656 3418248 4035072 2494128 4770256 3329992
600s 5154616 4381456 3524136 4035072 2494128 4770256 3755312
3 120s 4495888 3788432 3717520 3043048 2133648 3916656 3239672
300s 5976744 4841200 4955208 3043048 2872400 5119736 4835760
600s 7233208 5400296 4955208 3598376 3635872 5227392 4925448

Table 5.1 - Peak Throughput, Predicted vs. Actual (bytes/s)
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Table 5.1 tabulates the predicted vs. actud pesk throughput for dl Sx mode s fit
to the first 30 minutes dl three traces over the succeeding 120s, 300s, and 600s. Figure
5.2 shows the associated prediction error. The exponentid interarrivals with log-normd
download szes mode, and the Weibull/log-norma model perform best on traces 1 and 2.
All others are poor predictors. No modd performs very well for trace 3, but the

exponentid/log-normd and Welbull/log-norma are the best.
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Figure 5.3 - Average Throughput, Predicted vs. Actual (bytes/s)
Interarrival and Response size distributions
Trace | Future | Actua Trace | Exponential | Exponential | Log-normal | Log-normal Weibull Weibull
time Actud Trace | Log-normal Pareto Log-normal Pareto Log-normal Pareto
1 120s 2388730 2525315 1503101 1431301 966787 2565716 1525621
300s 2985151 2789657 1659555 1449717 860187 2739489 1651473
600s 3344227 2822733 2024304 1532927 1015692 2785658 2001111
2 120s 1991141 2300186 1540868 1489039 956515 2313420 1549943
300s 2219963 2270101 1617832 1346509 889262 2334632 1665257
600s 2664985 2345479 1713316 1264444 967744 2344393 1705973
3 120s 2239213 1983998 1830608 944116 1032866 2041111 1820233
300s 3308480 2401022 2245432 1146214 1218284 2395192 2187523
600s 3816379 2615161 2348372 1391122 1297581 2678285 2328288

Table 5.2 - Average Throughput, Predicted vs. Actual (bytes/s)
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Table 5.2 tabulates the predicted vs. actud average throughput for al sx models.
Figure 5.3 shows the associated prediction error. The exponentid/log-normd and
Weibull/log-normal models again perform best on dl threetraces. All others are poor
predictors. Trace 3 isagain the mogt difficult to predict, but for this metric the best case
error isnot as bad asin the peak throughput case. And, asin the peak throughput case,

thereis a generd trend toward underestimation of the metric.
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Figure5.4 - Maximum SGW Queue Length, Predicted vs. Actual (bytes)
Interarrival and Response size distributions
Trace | Future | Actua Trace | Exponential | Exponential | Log-normal | Log-normal Weibull Weibull
time Actud Trace | Log-normal Pareto Log-normal Pareto Log-normal Pareto
1 120s 4500 3088 3356 3076 3356 3179 3981
300s 5255 3088 3795 3076 5032 3179 3981
600s 5255 3703 3795 3220 5032 3667 4133
2 120s 3216 2534 3040 3128 3180 3040 3701
300s 3216 3040 3799 3176 3180 3040 3701
600s 3216 3040 3799 3176 3326 3040 3701
3 120s 3216 2534 3040 3128 3180 3040 3701
300s 3216 3040 3799 3176 3180 3040 3701
600s 3216 3040 3799 3176 3326 3040 3701

Table 5.3 - Maximum SGW Queue Length, Predicted vs. Actual (bytes)
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Table 5.3 tabulates the predicted vs. actud maximum SGW queue length for dl
gx modds. Figure 5.4 shows the associated prediction error. Only one modd performs
adequatdly in predicting this metric: the Welbull/Pareto. All others are poor predictors.

As with the previous metrics, there is a genera trend toward underestimation.
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Figure5.5 - Average SGW Queue Length, Predicted vs. Actual (bytes)
Interarrival and Response size distributions
Trace | Future | Actua Trace | Exponential | Exponential | Log-normal | Log-normal Weibull Weibull
time Actud Trace | Log-normal Pareto Log-normal Pareto L og-normal Pareto
1 120s 6.46 6.79 4.39 3.86 2.79 6.92 4.47
300s 8.03 7.50 4.88 3.90 2.52 7.40 4.85
600s 8.95 7.61 5.86 4.12 2.96 7.51 5.79
2 120s 5.34 6.15 4.32 3.99 2.68 6.21 4.36
300s 5.96 6.09 4.57 3.62 2.49 6.27 4.74
600s 7.09 6.30 4.85 3.39 2.72 6.31 4.85
3 120s 6.03 5.32 5.14 2.55 2.90 5.51 5.17
300s 8.84 6.42 6.27 3.07 341 6.40 6.17
600s 10.16 7.00 6.56 3.71 3.64 7.16 6.54

Table 5.4 - Average SGW Queue Length, Predictionsvs. Actual (bytes)
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Table 5.4 tabulates the predicted vs. actua average SGW queue length for dl six
models. Figure 5.5 shows the associated prediction error. The exponentia/log-norma
and Welbull/log-norma modds again perform best on dl three traces, but asin the
throughput metrics, do not perform particularly well for trace 3. All others are poor
predictors. And, asin the peak throughput case, there isagenerd trend toward

underestimation of the metric, particularly for longer prediction times.
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Figure 5.6 - Peak Number of Connectionson HGW, Predicted vs. Actual

weib/par

| | 1
exp/ogn exp/par weibdogn

Interarrival and Response size distributions

Trace | Future | Actual Trace | Exponential | Exponential | Log-norma | Log-normal Weibull Weibull

time Actud Trace | Log-normal Pareto Log-normal Pareto Log-normal Pareto
1 120s 114 86 83 89 80 98 94
300s 133 93 92 89 80 100 96
600s 133 101 98 92 85 114 102
2 120s 82 71 70 63 65 75 69
300s 89 71 70 63 65 77 73
600s 92 73 71 64 65 77 74
3 120s 98 73 71 64 69 81 88
300s 113 86 80 64 69 86 88
600s 139 86 80 77 76 97 94

Table 5.5 — Peak Number of Spoofed Connections, Predicted vs. Actual
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Table 5.5 tabulates the predicted vs. actua peak number of HGW connections for
dl sx modds. Figure 5.6 shows the associated prediction error. Weibull/log-normd
model performs marginaly well ontrace 1 and 2. All others are poor predictors.
Predictions for this metric for trace 3 are inadequate for al models. Thereisastrong

trend toward underestimation of this metric.
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Figure5.7 - Average UDP Packet Delivery Delay, Predicted vs. Actual (sec)
Interarrival and Response size distributions
Trace | Future | Actua Trace | Exponential | Exponential | Log-normal | Log-normal Weibull Weibull
time Actud Trace | Log-normal Pareto Log-normal Pareto Log-normal Pareto
1 120s 0.312435 0.311659 0.307931 0.306541 0.304823 0.312294 0.307949
300s 0.314506 0.312997 0.308146 0.306415 0.304359 0.312893 0.308166
600s 0.315622 0.313259 0.309476 0.306783 0.304783 0.313267 0.309404
2 120s 0.309643 0.310292 0.306581 0.305746 0.303934 0.309905 0.30656
300s 0.310775 0.309921 0.307054 0.305304 0.3037 0.309892 0.307153
600s 0.312754 0.31014 0.307397 0.305026 0.304025 0.309975 0.307272
3 120s 0.361799 0.3432 0.33742 0.32226 0.330512 0.37181 0.363305
300s 0.361799 0.375965 0.365902 0.362493 0.332846 0.396664 0.363305
600s 0.414312 0.405213 0.365902 0.462799 0.362113 0.420792 0.369727

Table 5.6 — Average UDP Packet Delivery Delay, Predicted vs. Actual (sec)
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Table 5.6 tabulates the predicted vs. actud UDP packet ddivery dday for dl sx
models. Figure 5.7 shows the associated prediction error. The exponentia/log-norma
and Weibull/log-norma modds again perform best on dl threetraces. All others are
poor predictors. Aswith mogt of the other metrics, there isa generd trend toward
underestimation of the metric.

These results are quite interesting, though in some respects difficult to interpret.
Two models seem to generdly do the best job: the Weibull interarrivals with log- normal
response sizes and the exponentia interarrivals with log-normal response sizes. The
performance of the first modd is not surprising, Since we have aready established that
the Weibull and log-normal digtributions are the ones best fitting interarrivals and
responses, respectively.

Wheat is more surprising is that the exponentia/log-norma mode performs amost
aswdll asthe Weibull/log-norma one. Thisimpliesthat for accurate performance
prediction, a good response size digribution fit is more critica than the interarriva
digtribution fit. In our studies we have done performance prediction through
amulation—making any digtribution equaly easy to use. However, if performance
predictions are to be obtained through anaytical means the use of exponentia
interarrivals may smplify the andyss and therefore the smplicity/accuracy tradeoff is
one worth consdering.

For al metrics the log-normd interarriva digtribution performs more poorly.
Thisislikely due, at least in part, to the fact that the heavier-tailed log-normd dightly

underestimates connection arrivd intengity (which isvisblein the error graphs).
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Log-norma appears to generally be the preferable response size distribution
match. But on one metric, the maximum SGW queue length, it is outperformed by the
Pareto, for al interarriva distribution pairings, on two of the three traces.

There appears to be a genera trend among the models of underestimating the
metrics. Even the best fitting models, the exponentia/log-norma and Weibull/log-
norma combinations, generdly give low predictions of the performance parameters we
chose. Thiscould in part be due to an increase in traffic intengity over the succeeding 10
minutes in the actua traces (thisis particularly possible for Trace 3, where, upon review,
the mean interarrival time of the succeeding 10 minutes was naoticeably smaler than for
the 30 minutes to which the models were fit). But it so gppears that even our best
modds smply fail to fully capture the burdtiness of HSTN traffic. Thisconclusonis
supported by the fact that performance prediction is worse for the “peak” or maximum
metrics than for the average metrics.

Mogt difficult to ascertain ishow quickly the moddls' fitnesses grow stale. There
does appear to be sufficient evidence to conclude that thisis occurring a time scaes as
andl as5to 10 minutes. It ismost evident in the averaging atigtics, because the
unavoidable error in predicting maxima over time scales as amdl as 2 minutes tends to

mask the phenomenon in the “pesk” type Statistics.
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Chapter 6 - Conclusions

6.1 Conclusions

Performance prediction viafitted traffic moddsis atricky task, magnified in
difficulty in HSTNs by the requirement of connection level models. Capturing the
burdtiness, or self-amilarity, of traffic is essentid for accurate performance prediction.
Heavy-talled digtributions, like the Welbull, log-normal and Pareto (particularly when
gpplied to response szes), do provide a higher degree of burstiness, but ill fal short for
some metrics.

It also gppears that model s—once fit—grow sae rdatively quickly. This
presents a predicament. To accuratdy fit amodd we must include a sufficient number of
samples. Inthe case of our DirecPCO traces, connections arrived at arate on the order
of 1,000 per minute. Given that heavy-tailed data (such as the download szes) requires
an especidly large number of samplesto provide an accurate fit, 10 minutes would seem
to be the minimum amount of time over which to fit our model. However our results
show that the underlying traffic process may barely be sationary over this amount of

time Thisisan empiricd manifestation of the fact that no theory for non-linear
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prediction has been developed for the statistical models (except for the case of Gaussan
sdf-smilar processes).
6.2  FutureWork

Thisthesis did not address andytica performance prediction, choosing instead to
predict performance by smulation. A smilar sudy of the performance predictive utility
of these traffic models, but featuring anaytical results, would be equdly enlightening.

Other interesting expansons on the work presented here would include varying
the amount of “pagt” time the models arefit to, and further increasing the amount of
“future’ time they are used to predict. This study has only highlighted the limited
lifetime of afit modd.

In addition, it might also be possible to “weight” the trace data so thet the more
recent past figures more prominently in the caculation of modd fits (the idea being to
“ground” our moddsin asgnificant amount of historical data, but il make them

flexible enough to accommodate recent changesin the traffic characteristics).
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