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 ABSTRACT 
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Degree Candidate: Haifeng Xi 

Degree and year: Master of Science, 2000 

Thesis directed by: Professor John S. Baras 
Department of Electrical and Computer Engineering 
 
 

The increasing complexity and importance of communication networks 

have given rise to a steadily high demand for advanced network 

management tools. Network Management in general consists of two 

activities: monitoring and controlling. The monitoring part concerns 

observing and analyzing the status and behavior of the managed networks, 

and is therefore fundamental for network management. Unfortunately the 

existing network monitoring paradigms have some drawbacks that prevent it 

from satisfactory performance. One related problem is that these approaches 

are characterized by high centralization which puts almost all the 

computational burden on the management station.  As a result, a huge 

amount of raw data have to be transferred from network elements to the 

central management station for further processing, causing heavy traffic, 

manager overload and long operations delay. Another issue that becomes 

increasingly noticeable is the absence of a mechanism for dynamic 

extensions to agent functionality.   

In this work we take advantage of some unique features of the Java 

technology and present a framework for distributed and dynamic network 
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monitoring.  Specialized Java objects known as Intelligent Monitoring 

Objects, are delegated to a Java-based Extensible Management Server 

(JEMS), where they carry out encapsulated monitoring functionality upon 

management information collected locally from the underlying network 

device.  We have built a proof-of-concept prototype system using the JEMS 

architecture and validated its effectiveness and flexibility compared with the 

traditional centralized network management systems. 
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Chapter 1   Introduction 
This thesis introduces Java-based Intelligent Network Monitoring, an 

efficient approach to monitoring networked systems using the proposed Java-based 

extensible management server and various intelligent monitoring objects.  

The increasing importance of communication networks has given rise to a 

high demand for advanced network management. A network management system 

handles problems related to the configurability, reliability, efficiency, security and 

accountability of the managed distributed computing environments.  It is concerned 

with monitoring, analysis and control of network behaviors to ensure smooth 

network operations.  Accurate and effective monitoring is fundamental and critical 

for network management, and is the focus of our work presented in this thesis.   

In the mainstream network monitoring system, operational data are collected 

by hardwired instrumentation in network elements and stored in Management 

Information Bases (MIBs).  For example, the MIB in an ATM switch can include 

predefined counters and gauges about various traffic statistics for virtual circuits, 

virtual paths and switch ports.   This operational data is gathered, usually remotely 

over a network, by a central Network Management Station (NMS) using a network 

management protocol.  The NMS presents the data to operations staff who are 

responsible for monitoring, analyzing and controlling the network.  This centralized 

and static management paradigm does not scale for the size and complexity of 

emerging heterogeneous broadband networks, neither does it adapt to unforeseen 

management requirements. Therefore, new technologies are needed to decentralize 
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management functions in a dynamic way. 

Intelligent monitoring is the conception brought forward in this thesis to 

address the aforementioned problems.  Management applications distribute or 

delegate monitoring objects to Java-based extensible management servers (JEMS) 

running at network elements.  These objects will automate the monitoring and 

analysis of corresponding network devices.  For example, a delegated object can 

monitor a MIB variable and compare its value against some pre-set thresholds to 

detect potential operations problems.  Monitoring intelligence and responsibilities 

can thus be decentralized.  Furthermore, when creating and manipulating a delegated 

object, the JEMS takes advantage of Java’s dynamic class loading feature to 

download code over the network, which results in a highly adaptable monitoring 

server structure whose functionality can be dynamically extended.  

Chapter Organization 

Section 1.1 outlines network management/monitoring, and limitations of current 

network monitoring systems. 

Section 1.2 summarizes the contributions of this thesis. 

Section 1.3 briefly introduces intelligent network monitoring and its benefits. 

Section 1.4 looks into several research efforts that related to our work. 

Section 1.5 presents a roadmap of the remaining chapters in this thesis.  
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1.1  Network Management and Monitoring 

Network management systems handle problems related to the configurability, 

reliability, efficiency, security and accountability of the managed distributed 

computing environments, and are concerned with monitoring and control of network 

behaviors to ensure smooth network operations.  The network monitoring portion of 

network management is concerned with observing and analyzing the status and 

behavior of the managed network devices.  

1.1.1  Components of Network Management System 

A conventional network management system consists of two classes of 

components: managers and element agents.  Figure 1 depicts a diagram of the 

Management  
    Station 

GUI 

manager 

. . .  . . . 

LAN 

element agents 

Network 
Elements 

Figure 1:  Components of typical Network Management Systems 
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organization of a typical network management system.  Applications in the central 

management station assume the manager role, and execute with a GUI for human 

managers to perform certain monitoring functions.  Element agents are server 

processes running in each involved manageable network entity.  These agents collect 

device data, stores them in the Management Information Bases (MIBs), and support 

a management protocol, e.g., Simple Network Management Protocol (SNMP) [1,2].  

Manager applications retrieve data from element agents by sending corresponding 

requests over the management protocol. 

For example, the SNMP agent in an ATM switch collects information about 

the signaling protocol, the traffic status of virtual circuits etc. and stores it in a 

predefined MIB.  A management application retrieves this data using the SNMP 

GetRequest command, processes and analyzes them, and then displays the result 

graphically. 

1.1.2  Limitations of Current Systems 

Current network monitoring/management systems favor a centralized 

framework where most of the monitoring intelligence and computation burdens are 

allocated to the manager applications executing at the central station.  This 

establishes several barriers to effective network monitoring, especially for emerging 

high-speed networks.  Several major problems are outlined in the following 

paragraphs.   

Given the centralized allocation of management responsibilities, all the 

monitoring interactions and processing have to go through the management station, 
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which becomes the bottleneck and single point of failure.  This leads to a system that 

hardly scales up to large and complex networks.   

Since manager applications can only interact with the network elements 

through low-level general-purpose interfaces, any non-trivial monitoring task 

requires huge volume of “raw” SNMP variables being transferred to the management 

station, which is known as the micro-management problem.  Micro-management 

results in high communication overheads, and significant operation delays if the 

managed network is wireless or satellite-based. 

The set of services offered by the element agents is fixed, strictly defined by 

standards, and is accessible through interfaces that are statically defined and 

implemented.  This service set cannot be modified or extended on the fly without the 

recompilation, reinstallation, and reinstantiation of the server process.  This rigid and 

static agent structure hinders the development of effective monitoring systems in two 

ways: (1) improvement of the agent usually involves high-cost activities and may 

harm system availability; (2) it does not provide any mechanism to differentiate 

between and take advantage of the capabilities of different types of devices. 

1.2  Contributions 

The major contributions presented in this thesis include: 

Java-based Extensible Management Server (JEMS).  A model that supports 

intelligent, i.e., distributed and dynamic, network monitoring.  JEMS runs as a server 

process in the managed network element and consists of: (1) the Remote Delegation 

Interface (RDI) through which management applications can remotely delegate Java 
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objects, exchange information with these objects and control their execution; (2) a 

runtime environment that implements the RDI.   

Intelligent Monitoring Objects (IMOs).  Specialized Java objects that perform 

network monitoring functions.  IMOs are distributed to JEMS at the network devices 

where the managed resources are located.  We have categorized common monitoring 

functions and encapsulated them into corresponding IMOs.  IMOs are implemented 

in such a way that they work closely with the underlying JEMS to provide for an 

intelligent monitoring system. 

1.3  Intelligent Network Monitoring 

The approach of intelligent network monitoring is to dynamically distribute 

monitoring functionality, in the form of IMOs, to JEMS at the devices where the 

managed resources are located.  Specifically speaking, intelligent monitoring means 

two things: 

First, manager applications can distribute monitoring intelligence to the 

managed network element.  Instead of bringing data from the devices to the 

central station, parts of the monitoring applications themselves, encapsulated in 

IMOs 
 remote 
manager 

R
D

I 

J E M S 

 managed   
   device 

Figure 2:  IMOs delegated to JEMS   
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various IMOs, are actually running in the managed devices (Figure 2).  The manager 

host and the network as a whole can then be relieved from the bottleneck and the 

micro-management problems.  

Secondly, the network element’s agent functionality can be dynamically 

modified or extended.  Through the remote delegation interface (RDI), manager 

applications can choose to distribute/delete whatever IMOs to/from the device, at 

whatever time they like.  Furthermore, the code of a Java class need not be available 

beforehand to the JEMS when a corresponding object is instantiated upon a 

delegation request from the manager.  JEMS can download class code over the 

network and link it to the runtime system on demand, which makes it truly 

dynamically extensible.     

1.3.1  Advantages over Current Systems 

Intelligent network monitoring allows for dynamic extensions to monitoring 

functionality as the network evolves.  For instance, if a new monitoring requirement 

is identified after the system is up and running, we can create a corresponding IMO 

that encapsulates the functionality and delegate it to the JEMS, without having to 

bring the system offline. 

By recognizing and taking advantage of the difference in resource availability 

of various network devices, manager applications can have flexible and efficient 

usage of these resources.  For devices with a lot of resources (e.g., memory and CPU 

processing power), the manager can delegate large numbers of IMOs to them, 

making full use of local computing to reduce management traffic overhead and 
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delay.  This is a great advantage over traditional static systems, where the size and 

funtionality of network agents are fixed once they start running, and extra device 

resources can not be used to improve the efficiency of network monitoring.  For 

devices with relatively few resources, the manager can always switch back to the 

traditional polling-based paradigm. 

Similarly, remote managers can dynamically adapt to changes in the 

availability of network and computing resources.  For example, when the network is 

overloaded, manager applications can encapsulate related monitoring functions in 

some IMOs that are distributed to the JEMS and analyze data locally at the devices, 

relieving the network from the traffic overloading that frequent polling would 

otherwise have worsened.   

1.4  Related Work 

There are several research efforts that are related to our work in one way or 

another.  We will try to identify the strength and weakness of each of them and to 

spell out their distinctions from our system. 

1.4.1  Management by Delegation 

Management by Delegation (MbD) [19] is one of the earliest efforts towards 

decentralization and increased flexibility of management functionality, and is 

probably the most successful one.  Its management architecture includes a 

management protocol, device agents, and an elastic process run-time support on each 

device.  Instead of exchanging basic client-server messages, the management station 

can specify a task by packing into a program a set of agent commands and sending it 
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to the devices involved, thus delegating to them the actual execution of the task.  

Such execution is completely asynchronous, enabling the management station to 

perform other tasks in the mean time and introducing a higher degree of parallelism 

in the whole management architecture.  MbD greatly influenced later research and 

exploration along this direction [12,13,14].    

However, there are two disadvantages with MbD that probably have affected 

its application: (1) Since the work was done before 1996, when the Java platform 

was not so widely recognized and deployed by industry as it is today, the proof-of-

concept MbD system was implemented with a proprietary server environment 

written in the C programming language – we hardly see any working systems that 

are built upon this proprietary environment.  (2) The MbD server environment is so 

comprehensive and complicated that it can turn out to be an “overkill” in most real-

world applications. 

Still, we must give credit to MbD because it can be considered a precursor of 

the ideas discussed here.  The major difference is that we have adopted the standard 

Java platform and, from the very beginning, aimed to build a portable, simple, yet 

powerful framework that can be easily understood, implemented and enhanced.  

Because of the wide installation base and intrinsic portability of the Java platform, 

we expect to see quick adoption of our system (or a derived version of it) in some 

relevant real-world applications. 

1.4.2  Mobile Agents 

Using mobile agents in decentralized and intelligent network management 
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[13] is a great leap from client-server based management pattern.  The proposal is 

that an intelligent agent containing management code can traverse in the managed 

network from node to node, autonomously retaining the state of its computation 

whenever it moved to a different node. 

There are two potential problems with this method: (1) It proposed a change 

to network management paradigm that is so radical that even the authors themselves 

realized that “further validation with quantitative data” would be necessary to prove 

its effectiveness. (2) Their proposed agents were written in specialized agent-

oriented scripting languages such as Telescript [22] and Agent Tcl [23], which are 

not available or supported on many platforms, posing serious portability problems. 

In contrast, our system still retains a client-server architecture, and assumes a 

management server in each device concerned.  Therefore, while IMOs provide 

similar intelligent monitoring functions as their mobile agent counterparts, their 

behaviors are much easier to understand and anticipate, making them more 

straightforward to integrate and co-exist with traditional systems. 

1.4.3  Web-based Network Management 

We are by no means the first people thinking of using Java technology in 

network management [14,15,16].  But so far we have only seen efforts focused on 

so-called Web-based Network Management, which addresses the problem of 

integrating manager applications with the Web using Java applets.  This is a well-

justified idea that attempts to provide a cost effective way of providing uniform 

management services to managers and potential customers through such common 
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client-side interface as Web browsers. 

Instead, we have used Java for a totally different purpose, which is not to 

facilitate client-side presentation or Web integration, but to use Java’s native support 

for distributed computing, remote class downloading and object serialization to 

implement dynamic and intelligent network monitoring.  However, it makes perfect 

sense to consider including Web-based front-ends into our future enhanced systems.   

1.5  Thesis Roadmap 

We will begin each chapter with a brief discussion of the main challenges and 

solutions presented in the chapter, followed by an outline of the organization of 

sections in the chapter. 

Chapter 2 introduces network management and network monitoring.  It 

illustrates the structure of conventional systems and points out its limitations.  It also 

summarizes the most commonly used monitoring functions. 

Chapter 3 presents the JEMS architecture.  It defines the RDI, explains why 

Java is chosen as the foundation technology, and then examines the design and 

implementation of the JEMS. 

Chapter 4 describes intelligent monitoring objects.  It explains the design of 

different types of objects,  and shows, via examples, how they work within the JEMS 

framework to provide for an intelligent monitoring system. 

Chapter 5 evaluates intelligent monitoring and demonstrates its merits.  It 

contrasts intelligent monitoring with centralized monitoring approaches within some 

simple but typical scenarios. 
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Chapter 6 draws conclusions and points out several future work directions.  
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Chapter 2   Network Monitoring 

The main goal of network management systems is to ensure the quality of 

services (QoS) that the network provides.  To achieve this, network managers must 

monitor and control the connected elements in the network.   

The network monitoring portion of network management is concerned with 

observing and analyzing the status and behavior of the network devices that make up 

the configuration to be managed.  Accurate and effective monitoring is therefore 

fundamental and critical for the implementation of various network management 

functions. 

Chapter Organization 

Section 2.1 outlines the architecture of current network management systems. 

Section 2.2 examines SNMP, the dominating network management protocol. 

Section 2.3 introduces network management functions. 

Section 2.4 summarizes network monitoring functional requirements. 
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2.1  Network Management Systems Architecture 

Figure 1 depicted the architecture of a conventional network management 

system.  In a managed network element (e.g. router, switch or host), an agent, which 

is typically a small-footprint program running as a daemon process, collects device 

information in a predefined manner and stores them in the MIB.  Management 

applications execute on some dedicated workstations located in the network 

operation center (NOC) and interface with human operators.  These applications 

perform specific management functions and assume a manager role.  They use a 

management protocol to periodically poll the agents in the managed network 

devices, requesting data of interest.  Information retrieved from agents is some raw 

data (e.g., counters or gauges) and managers always have to perform certain amount 

of aggregating computation, for instance, figuring out min/max values, averages, 

variances etc., before any meaningful presentations can be forwarded to the NOC 

operators.  

By bringing all the low-level data to the management stations, where they are 

further processed, traditional network management systems assume a centralized 

client-server paradigm, which poses some serious limitations that were presented in 

Section 1.1.2. 

2.2  Simple Network Management Protocol 

The Simple Network Management Protocol (SNMP) [1,2] is a prevailing 

network management protocol designed and standardized by the IETF to provide for 

remote monitoring of IP-based networked devices.  It is the most widely used 
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protocol in current network management systems.  Five types of protocol data units 

(PDUs) are defined for SNMP: three of them deal with reading data (GetRequest, 

GetNextRequest and GetResponse), one deals with setting data (SetRequest), and the 

last one, Trap, is used for monitoring network events such as device start-ups or 

shut-downs.  In addition to the protocol itself, there are three other important 

components in an SNMP-based system: MIB, agent and manager.   

Management Information Base (MIB) represents the information model of 

the managed device defined as a collection of variables, each of which has a name 

and syntax.  For example, the Internet standard RFC1213 [18] defines the MIB for IP 

host management.  In RFC1213, for instance, the variable that keeps record of the 

number of IP packets received is identified by the string name 

iso.org.dod.internet.mgmt.mib-2.ip.ipInReceives, and has the syntax as a Counter.  

Managers should have access to the definition files of the MIBs in those element 

agents, so that they know what data are available from the agents.  Instantiated MIBs 

are organized as static trees with variable values stored at tree leaves.  To retrieve the 

value of a specific MIB variable, a GetRequest command needs to provide the 

identity of the variable, which is derived from its name. 

An SNMP agent runs as a server process in the managed network device, 

maintains an instantiation of the corresponding MIB, waits for and responds to 

SNMP PDUs from managers.  Almost all the major internetwork hardware vendors 

provide SNMP agents with their products.  For example, in a UNIX workstation, 

there is usually a daemon process, snmpd, running as the SNMP agent for the host.  



   

   16 

SNMP managers are user applications that perform management functions by 

exchanging SNMP PDUs with SNMP agents in managed network elements.   

Using SNMP to retrieve data from network devices is only the very first step 

to network management.  In this sense, “SNMP” is quite a misleading name since the 

protocol itself supports nothing more than remote access to primitive device 

information.  It is based on the functional level processing of such primitive 

information in the central management stations that the core of a network 

management system is built up. 

2.3  Network Management Functions 

There are various functional level requirements of network management.  

The most famous and frequently cited categorization is those five functional areas 

defined by the ISO, known as configuration, fault, performance, security and 

accounting management [1,20].   

Among these five areas, fault and performance management are of the 

greatest interest to us, because they address the problems of system availability and 

QoS guarantee of the managed network.  Once the network is initialized,  

configuration management is mainly used as a reconfiguration service by the fault, 

performance and security management to carry out their respective control 

operations.  Security and accounting management are often handled by departments 

other than NOC because they involve a lot of specialized knowledge and procedures, 

such as authentication and encryption (security management), and pricing and billing 

(accounting management). 
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2.3.1  Network Management Functional Areas 

Configuration Management 

Modern communication systems are composed of physical and logical 

subsystems that can be configured to perform many different tasks.  The same 

device, for example, can be configured to act either as a gateway or as an end system 

node, or both.  Once the operator decides how he intends to use the device, he can 

choose to set values for the appropriate set of attributes associated with the device.   

Configuration management is the aspect of network management which 

embodies the functionality to assign that set of attributes to the device.  It concerns 

with initializing a network and gracefully shutting down part or all of it.  It is also 

concerned with maintaining, adding, and updating the relationships among 

components and the status of components themselves during network operations.  

While the network is in operation, configuration management provides the ability to 

reconfigure the network in response to performance evaluation or in support of fault 

correction or security checks. 

Fault Management 

To maintain proper operation of a complex computer network, care must be 

taken so that the system as a whole, and each individual component, is in acceptable 

working order in presence of network faults, abnormal conditions requiring 

management attention to repair.  Fault management is that aspect of network 

management which attends to these concerns.   

The first and essential requirement of fault management is to detect the 
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existence of a potential fault as quickly as possible, which demands continuous 

monitoring (i.e., observation and analysis) of relevant network operation statistics.  

Once a potential fault is detected, a corresponding alarm is fired, which 

triggers the fault management module to identify or isolate the fault, i.e., to find out 

the root cause of the abnormality, if any.  This process can be very difficult and often 

involves correlation of multiple alarms and even various tests, such as connectivity 

test, protocol integrity test and so on.   

The result of fault identification could be: (1) no fault really exists; (2) the so-

called fault is actually a performance degradation, and therefore should be further 

handled by performance management; or (3) there really is a fault and its root cause 

has been identified.  In the last case, fault management will try to correct the fault.  It 

can automatically reconfigure or modify the network in such a way that the impact 

on performance without the failed component(s) is minimized.  Or it will notify the 

operator to repair or replace the failed components to restore the network to its initial 

state. 

Performance Management 

Whereas fault management is concerned with whether all or part of the 

network is working, performance management is concerned with how well the 

network or its parts are working, or the quality and effectiveness of network 

communications. 

Similar to fault management, performance management comprises two broad 

functional categories – network monitoring and network control.  Monitoring is the 
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process of tracking and analyzing activities on the network.  The controlling part 

enables performance management to make adjustments or reconfiguration to 

improve network performance.  Some of the performance issues of concern are: 

Is the link capacity under- or over-utilized? 

Has throughput been reduced to an unacceptable level? 

Are there any bottlenecks? 

To deal with these concerns, the network operator must: (1) select a set of 

resource attributes to be monitored in order to assess performance levels, for 

example, utilization, throughput, rejection ratio of connection requests etc.; (2) 

associate appropriate metrics and values with relevant attributes as references of 

different levels of performance, for instance, one or more threshold values could be 

associated with an attribute; (3) continuously update the values of those indicator 

attributes and check them against the reference values.  If the value of an attribute 

crosses a pre-defined threshold, a performance alarm could be fired, so that the 

performance management may step in and take corrective or preventive actions to 

keep the network working at an acceptable performance level.  For example, if a link 

is or will be over-utilized, some traffic can then be re-routed through other switch 

ports for network traffic balancing.     

Security Management 

Security management is responsible for providing all the security related 

features such as authorized access, authentication and encryption.  It maintains and 

distributes passwords and other authorization or access-control information, and 
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generates, distributes and manages encryption keys.  Security management is also 

concerned with monitoring and controlling access to computer networks and the 

network management information obtained from network nodes.   

Accounting Management 

 This functional area is responsible for keeping a record of the usage of 

network resources by the network users.  Each user’s usage must be monitored and 

recorded, and the billing information updated accordingly.  Billing information 

should be sent to the customers regularly.   

2.3.2  Network Monitoring and Control 

Orthogonal to the partition of network management into five functional areas, 

we can divide network management into two logical components, i.e., network 

monitoring and network control.  Actually, each of the five functional areas 

examined in the last section can be roughly divided into these two portions. 

Network Monitoring 

Network monitoring further involves two steps: observation and analysis: 

Observation.  The process of maintaining up-to-date values of a set of 

indicators, which are some resource properties whose values are used to measure or 

evaluate the working status of a certain aspect of network functionality.  What 

indicators to observe and how to compute their values are the two questions we have 

to answer.   

Analysis.  The process of detecting abnormal or deviating conditions based 

on observations made on the chosen set of indicators.  The problems to address in 
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this part are: how to detect abnormality (usually by comparing the indicators’ values 

with some pre-specified “norms”), and how to deal with it once detected (generation 

of alarms is a common solution).  

For example, security monitoring concerns observing and analyzing user 

access to computer networks in order to detect erroneous, illegal or malicious user 

operations that might compromise network security.  Performance monitoring 

concerns observing and analyzing performance-related indicators, such as utility, 

throughput, availability etc., trying to detect performance degradations.  Fault 

monitoring concerns observing and analyzing fault-related indicators (a.k.a. 

symptoms) in an effort to detect potential faults.    

Network Control 

Network control completes the other half of the management cycle by 

providing managers with the ability to modify or reconfigure certain parts of the 

network in order to restore it back to an acceptable working level when some 

abnormalities are detected and reported by network monitoring.  Note that, because 

of the existence of uncertainty in observation, the reported abnormality has to be 

identified before any control actions can be taken.  This identification process often 

involves complex global analyzing techniques such as event correlation [21], which 

is not considered part of network monitoring in this thesis.   

2.4  Network Monitoring Functions 

In this section, we look into details of network monitoring functions and try 

to answer those questions raised in the last section.   
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Note that our discussion is based on performance and fault monitoring only, 

because they comprise a significant portion of overall network monitoring activities 

and are where network QoS problems are addressed.  Also note that the boundary 

between performance indicators and fault symptoms is being constantly blurred.  For 

example, an unusually high packet retransmission rate could either be a performance 

indicator if it is caused by link over-utilization, or a fault symptom if it is due to an 

out-of-sync physical link that has a high bit error rate.  Therefore it is not unusual to 

see a trend in the network management community to treat performance problems as 

“soft” faults.  In this thesis, unless otherwise specified, network monitoring means 

the broader sense “performance-fault monitoring.” 

2.4.1  Network Observation 

This section answers the questions asked in Section 2.3.2 about network 

observation, i.e., what types of indicators to observe, and how their values are 

computed. 

Indicator Types 

Most indicators that are useful for network monitoring fall into two 

categories: rate-oriented and ratio-oriented.  Rate-oriented indicators reflect the 

varying speed of some underlying network attributes.  A ratio-oriented indicator 

represents the proportional relationship between two quantities, usually in terms of 

percentage.  Because of the inherent statistical nature of these indicators, they are 

sometimes further processed to generate some corresponding statistics, based on 

which analysis is finally carried out.  Table 1 gives a breakdown of major indicators 



   

   23 

in each category, and the most commonly used statistics. 

Rate-Oriented Indicators 
Throughput The rate (count per unit time) at which some network events 

occurs, e.g., packet transfers, transactions. 
Error Rate The rate at which some errors occur, e.g., retransmission.  

Ratio-Oriented Indicators 
Utilization The percentage of the theoretical capacity of a resource (e.g., 

transmission line) that is being used. 
Availability The percentage of time that a network system, a component, or a 

software module is available for a user. 
Accuracy The percentage of time that no errors occur in the transmission 

and delivery of information. 
Indicator Statistics 

Average The average of an indicator over a specified sample size; various 
averaging methods could be used, e.g., smoothing average. 

Variance The variance of an indicator over a specified sample size. 
Covariance The covariance of two indicators over a given sample size. 

Table 1:  Indicator and Statistic Types 

Note that, for fault monitoring, some other special indicators are very useful 

and must be monitored, among them are those SNMP traps representing the up/down 

status of system hardware such as network interface cards (NICs), communication 

links, switch ports and so on. 

Indicator/Statistics Computation 

In SNMP MIBs, there are only such primitive data types as counter, gauge 

and time ticker.  The values of indicators and their statistics have to be computed 

based on these raw data.  

(1)  Rate-Oriented Indicators. 

tvariable  SNMPofvaluerate ∆∆ /) (=  

To calculate the value of a specific rate-oriented indicator, therefore, the 

relevant SNMP variable and the time interval t∆  have to be specified.  For example, 
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to calculate the error rate of received IP packets, we need to do such a calculation: 

tceivesReipInrateerror ∆∆ /)( =  

The value of the SNMP variable ipInReceives (which is a counter) needs to 

be polled at the beginning and the end of the time interval respectively to obtain the 

difference )( ceivesReipIn∆ .  To make the value up-to-date, the computation is 

performed every t∆  seconds.  The precision of this error rate depends on the length 

of t∆  and how frequently the SNMP-agent updates the value of ipInReceives. 

(2)  Ratio-Oriented Indicators. 

)# ()2# ()1# (
)# (

kvaluevaluevalue
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ratio
∆∆∆

∆
+++
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To calculate the value of a ratio-oriented indicator, k SNMP variables and a 

computation cycle t∆  have to be specified.  For example, to calculate the call 

admission ratio (a form of availability) for a virtual circuit in the Fore ATM switch, 

during a time interval of t∆ , the following formula is used: 

)()()(
)(

resCallsFailu2931qRejectionsq2931CallssCompletionq2931Calls
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Each of the three SNMP counter variables involved (defined in Fore-Switch-

MIB) has to be polled twice, once at the beginning, the other at the end of the 

computation cycle.  The ratio value is updated every t∆  seconds.  

(3)  Indicator Statistics.   

To calculate a statistic from an indicator, we need to have the sample size S, 

which is usually given by: tTS ∆∆ /=  (where T∆  is the sampling period, and t∆  is 

the updating cycle of the indicator value).  For example, if we want to obtain the 
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average value of the call admission ratio during a sampling period of T∆ , then we 

need to do the following computation: 









×= ∑

=

S

i
iratioadmissioncall

S
average

1

__
1

      

2.4.2  Network Analysis 

Abnormality Detection 

Abnormality detection is usually accomplished by comparing the values of 

indicators or their statistics to some pre-specified normal values.  The simplest form 

of normal values are thresholds.  When a threshold is crossed (from below or from 

above, as applied to different situations), an abnormal condition is considered to 

have occurred or to be occurring.  More complex norms can be a set of values that 

comprise a pattern.  When the degree to which the indicator/statistics values match 

this pattern has increased a predefined threshold, an abnormal condition is supposed 

to be there.   

Those normal values are usually obtained beforehand through learning 

processes, which comprise a big research area in network management.  Actually, 

one of the most challenging and controversial problems in network management is 

how to correctly interpret the meaning of those many indicators.  This is not the 

major concern of this thesis, though. 

Abnormality Reporting 

Once a network abnormality is detected, a corresponding alarm is generated 

and sent to the network control module, where further (global) analysis and control 
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actions are taken.  Generally, an alarm contains such information as the time when it 

was created, the name of the alarm, the condition under which it was fired and so on. 
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Chapter 3   Java-based Extensible Management Server  

In this thesis, we propose to build intelligent network monitoring systems to 

address some of the problems existing in current systems.  As is suggested by our 

work, management applications distribute or delegate Intelligent Monitoring Objects 

(IMOs) to Java-based Extensible Management Servers (JEMS) running at network 

elements.  JEMS is actually a Java-based element agent whose functionality can be 

extended by dynamically delegating various IMOs to it.  IMOs are Java objects that 

automate the monitoring of corresponding network devices.  

This chapter and the next chapter discuss the design and implementation of 

the JEMS and IMOs respectively. 

Chapter Organization 

Section 3.1 examines JEMS’s Remote Delegation Interface (RDI). 

Section 3.2 explains why Java is chosen as the platform for JEMS. 

Section 3.3 explores the design and implementation of JEMS. 



   

   28 

3.1  Remote Delegation Interface 

Contrary to an SNMP agent, which has a fixed set of services, JEMS is an 

object-oriented element agent that provides extensible management services.  Such 

extensibility comes from its Remote Delegation Interface (RDI) through which 

manager applications can dynamically delegate, remotely control and communicate 

with Java objects that perform monitoring functions in the managed network device.  

Since these objects are the entities that actually provide the functionality of the 

management server, and they can be dynamically downloaded to and created at the 

network element, we say that the management server is dynamically extensible.   

Section 3.1.1 formally defines RDI in terms of delegation operations, and 

Section 3.1.2 presents a more detailed look at the RDI and how remote managers 

interact with JEMS through the RDI.   

3.1.1  Formal Definition 

An object-oriented process >≡< SCP ,  consists of a code set C and a 

process status set S.  },...,,{ 21 kcccC ≡  is a set of class codes that P can execute, 

where ci represents the code segment for a certain class.  The process status 

},...,,{ 21 moooS ≡  is defined by the set of all the objects in the process.  An object is 

defined by ),( ii
i sco = , where Cc i ∈  is the class code associated with object oi, and 

si is the status of the object, such as the values of its data members and the execution 

state of its associated code ic .  Note that m is usually larger than k.   

The JEMS process PJ  is characterized by two dynamic sets of C and S, which 
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can be modified via remote invocations of a set of delegation operations in the RDI.  

These operations allow manager applications to (1) extend the functionality of JEMS 

by delegating objects to it, (2) remotely control the execution of these objects, and 

(3) communicate with these objects. 

Extensibility Operations 

RDI_create operation incorporates a new object ),( sco =  into >≡< SCPJ , . 

>∪∪<>< }{  },{    ,, oScCoSC a  

RDI_delete operation deletes an object ),( sco =  from PJ. 

>−<>< }{  ,    ,, oSCoSC a  

Control Operations 

RDI_disable operation suspends the functioning of object ),( sco = . 

>∪−<>< )},{(}{  ,    , disabledcoSCSC a  

RDI_enable operation starts or resumes the functioning of object o. 

>∪−<>< )},({}{  ,    , runningcoSCSC a  

Communication Operations 

RDI_set operation changes values of attributes of an object ),( sco = .  

>′∪−<>< )},{(}{  ,    , scoSCSC a  

RDI_get operation returns the value of some object attributes. 

This operation does not change the state of relevant objects. 
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3.1.2  A Closer Look  

RDI operations are summarized in Table 2 and illustrated in Figure 3: 

RDI Operations  

RDI_create (className, objName); 
RDI_delete (objName); 
RDI_enable (objName); 
RDI_disable (objName); 
RDI_set (objName, attrName, attrValue); 

RDI_get (objName, attrName); 

Table 2:  Remote Delegation Interface 

(1) Creation of an object in the JEMS is requested, using RDI_create 

operation.  className specifies the name of the Java class from which the object is 

to be instantiated.  objName is the name that will be used to identify the new object. 

(2) The code for class className is downloaded over the network (if not 

already locally available) and dynamically linked to the runtime system, and a new 

Manager JEMS 
RDI_create

Bytecode 
Server 

RDI_enable

RDI_disable  

RDI_get 

RDI_set 

RDI_dele te 

Figure 3:  RDI Operations illustrated  
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object is instantiated from the class. 

(3) The manager can suspend and resume the functioning of the object, using 

RDI_disable and RDI_enable. 

(4) The remote manager communicates with an enabled object using RDI_set 

and  RDI_get operations. 

(5) The manager removes an object using RDI_delete operation. 

Note that the entities invoking a RDI operation may be either remote or local 

to the network device where the JEMS is running.  We now examine each of these 

operation categories in more detail. 

Extensibility Operations 

Using RDI_create, a remote manager process requests that an object be 

incorporated into the management server PJ.  The transfer of the class code from the 

bytecode server to the JEMS is performed by a class loader using Java’s dynamic 

class loading feature.  For an RDI_create to succeed, the following actions must be 

completed: 

The class code must be checked to make sure that it is a legal Java class. 

The new object and its code must fit within the resources available in PJ. 

These two actions are performed implicitly by the underlying Java runtime 

environment, without any explicit application intervention.  When an object is 

successfully instantiated, it has a unique name specified by the parameter objName.  

This name identifies the object and is later used to control and communicate with it.   

A remote manager can delete or remove a delegated object using RDI_delete.  
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For an RDI_delete to succeed, the objName parameter must refer to a valid object. 

Control Operations 

Control operations allow remote managers to suspend or resume the 

functioning of an object.  Any managed object, when first instantiated in PJ, is 

inactive before it is enabled by the remote manager through an RDI_enable 

operation.  An inactive or disabled object does not perform its normal monitoring 

function nor is it allowed to communicate with remote managers, until it is turned on 

and becomes an active object via an RDI_enable operation.  An active object can be 

turned off at any time through  an RDI_disable operation. 

Communication Operations 

RDI supports communications between a remote manager and delegated 

objects by allowing the manager to get or set the value of certain object attributes.   

Using the RDI_set operation, the remote manager can change the attribute 

values of specific objects, thus changing the behavior of these objects.  The manager 

doesn’t exist 

disabled active 

create delete 

get
set 

disable 

enable 

delete 

Figure 4:  Life-cycle of a delegated Object 
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process can get back information about delegated objects by retrieving attribute 

values from them using the RDI_get operation.  

Figure 4 is a state diagram that depicts the life-cycle of a delegated object. 

3.2  Why Java? 

Taken individually, the characteristics of Java can be found in a variety of 

software development platforms.  What’s completely new is the manner in which 

Java technology and its runtime environment have combined them to produce a 

flexible and powerful programming system.  Almost no other object-oriented 

programming languages or computing platforms provide all at once the following 

features, which are needed by the JEMS design: 

Cross-platform Compatibility. In the proposed intelligent network monitoring 

framework, JEMSes can be running on UNIX or NT workstations, or IBM 

mainframes.  Manager applications can run on different desktop environments such 

as UNIX, Linux, Windows or MacOS.  Without a common platform, we have to 

write code with the same or similar functions for each of these platforms separately, 

which is very costly, time-consuming and error-prone.  Java’s architecture-neutral 

and portable ability makes it the an ideal platform base for a hybrid system like our 

network monitoring framework. 

Distriubted Computing.  The interactions between manager applications and 

JEMSes require distributed computing support from the programming language.  

Java provides native distributed programming API through Remote Method 

Invocation (RMI).  Compared with other distributed programming platforms such as 
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DCOM or CORBA, Java RMI is the easiest to learn and use.  Later you will see that 

it is very straightforward to implement the RDI with RMI. 

Code on Demand.  The dynamic feature of our framework requires support 

for code-on-demand (CoD) paradigm, i.e., objects in JEMS can download and link 

on-the-fly the code from some class server to perform a given task.  Traditionally, 

CoD is only supported by mobile code languages (MCL), such as Telescript [22] and 

Agent Tcl [23], for mobile agent programming.  With the dynamic class loading and 

linking ability, Java is actually a weak MCL that directly supports CoD. 

Section 3.2.1 gives basic ideas about Java as both a language and a platform, 

and explains how it provides cross-platform compatibility.  Section 3.2.2 introduces 

Java classes and interfaces, which are fundamental concepts repeatedly referred to in 

this thesis.  Section 3.2.3 explains how Java provides distributed computing support 

via RMI, and Section 3.2.4 discusses a most important Java feature – dynamic class 

loading.  

3.2.1  The Language and Platform 

The Java Programming Language 

Java is a high-level programming language that is object-oriented, 

interpreted, architecture-neutral and portable, distributed, dynamic, and secure. Each 

of the preceding buzzwords is explained in The Java Language Environment white 

paper [7].  

Java is unusual in that each Java program is both compiled and interpreted. 

With a compiler, a Java class is translated into an intermediate language called Java 
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bytecodes  the platform-independent codes interpreted by the Java interpreter. You 

can think of Java bytecodes as the machine code instructions for a Java Virtual 

Machine (JVM).  Every Java interpreter is an implementation of the JVM.   

Java bytecodes help make “write once, run anywhere” possible. You can 

compile your Java program into bytecodes on any platform that has a Java compiler. 

The bytecodes can then be run on any implementation of the JVM. For example, the 

same Java program can run on Solaris, Windows NT, and Macintosh.  

The Java Platform 

The Java platform [8] differs from most other platforms in that it is a 

software-only platform that runs on top of other hardware-based platforms.  Most 

other platforms are described as a combination of hardware and operating system.  

The Java platform has two components: the JVM and the Java Application 

Programming Interface (Java API) [9].  JVM is the base for the Java platform and is 

ported onto various hardware-based platforms.  The Java API is a large collection of 

ready-made software components that provide many useful capabilities, such as 

graphical user interface (GUI) widgets.  The Java API is grouped into packages of 

related components. The following figure depicts a Java program, such as an 

application or applet, that is running on the Java platform. As the figure shows, the 

Hardware-based Platform 

Java Virtual Machine 

Java API 

Java Program 

Figure 5:  The Java Platform 
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Java API and Virtual Machine insulates the Java program from hardware 

dependencies.  

As a platform-independent environment, Java can be a bit slower than native 

code. However, smart compilers, well-tuned interpreters, and just-in-time compilers 

can bring Java’s performance close to that of native code without threatening 

portability.  

3.2.2  Classes and Interfaces 

Classes and Objects 

A class is a software construct that defines the data (state) and methods 

(behavior) of the specific concrete objects that are subsequently constructed from 

that class. In Java terminology, a class is built out of members, which are either 

attributes or methods. Attributes are the data for the class. Methods are the sequences 

of statements that operate on the data.  Attributes are normally specific to an object 

 that is, every object constructed from the class definition will have its own copy 

of the attribute.  Such attributes are known as instance variables.  Similarly, methods 

are also normally declared to operate on the instance variables of the class, and are 

thus known as instance methods.  

A class in and of itself is not an object.  A class is like a blueprint that defines 

how an object will look and behave when the object is created or instantiated from 

the specification declared by the class. You obtain concrete objects by instantiating a 

previously defined class. 

Subclasses are the mechanism by which new and enhanced objects can be 
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defined in terms of existing objects. Subclasses enable you to use existing code that 

has already been developed and, much more important, tested, for a more generic 

case. You override the parts of the class you need for your specific behavior. Thus, 

subclasses gain you reuse of existing code  you save on design, development, and 

testing.  Java implements what is known as a single-inheritance model: a new class 

can subclass (extend, in Java terminology) only one other class. 

Java Interfaces 

Interfaces were introduced to Java to enhance Java’s single-inheritance 

model. An interface could be thought of as a pure abstract class. It allows the 

programmer to establish the form for a class: method names, argument lists and 

return types, but no instance variables or implementation code.  An interface says: 

“This is what all classes that implement this particular interface will look like.”  

Thus, any code that uses a particular interface knows what methods might be called 

for that interface, and that’s all.  So interfaces are used to establish protocols between 

classes, they promote flexibility and reusability in code by connecting objects in 

terms of what they can do rather than how they do it. 

A class implements an interface by implementing all the methods contained 

in the interface.  In contrast, inheritance by subclassing passes both a set of methods 

and their implementations from superclass to subclass.  Whereas a class can inherit 

from only one superclass, a class can implement as many interfaces as it chooses to.  

 



   

   38 

Notation  

The Rumbaugh notation [3] is used to depict Java object models throughout 

this thesis.  In the Rumbaugh notation a class is depicted as shown in Figure 6.  The 

top-most rectangle is used for the class name.  The class attributes are represented in 

the middle rectangle and the bottom rectangle is used to show the methods that can 

be called on or by the class.  An inheritance relationship is depicted in the Rumbaugh 

notation as shown in Figure 7. 

3.2.3  Remote Method Invocation 

In distributed object systems, communication between program-level objects 

residing in different address spaces is needed.  In order to match the semantics of 

object invocation, distributed object systems require Remote Method Invocation or 

RMI [10].  In such systems, a local surrogate (stub) object manages the invocation 

class name 

attributes 

methods() 

Figure 6:  Rumbaugh Notation for depicting a Class 

Figure 7:  Rumbaugh Notation for depicting Inheritance 

 child class 1  child class 2 

parent class 
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on a remote object.  The Java language’s RMI system assumes the homogeneous 

environment of the JVM, and the system can therefore take advantage of the Java 

object model whenever possible. 

In order to be a remote object, the definition of the corresponding class is 

required to implement a remote interface.  A remote interface is one that extends the 

interface java.rmi.Remote which is defined in the Java API [9].  RMI treats a remote 

object differently from a local object when the object is passed from one JVM to 

another.  Rather than sending a copy of the implementation object to the receiving 

JVM, RMI passes a remote stub for the remote object.  The stub implements the 

same remote interface as the remote object and acts as its local representative, and 

basically is, to the caller, the remote reference.  

RMI applications are often comprised of two separate programs: a server and 

a client.  A typical server application creates some remote objects, registers them in 

the RMI Registry (a standard Java tool included in Java Developer Kit, a.k.a. JDK), 

and waits for clients to invoke methods on these remote objects.  A client application 

gets references to remote objects in the server from the RMI registry and then 

invokes methods on them.   

Figure 8 depicts an RMI distributed application that uses the Java registry 

service to obtain a reference to a remote object.  The server calls the registry to 

associate or bind a name with a remote object, which results in the creation of a 

corresponding stub object in the registry.  The client looks up the remote object by 

its name in the server’s registry, which causes the stub object to be transferred to the 
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client and the stub class bytecode downloaded from the server over the HTTP 

protocol.  Now the client can invoke methods on the stub, which is responsible for 

carrying out the method call on the remote object. 

3.2.4  Dynamic Class Loading 

The Java language’s portable and interpreted nature produces a highly 

dynamic and dynamically extensible system.  While the Java compiler is strict in its 

compile-time static checking, the language and run-time system are dynamic in their 

linking stages: class bytecodes are loaded and linked only as needed, new code 

modules can be linked in on demand from a variety of sources, even from sources 

across a network, which enables dynamic and transparent updating of applications. 

The default class loader is used by the Java runtime environment to load an 

application class (whose main method is run by using the java command) from local 

class directories specified by CLASSPATH, the environment variable that stores a 

list of directory names. All classes used directly in that class (i.e., classes needed to 

instantiate objects via the new expressions) are subsequently loaded by the default 

RMI client
RMI server 

 HTTP 
 server 

RMI registry

Figure 8:  Remote Method Invocation 

RMI bytecode downloading remote object 
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class loader from the local CLASSPATH whenever they are first referenced. 

Defined by the Java class java.rmi.server.RMIClassLoader is the RMI class 

loader that provides a set of methods for the RMI system to download classes over 

the network, for instance, stub classes associated with remote objects and subclasses 

associated with objects passed as arguments and return values in RMI calls.  

Java programmers can use the default class loader and the RMI class loader 

to mimic Java runtime’s dynamic class loading behavior, which is exactly what we 

have done to implement the class loader in JEMS (see Section 3.3.3).  For a deeper 

and better understanding of the rather complex mechanics of dynamic class loading 

and linking, readers are referred to [10]. 

3.3  The JEMS Architecture 

The architecture of JEMS is depicted in Figure 9:  

Management Information Tree (MIT).  A “container” that holds Java objects 

in a tree structure.  Two kinds of objects are stored in the MIT: (1) IMOs that are 

M I T 
D S P 

R D I 

class loader    MIB 
accessor 

device agent 

bytecode    
  server 

INFOs 

IMOs 

J E M S 

Figure 9:  The JEMS Architecture 
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delegated by remote managers to the JEMS; they perform monitoring functions, i.e., 

observation or analysis, and interact with remote managers via the RDI.  (2) 

INFormation Objects (INFOs) which, as their names suggest, store management 

information in an object-oriented way; they are used by IMOs to implement 

monitoring functions. 

Delegation Service Provider (DSP).  An RMI server object using the MIT 

and the class loader to implement the RDI; it provides the delegation service needed 

by remote managers to delegate, control and communicate with IMOs.   

Class Loader.  An internal Java object used by the DSP to load, either locally 

or from some class server (a.k.a. bytecode server) on the network, those classes that 

are needed to instantiate corresponding delegated objects. 

MIB Accessor.  An internal Java object used by INFOs to exchange low-level 

management information with the local MIB.  In our work, we have implemented an 

SNMP accessor that talks with SNMP agents.  

3.3.1  Management Information Tree 

The management information tree (MIT) is a container object that JEMS 

employs to store and manage objects in a tree structure.  The MIT is instantiated 

from the MInfoTree class (Figure 10), which provides methods to add objects to, 

MInfoTree 

findObject() 
removeObject() 
addObject() 
 

Figure 10:  The MInfoTree Class   
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remove objects from and find objects in the MIT.  Two kinds of objects are store in 

the MIT: INFOs and IMOs, which are respectively instantiated from subclasses of 

the MgmtInfo class and the Monitor class, both of which are derived from the 

superclass MO (Figure 11).   

Object Naming Convention 

Every object in the MIT has a name that uniquely identifies it and implies its 

location in the tree.  The naming structure for INFOs is compatible with that of a 

directory, and the hierarchy chosen is based on containment, i.e., an INFO is named 

in terms of the INFO representing the network resource that contains the resource 

that is represented by the INFO to be named.  For example, if the INFO representing 

an ATM-switch port (say, with gloabal index = 1) has the name system:port.1, then 

the object modeling an incoming virtual path (say, with VPI = 2) in this port will 

have the name system:port.1:inPath.2; and accordingly in the MIT, this virtual path 

object will be stored as one of the child objects of the port object.  The root of the 

MIT is a special dumb object named system. 

Since IMOs don’t represent network resources, there are no similar 

Figure 11:  Inheritance Tree of Managed Objects 
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hierarchies for their organization, therefore we have made a decision to contain them 

directly under the MIT root.  For instance, an IMO that computes a ratio can have 

such a name as system:ratio#3.  The bottom line here is, any consistent scheme that 

guarantees naming uniqueness should be acceptable. 

The MO Class 

Representing network management information requires modeling those 

aspects that are of interest to network management purpose.  The result of this 

abstraction in an object-oriented context is a managed object class (MO) consisting 

of a set of attributes and methods.   

Managed objects use a hashtable attributes to store the list of properties that 

are of interest to management purpose.  Each such property is represented by an 

attribute object instantiated from the Attribute class (Figure 12).  Any attribute object 

has a name and a value, and the name is used by the managed object as the key to 

index the attribute in the hashtable.  The flag readOnly, if set to true, prevents the 

value of the attribute from being modified once initialized.  

Each managed object has a unique name that specifies its identity and implies 

Figure 12:  The Attribute Class 
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its location in the tree structure.  This name is given when the object is initially 

created and remains immutable throughout its lifetime.  “enabled” is a flag variable 

used to control and indicate whether the the managed object is activated or not. 

MO has two very important subclasses: MgmtInfo and Monitor, which 

represent physical/logical network resources and network monitoring functions 

respectively.   

Before looking into details of these two classes, we would like to point out 

that managed object classes are formally specified using the Guidelines for the 

Definition of Managed Objects (GDMO) [1], which is an object-oriented information 

specification language with management orientation.  However, since GDMO 

definitions are text files that are difficult to read and interpret, we have taken 

advantage of Rumbaugh notation to visualize class specifications instead of bringing 

out GDMO files directly, and will continue doing so throughout the thesis.  It is also 

relieving to know that there have been successful research efforts to translate GDMO 

definitions to Java objects [6], which provides automated tools to help with Java 

implementation of GDMO-specified MOs. 

The MgmtInfo Class 

All the INFOs are instantiated from proper subclasses of the MgmtInfo class, 

an object-oriented modeling of network management information.  The values of 

interesting MIB variables are obtained through the MIB accessor and represented by 

corresponding attributes in a certain INFO.  For example, for every incoming virtual 

path in any active port of a Fore ATM switch, the SNMP agent keeps track of the 
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values of a collection of MIB counter variables such as pathUsedBandwidth, 

pathCells, pathUptime, and pathRejectedCells, just to name a few.  Therefore, an 

INFO that models this virtual path will have in its attribute hashtable a list of 

attribute objects that correspond to these MIB variables.  These attributes are added 

to the hashtable by invoking the addAttr method in the INFO’s constructor function: 

// inheritance from MgmtInfo 
class InVirtualPath extends  MgmtInfo { 

// constructor 
InVirtualPath (String name) { 

addAttr( new AttrInt(“pathUsedBandwidth”) ); 
addAttr( new AttrInt(“pathCells”) ); 
addAttr( new AttrInt(“pathRejectedCells”) ); 
. . . 
// assign the name to this object 
this.name = name; 

} 
. . . 

} 
 
Therefore, creation of an incoming-virtual-path INFO looks like this: 

InVirtualPath p2 = new InVirtualPath(“system:port.1:inPath.2”); 
mit.addObject( p2.getName(), p2 ); 
 
The first Java statement instantiates a new INFO of the type InVirtualPath 

(p2) and gives it a unique name system:port.1:inPath.2.  The second statement inserts 

p2 into the MIT at the desired location implied by its name. 

All the INFOs of interest to network monitoring are instantiated and added to 

the MIT automatically when the JEMS starts up; they use the MIB accessor to 

periodically retrieve data from the underlying device agent, e.g., an SNMP agent, 

and use the acquired data to update the values of their attributes.   
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The Monitor Class 

IMOs are instantiated from corresponding subclasses of the Monitor class.  

They are delegated to the JEMS by remote manager applications, and perform 

network monitoring functions by processing management information retrieved 

locally from relevant INFOs and/or other IMOs.  Please refer to Chapter 4 for a 

dedicated discussion of the Monitor class and various IMOs instantiated from it. 

3.3.2  Delegation Service Provider 

The Delegation Service Provider (DSP) is an RMI server object instantiated 

from the DSProvider class, an implementation of the Java remote interface IfRDI 

which is actually the RDI specified in the Java language.  The DSProvider class 

implements the IfRDI methods (or RDI operations) as follows: 

void create(String className, String objName, Hashtable initParams) 

The pseudo-code for this method looks like the following: 

if (mit.findObject(objName) == null) { 
Class c = GenericLoader.loadClass(className); 
Monitor obj = (Monitor) ( c.newInstance() ); 
obj.setName(objName); 
obj.initialize(initParams); 
mit.addObject(obj); 

} 
 
It first checks whether the IMO named objName already exists in the MIT; if 

not, it uses the class loader to load the bytecode of the associated class specified by 

the argument className, instantiates an object from this class, sets the object’s name 

to objName, further initializes the IMO, and then adds it into the MIT. 
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void delete(String objName) 

This method removes the IMO objName from the MIT: 

MO obj = mit.findObject(objName); 
if (obj != null) { mit.removeObject(obj); } 
 

void enable(String objName) 

It enables the IMO objName by setting its flag variable enabled to true.  By 

doing so, the object’s functions are effectively turned on, since the communication 

operations, get and set, will first consult this variable to make sure that it is set to true 

before proceeding to accomplish their perspective tasks: 

MO obj = mit.findObject(objName); 
if (obj != null) { obj.setEnabled(true); } 
 

void disable(String objName) 

It disables the IMO objName by setting its flag variable enabled to false. 

MO obj = mit.findObject(objName); 
if (obj != null) { obj.setEnabled(false); } 
 

Hashtable get(String objName, String namePattern) 

This method finds, in the IMO named “objName,” all the attributes whose 

names match the pattern specified in namePattern, and returns a hashtable of these 

attributes indexed by their names.  The remote manager can then use the methods in 

the attributes themselves to get their values.  Two wildcard characters, ‘*’ and ‘?’, 

could be used in the name pattern.  ‘*’ matches any number and combination of 

characters that can be part of a valid attribute name; while ‘?’ can match any single 

character.  For instance, ‘path*’, ‘*Cell*’, ‘path????Count’ and ‘pathCellCount’ are 

all valid name patterns. 
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void set(String objName, Hashtable attrValues) 

This method tries to set the values of some attributes in the IMO objName.  

The hashtable attrValues stores a list of values indexed by the names of the attributes 

which these values are meant for.   

3.3.3  Class Loader 

The class loader is a Java object instantiated from the GenericLoader class.  It 

provides a static method loadClass to load class bytecodes, either locally or remotely 

from over the network, whenever they are needed for object(s) instantiation.  By 

using this generic class loader, the locations of class bytecodes become transparent to 

the caller, i.e., the delegation service provider.   

The GenericLoader Class 

The GenericLoader class has only one public method loadClass, which 

accepts a String argument as a fully-qualifying class name and tries to return the 

bytecode for this class in a corresponding Class object.  The DSP then uses this 

returned Class object to instantiate the desired IMO (see Section 3.3.2).  This 

loadClass method first tries to load the class bytecode, if not already loaded in 

memory, from the local CLASSPATH using the default class loader: 

Class c = Class.forName(className); 
 
If the bytecode is not locally available, a further attempt is then made to 

download it from the network: 

c = RMIClassLoader.loadClass(url, className); 
 
url is a URL object that represents a Uniform Resource Locator pointing to a 
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host,  e.g., http://ux7.sp.cs.cmu.edu:2001/, where the needed bytecode is expected to 

be located.  HTTP is the standard protocol for RMI to transfer bytecodes over the 

network, which means that there has to be an HTTP server running on the host 

ux7.sp.cs.cmu.edu.  This server needs not be a full-scale heavy-weight Web server 

though, the ability to handle HTTP GET requests will suffice.  Such a light-weight 

server can be downloaded free of charge from Sun’s website. 

Class Loader Configuration 

The URL used by the class loader is obtained from a special INFO named 

system:classLoaderConfig, which has only one attribute, urls, that stores a list of 

URL addresses of bytecode servers.  When the class loader needs to download 

bytecodes from the network, it retrieves this list and tries the URLs one at a time 

until one bytecode server responds with the desired Class object. 

This INFO is special in the sense that it does not relate to or represent any 

management information or functionality per se; instead, it is a convenience object 

used by the class loader for configuration information storage.  However, we have 

put it in the MIT so that the remote manager can take advantage of the set operation 

in the DSP service to change the value of urls on the fly, as per possible 

configuration changes of bytecode servers in the network.   

This configuration object is created automatically during the JEMS startup, 

with urls initialized to a default value. 

3.3.4  MIB Accessor 

Similar to the class loader, the MIB accessor is also an internal object 
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invisible to remote managers.  It is used by INFOs in the MIT to exchange 

management data with the underlying device agent.  Currently we have only 

implemented an SNMP accessor that talks with SNMP agents.  However, accessors 

that communicate with other types of agents, e.g., CMIP agents or vendors-specific 

agents, can be built in a similar way. 

The SNMPAccessor Class 

The SNMP accessor is a Java object instantiated from the SNMPAccessor 

class (Figure 13). It is a very small SNMP manager that communicates with the local 

SNMP agent in the network device where the JEMS is running.  We have used the 

most popular Java SNMP API [11] to implement the accessor. 

When the accessor is first created during the JEMS startup, it loads the 

correct MIB file, sets the SNMP protocol version (v1, v2c or v3) and the Internet 

address for the SNMP agent (localhost in our case).  The accessor has some private 

methods that help parse variable names, translating them to corresponding Object 

Identifiers (OIDs) which are eventually encoded in SNMP protocol data units.  The 

accessor exposes two public methods, set and get, for INFOs to invoke, hiding all the 

agent-related details from them.   

SNMPAccessor 

get() 
set() 

Figure 13:  The SNMPAccessor Class 
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Chapter 4   Intelligent Monitoring Objects 
The JEMS architecture provides for a stage on which intelligent monitoring 

objects (IMOs) can perform.  Certain network monitoring functions, which used to 

be running on the manager side, can now be encapsulated into corresponding IMOs, 

which are in turn delegated to the JEMS and running locally in the managed network 

device.  This chapter focuses on the details of the design and implementation of 

IMOs.   

From time to time, however, we will refer back to certain JEMS components 

and have further discussions about them, since we either simplified their 

presentations or didn’t make their design considerations clear enough in the last 

chapter.  We have purposefully done this because their thorough interpretation relies 

on or is made easier by the contents of this chapter.  

Chapter Organization 

Section 4.1 analyzes the requirements on IMO design. 

Section 4.2 details the design of the Monitor class. 

Section 4.3 examines the implementation of Observers, i.e., IMOs that compute 

rate/ratio-oriented indicators and indicator statistics (review Section 2.4.1). 

Section 4.4 examines the implementation of Analyzers, i.e., IMOs that perform 

network analysis (review Section 2.4.2). 

Section 4.5 illustrates, via a simple example, how to achieve intelligent network 

monitoring by delegating proper IMOs to the JEMS. 
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4.1  Design Analysis 

As was introduced in Chapter one and three, IMOs are specialized Java 

objects that are delegated by manager applications to a JEMS to perform network 

monitoring right in the managed network device, and their functions allow for on-

line modification and extension.  In order to satisfy their functional requirements, 

IMOs need to have the following characteristics: 

(1) They have access to lower-level management information, i.e., attributes 

values stored in related INFOs or even other IMOs.   

(2) A self-contained monitoring module is properly encapsulated in every 

IMO; once correctly initialized, it is able to autonomously exercise a desired 

monitoring function/computation without any manager intervention. 

(3) Through relevant RDI calls, remote managers can make on-line changes 

or extensions to the functionality of IMOs.   

(4) Although IMOs are instantiated and run in the network devices, they have 

to be coded at the manager side with no access to agent-side management 

information.  This requires that the way in which IMOs are designed support easy 

manager-side object programming. 

We have also noticed that the monitoring modules in different IMOs are 

highly “repetitive.”  For example, the formula used for different ratio calculations are 

mathematically equivalent except that different ratios are based on different lower-

level management information.  Therefore, there is one last consideration: 

(5) Maximum reusability of monitoring functions in different object instances 
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is expected in the IMO design.  

4.2  The Monitor Class 

All monitoring objects are instantiated from proper subclasses of the abstract 

Monitor class which forms the core of the whole IMO design.  The details of the 

class structure are discussed as follows: Section 4.2.1 shows how requirements (1) 

and (2) are satisfied through the so-called “operands/operator paradigm”, Section 

4.2.2 examines the initialization process of IMOs, and Section 4.2.3 presents the 

benefits of our design, where requirements (3), (4) and (5) are addressed 

4.2.1  Operands/Operator Paradigm 

It can be noticed that all the IMOs, no matter they are Observers or 

Analyzers, accomplish their functionality by taking given management information 

as input, applying certain monitoring rules to it, and generating some results.  For an 

Observer, the result is stored in a certain attribute ready for retrieval by the remote 

manager; for an Analyzer, the result, usually in the form of an alarm, will be reported 

back to interested AlarmListener objects on the manager side.   

Figure 14:  Inheritance Tree of the Monitor Class 
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Accordingly, we have generalized the IMO design using a structure which we 

call Operands-Operator Paradigm (Figure 15).  It consists of three essential 

components, the operands attribute, the operator attribute with the corresponding 

Operator object, and the result/listener attribute, which correspond to the above-

mentioned input, rule and result respectively.  We now examine these components 

separately.  

The operands Attribute 

In the attribute list (i.e., Hashtable attributes) of every IMO, there is a 

composite attribute named operands, which represents a String array of absolute 

attribute names.  The syntax of an absolute attribute name is 

<attributeName>@<objectName> 

and such a name refers to a given attribute in a given managed object.  For 

example: 

J E M S 

. . . 

. . . 

create      delete      get      set      enable      disable 

updateAttr findAttr 

. . .

attributes

operands

operator

opParams 

 

. . . 

stub_DSP 

M  I  T 

Operator 
  object  

. . . 

Delegation Service Provider 

Figure 15:  Operands-Operator Paradigm 
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pathCells@system:port.1:inPath.2 

The names stored in the operands attribute can point to either attributes in 

INFOs or the result attribute in other IMOs, depending on the operation to be 

performed by the IMO in question.  The Operator object in a IMO retrieves the 

values of those attributes specified by the operands, performs pre-programmed 

computation on the values, and stores the output into the result attribute of the IMO 

in question (in the case of an Observer).  The operands attribute is a read-only 

attribute; once a IMO is initialized, the value of this attribute cannot be changed by 

remote managers. 

The operator Attribute and Operator Object 

The monitoring behavior of IMOs are generalized by the abstract Operator 

class (Figure 16).  Any specific monitoring functionality, e.g., ratio or rate 

computation, is represented by a subclass that has accordingly implemented 

Operator’s abstract methods.  The purpose of each method is explained as follows: 

setOwner() – Set the owner of this Operator to be the associated IMO  

checkContext() – Check if the owning IMO has the suitable context for the Operator 

to run.  Such a context includes compatible operands (the operands attribute), 

proper operation parameters (the opParams attribute) and availability of a listener 

abstract  Operator 
Monitor  owner 

setOwner() 
abstract  checkContext() 
abstract  doOperation() 
 

Figure 16:  The abstract Operator Class 
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stub object (in the case of an Analyzer). 

doOperation() – Perform the desired monitoring operation based on the valid 

operands and operation parameters; specific to operator implementation. 

Any IMO has, in its attribute list, an attribute named operator whose value is 

the class name of the Operator to be used by the IMO.  This attribute is not read-

only, and whenever it is set to a new value, a corresponding Operator object will be 

instantiated using the generic class loader.  

Also related to the Operator object is the attribute named opParams.  It 

represents a hashtable of parameters, in name/value pairs, that are interpreted by the 

Operator to adjust its operation.  The usage of opParams will be discussed in more 

detail later in this chapter where most appropriate. 

The result/listener Attribute 

For an Observer, the output from the Operator object is stored in an attribute 

named result.  This attribute can be retrieved by remote managers, or even taken as 

an operand by other IMOs.  An Analyzer, instead, has a listener attribute whose 

value is the name of a remote listener object; the Operator object invokes a method 

on the stub of this remote listener to send an alarm back to the manager whenever an 

abnormal condition is detected.  A better study of these two attributes will be given 

in Section 4.3 and 4.4 repectively. 

4.2.2  Object Initialization 

The correct and efficient initialization of IMOs is an integral part of the 

overall design, therefore we are devoting a separate subsection to this topic.  There 
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are two steps involved here: invocation of the object’s constructor and initialize 

method by the create operation of the DSP (review Section 3.3.2).  

The Constructor Method 

A IMO’s constructor is automatically invoked immediately after the object is 

instantiated by the DSP.  What the constructor does is to correctly set up the object’s 

attribute list by adding appropriate attributes into the hashtable, and to initialize its 

stub_DSP property (see Figure 14, 15).  To make this process clearer, we list in the 

following paragraphs partial codes of the related constructor methods, with easy-to-

understand comments. 

// the abstract Monitor class 
abstract class Monitor extends  MO { 

// constructor 
Monitor() { 

// find the DSP on the localhost and store its stub 
// object into the variable “stub_DSP” 
stub_DSP = (IfRDI) Naming.lookup(“//localhost/DSP”); 
// add the read-only “operands” attribute 
addAttr(new Attribute(“operands”)); 
// add the read-write “operator” attribute 
addAttr(new Attribute(“operator”, false)); 
// add the read-write “opParams” attribute 
addAttr(new Attribute(“opParams”, false)); 
// add the read-write “interval” attribute  
// refer to Section 4.3 and 4.4 for details 
addAttr(new Attribute(“interval”, false)); 

} 
 . . . 
} 

// the Observer class 
class Observer extends  Monitor { 

// constructor 
Observer() { 
// call the constructor of the parent class – Monitor 

super(); 



   

   59 

// add the read-only “result” attribute 
addAttr(new Attribute(“result”)); 

} 
. . . 

} 

// the Analyzer class 
class Analyzer extends  Monitor { 

// constructor 
Analyzer() { 

// call the parent class’ constructor 
super(); 
// add the read-write “listener” attribute 
addAttr(new Attribute(“listener”, false)); 

} 
. . . 

} 
 

The initialize Method 

An IMO’s initialize method is called immediately after the constructor, and it 

aims at correctly initializing the values of the those attributes added to the attribute 

list by the constructor. 

// the abstract Monitor class 
abstract class Monitor extends  MO { 

// constructor  
Monitor() { . . . } 
void initialize(Hashtable params) { 

// initialize “operands” with the corresponding value in  
// the hashtable “params”, which is passed as the last  
// argument to the DSP’s create() method (Section 3.3.2) 
updateAttr( “operands”, params.get(“operands”) ); 
updateAttr( “opParams”, params.get(“opParams”) ); 
updateAttr( “interval”, params.get(“interval”) ); 
updateAttr( “operator”, params.get(“operator”) ); 

} 
. . . 

} 
 
// the Observer class 
class Observer externds  Monitor { 
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// constructor  
Observer() { . . . } 
void initialize(Hashtable params) { 

// call Monitor’s initialize method 
super.initialize(params); 

} 
 . . . 
} 
 
// the Analyzer class 
class Analyzer externds  Monitor { 

// constructor  
Analyzer() { . . . } 
void initialize(Hashtable params) { 

// call Monitor’s initialize method 
super.initialize(params); 
// initialize the “listener” attribute 
updateAttr(“listener”, params.get(“listener”)); 

} 
 . . . 
} 
 
The updateAttr method acts as a dispatcher function that redirects the 

initialization process to respective “helper” methods.  The attribute value to be set, 

which is the second argument to updateAttr, is passed on to the helper methods.  For 

instance, the call to initialize the operands attribute: 

updateAttr( “operands”, params.get(“operands”) ); 

results in the following helper method to be called: 

private void updateOperands(Object value) { . . . } 

These helper methods perform type checking, value assignment and 

additional setup if necessary.  Take the operator attribute as an example, the 

updateOperator method first checks whether the value to be set is a String instance.  

If so, it assigns the value to the operator attribute.  That’s not all, there is some 
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additional setup work to be done in this case: first, the generic class loader loads the 

associated operator class and instantiates an Operator object; secondly, a Java thread 

is created and started, which calls the Operator’s doOperation method periodically at 

the pace specified by the interval attribute (for details, please see Section 4.3): 

// Monitor’s updateOperator method 
private void updateOperator(Object value) { 

// assign the value to “operator” 
findAttr(“operator”).setValue((String)value); 
// load the operator class 
Class c = GenericLoader.loadClass((String)value); 
// instantiate the Operator object 
op = (Operator) (c.newInstance()); 
// set the Operator’s owner to be this IMO 
op.setOwner(this); 
// check the context of this IMO 
op.checkContext(); 
if (findAttr(“interval”).getValue() > 0) { 

// create and start a thread that calls  
// op.doOperation() periodically 

} 
} 
 

4.2.3  Benefits of Our Design 

The operands/operator paradigm has the following benefits. 

Operator Reusability 

 A specific monitoring function can be abstracted and represented by a proper 

subclass of the Operator class, and then be embedded into different IMOs in the form 

of the operator attribute.  In this way, we can bind one operator with many different 

sets of operands to form different IMO instances. 

On-line Change and Extension 

Flexible and powerful on-line extension to IMOs and the underlying JEMS 



   

   62 

can be achieved.  Specifically speaking, there are three levels of on-line changes that 

can be made, with increasing degree of extensibility. 

(1) Parameter Customization.  Because the opParams is a read-write attribute, 

remote managers can modify its value via RDI calls, thus dynamically changing the 

manner in which the Operator object works. 

(2) Operator Re-assignment.  Since the Operator itself is associated to the 

read-write operator attribute, managers can change a IMO’s monitoring behavior 

even more by assigning a new, hopefully more powerful, Operator to it.  Note that 

the Operator object is instantiated by way of the generic class loader which can 

download Java classes from the bytecode server, the JEMS does not need to have 

any prior knowledge or storage of the new operator class.  Therefore, the extension 

takes place in a completely on-line and dynamic fashion. 

(3) New Monitor Types.  The most significant benefit comes from both the 

operands/operator paradigm and the overall JEMS design, i.e., it is quite easy and 

convenient to write new Monitor subclasses and to delegate their instances to the 

JEMS.   

Independent Manager-side Development 

To write and compile the Monitor class and its subclasses, we need:  

Interfaces/classes: IfRDI, IfListener, Operator, Attribute 
 
To write and compile the Operator class and its subclasses, we need: 

Interfaces/classes: IfRDI, IfListener, Monitor, Attribute 
 
To deploy/delegate IMOs to the JEMS, we also need to have access to related 
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Operator implementations, IfListener implementations, and absolute attribute names 

from available INFOs.  

Except for IfRDI and absolute attribute names, all of the above-mentioned 

components are written and available at the manager side.  IfRDI is the remote 

interface to the JEMS and, according to the purpose and nature of an interface, 

should remain independent of its implementation.  As for the absolute attribute 

names, as long as the managed device is determined and a mapping from its MIB to 

corresponding INFOs is done, the available attribute names are fixed and become 

irrelevant to the JEMS implementation.  Therefore, our design allows for 

independent manager-side IMO programming and deployment. 

4.3  Observers 

Observers are IMOs instantiated from the Observer class.  They perform the 

observation part of network monitoring.  An Observer is characterized by the 

Operator object in it, therefore we will center our discussion around related Operator 

objects.  The following table lists the correct context for different Operators: 

Let’s take a look at how a ratio-oriented indicator is implemented by creating 

Context Observer 
type 

Operator 
class interval (ms) operands 

  number            type 
opParams 

rate OpRate ≥ 1 = 1 Integer 
or Float n/a 

ratio OpRatio ≥ 1 ≥ 2 Integer 
or Float n/a 

average OpAvg = 1 
variance OpVar = 1 
covariance OpCovar 

≥ 1 
= 2 

Integer 
or Float 

sampleSize 
≥ 2 

Table 3:  Observer Contexts for different Operators  
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an Observer using the OpRatio class.  Other indicators can be implemented similarly.  

The manager creates an initialization parameter list: 

initParams 

operands “pathRejectedCells@system:port.1:inPath.2” 
“pathCells@system:port.1:inPath.2” 

opParams (null) 
Interval 5000 
operator “jems.operator.OpRatio” 

The manager delegates an Observer to the JEMS (at rrocoto.cshcn.umd.edu): 
 
IfRDI jems = (IfRDI)Naming.lookup(“//rrocoto.cshcn.umd.edu/DSP”); 
jems.create(“jems.monitor.Observer”, “system:observer#58”, initParams); 
 
The DSP instantiates an Observer, initializes its attribute list using the 

provided parameters, and adds the Observer into the MIT.  When the operator 

attribute is being initialized, the Operator checks the owning Observer against the 

ratio context listed in Table 3 to make sure that the Observer has a compatible 

context for the Operator to correctly perform its function in. 

The monitoring funtion of this Observer, i.e., to calculate the (cell rejection) 

ratio based on the two variables specified in the operands attribute, is implemented 

by OpRatio’s doOperation() method as follows: 

// OpRate’s doOperation method 
void doOperation() { 

// get the value of the “operands” by calling: 
// owner.findAttr(“operands”); 
// parse the names of the operands and get the attribute  
// names and object names separately, i.e.: 
// attrName1 = “pathRejectionCells” 
// objName1 = “system:port.1:inPath.2” 
// attrName2 = “pathCells” 
// objName2 = “system:port.1:inPath.2” 

Table 4:  Initialization Parameters for the OpRatio Class 
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// get the attribute values via two RDI calls: 
// curr_1 = (owner.stub_DSP).get(objName1, attrName1); 
// curr_2 = (owner.stub_DSP).get(objName2, attrName2); 
// calculate the difference from the latest values: 
// delta_1 = curr_1 – last_1; 
// delta_2 = curr_2 – last_2; 
// calculate the ratio by: 
// ratio = delta_1 / (delta_1 + delta_2); 
// store the ratio to the “result” attribute: 
// owner.findAttr(“result”).setValue(ratio); 
// last_1 = curr_1; 
// last_2 = curr_2; 

} 
 

4.4  Analyzers 

Analyzers are IMOs instantiated from the Analyzer class.  They perform the 

analysis part of network monitoring as was defined in Section 2.3.2.  In this thesis 

work, we only look into the simplest form of Analyzer, which compares the value of 

the monitored indicator (its operand) with a set of pre-specified thresholds, and 

generates corresponding alarms when certain thresholds are crossed.  The 

comparison is done by the Analyzer’s Operator object which is instantiated from the 

OpThreshold class.  Other types of operator classes can be developed similarly.   

Figure 17 shows the threshold comparing model used by an Analyzer.  There 

high alarm cleared 

time 

high gauge 

high-clear 

low gauge 

low-clear 

high alarm 

low alarm 

low alarm cleared 

Figure 17:  Threshold Comparing in Alarm Generation 
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are two levels of thresholds: high and low, and in each level there are two gauges 

defined.  For the high-level thresholds, when the value of the monitored indicator 

exceeds the high gauge, a “high alarm” is fired and remains valid until the value 

drops below the high-clear gauge, when a “high alarm cleared” message will be 

emitted.  Between the firing of an alarm and its clearance message, no other alarms 

should be fired.  The “low alarm” and its associated “low alarm cleared” message 

work in a similar way.  An even more generic model would allow for multiple levels 

of thresholds.   

Alarms and their clearance messages are represented by objects instantiated 

from the Alarm and AlarmCleared classes respectively.  Both these classes are 

subclasses of the Event class (Figure 18).  Each generated event object is 

automatically assigned a unique ID, and contains properties that have the 

following meaning: 

origin name of the IMO that generates this event 
desc brief description of the nature of this event 
time time stamp marking when the event was created 
data detailed information about the agent-side situations that triggered the 

Figure 18:  The Inheritance Tree of Event Classes 

getID() setID() 
getOrigin() setOrigin() 
getDiscription() setDiscription() 
getTime() setTime() 
getData() setData() 
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generation of this event; meant to be interpreted only by proper event 
handlers on the manager side 

 
The generated event objects are sent back to the manager via a remote 

interface IfListener (Figure 19).  A remote object running at the manager side has 

implemented this interface, and registered the associated stub object in the RMI 

registry under the name “EventListener”.  When delegating an Analyzer to the 

JEMS, a manager includes the complete URL name of this stub object in the 

initialization parameter list (Table 5) for initialization of the listener attribute. 

Let’s now take a look at how threshold checking, a simple network analysis 

behavior, is instrumented by creating an Analyzer using the OpThreshold class.  The 

manager creates an initialization parameter list for the OpThreshold class: 

initParams 

operands “result@system:observer#58” 
opParams high_gauge = 80000 high_clear_gauge = 75000 

low_gauge = 500 low_clear_gauge = 5000  
interval 10000 
listener “//hera.isr.umd.edu/EventListener” 
operator “jems.operator.OpThreshold” 

The manager delegates an Analyzer to the JEMS (at rrocoto.cshcn.umd.edu): 

IfRDI jems = (IfRDI)Naming.lookup(“//rrocoto.cshcn.umd.edu/DSP”); 
jems.create(“jems.monitor.Analyzer”, “system:analyzer#16”, initParams); 
 
The DSP instantiates an Analyzer, initializes its attribute list using the 

interface IfListener 

receive(Event evt) 

Figure 19:  The IfListenter Remote Interface 

Table 5:  Initialization Parameters for the OpThreshold Class 
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provided parameters, and adds the Analyzer into the MIT.  When the DSP initializes 

the listener attribute, in addition to the actual assignment of the URL to the attribute, 

the helper method updateListener also downloads a copy of the associated remote 

stub object and keeps it in the Analyzer’s lstner property.   

// Analyzer’s updateListener method 
private void updateListener(Object value) { 

// assign the value to “listener” 
findAttr(“listener”).setValue(value); 
// locates the remote stub of the “EventListener” 
lstner = (IfListener)Naming.lookup((String)value);  

} 
 
When the operator attribute is being initialized, the Operator checks the 

owning Analyzer against the context shown in Table 6 to make sure that the 

Analyzer has a compatible context for the Operator to correctly perform its function:  

Context Analyzer 
Type 

Operator 
class interval operands# type opParams listener 
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The monitoring funtion of this Analyzer is accomplished by the Operator’s 

doOperation method as follows: 

// OpThreshold’s doOperation() method 
void doOperation() { 

// get the value of the “operands” by calling: 
// owner.findAttr(“operands”); 
// parse the name of the operand and get the attribute name  
// and object name separately, i.e.: 
// attrName = “result” 
// objName = “system:observer#58” 

Table 6:  Analyzer Context for the OpThreshold Class 
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// get the value of the attribute via an RDI call: 
// value = (owner.stub_DSP).get(objName, attrName); 
// get the value of the “opParams” and the gauges 
// contained in it: 
// owner.findAttr(“opParams”); . . . 
// use the threshold model shown in Figure 4.12 and  
// compare “value” with different gauges to decide if  
// an Alarm or AlarmCleared object should be created; 
// if so, create one and initialize it accordingly 
// alarm = new Alarm(); 
// alarm.setID(); alarm.setOrigin(owner.getName()); 
// alarm.setDescription(“…”); . . . 
// send the alarm back to the manager: 
// lstner.receive(alarm); 

} 
 
The remote listener object acts as an event dispatcher at the manager side and 

re-directs the received events to their proper handlers. 
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Chapter 5   Prototype JEMS System 

Based on the JEMS architecture proposed in previous chapters, we have built 

a proof-of-concept prototype system, and done some experiment and comparison 

against the centralized monitoring system. The results have verified the advantages 

of intelligent monitoring over traditional network monitoring schemes.   

Chapter Organization 

Section 5.1 introduces the configuration and implementation of the prototype 

system. 

Section 5.2 compares the prototype system with the traditional central monitoring 

system through some simple experiment and analysis.  

Section 5.3 draws approriate conclusions. 
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5.1  Prototype JEMS System 

The prototype JEMS system (Figure 20) is introduced in the following 

sections: system configuration in Section 5.1.1, objects deployment in Section 5.1.2, 

and system startup procedure in Section 5.1.3.  

5.1.1  System Configuration 

Bytecode Server and RMI Registry Service 

Actually, the bytecode server and the RMI registry service can be running on 

any IP host on the Internet.  We happen to choose the following setup, shown in 

Table 7, for them.  

 

 

Figure 20:  Prototype JEMS System 

.cshcn.umd.edu 

Internet 

roccoto (JEMS server) 

ux7 (bytecode server) 

.sp.cs.cmu.edu 
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(management station) 

bigbang (ATM switch) 
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Machine’s DNS name ux7.sp.cs.cmu.edu 
Hardware platform Sun Workstation 
Operating System Solaris 2.5 
Java platform JDK 1.1.5 for Solaris 
URL of RMI registry rmi://ux7.sp.cs.cmu.edu:5001/ 
URL of HTTP server http://ux7.sp.cs.cmu.edu:2001/ 

Classes served jems.monitor.* 
jems.operator.* 

jems.monitor is the name of the Java package that contains all the Monitor 

classes, i.e., Monitor, Observer and Analyzer.   jems.operator is the name of the Java 

package that contains all the Operator classes, i.e., OpRate, OpRatio, OpAvg, 

OpVar, OpCovar and OpThreshold. 

Managed Device and JEMS Server 

The managed device is a Fore ATM switch located in the Center for Satellite 

and Hybrid Communication Networks (CSHCN).  The switch is connected to the 

CSHCN LAN and has the DNS name bigbang.cshcn.umd.edu.  It has a built-in 

SNMP agent that serves requests for variables defined in two MIB files: RFC1213 

for IP management, and Fore-Switch-MIB for ATM-switch-specific management.   

According to the proposed architecture, a JEMS server should be running in 

the switch for its intelligent monitoring.  However, since there is no JVM ported to 

the Fore ATM switch yet, we have to run a JEMS server in a workstation which is 

equipped with a JVM and acts as a proxy for the ATM switch.  The configuration of 

this proxy machine is listed below in Table 8. 

Table 7:  Configuration of the Bytecode Server 
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Machine’s DNS name rrocoto.cshcn.umd.edu 
Hardware platform HP Workstation 
Operating System HP UX 
Java platform JDK 1.1.6 for Solaris 

The configuration of the JEMS server in the proxy machine is listed below: 

MIT naming convention as specified in Section 3.3.1 

Name of DSP’s stub object 
registered in the RMI registry 

DSP 
(i.e., remote managers use the URL 
rmi://ux7.sp.cs.cmu.edu:5001/DSP  
to look up DSP’s stub object) 

SNMP agent accessed by the 
SNMP Accessor  

bigbang.cshcn.umd.edu  
 

Management Station 

Any IP host on the Internet can play the role of a management station.  We 

have randomly picked a Sun workstation in ISR’s SEIL lab with the following setup: 

Machine’s DNS name hera.isr.umd.edu 
Hardware platform Sun Workstation 
Operating System Solaris 2.5 
Java platform JDK 1.1.6 for Solaris 

Name of event listener’s stub 
object registered in the RMI 
registry 

EventListener 
(i.e., Analyzers in the JEMS use the URL 
rmi://ux7.sp.cs.cmu.edu:5001/EventListener 
to look up the event listener’s stub) 

Table 8:  Configuration of the Proxy Machine 

Table 9:  Configuration of the JEMS Server 

Table 10:  Configuration of the Management Station 
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5.1.2  Managed Objects Deployment 

Information Objects 

Since the major interest of this research is in performance monitoring, we did 

not map the whole Fore-Switch-MIB to INFOs.  Instead, we have selected a list of 

SNMP variables related to the performance of the ATM switch (see Appendices), 

and mapped them to various INFOs.  Specifically, all port-related variables (Table 

11) are mapped to corresponding attributes in the Port class, all signaling-related 

variables (Table 12) are mapped to corresponding attributes in the SigPath class, all 

incoming path-related variables (Table 13) are mapped to corresponding attributes in 

the InVirtualPath class, and all outgoing path-related variables (Table 14) are 

mapped to corresponding attributes in the OutVirtualPath class.  The inheritance tree 

of these classes is shown in Figure 21, and their associated containment subtree in 

the MIT is shown in Figure 22. 

MO MgmtInfo 

Port 

SigPath 

InVirtualPath 

OutVirtualPath 

Figure 21:  Inheritance Tree of INFO Classes 
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Now, the motivation and benefits of introducing a layer of INFOs between 

IMOs and underlying device agents are easy to explain and understand. 

INFOs present a better view of the available management information.  Not 

all the variables in the MIB are useful for network management, actually only a 

small fraction of them prove to be helpful for performance monitoring.  To make 

things worse, these variables are often scattered in different MIB tables, which 

makes their direct access very difficult and confusing.   By mapping only those 

useful and functionally related variables from different locations in the MIB to 

attributes in a few compact INFOs, we hide the complexity of direct MIB access 

from end users (e.g. IMOs), and instead provide them with an efficient, focused and 

simpler access interface.   

INFOs help with easy programming of reusable IMOs.  Instead of talking 

directly to the device agent, IMOs acquire information from various INFOs by 

invoking proper RDI operations.  Since MIB access details and complexity are 

encapsulated in the implementation of INFOs and the MIB accessor, IMOs are 

system 

port.1 port.2 . . . port.n 

sigPath.1 inPath.1 inPath.k . . . 

IMOs 

outPath.1 . . . outPath.k 

Figure 22:  Containment Subtree of INFOs in the MIT 
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independent of agent types and are therefore reusable.  For example, if we have an 

ATM switch with a CMIP agent, all that needs to be done is to write a CMIP 

accessor and change the implementation of INFOs so that they update their attribute 

values by way of the CMIP accessor.  

Monitoring Objects 

Two Java packages, namely, jems.monitor.* and jems.operator.*, are 

deployed to the bytecode server.  When the remote manager attempts to delegate a 

IMO to the JEMS server, it invokes the RDI create method with three arguments: 

class name, object name and initialization parameter list.  The Monitor class 

specified by the class name is downloaded from the bytecode server to the JEMS 

server, a IMO is then instantiated from the class, and gets initialized using the 

parameters provided.   

5.1.3.  System Startup Procedure 

The prototype system starts up in the following sequential steps: 

Bytecode Server and RMI Registry Startup 

The HTTP server is started on port 2001, with its document root pointing to 

where the two Java packages are installed.  Monitor and Operator classes are now 

ready for download from the URL http://ux7.sp.cs.cmu.edu:2001/. 

The RMI registry is started on port 5001. 

JEMS Server Startup 

The SNMP Accessor is created and initialized.  It loads the Fore-Switch-MIB 

file, sets the SNMP protocol version to v1, and sets the SNMP agent’s Internet 
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address to bigbang.cshcn.umd.edu.   

The Management Information Tree is created and initialized.  First, the 

subtree shown in Figure 22 is automatically added into it; during this process, switch 

information is obtained via the SNMP Accessor to decide which ports are active and 

what virtual paths there are in each active ports, so that the subtree can be built to 

reflect the working condition of the ATM switch.  Secondly, special-purpose objects 

are initialized and added into the MIT; for example, the classLoaderConfig object 

(see Section 3.3.3) will be added to the MIT with its attribute urls set to 

http://ux7.sp.cs.cmu.edu:2001/. 

The Class Loader is created and initialized. 

The Delegation Service Provider is created; its stub object is registered in the 

RMI registry under the name DSP, and therefore becomes available for lookup and 

download at the URL rmi://ux7.sp.cs.cmu.edu:5001/DSP. 

Management Station Startup 

A manager application starts up and immediately registers the stub object of 

an event listener to the RMI registry under the name EventListener.  Now the startup 

process of the whole system is complete, and the manager application can start 

delegating Observers, Analyzers and possibly other types of IMOs to the JEMS 

server. 

5.2  JEMS vs. Centralized Monitoring 

This section compares the intelligent monitoring paradigm of JEMS and 

those of centralized SNMP-based approaches.  It examines some typical performance 
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issues involved in network monitoring systems.  We compare the performance of our 

prototype system and applications using SNMP.  The comparisons, which focus on 

scalability, performance, and online extensibility, are illustrated by simple examples 

or analysis. 

5.2.1  Scalability 

Polling-based network management systems do not scale up to large 

networks, because the interaction of the central management station with SNMP 

agents has two patterns: (1) it involves the management station into a huge amount 

of communication, and (2) it concentrates most processing into the central station.  A 

network system becomes unmanageable when there is an increase in the number of 

managed devices or when there is an increase in the number of variables to be 

monitored. 

Consider an SNMP-based application executing on hera, responsible for 

performance monitoring of the ATM switch bigbang.  To undertake any non-trivial 

monitoring task, be it observation or analysis, the application needs to keep an array 

of indicators – rates, ratios and statistics – based upon the variables listed in 

Appendix. To provide a given level of measurement precision, the values of these 

indicators have to be updated at a reasonable frequency, say, every T seconds.  If we 

assume the time required for a single polling request is tP, then the maximum number 

of variables that can be handled by hera is bound by PtTN /≤ .  Monitoring an 

operating broadband ATM switch usually requires a high precision or a short T; and 

if the management station and managed device communicate over a Wide Area 
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Network (implying a large delay tP), then the maximum number of variables or 

SNMP devices that can be handled by one central management station could drop 

one to two orders of magnitude.  This poses a serious scalability problem.  A smiliar 

example is discussed in much more detail in [26]. 

Now, even if the management station is so powerful as to be able to handle 

all the devices, the polling scheme is still very inefficient, since the network traffic 

caused by the polling behavior is a constant independent of the actual frequency of 

information access or alarm generation.  For example, in order to promptly detect a 

rare yet important alarm situation, a high polling frequency needs to be maintained, 

even though most of the polling requests will prove to be irrelevant. 

Contrary to what a traditional polling-based system does, a JEMS-based 

system delegates intelligent monitoring objects to network devices, so that various 

indicators are maintained (and network analysis is performed) right in the devices or 

in a local proxy as in our prototype system.  Manager-to-agent traffic occurs only 

when the central station has the actual need for information, or when alarms are fired 

upon detection of associated abnormal situations.  This significantly reduces the 

unnecessary management traffic and the load on central stations, thus reducing the 

scalability barrier. 

5.2.2  Performance 

We illustrate the performance characteristics of JEMS by comparing the 

performance of a monitoring application using SNMP to that of an application that 

has the same functionality but was implemented on our prototype system.   
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Consider an SNMP-based monitoring application that involves n MIB 

variables.  The cost function of the overall response time of this application can be 

approximated by 

MIBCDSNMP TmanagerTGetSNMPTnT ++⋅= )()_(  

TD(SNMP_Get) represents the delay of each SNMP Get request between the 

centralized station and the SNMP agent, TC(manager) represents the computation 

time of the application at the management station, and TMIB represents the total time 

spent by the SNMP agent in MIB searching during one invocation of the application. 

TD(SNMP_Get) depends on the round-trip transmission delay of the SNMP Get/Get-

Response message pair, plus message processing time at both ends. 

Consider a JEMS implementation of the same application.  The functionality 

of the monitoring application can be encapsulated into an Operator object, which is 

in turn bound with a IMO delegated to the managed device, and a get operation on 

the IMO’s result attribute would return the computation result.  After the IMO is 

delegated and ready to serve, the typical response time cost function for one get 

operation can be approximated by 

MIBCLDDJEMS TagentTGetSNMPTnGetRDITT ++⋅+= )()_()_(  

TD(RDI_Get) represents the delay of each RDI get operation between the 

management station and the JEMS server, TLD(SNMP_Get) represents the local delay 

of each SNMP Get message between the SNMP accessor and the SNMP agent, 

TC(agent) represents the computation time of the Operator object in the managed 

device, and TMIB represents the total time spent by the SNMP agent in MIB 
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searching.   

In a Wide Area Network (WAN), message transmission delays constitute the 

major part of both TD(SNMP_Get) and TD(RDI_Get), therefore we can assume 

)_()_( GetRDITGetSNMPT DD ≈  

TC(manager) and TC(agent) are influenced by system parameters, such as 

CPU speed and memory capacity, of the management station and JEMS server 

respectively.  Although the centralized station is almost always much more powerful 

than the managed device (or the proxy machine) where the JEMS server is running, 

it is almost always shared but multiple tasks as well.  When we consider simple 

monitoring applications, we can safely assume that TC(manager) and TC(agent) are 

of the same order of magnitude.  With delegated objects, we have moved the 

network polling to local MIB access, thus the delay associated with SNMP Get 

requests is very small, i.e., 

)_()_( GetSNMPTGetSNMPT DLD <<  

Therefore, the residual performance difference is 

δ+⋅−=− )_()1( GetSNMPTnTT DJEMSSNMP  

Of course, the initial delegation of a IMO to the JEMS server consists of such 

complex steps as RDI create operation request, classes download, objects 

instantiation and initialization, and may take quite some time.  However, once the 

delegation is completed and the “cold start” cost is paid, intelligent monitoring 

continuously beats SNMP-based method, so it only takes a few more program 

invocations to amortize the initial cost.  And in a WAN with large delay and for 



   

   82 

applications involving many MIB variables, this amortization will be even faster. 

5.2.3  Extensibility 

The most outstanding benefit of JEMS system is that it provides online 

extensibility that traditional systems don’t have.  Once up and running, a device 

agent is equipped with a fixed set of functionality.  With a JEMS running in the 

device, its functions can be dynamically extended/changed without having to bring 

the system offline. 

For example, there are some predefined trap variables that SNMP agents use 

to report simple abnormal situations in the device.  However, the number of these 

variables is fixed and their semantics are static.  If later a new situation is identified 

and demands attention, the only way to incorporate it into the agent is to add a 

corresponding trap variable to the MIB and recompile the agent.  During this 

process, the agent has to be stopped and its service interrupted.   

With a JEMS running in the device, things become easier and more flexible.  

First, with an appropriate Operator bound to it, an Analyzer needs to be delegated to 

the device to monitor the potential alarm.  Then, when we believe that the symptoms 

associated with the alarm has changed, the Operator can be properly reconfigured to 

reflect the change.  For instance, if an OpThreshold operator was adopted, we may 

want to reset the values of its upper and lower thresholds.  To go even further, if a 

new alarm situation arises that can not be taken care of by any Operator currently 

available, we can always write a new Operator class that identifies the situation, and 

then bind an instance to the Analyzer.  The whole process can be accomplished 
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without suspending the agents’ current functionality.   

5.3  Conclusions 

JEMS provides a simple and flexible model to construct monitoring systems, 

by allowing dynamic creation, manipulation and integration of delegated monitoring 

objects.  Network managers can use the predefined IMOs provided by network 

device vendors, and their own objects to build distributed and dynamic management 

applications.  By taking advantage of IMOs running in the managed devices, the 

intelligent monitoring system has better scalability, performance and online 

extensibility than centralized polling systems.   

Furthermore, since JEMS is based on standard industry-proven Java 

technologies, it is easier to implement and has better portability than MbD [19].  

Unlike the mobile agents method [13], the change to monitoring paradigm 

introduced by JEMS is incremental rather than fundamental, making its integration 

with current polling-centric systems much easier. 



   

   84 

Chapter 6   Conclusions 

With increase in the complexity of modern communication networks, it is 

imperative that there be commensurate advances in the tools and techniques used to 

manage these networks.  However, as discussed earlier, conventional network 

monitoring and management systems rely on a framework and related techniques 

that have inherent drawbacks.  This thesis has presented the work that we have done 

to facilitate intelligent network monitoring based on the Java technology.  We are 

trying to draw some conclusions in this last chapter as follows. 

Chapter Organization 

Section 6.1 summarizes the work presented in the previous chapters. 

Section 6.2 looks at possible future improvements that could be made to the 

current design and implementation. 
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6.1  Summary 

Concurrent network monitoring systems adopt a centralized framework 

where most of the monitoring intelligence and processing burdens rest at the 

manager applications running in a central station.  This poses several major 

problems.  

Since all the monitoring interactions and processing have to go through the 

management station, it becomes the bottleneck and single point of failure, leading to 

a system that is difficult to scale up.  

Manager applications can only interact with network elements through low-

level general-purpose interfaces such as SNMP, huge volume of raw data have to be 

transferred to the management station, which causes high communication overhead 

and significant delay, known as the micro-management problem.   

The set of services offered by the element agents is fixed and statically 

instrumented, which hinders the cost-effective extension and improvement of 

monitoring systems. 

To tackle these problems, we have basically done three things: (1) brought 

forward the “intelligent network monitoring” concept; (2) according to this concept, 

proposed a Java-based architecture, JEMS; (3) implemented a prototype JEMS 

system, and validated its efficiency. 

6.1.1  Intelligent Network Monitoring 

The concept of Intelligent Network Monitoring is comprised of two elements: 

distribution of intelligence and dynamic agent extensibility: 
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Distribution of Intelligence.  Instead of bringing data from the devices to the 

central station, parts of the monitoring applications themselves, encapsulated in 

various objects, are distributed or delegated to and running in the managed devices.  

The manager host and the network as a whole can then be relieved from the 

bottleneck and the micro-management problems.  

Dynamic Agent Extensibility. Through a public calling interface over the 

network, the manager application can remotely distribute/remove such objects 

to/from a network device whenever it likes; the code required to manipulate these 

objects may be obtained and linked to the device agent on demand, making it truly 

dynamically extensible.     

6.1.2  Intelligent Monitoring via JEMS 

Java-based Extensible Management Server (JEMS) is the architecture we 

proposed to facilitate intelligent network monitoring.  It consists of two parts: 

The JEMS Server.  A Java-based element agen that supports distributed and 

dynamic network management.  It runs as a server process in the managed network 

element and consists of the Remote Delegation Interface (RDI) and a runtime 

environment that implements the RDI.   

Intelligent Monitoring Objects (IMOs).  Specialized Java objects that 

manager applications delegate to the JEMS via RDI calls.  With specific functions 

encapsulated, these objects perform network monitoring right in the managed 

devices.  IMOs together with the underlying JEMS provide for a flexible, easy-to-

program, and highly reusable intelligent monitoring system. 
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6.1.3  Intelligent Monitoring Validated 

A prototype system was implemented based on the JEMS architecture.  And 

simple yet typical experiments have validated the advantages of intelligent network 

monitoring over traditional polling-based schemes.   

By distributing monitoring intelligence closer to where the information to be 

processed is located, our system significatly reduces the network traffic and delay 

incurred between managers and agents, and eliminates the bottleneck and single 

point of failure problems existing in traditional network management systems.  On 

the other hand, the dynamic extensibility of our system allows managers to extend 

agents’ ability accordingly as network management requirements evolve.  Also, 

manager applications can recognize and take advantage of the difference in resource 

availability of various network devices, and make proper tradeoffs between 

computation and communication cost. 

6.2  Future Work 

There are some improvements and enhancements that could possibly be made 

to the JEMS architecture and added to its prototype implementation. 

6.2.1  User Authentication, Access Control and Privacy 

In our current design, accessing to the RDI interface and services is not 

controlled, anyone having the DSP’s stub object can manipulate objects in the JEMS 

in whatever way they want.  A possible remedy to this is adding an authentication 

scheme to the RDI interface.  This may include a new authentication operation plus 

modifications to all the existing interface operations.  The authentication operation 
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takes a manager’s name and password and returns an authenticator object if the 

manager’s identity is correctly verified.  To access normal delegation operations, the 

remote manager has to first authenticate itself to the DSP, obtains an authenticator 

object and later includes it in every remote method call into the DSP.  The 

authentication mechanism has to be designed in such a way that it prevents replay 

attacks. 

Once a manager is authenticated to the DSP, the latter decides what access 

privileges the user is allowed, and only executes those requests that are conformant 

to its access privileges.  To this end, a proper access control model, together with 

necessary data structures and control mechanism, has to be adopted and enforced. 

If the monitoring data transferred via the network includes business-sensitive 

information, we may use a customized socket layer for the RMI calls, by subclassing 

the java.rmi.server.RMISocketFactory class to implement a secure transport. 

6.2.2  Manager-side APIs and Tools 

Although the JEMS architecture provides quite a complete agent interface, it 

has not addressed how those interface methods can be collectively used to write 

monitoring applications, namely we lack manager-side APIs and tools for application 

authoring.  Therefore, in addition to making improvements and enhancements to the 

agent interface, we may want to:  

(1) Use Java’s component technology to write JavaBeans that implement 

varous high-level manager-side management tasks (which involve multiple IMOs 

and a series of interactions with them).  The public methods exported by these 
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JavaBeans form the API for manager applications development.  

(2) Write a GUI-based developer tool for visual application programming 

using those JavaBeans.  

(3) Prepare a deployment tool that facilitates the packaging and installation 

of manager applications and their resources over the network. 

6.2.3  Intelligent Network Control 

Using JEMS based architecture to do network control should be a natural 

continuation of the research work.  We would like to identify the most commonly 

needed network control functions, encapsulate them in corresponding Intelligent 

Control Objects (ICOs) classes using the Operand-Operator Paradigm, and deploy 

these classes and their associated Operator classes to the bytecode server, so that 

they become available for download to the JEMS-ready network devices upon 

relevant RDI invocations from the manager.  Network control operations will thus be 

performed from within the devices themselves, providing for “on-spot” handling of 

various alarms and events.  Furthermore, for the same reasons with IMOs, the 

behavior of ICOs can be dynamically configured and enhanced, which, together with 

IMOs, facilitates a flexible intelligent network management system. 

6.2.4  Autonomous Management Domain with Jini 

In a situation where the managed devices come online and go offline 

irregularly and asynchronously, e.g., VSATs in a satellite network, automatic 

detection and monitoring of these devices might be desired.  Jini connection 

technology [17], built on top of Java, stands out as an ideal choice for us to 
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incorporate that into the JEMS architecture.   

Jini provides simple mechanisms which enable devices to plug together to 

form an impromptu community – a community put together without any planning, 

installation, or human intervention. Each device provides services that other devices 

in the community may use. These devices provide their own interfaces, which 

ensures reliability and compatibility.  However, we had better wait until after Sun 

Microsystems officially merges Jini into the Java 2 Micro Edition (J2ME) [25], when 

we can evaluate how this will affect the size of the core API libraries and the Java 

Virtual Machine (a.k.a. KVM – Kilobyte JVM) that comes with J2ME. 

6.2.5  Hierarchical Intelligent Network Management System 

Because of its intrinsic layered design, the JEMS architecture can be 

extended to a hierarchical structure to accomodate the logical domains of the 

underlying managed network.  In each sublayer between the network control center 

and the network agents, subnetwork or domain managers can be equipped with 

JEMS based servers that act in two roles: as a manager of the stations in the 

immediate lower layer, and as an agent for its upper layer station.  In such a middle-

layer management station, the MIB Accessor will be implemented to use RDI 

invocations (instead of SNMP protocol) to communicate with lower-layer stations, 

and INFOs in the MIT will use the data acquired through the MIB Accessor to 

maintain an object-oriented abstraction of the subnetwork/domain the management 

station is in charge of.   
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Appendices 

 

portNumber Identification of the port Integer 

portMaxBandwidth The maximum incoming bandwidth of the 
port (cells/s) Integer 

portMaxBandwidthOut The maximum outgoing bandwidth of the 
port (cells/s) Integer 

portCDVT 

The Cell Delay Variation Tolerance 
associated with this physical port.  
Connections take their default value for 
CDVT from the input side port 

Integer 

portVbrOverbooking 
The percentage of overbooking for VBR 
connections.  The default value is 100 (no 
overbooking) 

Integer 
(1..500) 

portVbrBufferOverb 
The percentage of buffer overbooking for 
VBR connections. The default value is 100 
(no overbooking). 

Integer 
(1..500) 

hwPortBufferSize The logical size of this port’s output buffer, 
in cells 

Integer 

portAllocBandwidthIn The allocated incoming bandwidth of this 
port (cells/s) Gauge 

portUsedBandwidthIn The incoming bandwidth being used on 
this port (cells/s) 

Gauge 

portReceivedCells The number of cells received on this port Gauge 

portAllocBandwidthOut The allocated outgoing bandwidth of this 
port (cells/s) Gauge 

portUsedBandwidthOut The outgoing bandwidth being used on this 
port (cells/s) 

Gauge 

portTransmittedCells The number of cells transmitted on this 
port Counter 

hwPortQueueLength The number of cells in this port’s output 
buffer 

Gauge 

hwPortOverflows 
The number of seconds in which cells were 
dropped because this port’s output buffer 
was full 

Counter 

 

Table 11:  Port-related SNMP Variables 
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q2931StatsPort The value of this variable identifies the 
port of this signaling path 

Integer 

q2931StatsVPI The value of this variable identifies the 
VPI of this signaling path statistics entry Integer 

q2931CallsCompletions The number of successfully completed 
calls on this signaling path 

Counter 

q2931CallsFailures The number of call failures on this 
signaling path Counter 

q2931CallsRejections 
The number of connections on this 
signaling path that were rejected by the far 
end 

Counter 

 

 

pathPort Indentification of the input port which 
contains this path Integer 

pathVPI The VPI (Virtual Path Identifier) of this 
path 

Integer 

pathMaxBandwidth The maximum bandwidth of this path 
(cells/s) Integer 

pathAllocBandwidth The allocated bandwidth of this path 
(cells/s) 

Gauge 

pathUsedBandwidth The bandwidth being used on this path 
(cells/s) Gauge 

pathCells The number of cells transferred over this 
path 

Counter 

pathUptime The elapsed time since this path was 
created 

Time 
Ticks 

pathRejectedCells 
The number of cells over this path that 
were rejected or dropped by the policer on 
the switch fabric 

Counter 

 

 

 

Table 12:  Signaling-related SNMP Variables 

Table 13:  Incoming Path-related SNMP Variables 
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opathPort Indentification of the input port which 
contains this path 

Integer 

opathVPI The VPI (Virtual Path Identifier) of this 
path Integer 

opathMaxBandwidth The maximum bandwidth of this path 
(cells/s) 

Integer 

opathAllocBandwidth The allocated bandwidth of this path 
(cells/s) Gauge 

opathUsedBandwidth The bandwidth being used on this path 
(cells/s) Gauge 

opathCells The number of cells transferred over this 
path Counter 

opathUptime The elapsed time since this path was 
created 

Time 
Ticks 

opathRejectedCells 
The number of cells over this path that 
were rejected or dropped by the policer on 
the switch fabric 

Counter 

opathVbrOverbooking 
The percentage of overbooking for VBR 
connections.  The default value is 100 (no 
overbooking) 

Integer 
(1..500) 

opathVbrBufferOverb 
The percentage of buffer overbooking for 
VBR connections.  The default value is 100 
(no overbooking) 

Integer 
(1..500) 

 

 

 

 

 

 

 

 

 

 

 

Table 14:  Outgoing Path-related SNMP Variables 
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