

 i

JAVA-BASED INTELLIGENT NETWORK MONITORING

by

Haifeng Xi

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2000

Advisory Committee:

Professor John S. Baras, Chair
Professor Mark Austin
Professor Nick Roussopoulos

 ii

Copyright by

Haifeng Xi

2000

 iii

 ABSTRACT

Title of Thesis: JAVA-BASED INTELLIGENT NETWORK

MONITORING

Degree Candidate: Haifeng Xi

Degree and year: Master of Science, 2000

Thesis directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

The increasing complexity and importance of communication networks

have given rise to a steadily high demand for advanced network

management tools. Network Management in general consists of two

activities: monitoring and controlling. The monitoring part concerns

observing and analyzing the status and behavior of the managed networks,

and is therefore fundamental for network management. Unfortunately the

existing network monitoring paradigms have some drawbacks that prevent it

from satisfactory performance. One related problem is that these approaches

are characterized by high centralization which puts almost all the

computational burden on the management station. As a result, a huge

amount of raw data have to be transferred from network elements to the

central management station for further processing, causing heavy traffic,

manager overload and long operations delay. Another issue that becomes

increasingly noticeable is the absence of a mechanism for dynamic

extensions to agent functionality.

In this work we take advantage of some unique features of the Java

technology and present a framework for distributed and dynamic network

 iv

monitoring. Specialized Java objects known as Intelligent Monitoring

Objects, are delegated to a Java-based Extensible Management Server

(JEMS), where they carry out encapsulated monitoring functionality upon

management information collected locally from the underlying network

device. We have built a proof-of-concept prototype system using the JEMS

architecture and validated its effectiveness and flexibility compared with the

traditional centralized network management systems.

 v

ACKNOWLEDGEMENTS

I would like to express my deep regard for Dr. John S. Baras to whom I am
extremely grateful. He allowed me the liberty of exploring my areas of interest, and
the flexibility of writing the thesis off-campus. He provided me with the valuable
opportunity to work on real-world problems with smart people from both his Center
for Satellite and Hybrid Communication Networks and the industry.

I would like to thank Dr. Mark Austin and Dr. Nick Roussopoulos for
consenting to be on my thesis committee while they are on very tight schedules.

I feel extremely indebted to Mr. Hongjun Li, my best friend, who was always
available to discuss research issues, and to seek help on administrative stuffs while I
am away from campus. I would also like to express my gratitude to Dr. George
Mykoniatis for his advice and insights on object-oriented design.

This work was funded through NASA Cooperative Agreement NCC3-528,
the Advanced Telecommunications/Information Distribution Research Program
(ATIRP) Consortium sponsored by the U.S. Army Research Laboratory under the
Federated Laboratory Program, Cooperative Agreement DAAL01-96-2-0002,
National Science Foundation, Hughes Network Systems, and Northrop Grumman.

Most of all I would like to thank my wife without whom the completion of
this work would not have been possible. She has been a source of continuous
support and encouragement. Finally I would like to thank all my friends.

 vi

TABLE OF CONTENTS

List of Tables v

List of Figures vi

Chapter 1 Introduction 1
 Chapter Organization 2
 1.1 Network Management and Monitoring 3
 1.1.1 Components of Network Management System 3
 1.1.2 Limitations of Current Systems 4
 1.2 Contributions 5
 1.3 Intelligent Network Monitoring 6
 1.3.1 Advantages over Current Systems 7
 1.4 Related Work 8
 1.4.1 Management by Delegation 8
 1.4.2 Mobile Agents 9
 1.4.3 Web-based Network Management 10
 1.5 Thesis Roadmap 11

Chapter 2 Network Monitoring 12
 Chapter Organization 12
 2.1 Network Management Systems Architecture 13
 2.2 Simple Network Management Protocol 13
 2.3 Network Management Functions 15
 2.3.1 Network Management Functional Areas 16
 2.3.2 Network Monitoring and Control 19
 2.4 Network Monitoring Functions 20
 2.4.1 Network Observation 21
 2.4.2 Network Analysis 24

Chapter 3 Java-based Extensible Management Server 26
 Chapter Organization 26
 3.1 Remote Delegation Interface 27
 3.1.1 Formal Definition 27
 3.1.2 A Closer Look 29
 3.2 Why Java? 32
 3.2.1 The Language and Platform 33
 3.2.2 Classes and Interfaces 35
 3.2.3 Remote Method Invocation 37
 3.2.4 Dynamic Class Loading 39
 3.3 The JEMS Architecture 40

 vii

 3.3.1 Management Information Tree 41
 3.3.2 Delegation Service Provider 46
 3.3.3 Class Loader 48
 3.3.4 MIB Accessor 49

Chapter 4 Intelligent Monitoring Objects 51
 Chapter Organization 51
 4.1 Design Analysis 52
 4.2 The Monitor Class 53
 4.2.1 Operands-Operator Paradigm 53
 4.2.2 Object Initialization 56
 4.2.3 Benefits of Our Design 60
 4.3 Observers 62
 4.4 Analyzers 64

Chapter 5 Prototype JEMS System 69
 Chapter Organization 69
 5.1 Prototype JEMS System 70
 5.1.1 System Configuration 70
 5.1.2 Managed Objects Deployment 73
 5.1.3 System Startup Procedure 75
 5.2 JEMS vs. Centralized Monitoring 76
 5.2.1 Scalability 77
 5.2.2 Performance 78
 5.2.3 Extensibility 81
 5.3 Conclusions 82

Chapter 6 Conclusions 83
 Chapter Organization 83
 6.1 Summary 84
 6.1.1 Intelligent Network Monitoring 84
 6.1.2 Intelligent Monitoring via JEMS 85
 6.1.3 Intelligent Monitoring Validated 86
 6.2 Future Work 86
 6.2.1 User Authentication, Access Control and Privacy 86
 6.2.2 Manager-side APIs and Tools 87
 6.2.3 Intelligent Network Control 88
 6.2.4 Autonomous Management Domain with Jini 88
 6.2.5 Hierarchical Intelligent Network Management System 89

Appendices 90

References 93

 viii

LIST OF TABLES

1 Indicator and Statistic Types 22

2 Remote Delegation Interface 29

3 Observer Contexts for different Operators 62

4 Initialization Parameters for the OpRatio Class 63

5 Initialization Parameters for the OpThreshold Class 66

6 Analyzer Context for the OpThreshold Class 67

7 Configuration of the Bytecode Server 71

8 Configuration of the Proxy Machine 72

9 Configuration of the JEMS Server 72

10 Configuration of the Management Station 72

11 Port-related SNMP Variables 90

12 Signaling-related SNMP Variables 91

13 Incoming Path-related SNMP Variables 91

14 Outgoing Path-related SNMP Variables 92

 ix

LIST OF FIGURES

1 Components of typical Network Management Systems 3

2 IMOs delegated to JEMS 6

3 RDI Operations illustrated 29

4 Life-cycle of a delegated Object 31

5 The Java Platform 34

6 Rumbaugh Notation for depicting a Class 37

7 Rumbaugh Notation for depicting Inheritance 37

8 Remote Method Invocation 39

9 The JEMS Architecture 40

10 The MInfoTree Class 41

11 Inheritance Tree of Managed Objects 42

12 The Attribute Class 43

13 The SNMPAccessor Class 50

14 Inheritance Tree of the Monitor Class 53

15 Operands-Operator Paradigm 54

16 The abstract Operator Class 55

17 Threshold Comparing in Alarm Generation 64

18 The Inheritance Tree of Event Classes 65

19 The IfListenter Remote Interface 66

20 Prototype JEMS System 70

 x

21 Inheritance Tree of INFO Classes 73

22 Containment Subtree of INFOs in the MIT 74

 1

Chapter 1 Introduction
This thesis introduces Java-based Intelligent Network Monitoring, an

efficient approach to monitoring networked systems using the proposed Java-based

extensible management server and various intelligent monitoring objects.

The increasing importance of communication networks has given rise to a

high demand for advanced network management. A network management system

handles problems related to the configurability, reliability, efficiency, security and

accountability of the managed distributed computing environments. It is concerned

with monitoring, analysis and control of network behaviors to ensure smooth

network operations. Accurate and effective monitoring is fundamental and critical

for network management, and is the focus of our work presented in this thesis.

In the mainstream network monitoring system, operational data are collected

by hardwired instrumentation in network elements and stored in Management

Information Bases (MIBs). For example, the MIB in an ATM switch can include

predefined counters and gauges about various traffic statistics for virtual circuits,

virtual paths and switch ports. This operational data is gathered, usually remotely

over a network, by a central Network Management Station (NMS) using a network

management protocol. The NMS presents the data to operations staff who are

responsible for monitoring, analyzing and controlling the network. This centralized

and static management paradigm does not scale for the size and complexity of

emerging heterogeneous broadband networks, neither does it adapt to unforeseen

management requirements. Therefore, new technologies are needed to decentralize

 2

management functions in a dynamic way.

Intelligent monitoring is the conception brought forward in this thesis to

address the aforementioned problems. Management applications distribute or

delegate monitoring objects to Java-based extensible management servers (JEMS)

running at network elements. These objects will automate the monitoring and

analysis of corresponding network devices. For example, a delegated object can

monitor a MIB variable and compare its value against some pre-set thresholds to

detect potential operations problems. Monitoring intelligence and responsibilities

can thus be decentralized. Furthermore, when creating and manipulating a delegated

object, the JEMS takes advantage of Java’s dynamic class loading feature to

download code over the network, which results in a highly adaptable monitoring

server structure whose functionality can be dynamically extended.

Chapter Organization

Section 1.1 outlines network management/monitoring, and limitations of current

network monitoring systems.

Section 1.2 summarizes the contributions of this thesis.

Section 1.3 briefly introduces intelligent network monitoring and its benefits.

Section 1.4 looks into several research efforts that related to our work.

Section 1.5 presents a roadmap of the remaining chapters in this thesis.

 3

1.1 Network Management and Monitoring

Network management systems handle problems related to the configurability,

reliability, efficiency, security and accountability of the managed distributed

computing environments, and are concerned with monitoring and control of network

behaviors to ensure smooth network operations. The network monitoring portion of

network management is concerned with observing and analyzing the status and

behavior of the managed network devices.

1.1.1 Components of Network Management System

A conventional network management system consists of two classes of

components: managers and element agents. Figure 1 depicts a diagram of the

Management
 Station

GUI

manager

.

LAN

element agents

Network
Elements

Figure 1: Components of typical Network Management Systems

 4

organization of a typical network management system. Applications in the central

management station assume the manager role, and execute with a GUI for human

managers to perform certain monitoring functions. Element agents are server

processes running in each involved manageable network entity. These agents collect

device data, stores them in the Management Information Bases (MIBs), and support

a management protocol, e.g., Simple Network Management Protocol (SNMP) [1,2].

Manager applications retrieve data from element agents by sending corresponding

requests over the management protocol.

For example, the SNMP agent in an ATM switch collects information about

the signaling protocol, the traffic status of virtual circuits etc. and stores it in a

predefined MIB. A management application retrieves this data using the SNMP

GetRequest command, processes and analyzes them, and then displays the result

graphically.

1.1.2 Limitations of Current Systems

Current network monitoring/management systems favor a centralized

framework where most of the monitoring intelligence and computation burdens are

allocated to the manager applications executing at the central station. This

establishes several barriers to effective network monitoring, especially for emerging

high-speed networks. Several major problems are outlined in the following

paragraphs.

Given the centralized allocation of management responsibilities, all the

monitoring interactions and processing have to go through the management station,

 5

which becomes the bottleneck and single point of failure. This leads to a system that

hardly scales up to large and complex networks.

Since manager applications can only interact with the network elements

through low-level general-purpose interfaces, any non-trivial monitoring task

requires huge volume of “raw” SNMP variables being transferred to the management

station, which is known as the micro-management problem. Micro-management

results in high communication overheads, and significant operation delays if the

managed network is wireless or satellite-based.

The set of services offered by the element agents is fixed, strictly defined by

standards, and is accessible through interfaces that are statically defined and

implemented. This service set cannot be modified or extended on the fly without the

recompilation, reinstallation, and reinstantiation of the server process. This rigid and

static agent structure hinders the development of effective monitoring systems in two

ways: (1) improvement of the agent usually involves high-cost activities and may

harm system availability; (2) it does not provide any mechanism to differentiate

between and take advantage of the capabilities of different types of devices.

1.2 Contributions

The major contributions presented in this thesis include:

Java-based Extensible Management Server (JEMS). A model that supports

intelligent, i.e., distributed and dynamic, network monitoring. JEMS runs as a server

process in the managed network element and consists of: (1) the Remote Delegation

Interface (RDI) through which management applications can remotely delegate Java

 6

objects, exchange information with these objects and control their execution; (2) a

runtime environment that implements the RDI.

Intelligent Monitoring Objects (IMOs). Specialized Java objects that perform

network monitoring functions. IMOs are distributed to JEMS at the network devices

where the managed resources are located. We have categorized common monitoring

functions and encapsulated them into corresponding IMOs. IMOs are implemented

in such a way that they work closely with the underlying JEMS to provide for an

intelligent monitoring system.

1.3 Intelligent Network Monitoring

The approach of intelligent network monitoring is to dynamically distribute

monitoring functionality, in the form of IMOs, to JEMS at the devices where the

managed resources are located. Specifically speaking, intelligent monitoring means

two things:

First, manager applications can distribute monitoring intelligence to the

managed network element. Instead of bringing data from the devices to the

central station, parts of the monitoring applications themselves, encapsulated in

IMOs
 remote
manager

R
D

I

J E M S

 managed
 device

Figure 2: IMOs delegated to JEMS

 7

various IMOs, are actually running in the managed devices (Figure 2). The manager

host and the network as a whole can then be relieved from the bottleneck and the

micro-management problems.

Secondly, the network element’s agent functionality can be dynamically

modified or extended. Through the remote delegation interface (RDI), manager

applications can choose to distribute/delete whatever IMOs to/from the device, at

whatever time they like. Furthermore, the code of a Java class need not be available

beforehand to the JEMS when a corresponding object is instantiated upon a

delegation request from the manager. JEMS can download class code over the

network and link it to the runtime system on demand, which makes it truly

dynamically extensible.

1.3.1 Advantages over Current Systems

Intelligent network monitoring allows for dynamic extensions to monitoring

functionality as the network evolves. For instance, if a new monitoring requirement

is identified after the system is up and running, we can create a corresponding IMO

that encapsulates the functionality and delegate it to the JEMS, without having to

bring the system offline.

By recognizing and taking advantage of the difference in resource availability

of various network devices, manager applications can have flexible and efficient

usage of these resources. For devices with a lot of resources (e.g., memory and CPU

processing power), the manager can delegate large numbers of IMOs to them,

making full use of local computing to reduce management traffic overhead and

 8

delay. This is a great advantage over traditional static systems, where the size and

funtionality of network agents are fixed once they start running, and extra device

resources can not be used to improve the efficiency of network monitoring. For

devices with relatively few resources, the manager can always switch back to the

traditional polling-based paradigm.

Similarly, remote managers can dynamically adapt to changes in the

availability of network and computing resources. For example, when the network is

overloaded, manager applications can encapsulate related monitoring functions in

some IMOs that are distributed to the JEMS and analyze data locally at the devices,

relieving the network from the traffic overloading that frequent polling would

otherwise have worsened.

1.4 Related Work

There are several research efforts that are related to our work in one way or

another. We will try to identify the strength and weakness of each of them and to

spell out their distinctions from our system.

1.4.1 Management by Delegation

Management by Delegation (MbD) [19] is one of the earliest efforts towards

decentralization and increased flexibility of management functionality, and is

probably the most successful one. Its management architecture includes a

management protocol, device agents, and an elastic process run-time support on each

device. Instead of exchanging basic client-server messages, the management station

can specify a task by packing into a program a set of agent commands and sending it

 9

to the devices involved, thus delegating to them the actual execution of the task.

Such execution is completely asynchronous, enabling the management station to

perform other tasks in the mean time and introducing a higher degree of parallelism

in the whole management architecture. MbD greatly influenced later research and

exploration along this direction [12,13,14].

However, there are two disadvantages with MbD that probably have affected

its application: (1) Since the work was done before 1996, when the Java platform

was not so widely recognized and deployed by industry as it is today, the proof-of-

concept MbD system was implemented with a proprietary server environment

written in the C programming language – we hardly see any working systems that

are built upon this proprietary environment. (2) The MbD server environment is so

comprehensive and complicated that it can turn out to be an “overkill” in most real-

world applications.

Still, we must give credit to MbD because it can be considered a precursor of

the ideas discussed here. The major difference is that we have adopted the standard

Java platform and, from the very beginning, aimed to build a portable, simple, yet

powerful framework that can be easily understood, implemented and enhanced.

Because of the wide installation base and intrinsic portability of the Java platform,

we expect to see quick adoption of our system (or a derived version of it) in some

relevant real-world applications.

1.4.2 Mobile Agents

Using mobile agents in decentralized and intelligent network management

 10

[13] is a great leap from client-server based management pattern. The proposal is

that an intelligent agent containing management code can traverse in the managed

network from node to node, autonomously retaining the state of its computation

whenever it moved to a different node.

There are two potential problems with this method: (1) It proposed a change

to network management paradigm that is so radical that even the authors themselves

realized that “further validation with quantitative data” would be necessary to prove

its effectiveness. (2) Their proposed agents were written in specialized agent-

oriented scripting languages such as Telescript [22] and Agent Tcl [23], which are

not available or supported on many platforms, posing serious portability problems.

In contrast, our system still retains a client-server architecture, and assumes a

management server in each device concerned. Therefore, while IMOs provide

similar intelligent monitoring functions as their mobile agent counterparts, their

behaviors are much easier to understand and anticipate, making them more

straightforward to integrate and co-exist with traditional systems.

1.4.3 Web-based Network Management

We are by no means the first people thinking of using Java technology in

network management [14,15,16]. But so far we have only seen efforts focused on

so-called Web-based Network Management, which addresses the problem of

integrating manager applications with the Web using Java applets. This is a well-

justified idea that attempts to provide a cost effective way of providing uniform

management services to managers and potential customers through such common

 11

client-side interface as Web browsers.

Instead, we have used Java for a totally different purpose, which is not to

facilitate client-side presentation or Web integration, but to use Java’s native support

for distributed computing, remote class downloading and object serialization to

implement dynamic and intelligent network monitoring. However, it makes perfect

sense to consider including Web-based front-ends into our future enhanced systems.

1.5 Thesis Roadmap

We will begin each chapter with a brief discussion of the main challenges and

solutions presented in the chapter, followed by an outline of the organization of

sections in the chapter.

Chapter 2 introduces network management and network monitoring. It

illustrates the structure of conventional systems and points out its limitations. It also

summarizes the most commonly used monitoring functions.

Chapter 3 presents the JEMS architecture. It defines the RDI, explains why

Java is chosen as the foundation technology, and then examines the design and

implementation of the JEMS.

Chapter 4 describes intelligent monitoring objects. It explains the design of

different types of objects, and shows, via examples, how they work within the JEMS

framework to provide for an intelligent monitoring system.

Chapter 5 evaluates intelligent monitoring and demonstrates its merits. It

contrasts intelligent monitoring with centralized monitoring approaches within some

simple but typical scenarios.

 12

Chapter 6 draws conclusions and points out several future work directions.

 13

Chapter 2 Network Monitoring

The main goal of network management systems is to ensure the quality of

services (QoS) that the network provides. To achieve this, network managers must

monitor and control the connected elements in the network.

The network monitoring portion of network management is concerned with

observing and analyzing the status and behavior of the network devices that make up

the configuration to be managed. Accurate and effective monitoring is therefore

fundamental and critical for the implementation of various network management

functions.

Chapter Organization

Section 2.1 outlines the architecture of current network management systems.

Section 2.2 examines SNMP, the dominating network management protocol.

Section 2.3 introduces network management functions.

Section 2.4 summarizes network monitoring functional requirements.

 14

2.1 Network Management Systems Architecture

Figure 1 depicted the architecture of a conventional network management

system. In a managed network element (e.g. router, switch or host), an agent, which

is typically a small-footprint program running as a daemon process, collects device

information in a predefined manner and stores them in the MIB. Management

applications execute on some dedicated workstations located in the network

operation center (NOC) and interface with human operators. These applications

perform specific management functions and assume a manager role. They use a

management protocol to periodically poll the agents in the managed network

devices, requesting data of interest. Information retrieved from agents is some raw

data (e.g., counters or gauges) and managers always have to perform certain amount

of aggregating computation, for instance, figuring out min/max values, averages,

variances etc., before any meaningful presentations can be forwarded to the NOC

operators.

By bringing all the low-level data to the management stations, where they are

further processed, traditional network management systems assume a centralized

client-server paradigm, which poses some serious limitations that were presented in

Section 1.1.2.

2.2 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) [1,2] is a prevailing

network management protocol designed and standardized by the IETF to provide for

remote monitoring of IP-based networked devices. It is the most widely used

 15

protocol in current network management systems. Five types of protocol data units

(PDUs) are defined for SNMP: three of them deal with reading data (GetRequest,

GetNextRequest and GetResponse), one deals with setting data (SetRequest), and the

last one, Trap, is used for monitoring network events such as device start-ups or

shut-downs. In addition to the protocol itself, there are three other important

components in an SNMP-based system: MIB, agent and manager.

Management Information Base (MIB) represents the information model of

the managed device defined as a collection of variables, each of which has a name

and syntax. For example, the Internet standard RFC1213 [18] defines the MIB for IP

host management. In RFC1213, for instance, the variable that keeps record of the

number of IP packets received is identified by the string name

iso.org.dod.internet.mgmt.mib-2.ip.ipInReceives, and has the syntax as a Counter.

Managers should have access to the definition files of the MIBs in those element

agents, so that they know what data are available from the agents. Instantiated MIBs

are organized as static trees with variable values stored at tree leaves. To retrieve the

value of a specific MIB variable, a GetRequest command needs to provide the

identity of the variable, which is derived from its name.

An SNMP agent runs as a server process in the managed network device,

maintains an instantiation of the corresponding MIB, waits for and responds to

SNMP PDUs from managers. Almost all the major internetwork hardware vendors

provide SNMP agents with their products. For example, in a UNIX workstation,

there is usually a daemon process, snmpd, running as the SNMP agent for the host.

 16

SNMP managers are user applications that perform management functions by

exchanging SNMP PDUs with SNMP agents in managed network elements.

Using SNMP to retrieve data from network devices is only the very first step

to network management. In this sense, “SNMP” is quite a misleading name since the

protocol itself supports nothing more than remote access to primitive device

information. It is based on the functional level processing of such primitive

information in the central management stations that the core of a network

management system is built up.

2.3 Network Management Functions

There are various functional level requirements of network management.

The most famous and frequently cited categorization is those five functional areas

defined by the ISO, known as configuration, fault, performance, security and

accounting management [1,20].

Among these five areas, fault and performance management are of the

greatest interest to us, because they address the problems of system availability and

QoS guarantee of the managed network. Once the network is initialized,

configuration management is mainly used as a reconfiguration service by the fault,

performance and security management to carry out their respective control

operations. Security and accounting management are often handled by departments

other than NOC because they involve a lot of specialized knowledge and procedures,

such as authentication and encryption (security management), and pricing and billing

(accounting management).

 17

2.3.1 Network Management Functional Areas

Configuration Management

Modern communication systems are composed of physical and logical

subsystems that can be configured to perform many different tasks. The same

device, for example, can be configured to act either as a gateway or as an end system

node, or both. Once the operator decides how he intends to use the device, he can

choose to set values for the appropriate set of attributes associated with the device.

Configuration management is the aspect of network management which

embodies the functionality to assign that set of attributes to the device. It concerns

with initializing a network and gracefully shutting down part or all of it. It is also

concerned with maintaining, adding, and updating the relationships among

components and the status of components themselves during network operations.

While the network is in operation, configuration management provides the ability to

reconfigure the network in response to performance evaluation or in support of fault

correction or security checks.

Fault Management

To maintain proper operation of a complex computer network, care must be

taken so that the system as a whole, and each individual component, is in acceptable

working order in presence of network faults, abnormal conditions requiring

management attention to repair. Fault management is that aspect of network

management which attends to these concerns.

The first and essential requirement of fault management is to detect the

 18

existence of a potential fault as quickly as possible, which demands continuous

monitoring (i.e., observation and analysis) of relevant network operation statistics.

Once a potential fault is detected, a corresponding alarm is fired, which

triggers the fault management module to identify or isolate the fault, i.e., to find out

the root cause of the abnormality, if any. This process can be very difficult and often

involves correlation of multiple alarms and even various tests, such as connectivity

test, protocol integrity test and so on.

The result of fault identification could be: (1) no fault really exists; (2) the so-

called fault is actually a performance degradation, and therefore should be further

handled by performance management; or (3) there really is a fault and its root cause

has been identified. In the last case, fault management will try to correct the fault. It

can automatically reconfigure or modify the network in such a way that the impact

on performance without the failed component(s) is minimized. Or it will notify the

operator to repair or replace the failed components to restore the network to its initial

state.

Performance Management

Whereas fault management is concerned with whether all or part of the

network is working, performance management is concerned with how well the

network or its parts are working, or the quality and effectiveness of network

communications.

Similar to fault management, performance management comprises two broad

functional categories – network monitoring and network control. Monitoring is the

 19

process of tracking and analyzing activities on the network. The controlling part

enables performance management to make adjustments or reconfiguration to

improve network performance. Some of the performance issues of concern are:

Is the link capacity under- or over-utilized?

Has throughput been reduced to an unacceptable level?

Are there any bottlenecks?

To deal with these concerns, the network operator must: (1) select a set of

resource attributes to be monitored in order to assess performance levels, for

example, utilization, throughput, rejection ratio of connection requests etc.; (2)

associate appropriate metrics and values with relevant attributes as references of

different levels of performance, for instance, one or more threshold values could be

associated with an attribute; (3) continuously update the values of those indicator

attributes and check them against the reference values. If the value of an attribute

crosses a pre-defined threshold, a performance alarm could be fired, so that the

performance management may step in and take corrective or preventive actions to

keep the network working at an acceptable performance level. For example, if a link

is or will be over-utilized, some traffic can then be re-routed through other switch

ports for network traffic balancing.

Security Management

Security management is responsible for providing all the security related

features such as authorized access, authentication and encryption. It maintains and

distributes passwords and other authorization or access-control information, and

 20

generates, distributes and manages encryption keys. Security management is also

concerned with monitoring and controlling access to computer networks and the

network management information obtained from network nodes.

Accounting Management

 This functional area is responsible for keeping a record of the usage of

network resources by the network users. Each user’s usage must be monitored and

recorded, and the billing information updated accordingly. Billing information

should be sent to the customers regularly.

2.3.2 Network Monitoring and Control

Orthogonal to the partition of network management into five functional areas,

we can divide network management into two logical components, i.e., network

monitoring and network control. Actually, each of the five functional areas

examined in the last section can be roughly divided into these two portions.

Network Monitoring

Network monitoring further involves two steps: observation and analysis:

Observation. The process of maintaining up-to-date values of a set of

indicators, which are some resource properties whose values are used to measure or

evaluate the working status of a certain aspect of network functionality. What

indicators to observe and how to compute their values are the two questions we have

to answer.

Analysis. The process of detecting abnormal or deviating conditions based

on observations made on the chosen set of indicators. The problems to address in

 21

this part are: how to detect abnormality (usually by comparing the indicators’ values

with some pre-specified “norms”), and how to deal with it once detected (generation

of alarms is a common solution).

For example, security monitoring concerns observing and analyzing user

access to computer networks in order to detect erroneous, illegal or malicious user

operations that might compromise network security. Performance monitoring

concerns observing and analyzing performance-related indicators, such as utility,

throughput, availability etc., trying to detect performance degradations. Fault

monitoring concerns observing and analyzing fault-related indicators (a.k.a.

symptoms) in an effort to detect potential faults.

Network Control

Network control completes the other half of the management cycle by

providing managers with the ability to modify or reconfigure certain parts of the

network in order to restore it back to an acceptable working level when some

abnormalities are detected and reported by network monitoring. Note that, because

of the existence of uncertainty in observation, the reported abnormality has to be

identified before any control actions can be taken. This identification process often

involves complex global analyzing techniques such as event correlation [21], which

is not considered part of network monitoring in this thesis.

2.4 Network Monitoring Functions

In this section, we look into details of network monitoring functions and try

to answer those questions raised in the last section.

 22

Note that our discussion is based on performance and fault monitoring only,

because they comprise a significant portion of overall network monitoring activities

and are where network QoS problems are addressed. Also note that the boundary

between performance indicators and fault symptoms is being constantly blurred. For

example, an unusually high packet retransmission rate could either be a performance

indicator if it is caused by link over-utilization, or a fault symptom if it is due to an

out-of-sync physical link that has a high bit error rate. Therefore it is not unusual to

see a trend in the network management community to treat performance problems as

“soft” faults. In this thesis, unless otherwise specified, network monitoring means

the broader sense “performance-fault monitoring.”

2.4.1 Network Observation

This section answers the questions asked in Section 2.3.2 about network

observation, i.e., what types of indicators to observe, and how their values are

computed.

Indicator Types

Most indicators that are useful for network monitoring fall into two

categories: rate-oriented and ratio-oriented. Rate-oriented indicators reflect the

varying speed of some underlying network attributes. A ratio-oriented indicator

represents the proportional relationship between two quantities, usually in terms of

percentage. Because of the inherent statistical nature of these indicators, they are

sometimes further processed to generate some corresponding statistics, based on

which analysis is finally carried out. Table 1 gives a breakdown of major indicators

 23

in each category, and the most commonly used statistics.

Rate-Oriented Indicators
Throughput The rate (count per unit time) at which some network events

occurs, e.g., packet transfers, transactions.
Error Rate The rate at which some errors occur, e.g., retransmission.

Ratio-Oriented Indicators
Utilization The percentage of the theoretical capacity of a resource (e.g.,

transmission line) that is being used.
Availability The percentage of time that a network system, a component, or a

software module is available for a user.
Accuracy The percentage of time that no errors occur in the transmission

and delivery of information.
Indicator Statistics

Average The average of an indicator over a specified sample size; various
averaging methods could be used, e.g., smoothing average.

Variance The variance of an indicator over a specified sample size.
Covariance The covariance of two indicators over a given sample size.

Table 1: Indicator and Statistic Types

Note that, for fault monitoring, some other special indicators are very useful

and must be monitored, among them are those SNMP traps representing the up/down

status of system hardware such as network interface cards (NICs), communication

links, switch ports and so on.

Indicator/Statistics Computation

In SNMP MIBs, there are only such primitive data types as counter, gauge

and time ticker. The values of indicators and their statistics have to be computed

based on these raw data.

(1) Rate-Oriented Indicators.

tvariable SNMPofvaluerate ∆∆ /) (=

To calculate the value of a specific rate-oriented indicator, therefore, the

relevant SNMP variable and the time interval t∆ have to be specified. For example,

 24

to calculate the error rate of received IP packets, we need to do such a calculation:

tceivesReipInrateerror ∆∆ /)(=

The value of the SNMP variable ipInReceives (which is a counter) needs to

be polled at the beginning and the end of the time interval respectively to obtain the

difference)(ceivesReipIn∆ . To make the value up-to-date, the computation is

performed every t∆ seconds. The precision of this error rate depends on the length

of t∆ and how frequently the SNMP-agent updates the value of ipInReceives.

(2) Ratio-Oriented Indicators.

)# ()2# ()1# (
)# (

kvaluevaluevalue
ivalue

ratio
∆∆∆

∆
+++

=
L

To calculate the value of a ratio-oriented indicator, k SNMP variables and a

computation cycle t∆ have to be specified. For example, to calculate the call

admission ratio (a form of availability) for a virtual circuit in the Fore ATM switch,

during a time interval of t∆ , the following formula is used:

)()()(
)(

resCallsFailu2931qRejectionsq2931CallssCompletionq2931Calls

sCompletionq2931Calls

∆+∆+∆
∆

Each of the three SNMP counter variables involved (defined in Fore-Switch-

MIB) has to be polled twice, once at the beginning, the other at the end of the

computation cycle. The ratio value is updated every t∆ seconds.

(3) Indicator Statistics.

To calculate a statistic from an indicator, we need to have the sample size S,

which is usually given by: tTS ∆∆ /= (where T∆ is the sampling period, and t∆ is

the updating cycle of the indicator value). For example, if we want to obtain the

 25

average value of the call admission ratio during a sampling period of T∆ , then we

need to do the following computation:









×= ∑

=

S

i
iratioadmissioncall

S
average

1

__
1

2.4.2 Network Analysis

Abnormality Detection

Abnormality detection is usually accomplished by comparing the values of

indicators or their statistics to some pre-specified normal values. The simplest form

of normal values are thresholds. When a threshold is crossed (from below or from

above, as applied to different situations), an abnormal condition is considered to

have occurred or to be occurring. More complex norms can be a set of values that

comprise a pattern. When the degree to which the indicator/statistics values match

this pattern has increased a predefined threshold, an abnormal condition is supposed

to be there.

Those normal values are usually obtained beforehand through learning

processes, which comprise a big research area in network management. Actually,

one of the most challenging and controversial problems in network management is

how to correctly interpret the meaning of those many indicators. This is not the

major concern of this thesis, though.

Abnormality Reporting

Once a network abnormality is detected, a corresponding alarm is generated

and sent to the network control module, where further (global) analysis and control

 26

actions are taken. Generally, an alarm contains such information as the time when it

was created, the name of the alarm, the condition under which it was fired and so on.

 27

Chapter 3 Java-based Extensible Management Server

In this thesis, we propose to build intelligent network monitoring systems to

address some of the problems existing in current systems. As is suggested by our

work, management applications distribute or delegate Intelligent Monitoring Objects

(IMOs) to Java-based Extensible Management Servers (JEMS) running at network

elements. JEMS is actually a Java-based element agent whose functionality can be

extended by dynamically delegating various IMOs to it. IMOs are Java objects that

automate the monitoring of corresponding network devices.

This chapter and the next chapter discuss the design and implementation of

the JEMS and IMOs respectively.

Chapter Organization

Section 3.1 examines JEMS’s Remote Delegation Interface (RDI).

Section 3.2 explains why Java is chosen as the platform for JEMS.

Section 3.3 explores the design and implementation of JEMS.

 28

3.1 Remote Delegation Interface

Contrary to an SNMP agent, which has a fixed set of services, JEMS is an

object-oriented element agent that provides extensible management services. Such

extensibility comes from its Remote Delegation Interface (RDI) through which

manager applications can dynamically delegate, remotely control and communicate

with Java objects that perform monitoring functions in the managed network device.

Since these objects are the entities that actually provide the functionality of the

management server, and they can be dynamically downloaded to and created at the

network element, we say that the management server is dynamically extensible.

Section 3.1.1 formally defines RDI in terms of delegation operations, and

Section 3.1.2 presents a more detailed look at the RDI and how remote managers

interact with JEMS through the RDI.

3.1.1 Formal Definition

An object-oriented process >≡< SCP , consists of a code set C and a

process status set S. },...,,{ 21 kcccC ≡ is a set of class codes that P can execute,

where ci represents the code segment for a certain class. The process status

},...,,{ 21 moooS ≡ is defined by the set of all the objects in the process. An object is

defined by),(ii
i sco = , where Cc i ∈ is the class code associated with object oi, and

si is the status of the object, such as the values of its data members and the execution

state of its associated code ic . Note that m is usually larger than k.

The JEMS process PJ is characterized by two dynamic sets of C and S, which

 29

can be modified via remote invocations of a set of delegation operations in the RDI.

These operations allow manager applications to (1) extend the functionality of JEMS

by delegating objects to it, (2) remotely control the execution of these objects, and

(3) communicate with these objects.

Extensibility Operations

RDI_create operation incorporates a new object),(sco = into >≡< SCPJ , .

>∪∪<>< }{ },{ ,, oScCoSC a

RDI_delete operation deletes an object),(sco = from PJ.

>−<>< }{ , ,, oSCoSC a

Control Operations

RDI_disable operation suspends the functioning of object),(sco = .

>∪−<><)},{(}{ , , disabledcoSCSC a

RDI_enable operation starts or resumes the functioning of object o.

>∪−<><)},({}{ , , runningcoSCSC a

Communication Operations

RDI_set operation changes values of attributes of an object),(sco = .

>′∪−<><)},{(}{ , , scoSCSC a

RDI_get operation returns the value of some object attributes.

This operation does not change the state of relevant objects.

 30

3.1.2 A Closer Look

RDI operations are summarized in Table 2 and illustrated in Figure 3:

RDI Operations

RDI_create (className, objName);
RDI_delete (objName);
RDI_enable (objName);
RDI_disable (objName);
RDI_set (objName, attrName, attrValue);

RDI_get (objName, attrName);

Table 2: Remote Delegation Interface

(1) Creation of an object in the JEMS is requested, using RDI_create

operation. className specifies the name of the Java class from which the object is

to be instantiated. objName is the name that will be used to identify the new object.

(2) The code for class className is downloaded over the network (if not

already locally available) and dynamically linked to the runtime system, and a new

Manager JEMS
RDI_create

Bytecode
Server

RDI_enable

RDI_disable

RDI_get

RDI_set

RDI_dele te

Figure 3: RDI Operations illustrated

 31

object is instantiated from the class.

(3) The manager can suspend and resume the functioning of the object, using

RDI_disable and RDI_enable.

(4) The remote manager communicates with an enabled object using RDI_set

and RDI_get operations.

(5) The manager removes an object using RDI_delete operation.

Note that the entities invoking a RDI operation may be either remote or local

to the network device where the JEMS is running. We now examine each of these

operation categories in more detail.

Extensibility Operations

Using RDI_create, a remote manager process requests that an object be

incorporated into the management server PJ. The transfer of the class code from the

bytecode server to the JEMS is performed by a class loader using Java’s dynamic

class loading feature. For an RDI_create to succeed, the following actions must be

completed:

The class code must be checked to make sure that it is a legal Java class.

The new object and its code must fit within the resources available in PJ.

These two actions are performed implicitly by the underlying Java runtime

environment, without any explicit application intervention. When an object is

successfully instantiated, it has a unique name specified by the parameter objName.

This name identifies the object and is later used to control and communicate with it.

A remote manager can delete or remove a delegated object using RDI_delete.

 32

For an RDI_delete to succeed, the objName parameter must refer to a valid object.

Control Operations

Control operations allow remote managers to suspend or resume the

functioning of an object. Any managed object, when first instantiated in PJ, is

inactive before it is enabled by the remote manager through an RDI_enable

operation. An inactive or disabled object does not perform its normal monitoring

function nor is it allowed to communicate with remote managers, until it is turned on

and becomes an active object via an RDI_enable operation. An active object can be

turned off at any time through an RDI_disable operation.

Communication Operations

RDI supports communications between a remote manager and delegated

objects by allowing the manager to get or set the value of certain object attributes.

Using the RDI_set operation, the remote manager can change the attribute

values of specific objects, thus changing the behavior of these objects. The manager

doesn’t exist

disabled active

create delete

get
set

disable

enable

delete

Figure 4: Life-cycle of a delegated Object

 33

process can get back information about delegated objects by retrieving attribute

values from them using the RDI_get operation.

Figure 4 is a state diagram that depicts the life-cycle of a delegated object.

3.2 Why Java?

Taken individually, the characteristics of Java can be found in a variety of

software development platforms. What’s completely new is the manner in which

Java technology and its runtime environment have combined them to produce a

flexible and powerful programming system. Almost no other object-oriented

programming languages or computing platforms provide all at once the following

features, which are needed by the JEMS design:

Cross-platform Compatibility. In the proposed intelligent network monitoring

framework, JEMSes can be running on UNIX or NT workstations, or IBM

mainframes. Manager applications can run on different desktop environments such

as UNIX, Linux, Windows or MacOS. Without a common platform, we have to

write code with the same or similar functions for each of these platforms separately,

which is very costly, time-consuming and error-prone. Java’s architecture-neutral

and portable ability makes it the an ideal platform base for a hybrid system like our

network monitoring framework.

Distriubted Computing. The interactions between manager applications and

JEMSes require distributed computing support from the programming language.

Java provides native distributed programming API through Remote Method

Invocation (RMI). Compared with other distributed programming platforms such as

 34

DCOM or CORBA, Java RMI is the easiest to learn and use. Later you will see that

it is very straightforward to implement the RDI with RMI.

Code on Demand. The dynamic feature of our framework requires support

for code-on-demand (CoD) paradigm, i.e., objects in JEMS can download and link

on-the-fly the code from some class server to perform a given task. Traditionally,

CoD is only supported by mobile code languages (MCL), such as Telescript [22] and

Agent Tcl [23], for mobile agent programming. With the dynamic class loading and

linking ability, Java is actually a weak MCL that directly supports CoD.

Section 3.2.1 gives basic ideas about Java as both a language and a platform,

and explains how it provides cross-platform compatibility. Section 3.2.2 introduces

Java classes and interfaces, which are fundamental concepts repeatedly referred to in

this thesis. Section 3.2.3 explains how Java provides distributed computing support

via RMI, and Section 3.2.4 discusses a most important Java feature – dynamic class

loading.

3.2.1 The Language and Platform

The Java Programming Language

Java is a high-level programming language that is object-oriented,

interpreted, architecture-neutral and portable, distributed, dynamic, and secure. Each

of the preceding buzzwords is explained in The Java Language Environment white

paper [7].

Java is unusual in that each Java program is both compiled and interpreted.

With a compiler, a Java class is translated into an intermediate language called Java

 35

bytecodes  the platform-independent codes interpreted by the Java interpreter. You

can think of Java bytecodes as the machine code instructions for a Java Virtual

Machine (JVM). Every Java interpreter is an implementation of the JVM.

Java bytecodes help make “write once, run anywhere” possible. You can

compile your Java program into bytecodes on any platform that has a Java compiler.

The bytecodes can then be run on any implementation of the JVM. For example, the

same Java program can run on Solaris, Windows NT, and Macintosh.

The Java Platform

The Java platform [8] differs from most other platforms in that it is a

software-only platform that runs on top of other hardware-based platforms. Most

other platforms are described as a combination of hardware and operating system.

The Java platform has two components: the JVM and the Java Application

Programming Interface (Java API) [9]. JVM is the base for the Java platform and is

ported onto various hardware-based platforms. The Java API is a large collection of

ready-made software components that provide many useful capabilities, such as

graphical user interface (GUI) widgets. The Java API is grouped into packages of

related components. The following figure depicts a Java program, such as an

application or applet, that is running on the Java platform. As the figure shows, the

Hardware-based Platform

Java Virtual Machine

Java API

Java Program

Figure 5: The Java Platform

 36

Java API and Virtual Machine insulates the Java program from hardware

dependencies.

As a platform-independent environment, Java can be a bit slower than native

code. However, smart compilers, well-tuned interpreters, and just-in-time compilers

can bring Java’s performance close to that of native code without threatening

portability.

3.2.2 Classes and Interfaces

Classes and Objects

A class is a software construct that defines the data (state) and methods

(behavior) of the specific concrete objects that are subsequently constructed from

that class. In Java terminology, a class is built out of members, which are either

attributes or methods. Attributes are the data for the class. Methods are the sequences

of statements that operate on the data. Attributes are normally specific to an object

 that is, every object constructed from the class definition will have its own copy

of the attribute. Such attributes are known as instance variables. Similarly, methods

are also normally declared to operate on the instance variables of the class, and are

thus known as instance methods.

A class in and of itself is not an object. A class is like a blueprint that defines

how an object will look and behave when the object is created or instantiated from

the specification declared by the class. You obtain concrete objects by instantiating a

previously defined class.

Subclasses are the mechanism by which new and enhanced objects can be

 37

defined in terms of existing objects. Subclasses enable you to use existing code that

has already been developed and, much more important, tested, for a more generic

case. You override the parts of the class you need for your specific behavior. Thus,

subclasses gain you reuse of existing code  you save on design, development, and

testing. Java implements what is known as a single-inheritance model: a new class

can subclass (extend, in Java terminology) only one other class.

Java Interfaces

Interfaces were introduced to Java to enhance Java’s single-inheritance

model. An interface could be thought of as a pure abstract class. It allows the

programmer to establish the form for a class: method names, argument lists and

return types, but no instance variables or implementation code. An interface says:

“This is what all classes that implement this particular interface will look like.”

Thus, any code that uses a particular interface knows what methods might be called

for that interface, and that’s all. So interfaces are used to establish protocols between

classes, they promote flexibility and reusability in code by connecting objects in

terms of what they can do rather than how they do it.

A class implements an interface by implementing all the methods contained

in the interface. In contrast, inheritance by subclassing passes both a set of methods

and their implementations from superclass to subclass. Whereas a class can inherit

from only one superclass, a class can implement as many interfaces as it chooses to.

 38

Notation

The Rumbaugh notation [3] is used to depict Java object models throughout

this thesis. In the Rumbaugh notation a class is depicted as shown in Figure 6. The

top-most rectangle is used for the class name. The class attributes are represented in

the middle rectangle and the bottom rectangle is used to show the methods that can

be called on or by the class. An inheritance relationship is depicted in the Rumbaugh

notation as shown in Figure 7.

3.2.3 Remote Method Invocation

In distributed object systems, communication between program-level objects

residing in different address spaces is needed. In order to match the semantics of

object invocation, distributed object systems require Remote Method Invocation or

RMI [10]. In such systems, a local surrogate (stub) object manages the invocation

class name

attributes

methods()

Figure 6: Rumbaugh Notation for depicting a Class

Figure 7: Rumbaugh Notation for depicting Inheritance

 child class 1 child class 2

parent class

 39

on a remote object. The Java language’s RMI system assumes the homogeneous

environment of the JVM, and the system can therefore take advantage of the Java

object model whenever possible.

In order to be a remote object, the definition of the corresponding class is

required to implement a remote interface. A remote interface is one that extends the

interface java.rmi.Remote which is defined in the Java API [9]. RMI treats a remote

object differently from a local object when the object is passed from one JVM to

another. Rather than sending a copy of the implementation object to the receiving

JVM, RMI passes a remote stub for the remote object. The stub implements the

same remote interface as the remote object and acts as its local representative, and

basically is, to the caller, the remote reference.

RMI applications are often comprised of two separate programs: a server and

a client. A typical server application creates some remote objects, registers them in

the RMI Registry (a standard Java tool included in Java Developer Kit, a.k.a. JDK),

and waits for clients to invoke methods on these remote objects. A client application

gets references to remote objects in the server from the RMI registry and then

invokes methods on them.

Figure 8 depicts an RMI distributed application that uses the Java registry

service to obtain a reference to a remote object. The server calls the registry to

associate or bind a name with a remote object, which results in the creation of a

corresponding stub object in the registry. The client looks up the remote object by

its name in the server’s registry, which causes the stub object to be transferred to the

 40

client and the stub class bytecode downloaded from the server over the HTTP

protocol. Now the client can invoke methods on the stub, which is responsible for

carrying out the method call on the remote object.

3.2.4 Dynamic Class Loading

The Java language’s portable and interpreted nature produces a highly

dynamic and dynamically extensible system. While the Java compiler is strict in its

compile-time static checking, the language and run-time system are dynamic in their

linking stages: class bytecodes are loaded and linked only as needed, new code

modules can be linked in on demand from a variety of sources, even from sources

across a network, which enables dynamic and transparent updating of applications.

The default class loader is used by the Java runtime environment to load an

application class (whose main method is run by using the java command) from local

class directories specified by CLASSPATH, the environment variable that stores a

list of directory names. All classes used directly in that class (i.e., classes needed to

instantiate objects via the new expressions) are subsequently loaded by the default

RMI client
RMI server

 HTTP
 server

RMI registry

Figure 8: Remote Method Invocation

RMI bytecode downloading remote object

 41

class loader from the local CLASSPATH whenever they are first referenced.

Defined by the Java class java.rmi.server.RMIClassLoader is the RMI class

loader that provides a set of methods for the RMI system to download classes over

the network, for instance, stub classes associated with remote objects and subclasses

associated with objects passed as arguments and return values in RMI calls.

Java programmers can use the default class loader and the RMI class loader

to mimic Java runtime’s dynamic class loading behavior, which is exactly what we

have done to implement the class loader in JEMS (see Section 3.3.3). For a deeper

and better understanding of the rather complex mechanics of dynamic class loading

and linking, readers are referred to [10].

3.3 The JEMS Architecture

The architecture of JEMS is depicted in Figure 9:

Management Information Tree (MIT). A “container” that holds Java objects

in a tree structure. Two kinds of objects are stored in the MIT: (1) IMOs that are

M I T
D S P

R D I

class loader MIB
accessor

device agent

bytecode
 server

INFOs

IMOs

J E M S

Figure 9: The JEMS Architecture

 42

delegated by remote managers to the JEMS; they perform monitoring functions, i.e.,

observation or analysis, and interact with remote managers via the RDI. (2)

INFormation Objects (INFOs) which, as their names suggest, store management

information in an object-oriented way; they are used by IMOs to implement

monitoring functions.

Delegation Service Provider (DSP). An RMI server object using the MIT

and the class loader to implement the RDI; it provides the delegation service needed

by remote managers to delegate, control and communicate with IMOs.

Class Loader. An internal Java object used by the DSP to load, either locally

or from some class server (a.k.a. bytecode server) on the network, those classes that

are needed to instantiate corresponding delegated objects.

MIB Accessor. An internal Java object used by INFOs to exchange low-level

management information with the local MIB. In our work, we have implemented an

SNMP accessor that talks with SNMP agents.

3.3.1 Management Information Tree

The management information tree (MIT) is a container object that JEMS

employs to store and manage objects in a tree structure. The MIT is instantiated

from the MInfoTree class (Figure 10), which provides methods to add objects to,

MInfoTree

findObject()
removeObject()
addObject()

Figure 10: The MInfoTree Class

 43

remove objects from and find objects in the MIT. Two kinds of objects are store in

the MIT: INFOs and IMOs, which are respectively instantiated from subclasses of

the MgmtInfo class and the Monitor class, both of which are derived from the

superclass MO (Figure 11).

Object Naming Convention

Every object in the MIT has a name that uniquely identifies it and implies its

location in the tree. The naming structure for INFOs is compatible with that of a

directory, and the hierarchy chosen is based on containment, i.e., an INFO is named

in terms of the INFO representing the network resource that contains the resource

that is represented by the INFO to be named. For example, if the INFO representing

an ATM-switch port (say, with gloabal index = 1) has the name system:port.1, then

the object modeling an incoming virtual path (say, with VPI = 2) in this port will

have the name system:port.1:inPath.2; and accordingly in the MIT, this virtual path

object will be stored as one of the child objects of the port object. The root of the

MIT is a special dumb object named system.

Since IMOs don’t represent network resources, there are no similar

Figure 11: Inheritance Tree of Managed Objects

MO
String name
Hashtable attributes
Boolean enabled

addAttr()
findAttr()
updateAttr()
getName()
setName()
isEnabled()
setEnabled()

 MgmtInfo

 Monitor

 44

hierarchies for their organization, therefore we have made a decision to contain them

directly under the MIT root. For instance, an IMO that computes a ratio can have

such a name as system:ratio#3. The bottom line here is, any consistent scheme that

guarantees naming uniqueness should be acceptable.

The MO Class

Representing network management information requires modeling those

aspects that are of interest to network management purpose. The result of this

abstraction in an object-oriented context is a managed object class (MO) consisting

of a set of attributes and methods.

Managed objects use a hashtable attributes to store the list of properties that

are of interest to management purpose. Each such property is represented by an

attribute object instantiated from the Attribute class (Figure 12). Any attribute object

has a name and a value, and the name is used by the managed object as the key to

index the attribute in the hashtable. The flag readOnly, if set to true, prevents the

value of the attribute from being modified once initialized.

Each managed object has a unique name that specifies its identity and implies

Figure 12: The Attribute Class

 Attribute

getName()
setName()
getValue()
setValue()
isReadOnly()
setReadOnly()

String name
Object value
Boolean readOnly

 45

its location in the tree structure. This name is given when the object is initially

created and remains immutable throughout its lifetime. “enabled” is a flag variable

used to control and indicate whether the the managed object is activated or not.

MO has two very important subclasses: MgmtInfo and Monitor, which

represent physical/logical network resources and network monitoring functions

respectively.

Before looking into details of these two classes, we would like to point out

that managed object classes are formally specified using the Guidelines for the

Definition of Managed Objects (GDMO) [1], which is an object-oriented information

specification language with management orientation. However, since GDMO

definitions are text files that are difficult to read and interpret, we have taken

advantage of Rumbaugh notation to visualize class specifications instead of bringing

out GDMO files directly, and will continue doing so throughout the thesis. It is also

relieving to know that there have been successful research efforts to translate GDMO

definitions to Java objects [6], which provides automated tools to help with Java

implementation of GDMO-specified MOs.

The MgmtInfo Class

All the INFOs are instantiated from proper subclasses of the MgmtInfo class,

an object-oriented modeling of network management information. The values of

interesting MIB variables are obtained through the MIB accessor and represented by

corresponding attributes in a certain INFO. For example, for every incoming virtual

path in any active port of a Fore ATM switch, the SNMP agent keeps track of the

 46

values of a collection of MIB counter variables such as pathUsedBandwidth,

pathCells, pathUptime, and pathRejectedCells, just to name a few. Therefore, an

INFO that models this virtual path will have in its attribute hashtable a list of

attribute objects that correspond to these MIB variables. These attributes are added

to the hashtable by invoking the addAttr method in the INFO’s constructor function:

// inheritance from MgmtInfo
class InVirtualPath extends MgmtInfo {

// constructor
InVirtualPath (String name) {

addAttr(new AttrInt(“pathUsedBandwidth”));
addAttr(new AttrInt(“pathCells”));
addAttr(new AttrInt(“pathRejectedCells”));
. . .
// assign the name to this object
this.name = name;

}
. . .

}

Therefore, creation of an incoming-virtual-path INFO looks like this:

InVirtualPath p2 = new InVirtualPath(“system:port.1:inPath.2”);
mit.addObject(p2.getName(), p2);

The first Java statement instantiates a new INFO of the type InVirtualPath

(p2) and gives it a unique name system:port.1:inPath.2. The second statement inserts

p2 into the MIT at the desired location implied by its name.

All the INFOs of interest to network monitoring are instantiated and added to

the MIT automatically when the JEMS starts up; they use the MIB accessor to

periodically retrieve data from the underlying device agent, e.g., an SNMP agent,

and use the acquired data to update the values of their attributes.

 47

The Monitor Class

IMOs are instantiated from corresponding subclasses of the Monitor class.

They are delegated to the JEMS by remote manager applications, and perform

network monitoring functions by processing management information retrieved

locally from relevant INFOs and/or other IMOs. Please refer to Chapter 4 for a

dedicated discussion of the Monitor class and various IMOs instantiated from it.

3.3.2 Delegation Service Provider

The Delegation Service Provider (DSP) is an RMI server object instantiated

from the DSProvider class, an implementation of the Java remote interface IfRDI

which is actually the RDI specified in the Java language. The DSProvider class

implements the IfRDI methods (or RDI operations) as follows:

void create(String className, String objName, Hashtable initParams)

The pseudo-code for this method looks like the following:

if (mit.findObject(objName) == null) {
Class c = GenericLoader.loadClass(className);
Monitor obj = (Monitor) (c.newInstance());
obj.setName(objName);
obj.initialize(initParams);
mit.addObject(obj);

}

It first checks whether the IMO named objName already exists in the MIT; if

not, it uses the class loader to load the bytecode of the associated class specified by

the argument className, instantiates an object from this class, sets the object’s name

to objName, further initializes the IMO, and then adds it into the MIT.

 48

void delete(String objName)

This method removes the IMO objName from the MIT:

MO obj = mit.findObject(objName);
if (obj != null) { mit.removeObject(obj); }

void enable(String objName)

It enables the IMO objName by setting its flag variable enabled to true. By

doing so, the object’s functions are effectively turned on, since the communication

operations, get and set, will first consult this variable to make sure that it is set to true

before proceeding to accomplish their perspective tasks:

MO obj = mit.findObject(objName);
if (obj != null) { obj.setEnabled(true); }

void disable(String objName)

It disables the IMO objName by setting its flag variable enabled to false.

MO obj = mit.findObject(objName);
if (obj != null) { obj.setEnabled(false); }

Hashtable get(String objName, String namePattern)

This method finds, in the IMO named “objName,” all the attributes whose

names match the pattern specified in namePattern, and returns a hashtable of these

attributes indexed by their names. The remote manager can then use the methods in

the attributes themselves to get their values. Two wildcard characters, ‘*’ and ‘?’,

could be used in the name pattern. ‘*’ matches any number and combination of

characters that can be part of a valid attribute name; while ‘?’ can match any single

character. For instance, ‘path*’, ‘*Cell*’, ‘path????Count’ and ‘pathCellCount’ are

all valid name patterns.

 49

void set(String objName, Hashtable attrValues)

This method tries to set the values of some attributes in the IMO objName.

The hashtable attrValues stores a list of values indexed by the names of the attributes

which these values are meant for.

3.3.3 Class Loader

The class loader is a Java object instantiated from the GenericLoader class. It

provides a static method loadClass to load class bytecodes, either locally or remotely

from over the network, whenever they are needed for object(s) instantiation. By

using this generic class loader, the locations of class bytecodes become transparent to

the caller, i.e., the delegation service provider.

The GenericLoader Class

The GenericLoader class has only one public method loadClass, which

accepts a String argument as a fully-qualifying class name and tries to return the

bytecode for this class in a corresponding Class object. The DSP then uses this

returned Class object to instantiate the desired IMO (see Section 3.3.2). This

loadClass method first tries to load the class bytecode, if not already loaded in

memory, from the local CLASSPATH using the default class loader:

Class c = Class.forName(className);

If the bytecode is not locally available, a further attempt is then made to

download it from the network:

c = RMIClassLoader.loadClass(url, className);

url is a URL object that represents a Uniform Resource Locator pointing to a

 50

host, e.g., http://ux7.sp.cs.cmu.edu:2001/, where the needed bytecode is expected to

be located. HTTP is the standard protocol for RMI to transfer bytecodes over the

network, which means that there has to be an HTTP server running on the host

ux7.sp.cs.cmu.edu. This server needs not be a full-scale heavy-weight Web server

though, the ability to handle HTTP GET requests will suffice. Such a light-weight

server can be downloaded free of charge from Sun’s website.

Class Loader Configuration

The URL used by the class loader is obtained from a special INFO named

system:classLoaderConfig, which has only one attribute, urls, that stores a list of

URL addresses of bytecode servers. When the class loader needs to download

bytecodes from the network, it retrieves this list and tries the URLs one at a time

until one bytecode server responds with the desired Class object.

This INFO is special in the sense that it does not relate to or represent any

management information or functionality per se; instead, it is a convenience object

used by the class loader for configuration information storage. However, we have

put it in the MIT so that the remote manager can take advantage of the set operation

in the DSP service to change the value of urls on the fly, as per possible

configuration changes of bytecode servers in the network.

This configuration object is created automatically during the JEMS startup,

with urls initialized to a default value.

3.3.4 MIB Accessor

Similar to the class loader, the MIB accessor is also an internal object

 51

invisible to remote managers. It is used by INFOs in the MIT to exchange

management data with the underlying device agent. Currently we have only

implemented an SNMP accessor that talks with SNMP agents. However, accessors

that communicate with other types of agents, e.g., CMIP agents or vendors-specific

agents, can be built in a similar way.

The SNMPAccessor Class

The SNMP accessor is a Java object instantiated from the SNMPAccessor

class (Figure 13). It is a very small SNMP manager that communicates with the local

SNMP agent in the network device where the JEMS is running. We have used the

most popular Java SNMP API [11] to implement the accessor.

When the accessor is first created during the JEMS startup, it loads the

correct MIB file, sets the SNMP protocol version (v1, v2c or v3) and the Internet

address for the SNMP agent (localhost in our case). The accessor has some private

methods that help parse variable names, translating them to corresponding Object

Identifiers (OIDs) which are eventually encoded in SNMP protocol data units. The

accessor exposes two public methods, set and get, for INFOs to invoke, hiding all the

agent-related details from them.

SNMPAccessor

get()
set()

Figure 13: The SNMPAccessor Class

 52

Chapter 4 Intelligent Monitoring Objects
The JEMS architecture provides for a stage on which intelligent monitoring

objects (IMOs) can perform. Certain network monitoring functions, which used to

be running on the manager side, can now be encapsulated into corresponding IMOs,

which are in turn delegated to the JEMS and running locally in the managed network

device. This chapter focuses on the details of the design and implementation of

IMOs.

From time to time, however, we will refer back to certain JEMS components

and have further discussions about them, since we either simplified their

presentations or didn’t make their design considerations clear enough in the last

chapter. We have purposefully done this because their thorough interpretation relies

on or is made easier by the contents of this chapter.

Chapter Organization

Section 4.1 analyzes the requirements on IMO design.

Section 4.2 details the design of the Monitor class.

Section 4.3 examines the implementation of Observers, i.e., IMOs that compute

rate/ratio-oriented indicators and indicator statistics (review Section 2.4.1).

Section 4.4 examines the implementation of Analyzers, i.e., IMOs that perform

network analysis (review Section 2.4.2).

Section 4.5 illustrates, via a simple example, how to achieve intelligent network

monitoring by delegating proper IMOs to the JEMS.

 53

4.1 Design Analysis

As was introduced in Chapter one and three, IMOs are specialized Java

objects that are delegated by manager applications to a JEMS to perform network

monitoring right in the managed network device, and their functions allow for on-

line modification and extension. In order to satisfy their functional requirements,

IMOs need to have the following characteristics:

(1) They have access to lower-level management information, i.e., attributes

values stored in related INFOs or even other IMOs.

(2) A self-contained monitoring module is properly encapsulated in every

IMO; once correctly initialized, it is able to autonomously exercise a desired

monitoring function/computation without any manager intervention.

(3) Through relevant RDI calls, remote managers can make on-line changes

or extensions to the functionality of IMOs.

(4) Although IMOs are instantiated and run in the network devices, they have

to be coded at the manager side with no access to agent-side management

information. This requires that the way in which IMOs are designed support easy

manager-side object programming.

We have also noticed that the monitoring modules in different IMOs are

highly “repetitive.” For example, the formula used for different ratio calculations are

mathematically equivalent except that different ratios are based on different lower-

level management information. Therefore, there is one last consideration:

(5) Maximum reusability of monitoring functions in different object instances

 54

is expected in the IMO design.

4.2 The Monitor Class

All monitoring objects are instantiated from proper subclasses of the abstract

Monitor class which forms the core of the whole IMO design. The details of the

class structure are discussed as follows: Section 4.2.1 shows how requirements (1)

and (2) are satisfied through the so-called “operands/operator paradigm”, Section

4.2.2 examines the initialization process of IMOs, and Section 4.2.3 presents the

benefits of our design, where requirements (3), (4) and (5) are addressed

4.2.1 Operands/Operator Paradigm

It can be noticed that all the IMOs, no matter they are Observers or

Analyzers, accomplish their functionality by taking given management information

as input, applying certain monitoring rules to it, and generating some results. For an

Observer, the result is stored in a certain attribute ready for retrieval by the remote

manager; for an Analyzer, the result, usually in the form of an alarm, will be reported

back to interested AlarmListener objects on the manager side.

Figure 14: Inheritance Tree of the Monitor Class

initialize()

abstract MO
String name
Hashtable attributes
Boolean enabled

addAttr()
findAttr()
updateAttr()
getName()
setName()
isEnabled()
setEnabled()

abstract Monitor
IfRDI stub_DSP
Operator op

Observer

Analyzer
IfListener lstner

 55

Accordingly, we have generalized the IMO design using a structure which we

call Operands-Operator Paradigm (Figure 15). It consists of three essential

components, the operands attribute, the operator attribute with the corresponding

Operator object, and the result/listener attribute, which correspond to the above-

mentioned input, rule and result respectively. We now examine these components

separately.

The operands Attribute

In the attribute list (i.e., Hashtable attributes) of every IMO, there is a

composite attribute named operands, which represents a String array of absolute

attribute names. The syntax of an absolute attribute name is

<attributeName>@<objectName>

and such a name refers to a given attribute in a given managed object. For

example:

J E M S

. . .

. . .

create delete get set enable disable

updateAttr findAttr

. . .

attributes

operands

operator

opParams

. . .

stub_DSP

M I T

Operator
 object

. . .

Delegation Service Provider

Figure 15: Operands-Operator Paradigm

 56

pathCells@system:port.1:inPath.2

The names stored in the operands attribute can point to either attributes in

INFOs or the result attribute in other IMOs, depending on the operation to be

performed by the IMO in question. The Operator object in a IMO retrieves the

values of those attributes specified by the operands, performs pre-programmed

computation on the values, and stores the output into the result attribute of the IMO

in question (in the case of an Observer). The operands attribute is a read-only

attribute; once a IMO is initialized, the value of this attribute cannot be changed by

remote managers.

The operator Attribute and Operator Object

The monitoring behavior of IMOs are generalized by the abstract Operator

class (Figure 16). Any specific monitoring functionality, e.g., ratio or rate

computation, is represented by a subclass that has accordingly implemented

Operator’s abstract methods. The purpose of each method is explained as follows:

setOwner() – Set the owner of this Operator to be the associated IMO

checkContext() – Check if the owning IMO has the suitable context for the Operator

to run. Such a context includes compatible operands (the operands attribute),

proper operation parameters (the opParams attribute) and availability of a listener

abstract Operator
Monitor owner

setOwner()
abstract checkContext()
abstract doOperation()

Figure 16: The abstract Operator Class

 57

stub object (in the case of an Analyzer).

doOperation() – Perform the desired monitoring operation based on the valid

operands and operation parameters; specific to operator implementation.

Any IMO has, in its attribute list, an attribute named operator whose value is

the class name of the Operator to be used by the IMO. This attribute is not read-

only, and whenever it is set to a new value, a corresponding Operator object will be

instantiated using the generic class loader.

Also related to the Operator object is the attribute named opParams. It

represents a hashtable of parameters, in name/value pairs, that are interpreted by the

Operator to adjust its operation. The usage of opParams will be discussed in more

detail later in this chapter where most appropriate.

The result/listener Attribute

For an Observer, the output from the Operator object is stored in an attribute

named result. This attribute can be retrieved by remote managers, or even taken as

an operand by other IMOs. An Analyzer, instead, has a listener attribute whose

value is the name of a remote listener object; the Operator object invokes a method

on the stub of this remote listener to send an alarm back to the manager whenever an

abnormal condition is detected. A better study of these two attributes will be given

in Section 4.3 and 4.4 repectively.

4.2.2 Object Initialization

The correct and efficient initialization of IMOs is an integral part of the

overall design, therefore we are devoting a separate subsection to this topic. There

 58

are two steps involved here: invocation of the object’s constructor and initialize

method by the create operation of the DSP (review Section 3.3.2).

The Constructor Method

A IMO’s constructor is automatically invoked immediately after the object is

instantiated by the DSP. What the constructor does is to correctly set up the object’s

attribute list by adding appropriate attributes into the hashtable, and to initialize its

stub_DSP property (see Figure 14, 15). To make this process clearer, we list in the

following paragraphs partial codes of the related constructor methods, with easy-to-

understand comments.

// the abstract Monitor class
abstract class Monitor extends MO {

// constructor
Monitor() {

// find the DSP on the localhost and store its stub
// object into the variable “stub_DSP”
stub_DSP = (IfRDI) Naming.lookup(“//localhost/DSP”);
// add the read-only “operands” attribute
addAttr(new Attribute(“operands”));
// add the read-write “operator” attribute
addAttr(new Attribute(“operator”, false));
// add the read-write “opParams” attribute
addAttr(new Attribute(“opParams”, false));
// add the read-write “interval” attribute
// refer to Section 4.3 and 4.4 for details
addAttr(new Attribute(“interval”, false));

}
 . . .
}

// the Observer class
class Observer extends Monitor {

// constructor
Observer() {
// call the constructor of the parent class – Monitor

super();

 59

// add the read-only “result” attribute
addAttr(new Attribute(“result”));

}
. . .

}

// the Analyzer class
class Analyzer extends Monitor {

// constructor
Analyzer() {

// call the parent class’ constructor
super();
// add the read-write “listener” attribute
addAttr(new Attribute(“listener”, false));

}
. . .

}

The initialize Method

An IMO’s initialize method is called immediately after the constructor, and it

aims at correctly initializing the values of the those attributes added to the attribute

list by the constructor.

// the abstract Monitor class
abstract class Monitor extends MO {

// constructor
Monitor() { . . . }
void initialize(Hashtable params) {

// initialize “operands” with the corresponding value in
// the hashtable “params”, which is passed as the last
// argument to the DSP’s create() method (Section 3.3.2)
updateAttr(“operands”, params.get(“operands”));
updateAttr(“opParams”, params.get(“opParams”));
updateAttr(“interval”, params.get(“interval”));
updateAttr(“operator”, params.get(“operator”));

}
. . .

}

// the Observer class
class Observer externds Monitor {

 60

// constructor
Observer() { . . . }
void initialize(Hashtable params) {

// call Monitor’s initialize method
super.initialize(params);

}
 . . .
}

// the Analyzer class
class Analyzer externds Monitor {

// constructor
Analyzer() { . . . }
void initialize(Hashtable params) {

// call Monitor’s initialize method
super.initialize(params);
// initialize the “listener” attribute
updateAttr(“listener”, params.get(“listener”));

}
 . . .
}

The updateAttr method acts as a dispatcher function that redirects the

initialization process to respective “helper” methods. The attribute value to be set,

which is the second argument to updateAttr, is passed on to the helper methods. For

instance, the call to initialize the operands attribute:

updateAttr(“operands”, params.get(“operands”));

results in the following helper method to be called:

private void updateOperands(Object value) { . . . }

These helper methods perform type checking, value assignment and

additional setup if necessary. Take the operator attribute as an example, the

updateOperator method first checks whether the value to be set is a String instance.

If so, it assigns the value to the operator attribute. That’s not all, there is some

 61

additional setup work to be done in this case: first, the generic class loader loads the

associated operator class and instantiates an Operator object; secondly, a Java thread

is created and started, which calls the Operator’s doOperation method periodically at

the pace specified by the interval attribute (for details, please see Section 4.3):

// Monitor’s updateOperator method
private void updateOperator(Object value) {

// assign the value to “operator”
findAttr(“operator”).setValue((String)value);
// load the operator class
Class c = GenericLoader.loadClass((String)value);
// instantiate the Operator object
op = (Operator) (c.newInstance());
// set the Operator’s owner to be this IMO
op.setOwner(this);
// check the context of this IMO
op.checkContext();
if (findAttr(“interval”).getValue() > 0) {

// create and start a thread that calls
// op.doOperation() periodically

}
}

4.2.3 Benefits of Our Design

The operands/operator paradigm has the following benefits.

Operator Reusability

 A specific monitoring function can be abstracted and represented by a proper

subclass of the Operator class, and then be embedded into different IMOs in the form

of the operator attribute. In this way, we can bind one operator with many different

sets of operands to form different IMO instances.

On-line Change and Extension

Flexible and powerful on-line extension to IMOs and the underlying JEMS

 62

can be achieved. Specifically speaking, there are three levels of on-line changes that

can be made, with increasing degree of extensibility.

(1) Parameter Customization. Because the opParams is a read-write attribute,

remote managers can modify its value via RDI calls, thus dynamically changing the

manner in which the Operator object works.

(2) Operator Re-assignment. Since the Operator itself is associated to the

read-write operator attribute, managers can change a IMO’s monitoring behavior

even more by assigning a new, hopefully more powerful, Operator to it. Note that

the Operator object is instantiated by way of the generic class loader which can

download Java classes from the bytecode server, the JEMS does not need to have

any prior knowledge or storage of the new operator class. Therefore, the extension

takes place in a completely on-line and dynamic fashion.

(3) New Monitor Types. The most significant benefit comes from both the

operands/operator paradigm and the overall JEMS design, i.e., it is quite easy and

convenient to write new Monitor subclasses and to delegate their instances to the

JEMS.

Independent Manager-side Development

To write and compile the Monitor class and its subclasses, we need:

Interfaces/classes: IfRDI, IfListener, Operator, Attribute

To write and compile the Operator class and its subclasses, we need:

Interfaces/classes: IfRDI, IfListener, Monitor, Attribute

To deploy/delegate IMOs to the JEMS, we also need to have access to related

 63

Operator implementations, IfListener implementations, and absolute attribute names

from available INFOs.

Except for IfRDI and absolute attribute names, all of the above-mentioned

components are written and available at the manager side. IfRDI is the remote

interface to the JEMS and, according to the purpose and nature of an interface,

should remain independent of its implementation. As for the absolute attribute

names, as long as the managed device is determined and a mapping from its MIB to

corresponding INFOs is done, the available attribute names are fixed and become

irrelevant to the JEMS implementation. Therefore, our design allows for

independent manager-side IMO programming and deployment.

4.3 Observers

Observers are IMOs instantiated from the Observer class. They perform the

observation part of network monitoring. An Observer is characterized by the

Operator object in it, therefore we will center our discussion around related Operator

objects. The following table lists the correct context for different Operators:

Let’s take a look at how a ratio-oriented indicator is implemented by creating

Context Observer
type

Operator
class interval (ms) operands

 number type
opParams

rate OpRate ≥ 1 = 1 Integer
or Float n/a

ratio OpRatio ≥ 1 ≥ 2 Integer
or Float n/a

average OpAvg = 1
variance OpVar = 1
covariance OpCovar

≥ 1
= 2

Integer
or Float

sampleSize
≥ 2

Table 3: Observer Contexts for different Operators

 64

an Observer using the OpRatio class. Other indicators can be implemented similarly.

The manager creates an initialization parameter list:

initParams

operands “pathRejectedCells@system:port.1:inPath.2”
“pathCells@system:port.1:inPath.2”

opParams (null)
Interval 5000
operator “jems.operator.OpRatio”

The manager delegates an Observer to the JEMS (at rrocoto.cshcn.umd.edu):

IfRDI jems = (IfRDI)Naming.lookup(“//rrocoto.cshcn.umd.edu/DSP”);
jems.create(“jems.monitor.Observer”, “system:observer#58”, initParams);

The DSP instantiates an Observer, initializes its attribute list using the

provided parameters, and adds the Observer into the MIT. When the operator

attribute is being initialized, the Operator checks the owning Observer against the

ratio context listed in Table 3 to make sure that the Observer has a compatible

context for the Operator to correctly perform its function in.

The monitoring funtion of this Observer, i.e., to calculate the (cell rejection)

ratio based on the two variables specified in the operands attribute, is implemented

by OpRatio’s doOperation() method as follows:

// OpRate’s doOperation method
void doOperation() {

// get the value of the “operands” by calling:
// owner.findAttr(“operands”);
// parse the names of the operands and get the attribute
// names and object names separately, i.e.:
// attrName1 = “pathRejectionCells”
// objName1 = “system:port.1:inPath.2”
// attrName2 = “pathCells”
// objName2 = “system:port.1:inPath.2”

Table 4: Initialization Parameters for the OpRatio Class

 65

// get the attribute values via two RDI calls:
// curr_1 = (owner.stub_DSP).get(objName1, attrName1);
// curr_2 = (owner.stub_DSP).get(objName2, attrName2);
// calculate the difference from the latest values:
// delta_1 = curr_1 – last_1;
// delta_2 = curr_2 – last_2;
// calculate the ratio by:
// ratio = delta_1 / (delta_1 + delta_2);
// store the ratio to the “result” attribute:
// owner.findAttr(“result”).setValue(ratio);
// last_1 = curr_1;
// last_2 = curr_2;

}

4.4 Analyzers

Analyzers are IMOs instantiated from the Analyzer class. They perform the

analysis part of network monitoring as was defined in Section 2.3.2. In this thesis

work, we only look into the simplest form of Analyzer, which compares the value of

the monitored indicator (its operand) with a set of pre-specified thresholds, and

generates corresponding alarms when certain thresholds are crossed. The

comparison is done by the Analyzer’s Operator object which is instantiated from the

OpThreshold class. Other types of operator classes can be developed similarly.

Figure 17 shows the threshold comparing model used by an Analyzer. There

high alarm cleared

time

high gauge

high-clear

low gauge

low-clear

high alarm

low alarm

low alarm cleared

Figure 17: Threshold Comparing in Alarm Generation

 66

are two levels of thresholds: high and low, and in each level there are two gauges

defined. For the high-level thresholds, when the value of the monitored indicator

exceeds the high gauge, a “high alarm” is fired and remains valid until the value

drops below the high-clear gauge, when a “high alarm cleared” message will be

emitted. Between the firing of an alarm and its clearance message, no other alarms

should be fired. The “low alarm” and its associated “low alarm cleared” message

work in a similar way. An even more generic model would allow for multiple levels

of thresholds.

Alarms and their clearance messages are represented by objects instantiated

from the Alarm and AlarmCleared classes respectively. Both these classes are

subclasses of the Event class (Figure 18). Each generated event object is

automatically assigned a unique ID, and contains properties that have the

following meaning:

origin name of the IMO that generates this event
desc brief description of the nature of this event
time time stamp marking when the event was created
data detailed information about the agent-side situations that triggered the

Figure 18: The Inheritance Tree of Event Classes

getID() setID()
getOrigin() setOrigin()
getDiscription() setDiscription()
getTime() setTime()
getData() setData()

Event

Long id
String origin
String desc
Date time
Object data

Alarm

AlarmCleared
Long idToClear

Integer urgency

 67

generation of this event; meant to be interpreted only by proper event
handlers on the manager side

The generated event objects are sent back to the manager via a remote

interface IfListener (Figure 19). A remote object running at the manager side has

implemented this interface, and registered the associated stub object in the RMI

registry under the name “EventListener”. When delegating an Analyzer to the

JEMS, a manager includes the complete URL name of this stub object in the

initialization parameter list (Table 5) for initialization of the listener attribute.

Let’s now take a look at how threshold checking, a simple network analysis

behavior, is instrumented by creating an Analyzer using the OpThreshold class. The

manager creates an initialization parameter list for the OpThreshold class:

initParams

operands “result@system:observer#58”
opParams high_gauge = 80000 high_clear_gauge = 75000

low_gauge = 500 low_clear_gauge = 5000
interval 10000
listener “//hera.isr.umd.edu/EventListener”
operator “jems.operator.OpThreshold”

The manager delegates an Analyzer to the JEMS (at rrocoto.cshcn.umd.edu):

IfRDI jems = (IfRDI)Naming.lookup(“//rrocoto.cshcn.umd.edu/DSP”);
jems.create(“jems.monitor.Analyzer”, “system:analyzer#16”, initParams);

The DSP instantiates an Analyzer, initializes its attribute list using the

interface IfListener

receive(Event evt)

Figure 19: The IfListenter Remote Interface

Table 5: Initialization Parameters for the OpThreshold Class

 68

provided parameters, and adds the Analyzer into the MIT. When the DSP initializes

the listener attribute, in addition to the actual assignment of the URL to the attribute,

the helper method updateListener also downloads a copy of the associated remote

stub object and keeps it in the Analyzer’s lstner property.

// Analyzer’s updateListener method
private void updateListener(Object value) {

// assign the value to “listener”
findAttr(“listener”).setValue(value);
// locates the remote stub of the “EventListener”
lstner = (IfListener)Naming.lookup((String)value);

}

When the operator attribute is being initialized, the Operator checks the

owning Analyzer against the context shown in Table 6 to make sure that the

Analyzer has a compatible context for the Operator to correctly perform its function:

Context Analyzer
Type

Operator
class interval operands# type opParams listener

Th
re

sh
ol

d
C

he
ck

in
g

O
pT

hr
es

ho
ld

≥ 1 = 1
Integer

or
Float

high_gauge >
high_clear >
low_clear >
low_gauge

(n
ot

 n
ul

l)

The monitoring funtion of this Analyzer is accomplished by the Operator’s

doOperation method as follows:

// OpThreshold’s doOperation() method
void doOperation() {

// get the value of the “operands” by calling:
// owner.findAttr(“operands”);
// parse the name of the operand and get the attribute name
// and object name separately, i.e.:
// attrName = “result”
// objName = “system:observer#58”

Table 6: Analyzer Context for the OpThreshold Class

 69

// get the value of the attribute via an RDI call:
// value = (owner.stub_DSP).get(objName, attrName);
// get the value of the “opParams” and the gauges
// contained in it:
// owner.findAttr(“opParams”); . . .
// use the threshold model shown in Figure 4.12 and
// compare “value” with different gauges to decide if
// an Alarm or AlarmCleared object should be created;
// if so, create one and initialize it accordingly
// alarm = new Alarm();
// alarm.setID(); alarm.setOrigin(owner.getName());
// alarm.setDescription(“…”); . . .
// send the alarm back to the manager:
// lstner.receive(alarm);

}

The remote listener object acts as an event dispatcher at the manager side and

re-directs the received events to their proper handlers.

 70

Chapter 5 Prototype JEMS System

Based on the JEMS architecture proposed in previous chapters, we have built

a proof-of-concept prototype system, and done some experiment and comparison

against the centralized monitoring system. The results have verified the advantages

of intelligent monitoring over traditional network monitoring schemes.

Chapter Organization

Section 5.1 introduces the configuration and implementation of the prototype

system.

Section 5.2 compares the prototype system with the traditional central monitoring

system through some simple experiment and analysis.

Section 5.3 draws approriate conclusions.

 71

5.1 Prototype JEMS System

The prototype JEMS system (Figure 20) is introduced in the following

sections: system configuration in Section 5.1.1, objects deployment in Section 5.1.2,

and system startup procedure in Section 5.1.3.

5.1.1 System Configuration

Bytecode Server and RMI Registry Service

Actually, the bytecode server and the RMI registry service can be running on

any IP host on the Internet. We happen to choose the following setup, shown in

Table 7, for them.

Figure 20: Prototype JEMS System

.cshcn.umd.edu

Internet

roccoto (JEMS server)

ux7 (bytecode server)

.sp.cs.cmu.edu
.isr.umd.edu

hera
(management station)

bigbang (ATM switch)

 72

Machine’s DNS name ux7.sp.cs.cmu.edu
Hardware platform Sun Workstation
Operating System Solaris 2.5
Java platform JDK 1.1.5 for Solaris
URL of RMI registry rmi://ux7.sp.cs.cmu.edu:5001/
URL of HTTP server http://ux7.sp.cs.cmu.edu:2001/

Classes served jems.monitor.*
jems.operator.*

jems.monitor is the name of the Java package that contains all the Monitor

classes, i.e., Monitor, Observer and Analyzer. jems.operator is the name of the Java

package that contains all the Operator classes, i.e., OpRate, OpRatio, OpAvg,

OpVar, OpCovar and OpThreshold.

Managed Device and JEMS Server

The managed device is a Fore ATM switch located in the Center for Satellite

and Hybrid Communication Networks (CSHCN). The switch is connected to the

CSHCN LAN and has the DNS name bigbang.cshcn.umd.edu. It has a built-in

SNMP agent that serves requests for variables defined in two MIB files: RFC1213

for IP management, and Fore-Switch-MIB for ATM-switch-specific management.

According to the proposed architecture, a JEMS server should be running in

the switch for its intelligent monitoring. However, since there is no JVM ported to

the Fore ATM switch yet, we have to run a JEMS server in a workstation which is

equipped with a JVM and acts as a proxy for the ATM switch. The configuration of

this proxy machine is listed below in Table 8.

Table 7: Configuration of the Bytecode Server

 73

Machine’s DNS name rrocoto.cshcn.umd.edu
Hardware platform HP Workstation
Operating System HP UX
Java platform JDK 1.1.6 for Solaris

The configuration of the JEMS server in the proxy machine is listed below:

MIT naming convention as specified in Section 3.3.1

Name of DSP’s stub object
registered in the RMI registry

DSP
(i.e., remote managers use the URL
rmi://ux7.sp.cs.cmu.edu:5001/DSP
to look up DSP’s stub object)

SNMP agent accessed by the
SNMP Accessor

bigbang.cshcn.umd.edu

Management Station

Any IP host on the Internet can play the role of a management station. We

have randomly picked a Sun workstation in ISR’s SEIL lab with the following setup:

Machine’s DNS name hera.isr.umd.edu
Hardware platform Sun Workstation
Operating System Solaris 2.5
Java platform JDK 1.1.6 for Solaris

Name of event listener’s stub
object registered in the RMI
registry

EventListener
(i.e., Analyzers in the JEMS use the URL
rmi://ux7.sp.cs.cmu.edu:5001/EventListener
to look up the event listener’s stub)

Table 8: Configuration of the Proxy Machine

Table 9: Configuration of the JEMS Server

Table 10: Configuration of the Management Station

 74

5.1.2 Managed Objects Deployment

Information Objects

Since the major interest of this research is in performance monitoring, we did

not map the whole Fore-Switch-MIB to INFOs. Instead, we have selected a list of

SNMP variables related to the performance of the ATM switch (see Appendices),

and mapped them to various INFOs. Specifically, all port-related variables (Table

11) are mapped to corresponding attributes in the Port class, all signaling-related

variables (Table 12) are mapped to corresponding attributes in the SigPath class, all

incoming path-related variables (Table 13) are mapped to corresponding attributes in

the InVirtualPath class, and all outgoing path-related variables (Table 14) are

mapped to corresponding attributes in the OutVirtualPath class. The inheritance tree

of these classes is shown in Figure 21, and their associated containment subtree in

the MIT is shown in Figure 22.

MO MgmtInfo

Port

SigPath

InVirtualPath

OutVirtualPath

Figure 21: Inheritance Tree of INFO Classes

 75

Now, the motivation and benefits of introducing a layer of INFOs between

IMOs and underlying device agents are easy to explain and understand.

INFOs present a better view of the available management information. Not

all the variables in the MIB are useful for network management, actually only a

small fraction of them prove to be helpful for performance monitoring. To make

things worse, these variables are often scattered in different MIB tables, which

makes their direct access very difficult and confusing. By mapping only those

useful and functionally related variables from different locations in the MIB to

attributes in a few compact INFOs, we hide the complexity of direct MIB access

from end users (e.g. IMOs), and instead provide them with an efficient, focused and

simpler access interface.

INFOs help with easy programming of reusable IMOs. Instead of talking

directly to the device agent, IMOs acquire information from various INFOs by

invoking proper RDI operations. Since MIB access details and complexity are

encapsulated in the implementation of INFOs and the MIB accessor, IMOs are

system

port.1 port.2 . . . port.n

sigPath.1 inPath.1 inPath.k . . .

IMOs

outPath.1 . . . outPath.k

Figure 22: Containment Subtree of INFOs in the MIT

 76

independent of agent types and are therefore reusable. For example, if we have an

ATM switch with a CMIP agent, all that needs to be done is to write a CMIP

accessor and change the implementation of INFOs so that they update their attribute

values by way of the CMIP accessor.

Monitoring Objects

Two Java packages, namely, jems.monitor.* and jems.operator.*, are

deployed to the bytecode server. When the remote manager attempts to delegate a

IMO to the JEMS server, it invokes the RDI create method with three arguments:

class name, object name and initialization parameter list. The Monitor class

specified by the class name is downloaded from the bytecode server to the JEMS

server, a IMO is then instantiated from the class, and gets initialized using the

parameters provided.

5.1.3. System Startup Procedure

The prototype system starts up in the following sequential steps:

Bytecode Server and RMI Registry Startup

The HTTP server is started on port 2001, with its document root pointing to

where the two Java packages are installed. Monitor and Operator classes are now

ready for download from the URL http://ux7.sp.cs.cmu.edu:2001/.

The RMI registry is started on port 5001.

JEMS Server Startup

The SNMP Accessor is created and initialized. It loads the Fore-Switch-MIB

file, sets the SNMP protocol version to v1, and sets the SNMP agent’s Internet

 77

address to bigbang.cshcn.umd.edu.

The Management Information Tree is created and initialized. First, the

subtree shown in Figure 22 is automatically added into it; during this process, switch

information is obtained via the SNMP Accessor to decide which ports are active and

what virtual paths there are in each active ports, so that the subtree can be built to

reflect the working condition of the ATM switch. Secondly, special-purpose objects

are initialized and added into the MIT; for example, the classLoaderConfig object

(see Section 3.3.3) will be added to the MIT with its attribute urls set to

http://ux7.sp.cs.cmu.edu:2001/.

The Class Loader is created and initialized.

The Delegation Service Provider is created; its stub object is registered in the

RMI registry under the name DSP, and therefore becomes available for lookup and

download at the URL rmi://ux7.sp.cs.cmu.edu:5001/DSP.

Management Station Startup

A manager application starts up and immediately registers the stub object of

an event listener to the RMI registry under the name EventListener. Now the startup

process of the whole system is complete, and the manager application can start

delegating Observers, Analyzers and possibly other types of IMOs to the JEMS

server.

5.2 JEMS vs. Centralized Monitoring

This section compares the intelligent monitoring paradigm of JEMS and

those of centralized SNMP-based approaches. It examines some typical performance

 78

issues involved in network monitoring systems. We compare the performance of our

prototype system and applications using SNMP. The comparisons, which focus on

scalability, performance, and online extensibility, are illustrated by simple examples

or analysis.

5.2.1 Scalability

Polling-based network management systems do not scale up to large

networks, because the interaction of the central management station with SNMP

agents has two patterns: (1) it involves the management station into a huge amount

of communication, and (2) it concentrates most processing into the central station. A

network system becomes unmanageable when there is an increase in the number of

managed devices or when there is an increase in the number of variables to be

monitored.

Consider an SNMP-based application executing on hera, responsible for

performance monitoring of the ATM switch bigbang. To undertake any non-trivial

monitoring task, be it observation or analysis, the application needs to keep an array

of indicators – rates, ratios and statistics – based upon the variables listed in

Appendix. To provide a given level of measurement precision, the values of these

indicators have to be updated at a reasonable frequency, say, every T seconds. If we

assume the time required for a single polling request is tP, then the maximum number

of variables that can be handled by hera is bound by PtTN /≤ . Monitoring an

operating broadband ATM switch usually requires a high precision or a short T; and

if the management station and managed device communicate over a Wide Area

 79

Network (implying a large delay tP), then the maximum number of variables or

SNMP devices that can be handled by one central management station could drop

one to two orders of magnitude. This poses a serious scalability problem. A smiliar

example is discussed in much more detail in [26].

Now, even if the management station is so powerful as to be able to handle

all the devices, the polling scheme is still very inefficient, since the network traffic

caused by the polling behavior is a constant independent of the actual frequency of

information access or alarm generation. For example, in order to promptly detect a

rare yet important alarm situation, a high polling frequency needs to be maintained,

even though most of the polling requests will prove to be irrelevant.

Contrary to what a traditional polling-based system does, a JEMS-based

system delegates intelligent monitoring objects to network devices, so that various

indicators are maintained (and network analysis is performed) right in the devices or

in a local proxy as in our prototype system. Manager-to-agent traffic occurs only

when the central station has the actual need for information, or when alarms are fired

upon detection of associated abnormal situations. This significantly reduces the

unnecessary management traffic and the load on central stations, thus reducing the

scalability barrier.

5.2.2 Performance

We illustrate the performance characteristics of JEMS by comparing the

performance of a monitoring application using SNMP to that of an application that

has the same functionality but was implemented on our prototype system.

 80

Consider an SNMP-based monitoring application that involves n MIB

variables. The cost function of the overall response time of this application can be

approximated by

MIBCDSNMP TmanagerTGetSNMPTnT ++⋅=)()_(

TD(SNMP_Get) represents the delay of each SNMP Get request between the

centralized station and the SNMP agent, TC(manager) represents the computation

time of the application at the management station, and TMIB represents the total time

spent by the SNMP agent in MIB searching during one invocation of the application.

TD(SNMP_Get) depends on the round-trip transmission delay of the SNMP Get/Get-

Response message pair, plus message processing time at both ends.

Consider a JEMS implementation of the same application. The functionality

of the monitoring application can be encapsulated into an Operator object, which is

in turn bound with a IMO delegated to the managed device, and a get operation on

the IMO’s result attribute would return the computation result. After the IMO is

delegated and ready to serve, the typical response time cost function for one get

operation can be approximated by

MIBCLDDJEMS TagentTGetSNMPTnGetRDITT ++⋅+=)()_()_(

TD(RDI_Get) represents the delay of each RDI get operation between the

management station and the JEMS server, TLD(SNMP_Get) represents the local delay

of each SNMP Get message between the SNMP accessor and the SNMP agent,

TC(agent) represents the computation time of the Operator object in the managed

device, and TMIB represents the total time spent by the SNMP agent in MIB

 81

searching.

In a Wide Area Network (WAN), message transmission delays constitute the

major part of both TD(SNMP_Get) and TD(RDI_Get), therefore we can assume

)_()_(GetRDITGetSNMPT DD ≈

TC(manager) and TC(agent) are influenced by system parameters, such as

CPU speed and memory capacity, of the management station and JEMS server

respectively. Although the centralized station is almost always much more powerful

than the managed device (or the proxy machine) where the JEMS server is running,

it is almost always shared but multiple tasks as well. When we consider simple

monitoring applications, we can safely assume that TC(manager) and TC(agent) are

of the same order of magnitude. With delegated objects, we have moved the

network polling to local MIB access, thus the delay associated with SNMP Get

requests is very small, i.e.,

)_()_(GetSNMPTGetSNMPT DLD <<

Therefore, the residual performance difference is

δ+⋅−=−)_()1(GetSNMPTnTT DJEMSSNMP

Of course, the initial delegation of a IMO to the JEMS server consists of such

complex steps as RDI create operation request, classes download, objects

instantiation and initialization, and may take quite some time. However, once the

delegation is completed and the “cold start” cost is paid, intelligent monitoring

continuously beats SNMP-based method, so it only takes a few more program

invocations to amortize the initial cost. And in a WAN with large delay and for

 82

applications involving many MIB variables, this amortization will be even faster.

5.2.3 Extensibility

The most outstanding benefit of JEMS system is that it provides online

extensibility that traditional systems don’t have. Once up and running, a device

agent is equipped with a fixed set of functionality. With a JEMS running in the

device, its functions can be dynamically extended/changed without having to bring

the system offline.

For example, there are some predefined trap variables that SNMP agents use

to report simple abnormal situations in the device. However, the number of these

variables is fixed and their semantics are static. If later a new situation is identified

and demands attention, the only way to incorporate it into the agent is to add a

corresponding trap variable to the MIB and recompile the agent. During this

process, the agent has to be stopped and its service interrupted.

With a JEMS running in the device, things become easier and more flexible.

First, with an appropriate Operator bound to it, an Analyzer needs to be delegated to

the device to monitor the potential alarm. Then, when we believe that the symptoms

associated with the alarm has changed, the Operator can be properly reconfigured to

reflect the change. For instance, if an OpThreshold operator was adopted, we may

want to reset the values of its upper and lower thresholds. To go even further, if a

new alarm situation arises that can not be taken care of by any Operator currently

available, we can always write a new Operator class that identifies the situation, and

then bind an instance to the Analyzer. The whole process can be accomplished

 83

without suspending the agents’ current functionality.

5.3 Conclusions

JEMS provides a simple and flexible model to construct monitoring systems,

by allowing dynamic creation, manipulation and integration of delegated monitoring

objects. Network managers can use the predefined IMOs provided by network

device vendors, and their own objects to build distributed and dynamic management

applications. By taking advantage of IMOs running in the managed devices, the

intelligent monitoring system has better scalability, performance and online

extensibility than centralized polling systems.

Furthermore, since JEMS is based on standard industry-proven Java

technologies, it is easier to implement and has better portability than MbD [19].

Unlike the mobile agents method [13], the change to monitoring paradigm

introduced by JEMS is incremental rather than fundamental, making its integration

with current polling-centric systems much easier.

 84

Chapter 6 Conclusions

With increase in the complexity of modern communication networks, it is

imperative that there be commensurate advances in the tools and techniques used to

manage these networks. However, as discussed earlier, conventional network

monitoring and management systems rely on a framework and related techniques

that have inherent drawbacks. This thesis has presented the work that we have done

to facilitate intelligent network monitoring based on the Java technology. We are

trying to draw some conclusions in this last chapter as follows.

Chapter Organization

Section 6.1 summarizes the work presented in the previous chapters.

Section 6.2 looks at possible future improvements that could be made to the

current design and implementation.

 85

6.1 Summary

Concurrent network monitoring systems adopt a centralized framework

where most of the monitoring intelligence and processing burdens rest at the

manager applications running in a central station. This poses several major

problems.

Since all the monitoring interactions and processing have to go through the

management station, it becomes the bottleneck and single point of failure, leading to

a system that is difficult to scale up.

Manager applications can only interact with network elements through low-

level general-purpose interfaces such as SNMP, huge volume of raw data have to be

transferred to the management station, which causes high communication overhead

and significant delay, known as the micro-management problem.

The set of services offered by the element agents is fixed and statically

instrumented, which hinders the cost-effective extension and improvement of

monitoring systems.

To tackle these problems, we have basically done three things: (1) brought

forward the “intelligent network monitoring” concept; (2) according to this concept,

proposed a Java-based architecture, JEMS; (3) implemented a prototype JEMS

system, and validated its efficiency.

6.1.1 Intelligent Network Monitoring

The concept of Intelligent Network Monitoring is comprised of two elements:

distribution of intelligence and dynamic agent extensibility:

 86

Distribution of Intelligence. Instead of bringing data from the devices to the

central station, parts of the monitoring applications themselves, encapsulated in

various objects, are distributed or delegated to and running in the managed devices.

The manager host and the network as a whole can then be relieved from the

bottleneck and the micro-management problems.

Dynamic Agent Extensibility. Through a public calling interface over the

network, the manager application can remotely distribute/remove such objects

to/from a network device whenever it likes; the code required to manipulate these

objects may be obtained and linked to the device agent on demand, making it truly

dynamically extensible.

6.1.2 Intelligent Monitoring via JEMS

Java-based Extensible Management Server (JEMS) is the architecture we

proposed to facilitate intelligent network monitoring. It consists of two parts:

The JEMS Server. A Java-based element agen that supports distributed and

dynamic network management. It runs as a server process in the managed network

element and consists of the Remote Delegation Interface (RDI) and a runtime

environment that implements the RDI.

Intelligent Monitoring Objects (IMOs). Specialized Java objects that

manager applications delegate to the JEMS via RDI calls. With specific functions

encapsulated, these objects perform network monitoring right in the managed

devices. IMOs together with the underlying JEMS provide for a flexible, easy-to-

program, and highly reusable intelligent monitoring system.

 87

6.1.3 Intelligent Monitoring Validated

A prototype system was implemented based on the JEMS architecture. And

simple yet typical experiments have validated the advantages of intelligent network

monitoring over traditional polling-based schemes.

By distributing monitoring intelligence closer to where the information to be

processed is located, our system significatly reduces the network traffic and delay

incurred between managers and agents, and eliminates the bottleneck and single

point of failure problems existing in traditional network management systems. On

the other hand, the dynamic extensibility of our system allows managers to extend

agents’ ability accordingly as network management requirements evolve. Also,

manager applications can recognize and take advantage of the difference in resource

availability of various network devices, and make proper tradeoffs between

computation and communication cost.

6.2 Future Work

There are some improvements and enhancements that could possibly be made

to the JEMS architecture and added to its prototype implementation.

6.2.1 User Authentication, Access Control and Privacy

In our current design, accessing to the RDI interface and services is not

controlled, anyone having the DSP’s stub object can manipulate objects in the JEMS

in whatever way they want. A possible remedy to this is adding an authentication

scheme to the RDI interface. This may include a new authentication operation plus

modifications to all the existing interface operations. The authentication operation

 88

takes a manager’s name and password and returns an authenticator object if the

manager’s identity is correctly verified. To access normal delegation operations, the

remote manager has to first authenticate itself to the DSP, obtains an authenticator

object and later includes it in every remote method call into the DSP. The

authentication mechanism has to be designed in such a way that it prevents replay

attacks.

Once a manager is authenticated to the DSP, the latter decides what access

privileges the user is allowed, and only executes those requests that are conformant

to its access privileges. To this end, a proper access control model, together with

necessary data structures and control mechanism, has to be adopted and enforced.

If the monitoring data transferred via the network includes business-sensitive

information, we may use a customized socket layer for the RMI calls, by subclassing

the java.rmi.server.RMISocketFactory class to implement a secure transport.

6.2.2 Manager-side APIs and Tools

Although the JEMS architecture provides quite a complete agent interface, it

has not addressed how those interface methods can be collectively used to write

monitoring applications, namely we lack manager-side APIs and tools for application

authoring. Therefore, in addition to making improvements and enhancements to the

agent interface, we may want to:

(1) Use Java’s component technology to write JavaBeans that implement

varous high-level manager-side management tasks (which involve multiple IMOs

and a series of interactions with them). The public methods exported by these

 89

JavaBeans form the API for manager applications development.

(2) Write a GUI-based developer tool for visual application programming

using those JavaBeans.

(3) Prepare a deployment tool that facilitates the packaging and installation

of manager applications and their resources over the network.

6.2.3 Intelligent Network Control

Using JEMS based architecture to do network control should be a natural

continuation of the research work. We would like to identify the most commonly

needed network control functions, encapsulate them in corresponding Intelligent

Control Objects (ICOs) classes using the Operand-Operator Paradigm, and deploy

these classes and their associated Operator classes to the bytecode server, so that

they become available for download to the JEMS-ready network devices upon

relevant RDI invocations from the manager. Network control operations will thus be

performed from within the devices themselves, providing for “on-spot” handling of

various alarms and events. Furthermore, for the same reasons with IMOs, the

behavior of ICOs can be dynamically configured and enhanced, which, together with

IMOs, facilitates a flexible intelligent network management system.

6.2.4 Autonomous Management Domain with Jini

In a situation where the managed devices come online and go offline

irregularly and asynchronously, e.g., VSATs in a satellite network, automatic

detection and monitoring of these devices might be desired. Jini connection

technology [17], built on top of Java, stands out as an ideal choice for us to

 90

incorporate that into the JEMS architecture.

Jini provides simple mechanisms which enable devices to plug together to

form an impromptu community – a community put together without any planning,

installation, or human intervention. Each device provides services that other devices

in the community may use. These devices provide their own interfaces, which

ensures reliability and compatibility. However, we had better wait until after Sun

Microsystems officially merges Jini into the Java 2 Micro Edition (J2ME) [25], when

we can evaluate how this will affect the size of the core API libraries and the Java

Virtual Machine (a.k.a. KVM – Kilobyte JVM) that comes with J2ME.

6.2.5 Hierarchical Intelligent Network Management System

Because of its intrinsic layered design, the JEMS architecture can be

extended to a hierarchical structure to accomodate the logical domains of the

underlying managed network. In each sublayer between the network control center

and the network agents, subnetwork or domain managers can be equipped with

JEMS based servers that act in two roles: as a manager of the stations in the

immediate lower layer, and as an agent for its upper layer station. In such a middle-

layer management station, the MIB Accessor will be implemented to use RDI

invocations (instead of SNMP protocol) to communicate with lower-layer stations,

and INFOs in the MIT will use the data acquired through the MIB Accessor to

maintain an object-oriented abstraction of the subnetwork/domain the management

station is in charge of.

 91

Appendices

portNumber Identification of the port Integer

portMaxBandwidth The maximum incoming bandwidth of the
port (cells/s) Integer

portMaxBandwidthOut The maximum outgoing bandwidth of the
port (cells/s) Integer

portCDVT

The Cell Delay Variation Tolerance
associated with this physical port.
Connections take their default value for
CDVT from the input side port

Integer

portVbrOverbooking
The percentage of overbooking for VBR
connections. The default value is 100 (no
overbooking)

Integer
(1..500)

portVbrBufferOverb
The percentage of buffer overbooking for
VBR connections. The default value is 100
(no overbooking).

Integer
(1..500)

hwPortBufferSize The logical size of this port’s output buffer,
in cells

Integer

portAllocBandwidthIn The allocated incoming bandwidth of this
port (cells/s) Gauge

portUsedBandwidthIn The incoming bandwidth being used on
this port (cells/s)

Gauge

portReceivedCells The number of cells received on this port Gauge

portAllocBandwidthOut The allocated outgoing bandwidth of this
port (cells/s) Gauge

portUsedBandwidthOut The outgoing bandwidth being used on this
port (cells/s)

Gauge

portTransmittedCells The number of cells transmitted on this
port Counter

hwPortQueueLength The number of cells in this port’s output
buffer

Gauge

hwPortOverflows
The number of seconds in which cells were
dropped because this port’s output buffer
was full

Counter

Table 11: Port-related SNMP Variables

 92

q2931StatsPort The value of this variable identifies the
port of this signaling path

Integer

q2931StatsVPI The value of this variable identifies the
VPI of this signaling path statistics entry Integer

q2931CallsCompletions The number of successfully completed
calls on this signaling path

Counter

q2931CallsFailures The number of call failures on this
signaling path Counter

q2931CallsRejections
The number of connections on this
signaling path that were rejected by the far
end

Counter

pathPort Indentification of the input port which
contains this path Integer

pathVPI The VPI (Virtual Path Identifier) of this
path

Integer

pathMaxBandwidth The maximum bandwidth of this path
(cells/s) Integer

pathAllocBandwidth The allocated bandwidth of this path
(cells/s)

Gauge

pathUsedBandwidth The bandwidth being used on this path
(cells/s) Gauge

pathCells The number of cells transferred over this
path

Counter

pathUptime The elapsed time since this path was
created

Time
Ticks

pathRejectedCells
The number of cells over this path that
were rejected or dropped by the policer on
the switch fabric

Counter

Table 12: Signaling-related SNMP Variables

Table 13: Incoming Path-related SNMP Variables

 93

opathPort Indentification of the input port which
contains this path

Integer

opathVPI The VPI (Virtual Path Identifier) of this
path Integer

opathMaxBandwidth The maximum bandwidth of this path
(cells/s)

Integer

opathAllocBandwidth The allocated bandwidth of this path
(cells/s) Gauge

opathUsedBandwidth The bandwidth being used on this path
(cells/s) Gauge

opathCells The number of cells transferred over this
path Counter

opathUptime The elapsed time since this path was
created

Time
Ticks

opathRejectedCells
The number of cells over this path that
were rejected or dropped by the policer on
the switch fabric

Counter

opathVbrOverbooking
The percentage of overbooking for VBR
connections. The default value is 100 (no
overbooking)

Integer
(1..500)

opathVbrBufferOverb
The percentage of buffer overbooking for
VBR connections. The default value is 100
(no overbooking)

Integer
(1..500)

Table 14: Outgoing Path-related SNMP Variables

 94

References

[1] W. Stallings, SNMP, SNMPv2 and CMIP: the practical guide to network
management standards, Addison-Wesley, Reading, Mass., 1993.

[2] W. Stallings, SNMP, SNMPv2 and RMON: practical network management,

Addison-Wesley, Reading, Mass., 1996.

[3] J. Rumbaugh et al., Object-oriented modeling & design, Prentice Hall, 1991.

[4] Gopalan S. Raj, “A Detailed Comparison of CORBA, DCOM and Java/RMI,”

http://www.execpc.com/~gopalan/misc/compare.html.

[5] N. J. Muller, “Translation of GDMO/ASN.1 to Java objects for network

management,” Proceedings of the 1998 IEEE International Conference on
Communications (ICC’98), Atlanta, GA, 1998, vol.2, pp. 1140-1144.

[6] GDMO and ASN.1 Compiler and Code Generator for Java, C, C++,

http://www.technovision.dk/~uh/prod03.html.

[7] Sun Microsystems, “The Java Language Environment,”

http://java.sun.com/docs/white/langenv/, 1996-1999.

[8] Sun Microsystems, “The Java Platform,”

http://java.sun.com/docs/white/platform/javaplatform.doc.html, 1996-1999.

[9] Sun Microsystems, “Java 1.1.x Application Programming Interface,”

http://java.sun.com/products/jdk/1.1/docs/api/packages.html, 1996-1999.

[10] Sun Microsystems, “Java Remote Method Invocation,”

http://www.javasoft.com/products/jdk/1.2/docs/guide/rmi/, 1996-1999.

[11] AdventNet Inc., “Adventnet SNMP Java API,” http://www.adventnet.com/,

1996-1999.

[12] G. Pavlou et al., “Distributed intelligent monitoring and reporting facilities,”

Distributed Systems Engineering, vol.3, no.2, pp. 124-135.

[13] M. Baldi et al., “Exploiting code mobility in decentralized and flexible network

management,” Proceedings of the 1st International Workshop on Mobile
Agents (MA’97), pp. 13-26.

 95

[14] N. Anerousis, “An information model for generating computed views of
management information,” Proceedings of the 9th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, Newark, DE,
October 1998.

[15] N. Anerousis, “An architecture for building scalable, Web-based management

services,” Journal of Network and Systems Management, vol.7, no.1, pp. 73-
104.

[16] M. Leppinen et al., “Java- and CORBA-based network management,”

Computer, June 1997, vol.30, no.6, pp. 83-87.

[17] Sun Microsystems, “Jini Technology,” http://www.sun.com/jini/, 1998-1999.

[18] IETF, “Management Information Base for Network Management of TCP/IP-

based Internets: MIB-II,” ftp://ftp.isi.edu/in-notes/rfc1213.txt/, March 1991.

[19] G. Goldszmidt and Y. Yemini, “Distributed management by delegation,”

Proceedings of the 15th International Conference on Distributed Computing,
June 1995.

[20] E. H. Mamdani, R. Smith and J. Callaghan, The Management of Telecom-

munication Networks, Ellis Horwood Limited, 1993.

[21] S. Yemini, E. Moses, Y. Yemini and D. Ohsie, High speed and robust event

correlation, IEEE Communications Magazine, May 1996.

[22] J. E. White, Mobile agents, Software Agents, MIT Press, 1996.

[23] R. S. Gray, Agent Tcl: a transportable agent system, Proceedings of the

CIKM’95 Workshop on Intelligent Information Agents.

[24] Sun Microsystems, “Java Naming and Directory Interface,”

http://java.sun.com/jndi/, 1999

[25] Sun Microsystems, “Java 2 Platform, Micro Edition,”

http://java.sun.com/j2me/, 1999.

