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ABSTRACT

Titleof Thess JAVA-BASED INTELLIGENT NETWORK
MONITORING

Degree Candidate: Haifeng Xi

Degree and year: Master of Science, 2000

Thesis directed by: Professor John S. Baras

Department of Electricd and Computer Engineering

The increesng complexity and importance of communication networks
have given rise to a deadily high demand for advanced network
management  tools. Network Management in generd condsts of two
activiies. monitoring and controlling. The monitoring pat concerns
obsarving and andlyzing the datus and behavior of the managed networks,
and is therefore fundamenta for network management. Unfortunatdy the
exiging network monitoring paradigms have some drawbacks that prevent it
from satisfactory performance. One related problem is that these approaches
ae chaacterized by high centrdization which puts dmost dl the
computationa burden on the management daion. As a result, a huge
amount of raw data have to be transferred from network eements to the
centrd management dation for further processing, causng heavy traffic,
manager overload and long operations delay. Another issue that becomes
increesingly noticegble is the disence of a mechanian for dynamic
extengons to agent functiondlity.

In this work we teke advantage of some unique festures of the Java

technology and present a framework for digtributed and dynamic network



monitoring.  Specidized Java objects known as Intdligent Monitoring
Objects, are delegated to a Java-based Extensble Management Server
(JEMS), where they cary out encgpsulated monitoring functionality upon
management  information collected locdly from the undelying network
device. We have built a proof-of-concept prototype system using the JEMS
architecture and vdidated its effectiveness and flexibility compared with the
traditiona centraized network management systems.
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Chapter 1 Introduction

This theds introduces Java-based Intdligent Network Monitoring, an
efficient gpproach to monitoring networked systems using the proposed Java-based
exteng ble management server and various intdligent monitoring objects.

The increasing importance of communication networks has given rise to a
high demand for advanced network management. A network management system
handles problems related to the configurability, rdiability, efficiency, security and
accountability of the managed didributed computing environments. It is concerned
with monitoring, andyss and control of network behaviors to ensure smooth
network operations. Accurate and effective monitoring is fundamentad and critica
for network management, and is the focus of our work presented in thisthesis.

In the maingream network monitoring system, operationd data are collected
by hadwired insrumentation in neiwork dements and dored in Management
Information Bases (MIBs). For example, the MIB in an ATM switch can include
predefined counters and gauges about various traffic datigtics for virtud circuits,
virtua paths and switch ports.  This operationd data is gathered, usudly remotely
over a network, by a centra Network Management Station (NMS) using a network
management protocol. The NMS presents the data to operations staff who are
repongble for monitoring, andyzing and controlling the network. This centrdized
and datic management paradigm does not scae for the sze and complexity of
emerging heterogeneous broadband networks, neither does it adapt to unforeseen

management requirements. Therefore, new technologies are needed to decentrdize



management functionsin a dynamic way.

Intelligent monitoring is the conception brought forward in this thess to
address the aforementioned problems.  Management agpplications distribute or
delegate monitoring objects to Java-based extensble management servers (JEMS)
running a network dements. These objects will automate the monitoring and
andyss of corresponding network devices. For example, a delegated object can
monitor a MIB varigble and compare its vaue agang some pre-set thresholds to
detect potentid operations problems.  Monitoring inteligence and responghilities
can thus be decentrdized. Furthermore, when creating and manipulating a delegated
object, the JEMS takes advantage of Javds dynamic class loading feature to
download code over the network, which results in a highly adgptable monitoring
server gructure whose functiondity can be dynamicaly extended.

Chapter Organization
Section 1.1 outlines network management/monitoring, and limitations of current
network monitoring systems.
Section 1.2 summarizes the contributions of thisthess.
Section 1.3 briefly introduces intelligent network monitoring and its benefits.
Section 1.4 looks into several research efforts that related to our work.

Section 1.5 presents aroadmap of the remaining chaptersin thisthesis.



1.1 Network Management and Monitoring

Network management systems handle problems relaed to the configurability,
reigbility, efficency, security and accountability of the managed distributed
computing environments, and are concerned with monitoring and control of network
behaviors to ensure smooth network operations. The network monitoring portion of
network management is concerned with obsarving and andyzing the datus and

behavior of the managed network devices.

1.1.1 Components of Network Management System
A conventiond network management system consists of two classes of

components. managers and element agents Figure 1 depicts a diagram of the
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Figure 1. Components of typica Network Management Systems



organization of a typicd network management system. Applicaions in the centrd
management dation assume the manager role, and execute with a GUI for human
managers to peform cetan monitoring functions.  Element agents are sarver
processes running in each involved managesble network entity. These agents collect
device data, stores them in the Management Information Bases (MIBs), and support
a management protocol, eg., Smple Network Management Protocol (SNMP) [1,2].
Manager gpplications retrieve data from eement agents by sending corresponding
requests over the management protocol.

For example, the SNMP agent in an ATM switch collects information about
the sgnding protocol, the traffic datus of virtuad circuits efc. and dores it in a
predefined MIB. A management application retrieves this data usng the SNMP
GetRequest command, processes and analyzes them, and then displays the result
graphicaly.
1.1.2 Limitations of Current Systems

Current network monitoring/management sysems favor a centrdized
framework where most of the monitoring intelligence and computation burdens are
dlocated to the manager applications executing a the centrd daion.  This
edablishes saverd bariers to effective network monitoring, especidly for emerging
high-speed networks. Severd mgor problems ae outlined in the following
paragraphs.

Given the centrdized dlocaion of management responshilities, dl the

monitoring interactions and processing have to go through the management dation,



which becomes the bottleneck and single point of fallure. This leads to a sysem that
hardly scales up to large and complex networks.

Snce manager applications can only interact with the network eements
through low-levd generd-purpose interfaces, any non-trivid monitoring  task
requires huge volume of “raw” SNMP variables being transferred to the management
dation, which is known as the micro-management problem. Micro-management
results in high communication overheads, and dgnificant operation ddays if the
managed network iswirdess or satellite-based.

The st of services offered by the dement agents is fixed, Srictly defined by
sandards, and is accessble through interfaces that are ddicdly defined and
implemented. This service set cannot be modified or extended on the fly without the
recompilaion, reingdlation, and reindantiation of the server process. This rigid and
ddic agent Structure hinders the development of effective monitoring systems in two
ways (1) improvement of the agent usudly involves high-cost activities and may
ham sysem avalability; (2) it does not provide any mechanism to differentiate

between and take advantage of the capabilities of different types of devices.

1.2 Contributions

The mgor contributions presented in thisthesis include:

Java-based Extensble Management Server (EMS). A modd that supports
intelligent, i.e, digtributed and dynamic, network monitoring. JEMS runs as a server
process in the managed network eement and conddts of: (1) the Remote Delegation

Interface (RDI) through which management gpplications can remotdy delegate Java



objects, exchange information with these objects and control their execution; (2) a
runtime environment that implements the RDI.

Intelligent Monitoring Objects (IMOs). Specidized Java objects that perform
network monitoring functions. IMOs are distributed to JEMS at the network devices
where the managed resources are located. We have categorized common monitoring
functions and encapsulated them into corresponding IMOs.  IMOs are implemented
in such a way that they work closdy with the underlying JEMS to provide for an

intelligent monitoring system.

1.3 Intelligent Network Monitoring

The gpproach of intdligent network monitoring is to dynamicaly distribute
monitoring functiondity, in the form of IMOs, to JEMS a the devices where the
managed resources are located.  Specificaly spesking, inteligent monitoring means

two things:

managed
device

remote
manager

Z
?
1ay
A

Figure2: IMOs ddlegated to EMS
Fird, manager applications can didribute monitoring intelligence to the
managed network dement.  Instead of bringing data from the devices to the

central dation, pats of the monitoring gpplications themsdves, encapsulated in



vaious IMOs, are actudly running in the managed devices (Figure 2). The manager
host and the network as a whole can then be relieved from the bottleneck and the
micro-management problems.

Secondly, the network dement's agent functiondity can be dynamicdly
modified or extended. Through the remote ddegation interface (RDI), manager
applications can choose to digribute/delete whatever IMOs toffrom the device, at
whatever time they like. Furthermore, the code of a Java class need not be available
beforehand to the JEMS when a corresponding object is ingantiated upon a
delegation request from the manager. JEMS can download class code over the
network and link it to the runtime sysem on demand, which makes it truly

dynamicdly extensble.

1.3.1 Advantages over Current Systems

Intdlligent network monitoring alows for dynamic extensons to monitoring
functiondity as the network evolves. For ingance, if a new monitoring requirement
is identified after the system is up and running, we can create a corresponding IMO
that encapaulates the functiondity and delegate it to the JEMS, without having to
bring the system offline.

By recognizing and teking advantage of the difference in resource avalability
of various network devicess manager gpplications can have flexible and efficient
usage of these resources. For devices with a lot of resources (e.g., memory and CPU
processng power), the manager can delegate large numbers of IMOs to them,

making full use of locd computing to reduce management traffic overhead and



delay. This is a great advantage over traditiond datic sysems, where the sze and
funtiondity of network agents are fixed once they dart running, and extra device
resources can not be used to improve the efficiency of network monitoring. For
devices with relatively few resources, the manager can dways switch back to the
traditiona polling-based paradigm.

Smilaly, remote managers can dynamicdly adgpt to changes in the
availability of network and computing resources. For example, when the network is
overloaded, manager gpplications can encapsulate related monitoring functions in
some IMOs that are digtributed to the JEMS and andyze data locdly at the devices,
rieving the network from the traffic overloading that frequent polling would

otherwise have worsened.

1.4 Reated Work

There are severd research efforts that are related to our work in one way or
another.  We will try to identify the strength and weakness of each of them and to

gpdl out their distinctions from our system.

1.4.1 Management by Delegation

Management by Delegation (MbD) [19] is one of the earliest efforts towards
decentrdization and increesed flexibility of management functiondity, and is
probably the most successful one. Its management architecture includes a
management protocol, device agents, and an eagtic process run-time support on each
device. Ingead of exchanging basic client-server messages, the management dtation

can secify a task by packing into a program a set of agent commands and sending it



to the devices involved, thus dedegating to them the actud execution of the task.
Such execution is completdy asynchronous, enabling the management dation to
perform other tasks in the mean time and introducing a higher degree of pardldism
in the whole management architecture.  MbD greetly influenced later research and
exploration along this direction [12,13,14].

However, there are two disadvantages with MbD that probably have affected
its application: (1) Since the work was done before 1996, when the Java plaform
was not so widely recognized and deployed by industry as it is today, the proof-of-
concept MbD sysem was implemented with a proprietary server environment
written in the C programming language — we hardly see any working systems that
are built upon this proprietary environment. (2) The MbD server environment is O
comprehensve and complicated that it can turn out to be an “overkill” in mogt red-
world gpplications.

Still, we must give credit to MbD because it can be consdered a precursor of
the ideas discussed here. The mgor difference is that we have adopted the standard
Java platform and, from the very beginning, amed to build a portable, smple, yet
powerful framework that can be eadly understood, implemented and enhanced.
Because of the wide inddlaion base and intrindc portability of the Java platform,
we expect to see quick adoption of our system (or a derived verson of it) in some

relevant red-world applications.

1.4.2 Mobile Agents

Usng mobile agents in decentrdized and intdligent network management



[13] is a great legp from client-server based management pattern. The proposd is
that an intdligent agent containing management code can traverse in the managed
network from node to node, autonomoudy retaining the date of its computation
whenever it moved to a different node.

There are two potentiad problems with this method: (1) It proposed a change
to network management paradigm that is so radicd that even the authors themsdves
redized tha “further vdidation with quantitative data’ would be necessary to prove
its effectiveness. (2) Their proposed agents were written in specidized agent-
oriented scripting languages such as Tdescript [22] and Agent Tdl [23], which ae
not available or supported on many platforms, posing serious portability problems.

In contragt, our system dill retains a client-server architecture, and assumes a
management server in each device concerned.  Therefore, while IMOs provide
gmilar intdligent monitoring functions as ther mobile agent counterparts, ther
behaviors ae much esser to undersand and anticipate, meking them more

sraightforward to integrate and co-exist with traditiond systems.

1.4.3 Web-based Network Management

We are by no means the firsd people thinking of using Java technology in
network management [14,15,16]. But so far we have only seen efforts focused on
so-cdled Web-based Network Management, which addresses the problem of
integrating manager gpplications with the Web usng Java gpplets.  This is a well-
judified idea that atempts to provide a cost effective way of providing uniform

management services to managers and potentid customers through such  common

10



dient-side interface as Web browsers.

Ingtead, we have used Java for a totdly different purpose, which is not to
fadlitate dient-sde presentation or Web integration, but to use Java's native support
for digtributed computing, remote class downloading and object seridization to
implement dynamic and intdligent network monitoring. However, it makes perfect

sense to congder including Web-based front-ends into our future enhanced systems.

1.5 Thesis Roadmap

We will begin each chapter with a brief discusson of the main chalenges and
solutions presented in the chepter, followed by an outline of the organization of
sections in the chapter.

Chepter 2 introduces network management and network monitoring. It
illudtrates the dructure of conventiona systems and points out its limitations. It aso
summarizes the most commonly used monitoring functions.

Chapter 3 presents the JEMS architecture. It defines the RDI, explains why
Java is chosen as the foundation technology, and then examines the desgn and
implementation of the EMS.

Chapter 4 describes intelligent monitoring objects. It explains the design of
different types of objects, and shows, via examples, how they work within the JEMS
framework to provide for an intelligent monitoring system.

Chapter 5 evduates inteligent monitoring and demondrates its merits. It
contragts intdligent monitoring with centrdized monitoring gpproaches within  some

smple but typica scenarios.

1



Chapter 6 draws conclusions and points out severd future work directions.



Chapter 2 Network Monitoring

The man god of network management sysems is to ensure the qudity of
savices (QoS) that the network provides. To achieve this, network managers must
monitor and control the connected €ementsin the network.

The network monitoring portion of network management is concerned with
observing and andlyzing the datus and behavior of the network devices that make up
the configuration to be managed. Accurae and effective monitoring is therefore
fundamenta and criticad for the implementation of various network management
functions
Chapter Organization

Section 2.1 outlines the architecture of current network management systems.
Section 2.2 examines SNMP, the dominating network management protocol.
Section 2.3 introduces network management functions.

Section 2.4 summarizes network monitoring functiond requirements.

13



2.1 Network Management Systems Architecture

Figure 1 depicted the architecture of a conventiond network management
gysem. In a managed network eement (e.g. router, switch or host), an agent, which
is typicdly a smdl-footprint program running as a daemon process, collects device
information in a predefined manner and dores them in the MIB. Management
applications execute on some dedicated workstations located in the network
operation center (NOC) and interface with human operators. These applications
perform specific management functions and assume a manager role. They use a
management protocol to periodicaly poll the agents in the managed network
devices, requedting data of interest. Information retrieved from agents is some raw
data (e.g., counters or gauges) and managers dways have to peform certan amount
of aggregating computation, for ingance, figuring out min/max vaues averages,
variances etc., before any meaningful presentations can be forwarded to the NOC
operators.

By bringing al the low-level dita to the management stations, where they are
further processed, traditiond network management sysems assume a centrdized
dient-server paradigm, which poses some serious limitations that were presented in

Section 1.1.2.

2.2 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) [1,2] is a prevailing
network management protocol designed and standardized by the IETF to provide for

remote monitoring of IP-based networked devices. It is the most widdy used
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protocol in current network management syslems. Five types of protocol data units
(PDUs) are defined for SNMP: three of them ded with reading data (GetRequest,
GetNextRequest and GetResponse), one dedls with setting data SetRequest), and the
last one, Trap, is used for monitoring network events such as device sart-ups or
shut-downs.  In addition to the protocol itsdf, there are three other important
components in an SNM P-based system: MIB, agent and manager.

Management Information Base (MIB) represents the information modd of
the managed device defined as a collection of variables, each of which has a name
and syntax. For example, the Internet standard RFC1213 [18] defines the MIB for IP
host management. In RFC1213, for indtance, the variable that keeps record of the
number of IP packets receved is identified by the dring name
iso.org.dod.internet. mgmt.mib-2.ip.ipinReceives, and has the syntax as a Counter.
Managers should have access to the definition files of the MIBs in those dement
agents, so that they know what data are available from the agents. Ingtantiated MIBs
are organized as datic trees with variable values stored at tree leaves. To retrieve the
vdue of a specific MIB vaiable, a GetReguest command needs to provide the
identity of the variable, which is derived from its name.

An SNMP agent runs as a server process in the managed network device,
maintans an indantiation of the corresponding MIB, waits for and responds to
SNMP PDUs from managers. Almost al the mgor internetwork hardware vendors
provide SNMP agents with their products. For example, in a UNIX workgstation,

there is usualy a daemon process, shmpd, running as the SNMP agent for the host.
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SNMP managers are user gpplications that perform management functions by
exchanging SNMP PDUs with SNMP agents in managed network el ements.

Using SNMP to retrieve data from network devices is only the very firs step
to network management. In this sense, “SNMP” is quite a mideading name since the
protocol itsef supports nothing more than remote access to primitive device
information. It is based on the functiond level processng of such primitive

information in the centrd management dations that the core of a network

management system is built up.
2.3 Network Management Functions

There are various functiond level reguirements of network management.
The mogt famous and frequently cited categorization is those five functiond aress
defined by the 1SO, known as configuration, fault, performance, security and
accounting management [1,20].

Among thee five aress, fault and performance management are of the
greatest interest to us, because they address the problems of system availability and
QoS guarantee of the managed network.  Once the network is initidized,
configuration management is mainly used as a reconfiguration service by the faullt,
peformance and security management to cary out ther respective control
operations.  Security and accounting management are often handled by departments
other than NOC because they involve a lot of specialized knowledge and procedures,
such as authentication and encryption (security management), and pricing and billing

(accounting management).
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2.3.1 Network Management Functiona Areas
Configuration Management

Modern communication sysems ae composed of physicd and logicd
subsystems that can be configured to perform many different tasks. The same
device, for example, can be configured to act either as a gateway or as an end system
node, or both. Once the operator decides how he intends to use the device, he can
choose to set vaues for the appropriate set of attributes associated with the device.

Configuration management is the agpect of network management which
embodies the functiondity to assign that set of attributes to the device. It concerns
with initidizing a network and gracefully shutting down pat or dl of it. It is dso
concerned  with maintaining, adding, and updaing the rdaionships among
components and the gdatus of components themsdves during network operations.
While the network is in operaion, configuration management provides the ability to
reconfigure the network in response to performance evaduation or in support of fault
correction or security checks.
Fault Management

To maintain proper operation of a complex computer network, care must be
taken so tha the system as a whole, and each individual component, is in acceptable
working order in presence of network faults abnorma conditions requiring
management attention to repair.  Fault management is that aspect of network
management which attends to these concerns.

The fird and essentid requirement of fault management is to detect the

17



exigence of a potentid fault as quickly as possble, which demands continuous
monitoring (i.e., observation and analysis) of relevant network operation statistics.

Once a potentid fault is detected, a corresponding dam is fired, which
triggers the fault management module to identify or isolate the fault, i.e, to find out
the root cause of the abnormadlity, if any. This process can be very dfficult and often
involves corrdation of multiple darms and even various tests, such as connectivity
tet, protocol integrity test and so on.

The result of fault identification could be: (1) no fault redly exigs, (2) the so-
cdled fault is actudly a performance degradation, and therefore should be further
handled by performance management; or (3) there redly is a fault and its root cause
has been identified. In the lagt case, fault management will try to correct the fault. It
can automdicdly reconfigure or modify the network in such a way that the impact
on performance without the falled component(s) is minimized. Or it will notify the
operator to repair or replace the faled components to restore the network to its initid
state.

Performance Management

Whereas fault management is concerned with whether dl or pat of the
network is working, performance management is concerned with how wel the
network or its pats are working, or the qudity and effectiveness of network
communications,

Smilar to fault management, performance management comprises two broad

functiond categories — network monitoring and network control.  Monitoring is the

18



process of tracking and andyzing activities on the network. The controlling part
enables peformance management to maeke adjusments or reconfiguration to
improve network performance. Some of the performance issues of concern are;

Isthe link capacity under- or over-utilized?

Has throughput been reduced to an unacceptable level ?

Are there any bottlenecks?

To ded with these concerns, the network operator must: (1) sdect a st of
resource attributes to be monitored in order to assess performance levels, for
example, utilization, throughput, rgection ratio of connection requests ec.; (2)
associate appropriate metrics and vaues with relevant atributes as references of
different levels of performance, for ingtance, one or more threshold values could be
asociated with an attribute; (3) continuoudy update the vaues of those indicator
atributes and check them agang the reference vaues. If the vdue of an attribute
crosses a pre-defined threshold, a peformance aarm could be fired, so that the
performance management may step in and take corrective or preventive actions to
keep the network working at an acceptable performance level. For example, if a link
is or will be over-utilized, some traffic can then be re-routed through other switch
ports for network traffic balancing.

Security Management

Security management is responsble for providing dl the secuity reaed

features such as authorized access, authentication and encryption. It maintains and

distributes passwords and other authorization or access-control informeation, and
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generates, didtributes and manages encryption keys.  Security management is aso
concerned with monitoring and controlling access to computer networks and the
network management information obtained from network nodes.
Accounting Management

This functiond area is responshble for keeping a record of the usage of
network resources by the network users. Each user’s usage must be monitored and
recorded, and the billing informaion updated accordingly.  Billing information

should be sent to the customers regularly.

2.3.2 Network Monitoring and Control

Orthogond to the partition of network management into five functiond aress,
we can divide network management into two logicd components, i.e, network
monitoring and network control. Actudly, each of the five functiond aress
examined in the last section can be roughly divided into these two portions.
Network Monitoring

Network monitoring further involves two steps. observation and analysis:

Obsarvation.  The process of mantaining up-to-date vaues of a set of
indicators, which are some resource properties whose values are used to measure or
evduate the working datus of a certan aspect of network functiondity. What
indicators to observe and how to compute their values are the two questions we have
to answer.

Andyss. The process of detecting abnorma or deviating conditions based

on observations made on the chosen set of indicators. The problems to address in



this part are how to detect abnormality (usudly by comparing the indicators vaues
with some pre-specified “norms’), and how to deal with it once detected (generation
of darmsisacommon solution).

For example, security monitoring concerns obsarving and andyzing user
access to computer networks in order to detect erroneous, illegd or malicious user
operations that might compromise network security. Performance  monitoring
concens observing and andyzing peformance-rdaed indicators, such as tility,
throughput, avallability etc., trying to detect performance degradations.  Fault
monitoring concerns  obsarving  and  andyzing  fault-related  indicators  (ak.a
symptoms) in an effort to detect potentia faults.

Network Control

Network control completes the other haf of the management cycle by
providing managers with the ability to modify or reconfigure certain pats of the
network in order to restore it back to an acceptable working levd when some
abnormalities are detected and reported by network monitoring. Note that, because
of the exigence of uncertainty in observation, the reported abnormality has to be
identified before any control actions can be taken. This identification process often
involves complex globd andyzing techniques such as event corrdation [21], which

Is not conddered part of network monitoring in thisthess.

2.4 Network Monitoring Functions

In this section, we look into detals of network monitoring functions and try

to answer those questions raised in the last section.
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Note that our discusson is based on peformance and fault monitoring only,
because they comprise a dgnificant portion of overal network monitoring activities
and are where network QoS problems are addressed. Also note that the boundary
between performance indicators and fault symptoms is being congtantly blurred. For
example, an unusualy high packet retransmisson rate could either be a performance
indicator if it is caused by link over-utilization, or a fault symptom if it is due to an
out-of-sync physca link that has a high bit error rate.  Therefore it is not unusud to
see a trend in the network management community to treat performance problems as
“ooft” faults. In this theds unless otherwise specified, network monitoring means

the broader sense “ performance-fault monitoring.”

2.4.1 Network Observation

This section answers the questions asked in Section 2.3.2 about network
observetion, i.e, wha types of indicators to observe, and how their vaues ae
computed.
Indicator Types

Mog indicators that ae useful for network monitoring fdl into two
categories. rate-oriented and ratio-oriented.  Rate-oriented indicators reflect the
vaying speed of some underlying network aitributes. A ratio-oriented indicator
represents the proportional relationship between two quantities, usudly in terms of
percentage. Because of the inherent datisticd nature of these indicators, they are
sometimes further processed to generate some corresponding statistics, based on

which andysis is findly carried out. Table 1 gives a breskdown of mgor indicators



in each category, and the most commonly used etigtics.

Rate-Oriented Indicators
Throughput The rate (count per unit time) & which some network events
occurs, e.g., packet transfers, transactions.
Error Rate  Therate a which some errors occur, e.g., retransmission.

Ratio- Oriented Indicators
Utilization  The percentage of the theoretical capacity of a resource (e.g,
transmisson line) that is being used.
Availability  The percentage of time that a network system, a component, or a
software module is available for a user.
Accuracy The percentage of time that no errors occur in the transmisson
and ddivery of information.

Indicator Satistics
Average The average of an indicator over a specified sample Sze; various
averaging methods could be used, e.g., smoothing average.
Variance The variance of an indicator over a Specified sample size.

Covariance The covariance of two indicators over agiven sample Sze.
Table 1: Indicator and Statistic Types

Note that, for fault monitoring, some other specid indicators are very useful
and must be monitored, among them are those SNMP traps representing the up/down
datus of sysem hardware such as network interface cards (NICs), communication
links, switch ports and so on.
| ndi cator/Statistics Computation

In SNMP MIBs, there are only such primitive data types as counter, gauge
and time ticker. The vadues of indicators and their statistics have to be computed
based on these raw data.

(1) Rate-Oriented Indicators.

rate = D(valueof SNMP variable)/ Dt

To cdculate the vaue of a specific rate-oriented indicator, therefore, the

relevant SNMP variable and the time interval Dt have to be specified. For example,
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to caculate the error rate of received | P packets, we need to do such a calculation:

error rate = D(iplnReceives) / Dt

The vdue of the SNMP variable iplnReceives (which is a counter) needs to
be polled a the beginning and the end of the time interva respectively to obtain the
difference D(ipInReceives). To make the vdue up-to-date, the computation is
performed every Dt seconds. The precison of this error rate depends on the length
of Dt and how frequently the SNM P-agent updates the vaue of iplnReceives.

(2) Retio-Oriented Indicators.

ratio = D(valuet#i)
D(value#l) + D(value#2) +--- + D(value #k)

To cdculate the value of a ratio-oriented indicator, k SNMP variables and a
computation cycle Dt have to be specified. For example, to caculate the cdl
admisson ratio (a form of avalability) for a virtud crcuit in the Fore ATM switch,
during atimeintervd of Dt , the following formulais used:

D(g2931CallsCompletions)
D(g2931CallsCompletions) + D(g2931CallsRejections) + D(q2931CallsFailures)

Each of the three SNMP counter variables involved (defined in Fore-Switch
MIB) has to be polled twice, once a the beginning, the other a the end of the
computation cycle. Theratio vaueisupdated every Dt seconds.

(3) Indicator Statistics.

To cdculae a gatigic from an indicator, we need to have the sample sze S
which is usudly given by: S=DT/Dt (where DT is the sampling period, and Dt is

the updating cycle of the indicator vaue). For example, if we want to obtain the
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average vaue of the cdl admisson réio during a sampling period of DT, then we

need to do the following computation:

§3

. .0
average = call_admsson_ratloi+

¢
ei 2

||QJ

1
S
2.4.2 Network Anadysis
Abnormality Detection

Abnormadity detection is usudly accomplished by compaing the vaues of
indicators or their dtatistics to some pre-specified normad vaues. The smplest form
of normda vaues are thresholds. When a threshold is crossed (from below or from
above, as gpplied to different dtuations), an abnorma condition is conddered to
have occurred or to be occurring. More complex norms can be a st of values that
comprise a pattern.  When the degree to which the indicator/gtatistics vaues match
this pattern has increased a predefined threshold, an abnorma condition is supposed
to be there.

Those norma vadues are usudly obtained beforehand through learning
processes, which comprise a big research area in network management.  Actudly,
one of the mog chdlenging and controversd problems in network management is
how to correctly interpret the meaning of those many indicators. This is not the
major concern of thisthes's, though.

Abnormality Reporting
Once a network abnormality is detected, a corresponding darm is generated

and sent to the network control module, where further (globa) andyss and control
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actions are taken. Generdly, an darm contains such information as the time when it

was created, the name of the alarm, the condition under which it was fired and so on.
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Chapter 3 Java-based Extensible Management Server

In this thess, we propose to build inteligent network monitoring systems to
address some of the problems exigting in current sysems. As is suggested by our
work, management applications distribute or delegate Intelligent Monitoring Objects
(IMOs) to Java-based Extensble Management Servers (JEMS) running a network
dements. JEMS is actudly a Java-based dement agent whose functiondity can be
extended by dynamicaly delegating various IMOs to it. IMOs are Java objects that
automate the monitoring of corresponding network devices.

This chapter and the next chapter discuss the design and implementation of
the EM S and IMOs respectively.

Chapter Organization
Section 3.1 examines EMS s Remote Déd egeation Interface (RDI).
Section 3.2 explains why Java s chosen as the platform for EMS.

Section 3.3 explores the design and implementation of JEMS.
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3.1 Remote Delegation Interface

Contrary to an SNMP agent, which has a fixed &t of services, EMS is an
object-oriented dement agent that provides extensble management services. Such
extenshility comes from its Remote Ddegation Interface (RDI) through which
manager applications can dynamicdly delegate, remotdy control and communicate
with Java objects that perform monitoring functions in the managed network device.
Since these objects are the entities that actudly provide the functiondity of the
management server, and they can be dynamicdly downloaded to and created at the
network element, we say that the management server is dynamicaly extensible.

Section 3.1.1 formdly defines RDI in terms of deegation operations, and
Section 3.1.2 presents a more detailled look a the RDI and how remote managers

interact with JEM S through the RDI.
3.1.1 Formd Definition

An object-oriented process P°<C,S> condss of a code st C and a
process status set S C ° {c,,cC,,...,.C,} is a set of class codes that P can execute,
where ¢ represents the code segment for a certain class. The process status
S°{o0,,0,,..,0,} isdefined by the set of dl the objects in the process. An object is
definedby o =(c',s),where ¢' T C is the class code associated with object o;, and
S is the status of the object, such as the values of its data members and the execution

date of its associated code ¢'. Note that mis usudly larger thank.

The JEMS process P; is characterized by two dynamic setsof C and S which
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can ke modified via remote invocations of a set of delegation operations in the RDI.
These operations dlow manager gpplications to (1) extend the functiondity of JEMS
by delegating objects to it, (2) remotely control the execution of these objects, and
(3) communicate with these objects.
Extenshbility Operations

RDI _create operation incorporates anew object o = (c, <) into P, °<C,S >.

<C,S>0+ <CE{d, SE{o} >

RDI_delete operation deletes an object 0 = (c, €) from P;.

<C,S>o0m <C, S-{0}>
Control Operations

RDI_disable operation suspends the functioning of object o = (c, <) .

<C,S> > <C, S-{0}E{(c,disabled)} >

RDI_enable operdation starts or resumes the functioning of object o.

<C,S> - <C, S-{0} E{(c,running)} >
Communication Operaions

RDI _set operation changes values of attributes of an object 0 = (c, <) .

<C,S> <C, S-{aE{(c,s0} >

RDI _get operation returns the value of some object attributes.

This operation does not change the state of relevant objects.



3.1.2 A Closer Look

RDI operations are summarized in Table 2 and illugtrated in Figure 3:

RDI Operations

RDI_create (className, objName);
RDI_delete (objName);

RDI_enable (objName);

RDI_disable (objName);

RDI_set (objName, attrName, attrVaue);
RDI_get (objName, attrName);

Table 2: Remote Deegation Interface

(1) Credtion of an object in the JEMS is requested,

usng RDI _create

Manager JEMS
RDI _create
—»
RDI_get
< P
Bytecode| RD| set O
Server -
RDI_delete o
>
RDI_enable
, >
RDI_disable s

Figure3: RDI Opeationsillustrated

operation. className specifies the name of the Java class from which the object is

to be ingtantiated. objName s the name that will be used to identify the new object.

(2) The code for class className is downloaded over the network (if not

dready locdly avalable) and dynamicdly linked to the runtime system, and a new



object isingtantiated from the class.

(3) The manager can suspend and resume the functioning of the object, using
RDI_disable and RDI_enable,

(4) The remote manager communicates with an enabled object usng RDI_set
and RDI_get operations.

(5) The manager removes an object usng RDI_delete operation.

Note that the entities invoking a RDI operation may be either remote or locd
to the network device where the JEMS is running. We now examine each of these
operation categoriesin more detail.

Extenshbility Operations

Using RDI_creste, a remote manager process requests that an object be
incorporated into the management server P;. The transfer of the class code from the
bytecode server to the JEMS is performed by a class loader usng Java's dynamic
class loading feature. For an RDI_create to succeed, the following actions must be
completed:

The class code must be checked to make surethat it isalegad Javaclass.

The new object and its code must fit within the resources available in P;.

These two actions are peformed implicitly by the underlying Java runtime
environment, without any explicit application intervention.  When an object is
successfully ingtantiated, it has a unique name specified by the parameter objName.
This name identifies the object and is later used to control and communicate with it.

A remote manager can delete or remove a delegated object using RDI_delete.
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For an RDI_delete to succeed, the objName parameter must refer to avalid object.
Control Operations

Control operations dlow remote managers to suspend or resume the
functioning of an object. Any managed object, when firg indantiated in Pj, is

inactive before it is enabled by the remote manager through an RDI_enable

doesn't exist
delete
create ddlete
disable
active disabled
<7
enable
\ 4
get
set

Fgure4: Life-cycle of adelegated Object

operation. An inactive or dissbled object does not perform its norma monitoring
function nor is it dlowed to communicate with remote managers, until it is turned on
and becomes an active object via an RDI_enable operation. An active object can be
turned off at any time through an RDI_disable opertion.
Communication Operations

RDI supports communications between a remote manager and delegated
objects by alowing the manager to get or set the value of certain object attributes.

Using the RDI_set operation, the remote manager can change the attribute

vaues of specific objects, thus changing the behavior of these objects. The manager
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process can get back information about delegated objects by retrieving attribute
vaues from them using the RDI_get operation.

Figure 4 isadate diagram that depicts the life-cycle of a delegated object.

3.2 Why Java?

Taken individudly, the characteristics of Java can be found in a variety of
software development platforms.  What's completdly new is the manner in which
Java technology and its runtime environment have combined them to produce a
flexible and powerful programming sysem.  Almost no other object-oriented
programming languages or computing platforms provide dl a once the following
features, which are needed by the JEMS design:

Cross-platform Compatibility. In the proposed intdligent network monitoring
framework, JEMSes can be running on UNIX or NT workdations, or IBM
mainframes.  Manager agpplications can run on different desktop environments such
as UNIX, Linux, Windows or MacOS. Without a common platform, we have to
write code with the same or amilar functions for each of these platforms separately,
which is very codly, time-consuming and eror-prone. Java's architecture-neutra
and portable ability makes it the an ided platform base for a hybrid sysem like our
network monitoring framework.

Didriubted Computing. The interactions between manager applications and
JEMSes require distributed computing support from the programming language.
Java provides native didributed progranming AP through Remote Method

Invocation (RMI). Compared with other distributed programming plaiforms such as



DCOM or CORBA, Java RMI is the easest to learn and use. Later you will see that
it is very straightforward to implement the RDI with RMI.

Code on Demand. The dynamic feature of our framework requires support
for code-on-demand (CoD) paradigm, i.e, objects in JEMS can download and link
on-the-fly the code from some class server to peform a given task. Traditiondly,
CaD is only supported by mobile code languages (MCL), such as Tdescript [22] and
Agent Td [23], for mobile agent programming. With the dynamic dass loading and
linking ability, Javais actudly aweek MCL that directly supports CoD.

Section 3.2.1 gives badc ideas about Java as both a language and a platform,
and explains how it provides cross-platform compatibility. Section 3.2.2 introduces
Java classes and interfaces, which are fundamental concepts repestedly referred to in
this thess. Section 3.2.3 explains how Java provides distributed computing support
via RMI, and Section 3.2.4 discusses a most important Java festure — dynamic class

loading.

3.2.1 The Language and Platform
The Java Programming Language

Jawva is a high-levd programming language that is object-oriented,
interpreted, architecture-neutra and portable, distributed, dynamic, and secure. Each
of the preceding buzzwords is explaned in The Java Language Environment white
paper [7].

Java is unusud in that each Java program is both compiled and interpreted.

With a compiler, a Java dass is trandated into an intermediate language cdled Java



bytecodes ¥ the platform-independent codes interpreted by the Java interpreter. You
can think of Java bytecodes as the machine code ingructions for a Java Virtud
Machine (VM). Every Javainterpreter is an implementation of the VM.

Java bytecodes help make “write once, run anywhere’ possible. You can
compile your Java program into bytecodes on any platform that has a Java compiler.
The bytecodes can then be run on any implementation of the VM. For example, the
same Java program can run on Solaris, Windows NT, and Macintosh.

The Java Platform

The Java plaform [8] differs from most other plaforms in tha it is a

Java Program

Java API

Java Virtua Machine

Hardware-based Platform

Fgure5: The JavaPlatform
software-only platform that runs on top of other hardware-based platforms. Most

other platforms are described as a combination of hardware and operating system.

The Java platform has two components. the VM and the Java Applicaion
Programming Interface (Java AP1) [9]. VM is the base for the Java plaiform and is
ported onto various hardware-based platforms. The Java APl is a large collection of
ready-made software components that provide many useful cepabilities, such as
graphica user interface (GUI) widgets. The Java APl is grouped into packages of
related components. The following figure depicts a Java program, such as an

application or applet, hat is running on the Java plaiform. As the figure shows, the



Jwva APl and Virtud Machine insulates the Java program from hardware
dependencies.

As a platform-independent environment, Java can be a bit dower than native
code. However, smart compilers, wdl-tuned interpreters, and just-in-time compilers
can bring Javas peformance close to that of native code without threstening
portability.

3.2.2 Classes and Interfaces
Classes and Objects

A class is a software condruct that defines the data (state) and methods
(behavior) of the specific concrete objects that are subsequently constructed from
that cdass. In Java terminology, a class is built out of members, which are ether
attributes or methods. Attributes are the data for the class. Methods are the squences
of datements that operate on the data. Attributes are normaly specific to an object
¥, that is, every object condructed from the class definition will have its own copy
of the dtribute. Such attributes are known as ingtance varidbles.  Similarly, methods
are dso normaly declared to operate on the ingtance variables of the class, and are
thus known as instance methods.

A dassin and of itsdf is not an object. A class is like a blueprint that defines
how an object will look and behave when the object is created or instantiated from
the specification declared by the class. You obtain concrete objects by ingantiating a
previoudy defined class,

Subclasses are the mechanism by which new and enhanced objects can be



defined in terms of exising objects. Subclasses enable you to use existing code that
has aready been developed and, much more important, tested, for a more generic
case. You overide the parts of the class you need for your specific behavior. Thus,
subclasses gain you reuse of existing code % you save on design, development, and
tesing. Java implements what is known as a sngle-inheritance modd: a new class
can subclass (extend, in Javaterminology) only one other class.

Java Interfaces

Interfaces were introduced to Java to enhance Javds sngle-inheritance
model. An interface could be thought of as a pure abdract class. It dlows the
programmer to edablish the form for a class method names, argument lists and
return types, but no instance variables or implementation code. An interface says
“This is what dl dasses tha implement this particular interface will look like”
Thus, any code that uses a particular interface knows what methods might be cdled
for that interface, and that's dl. So interfaces are used to establish protocols between
classes, they promote flexibility and reusability in code by connecting objects in
terms of what they can do rather than how they do it.

A dass implements an interface by implementing dl the methods contained
in the interface.  In contrast, inheritance by subclassing passes both a set of methods
and their implementations from superclass to subclass. Whereas a class can inherit

from only one superclass, a class can implement as many interfaces asit chooses to.
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Notation

The Rumbaugh notation [3] is used to depict Java object models throughout

dassname

attributes

methods()

Figure 6: Rumbaugh Notation for depicting a Class
this thess. In the Rumbaugh notation a class is depicted as shown in Figure 6. The

top-most rectangle is used for the class name. The class attributes are represented in

the middle rectangle and the bottom rectangle is used to show the methods that can

parent class

| = |

childdass1 child class 2

Fgure 7: Rumbaugh Notation for depicting Inheritance
be cdled on or by the class  An inheritance reationship is depicted in the Rumbaugh

notation as shown in Figure 7.

3.2.3 Remote Method Invocation

In digtributed object systems, communication between program-level objects
resding in different address spaces is needed. In order to match the semantics of
object invocation, distributed object systems require Remote Method Invocation or

RMI [10]. In such systems, a loca surrogate (stub) object manages the invocation



on a remote object. The Java language's RMI system assumes the homogeneous
environment of the VM, and the system can therefore take advantage of the Java
object modd whenever possible.

In order to be a remote object, the definition of the corresponding class is
required to implement a remote interface. A remote interface is one that extends the
interface javarmi.Remote which is defined in the Java APl [9]. RMI treats a remote
object differently from a loca object when the object is passed from one JVM to
another. Rather than sending a copy of the implementation object to the recelving
VM, RMI passes a remote stub for the remote object. The stub implements the
same remote interface as the remote object and acts as its loca representative, and
bascdly is, to the cdler, the remote reference.

RMI applications are often comprised of two separate programs. a server and
a client. A typica server gpplication creates some remote objects, registers them in
the RMI Registry @ standard Java tool included in Java Developer Kit, ak.a JDK),
and waits for clients to invoke methods on these remote objects. A client application
gets references to remote objects in the sarver from the RMI registry and then
invokes methods on them.

Figure 8 depicts an RMI didributed agpplication that uses the Java registry
sarvice to obtain a reference to a remote object. The server cals the registry to
asociate or bind a name with a remote object, which results in the cretion of a
corresponding stub object in the registry. The client looks up the remote object by

its name in the server’'s registry, which causes the stub object to be transferred to the



client and the stub class bytecode downloaded from the server over the HTTP

RMI registry

RMI client
- RMI server
(OHTTP
server
@ remoteobject —p RMI > bytecode downloading

Figure 8. Remote Method Invocation

protocol. Now he client can invoke methods on the stub, which is responsble for

carrying out the method call on the remote object.

3.2.4 Dynamic Class Loading

The Java language's portable and interpreted nature produces a highly
dynamic and dynamicdly extensble sygem. While the Java compiler is drict in its
compile-time datic checking, the language and run-time sysem are dynamic in ther
linking stages: class bytecodes are loaded and linked only as needed, new code
modules can be linked in on demand from a variety of sources, even from sources
across a network, which enables dynamic and transparent updating of applications.

The default class loader is used by the Java runtime environment to load an
gpplication class (whose main method is run by usng the java command) from locd
class directories specified by CLASSPATH, the environment varigble tha Stores a
list of directory names. All classes used directly in that class (i.e, classes needed to

indantiate objects via the new expressions) are subsequently loaded by the default
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class loader from the local CLASSPATH whenever they are first referenced.

Defined by the Java class javarmi.server.RMIClassLoader is the RMI class
loader that provides a set of methods for the RMI system to download classes over
the network, for instance, stub classes associated with remote objects and subclasses
associated with objects passed as arguments and return valuesin RMI calls.,

Java programmers can use the default class loader and the RMI class loader
to mimic Java runtime's dynamic class loading behavior, which is exactly what we
have done to implement the class loader in JEMS (see Section 3.3.3). For a deeper
and better understanding of the rather complex mechanics of dynamic class loading

and linking, readers are referred to [ 10].

3.3 The JEMS Architecture

The architecture of EMSisdepicted in Figure 9:

............. RDI

bytecode
IMos 4P server
S DSFP

S e

[ INFOs | je | T

1 _____ ~JJEMS L <

class loader

device agent

Foure9: The JEMS Architecture

Management Information Tree (MIT). A “containe” tha holds Java objects

in a tree dructure.  Two kinds of objects are stored in the MIT: (1) IMOs that are
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delegated by remote managers to the JEMS; they perform monitoring functions, i.e,
obsarvation or andyds, and interact with remote managers via the RDI.  (2)
INFormation Objects (INFOs) which, as their names suggest, store management
information in an object-oriented way; they are used by IMOs to implement
monitoring functions.

Deegation Service Provider (DSP). An RMI server object usng the MIT
and the class loader to implement the RDI; it provides the delegation service needed
by remote managers to delegate, control and communicate with IMOs.

Class Loader. An internd Java object used by the DSP to load, either localy
or from some class server (ak.a. bytecode server) on the network, those classes that
are needed to instantiate corresponding delegated objects.

MIB Accessor. An internd Java object used by INFOs to exchange low-leve
management information with the locd MIB. In our work, we have implemented an

SNMP accessor that talks with SNMP agents.

3.3.1 Management Information Tree

The management information tree (MIT) is a contaner object that JEMS

MInfoTree

findObject()
removeObject()
addObject()

Figure 10: The MInfoTree Class
employs to store and manage objects in a tree dructure.  The MIT is indantiated

from the MInfoTree class (Figure 10), which provides methods to add objects to,
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remove objects from and find objects in the MIT. Two kinds of objects are sore in
the MIT: INFOs and IMOs, which are respectively ingantiated from subclasses of
the Mgmtinfo class and the Monitor class, both of which are derived from the
superclass MO (Figure 11).
Object Naming Convention

Every object in the MIT has a name that uniquely identifies it and implies its

location in the tree.  The naming dructure for INFOs is compatible with that of a

MO

String name
Hashtable attributes
Boolean enabled

addAttr()
findAttr()
updateAttr()
getName()
setName() Monitor
isEnabled()
setEnabled()

Mgmitinfo

Figure 11: Inheritance Tree of Managed Objects

directory, and the hierarchy chosen is based on containment, i.e., an INFO is named
in terms of the INFO representing the network resource that contains the resource
that is represented by the INFO to be named. For example, if the INFO representing
an ATM-switch port (say, with gloabd index = 1) has the name sysem:port.1, then
the object moddling an incoming virtud pah (say, with VP = 2) in this port will
have the name system:port.liinPath.2; and accordingly in the MIT, this virtud path
object will be stored as one of the child objects of the port object. The root of the
MIT isaspecid dumb object named system.

Since IMOs don't represent network resources, there are no Smilar



hierarchies for their organization, therefore we have made a decison to contain them
directly under the MIT root. For ingtance, an IMO that computes a ratio can have
such a name as system:ratio#3. The bottom line here is, any consstent scheme that
guarantees naming unigqueness should be acceptable.
The MO Class

Representing  network management  information  requires  modding  those
aspects that are of interest to network management purpose.  The result of this
abdraction in an object-oriented context is a managed object class (MO) consisting
of aset of attributes and methods.

Managed objects use a hashtable attributes to store the list of properties that

are of interest to management purpose. Each such property is represented by an

Attribute

String name
Object vaue
Boolean readOnly

getName()
setName()
getVaue()
setValue()
isReadOnly()
setReadOnly()

Figure 12: The Attribute Class
dtribute object ingtantiated from the Attribute class (Figure 12). Any attribute object

has a name and a vaue, and the name is used by the managed object as the key to
index the attribute in the hashtable. The flag readOnly, if set to true, prevents the
vaue of the attribute from being modified once initidized.

Each managed object has a unique name that specifies its identity and implies



its locetion in the tree dructure.  This name is given when the object is initidly
crested and remains immutable throughout its lifetime.  “enabled” is a flag varidble
used to control and indicate whether the the managed object is activated or not.

MO has two very important subclasses Mgmtinfo and Monitor, which
represent  physicd/logicad  network resources and network monitoring  functions
respectively.

Before looking into details of these two classes, we would like to point out
that managed object classes are formdly specified usng the Guiddines for the
Definition of Managed Objects (GDMO) [1], which is an object-oriented information
gpecification language with management  orientation. However, snce GDMO
definitions are text files that are difficult to read and interpret, we have taken
advantage of Rumbaugh notation to visudize dass specifications ingtead of bringing
out GDMO files directly, and will continue doing so throughout the thesis. It is aso
relieving to know that there have been successful research efforts to trandate GDMO
definitions to Java objects [6], which provides automated tools to help with Java
implementation of GDMO-specified MOs.

The Mgmtinfo Class

All the INFOs are ingtantiated from proper subclasses of the Mgmtinfo class,
an object-oriented modding of network management information. The vaues of
interesting MIB variables are obtained through the MIB accessor and represented by
corresponding attributes in a certain INFO. For example, for every incoming virtud

path in any active port of a Fore ATM switch, the SNMP agent keeps track of the



vdues of a collection of MIB counter variables such as pathUsedBandwidth,
pathCdls, pathUptime, and pathRgectedCells, just to name a few. Therefore, an
INFO tha modds this virtud path will have in its dtribute hashteble a lig of
attribute objects that correspond to these MIB variables. These attributes are added
to the hashtable by invoking the addAttr method in the INFO' s congtructor function:
/I inheritance from Mgmitinfo
class InVirtua Path extends Mgmtinfo {
/I congtructor
InVirtudPeth (String name) {
addAttr( new Attrint(“ pathUsedBandwidth™) );
addAttr( new Attrint(“ pathCdlls’) );
addAttr( new Attrint(“ pathReg ectedCdlls’) );
}/ a$1 gn the name to this object

this.name = name

}

Therefore, crestion of an incoming-virtud-path INFO looks like this:

InVirtualPath p2 = new InVirtud Path(* sysem:port.1:inPeth.2”);
mit.addObject( p2.getName(), p2 );

The fird Java datement ingtantiates a new INFO of the type InVirtuaPeth
(p2) and gives it a unique name sysem:port.l:iinPath.2. The second statement inserts
p2 into the MIT at the desired location implied by its name.

All the INFOs of interest to network monitoring are indantiated and added to
the MIT automaticdly when the JEMS darts up; they use the MIB accessor to
periodicdly retrieve data from the underlying device agent, eg., an SNMP agent,

and use the acquired data to update the values of their attributes.



The Monitor Class

IMOs are ingantiated from corresponding subclasses of the Monitor class.
They are deegaed to the JEMS by remote manager applications, and perform
network monitoring functions by processng management informetion  retrieved
localy from relevant INFOs and/or other IMOs. Please refer to Chapter 4 for a

dedicated discussion of the Monitor class and various IMOs indantiated from it.

3.3.2 Delegation Service Provider
The Dédegation Service Provider (DSP) is an RMI sarver object ingtantiated
from the DSProvider class, an implementation of the Java remote interface IfRDI
which is actudly the RDI specified in the Java language. The DSProvider class
implements the IfRDI methods (or RDI operations) as follows:
void create(String className, String objName, Hashtable initParams)
The pseudo-code for this method looks like the following:
if (mit.findObject(objName) == null) {
Class ¢ = GenericL oader.loadClass(className);
Monitor obj = (Monitor) ( c.newlnstance() );
obj.setName(objName);
obj.initidize(initParams);
mit.addObject(obyj);
}

It first checks whether the IMO named objName dready exists in the MIT; if
not, it uses the class loader to load the bytecode of the associated class specified by
the argument className, ingdtantiates an object from this class, sets the object’s name

to objName, further initidizesthe IMO, and then addsiit into the MIT.
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void delete(String objName)
This method removes the IMO objName from the MIT:

MO obj = mit.findObject(objName);
if (obj '=null) { mit.removeObject(ohy)); }

void enable(String objName)

It endbles the IMO objName by setting its flag variable enabled to true. By
doing s0, the object’s functions are effectivdly turned on, snce the communication
operations, get and set, will first conault this variable to make sure that it is set to true
before proceeding to accomplish their perspective tasks:

MO obj = mit.findObject(objName);
if (obj '=null) { obj.setEnabled(true); }

void disable(String objName)
It disables the IMO objName by setting its flag variable enabled to fase.

MO obj = mit.findObject(objName);
if (obj !=null) { obj.setEnabled(false); }

Hashtable get(String objName, String namePattern)

This method finds, in the IMO named “objName” dl the dtributes whose
names match the pattern specified in namePattern, and returns a hashtable of these
attributes indexed by their names. The remote manager can then use the methods in
the atributes themselves to get their values. Two wildcard characters, ‘*’ and ‘7,
could be used in the name pattern.  ‘*’ matches any number and combination of
characters that can be pat of a vdid atribute name; while *? can match any single
character. For ingtance, ‘path*’, ‘“*Cdl*’, ‘path????Count’ and ‘pathCellCount’ are

dl vdid name patterns.



void set(String objName, Hashtable attr\VValues)
This method tries to set the values of some attributes in the IMO objName.
The hashtable attrVaues stores a list of vaues indexed by the names of the atributes

which these values are meant for.

3.3.3 Class Loader

The class loader is a Java object ingtantiated from the GenericLoader class. It
provides a static method loadClass to load class bytecodes, either locdly or remotely
from over the network, whenever they are needed for object(s) indantiation. By
using this generic class loader, the locations of class bytecodes become transparent to
the cdler, i.e, the delegation service provider.
The GenericLoader Class

The GenericLoader class has only one public method loadClass, which
accepts a String argument as a fully-qudifying class name and tries to return the
bytecode for this class in a corresponding Class object. The DSP then uses this
returned Class object to ingantiste the desred IMO (see Section 3.3.2). This
loadClass method first tries to load the class bytecode, if not aready loaded in
memory, from the locd CLASSPATH using the default class loader:

Class ¢ = Class.forName(className);

If the bytecode is not locdly avaldble, a further atempt is then made to
download it from the network:

¢ = RMIClassLoader.loadClass(url, className);

url is a URL object that represents a Uniform Resource Locator pointing to a



host, eg., http://ux7.sp.cs.cmu.edu:2001/, where the needed bytecode is expected to
be located. HTTP is the standard protocol for RMI to transfer bytecodes over the
network, which means tha there has to be an HTTP server running on the host
ux7.sp.cscmu.edu  This server needs not be a full-scde heavy-weight Web server
though, the ability to handle HTTP GET requests will suffice. Such a light-weight
server can be downloaded free of charge from Sun’s website.

Class Loader Configuration

The URL used by the class loader is obtained from a specid INFO named
sysem:class_oaderConfig, which has only one dtribute, urls, that Stores a lig of
URL addresses of bytecode servers. When the class loader needs to download
bytecodes from the network, it retrieves this li and tries the URLs one a a time
until one bytecode server responds with the desired Class object.

This INFO is specid in the sense that it does not relate to or represent any
management information or functiondity per se indeed, it is a convenience object
used by the class loader for configuration information storage. However, we have
put it in the MIT so that the remote manager can take advantage of the set operation
in the DSP sarvice to change the vadue of urls on the fly, as per posshble
configuration changes of bytecode serversin the network.

This configuration object is created automaticdly during the JEMS dartup,

with urlsinitidized to a default vaue.

3.3.4 MIB Accessor

Smilar to the class loader, the MIB accessor is dso an internd object



invisble to remote managers. It is used by INFOs in the MIT to exchange
management data with the underlying device agent.  Currently we have only
implemented an SNMP accessor that talks with SNMP agents. However, accessors
that communicate with other types of agents, eg., CMIP agents or vendors-specific
agents, can be built in asmilar way.
The SNMPA ccessor Class

The SNMP accessor is a Java object ingtantiated from the SNMPA ccessor

class (Figure 13). It is a very smdl SNMP manager that communicates with the locd

SNM PA ccessor
get()
set()

Figure 13: The SNMPA ccessor Class
SNMP agent in the network device where the JEMS is running. We have used the

most popular Java SNMP API [11] to implement the accessor.

When the accessor is first crested during the JEMS dartup, it loads the
correct MIB file, sets the SNMP protocol verson (v1, v2c or v3) and the Internet
address for the SNMP agent (localhost in our case). The accessor has some private
methods that hep parse variable names, trandating them to corresponding Object
Identifiers (OIDs) which are eventualy encoded in SNMP protocol data units. The
accessor exposes two public methods, set and get, for INFOs to invoke, hiding al the

agent-related details from them.
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Chapter 4 Intelligent Monitoring Objects

The JEMS architecture provides for a sage on which intdligent monitoring
objects (IMOs) can peform. Certain network monitoring functions, which used to
be running on the manager sde, can now be encapsulated into corresponding IMOs,
which are in turn delegated to the JEMS and wnning locdly in the managed network
device. This chapter focuses on the detalls of the desgn and implementation of
IMOs.

From time to time, however, we will refer back to certain JEMS components
and have further discussons about them, sSnce we dther smplified ther
presentations or didn't make ther design considerations clear enough in the last
chapter. We have purposefully done this because their thorough interpretation relies
on or is made easer by the contents of this chapter.

Chapter Organization

Section 4.1 analyzes the requirements on IMO design.

Section 4.2 details the design of the Monitor class.

Section 4.3 examines the implementation of Observers, i.e,, IMOs that compute
rate/ratio-oriented indicators and indicator satistics (review Section 2.4.1).

Section 4.4 examines the implementation of Analyzers, i.e, IMOs that perform
network analysis (review Section 2.4.2).

Section 4.5 illudrates, via a smple example, how to achieve intelligent network

monitoring by delegating proper IMOs to the JEMS.
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4.1 Desgn Andyss

As was introduced in Chepter one and three, IMOs are specidized Java
objects that are delegated by manager applications to a JEMS to perform network
monitoring right in the managed network device, and their functions dlow for on+
line modification and extendon. In order to sisfy ther functiond requirements,
IMOs need to have the following characterigtics:

(1) They have access to lower-leve management informetion, i.e, attributes
values stored in related INFOs or even other IMOs.

(2 A «df-contained monitoring module is properly encapsulated in every
IMO; once correctly initidized, it is able to autonomoudy exercise a desred
monitoring function/computation without any manager intervention.

(3) Through reevant RDI cdls, remote managers can make on-line changes
or extensons to the functiondity of IMOs.

(4) Although IMOs are indantiated and run in the network devices, they have
to be coded a the manager Sde with no access to agent-sde management
information  This requires that the way in which IMOs are designed support easy
manager-Sde object programming.

We have dso noticed that the monitoring modules in different IMOs are
highly “repetitive” For example, the formula used for different ratio cdculations are
mathematically equivaent except that different ratios are based on different lower-
level management information. Therefore, thereis one last congderation:

(5 Maximum reusgbility of monitoring functions in different object instances



Is expected in the IMO design.

4.2 The Monitor Class

All monitoring objects are instantiated from proper subclasses of he abstract

Monitor class which forms the core of the whole IMO desgn. The detals of the

abstract MO Obsarver

String name
Hashtable attributes )

Boolean  enabled abstract Monitor /<
IfRDI

stub_ DSP
addAttr() _< -
findAdtr() Operator op Analyzer
updateAttr() initialize() IfListener Istner
getName()
setName()

isEnabled()
setEnabled()

Figure 14: Inheritance Tree of the Monitor Class

class dructure are discussed as follows: Section 4.2.1 shows how requirements (1)
and (2) ae saisfied through the so-cdled *operands/operator paradigm”, Section
4.2.2 examines the initidization process of IMOs, and Section 4.2.3 presents the

benefits of our design, where requirements (3), (4) and (5) are addressed

4.2.1 Operands/Operator Paradigm

It can be noticed that al the IMOs, no matter they are Observers or
Andyzes, accomplish ther functiondity by taking given management information
as input, gpplying certain monitoring rules to it, and generating some results. For an
Observer, the reault is stored in a certain attribute reedy for retrievd by the remote
manager; for an Andyzer, the result, usudly in the form of an darm, will be reported

back to interested AlarmListener objects on the maneger side.



Accordingly, we have generdlized the IMO design using a structure which we
cal Operands-Operator Paradigm (Figure 15). It conssts of three essentid
components, the operands attribute, the operator attribute with the corresponding
Operator object, and the result/listener attribute, which correspond to the above-
mentioned input, rule and result respectively. We now examine these components
Separately.

The operands Attribute

In the atribute lig (i.e, Hashtable attributes) of every IMO, there is a

create delete get set enable disable
Delegation Service Provider

updateAttr

findAttr |

attributes

stub_DSP

i operand: B

i| operator

opParamg

Figure 15: Operands-Operator Paradigm
composite attribute named operands, which represents a String array of absolute

atribute names. The syntax of an absolute attribute name is
<attributeName>@<objectName>
and such a name refers to a given atribute in a given managed object. For

example:



pathCdls@system:port.L:inPath.2

The names dored in the operands attribute can point to either atributes in
INFOs or the result attribute in other IMOs, depending on the operation to be
performed by the IMO in question. The Operator object in a IMO retrieves the
vaues of those attributes specified by the operands, performs pre-programmed
computation on the vaues, and stores the output into the result attribute of the IMO
in question (in the case of an Observer). The operands attribute is a read-only
atribute, once a IMO s initidized, the vaue of this atribute cannot be changed by
remote managers.
The operator Attribute and Operator Object

The monitoring behavior of IMOs are generdized by the abstract Operator

cass (Figure 16). Any specific monitoring functiondity, eg., rdio or rae

abstract Operator
Monitor owner

setOwner()
abstract checkContext()
abstract doOperation()

Figure 16: The abstract Operator Class

computation, is represented by a subclass that has accordingly implemented

Operator’ s abstract methods. The purpose of each method is explained as follows:.

setOwner() — Set the owner of this Operator to be the associated IMO

checkContext() — Check if the owning IMO has the suitable context for the Operator
to run. Such a context includes compatible operands (the operands attribute),

proper operation parameters (the opParams atribute) and availability of a lisener



Stub object (in the case of an Analyzer).
doOperation() — Peform the desred monitoring operation based on the valid
operands and operation parameters, specific to operator implementation.

Any IMO has, in its dtribute list, an attribute ramed operator whose vaue is
the class name of the Operator to be used by the IMO. This attribute is not read-
only, and whenever it is set to a new vaue, a corresponding Operator object will be
indantiated using the generic class loader.

Also related to the Operator object is the attribute named opParams. It
represents a hashtable of parameters, in namelvadue pairs, that are interpreted by the
Operator to adjust its operation. The usage of opParams will be discussed in more
detall later in this chapter where most appropriate.

The result/listener Attribute

For an Observer, the output from the Operator object is stored in an atribute
named result. This atribute can be retrieved by remote managers, or even taken as
an operand by other IMOs. An Andyzer, indead, has a lisener attribute whose
vaue is the name of a remote listener object; the Operator object invokes a method
on the stub of this remote listener to send an darm back to the manager whenever an
abnormal condition is detected. A better study of these two attributes will be given

in Section 4.3 and 4.4 repectively.

4.2.2 Object Initidization
The correct and efficient initidization of IMOs is an integrd pat of the

overd|l design, therefore we are devoting a separate subsection to this bpic. There
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ae two deps involved here invocation of the object’'s condructor and initidize
method by the create operation of the DSP (review Section 3.3.2).
The Constructor Method

A IMO's condructor is automaticaly invoked immediately after the object is
ingtantiated by the DSP. What the constructor does is to correctly set up the object’s
atribute lis by adding gppropriate attributes into the hashtable, and to initidize its
stub DSP property (see Figure 14, 15). To make this process clearer, we lig in the
following paragraphs partia codes of the related constructor methods, with easy-to-
understand comments.

/I the abstract Monitor class
abstract class Monitor extends MO {
/I constructor
Monitor() {
/I find the DSP on the loca hogt and store its stub
/I object into the variable “stub DSP’
sub_DSP = (IfRDI) Naming.lookup(*//locahost/DSP’);
/I add the read-only “operands’ attribute
addAttr(new Attribute(* operands’));
/Il add the read-write “ operator” attribute
addAttr(new Attribute(* operator”, fase));
/l add the read-write “ opParams’ attribute
addAttr(new Attribute(* opParams’, fdse));
/I add the read-write “interva” attribute
Il refer to Section 4.3 and 4.4 for details
addAttr(new Attribute(* intervd”, fdse));

}
}
/I the Observer class
class Observer extends Monitor {
/I constructor
Observer() {
/l cdll the congtructor of the parent class— Monitor

super();



/I add the read-only “result” attribute
addAttr(new Attribute(“ result”));

}
}
Il the Andyzer class
class Andyzer extends Monitor {
/I constructor
Andyzer() {
/I call the parent class constructor
super();
/I add the read-write “ligener” atribute
addAttr(new Attribute(“ ligener”, fase));
}
}

Theinitidize Method

An IMO's initidize method is cdled immediately after the constructor, and it

ams a correctly initidizing the vaues of the those attributes added to the attribute

list by the congtructor.

Il the abstract Monitor class
abstract class Monitor extends MO {
/I congtructor
Monitor(){ ...}
void initidize(Hashtable params) {
/I initidize “ operands’ with the corresponding valuein
/I the hashtable “ params’, which is passed asthe last
/I argument to the DSP' s create() method (Section 3.3.2)
updateAttr( “operands’, params.get(* operands’) );
updateAttr( “opParams’, params.get(“ opParams’) );
updateAttr( “intervad”, params.get(“interva”) );
updateAttr( “operator”, params.get(“ operator”) );

}

/I the Observer class
class Observer externds Monitor {
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/I constructor

Observer() { ...}

void initidize(Hashtable params) {
/I cdl Monitor’ sinitidize method
super.initidize(params);

}

I/ the Andyzer class
class Andyzer externds Monitor {
/I congtructor
Anayzer(){ ...}
void initiaize(Hashtable params) {
/I cal Monitor’ sinitidize method
super.initidize(params);
/l'initidize the “ligener” attribute
updateAttr(“listener”, params.get(*listener™));

}

The updateAttr method acts as a digpatcher function tha redirects the
initidization process to respective “helper” methods. The attribute value to be s,
which is the second argument to updateAttr, is passed on to the helper methods. For
ingance, the cdll to initidize the operands attribute;

updateAttr( “operands’, params.get(* operands’) );
resultsin the following helper method to be called:

private void updateOperands(Object vaue) { . ..}

These helper methods perform type checking, vadue assgnment and
additiond setup if necessry. Take the operator atribute as an example, the
updateOperator method first checks whether the value to be set is a String instance.

If so, it asdgns the vaue to the operator atribute. That's not dl, there is some



additional setup work to be done in this case: fire, the generic class loader loads the
associated operator class and ingtantiates an Operator object; secondly, a Java thread
is created and Started, which calls the Operator's doOperation method periodicaly at
the pace specified by the interva attribute (for details, please see Section 4.3):

/I Monitor’ s updateOperator method
private void updateOperator(Object value) {
/I assign the vaue to “operator”
findAttr(“ operator”).setVaue((String)vaue);
/I load the operator class
Class ¢ = GenericL oader.loadClass((String)va ue);
I ingtantiate the Operator object
op = (Operator) (c.newlnstance());
/I st the Operator’s owner to be thisIMO
op.setOwner(this);
/I check the context of thisIMO
op.checkContext();
if (findAttr(“interva”).getVadue() > 0) {
/I create and Start athread that calls
/I op.doOperation() periodicaly

4.2.3 Benefits of Our Design
The operands/operator paradigm has the following benefits.

Operator Reusability

A specific monitoring function can be abstracted and represented by a proper
subclass of the Operator class, and then be embedded into different IMOsin the form
of the operator attribute. In this way, we can bind one operator with many different
sets of operands to form different IMO instances.
On-line Change and Extenson

Hexible and powerful on-line extenson to IMOs and the underlying JEMS
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can be achieved. Specificaly spesking, there are three levels of on-line changes that
can be made, with increasing degree of extenghbility.

(1) Parameter Customization. Because the opParams is a read-write attribute,
remote managers can modify its vaue via RDI cdls thus dynamicdly changing the
manner in which the Operator object works.

(2) Operator Re-assgnment. Since the Operator itsdf is associated to the
read-write operator attribute, managers can change a IMO's monitoring behavior
even more by assgning a new, hopefully more powerful, Operator to it. Note that
the Operator object is indantiated by way of the generic class loader which can
download Java classes from the bytecode server, the JEMS does not need to have
any prior knowledge or storage of the new operator class. Therefore, the extenson
takes place in acompletely on-line and dynamic fashion.

(3) New Monitor Types. The most sgnificant benefit comes from both the
operands/operator paradigm and the overall JEMS design, i.e, it is quite easy and
convenient to write new Monitor subclasses and to delegate their ingtances to the
JEMS.

Independent Manager-side Devel opment

To write and compile the Monitor class and its subclasses, we need:

Interfaces/classes. IfRDI, IfListener, Operator, Attribute

To write and compile the Operator class and its subclasses, we need:

Interfaces/classes: IfRDI, IfListener, Monitor, Attribute

To deploy/delegate IMOs to the JEMS, we aso need to have access to related
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Operator implementations, IfListener implementations, and absolute attribute names
from available INFOs.

Except for IfRDI and absolute attribute names, dl of the above-mentioned
components are written and avallable a the manager dde. IfRDI is the remote
interface to the JEMS and, according to the purpose and nature of an interface,
should remain independent of its implementation. As for the absolute attribute
names, as long as the managed device is determined and a mapping from its MIB to
corresponding INFOs is done, the available attribute names are fixed and become
irdevant to the JEMS implementation. Therefore, our desgn dlows for

independent manager-side IMO programming and deployment.

4.3 Observers

Observers are IMOs ingantiated from the Observer class. They perform the

obsarvation pat of network monitoring. An Observer is chaacterized by the

Observer Operator Context
type class interva (mMs) operands opParams
number type
I nteger
3 =
rate OpRate 1 1 or Float na
. . Integer
3 3
raio OpRaétio 1 2 or Float n‘a
aerage OpAvg - I nteger sampleSize
variance OpVar 31 =
: or Foat 32
covariance | OpCovar =

Table 3: Observer Contexts for different Operators

Operator object in it, therefore we will center our discussion around related Operator
objects. The following table ligts the correct context for different Operators:

Let's take a look at how a ratio-oriented indicator is implemented by cresting



an Obsarver using the OpRatio class. Other indicators can be implemented smilarly.
The manager crestes an initidization parameter list:

initParams

operands “ pathRe ectedCell s@system: port. L:inPath.2”
“pathCdls@system:port.L:inPath.2”
opParams (null)

Interval 5000

operator “jems.operator.OpRatio”

Table4: Initidization Parameters for the OpRatio Class

The manager delegates an Observer to the JEMS (at rrocoto.cshen.umd.edu):

IfRDI jems = (IfRDI)Naming.lookup(* //rrocoto.cshen.umd.edw/DSP’);
jems.create(* jems.monitor.Observer”, “ system:observer#58’, initParams);

The DSP indanttistes an Obsarver, initidizes its atribute lig usng the
provided parameters, and adds the Observer into the MIT. When the operator
atribute is being initidized, the Operator checks the owning Observer againg the
ratio context listed in Table 3 to make sure that the Observer has a compatible
context for the Operator to correctly perform its function in.

The monitoring funtion of this Observer, i.e, to cdculate the (cell rgection)
ratio based on the two variables specified in the operands attribute, is implemented
by OpRatio’s doOperation() method as follows:

/I OpRate s doOperation method

void doOperation() {

/I get the value of the “operands’ by caling:

/I owner findAttr(* operands’);

/I parse the names of the operands and get the attribute
/I names and object names separatdly, i.e.:

/I attrNamel = * pathRejectionCells’

/I objNamel = “system:port.1:inPath.2”

/I atrName2 = “pathCells’
/I objName2 = “system:port.1:inPath.2’



/I get the attribute values viatwo RDI cdls.

I curr_1 = (owner.stub_DSP).get(objNamel, attrNamel);
I curr_2 = (owner.stub_DSP).get(objName2, attrName?2);
/I caculate the difference from the latest vaues:

/ldeta 1=curr_1-lagt 1;

/lddta 2 =curr 2—lagt 2;

/I caculate theratio by:

/l ratio = delta 1/ (delta_1 + delta 2);

/I goretheratio to the “result” attribute:

/I owner findAttr(“ result”).setVa ue(ratio);

Il'ast_1=curr_1;
/last_2=curr_2;
}
4.4 Andyzers

Andyzers are IMOs indantiated from the Andyzer cdlass. They peform the
andyss pat of network monitoring as was defined in Section 2.3.2. In this thess
work, we only look into the smplest form of Anayzer, which compares the vaue of
the monitored indicator (its operand) with a set of pre-specified thresholds, and
generates corresponding darms when certan thresholds are crossed. The
comparison is done by the Analyzer's Operator object which is ingantiated from the
OpThreshold class. Other types of operator classes can be developed smilarly.

Figure 17 shows the threshold comparing model used by an Andyzer. There
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Figure 17: Threshold Comparing in Alarm Generation
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are two levels of thresholds high and low, and in each leve there are two gauges
defined. For the high-levd thresholds, when the vaue of the monitored indicator
exceeds the high gauge, a “high dam” is fired and remains vdid until the vadue
drops bdow the high-cler gauge, when a “high dam deared” message will be
emitted. Between the firing of an darm and its clearance message, no other darms
should be fired. The “low dam” and its associated “low dam cleared” message
work in a amilar way. An even more generic modd would adlow for multiple levels
of thresholds.

Alams and ther cearance messages are represented by objects instantiated

from the Alam and AlamCleared classes respectivdy. Both these classes are

Alarr
Event
Integer urgency
Long id
String origin
String desc
Date time
Obiect data
getID() setID()
getOrigin() setOrigin()
getDiscription() setDiscription() AlarmCleared
getTime() setTime() Long idToClear
getData() setData()

Figure 18: The Inheritance Tree of Event Classes
subclasses of the Event class (Figure 18). Each  generated event  object s
automdicdly assigned a unique ID, and contains properties tha have the
following meaning:
origin name of the IMO that generates this event
desc  brief description of the nature of this event

time time stamp marking when the event was created
data detalled information about the agent-dde Stuations that triggered the
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generation of this event; meant to be interpreted only by proper event
handlers on the manager sde

The generated event objects are sent back to the manager via a remote
interface IfLigener (Figure 19). A remote object running a the manager sde has
implemented this interface, and registered the associated stub object in the RMI
regidry under the name “EventLigene”. When ddegating an Andyzer to the
JEMS, a manager includes the complete URL name of this stub object in the

initidization parameter ligt (Table 5) for initidization of the listener atribute.

interface IfLigener

receive(Event evt)

Figure 19: ThelfLigenter Remote Interface
Let's now take a look a how threshold checking, a smple network andyss
behavior, is indrumented by creating an Andyzer usng the OpThreshold class. The
manager creates an initidization parameter list for the OpThreshold class:

initParams

operands “result@system:observer#58”
opParams high gauge=80000 high clear gauge = 75000
low_gauge = 500 low_clear_gauge = 5000

intervel 10000
listener “/Iheraisr.umd.edu/EventListener”
operator “jems.operator.OpT hreshold”

Table5: Initidization Parameters for the OpThreshold Class

The manager delegates an Analyzer to the JEM S (at rrocoto.cshen.umd.edu):

IfRDI jems = (IfRDI)Naming.lookup(“ //rrocoto.cshen.umd.edw/DSP);
jems.create(” jemsmonitor. Andyzer”, “ sysem:andyzer#16”, initParams);

The DSP instatiagtles an Andyzer, initidizes its atribute lig usng the
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provided parameters, and adds the Andyzer into the MIT. When the DSP initidizes
the listener atribute, in addition to the actua assgnment of the URL to the attribute,
the helper method updatelistener dso downloads a copy of the associated remote
stub object and keepsit in the Andyzer’ sIstner property.
/I Andlyzer' s updatelistener method
private void updatelistener(Object vaue) {
Il assgn the vdueto “ligtener”
findAttr(“listener™).setVaue(vaue);
/I locates the remote stub of the “ EventListener”

|stner = (IfListener)Naming.lookup((String)value);
}

When the operator attribute is being initidized, the Operator checks the
owning Andyzer agand the context shown in Table 6 to make sure that the

Andyzer has a competible context for the Operator to correctly perform its function:

Andyzer | Operator Context
Type class intervd | operands# type opParams listener
i high gauge >
g2 | B | 1| o | [neses | o
@ ?3 = Float :m_clear > =
E6 | & N

Table 6: Anayzer Context for the OpThreshold Class
The monitoring funtion of this Andyzer is accomplished by the Operator's
doOperation method as follows:

/I OpThreshold' s doOperation() method
void doOperation() {
/I get the value of the “operands’ by caling:
/I owner findAttr(*“ operands’);
/I parse the name of the operand and get the attribute name
// and object name separately, i.e.:
/I atrName = “result”
/I objName = * system:observer#58”



/I get the vaue of the attribute viaan RDI call:

[l vdue = (owner.stub_DSP).get(objName, attrName);
/I get the vaue of the “opParams’ and the gauges

/I contained init:

/I owner findAttr(“ opParams’); . . .

/I use the threshold modd shown in Figure 4.12 and

/I compare “vaue’ with different gaugesto decide if

/I an Alarm or AlarmCleared object should be created;
Il if 0, cregte one and initidize it accordingly

/I darm = new Alarm();

Il darm.setID(); darm.setOrigin(owner.getName());

/I darm.satDescription(”..."); . ..

/I send the darm back to the manager:

/I lstner.receive(darm);

}

The remote listener object acts as an event dispatcher at the manager Sde and

re-directs the received events to their proper handlers.
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Chapter 5 Prototype JEMS System

Based on the JEMS architecture proposed in previous chapters, we have built
a proof-of-concept prototype system, and done some experiment and comparison
agang the centrdized monitoring system. The results have verified the advantages
of intdligent monitoring over traditiona network monitoring schemes.
Chapter Organization
Section 5.1 introduces the configuration and implementation of the prototype
system.
Section 5.2 compares the prototype system with the traditiond centrd monitoring
system through some smple experiment and analysis.

Section 5.3 draws approriate conclusions.
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5.1 Prototype JEMS System
The prototype JEMS sysdem (Figure 20) is introduced in the following
sections: system configuration in Section 5.1.1, objects deployment in Section 5.1.2,

hera
(management station)

I:l E I:l E ux7 (bytecode server)

dsr.umd.edu

| .p.cs.cmu.edu

I:l E roccoto (JEMS server)

Figure 20: Prototype JEMS Systerr

and system startup procedure in Section 5.1.3.

5.1.1 System Configuration
Bytecode Server and RMI Registry Service

Actudly, the bytecode server and the RMI registry service can be running on
any IP hogt on the Internet. We happen to choose the following setup, shown in

Table 7, for them.
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Machine s DNS name Ux7.sp.cs.cmu.edu

Hardware platform Sun Workstation

Operating System Solaris 2.5

Java platform JDK 1.1.5 for Solaris

URL of RMI registry rmi://ux7.sp.cs.cmu.edu:5001/

URL of HTTP server http://ux7.sp.cs.cmu.edu: 2001/

Classes served jems.monitor.*
jems.operator.*

Table 7: Configuration of the Bytecode Server

jemsmonitor is the name of the Java package that contains dl the Monitor
classes, i.e, Monitor, Observer and Andyzer. jems.operator is the name of the Java
package that contains al the Operator classes, i.e, OpRate, OpRatio, OpAvg,
OpVar, OpCovar and OpThreshold.
Managed Device and JEMS Server

The managed device is a Fore ATM switch located in the Center for Satdlite
and Hybrid Communication Networks (CSHCN). The switch is connected to the
CSHCN LAN and has the DNS name bigbang.cshcnumd.edu. It has a built-in
SNMP agent that serves requests for variables defined in two MIB files RFC1213
for 1P management, and Fore-Switch-MIB for ATM -switch-pecific management.

According to the proposed architecture, a JEMS server should be running in
the switch for its inteligent monitoring. However, snce there is no VM ported to
the Fore ATM switch yet, we have to run a JEMS sarver in a workstation which is
equipped with a VM and acts as a proxy for the ATM switch. The configuration of

this proxy machineislisted below in Table 8.
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Machine€ s DNS name rrocoto.cshen.umd.edu
Hardware platform HP Workstation
Operating System HP UX

Java platform JDK 1.1.6 for Solaris

Table8: Configuration of the Proxy Machine

The configuration of the EM S server in the proxy machineis listed below:

MIT naming convention as gpecified in Section 3.3.1

DSP

Name of DSP's stub object | (i.e, remote managers use the URL
registered in the RMI regisiry rmi://ux7.sp.cs.cmu.edu: 500/DSP
to look up DSP's stub object)
SNMP agent accessed by the| bigbang.cshcn.umd.edu

SNMP Accessor

Table9: Configuration of the EMS Server

Management Station
Any IP host on the Internet can play the role of a management dtation. We

have randomly picked a Sun workstation in ISR’s SEIL |ab with the following setup:

Machine€ s DNS name heraisr.umd.edu
Hardware platform Sun Workstation
Operating System Solaris2.5

Java platform JDK 1.1.6 for Solaris

EventListener

(i.e, Andyzersin the EMS use the URL
rmi://ux7.sp.cs.cmu.edu: 5001/EventListener
to look up the event listener’ s stub)

Name of event ligener’s stub
object registered in the RMI

registry

Table 10: Configuration of the Management Statior
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5.1.2 Managed Objects Deployment

Information Objects

Since the mgor interest of this research is in performance monitoring, we did

Port

SigPath

MO Mgmtlnfo

InVirtualPath

OutVirtual Path

Figure 21: Inheritance Tree of INFO Classes
not map the whole Fore-Switch-MIB to INFOs. Instead, we have sdected a ligt of

SNMP variables related to the performance of the ATM switch (see Appendices),
and mapped them to various INFOs. Specificdly, dl port-rated variables (Table
11) are mapped to corresponding atributes in the Port class, dl sgnding-related
vaiables (Table 12) are mapped to corresponding atributes in the SigPeth class, dl
incoming path-related variables (Table 13) are mapped to corresponding attributes in
the InVirtudPath class, and dl outgoing pathrelated vaiables (Table 14) are
mapped to corresponding attributes in the OutVirtudPeath class. The inheritance tree
of these classes is shown in Figure 21, and their associated containment subtree in

the MIT is shown in Figure 22.

74



Now, the motivation and benefits of introducing a layer of INFOs between
IMOs and underlying device agents are easy to explain and understand.

INFOs present a better view of the available management information. Not
dl the vaiddes in the MIB are ussful for network management, actudly only a

gndl fraction of them prove to be hdpful for perfformance monitoring. To make

1 sigPath.1 @ .

Figure 22: Containment Subtree of INFOs inthe MIT

things worse, these varidbles are often scatered in different MIB tables, which
makes ther direct access very difficult and confusng. By mapping only those
ussful and functiondly rdated variables from different locations in the MIB to
attributes in a few compact INFOs, we hide the complexity of direct MIB access
from end users (eg. IMOs), and ingead provide them with an efficient, focused and
smpler access interface.

INFOs help with easy programming of reussble IMOs. Ingtead of taking
directly to the device agent, IMOs acquire information from various INFOs by
invoking proper RDI operations. Since MIB access details and complexity are

encapaulated in the implementation of INFOs and the MIB accessor, IMOs are
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independent of agent types and are therefore reusable. For example, if we have an
ATM switch with a CMIP agent, al that needs to be done is to write a CMIP
accessor and change the implementation of INFOs so that they update their attribute
values by way of the CMIP accessor.
Monitoring Objects

Two Java packages, namedy, jemsmonitor* and jemsoperator.*, are
deployed to the bytecode server. When the remote manager attempts to delegate a
IMO to the JEMS sarver, it invokes the RDI creste method with three arguments:
cdass name, object name and initidization parameter lig.  The Monitor cdass
specified by the class name is downloaded from the bytecode server to the JEMS
sver, a IMO is then indantiated from the class, and ges initidized usng the

parameters provided.

5.1.3. System Startup Procedure

The prototype system starts up in the following sequentid steps:
Bytecode Server and RMI Registry Startup

The HTTP server is started on port 2001, with its document root pointing to
where the two Java packages are indtdled. Monitor and Operator classes are now
ready for download from the URL http://ux7.sp.cs.cmu.edu:2001/.

The RMI registry is started on port 5001.
JEMS Server Startup

The SNMP Accessor is crested and initialized. It loads the Fore-Switch-MIB

file, sets the SNMP protocol verson to vl, and sets the SNMP agent’'s Internet
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address to bigbang.cshen.umd.edu.

The Management Information Tree is created and initidized. Fird, the
subtree shown in Figure 22 is auomatically added into it; during this process, switch
information is obtained via the SNMP Accessor to decide which ports are active and
what virtud paths there are in each active ports, so that the subtree can be built to
reflect the working condition of the ATM switch. Secondly, specid-purpose objects
are initidized and added into the MIT; for example, the classLoaderConfig object
(see Section 33.3) will be added to the MIT with its attribute urls st to
http://ux7.sp.cs.cmu.edu:2001/.

The Class Loader is created and initidized.

The Deegation Service Provider is created; its stub object is regigtered in the
RMI registry under the name DSP, and therefore becomes available for lookup and
download at the URL rmi://ux7.sp.cs.cmu.edu:5001/DSP.

Management Station Startup

A manager gpplication starts up and immediately registers the stub object of
an event ligener to the RMI regisiry under the name EventListener. Now the dtartup
process of the whole system is complete, and the manager gpplication can dart
delegating Observers, Anadyzers and possbly other types of IMOs to the JEMS

Server.

5.2 JEMSvs. Centralized Monitoring

This section compares the intdligent monitoring paradigm of JEMS and

those of centraized SNMP-based approaches. It examines some typica performance



issues involved in network monitoring sysems. We compare the performance of our
prototype system and applications using SNMP. The comparisons, which focus on
scaability, performance, and online extenshility, are illustrated by sSmple examples

or andyss.

5.2.1 Scaability

Polling-based network management systems do not scde up to large
networks, because the interaction of the centra management dation with SNMP
agents has two patens (1) it involves the management dation into a huge amount
of communication, and (2) it concentrates most processing into the central dtation. A
network system becomes unmanagesble when there is an increase in the number of
managed devices or when there is an incresse in the number of varigbles to be
monitored.

Consider an SNMP-based application executing on hera, responsble for
performance monitoring of the ATM switch bigbang. To undertake any non-trivid
monitoring task, be it observation or analyss, the application needs to keep an array
of indicators — rates, ratios and dSatistics — based upon the varigdbles lised in
Appendix. To provide a given level of measurement precison, the vadues of these
indicators have to be updated a a reasonable frequency, say, every T seconds. If we
assume the time required for a sngle polling request is tp, then the maximum number

of variables that can be handled by hera is bound by NE£T/t,. Monitoring an

operating broadband ATM switch usualy requires a high precison or a short T; and

if the management dation and managed device communicate over a Wide Area
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Network (implying a large dday tp), then the maximum number of varigbles or
SNMP devices that can be handled by one centrd management station could drop
one to two orders of magnitude. This poses a serious scaability problem. A smiliar
exampleis discussed in much more detall in [26].

Now, even if the management dation is so powerful as to be able to handle
dl the devices the palling scheme is dill very inefficent, snce the network traffic
caused by the polling behavior is a condant independent of the actua frequency of
information access or darm generation. For example, in order to promptly detect a
rare yet important darm dtuaion, a high polling frequency needs to be maintained,
even though most of the polling requests will prove to be irrdlevant.

Contrary to what a traditiona polling-based system does, a JEMS-based
sysem deegates intdligent monitoring objects to network devices, so tha various
indicators are maintained (and network analyss is performed) right in the devices or
in a loca proxy as in our prototype system. Manager-to-agent traffic occurs only
when the centrd dation has the actua need for information, or when darms are fired
upon detection of associaed amnorma gtuations  This dgnificantly reduces the
unnecessary  management traffic and the load on centrd dations, thus reducing the

scalability barrier.

5.2.2 Performance
We illugrate the performance characterisics of JEMS by comparing the
performance of a monitoring application usng SNMP to that of an gpplication that

has the same functiondity but was implemented on our prototype system.
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Consider an SNMP-basad monitoring application that involves n MIB
vaiables. The cogt function of the overdl response time of this gpplication can be
approximated by

Towe = NXT, (SNMP _Get) + T, (manager) +T,, 5

To(SNMP_Get) represents the delay of each SNMP Get request between the
centrdlized dation and the SNMP agent, Tc(manager) represents the computation
time of the goplication a the management dation, and Ty represents the tota time
spent by the SNMP agent in MIB searching during one invocation of the gpplication.
Tpo(SNMP_Get) depends on the round-trip transmission delay of the SNMP Get/Get-
Response message pair, plus message processing time at both ends.

Condder a JEMS implementation of the same gpplication. The functiondity
of the monitoring application can be encapsulated into an Operator object, which is
in turn bound with a IMO delegated to the managed device, and a get operation on
the IMO's reault attribute would return the computation result.  After the IMO is
delegated and ready to serve, the typicd response time cost function for one get
operation can be gpproximated by

Tiews = T (RDI _Get) + nxT , (SNMP _Get) + T, (agent) + Ty, 5

Tp(RDI_Get) represents the delay of each RDI get operation between the
management station and the JEMS server, T p(SNMP_Get) represents the loca delay
of each SNMP Get message between the SNMP accessor and the SNMP agent,
Tc(agent) represents the computation time of the Operator object in the managed

device, and Twig represents the totd time spent by the SNMP agent in MIB



searching.
In a Wide Area Network (WAN), message transmisson delays condtitute the
magor part of both To(SNMP_Get) and Tp(RDI_Get), therefore we can assume
T, (SNMP _Get) » T, (RDI _Get)
Tc(manager) and Tc(agent) are influenced by system parameters, such as
CPU gpeed and memory capecity, of the management dation and JEMS server
respectively.  Although the centraized dation is amogt dways much more powerful
than the managed device (or the proxy machine) where the EMS server is running,
it is dmog dways shared but multiple tasks as wdl. When we congder smple
monitoring applications, we can safdy assume that Tc(manager) and Tc(agent) are
of the same order of magnitude. With delegated objects, we have moved the
network polling to locd MIB access, thus the dday associsted with SNMP Get
requestsisvery smdl, i.e,
T, (SNMP_Get) <<T, (SNMP_Get)
Therefore, the resdud performance differenceis
Towe = Tiems = (N- 1) X7, (SNMP _Get) +d
Of course, the initid delegation of a IMO to the JEMS server conssts of such
complex steps as RDI create operation request, classes download, objects
indantiation and initidization, and may take quite some time. However, once the
delegation is completed and the “cold dat” cost is pad, inteligent monitoring
continuoudy beats SNMP-based method, so it only takes a few more program

invocations to amortize the initid cost. And in a WAN with large dday and for
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aoplicationsinvolving many MIB varigbles, this amortization will be even faster.

5.2.3 Extenshility

The most outdanding benefit of JEMS sysem is that it provides online
extenghility that traditiond sysems don't have. Once up and running, a device
agent is equipped with a fixed set of functiondity. With a JEMS running in the
device, its functions can be dynamicaly extended/changed without having to bring
the system offline.

For example, there are some predefined trap variables that SNMP agents use
to report smple abnormd Stuations in the device. However, the number of these
variables is fixed and ther semantics are datic. If later a new gStuation is identified
and demands attention, the only way to incorporae it into the agent is to add a
corresponding trap variable to the MIB and recompile the agent. During this
process, the agent has to be stopped and its service interrupted.

With a JEMS running in the device, things become easer and more flexible.
Firg, with an appropriate Operator bound to it, an Anayzer needs to be delegated to
the device to monitor the potentid darm. Then, when we bdieve that the symptoms
associated with the darm has changed, the Operator can be properly reconfigured to
reflect the change. For ingtance, if an OpThreshold operator was adopted, we may
want to reset the vaues of its upper and lower thresholds. To go even further, if a
new dam gtuation arises that can not be taken care of by any Operator currently
avalable, we can dways write a new Operator class that identifies the Stuation, and

then bind an ingance to the Analyzer. The whole process can be accomplished
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without sugpending the agents  current functiondlity.

5.3 Conclusions

JEMS provides a smple and flexible modd to construct monitoring systems,
by dlowing dynamic cregtion, manipulation and integration of delegated monitoring
objects. Network managers can use the predefined IMOs provided by network
device vendors, and their own objects to build distributed and dynamic management
gpplications. By taking advantage of IMOs running in the managed devices, the
intelligent  monitoring sysem has better scdability, peformance and  online
extengbility than centraized polling systems.

Furthermore, since JEMS is bassd on dsandard industry-proven Java
technologies, it is easer to implement and has better portability than MbD [19].
Unlike the mobile agents method [13], the change to monitoring paradigm
introduced by JEMS is incrementa rather than fundamental, making its integration

with current polling-centric systems much essier.



Chapter 6 Conclusions

With increese in the complexity of modern communication networks, it is
imperative that there be commensurate advances in the tools and techniques used to
manage these networks.  However, as discussed earlier, conventiona network
monitoring and management systems rely on a framework and related techniques
that have inherent drawbacks. This thess has presented the work that we have done
to facilitate inteligent network monitoring based on the Java technology. We are
trying to draw some conclusionsin this last chapter asfollows.

Chapter Organization
Section 6.1 summarizes the work presented in the previous chapters.
Section 6.2 looks at possble future improvements that could be made to the

current design and implementation.



6.1 Summary

Concurrent network monitoring systems adopt a centrdized framework
where mogt of the monitoring inteligence and processng burdens rest a the
manager gpplications running in a centrd dation.  This poses severd mgor
problems.

Since dl the monitoring interactions and processng have to go through the
management dtation, it becomes the bottleneck and single point of falure, leading to
asyslem that is difficult to scale up.

Manager applications can only interact with network eements through low-
levdl generd-purpose interfaces such as SNMP, huge volume of raw data have to be
trandferred to the management dation, which causes high communication overhead
and sgnificant delay, known as the micro-management problem

The st of sarvices offered by the dement agents is fixed and dHdicdly
indrumented, which hinders the cod-effective extenson and improvement of
monitoring systems.

To tackle these problems, we have basicdly done three things: (1) brought
forward the “inteligent network monitoring” concept; (2) according to this concept,
proposed a Java-based architecture, JEMS; (3) implemented a prototype JEMS

system, and vaidated its efficiency.

6.1.1 Intelligent Network Monitoring
The concept of Intdligent Network Monitoring is comprised of two dements:

digribution of intelligence and dynamic agent extenghility:



Didribution of Intelligence. Instead of bringing deta from the devices to the
central  dation, pats of the monitoring applications themsdves, encapsulated in
various objects, are distributed or delegated to and running in the managed devices.
The manager hog and the network as a whole can then be reieved from the
bottleneck and the micro-management problems.

Dynamic Agent Extenshility. Through a public cdling inteface over the
network, the manager agpplication can remotey digtribute/remove such objects
to/from a network device whenever it likes the code required to manipulate these
objects may be obtained and linked to the device agent on demand, making it truly

dynamically extensible.

6.1.2 Intdligent Monitoring viaJEMS

Java-based Extensble Management Server (JEMS) is the architecture we
proposed to fecilitate intelligent network monitoring. It consists of two parts:

The JEMS Server. A Java-based dement agen that supports distributed and
dynamic network management. It runs as a server process in the managed network
dement and conssts of the Remote Deegation Interface (RDI) and a runtime
environment that implements the RDI.

Intelligent Monitoring Objects (IMOs).  Specidized Java objects that
manager applications delegate to the JEMS via RDI cdls  With specific functions
encgpsulated, these objects perform network monitoring right in the managed
devices. IMOs together with the underlying JEMS provide for a flexible, easy-to-

program, and highly reusable intelligent monitoring system.



6.1.3 Intdligent Monitoring Validated

A prototype system was implemented based on the JEMS architecture. And
ample yet typicd experiments have vaidated the advantages of intelligent network
monitoring over traditiond polling-based schemes.

By didributing monitoring intdligence doser to where the information to be
processed is located, our system sgnificatly reduces the network traffic and delay
incurred between managers and agents, and diminates the bottleneck and single
point of falure problems exiding in traditiond network management sysems. On
the other hand, the dynamic extenshility of our sysem dlows managers to extend
agents  ability accordingly as network management requirements evolve.  Also,
manager gpplications can recognize and take advantage of the difference in resource
avalability of various network devices, and make proper tradeoffs between

computation and communication cod.

6.2 Future Work

There are some improvements and enhancements that could possibly be made

to the JEM S architecture and added to its prototype implementation.

6.2.1 User Authentication, Access Control and Privacy

In our current design, accessng to the RDI interface and services is not
controlled, anyone having the DSP's stub object can manipulate objects in the EMS
in whatever way they want. A possble remedy to this is adding an authentication
scheme to the RDI interface.  This may include a new authentication operation plus

modifications to al the exiging interface operdtions. The authentication operation
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takes a manager's name and password and returns an authenticator object if the
manager’s identity is correctly verified. To access norma delegation operations, the
remote manager has to fird authenticate itsdf to the DSP, obtains an authenticator
object and later includes it in every remote method cdl into the DSP. The
authentication mechanism has to be designed in such a way that it prevents replay
attacks.

Once a manager is authenticated to the DSP, the latter decides what access
privileges the user is dlowed, and only executes those requedts that are conformant
to its access privileges. To this end, a proper access control modd, together with
necessary data structures and control mechanism, has to be adopted and enforced.

If the monitoring data transferred via the network includes business-senstive
information, we may use a customized socket layer for the RMI cdls, by subclassing

the java.rmi.server.RMI SocketFactory class to implement a secure transport.

6.2.2 Manager-9de APIsand Tools

Although the JEMS architecture provides quite a complete agent interface, it
has not addressed how those interface methods can be collectively used to write
monitoring gpplications, namdy we lack manager-side APIs and tools for application
authoring. Therefore, in addition to making improvements and enhancements to the
agent interface, we may want to:

(1) Use Javds component technology to write JavaBeans that implement
vaous high-levd manager-dde management tasks (which involve multiple IMOs

and a series of interactions with them). The public methods exported by these



JavaBeans form the API for manager applications devel opment.

(2) Write a GUI-based developer tool for visud application programming
using those JavaBeans.

(3) Prepare a deployment tool that facilitates the packaging and ingdlation

of manager gpplications and their resources over the network.

6.2.3 Inteligent Network Control

Using JEMS based architecture to do network control should be a natura
continuation of the research work. We would like to identify the most commonly
needed network control functions, encapsulate them in corresponding Intelligent
Control Objects (ICOs) classes usng the Operand-Operator Paradigm, and deploy
these classes and their associated Operator classes to the bytecode server, so that
they become avalable for download to the JEMS-ready network devices upon
relevant RDI invocations from the manager. Network control operations will thus be
performed from within the devices themsdves, providing for “onrgoot” handling of
various darms and events.  Furthermore, for the same ressons with IMOs, the
behavior of 1ICOs can be dynamicaly configured and enhanced, which, together with

IMOs, fadilitates aflexible intdligent network management system.

6.24 Autonomous Management Domain with Jni

In a dtuation where the managed devices come online and go offline
irregulaly and asynchronoudy, eg, VSATs in a sadlite network, autometic
detection and monitoring of these devices might be desred.  Jni  connection

technology [17], built on top of Java dands out as an ided choice for us to



incorporate that into the JEM S architecture.

Jni provides smple mechanisms which enable devices to plug together to
form an impromptu community — a community put together without any planning,
ingdlation, or human intervention. Each device provides sarvices that other devices
in the community may use Thee devices provide their own interfaces, which
ensures religbility and compatibility. However, we had better wait until after Sun
Microsystems officidly merges Jni into the Java 2 Micro Edition (2ME) [25], when
we can evduae how this will afect the size of the core AP libraries and the Java

Virtud Machine (ak.a KVM — Kilobyte VM) that comeswith 2ME.

6.2.5 Hierarchicd Intdligent Network Management System

Because of its intrindc layered design, the JEMS architecture can be
extended to a hierarchica sructure to accomodate the logicd domains of the
underlying managed network. In each sublayer between the network control center
and the network agents, subnetwork or domain managers can be equipped with
JEMS based servers that act in two roles as a manager of the dations in the
immediate lower layer, and as an agent for its upper layer gation. In such a middle-
layer management dation, the MIB Accessor will be implemented to use RDI
invocations (instead of SNMP protocol) to communicate with lower-layer Sations,
and INFOs in the MIT will use the data acquired through the MIB Accessor to
maintan an object-oriented abstraction of the subnetwork/domain the management

getionisin charge of.



Appendices

portNumber Identification of the port I nteger
. The maximum incoming bandwidth of the
portMaxBandwidth port (calls's Integer
. The maximum outgoing bandwidth of the
portM axBandwidthOut port (cls’s) I nteger
The Cdl Ddlay Variation Tolerance
associated with this physica port.
portCDVT Connections teke their default vaue for Integer
CDVT from theinput Sde port
The percentage of overbooking for VBR Intecer
portVbrOverbooking connections. The default valueis 100 (no (1 65900)
overbooking) B
The percentage of buffer overbooking for Intecer
portVbrBufferOverb VBR connections. The default valueis 100 (1 65900)
(no overbooking). "
hwPortBUfferSize Thelogicd sze of this port’s output buffer, Intecer
in cells o
. The dlocated incoming bandwidth of this
portAllocBandwidthin port (calls's) Gauge
, The incoming bandwidth being used on
portUsedBandwidthin this port (callgs) Gauge
portReceivedCells The number of cdls received on this port Gauge
, The dlocated outgoing bandwidth of this
portAllocBandwidthOut port (cdls’s) Gauge
. The outgoing bandwidth being used on this
portUsedBandwidthOut port (cdls's) Gauge
pOrtTY ittedCalls ggret number of cdls tranamitted on this Counter
The number of cdlsin this port’s output
hwPortQueuel_ength buffer Gauge
The number of secondsin which cells were
hwPortOverflows dropped because this port’s output buffer Counter

was full

Table11: Port-rdlated SNMP Variables
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The value of this varigble identifies the

g2931StatsPort port of this signaling path Integer
Thevdue of this varigble identifies the
(2931 StatsV P VP! of this signaling peth statistics entry Integer
. The number of successfully completed
02931CalsCompletions callson thissigndling peth Counter
. The number of cal fallureson this
02931CalsFailures signaling path Counter
The number of connections on this
g2931CallsRgections signaling path that were rgjected by the far Counter
end
Table12: Sgnding-related SNMP Variables
Indentification of the input port which
pathPort contains this path Integer
pathVPl -;I)-Qtivpl (Virtud Peth Identifier) of this Integer
pathMaxBandwidth Eglelggq mum bandwidth of this path Integer
pathAllocBandwidth ;I'Cr;lel Sé)ocated bandwidth of this path Gauge
pathUsedBandwith I;ﬁQd\M dth being used on this path Gauge
pathCells ggt(; number of celstransferred over this Counter
. The elgpsed time since this path was Time
pathUptime created Ticks
The number of cells over this path that
pathRejectedCells were rejected or dropped by the policer on Counter
the switch fabric

Table 13: Incoming Peath-related SNMP Variables
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Indentification of the input port which

opathPort contains this path Integer
opathVPI ggt(;VPl (Virtua Peth Identifier) of this Integer
opathMaxBandwicth ;I'Cgel ;ngq mum bandwidth of this path Integer
opathAllocBandwidth ;I'cgel gé;)caed bandwidth of this path Gauge
opathUsedBandwicth (Tcréelstgwdvvldth being used on this path Gauge
opathCels g;eh number of celstransferred over this Counter
, The dgpsed time since this path was Time
opathUptime created Ticks
The number of cells over this path that
opathRe ectedCdlls were rejected or dropped by the policer on Counter
the switch fabric
The percentage of overbooking for VBR Intecer
opathV brOverbooking connections. The default valueis 100 (no ™
: (1..500)
overbooking)
The percentage of buffer overbooking for Intecer
opathV brBufferOverb VBR connections. The default value is 100 1 engO)

(no overbooking)

Table 14: Outgoing Peth-related SNMP Variables
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