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ABSTRACT

Title of Thess: MODELING AND EVALUATION OF PROTOCOL BOOSTERS
Degree Candidate:  Aravindha Ganesh Ramakrishnan

Degree and year: Master of Science, 2000

Thessdirected by:  Professor John S. Baras

Department of Electrica Engineering

Protocol Boogters are software and/or hardware modules that transparently enhance the
performance of existing protocols over heterogeneous networks. In this thess we have
presented a novel design for an ACK Recongruction Protocol Booster to improve the
performance of TCP over asymmetric satellite channds. The asymmetric nature of broadcast
satdlite channels has been known to have an adverse impact on the performance of TCP.
Due to the channd asymmetry, many TCP ACKs may build up in a queue a the ground
dation router, increasing the round trip time and decreasing the throughput of a given
connection. The ACK Recongtruction Protocol Booster has been designed to enhance the

performance of TCP over such asymmetric links, trangparently, without changing the syntax,



nor affecting the semantics of TCP. Through extensve smulations usng OPNET, we have

been able to establish that this booster yidds



ggnificant improvement in TCP throughpt.

Another contribution of thisthesisisthe modeling of the Forward EraZure Correction (FZC)

booster in OPNET and itsincorporation within the ARL testbed. The FZC booster is a multi
element protocol booster, which reduces the effective packet |oss rate on noisy links such as

terrestrid and satdllite wirdess networks. Through smulations, we have evduated the

performance of this booster under varying network conditions.

Other contributions of this thesis include a detailed examination of the protocol booster
methodology, together with a critical andlyss of the various implementation choices avalable.

Also we have proposed a number of new ideas for future booster implementations
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Chapter 1

| ntroduction

Protocol Boosters [10] are robust protocol adapters designed to dynamically improve (boost)
the performance of protocols in heterogeneous distributed computing systems. Protocol
boosters dlow (1) dynamic protocol customization to heterogeneous environments and (2)

rapid protocol evolution

Unlike dternative adaptation gpproaches, such as link layer, converson and termination
protocols, protocol boosters are both robust (end to end protocol messages are not modified)

and maximize efficiency (does not replicate the functiondity of the end to end protocal).

In this thesis we have presented a novel design for an ACK Reconstruction Protocol Booster
to improve the performance of TCP over satellite channels. The asymmetric nature of satellite
channels has been known to have an adverse impact on the performance of TCP [1,5,9,13].
Due to the channd asymmetry, many TCP ACKs may build up in a queue a the ground
ddtion router, increasing the round trip time and decressing the throughput of a given

connection.



Several solutions to this problem have been proposed. Link layer solutions such as ACK
filtering attempt to solve the problem by dropping ACKs & the ingress to the bottle neck link.
These methods however, suffer from a serious setback in that they ignore the fact that TCP

uses ACK s for purposes other than mere acknowledgement of data received.

Protocol termination schemes such as TCP spoofing attempt to enhance performance of TCP
by terminating the TCP connection & the gateway — resulting in the loss of vauable end-to-
end propeties. For ingtance, receipt of an acknowledgement does not mean that the

destination has received the data.

Protocol conversion schemes dso suffer from a serious setback in that the message syntax has

to be changed- leading to additiona processing overhead.

Our ACK Recongtruction Protocol Booster offers a viable solution to this problem. It is a
multi element protocol booster, which has been designed to enhance the performance of TCP
trangparently without changing the syntax or semantics of TCP. Unlike link layer methods, our
booster preserves the origind ACK stream and hence, does not jeopardize the normal
functionality of TCP. Unlike protocol termination, the end-to-end properties of TCP are
preserved. Also, since it does not convert the protocol, it does not involve too much

processng overhead. It is our clam, which has been subgtantiated through extensve



samulations usng OPNET, that this booster is a definite boon to TCP communication over

satdlite links yidding sgnificant improvement in TCP throughpuit.

Another contribution of this thess is the modeling and evduation of the Forward Erazure
Correction Boogter and its incorporation within the ARL smulation testbed. The Forward
EraZure Correction (FZC) boogter is a multi-element protocol booster, which reduces the

effective packet loss rate on noisy links such as terrestrial and satdllite wireless networks [16].

While the developers of this booster were able to demondtrate through smple proof-of-
concept tests that this booster enhanced performance, there was no rdiable model to andyze
the performance of this booster within an actud hybrid wireess network. We have attempted
to fill this void, by modeling the FZC boogter in OPNET and incorporating it within the ARL
testbed. Smulation results have proved to be illuminating in that we are now able to determine

the degree of usefulness of this booster given the networking environmen.

Other contributions of this thesis include a detailed examination of the protocol booster
methodology together with a critica andysis of the various implementation choices avalable.

Also we have proposed a number of new ideas for future booster implementations.

The rest of this document is organized as follows. Chapter 2 provides a detailed overview of
the protocol booster methodology. Chapter 3 is an in depth andlysis of the implementation of

boosters and the choices faced by a designer. In chapter 4 we present the design of the ACK



Recongtruction Protocol Boogter in detall together with the OPNET modd and smulation
results. Chapter 5, describes the FZC Booster followed by the OPNET moded and smulation
results. Chapter 6 concludes this thesis with an overview of the contributions, followed by

suggestions for future work.
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Chapter 2

PROTOCOL BOOSTERS

2.1 Introduction

Protocol Boosters [10] are robust protocol adapters designed to dynamicaly improve (boost)
the performance of protocols in heterogeneous distributed computing systems. Protocol
boosters dlow: (1) dynamic protocol customization to heterogeneous environments and (2)

rapid protocol evolution.

Unlike dternative adaptation gpproaches, such as link layer, converson and termination
protocols, protocol boosters are both robust (end to end protocol messages are not modified)
and maximize efficiency (does not replicate the functiondity of the end to end protocol). In this
chapter we present a detailed description of protocol boosters. In section [2.2] we present the
motivation for the development of protocol boosters. In section [2.3] we provide a formal
definition of protocol boosters, together with severd examples. Section [2.4] compares
boosters with other protocol architecture dternatives. In section [2.5] we illustirate how

protocol boosters can be a solution to current networking problems.
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2.2 Motivation

In order to appreciate the concept of boosters let us first examine the current networking
protocols and understand the problems they face. Mot of the protocols in use today fal into

two magjor categories: General-purpose protocols and speciaized protocols.

Generd purpose protocols are generdly complex and designed to meet a wide variety of
gpplication requirements and network environments ; however one must note that this often

leadsto an inefficient use of network resources.

On the other hand, Speciaized protocols take full advantage of the gpplication requirements
(eg., loss and latency tolerance) or network environment (e.g., dedicated and high speed
links) to leave as much as posshble of the communication resources for the application.
Unfortunately, developing a robust specidized protocol is expensve and time consuming.
Figure 2.1 shows an abdtract example of the efficiency-generdity trade-off: with IP Internet
protocols being generd purpose but inefficient and pardle processing protocols being efficient
but requiring low error rate, low delay networks. Idedlly, a protocol would adapt to provide
the best possible performance given the path of the data. For instance, when on a LAN , the

protocol would adjust itself to give performance smilar to that of a specidized LAN protocol.



Specialized protocol (Parallel Processor)

Efficiency

Optimized Protocol {Protocol Adaptation)

General Purpose (IP Internet)

L 4

Heterogeneity

Figure 2.1 Trade-off between efficiency and heterogeneity

Another motivation for protocol boogters is the dow pace a which protocols evolve. The
problem is not with the specific protocol or specific standardization method ; but with the need

to have many people agree on the standard .

Thus we clearly need to have:

(1) aprotocol adaptation technique which can dynamicaly improve the performance of
protocols in heterogeneous systems.

(2) a protocol adaptation technique, which is transparent to the base protocol i.e, the
protocol that is being adapted. This trangparency would eiminate the need for

gandardization.
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2.3 Protocol Booster Properties

A Protocol Boogter is a software or hardware module that transparently improves protocol
performance. The booster can reside anywhere in the network or end systems, and may
operate independently (one-element booster) or in cooperation with other protocol boosters
(multi-element booster). Protocol boosters provide an architectural dternative to existing

protocol adaptation techniques, such as protocol converson and protocol termination.

A protocol booster is a supporting agent that by itsdf is not a protocol. It may add, delete or
delay protocol messages, but never originates, terminates, or converts that protocol. A multi-
element protocol booster may define new protocol messages to exchange among themselves,
but these protocols are originated and terminated by protocol booster elements and are not

visble or meaningful externd to the boogter.

Protocol boogters are parasitic, in that they use whatever information is available from other

protocols or boosters. Protocol boosters are transparent in that they can be added anywhere

in the network or end system without atering the boosted protocol.

14



Snhow Chain Analogy

A smple analogy may help explain the parasitic and transparent behavior of boogters. If a
protocol is anadlogous to an automobile tire, then a protocol booster is analogous to snow

chains (Figure 2.2). A car with regular tires can add snow chains on snowy roads, just as

O

Regular tire
(base protocol)

0 00 ¢

Dry road | Snowy road Dry road

Tire chains
(protocol booster)

Figure 2.2 Snow Chain Analogy

a protocol designed for a wirdline network may use boosters for transmisson across a
wirdess network. The snow chains and boosters are parasitic adapters since a car cannot
drive on snow chains done, just as communication is not possble with protocol boosters

adone

15



Also, the snow chains and boosters are transparent, since the car tires are not modified by the
addition of snow chains, just as the protocol is not terminated or converted by a protocol

booster.

Booster Policy

Boogters can be added and deleted dynamicaly as additiond network functiondity is needed.
A policy for this decison is needed in addition to the specific booster mechanism for adding
functiondity. Since boogters vary widdly in their functions, it isimpossible to have acompletely
generd policy; policies must be associated with specific booster functionality. Policies may be
based on a wide variety of factors, such as observed network behavior, packet source and

destination, or time of day.

One-Element Protocol Booster Examples
(i) One-Element Error detection Booster for UDP

UDP has an optiond 16-bit checksum field in the header. If it contains the value zero, it means
the checksum was not computed by the source. Computing this checksum may be wasteful on
areliable LAN; however, if errors are possible, the checksum greatly improves data integrity.
A transmitter sending data does not compute a checksum for ether locd or remote
degtinations. For reliable loca communication this saves the checksum computation (at the

source and destination). For wide-area communication, the single-dement error detection

16



booster computes the checksum and puts it into the UDP header. The booster could be

located either in the source host (below the level of UDP) or in a gateway machine.

(if) One-Element channel traffic limiting booster for TCP
Often in many systems, it may be necessry to limit the traffic on a channe to the bare
minimum. This may be due to limited channd capecity (as on the return channd of satdlite

systems) or due to the lossy nature of the channel (asin wireless systems).

Congder the system shown in Figure 2.3.

Gmlfnd Satellite
Station «

) \@

Figure 2.3 Traffic limiting booster
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A booster can be ingdled at the ground dation to limit the traffic on the reverse channd.
Assuming that three connections A-X, B-Y, C-Z are active, the booster will do the following:
(a) Cache packets from X;

(b) If a packet is lost somewhere in network M and A sends a duplicate ACK, then the
booster will drop the duplicate ACK and retranamit the lost packet from its cache.
(c) If an ACK sent by X islogt in network M and A retransmits the packet after timing out,

then the booster will drop the packet from A and retranamit the ACK from X.

Two-Element Protocol Booster Examples

(a) Two-Element FZC Booster for IP or TCP

For many red-time and multicast applications, Forward Error Correction coding is
desirable] 18]. The two-element Forward EraZure Correction booster uses a packet Forward
Error Correction code and erasure decoding [2]. The FZC boogter at the transmitter side of
the network adds parity packets. The FZC Boogter at the receiver side removes the parity
packets and regenerates missing data packets. The FZC booster can be applied between any

two pointsin anetwork (including the end systems).

(b) Two-Element Jitter Control Booster for 1P
For red time communication, we may be interested in bounding the amount of jitter that
occurs in a network . A jitter control booster can be used to reduce jitter at the expense of

increased latency. At the first booster eement, time-stamps are generated for each data

18



message that passes. These time-stamps are transmitted to the second booster element, which
delays messages and attempts to reproduce the inter-message interva that was measured by

the first booster ement.

2.4 Comparison of Boosterswith Other Approaches

Protocol boosters provide faster evolution and increased efficiency compared to the use of
standard genera-purpose end-to-end protocols. This section compares protocol boosters
with other protocol architecture aternatives, noting that only boogters take advantage of higher
layer information (unlike link layer adaptation), while not dtering the message syntax (protocol

conversion) or semantics (protocol termination).

Link Layer Adaptation

A drawback of independent link layer protocolsis that they treat dl data streams identically.
If there are gpplications with divergent needs passng over the same link, as there frequently
are, then it is unlikely that a single link layer protocol can provide the mogt efficient service.
When data is sent over a noisy link, for example, some data streams, such as those carrying
audio, may desire low delay, even if some errors occur. Other data streams may desire alow
resdud error rate, even at the expense of increased delay. No single link layer protocol could
satisfy both requirements. In contrast, a protocol booster could be designed to ignore dl UDP

connections or boogt only certain specific applications, as determined by TCP/UDP port
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numbers. Moreover, the booster could be migrated into the end system where it is closer to,

and under the control of, the application.

Another drawback of independent link layer protocols is that they can duplicate functiondity.
If the transport layer protocol provides error control (e.g., TCP), then there is redundant
functiondity if an independent link layer dso provide smilar error control. If the transport layer
does not provide error control (e.g., UDP), then the end-to-end robustness property is lost.
Notice that the protocol booster can treat streams differently and does not duplicate

functionality, and thus does not violate the end-to-end argument[21].

Protocol Conversion

The man digtinction between converson protocolg11] and booster protocols is that
converson changes the syntax of the base protocol. Thus, a disadvantage of protocol
converson is that it requires processing to change message syntax. While a protocol booster
smply can observe most messages from the base protocol, the protocol converter must
modify every message that arrives. Another disadvantage of protocol converson is that it is
not robug to falures. If one end of a protocol converson fals, then no communication is
possible; with boogters, even if one booster dement fails, communication is still possble using
the base protocol. While protocol boosters and link protocols offer soft degradation, protocol

conversion and protocol termination offer hard degradation.



Protocol Termination

Protocol termination[3] uses different protocols a different points dong the path from the
transmitter to the receiver, with no single end-to-end protocol. Just as with protocol boosters,
protocol termination alows choice of protocol characteristics appropriate to the network

environments aong the communication path and avoids duplication in functiondity.

A drawback of protocol termination is that it loses desirable end-to-end properties. For
example, if TCP isterminated in the network, then receiving a TCP acknowledgment does not
mean that information arrived at the destination. Another drawback of protocol termination is
that it provides additiona points of falure. Failure of a network termination point causes dl
messages to be uninteligible (hard degradetion) , even if dternative routes are available. If a
boogter fals, communication is gill possble usng the base protocol as long as another
communication route is available. Performance degrades , but protocol operation continues
(soft degradation). Soft degradation is helpful in hogtile environments in which falures are

expected, such as battlefield Stuations.

2.5 Protocol Boosters as a Solution to Current Networking

Problems
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In this section we discus how protocol boosters overcome the dow evolution and reduced

efficiency of standard general-purpose protocols.

Fast Evolution of Protocol Boosters

With no need for standardization, we can design and implement protocol boosters with
minimal resources. Also, because boosters are transparent, we can replace boogters as often
as desred without the knowledge of those usng them. Thus a smple, quick booster
implementation can be ingtdled quickly. As experience is gained, improved boosters can be
crested and ingtalled. Because of the fast feedback that can be obtained on booster behavior
and performance, boogters can evolve extremely quickly. Also many different boosters can
evolve independently in pardld. All of this is because the transparent nature of boosters

diminates the need for sandardization.

Protocol boosters are a free market approach to protocol and network design. Booster
designs compete economicdly in the market place, rather than politicdly in a standards
committee. In economics, it is generdly believed that companies that compete economicdly in
afree-market system are more efficient than those companies that operate by government fiat.
Companiesthat are successful in the market efficiently produce goods and services desired by
consumers. Similarly, the free-market competition among boosters assures that efficient and
effective boogters will proliferate and that poor booster designs will become obsolete.

Standardization of protocols is expendve because of the need to attend standards meetings,



and only established companies can afford to be involved in stlandards. Boosters need not be
sandardized, and they can be quickly designed and built by a smal number of people at low

COst.

Protocols that require standardization are subject to what economists cdl “network
externdity”. Network externdity is the concept that the value of something depends on the
number of people who dready use it. Examples of network externdity can be seen in VCRs
and computer operating systems. VHS tapes are the most available because most people have
VHS VCRs. Once one specific example of something thet fills a niche becomes dominant, it is
difficult to displace it even with a technicaly superior product. Standardized protocols are
subject to network externality. We use TCP/IP because we want to communicate with other
people, and most of them use TCP/IP. Network externality dampens competition, because
even if abetter protocol is desgned, it is unlikely to displace existing protocols. Boosters are
immune from the feedback caused by network externdity because they are transparent and
need not be standardized. Consequently, existing boosters can and will be displaced easly

and quickly by boosters with better performance.

Another advantage of boosters is that their design and use can be proprietary. With
standardized protocols, proprietary market advantage is not possible because you can only
communicate with those systems that are running the standardized protocol. Boosters are
trangparent, and thus, there is no need to disclose the interna design of a booster to those

using the boogter. The ability to gain proprietary advantage using boosters meansthat thereis
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increased market incentive to invest in new booster designs. Care must be taken, however,
that the proliferation of protocol boosters does not result in poor performance because of
unexpected interactions amnong proprietary boosters. To reduce this lack of interoperability,
successful proprietary booster protocols could eventualy become standardized, at which time
the developer gives up proprietary clams in return for the wider market for standardized

olutions.

Efficiency of Protocol Boosters in Heterogeneous Networks

It is difficult to maintain efficient protocol operation over a wide range of network
environments. Thus, as shown in Figure 2.1, protocols generdly exchange efficiency for
heterogeneaity. Reducing the heterogeneity in a networking environment often can increase
protocol efficiency. Boosters can be used to increase protocol efficiency without reducing
heterogeneity because boogters are a means of hiding the heterogeneity of the networking
environment. Indead of optimizing the performance of a protocol over a wide range of
network environments, a protocol can be optimized for the network environment between the
end host and a booster or between boosters. For example, if network congestion is not an
issue on aloca network, the booster that adds congestion control can be disabled to reduce
unnecessary delay. Thus, boosters dlow dynamic customization of a protocol to a
heterogeneous environment. It is not necessary to make pessmistic worst-case assumptions
about network conditions and gpplication requirements, as is necessary for genera-purpose

protocols.
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The network environment seen on an end-to-end communication path depends on the route
taken by the data through the communication network. When boogters are placed in the
network, boosters are knowledgesble about the network environment in which they operate.
Network boosters dso operate only on data that passes through them , so data is only
processed at the level necessary for communication localy. Any non-local communication is
automatically enhanced by boosters. Thus boosters provide the highest possible performance

given the route of the data.

2.6 Summary

This chepter provided a detailed overview of protocol boosters. The motivation for the
development of protocol boosters was presented. We then went on to provide a definition for
a protocol booster and an illudration of its properties. A few booster examples were
presented. We discussed the need for having a booster policy, and findly we findly illustrated

how boosters can provide a solution to current networking problems.

In the next chapter we shal explore the intricacies involved in the implementation of protocol

boosters.
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Chapter 3

Protocol Booster Implementation

3.1 Introduction

In this chapter we shdl condder the issues involved in implementing protocol boogters in
current operating systems. Section 3.2 presents the general idea of protocol booster
implementation. A smplified illustration is provided. Section 3.3 motivates particular design
choices reflected in the implementation. In section 3.4 we describe the details of a Unix

kernd-level implementation of protocol boogters.

3.2 Implementation

Implementation of boosters requires dynamic insertion of protocol dements into a protocol
graph [15]. In practice, protocol graphs are implemented as executable modules that
cooperate via messages or shared state. Booster support requires inserting and removing the
boogter’s function from the execution path followed for a group of packets handled by the

protocol. A smplified illustration of one style of boogter is shown in Figure 3.1.
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Protocol Protocol Protocol
Layer n+l Layer nt1

Layer ntl

A

Booster Stub Booster Stub
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. Booster
¥ \

Booster Stub Booster Stub J
¥

Protocol Protocol Protocol
Layer n Layern Layern
{2) Unmodiified {b) Booster-capable (c) Boosted

Stack Stack Stack

Figure 3.1 Insertion of Protocol Boosters in a Layered Protocol

3.3 Implementation choices and strategy

As Figure 3.1 shows, due to its generaity and smplicity, the booster abstraction can be used

in many protocol architectures. There is awide range of implementation dternatives.

Kernd vs. User levd

The initid design choice that confronts us is whether to run boogers indde the kernd
protection domain, or to operate in user-space. Boogters running in user space are much

easer to debug, as well as easer to adapt to other operating systems.
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Running boosters as kernd modules can increase performance, because of context-switching
and other overheads, as well as avallability of control and information about arriving packets.
As many boosters commiit layer violaions, such information can be very important. Since one
role of boogters is as performance-enhancers interoperating with existing network protocols,
boosters have currently been implemented as kernel modules. Section 3.3 discusses the

kernd-level implementation in detall.

Platform choice

Protocol booster support was added to FreeBSD, a free Unix clone for the Intel x86
processor architecture. The placement of this implementation in the IP stack is shown in figure
3.2. Also, as mentioned earlier, kernel-level protocol booster support was added to the Linux
operating system for the 1386 (Intel) architecture. In the current prototype, the policy decison
for boosting has been smplified: al packets destined to (or sourced from) a specific IP

address are boosted or de-boosted as necessary.

This choice dlows the investigation of OS performance independent of policy research and
development. This is accomplished by a demultiplexing dgorithm as illusrated in Figure 3.2,
which examines the IP address and based on a table lookup, either invokes an appropriate
booster or reinserts the packet in the normal execution path. Insertion or deletion of booster

functiondlity is thus controlled by choice of 1P address.
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Figure 3.2 Embedding and sclecting boosters in theFreeBSD IP Stack

Protocol Layer and implications

The choice of protocol layer is criticd to the effectiveness of a protocol booster. At present,
protocol boosters have been implemented at the IP layer. However, choice of protocol layer
should depend on the particular booster and its functiondity. Consider for instance, an ACK
Compression protocol boogter. On a system with asymmetric channd speeds such as
broadcast satellite, the forward (data) channel may be consderably faster than the return
(ACK) channd. On such a system, many TCP ACKs may build up in a queue, increasing
round trip time and thus reducing the transmisson rae for a given TCP window sze. The

nature of TCP' s cumulative ACKs means that any ACK acknowledges at least as many bytes
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as any earlier ACK. Consequently, if severd ACKs are in a queug, it is necessary to keep
only the ACK that has arrived most recently. An ACK compression booster can be designed
to ensure that only asingle ACK exigs in the queue for each TCP connection. Criticd to the
functioning of this boogter is the queuing up ACKs. If there is no queuing up of ACKs at the
ground station router, there is no point in invoking the boogter at dl. Studies have indicated
that queuing up of ACKSs, occurs at the modem rather than at the IP layer. In view of thisfact,
it is obvioudy impractica to implement the ACK Compression protocol booster (or the ACK
Recongtruction Boogster to be discussed later) at the IP layer. Implementation of these
boogters should be done in modem firmware, rather than at the kernd level IP implementation.
However, other boosters such as the FZC booster or the Error detection booster are suitable

for implementation in the IP layer.

Implementation of protocol booster a the IP layer introduces other limitations. These are
related to packet fragmentation and reassembly and multipath routing, and are a direct

consequence of operating at the IP layer.

Packet fragmentation and reassembly is performed by IP a hosts to avoid the performance
cost of repesatedly carrying it out as packets traverse an internetwork. A Maximum Transfer
Unit (MTU) is determined for an IP route, which has the property that it requires no
fragmentation and reassembly. Where a link has a smaler MTU than the packet Sze, the
packet is fragmented into pieces of MTU size or smdler. The debooster receives the origina

boosted packet as two (or more) packet fragments. This presents a problem where the



boogter functionality requires the entire origind packet. Since this requirement is booster-
dependent, the prototype OS implementation supplies the MTU of the outgoing interface to

the booster so it can act appropriatdly.

Multipath routing occurs since Internet packets are not guaranteed to be delivered, take a
particular route, or arive in-order. TCP addresses the first and third problems as an IP
overlay. This IP behavior can present a problem for boosters, where appropriate deboosters
or state necessary to deboost the boosted packet are not present. It also complicates inserting
and deleting boosters a necessary locationsin an IP internetwork. While routes rarely change,
as shown by Claffy[8] in her sudies of Internet traffic, such routing dynamics can be

addressed by future protocol boosters.

3.4 Kernel-Level Implementation in Linux

Kernd -level protocol booster support was added to the Linux operating system for the

1386(Intel) architecture PC[17]. Kernd implementation offers efficiency and transparency.

Individua protocol boogters are implemented in the form of Linux loadable kernd

modules(Ikm). This alows each protocol booster to be inserted/removed on-the-flight run

time.
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Because boogter functiondity can be ingtantiated via multiple processes, uniquely naming dl
the system components is required. The system components consst of booster |oadable

kernel modules, booster instances, booster sequences and booster traps.

A booster sequence is a concatenated chain of booster modules. One can view the booster
modules as definitions, and their association with a given booster sequence as a declaration, or
booster instance. Each instance of a booster can behave differently based on the arguments
that are passed to the booster when it is invoked or arguments passed via ioctl system calls.
Arguments are encoded as character strings because Linux does not implement a generd
scanf routine within the kernd. Findly a mechaniam to direct or trap packets to a booster

sequence was incorporated usng amodified verson of the exiging Linux firewdling filter.

Booster Architecture

Boosters must be placed drategicdly within the operating system to interoperate and work
trangparently with the IP protocol stack. Figure 3.3 illustrates the components of the booster

architecture asthey relate to the I P protocol stack.

The boogters themsdves are postioned at a rdatively low leve within the IP stack so that
they can operate on packets during the input, output or forwarding functions. The Boost

interface dlows for out-of-band, inter-booster module communications. The figure aso shows
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packet interface (User D) is not forced through the booster interface.
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TCP

N

the policy manager which manages the boosters and the user level booster daemon. The raw
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Figure 3.3 Kerncel Implementation of Protocol Boosters

This was done to insure that there was one mechanism to tranamit and receive packets that

was unaffected by the presence of boosters.

Packets are fed to each booster in sequence in the order that they are assembled for output
and in the reverse order on input. Boogters can influence the packets that are passed to them.
The control mechanism that sequences boosters examines the return vaue from each boogter.

A booster can indicate that one of severa actions can be taken:

Retain a copy of the packet and pass the packet to the next booster.



Do not retain a copy of the packet and pass the packet to the next booster.

Break the sequence and discard the packet.

The need to retain packets does not stall elther transmission or reception since packet cloning
(packet use counts) is used to diminate unnecessary copiesin physical memory and to prevent
packets from being released until the gppropriate time. As part of this discipline, boosters must
obey one cardind rule. They must not force the transmisson of the packet passed to them,
I.e, the packet will be transmitted after all of the boosters in the sequence have seen the
packet. Boosters can generate additiona packets but frequently it isimportant that the packets
generated follow the packet that the booster is currently examining . Any new packets can be
queued to a specid queue associated with the booster sequence so that they are tranamitted
after regular packets are processed by the booster sequence. This can be important when the
transmission of a booster-generated packet before an old packet would cause unnecessary
processing a a downstream node. There is, however, nothing to prevent a booster from

trangmitting a new packet immediatdly.

Sructure of a Booster Module

There are Sx main interfaces that a booster |oadable module must implement. Thefirst of these
is caled the instance manager interface used to create and release any private data for the
booster and maintain appropriate use counts. The count mechanism that keeps device drivers

loaded is subverted so that each instance of a booster increments the use count to prevent



modules from being unloaded premaurely while a sequence is dill active. The output
interface examines IP packets being output by the system, the input interface examines
packets as they are input to a system while the forwarding interface examines packets as
they are output when forwarding packets. Many boosters implement the forwarding interface
as awrapper around the booster output interface. The Boost interface is devoted to handling
the reception of booster protocol packets, which are used for transparent, inter-booster
module communications. Findly an ioctl interface is provided to alow user processes to

modify parameters associated with the instance manager interface.

The Kernel Interface

The booster management routines are delegated to the resident kernd for efficiency and
during the software interrupts used to process network traffic. These routines are exposed for
|oadable modules to use via the standard Linux module address resolution mechanism. A
substantia part of the interface that manages the construction of booster sequences resides in
the policy manager which is itself aloadable module. The policy manager is dso a character
device driver (/dev/policy) and exposes its interfaces via a series of ioctl cdls. This interface
combines dements of the IP firewaling interface to expose the needed functions to construct
boosters and trgps. A Java class is provided to alow for a pleasant programming interface

and to hide the implementation details.



Knowledge about the resources used by boosters is found in the /proc file sysem. The
directory /proc/net/boosters contains al of the relevant information about protocol boosters.
The policy manager exposes the booster types file to show what boosters have been |oaded
into the kernd. Similarly, a nettraps file exposes the traps that have been set and which

booster sequences they are connected to.

Findly, each boogter has a standard entry, which provides information on each instance of that
booster, however, each booster can expose as many files as necessary to document the

atributes of the booster.

The Policy Manager

The name policy manager is actualy a misnomer sinceit does not implement any policy of its
own. It provides servicesto user level programs to assemble boosters, create traps, etc. Viaa
series of ioctl cdls smilar to the interfaces that most UNIX  systems use to provide the

interface to the ARP and route subsystems.

The policy manager was implemented as a loadable kernd module because it was envisoned
that a series of loadable kernel level policy managers could be built which automatically load
and unload boosters based on an interna policy that they implemented or were configured to

use viaalanguage or aviamessages that they received.



3.5 Summary

This chapter discussed how protocol boosters can be implemented in current operating system
environments. A generic illudration of the implementation was followed by a detaled
discussion of the design choices that have to be made in implementing boogters. The issues
involved in kernd and user leved implementation; platform choice and the protocol layer of
implementation were discussed. We findly described in detail, the kernd level booster

implementation in Linux.
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Chapter 4

The ACK Reconstruction Protocol Booster

4.1 Introduction

The asymmetric nature of satellite channels has been known to have an adverse impact on the
performance of TCP[1,5,9,13]. Due to the channd asymmetry, many TCP ACKs may
build up in a queue a the ground dation router, increesng the round trip time and

decreasing the throughput of a given connection.

This chapter presents the design of an ACK Recongtruction Protocol Booster to enhance the
performance of TCP over satellite channdls. Section 4.2 provides a brief overview of TCP. In
section 4.3 we illugtrate how channd asymmetry affects the performance of TCP and in
section 4.4 we present the ACK Recongruction Algorithm. Section 4.5 discusses the

OPNET modd and in section 4.6 we discuss the smulation results.

4.2 The Transmission Control Protocol (TCP)



While the origind formd specification of TCP is in RFC 793 [20], numerous variants of it
have been developed over the past severd years, such as Tahoe, Reno, Veges, etc. [22,6].
This section discusses the Reno variant of TCP, which is the predominantly deployed version

today.

Cumulative Acknowledgments

TCP is an ARQ- based reliable transport protocol that uses cumulative ACKs and byte-
based sequence numbers for reliability. TCP provides a fully reliable, in-order, byte-stream
delivery abgiraction to the higher-layer gpplication, which typicaly uses a socket interface [23]
to interface with the transport layer. The basic unit of transmisson is cdled a segment, which
Is a contiguous sequence of bytesidentified by its 32-bit long start and end sequence numbers.
The transmitted segments are smdler than or equd to the connection’s maximum segment Sze

(MSS), which is negotiated at the start of the connection.

A cumulative ACK from areceiver for byte k implies that dl bytes less than k have been
successfully received, and that a segment beginning a byte k has not yet arrived. During
norma loss-free operation, the cumulative ACK sequence steadily increases as segments
arrive in sequence. In what follows, we describe how TCP performs loss recovery, congestion
control, and connection management, and highlight wesaknesses in its congestion control
scheme.

Loss Recovery



When the TCP sender discovers that data has been lost in the network, it recovers from it by
retrangmitting the missng data segments. TCP has two mechaniams for discovering and

recovering from losses: timer-driven retransmissions and data-driven retransmissions.

Timer-driven recovery: When the TCP sender does not receive a positive cumulative ACK
for a segment within a certain timeout intervd, it retransmits the missing data. To determine the
timeout intervd, it maintains a running estimate of the connection’s round-trip time usng an
exponentid weighted moving average (EWMA) formulg, srtt = a * rtt + (1-a) * srtt, where
srtt is the smoothed round-trip time average, rtt the current round-trip sample, and a the
EWMA congant set to 0.125 in the TCP specification. It aso estimates the mean linear
deviation, rttvar, usng a amilar EWMA filter, with a set to 0.25. A timeout occurs if the
sender does not receive an ACK for a segment within srtt + 4*rttvar sance the arriva of the
last new cumulative ACK. Furthermore, the retranamission timer is exponentialy backed off
after each unsuccessful retransmission. The details of the round-trip time calculations and timer

management can be found in [12,22].

Data-driven recovery

TCP's data-driven retransmisson mechanism uses a technique caled Fast Retransmission. It
relies on the information conveyed by cumulative ACKs and takes advantage of the receipt of
later data segments after a lost one. Because ACKs are cumulative, al segments after a
missing one generate duplicate cumulative ACKs that are sent to the TCP sender. The sender

uses these duplicate ACK s to deduce that a segment is missing and retransmitsiit.



However, the sender must not retransmit a segment upon the arriva of the very firgt duplicate
ACK. Thisis because the Internet service modd does not preclude the reordering of packets
in the network; such reordering causes later segments to be recelved ahead of earlier ones,
and triggers duplicate ACKs in the same way that losses do. Furthermore, the degree of
packet reordering on the Internet seems to be increasing, according to statistics by Paxson
[19]. Thus, to avoid prematurely retransmitting segments, the sender waits for three duplicate

ACKSs, the current standard fast retransmit threshold.

Thisisfollowed by the fast recovery phase, where additiond packets are transmitted after the
sender is sure that at least half the current window has reached the receiver, based on a count
of the number of received duplicate ACKs. Fast recovery ensures that afast retransmisson is
followed by congestion avoidance and not by dow start. Since the arriva of duplicate ACKs
sgnds to the sender that data is indeed flowing between the two ends, there is no reason to

suddenly throttle the sender by invoking dow dart.

Fast retrangmissions are often not sufficient to recover from multiple losses in a single window,
because dl the cumulative ACKs arrive for the firgt loss in the window. Thisusudly resultsin a

coarse-grained timeout before the packet is retransmitted.

TCP currently makes the tacit assumption that al losses occur because of network congestion.

Thus, coupled with ether of these modes of retransmission is congestion control that reduces
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the sender’ s retransmission rate. The next section discusses how TCP manages congestion by

probing for sustainable bandwidth and reacting to congestion.

Congestion Avoidance and Control

TCP s congestion management is based largely on Jacobson's semina paper[12] and on the
principles of multiplicative-decrease/additive-increase expounded by Chiu and Jain[7]. TCP
uses a window-based agorithm to manage congestion, where the window is an estimate of the

number of bytes currently unacknowledged and outstanding in the network.

The TCP sender performs flow control by ensuring tha the transmisson window does not
exceed the recaver's advertised window sze. It performs congestion control by using a
window-based scheme, where the sender regulates the amount of transmitted data using a
congestion window. When a connection starts or resumes after an idle period of time, slow
start is performed. Here, the congestion window is initidized to one segment and every new
ACK increases the window by one MSS. After a certain threshold (caled the dow dart
threshold, ssthresh) is reached, the connection moves into the congestion avoidance phase,
in which the congestion window effectively increases by one segment for each successfully
trangmitted window. In response to a packet loss, the sender haves its congestion window; if
a timeout occurs, the congestion window is set to one segment and the connection goes

through dow sart once again.
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In addition, ssthresh is st to hdf the vadue of cwnd at the time of loss, and at each stage dow
dart is performed until cwnd reaches ssthresh. At any point in time, the TCP sender ensures
that the number of unacknowledged bytes is not larger than the smdler of the recaver’'s
advertised flow control window and cwnd. In the Steady state of the connection, the sender
tranamits a window’s worth of data every round-trip, a a long-term rate equd to the
bottleneck bandwidth. Since the ratio of window to round-trip delay equas the bottleneck
bandwidth, TCP's congestion window Size tends towards the connection’s bandwidth-delay
product. Thisis the number of outstanding bytes in trangt in the Steady date. Thusit is clear
that a low-bandwidth connection implies smal transmisson windows. In turn, this affects the
fast retranamisson mechanism because not enough duplicate ACKs arive, leading to

expensve timeouts.

Data transmissons are triggered and clocked by ACKs that arrive for previous segments,
every time an ACK arrives, the transmisson window shifts by an amount equd to the sum of
the number of bytes acknowledged and the increase in cwnd, subject to the congraint
imposed by the flow control window. This degant notion of transmitting data based on
incoming ACKs, cdled ACK-clocking, makes TCP a tightly-coupled feedback system and
frees the sender from maintaining explicit software timers for transmisson. However, it aso
leads to sgnificant performance degradation when ACK feedback isimperfect or variable.
Connection Management

TCP has a sophigticated connection initiation mechanism using a three-way handshake, where

a SYN exchange occurs before the connection is established and data can flow. A connection



isuniquely identified by the source and destination IP address and port numbers. Detalls of the
connection setup, teardown and state transitions are orthogona to our work(see [20,22] for

details).

4.3 Effects of Asymmetry on TCP Performance

A network is said to exhibit asymmetry with respect to TCP performance, if the throughput
achieved is not solely a function of the link and traffic characterigtics of the forward direction,
but aso depends significantly on those of the reverse direction[4]. Here, forward, refersto the

direction from the sender to the receiver and reverse, the opposite.

Fundamentaly, network asymmetry affects the performance of reliable transport protocols
such as TCP because these protocols rely on feedback in the form of ACKs from the receiver
to ensure reliability and smooth transmissions. Because TCP transmissions are ACK-clocked,
any disruption in the feedback process can impair the performance of the forward data
transfer. For example, a low bandwidth ACK path could sgnificantly impede the growth of
the TCP sender window during dow gart, independent of the link bandwidth in the direction

of datatransfer.

Depending on the characterigtics of the reverse path, two types of Stuations arise for

unidirectiona traffic over asymmetric-bandwidth networks. when the reverse bottleneck link



has sufficient queuing to prevent packet (ACK) losses, and when the reverse bottleneck link

has aamdl buffer. We condder each gtuation in turn.

Deep Reverse Queues

If the reverse bottleneck link has deep queues so that ACKs do not get dropped on the
reverse path, then performance is a strong function of the normdized bandwidth ratio, kK,
defined by Lakshman and Madhow [14]. k is the ratio of the raw bandwidths divided by the
ratio of the packet szes used in the two directions. For example, for a 10 Mbps forward
channel and a 50 Kbps reverse channd, the raw bandwidth ratio is 200. With 1000-byte data
packets and 40-byte ACKSs, theratio of the packet Szesis 25. Thisimpliesthat k = 200/25 =
8. Thus, if the recaiver acknowledges more frequently than one ACK every k = 8 data
packets, the reverse bottleneck link will get saturated before the forward bottleneck link does,

limiting the throughput in the forward direction.

If k> 1 and ACKs are not delayed or dropped, TCP ACK-clocking breaks down. Consider
two data packets transmitted by the sender in quick succession. En route to the receiver, these
packets get spaced apart according to the bottleneck link bandwidth in the forward direction.
The principle of ACK clocking is that the ACKs generated in response to these packets
preserve tempord spacing. However, the limited reverse bandwidth and queuing a the
reverse bottleneck router alters the inter-ACK spacing observed at the sender. When ACKs
arive a the bottleneck link in the reverse direction at a fagter rate than the link can support,

they get queued behind one another. The spacing between them when they emerge from the



link is dilated with respect to their origind spacing, and is a function of the reverse bottleneck
banawidth. Thus the sender clocks out new data at a dower rate than if there had been no
queuing of ACKs. No longer is the performance of the connection dependent on the forward
bottleneck link done; ingtead, it is throttled by the rate of arriving ACKs. As a Sde-effect, the

sender's rate of congestion window growth sows down too.

Shallow Reverse Queues

The second situation arises when the reverse bottleneck link has a rdatively smal amount of
buffer space to accommodate ACKSs. As the transmission window grows, this queue fills and
ACKs are dropped. If the receiver acknowledges every packet, only one of every k ACKs
get through to the sender, and the remaining (k-1) are dropped due to buffer overflow at the
reverse channel buffer (here k is the normaized bandwidth retio). In this case, the reverse
bottleneck link capacity and dow ariva are not directly responsble for any degraded
performance. However, there are three important reasons for degraded performance in this

case because ACKs are infrequent:

1. Firg, the sender tranamits datain large burgts. If the sender recaives only one ACK in k, it
transmitsin burgs of k (or more) segments because each ACK shifts the diding window
by at least k (acknowledged) segments. Thisincreases the likelihood of data loss dong the
forward path especially when K is large, because routers do not handle large bursts of

packets well.



2. Second, TCP sender implementations increase their congestion window by counting the
number of ACKs they recelve and not on how much data is actualy acknowledged by
each ACK. Thus fewer ACKsimplies adower rate of growth of the congestion window,

which degrades performance over long-delay connections.

3. Third, the sender's fast retransmisson and recovery agorithms are less effective when
ACKsarelogt. The sender may not receive the threshold number of duplicate ACKs even
if the recalver tranamits more than the required number. Furthermore, the sender may not

receive enough duplicate ACKs to adequately inflate its window during fast recovery.

In summary, bandwidth asymmetric networks suffer from degraded performance due to ow

or imperfect ACK feedback.

4.4 The ACK reconstruction algorithm

The cumulative nature of TCP ACKs imply that each ACK acknowledges at least as many
bytes as the previous ACK. So if a number of ACKs are queued up at the ground station

router, it makes sense, just to retain the latest ACK and discard the rest.

However, before we design an dgorithm to send just the most recent ACK adong the link, we

must remember from our discussion in the previous sections, that TCP uses its ACKs for

purposes other than the mere acknowledgment of data received. TCP assumes that a packet
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Is logt in the network if it recelves three or more duplicate ACKs. TCP then enters what is
known as a "fast retranamit”, wherein it retranamits the missng segment even before the

retrangmit timer goes off.

Also, TCP ‘s flow control methodology (dow start and congestion avoidance) relies on the
arivd of the ACKs to increase the window size. Our dgorithm should ensure that it does not

jeopardize the normd functioning of TCP.

Another point to be noted isthat TCP estimates its RTT based on the timely arrival of ACKs.
So we have to make sure that by dropping/ddlaying ACKs we do not affect these RTT

estimates.

The ACK reconstruction booster has been designed after a thorough consderation of these
various factors. The ACK recongruction booster is a two element protocol booster, which
uses the cumulative nature of TCP acknowledgments to reduce the number of ACKs
flowing on the bandwidth congrained ground dation- satdlite link. While thisdiscusson is
with respect to satdlite environment, this booster can be used in other environments such as

in ADSL where achannd asymmetry is present.



The two booster lements are located at the two respective ends of the asymmetric channel.
For the purposes of our discusson we will refer to the ground station end as the "sender” (of

ACKs) and the satellite end as the "recaiver”.

The boogter at the sender does the following.
Whenever an ACK is about to be queued for transmisson, the booster notes the
number of packets dready in the queue. If this number exceeds a certain threshold, then
the boogter is invoked. The booster notes the information contained in this ACK
namely the ACK sequence number, window sequence number, the source IP address,
the destination IP address, the source port and the destination port. A specia packet
caled a“Boost” packet is constructed (possibly usng Raw 1P) and the above information
IS written onto it.
Then the boogter traverses the queue from heed to tall. All plan ACKs (ACKs that
contain no data) are dropped. A record is maintained about the number of ACKs that are
dropped. Thisis again written onto the Boost packet. When the booster reaches a piggy-
backed ACK (an ACK adong with user datd) , a dightly different gpproach is employed.
Since we don't want to lose the user data, we overwrite the ACK number and window
sequence number with that of the latest ACK , recompute the checksum and alow the
piggy-backed ACK to remain in the queue.
The booster maintains arecord of the rate a which the ACKs arrive a the ground station
router. Thisinformation is again written onto the Boost packet.

The Boost packet is transmitted.
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However there are afew specid cases which must be taken care of.

(1) We dated that the booster is invoked whenever an ACK is about to be queued for
transmisson. What happens if the ACK to be queued is a piggy-backed ACK? If we
incorporate the data from the piggy-backed ACK into the Boost packet and tranamit it,
this may result in unnecessary reordering if any other piggy-backed ACKs are dready
present in the queue. So we have to impose the further condition (policy) that the booster
be invoked, only for plain ACKs (ACKsthat contain no user data).

(2) We mugt ensure fairness among the connections. We said that the booster on constructing
the Boost packet immediatdly tranamits it. If we implement this scheme as is, this could
lead to unfairness. Condder the following scenario. Let us assume there are packets
belonging to two different connections- say connection A and connection B are queued up
for tranamisson. A packet belonging to connection B is currently at the head of the queue
and is about to be transmitted. At this point of time, a plain ACK belonging to connection
A arives to be queued for transmisson. The booster is promptly invoked, does dl the
processing, and congtructs the Boost packet. Now, if we immediately transmit this Boost
packet (for connection A), then we are unfair to connection B, because the next packet
that wasin line to be transmitted was that of connection B. In order to prevent the booster
from causing such unfairness we have to add an additional detall to the booster
implementation. Whenever the Boost packet has been congtructed, it should not be
immediately tranamitted. Instead it should be queued up a the postion of the first packet
(from the head of the queue) beonging to that particular connection. Implementing this

should be easy. When the booster traverses the queue from heed to tall it can mark the



pogtion of the first plan ACK by dlowing it to remain in the queue and not dropping it.
Later when the entire queue has been traversed, it can swap the plain ACK with the
Boost packet.

(3 Implementing the above may lead to a Stuation where, the booster while traversng the
gueue encounters another Boost packet. In such a Stuation the data from the earlier Boost

packet is adso used in the construction of the new Boost packet. The old oneis dropped.

At the recelving end (of ACK's) the booster, on receiving a Boost packet, uses the information
contained in the Boost packet to reconstruct the ACK stream. It generates ACKs with
increas ng sequence numbers from the last ACK number to the ACK number contained in the
Boost packet. The number of ACKs regenerated is equa to the number of ACKs that were
dropped. Also, tempora spacing between the ACKs is maintained by regenerating ACKs at
intervas of time equd to the average arrivd rate of ACKs at the ground gtation router.  These

reconstructed ACKs are then passed onto TCP.

4.5 The OPNET M odel

The ACK recongtruction booster has been implemented in OPNET. The objective was to
develop a smple modd, which would illugtrate the concept and which would enable us to
sudy the performance benefits and andyze how it would vary with different asymmetry
ratios, different bit error rates, and the nature of the traffic flowing across the link. In the actud

implementation, this booster would have to be implemented in the modem firmware since
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queuing of ACKs takes place only a the modem. The OPNET modd of this boodter,
however is implemented a the IP layer. Figure 4.1 shows the OPNET node modd for the

client (ground station) and Figure 4.2 the model for the server (satdllite).

ip_rx_0_0 ip_tx_0_0

Figure4.1 OPNET mode for the client (ground station)

The client and server are connected via two point to point links — one from the client to the
sarver and the other from the server to client. We shdl refer to the link from the server to the
client as the forward direction and the other as the reverse link. This modd dlows us to

independently set the bit rates for the forward and reverse links.
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This client — server modd dlows us to modd typicd red life gpplications such as ftp, rlogin

besides providing an interface to model customized applications.

O

ip
e

ip_rx_0_0 ip_tx_0_0

Figure 4.2 OPNET modd of the server (satdllite)

The ACK Recongtruction Protocol Booster has been modded within the IP module of the
client and in the TCP module of the server. Figure 4.3 illugtrates the 1P process mode that

was used to mode the booster.



The init date performs al necessary initidizations. An IP address is assgned for each
interface. In the wait dtate, the process waits for al other processes to register ther IP
addresses in the global |P address table. The init_too state is used to broadcast a specid IP
datagram on al network interfaces to dlow IP nodes to discover their neighbors and construct

their interface tables. The arrival state handles the enqueuing of arriving datagrams.

¢SELF_MOTIFICATION {1server_busy & insert_okd  CJOUEUE_EMPTY)

= L

(arRIvaLy (i

—) init_to)|F-————
. ™ J____> |
CEND_STH) (END_STH) P

(ARRIWALY,  *f{default)

-

(END_SIM?

Fgure 4.3 |P process modd state transition diagram

In the idle dtate, the process waits either for a datagram arriva or a service completion. The
svc_start state schedules a sdif interrupt to expire a the end of the service time. This indicates
that the process is now busy servicing a datagram. The svc_compl date is used to route a

datagram based on the destination |P address.

The SELF_NOTIFICATION trangtion occurs when the 1P addresses have been assigned

and regigtered in the globa 1P Address Table. The ARRIVAL transition occurs when an IP



datagram arrives either from the higher or lowere layer. The SYC_COMPLETION trangtion
occurs when a datagram has completed service and is ready to be forwarded on the
gppropriate output interface. The transition !server_busy && insert ok occurs if the
process is not busy servicing another datagram, and the arrived datagram was successfully
inserted into the queue. The IQUEUE_EMPTY trangtion occurs when the queue contains a
datagram that needs to be serviced. The END_SIM runs find reports for link utilization if link

utilization reporting is enabled.

OPNET dlows us to configure the IP forwarding rate of nodes. This is the rate (measured in
number of packets per second) a which the IP layer forwards the packets from its internal
queue. In the OPNET moddl, we force the ACKsto queue up at the IP layer by setting the IP

forwarding rate of the ground station to be afraction of the IP forwarding rate of the satdllite.

The ACK recongtruction boogter is atwo element protocol booster. The first element, resides
a the ground dation (client). It deds with the congruction of the Boost packet and is
implemented as a child process from the SVC_COMPL stage of the OPNET IP process
modd described above. The date trangtion diagram for the booster process at the ground

ddtion isshown in figure 4.4.
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Figure 4.4 Ground station booster element state transition diagram

The wait date is an idle dae, where the process awats the arival of a new
acknowledgement. On the arrival of a new acknowledgement, if the length of the queue is
greater than the threshold (newack & & q_thresh), the process entersthe info state. The info
date collects the connection information and the latest acknowledgement and window
sequence number. On passing an integrity check ( ready) the process enters the traverse
gate. While the end of the queue is not reached (!endq) the process examines successve
packets in the queue and performs the operations described in the dgorithm. On reaching the
end of the queue (endq), the process enters the boost state, wherein the Boost packet is

congtructed using the information collected. Upon completion of the congtruction of the Boost



packet, the process enters the transmit state, where the Boost packet is queued for

transmission. The process then trangts back to the wait state.

In order to smplify the OPNET modd, we make the assumption that only plain non-duplicate

ACKs are queued up at the ground station.

At the other end, the second booster element reconstructs the ACK stream using the
information contained in the booster packet. Figure 4.5 illustrates the tate trandtion diagram

of the second booster € ement.

farrival b
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Figure4.5 State trangtion diagram of second booster e ement

The second booster dement resides a the TCP module of the OPNET modd. In the wait

date, the process awaits the arriva of the Boost packet. Upon arrival of a Boost packet, the
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process trangits to the reconstruction state where the ACK stream is regenerated based on
the count of ACKs contained in the Boost packet. The process then trandts to the timer state.
Here based on the ACK inter arriva information, a timer is set to indicate the time of
transmisson of the next ACK. At that time the process trandits to the send state, which
delivers the ACK to the TCP module. This continues until the entire ACK stream has been
regenerated (!q_empty) and sent to TCP. When the regeneration queue becomes empty

(q_empty) the process transits back to the wait state.

4.6 Results

The smulations were performed on a Smple network conssting of two nodes interconnected
by two point-to-point links. The smulations were repested for different asymmetry ratios, bit

error rates and traffic loads.

Different asymmetry ratios

The objective of this set of smulations was to analyze the behavior of the boogter at different
ratios of bandwidth asymmetry. The forward transfer rate was set to 10Mbps and the
amulations were done for varying degrees of asymmetry ranging from 1:1000 to 1:1. The
results are presented in figures 4.6 to 4.10. It can be observed that, as the degree of
asymmetry increases, the performance benefits gained from the booster correspondingly

increases. At the largest asymmetry ratio of 1:1000 the booster yields maximum performance



gan (dmost 83 %) while a an asymmetry ratio of 1:1 the performance with the boogter is

amost the same as that without the booster.

Thusiit is apparent that the ACK recongtruction booster definitely enhances the throughput of

TCP connections, whenever there is Sgnificant asymmetry in the channd.
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Figure 4.6: TCP throughput (number of bits transferred to application layer) with and without

the boogter for asymmetry ratio 1:1000
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Figure 4.7: TCP throughput (number of bits transferred to gpplication layer) with and without

the booster for asymmetry ratio 1:500
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Figure 4.8: TCP throughput (number of bits transferred to the gpplication layer ) with and

without the booster for asymmetry ratio 1:100
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Figure 4.9: TCP throughput (number of bits transferred to gpplication layer) with and without

the booster for asymmetry ratio 1:10
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Different reverse bandwidths
The objective of this sat of smulations was to sudy the effect of higher line rate modems.
Simulations were done for reverse bandwidths 9600 bps and 56000 bps. The asymmetry

ratio was maintained at 1:100.

The results are presented in figures 4.11 and 4.12. It is observed that the booster continues to
yield higher performance notwithgtanding the higher reverse bandwidth. The utility of the

boogter is thus a function of the asymmetry ratio and not the reverse bandwidth.
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Figure 4.11 TCP throughput (number of bits transferred to gpplication layer) with and without

the booster at a bit rate ratio of 9600:960000
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Figure 4.12: TCP throughput (number of bits transferred to gpplication layer) with and

without the booster at a hit rate ratio of 56000:5600000



Different traffic loads

The objective of this set of smulations was to study the performance of the booster under
varying traffic loads and types. Smulations were done with varying FTP traffic loads — high,
medium and low. Also, the performance of the booster under interactive gpplications like
rlogin was studied. The results are shown in figures 4.13 to 4.16. It is observed that the
boogter yields the highest performance gain when there is heavy transfer of datain the forward
direction and large number of ACKs traversng the reverse link (FTP high load). For
interactive gpplications like rlogin, it is observed that the booster does not sgnificantly improve
performance. This can be attributed to the fact that there is no queuing up of ACKs.
However for gpplications such as ftp which involve bulk data flow in the forward direction
which in turn generate a correspondingly large number of ACKs, the booster definitely

improves performance.
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Figure 4.13: TCP throughput (total number of bits forwarded to the gpplication layer) with and

without booster for FTP-high load.
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Figure 4.14: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for FTP-medium load.
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Figure 4.15: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for FTP-low load.
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Figure 4.16: TCP throughput (total number of bits forwarded to the application layer) with and

without boogter for rlogin.
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Different bit error rates

The objective of this set of smulations was to study the effect of increasing bit error rates on
the performance of the booster. The smulaions were done with a forward bandwidth of
10Mbps and reverse bandwidth of 28.8Kbps. The bit error rate of the link was varied from
1E-7 to 1E-5. Theresults are shown in figures 4.17 to 4.19. It is observed that as the bit error
rate of the link increases, the throughput drops- but the boogter ill yields significant

performance enhancement.
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Figure 4.17: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for BER: 1E-7.
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Figure 4.18: TCP throughput (total number of bits forwarded to the gpplication layer) with and

without booster for BER: 1E-6.
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Figure 4.19: TCP throughput (total number of bits forwarded to the application layer) with and
without booster for BER: 1E-5.

Congestion window

The growth of the congestion window was studied for the boosted and normal case. As
shown in figures 4.20 and 4.21, the congestion window grows at a much faster rate for the
boosted case when there is an asymmetry in the bandwidths of the forward and reverse links.
When the link bandwidths are the same, the booster does not yield any significant

improvemen.
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Figure 4.20: Congestion window (in bytes) growth, when there is channdl bandwidth

asymmetry for the boosted and normal case.
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Figure 4.21: Congestion window (in bytes) growth , when there is no channd bandwidth

asymmetry for the boosted and normal case.



Chapter 5

The FZC Booster

5.1 Introduction

The Forward eraZure Correction (FZC) booster is a multi-element protocol booster, which
reduces the effective packet loss rate on noisy links such as terredtrid and satellite wirdless
networkg 16]. Although packet error correction is normaly mos efficiently and flexibly done
by packet retransmission (automatic repeat request, ARQ), forward error correction (FEC) is
desirable for some latency-constrained and multicast gpplications, or where the return channd
Is unavailable or dow and where the loss of a single packet causes other packets to need

retransmission. Figure 5.1 highlights the operation of the FZC boogter.

The FZC booster uses a packet FEC code with erasure decoding. This booster is a part of
the TCP/IP booster family, which aso includes ARQ boosters, a reorder booster, an error
detection booster and an ACK reconstruction booster. Each booster is designed to provide a
gpecific function and work harmonioudy with the other boogters in the family. The FZC
boogter is not well suited for dealing with packet |oss due to congestion; other members of the
TCPIP error control booster family handle this

gtuation.
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Figure 5.1 Communications over a wireless network with a FZC booster
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5.2 The Modus Operandi

At the transmitter side of the wireless network, the FZC booster adds parity packets. The
FZC boogter at the recelver side of the wireless network removes the parity packets and
regenerates missing data packets. This appears smilar to link FEC; however, link FEC only
corrects bits (or words), not 1P packets or TCP segments, and cannot be applied between
any two points in a network (including the end systems). Also, the FZC booster can be
gpplied incrementally. In figure 5.1, for example, we could add an extra FZC boogter at the
fixed termind. If this booster adds h1l parity packets and the second booster adds h2 parity
packets, the portable termina can recover from up to hl+h2 packet erasures. In the reverse

direction, the second booster could reduce the number of redundant packets to reduce

congestion in the wirdline network.
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5.3 Implementation in the Linux kernel

The FZC boosgter was implemented on the kernd infrastructure described in the previous
chapter. This booster caches, then immediately forwards, each data packet it receives,
whether the packet is from an upper layer protocal or the IP forwarder. The only modification
to each data packet is that the FZC booster over writes the 1P packet’s 16-bit identification
field with a sequence number, dlowing the decoder to know the packet’ s position information.
Practicaly speaking, this does not change the end-to-end UDP datagrams or TCP segments.

However, if an application requires, IP options can be used for packet sequence information.

After recaiving k packets (k is defined per channd) on a given channd, the cached packets
are zero padded to the size of the largest packet in the cache. Also, each packet’s Size and
protocol type are appended to the packet’s tail. The transmitter performs an FZC matrix
multiplication over the payload, padding, and gppended tail of the k packets. The h overcode
packet payloads produced by the FEC encoder are then prepended with an IP header and a
booster header. This IP header contains a prototype field identifying it as a protocol booster
packet and a sequence number in the 16-bit identification field. The booster header contains
the type of booster (FZC booster), the value k, and the sequence number of the first of the k

packets. The h packets are then transmitted towards the same destination as the data packets.
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The FZC boogter a the receive Sde caches incoming data packets and immediately forwards
them either to an upper layer protocol or towards their eventual destination. Overcode
packets are a'so cached, but are not forwarded. Packets are released from the cache when
dther:

1. Anentirecollection of k data packetsis present.

2. Therecelved data packets plus parity packets equd k.

3. The cache occupancy dictates cache content replacement.

Only in gtuation 2 are the matrix computations performed to generae the missng data
packets.

To assess the effectiveness of this booster arrangement it was deployed in asmulated wirdess
environment running UDP. It was found that running the FZC booster using 4 percent (k="50,
h=2) and 30 percent (k=20, h=6) overcode, respectively, reduces the throughput to
approximately 7.7 Mbps and 3.9 Mbps from 9.6 Mbps, which is still very acceptable for

most current access network technologies.

5.4 The OPNET M odel

An OPNET mode of the FZC booster has been developed. Since OPNET does not support
modeling the actua data packets, the encoding and decoding operations of the FZC booster
could not be modeled. However, using the data from the above tests, the effect of the FZC

booster has been modeled in the transceiver pipeline stages of OPNET.



OPNET dlows usto mode the characterigtics of three different types of communication links-
point-to-point, bus and radio links. Each type of link provides a fundamentdly different type of
connectivity: point-to-point links connect a single source node to a single destination node; bus
links connect a fixed set of nodes to each other; and radio links potentialy dlow al nodesin a
modd to communicate with each other, based on adynamic evauation. While the generd type
of connectivity provided by these links is predefined by OPNET, an open architecture is
provided to alow developers to specify customized behavior for each individud link on a per-
transmisson basis. This architecture is referred to as the transcaiver pipdine because it

provides a conduit connecting a transmitter to one or more receivers.

The transceiver pipdine has a Smilar sructure for each of the three supported link types. In
each case, the smulation kerne manages the transfer of packets by implementing a series of
computations, each of which modds particular agpects of link behavior. The sequence of the
computations and thelr interface are standardized for each type of link. However each
computation, referred to as a pipdine stage, is performed outside the smulation kernd by a
user-supplied procedure, caled a pipeline procedure. In this manner, OPNET provides an

open and modular architecture for implementing link behavior.

A link’s underlying implementation can generaly be thought of as a sequentialy executed st
of pipeline stages. The pipeline stage sequence of a link is executed once for each packet
transmission that is submitted a the source of the link. In other words, when a packet is sent

to atrangmitter, the smulation kernd  proceeds to cal agppropriate pipeline stages to process



the packet. Certain pipeline stages are executed when the packet is transmitted, and others
are executed later due to the delay associated with the traversal of the link and transmission of

the packet.

The principa objective of a transcelver pipeline is to determine whether or not a packet can
be recaved a the link’ s destination. This determination is usualy made in the find stages of the
pipeline based on information computed during earlier sages. The vehicle used to convey
information between the stages is the packet itself, which is provided as an argument to each
pipdine procedure. The packet is aso used by the pipeline stags to return information to the

Imulaion kernd.

Figure 5.2 illugtrates the radio link transceiver pipeline execution sequence. The FZC booster
Ismodeed in the transmission delay pipeline sage and the error correction pipdine sage. The
transmisson ddlay sage isthefirst stage of the pipdine, and is specified by the* txdel model”

attribute of the point-to-point link. It is invoked immediately upon beginning transmission of a
packet, in order to caculate the amount of time required for the entire packet to complete
trangmisson. This result can be thought of as the smulaion time difference between the
beginning of tranamission of the firgt bit and the end of transmisson of the last bit of the
packet. The amulation kernd uses the result provided by this stage to schedule an end-of-

transmisson event for the tranamitter
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Figure 5.2: Radio Link Transcelver Pipeline Stages

channd that is used to send the packet. When this event occurs, the transmitter may begin
transmission of the next packet in the channd’s internd queue, if any are present; otherwise
the transmitter channel becomes idle. In addition, the transmisson dday result is used in
conjunction with the result of the propagation delay stage to compute the time a which the
packet completes reception at the link’s destination (i.e., the time at which the last bit finishes
ariving isthe time a which it finishes transmitting added to the propagation delay on the link).
The transmisson delay is computed as packet_length/data_rate ; the data_rate being the
data rate of the link. The performance cogt (i.e, the reduction in throughput) thet results from
using the booster, can be modeled by reducing the data_rate appropriately, before it is used

to compute the transmisson dday. A vaiable degradation reflects the reduction in
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throughput, as a consequence of the redundancy of the parity packets. This variable
degradation is computed based on the overcode (the percentage of packet erasures sought
to be corrected). This overcode, is a user configurable parameter, which can be set a run
time. The relation between the overcode and the degradation is arrived a, usng the data

supplied from the redl-life experiments.

Based on the available data, we have derived: degradation = 0.862 — 1.538 * overcode.
For example, to correct 2 packets out of 50 packets (4 percent overcode), the degradation
= 0.862 — 1.538 * 0.04 ~ 0.8 which isin agreement with the actua experimentd data. So
we multiply the data_rate by 0.8 to smulate the performance cost that results from using this

booster.

The closure stage is the second stage of the pipdine. The purpose of this stage is to determine
whether a particular recelver channd can be affected by a transmission. The ability of the
transmission to reach the receiver isreferred to as closure between the transmitter channel and
the receiver channd, hence the name of the stage. Note that the god of the closure stageis not
to determine if a tranamission is vdid or gppropriate for a particular channd, but only if the
transmitted sgnd can physicdly attain the candidate recaiver channel and affect it in any way;

thus this stage gpplies to interfering transmissons as well as to desired ones.
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The channd match stage is the third stage of the pipdine. The purpose of this stage is to
classfy the transmission with respect to the receiver channd. One of three possible categories
must be assigned to the packet, as defined bel ow:
Valid. Packets in this category are congdered compatible with the receiver channd and
will possibly be accepted and forwarded to other modules in the receiving node, provided
that they are not affected by an excessive number of errors
Noise. This classification is used to identify packets whose data content cannot be
received, but that have an impact on the receiver channd’s performance by generating
interference.
Ignored. If a transmission is determined to have no effect whatsoever on a receiver

channd’ s gate or performance, then it should be identified usng this classfication.

The transmitter antenna gain is the fourth stage of the radio transceiver pipeine. The purpose
of this stage is to compute the gain provided by the transmitter’ s associated antenna, based on

the direction of the vector leading from the transmitter to the recelver.

The propagation delay stage is the fifth stage of the pipeline. The purpose of this stage is to
caculate the amount of time required for the packet’s sgnd to travel from the radio transmitter
to the radio receiver. This result is generdly dependent on the distance between the source

and the degtination.



The receiver antenna gain is the gxth stage of the pipdine. Its purpose is to compute the gain
provided by the receiver’s associated antenna, based on the vector leading from the receiver

to the tranamitter.

The seventh stage of the radio transciever pipeline is the Receiever Power stage. This stage
computes the received power of the arriving packet's sgnd based on factors such as the
power of the transmitter, the distance separaing the transmitter and the recever, the

transmission frequency, and tranamitter and recelver antenna gains.

The background noise stage is the eighth stage of the pipdine. The purpose of this stage is to
represent the effect of al noise sources, except for other concurrently arriving transmissions,
snce these are accounted for by the interference noise stage. The expected result is the sum of
the power of other noise sources, measured at the receiver’s location and in the recelver
channd’ s band. Typica background noise sources include therma or gaactic noise, emissons
from neighbouring dectronics, and otherwise unmodeled radio transmissons (e.g., commercid
radio, amateur radio, televison, depending on frequency). It takes as input, the Rx noise figure
— an integer value which indicates the noise level associated with a particular recaiver. In most
of our smulations we evauate the performance of the FZC boogter by varying this Rx noise

figure

The ninth stage is the interference noise stage and its purpose is to account for the interactions

between transmissons that arrive concurrently at the same receiver channe



The SNR stage is the tenth stage and it computes the current average power SNR result for
the arriving packet. This caculation is usudly based on vaues obtained during earlier stages,

including received power, background noise and interference noise

The Bit error rate stage is the eeventh stage and its purpose is to derive the probability of bit

errors during the past interva of constant SNR

The error dlocation stage is the twelfth stage of the pipdine and its purpose is to estimate the
number of bit errors in a packet segment where the bit error probabilityhas been calculated
and is congtant. Bit error count estimation is usually based on the bit error probability and the

length of the affected segment.

The error correction effect of the FZC booster is modded in the error correction pipeline
dage. The error correction stage is the final stage of the pipeline and is specified by the * ecc
model” dtribute of the link. The purpose of this stage is to determine whether or not the
arriving packet can be accepted and forwarded via the channel’ s corresponding output stream
to one of the neighboring modules in the destination node. This is usudly dependent upon the
result computed in the error alocation stage and the ability of the receiver to correct the errors
affecting the packet, hence the name of the stage. Based on the determination of this stage, the
kernd will either destroy the packet, or alow it to proceed into the destination node. In

addition, this result affects error and throughput statistics collected for the receiver channd. A



counter, pkt_count keeps track of the number of packets received. It is decremented on the
arriva of anew packet. Another counter, count_parity keeps track of the number of packets
that can be corrected. The initid vaue of count_parity = pkt_count * overcode. The vadue
of count_parity is decremented by one, every time a packet has been corrected. When a
packet arrives at the error correction transceiver pipeline stage, the number of errors in the
packet is computed. Then, a test is made to determine whether the packet can be accepted
based on the error correction threshold of the receiver. If the number of errorsis lesser than or
equal to the error correction threshold, then the packet is accepted, dse it is rgected. A
variable accept is assigned the vdue OPC_TRUE or OPC_FALSE , depending on whether
the packet is accepted or regected. When a packet has been rgected (i.e, accept
==0OPC_FALSE), if count_parity has a non zero value, the packet is accepted and the
vaue of accept is changed to OPC_TRUE. The counter, count_parity is then decremented
by one. When the counter pkt_count becomes zero, it is renitidized and count_parity is

reinitidized to (pkt_count * overcode).

5.5 Resaults

The above mode for the FZC booster has been incorporated in the ARL simulation testbed

conggting of anetwork of severd mobile units communicating viawirdess links.



Effect of level of noise on the performance gain

The noise leve ( the Rx noise figure — as discussad in the background noise pipeline stage) of
the links were varied over a wide range, spanning severd orders of magnitude and the
throughput attained was recorded. For purposes of comparison, the same was done for the
network, without the booster. The results show that below a certain noise levd, the
throughput of the norma (i.e., “un-boosted”) network was greater than the boosted network.
But above that threshold, the performance of the boosted network improves and is severd
magnitudes greater than the norma network. This is because for lower bit error rates, the
network has the overhead of the additiona parity packets without any benefit. But for higher
bit error rates, the error correction achieved, compensates for the overhead and the boosted
network outscores the “un-boosted” network. Based on these results, it is suggested that the
FZC boogter be employed only in Stuations warranting its need i.e,,  in networks with links
with high bit error rates. This can be done by having a policy module, which loads the booster

only when the bit error rate exceeds a certain threshold.
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Effect of packet size on performance

In order to study the effect of packet size on the performance of the booster we ran
smulations with packet sizes ranging from 512 bytes to 16000 bytes. It has been noticed that
packet size has minimd effect on the booster performance. The booster continues to yield

conggtently high throughput for various packet Szes.
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Effect of different percentage overcodes

The same set of amulations were repeated with different overcode percentages. Figure 5.11
represents the comparison of boosted vs norma network at noise level 750000 and 4%
overcode. Figures 5.12 is the smulation result for 30% overcode. It is observed that higher

percentage overcode yields better performance over highly noisy links.
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Chapter 6

Conclusion

Protocol boosters can be viewed as a step towards the fully programmable infrastructure
proposed by a number of researchers under the rubric of “Active Networks’[24]. While
many of the problems are the same (e.g., robust end-to-end behavior, security for systems
into which boogters are loaded, etc.), a key advantage of boosters is that they can easily be
injected into today’ s systems without a wholesale change in the network infragtructure. In that

sense, they offer an early test of the promise of active networks.

In this thesis we have presented a novel design for an ACK Reconstruction Protocol Booster
to improve the performance of TCP over satdlite channes. Unlike link layer methods, our
booster preserves the origind ACK stream and hence, does not jeopardize the normal
functionality of TCP. Unlike protocol termination, the end-to-end properties of TCP are
preserved. Also, since it does not convert the protocol, it does not involve too much
processing overhead. Through extensve smulations usng OPNET we have shown thét this
booger is a definite boon to TCP communication over satdlite links yieding sgnificant

improvement in TCP throughput.

Anather contribution of this thes's was the modeling and evaduation of the Forward Erazure

Correction Booster and its incorporation within the ARL smulation testbed. The Forward
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EraZure Correction (FZC) boogter is a multi-element protocol booster, which reduces the

effective packet loss rate on noisy links such as terrestrid and satellite wirdess networks.

While the developers of this booster were able to demondtrate through smple proof-of-
concept tests that this booster enhanced performance, there was no rdiable model to andyze
the performance of this booster within an actud hybrid wireless network. We have attempted
to fill this void, by modeling the FZC booster in OPNET and incorporating it within the ARL
testbed. Smulation results have proved to be illuminating in that we are now able to determine

the degree of usefulness of this boogter given the networking environmen.

Also , we have provided a detailled description of the protocol booster methodology and
showed how protocol boosters can be an effective solution to the problems faced by current
networking protocols. We discussed various design issues to be consdered when we
implement protocol boogters in the operating system. A detailed description of the kernd leve

implementation in Linux was provided.

There are a number of Stuations warranting the use of boosters some of which were cited

earlier. Other boogsters which can be devel oped in the future include:
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Two-Element Encryption Booster

In the case of sendtive data traveling over an insecure subnet, an encryption booster can
trangparently  increase the security of the network services provided. For senstive data
traveling between secure clouds, it may be less expengve to encrypt the data only over the
insecure hop thereby reducing CPU cost on the end points. A policy module could detect the

insecure hop by P address or by other means.

One-Element Congestion Control Booster for TCP

Congestion control reduces buffer overflow loss by reducing transmission rate at the source
when the network is congested. A TCP transmitter deduces information about network
congestion by examining acknowledgments (ACKs) sent by the TCP receiver. If the
trangmitter sees severd ACKs with the same sequence number, then it assumes that network
congestion caused a loss of data messages. If congestion is noted in a subnet, then a
congestion control booster could atificidly produce duplicate ACKs. The TCP receiver
would think that data messages have been lost because of congestion and would reduce its

window Sze; thus, reducing the amount of data it injects into the network.

Two-Element Selective ARQ Booster for IP or TCP

For links with dgnificant error rate usng a sdective ARQ protocol (with sdlective

acknowledgment and selective retranamisson) can sgnificantly improve efficiency compared

113



to usng TCPs ARQ (with cumulatiive acknowledgment and possibly go-back-N
retransmission). The two eement ARQ booster uses a sdective ARQ booster to supplement
TCP by : @ caching packets in the upstream boogter; b) sending negative acknowledgments
when gaps are detected in the downstream boogter; ¢) sdectively retranamitting the packets

requested in the negative acknowledgments (if they are in the cache).

The protocol booster methodology offers some exciting posshbilities for accderating the
evolution of protocols, for changing the economics of protocol development, and for creating
useful “hybrid” protocols which have “just enough” support for the heterogenety actudly
encountered. Protocol boosters can thus be viewed as an optimistic approach to protocol
design. Applications implement gpplication-gpplication protocols assuming an ided world.
Protocol boosters add functions on an as-needed basis to provide this ided world; when the

red world isredly ided (e.g., homogeneous workstations on a LAN) no overhead is incurred.
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