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ABSTRACT

Title of Thesis:         MODELING AND EVALUATION OF PROTOCOL BOOSTERS
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Degree and year:       Master of Science, 2000

Thesis directed by:    Professor John S. Baras

          Department of Electrical Engineering

Protocol Boosters are software and/or hardware modules that transparently enhance the

performance of existing protocols over heterogeneous networks. In this thesis we have

presented a novel design for an ACK Reconstruction Protocol Booster to improve the

performance of TCP over asymmetric satellite channels. The asymmetric nature of broadcast

satellite channels has been known to have an adverse impact on the performance of TCP.

Due to the channel asymmetry, many TCP ACKs may build up in a queue at the ground

station router, increasing the round trip time and decreasing the throughput of a given

connection.  The ACK Reconstruction Protocol Booster has been designed to enhance the

performance of TCP over such asymmetric links, transparently, without changing the syntax,



nor affecting the semantics of TCP. Through extensive simulations using OPNET, we have

been able to establish that this booster yields



significant improvement in TCP throughput.

Another contribution of this thesis is the modeling of the Forward EraZure Correction (FZC)

booster in OPNET and its incorporation  within the ARL testbed. The FZC booster is a multi

element protocol booster, which reduces the effective packet loss rate on noisy links such as

terrestrial and satellite wireless networks. Through simulations, we have evaluated the

performance of this booster under varying network conditions.

Other contributions of this thesis include a detailed examination of the protocol booster

methodology, together with a critical analysis of the various implementation choices available.

Also we have proposed a number of new ideas for future booster implementations
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Chapter 1

Introduction

Protocol Boosters [10] are robust protocol adapters designed to dynamically improve (boost)

the performance of protocols in heterogeneous distributed computing systems. Protocol

boosters allow (1) dynamic protocol customization to heterogeneous environments and (2)

rapid protocol evolution.

Unlike alternative adaptation approaches, such as link layer, conversion and termination

protocols, protocol boosters are both robust (end to end protocol messages are not modified)

and maximize efficiency (does not replicate the functionality of the end to end protocol).

In this thesis we have presented a novel design for an ACK Reconstruction Protocol Booster

to improve the performance of TCP over satellite channels. The asymmetric nature of satellite

channels has been known to have an adverse impact on the performance of TCP [1,5,9,13].

Due to the channel asymmetry, many TCP ACKs may build up in a queue at the ground

station router, increasing the round trip time and decreasing the throughput of a given

connection.
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Several solutions to this problem have been proposed. Link layer solutions such as ACK

filtering attempt to solve the problem by dropping ACKs at the ingress to the bottle neck link.

These methods however, suffer from a serious setback in that they ignore the fact that TCP

uses ACKs for purposes other than mere acknowledgement of data received.

Protocol termination schemes such as TCP spoofing attempt to enhance performance of TCP

by terminating the TCP connection at the gateway – resulting in the loss of valuable end-to-

end properties. For instance, receipt of an acknowledgement does not mean that the

destination has received the data.

Protocol conversion schemes also suffer from a serious setback in that the message syntax has

to be changed- leading to additional processing overhead.

Our ACK Reconstruction Protocol Booster offers a viable solution to this problem. It is a

multi element protocol booster, which has been designed to enhance the performance of TCP

transparently without changing the syntax or semantics of TCP. Unlike link layer methods, our

booster preserves the original ACK stream and hence, does not jeopardize the normal

functionality of TCP. Unlike protocol termination, the end-to-end properties of TCP are

preserved. Also, since it does not convert the protocol, it does not involve too much

processing overhead. It is our claim, which has been substantiated through extensive
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simulations using OPNET, that this booster is a definite boon to TCP communication over

satellite links yielding significant improvement in TCP throughput.

Another contribution of this thesis is the modeling and evaluation of the Forward Erazure

Correction Booster and its incorporation within the ARL simulation testbed.  The Forward

EraZure Correction (FZC) booster is a multi-element protocol booster, which reduces the

effective packet loss rate on noisy links such as terrestrial and satellite wireless networks [16].

While the developers of this booster were able to demonstrate through simple proof-of-

concept tests that this booster enhanced performance, there was no reliable model to analyze

the performance of this booster within an actual hybrid wireless network. We have attempted

to fill this void, by modeling the FZC booster in OPNET and incorporating it within the ARL

testbed. Simulation results have proved to be illuminating in that we are now able to determine

the degree of usefulness of this booster given the networking environment.

Other contributions of this thesis include a detailed examination of the protocol booster

methodology together with a critical analysis of the various implementation choices available.

Also we have proposed a number of new ideas for future booster implementations.

The rest of this document is organized as follows. Chapter 2 provides a detailed overview of

the protocol booster methodology. Chapter 3 is an in depth analysis of the implementation of

boosters and the choices faced by a designer. In chapter 4 we present  the design of the ACK
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Reconstruction Protocol Booster in detail together with the OPNET model and simulation

results. Chapter 5, describes  the FZC Booster followed by the OPNET model and simulation

results. Chapter 6 concludes this thesis with an overview of the contributions, followed by

suggestions for future work.
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Chapter 2

PROTOCOL  BOOSTERS

2.1 Introduction

Protocol Boosters [10] are robust protocol adapters designed to dynamically improve (boost)

the performance of protocols in heterogeneous distributed computing systems. Protocol

boosters allow: (1) dynamic protocol customization to heterogeneous environments and (2)

rapid protocol evolution.

Unlike alternative adaptation approaches, such as link layer, conversion  and termination

protocols, protocol boosters are both robust (end to end protocol messages are not modified)

and maximize efficiency (does not replicate the functionality of the end to end protocol). In this

chapter we present a detailed description of protocol boosters. In section [2.2] we present the

motivation for the development of protocol boosters. In section [2.3] we provide a formal

definition of protocol boosters, together with several examples. Section [2.4] compares

boosters with other protocol architecture alternatives. In section [2.5] we illustrate how

protocol boosters can be a solution to current networking problems.
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2.2 Motivation

In order to  appreciate the concept of boosters let us first examine the current networking

protocols and understand the problems they face. Most of the protocols in use today fall into

two major categories: General-purpose  protocols and specialized protocols.

General purpose protocols are generally complex and designed to meet a wide variety of

application requirements and network environments ; however one must note that this often

leads to  an inefficient use of network resources.

On the other hand, Specialized protocols take full advantage of the application requirements

(e.g., loss and latency tolerance) or network environment (e.g., dedicated and high speed

links) to leave as much as possible of the communication resources for the application.

Unfortunately, developing a robust specialized protocol  is expensive and time consuming.

Figure 2.1 shows an abstract example of the efficiency-generality trade-off: with IP Internet

protocols being general purpose but inefficient and parallel processing protocols being efficient

but requiring low error rate, low delay networks. Ideally, a protocol would adapt to provide

the best possible performance given the path of the data. For instance, when on a LAN , the

protocol would adjust itself to give performance similar to that of a specialized LAN protocol.
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Another motivation for protocol boosters is the slow pace at which protocols evolve. The

problem is not with the specific protocol or specific standardization method ; but with the need

to have many people agree on the standard .

Thus we clearly need to have :

(1) a protocol adaptation technique which can dynamically improve the performance of

      protocols in heterogeneous systems.

(2) a protocol adaptation technique, which is transparent to the base protocol i.e., the

protocol that is being adapted. This transparency would eliminate the need for

standardization.
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2.3 Protocol Booster Properties

A Protocol Booster is a software or hardware module that transparently improves protocol

performance. The booster can reside anywhere in the network or end systems, and may

operate independently (one-element booster) or in cooperation with other protocol boosters

(multi-element booster). Protocol boosters provide an architectural alternative to existing

protocol adaptation techniques, such as protocol conversion and protocol termination.

A protocol booster is a supporting agent that by itself is not a protocol. It may add, delete or

delay protocol messages, but never originates, terminates, or converts that protocol. A multi-

element protocol booster may define new protocol messages to exchange among themselves,

but these protocols are originated and terminated by protocol booster elements and are not

visible or meaningful external to the booster.

Protocol boosters are parasitic, in that they use whatever information is available from other

protocols or boosters. Protocol boosters are transparent in that they can be added anywhere

in the network or end system without altering the boosted protocol.
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Snow Chain Analogy

A simple analogy may help explain the parasitic and transparent behavior of boosters. If a

protocol is analogous to an automobile tire, then a protocol booster is analogous to snow

chains (Figure 2.2). A car with regular tires can add snow chains on snowy roads, just as

a protocol designed for a wireline network may use boosters for transmission across a

wireless network. The snow chains and boosters are parasitic adapters since a car cannot

drive on snow chains alone, just as communication is not possible with protocol boosters

alone.
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Also, the snow chains and boosters are transparent, since the car tires are not modified by the

addition of snow chains, just as the protocol is not terminated or converted by a protocol

booster.

Booster Policy

Boosters can be added and deleted dynamically as additional network functionality is needed.

A policy for this decision is needed in addition to the specific booster mechanism for adding

functionality. Since boosters vary widely in their functions, it is impossible to have a completely

general policy; policies must be associated with specific booster functionality. Policies may be

based on a wide variety of factors, such as observed network behavior, packet source and

destination, or time of day.

One-Element Protocol Booster Examples

(i) One-Element Error detection Booster for UDP

UDP has an optional 16-bit checksum field in the header. If it contains the value zero, it means

the checksum was not computed by the source. Computing this checksum may be wasteful on

a reliable LAN; however, if errors are possible, the checksum greatly improves data integrity.

A transmitter sending data does not compute a checksum for either local or remote

destinations. For reliable local communication this saves the checksum computation (at the

source and destination). For wide-area communication, the single-element error detection
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booster computes the checksum and puts it into the UDP header. The booster could be

located either in the source host (below the level of UDP) or in a gateway machine.

(ii) One-Element channel traffic limiting booster for TCP

Often in many systems, it may be necessary to limit the traffic on a channel to the bare

minimum. This may be due to limited channel capacity (as on the return channel of satellite

systems) or due to the lossy nature of the channel (as in wireless systems).

Consider the system shown in Figure 2.3.
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 A booster can be installed at the ground station to limit the traffic on the reverse channel.

Assuming that three connections A-X, B-Y, C-Z are active, the booster will do the following:

(a) Cache packets from X;

(b) If a packet is lost somewhere in network M and A sends a duplicate ACK, then the

booster will drop the duplicate ACK and retransmit the lost packet from its cache.

(c) If an ACK sent by X is lost in network M and A retransmits the packet after timing out,

then the booster will drop the packet from A and retransmit the ACK from X.

Two-Element Protocol Booster Examples

(a) Two-Element FZC Booster for IP or TCP

For many real-time and multicast applications, Forward Error Correction coding is

desirable[18]. The two-element Forward EraZure Correction booster uses a packet Forward

Error Correction code and erasure decoding [2]. The FZC booster at the transmitter side of

the network adds parity packets. The FZC Booster at the receiver side removes the parity

packets and regenerates missing data packets. The FZC booster can be applied between any

two points in a network (including the end systems).

(b) Two-Element Jitter Control Booster for IP

For real time communication, we may be interested in bounding the amount of jitter that

occurs in a network . A jitter control booster can be used to reduce jitter at the expense of

increased latency. At the first booster element, time-stamps are generated for each data
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message that passes. These time-stamps are transmitted to the second booster element, which

delays messages and attempts to reproduce the inter-message interval that was measured by

the first booster element.

2.4 Comparison of Boosters with Other Approaches

Protocol boosters provide faster evolution and increased efficiency compared to the use of

standard general-purpose end-to-end protocols. This section compares protocol boosters

with other protocol architecture alternatives, noting that only boosters take advantage of higher

layer information (unlike link layer adaptation), while not altering the message syntax (protocol

conversion) or semantics (protocol termination).

Link Layer Adaptation

A drawback of independent  link layer protocols is that they treat  all data streams identically.

If there are applications with divergent needs passing over the same link, as there frequently

are, then it is unlikely that a single link layer protocol can provide the most efficient service.

When data is sent over a noisy link, for example, some data streams, such as those carrying

audio, may desire low delay, even if  some errors occur. Other data streams may desire a low

residual error rate, even at the expense of increased delay. No single link layer protocol could

satisfy both requirements. In contrast, a protocol booster could be designed to ignore all UDP

connections or boost only certain specific applications, as determined by TCP/UDP port
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numbers. Moreover, the booster could be migrated into the end system where it is closer to,

and  under the control of, the application.

Another drawback of independent link layer protocols is that they can duplicate functionality.

If the transport layer protocol provides error control (e.g., TCP), then there is redundant

functionality if an independent link layer also provide similar error control. If the transport layer

does not provide error control (e.g., UDP), then the end-to-end robustness property is lost.

Notice that the protocol booster can treat streams differently and does not duplicate

functionality, and thus does not violate the end-to-end argument[21].

Protocol Conversion

The main distinction between conversion protocols[11] and booster protocols is that

conversion changes the syntax of the base protocol. Thus, a disadvantage of protocol

conversion is that it requires processing to change message syntax. While a protocol booster

simply can observe most messages from the base protocol, the protocol converter must

modify every message that arrives. Another disadvantage of protocol conversion is that it is

not robust to failures. If one end of a protocol conversion fails, then no communication is

possible; with boosters, even if one booster element fails, communication is still possible using

the base protocol. While protocol boosters and link protocols offer soft degradation, protocol

conversion and protocol termination offer hard degradation.
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Protocol Termination

Protocol termination[3] uses different protocols at different points along the path from the

transmitter to the receiver, with no single end-to-end protocol. Just as with protocol boosters,

protocol termination allows choice of protocol characteristics appropriate to the network

environments along the communication path and avoids duplication in functionality.

A drawback of protocol termination is that it loses desirable end-to-end properties. For

example, if TCP is terminated in the network, then receiving a TCP acknowledgment does not

mean that information arrived at the destination. Another drawback of protocol termination is

that it provides additional points of failure. Failure of a network termination point causes all

messages to be unintelligible (hard degradation) , even if alternative routes are available. If a

booster fails, communication is still possible using the base protocol as long as another

communication route is available. Performance degrades , but protocol operation continues

(soft degradation). Soft degradation is helpful in hostile environments in which failures are

expected, such as battlefield situations.

2.5 Protocol Boosters as a Solution to Current Networking

Problems
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In this section we discus how protocol boosters overcome the slow evolution and reduced

efficiency of standard general-purpose protocols.

Fast Evolution of Protocol Boosters

With no need for standardization, we can design and implement protocol boosters with

minimal resources. Also, because boosters are transparent, we can replace boosters as often

as desired without the knowledge of those using them. Thus a simple, quick booster

implementation can be installed quickly. As experience is gained, improved boosters can be

created and installed. Because of the fast feedback that can be obtained on booster behavior

and performance, boosters can evolve extremely quickly. Also many different boosters can

evolve independently in parallel. All of this is because the transparent nature of boosters

eliminates the need for standardization.

Protocol boosters are a free market approach to protocol and network design. Booster

designs compete economically in the market place, rather than politically in a standards

committee. In economics, it is generally believed that companies that compete economically in

a free-market system are more efficient than those companies that operate by government fiat.

Companies that are successful in the market efficiently produce goods and services desired by

consumers. Similarly, the free-market competition among boosters assures that efficient and

effective boosters will proliferate and that poor booster designs will become obsolete.

Standardization of protocols is expensive because of the need to attend standards meetings,
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and only established companies can afford to be involved in standards. Boosters need not be

standardized, and they can be quickly designed and built by a small number of people at low

cost.

Protocols that require standardization are subject to what economists call “network

externality”. Network externality is the concept that the value of something depends on the

number of people who already use it. Examples of network externality can be seen in VCRs

and computer operating systems. VHS tapes are the most available because most people have

VHS VCRs. Once one specific example of something that fills a niche becomes dominant, it is

difficult to displace it even with a technically superior product. Standardized protocols are

subject to network externality. We use TCP/IP because we want to communicate with other

people, and most of them use TCP/IP. Network externality dampens competition, because

even if a better protocol is designed, it is unlikely to displace existing protocols. Boosters are

immune from the feedback caused by network externality because they are transparent and

need not be standardized. Consequently, existing boosters can and will be displaced easily

and quickly by boosters with better performance.

Another advantage of boosters is that their design and use can be proprietary. With

standardized protocols, proprietary market advantage is not possible because you can only

communicate with those systems that are running the standardized protocol. Boosters are

transparent, and thus, there is no need to disclose the internal design of a booster to those

using the booster. The ability to gain proprietary advantage using boosters means that  there is
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increased market incentive to invest in new booster designs. Care must be taken, however,

that the proliferation of protocol boosters does not result in poor performance because of

unexpected interactions among proprietary boosters. To reduce this  lack of interoperability,

successful proprietary booster protocols could eventually become standardized, at which time

the developer gives up proprietary claims in return for the wider market for standardized

solutions.

Efficiency of Protocol Boosters in Heterogeneous Networks

It is difficult to maintain efficient protocol operation over a wide range of network

environments. Thus, as shown in Figure 2.1, protocols generally exchange efficiency for

heterogeneity. Reducing the heterogeneity in a networking environment often can increase

protocol efficiency. Boosters can be used to increase protocol efficiency without reducing

heterogeneity because boosters are a means of hiding the heterogeneity of the networking

environment. Instead of optimizing the performance of a protocol over a wide range of

network environments, a protocol can be optimized for the network environment between the

end host and a booster or between boosters. For example, if network congestion is not an

issue on a local network, the booster that adds congestion control can be disabled to reduce

unnecessary delay. Thus, boosters allow dynamic customization of a protocol to a

heterogeneous environment. It is not necessary to make pessimistic worst-case assumptions

about network conditions and application requirements, as is necessary for general-purpose

protocols.
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The network environment seen on an end-to-end communication path depends on the route

taken by the data through the communication network. When boosters are placed in the

network, boosters are knowledgeable about the network environment in which they operate.

Network boosters also  operate  only on data that passes through them , so data is only

processed at the level necessary for communication locally. Any non-local communication is

automatically enhanced by boosters. Thus boosters provide the highest possible performance

given the route of the data.

2.6 Summary

This chapter provided a detailed overview of protocol boosters. The motivation for the

development of protocol boosters was presented. We then went on to provide a definition for

a protocol booster and an illustration of its properties. A few booster examples were

presented. We discussed the need for having a booster policy, and finally we finally illustrated

how boosters can provide a solution to current networking problems.

In the next chapter we shall explore the intricacies involved in the implementation of protocol

boosters.
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Chapter 3

Protocol Booster Implementation

3.1 Introduction

In this chapter we shall consider the issues involved in implementing protocol boosters in

current operating systems. Section 3.2 presents the general idea of protocol booster

implementation. A simplified illustration is provided. Section 3.3 motivates particular design

choices reflected in the implementation. In section 3.4 we describe the details of a Unix

kernel-level implementation of protocol boosters.

3.2 Implementation

Implementation of boosters requires dynamic insertion of protocol elements into a protocol

graph [15]. In practice, protocol graphs are implemented as executable modules that

cooperate via messages or shared state. Booster support requires inserting and removing the

booster’s function from the execution path followed for a group of packets handled by the

protocol. A simplified illustration of one style of booster is shown in Figure 3.1.
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3.3 Implementation choices and strategy

As Figure 3.1 shows, due to its generality and simplicity, the booster abstraction can be used

in many protocol architectures. There is a wide range of implementation alternatives.

Kernel vs. User level

The initial design choice that confronts us is whether to run boosters inside the kernel

protection domain, or to operate in user-space. Boosters running in user space are much

easier to debug, as well as easier to adapt to other operating systems.
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Running boosters as kernel modules can increase performance, because of context-switching

and other overheads, as well as availability of control and information about arriving packets.

As many boosters commit layer violations, such information can be very important. Since one

role of boosters is as performance-enhancers interoperating with existing network protocols,

boosters have currently been implemented as kernel modules. Section 3.3 discusses the

kernel-level implementation in detail.

Platform choice

Protocol booster support was added to FreeBSD, a free Unix clone for the Intel x86

processor architecture. The placement of this implementation in the IP stack is shown in figure

3.2. Also, as mentioned earlier, kernel-level protocol booster support was added to the Linux

operating system for the i386 (Intel) architecture. In the current prototype, the policy decision

for boosting has been simplified: all packets destined to (or sourced from) a specific IP

address are boosted or de-boosted as necessary.

This choice allows the investigation of OS performance independent of policy research and

development. This is accomplished by a demultiplexing algorithm as illustrated in Figure 3.2,

which examines the IP address and based on a table lookup, either invokes an appropriate

booster or reinserts the packet in the normal execution path. Insertion or deletion of booster

functionality is thus controlled by choice of IP address.



29

Protocol Layer and implications

The choice of protocol layer is critical to the effectiveness of a protocol booster. At present,

protocol boosters have been implemented at the IP layer. However, choice of protocol layer

should depend on the particular booster and its functionality. Consider for instance, an  ACK

Compression protocol booster. On a system with asymmetric channel speeds such as

broadcast satellite, the forward (data) channel may be considerably faster than the return

(ACK) channel. On such a system, many TCP ACKs may build up in a queue, increasing

round trip time and thus reducing the transmission rate for a given TCP window size. The

nature of TCP’s cumulative ACKs means that any ACK acknowledges at least as many bytes
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as any earlier ACK. Consequently, if several ACKs are in a queue, it is necessary to keep

only the ACK that has arrived most recently. An ACK compression booster can be designed

to ensure that only a single ACK exists in the queue for each TCP connection. Critical to the

functioning of this booster is the queuing up ACKs. If there is no queuing up of ACKs at the

ground station router, there is no point in invoking the booster at all. Studies have indicated

that queuing up of ACKs, occurs at the modem rather than at the IP layer. In view of this fact,

it is obviously impractical to implement the ACK Compression protocol booster (or the ACK

Reconstruction Booster to be discussed later) at the IP layer. Implementation of these

boosters should be done in modem firmware, rather than at the kernel level IP implementation.

However, other boosters such as the FZC booster or the Error detection booster are suitable

for implementation in the IP layer.

Implementation of protocol booster at the IP layer introduces other limitations. These are

related to packet fragmentation  and reassembly and multipath routing, and are a direct

consequence of operating at the IP layer.

Packet fragmentation and reassembly is performed by IP at hosts to avoid the performance

cost of repeatedly carrying it out as packets traverse an internetwork. A Maximum Transfer

Unit (MTU) is determined for an IP route, which has the property that it requires no

fragmentation and reassembly. Where a link has a smaller MTU than the packet size, the

packet is fragmented into pieces of MTU size or smaller. The debooster receives the original

boosted packet as two (or more) packet fragments. This presents a problem where the
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booster functionality requires the entire original packet. Since this requirement is booster-

dependent, the prototype OS implementation supplies the MTU of the outgoing interface to

the booster so it can act appropriately.

Multipath routing occurs since Internet packets are not guaranteed to be delivered, take a

particular route, or arrive in-order. TCP addresses the first and third problems as an IP

overlay. This IP behavior can present a problem for boosters, where appropriate deboosters

or state necessary to deboost the boosted packet are not present. It also complicates inserting

and deleting boosters at necessary locations in an IP internetwork. While routes rarely change,

as shown by Claffy[8] in her studies of Internet traffic, such routing dynamics can be

addressed by future protocol boosters.

3.4 Kernel-Level Implementation in Linux

Kernel -level protocol booster support was added to the Linux operating system for the

i386(Intel) architecture PC[17]. Kernel implementation offers efficiency and transparency.

Individual protocol boosters are implemented in the form of Linux loadable kernel

modules(lkm). This allows each protocol booster to be inserted/removed on-the-flight run

time.
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Because booster functionality can be instantiated via multiple processes, uniquely naming all

the system components is required. The system components consist of booster loadable

kernel modules, booster instances, booster sequences and booster traps.

A booster sequence is a concatenated chain of booster modules. One can view the booster

modules as definitions, and their association with a given booster sequence as a declaration, or

booster instance. Each instance of a booster can behave differently based on the arguments

that are passed to the booster when it is invoked or arguments passed via ioctl system calls.

Arguments are encoded as character strings because Linux does not implement a general

scanf routine within the kernel. Finally a mechanism to direct or trap packets to a booster

sequence was incorporated using a modified version of the existing Linux firewalling filter.

Booster Architecture

Boosters must be placed strategically within the operating system to interoperate and work

transparently with the IP protocol stack. Figure 3.3 illustrates the components of the booster

architecture as they relate to the IP protocol stack.

 The boosters themselves are positioned at a relatively low level within the IP stack so that

they can operate on packets during the input, output or forwarding functions. The Boost

interface allows for out-of-band, inter-booster module communications. The figure also shows
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the policy manager which manages the boosters and the user level booster daemon. The raw

packet interface (User D) is not forced through the booster interface.

This was done to insure that there was one mechanism to transmit and receive packets that

was unaffected by the presence of boosters.

Packets are fed to each booster in sequence in the order that they are assembled for output

and in the reverse order on input. Boosters can influence the packets that are passed to them.

The control mechanism that sequences boosters examines the return value from each booster.

A booster can indicate that one of several actions can be taken:

• Retain a copy of the packet and pass the packet to the next booster.
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• Do not retain a copy of the packet and pass the packet to the next booster.

• Break the sequence and discard the packet.

The need to retain packets does not stall either transmission or reception  since packet cloning

(packet use counts) is used to eliminate unnecessary copies in physical memory and to prevent

packets from being released until the appropriate time. As part of this discipline, boosters must

obey one cardinal rule. They must not force the transmission of the packet passed to them,

i.e., the packet will be transmitted after all of the boosters in the sequence have seen the

packet. Boosters can generate additional packets but frequently it is important that the packets

generated follow the packet that the booster is currently examining . Any new packets can be

queued to a special queue associated with the booster sequence so that they are transmitted

after regular packets are processed by the booster sequence. This can be important when the

transmission of a booster-generated packet before an old packet would cause unnecessary

processing at a downstream node. There is, however, nothing to prevent a booster from

transmitting a new packet immediately.

Structure of a Booster Module

There are six main interfaces that a booster loadable module must implement. The first of these

is called the instance manager interface used to create and release any private data for the

booster and maintain appropriate use counts. The count mechanism that keeps device drivers

loaded is subverted so that each instance of a booster increments the use count to prevent
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modules from being unloaded prematurely while a sequence is still active. The output

interface examines IP packets being output by the system, the input interface examines

packets as they are input to a system while the forwarding interface examines packets as

they are output when forwarding packets. Many boosters implement the forwarding interface

as a wrapper around the booster output interface. The Boost interface is devoted to handling

the reception of booster protocol packets, which are used for transparent, inter-booster

module communications. Finally an ioctl interface is provided to allow user processes to

modify parameters associated with the instance manager interface.

The Kernel Interface

The booster management  routines are delegated to the resident kernel for efficiency and

during the software interrupts used to process network traffic. These routines are exposed for

loadable modules to use via the standard Linux module address resolution mechanism. A

substantial part of the interface that manages the construction of booster sequences resides in

the policy manager which is itself a loadable module. The policy manager is also a character

device driver (/dev/policy) and exposes its interfaces via a series of ioctl calls. This interface

combines elements of the IP firewalling interface to expose the needed functions to construct

boosters and traps. A Java class is provided to allow for a pleasant programming interface

and to hide the implementation details.
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Knowledge about the resources used by boosters is found in the /proc file system. The

directory /proc/net/boosters contains all of the relevant information about protocol boosters.

The policy manager exposes the booster types file to show what boosters have been loaded

into the kernel. Similarly, a nettraps file exposes the traps that have been set and which

booster sequences they are connected to.

Finally, each booster has a standard entry, which provides information on each instance of that

booster, however, each booster can expose as many files as necessary to document the

attributes of the booster.

The Policy Manager

The name policy manager is actually a misnomer since it  does not implement any policy of its

own. It provides services to user level programs to assemble boosters, create traps, etc. Via a

series of ioctl calls similar to the interfaces that most UNIX  systems use to provide the

interface to the ARP and route subsystems.

The policy manager was implemented as a loadable kernel module because it was envisioned

that a series of loadable kernel  level policy managers could be built which automatically load

and unload boosters based on an internal policy that they implemented or were configured to

use via a language or a via messages that they received.



37

3.5 Summary

This chapter discussed how protocol boosters can be implemented in current operating system

environments. A generic illustration of the implementation was followed by a detailed

discussion of the design choices that have to be made in implementing boosters. The issues

involved in kernel and user level implementation; platform choice and the protocol layer of

implementation were discussed. We finally described in detail, the kernel level booster

implementation in Linux.
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 Chapter 4

The ACK Reconstruction Protocol  Booster

4.1 Introduction

The asymmetric nature of satellite channels has been known to have an adverse impact on the

performance of  TCP[1,5,9,13].  Due to the channel asymmetry, many TCP ACKs  may

build up in a  queue  at the ground station router, increasing  the round  trip  time  and

decreasing the throughput of a  given  connection.

This chapter presents the design of an ACK Reconstruction Protocol Booster to enhance the

performance of TCP over satellite channels. Section 4.2 provides a brief overview of TCP. In

section 4.3 we illustrate how channel asymmetry affects the performance of TCP and in

section 4.4 we present the ACK Reconstruction Algorithm. Section 4.5 discusses the

OPNET model and in section 4.6 we discuss the simulation results.

4.2 The Transmission Control Protocol (TCP)
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While the original formal specification of TCP is in RFC 793 [20], numerous variants of it

have been developed over the past several years, such as Tahoe, Reno, Vegas, etc. [22,6].

This section discusses the Reno variant of TCP, which is the predominantly deployed version

today.

Cumulative Acknowledgments

TCP is an ARQ- based reliable transport protocol that uses cumulative ACKs and byte-

based sequence numbers for reliability. TCP provides a fully reliable, in-order, byte-stream

delivery abstraction to the higher-layer application, which typically uses a socket interface [23]

to interface with the transport layer. The basic unit of transmission is called a segment, which

is a contiguous sequence of bytes identified by its 32-bit long start and end sequence numbers.

The transmitted segments are smaller than or equal to the connection’s maximum segment size

(MSS), which is negotiated at the start of the connection.

A cumulative ACK from a receiver for byte k  implies that all bytes less than k have been

successfully received, and that a segment beginning at byte k has not yet arrived. During

normal loss-free operation, the cumulative ACK sequence steadily increases as segments

arrive in sequence. In what follows, we describe how TCP performs loss recovery, congestion

control, and connection management, and highlight weaknesses in its congestion control

scheme.

Loss Recovery
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When the TCP sender discovers that data has been lost in the network, it recovers from it by

retransmitting the missing data segments. TCP has two mechanisms for discovering and

recovering from losses: timer-driven retransmissions and data-driven retransmissions.

Timer-driven recovery: When the TCP sender does not receive a positive cumulative ACK

for a segment within a certain timeout interval, it retransmits the missing data. To determine the

timeout interval, it maintains a running estimate of the connection’s round-trip time using an

exponential weighted moving average (EWMA) formula, srtt = a * rtt + (1-a) * srtt, where

srtt is the smoothed round-trip time average, rtt the current round-trip sample, and a the

EWMA constant set to 0.125 in the TCP specification. It also estimates the mean linear

deviation, rttvar, using a similar EWMA filter, with a set to 0.25. A timeout occurs if the

sender does not receive an ACK for a segment within srtt + 4*rttvar since the arrival of the

last new cumulative ACK. Furthermore, the retransmission timer is exponentially backed off

after each unsuccessful retransmission. The details of the round-trip time calculations and timer

management can be found in [12,22].

Data-driven recovery

TCP’s data-driven retransmission mechanism uses a technique called Fast Retransmission. It

relies on the information conveyed by cumulative ACKs and takes advantage of the receipt of

later data segments after a lost one. Because ACKs are cumulative, all segments after a

missing one generate duplicate cumulative ACKs that are sent to the TCP sender. The sender

uses these duplicate ACKs to deduce that a segment is missing and retransmits it.



41

However, the sender must not retransmit a segment upon the arrival of the very first duplicate

ACK. This is because the Internet service model does not preclude the reordering of packets

in the network; such reordering causes later segments to be received ahead of earlier ones,

and triggers duplicate ACKs in the same way that losses do. Furthermore, the degree of

packet reordering on the Internet seems to be increasing, according to statistics by Paxson

[19]. Thus, to avoid prematurely retransmitting segments, the sender waits for three duplicate

ACKs, the current standard fast retransmit threshold.

This is followed by the fast recovery phase, where additional packets are transmitted after the

sender is sure that at least half the current window has reached the receiver, based on a count

of the number of received duplicate ACKs. Fast recovery ensures that a fast retransmission is

followed by congestion avoidance and not by slow start. Since the arrival of duplicate ACKs

signals to the sender that data is indeed flowing between the two ends, there is no reason to

suddenly throttle the sender by invoking slow start.

Fast retransmissions are often not sufficient to recover from multiple losses in a single window,

because all the cumulative ACKs arrive for the first loss in the window. This usually results in a

coarse-grained timeout before the packet is retransmitted.

TCP currently makes the tacit assumption that all losses occur because of network congestion.

Thus, coupled with either of these modes of retransmission is congestion control that reduces
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the sender’s retransmission rate. The next section discusses how TCP manages congestion by

probing for sustainable bandwidth and reacting to congestion.

Congestion Avoidance and Control

TCP’s congestion management is based largely on Jacobson’s seminal paper[12] and on the

principles of multiplicative-decrease/additive-increase expounded by Chiu and Jain[7]. TCP

uses a window-based algorithm to manage congestion, where the window is an estimate of the

number of bytes currently unacknowledged and outstanding in the network.

The TCP sender performs flow control by ensuring that the transmission window does not

exceed the receiver’s advertised window size. It performs congestion control by using a

window-based scheme, where the sender regulates the amount of transmitted data using a

congestion window. When a connection starts or resumes after an idle period of time, slow

start is performed. Here, the congestion window is initialized to one segment and every new

ACK increases the window by one MSS. After a certain threshold (called the slow start

threshold, ssthresh) is reached, the connection moves into the congestion avoidance phase,

in which the congestion window effectively increases by one segment for each successfully

transmitted window. In response to a packet loss, the sender halves its congestion window; if

a timeout occurs, the congestion window is set to one segment and the connection goes

through slow start once again.
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In addition, ssthresh is set to half the value of cwnd at the time of loss, and at each stage slow

start is performed until cwnd reaches ssthresh. At any point in time, the TCP sender ensures

that the number of unacknowledged bytes is not larger than the smaller of the receiver’s

advertised flow control window and cwnd. In the steady state of the connection, the sender

transmits a window’s worth of data every round-trip, at a long-term rate equal to the

bottleneck bandwidth. Since the ratio of window to round-trip delay equals the bottleneck

bandwidth, TCP’s congestion window size tends towards the connection’s bandwidth-delay

product. This is the number of outstanding bytes in transit in the steady state. Thus it is clear

that a low-bandwidth connection implies small transmission windows. In turn, this affects the

fast retransmission mechanism because not enough duplicate ACKs arrive, leading to

expensive timeouts.

Data transmissions are triggered and clocked by ACKs that arrive for previous segments;

every time an ACK arrives, the transmission window shifts by an amount equal to the sum of

the number of bytes acknowledged and the increase in cwnd, subject to the constraint

imposed by the flow control window. This elegant notion of transmitting data based on

incoming ACKs, called ACK-clocking, makes TCP a tightly-coupled feedback system and

frees the sender from maintaining explicit software timers for transmission. However, it also

leads to significant performance degradation when ACK feedback is imperfect or variable.

Connection Management

TCP has  a sophisticated connection initiation mechanism using a three-way handshake, where

a SYN exchange occurs before the connection is established and data can flow. A connection
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is uniquely identified by the source and destination IP address and port numbers. Details of the

connection setup, teardown and state transitions are orthogonal to our work(see [20,22] for

details).

4.3 Effects of Asymmetry on TCP Performance

A network is said to exhibit asymmetry with respect to TCP performance, if the throughput

achieved is not solely a function of the link and traffic characteristics of the forward direction,

but also depends significantly on those of the reverse direction[4]. Here, forward, refers to the

direction from the sender to the receiver and reverse, the opposite.

Fundamentally, network asymmetry affects the performance of reliable transport protocols

such as TCP because these protocols rely on feedback in the form of ACKs from the receiver

to ensure reliability and smooth transmissions. Because TCP transmissions are ACK-clocked,

any disruption in the feedback process can impair the performance of the forward data

transfer. For example, a low bandwidth ACK path could significantly impede the growth of

the TCP sender window during slow start, independent of the link bandwidth in the direction

of data transfer.

Depending on the characteristics of the reverse path, two types of situations arise for

unidirectional traffic over asymmetric-bandwidth networks: when the reverse bottleneck link
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has sufficient queuing to prevent packet (ACK) losses, and when the reverse bottleneck link

has a small buffer. We consider each situation in turn.

Deep Reverse Queues

If the reverse bottleneck link has deep queues so that ACKs do not get dropped on the

reverse path, then performance is a strong function of the normalized bandwidth ratio, k,

defined by Lakshman and Madhow [14]. k is the ratio of the raw bandwidths divided by the

ratio of the packet sizes used in the two directions. For example, for a 10 Mbps forward

channel and a 50 Kbps reverse channel, the raw bandwidth ratio is 200. With 1000-byte data

packets and 40-byte ACKs, the ratio of the packet sizes is 25. This implies that k = 200/25 =

8. Thus, if the receiver acknowledges more frequently than one ACK every k = 8 data

packets, the reverse bottleneck link will get saturated before the forward bottleneck link does,

limiting the throughput in the forward direction.

If k > 1 and ACKs are not delayed or dropped, TCP ACK-clocking breaks down. Consider

two data packets transmitted by the sender in quick succession. En route to the receiver, these

packets get spaced apart according to the bottleneck link bandwidth in the forward direction.

The principle of ACK clocking is that the ACKs generated in response to these packets

preserve temporal spacing. However, the limited reverse bandwidth and queuing at the

reverse bottleneck router alters the inter-ACK spacing observed at the sender. When ACKs

arrive at the bottleneck link in the reverse direction at a faster rate than the link can support,

they get queued behind one another. The spacing between them when they emerge from the
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link is dilated with respect to their original spacing, and is a function of the reverse bottleneck

bandwidth. Thus the sender clocks out new data at a slower rate than if there had been no

queuing of ACKs. No longer is the performance of the connection dependent on the forward

bottleneck link alone; instead, it is throttled by the rate of arriving ACKs. As a side-effect, the

sender's rate of congestion window growth slows down too.

Shallow Reverse Queues

The second situation arises when the reverse bottleneck link has a relatively small amount of

buffer space to accommodate ACKs. As the transmission window grows, this queue fills and

ACKs are dropped. If the receiver acknowledges every packet, only one of every k ACKs

get through to the sender, and the remaining (k-1) are dropped due to buffer overflow at the

reverse channel buffer (here k is the normalized bandwidth ratio). In this case, the reverse

bottleneck link capacity and slow arrival are not directly responsible for any degraded

performance. However, there are three important reasons for degraded performance in this

case because ACKs are infrequent:

1. First, the sender transmits data in large bursts. If the sender receives only one ACK in k, it

transmits in bursts of k (or more) segments because each ACK shifts the sliding window

by at least k (acknowledged) segments. This increases the likelihood of data loss along the

forward path especially when k is large, because routers do not handle large bursts of

packets well.
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2. Second, TCP sender implementations increase their congestion window by counting the

number of ACKs they receive and not on how much data is actually acknowledged by

each ACK. Thus fewer ACKs implies a slower rate of growth of the congestion window,

which degrades performance over long-delay connections.

3. Third, the sender's fast retransmission and recovery algorithms are less effective when

ACKs are lost. The sender may not receive the threshold number of duplicate ACKs even

if the receiver transmits more than the required number. Furthermore, the sender may not

receive enough duplicate ACKs to adequately inflate its window during fast recovery.

In summary, bandwidth asymmetric networks suffer from degraded performance due to slow

or imperfect ACK feedback.

4.4 The  ACK  reconstruction algorithm

The cumulative nature of TCP ACKs imply that each ACK acknowledges at least as many

bytes as the previous ACK. So if a number of ACKs are queued up at the ground station

router, it makes sense, just to retain the latest ACK and discard the rest.

However, before we design an algorithm to send just the most recent ACK along the link, we

must remember from our discussion in the previous sections, that TCP uses its ACKs for

purposes other than the mere acknowledgment of data received.  TCP assumes that a packet
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is lost in the network if it receives three or more duplicate ACKs.  TCP then enters what is

known as a "fast retransmit", wherein it retransmits the missing segment even before the

retransmit timer goes off.

Also, TCP ‘s flow control methodology (slow start and congestion avoidance) relies on the

arrival of the ACKs to increase the window size. Our algorithm should ensure that it does not

jeopardize the normal functioning of TCP.

Another point to be noted is that TCP estimates its RTT based on the timely arrival of ACKs.

So we have to make sure that by dropping/delaying ACKs we do not affect these RTT

estimates.

The  ACK reconstruction booster has been designed after a thorough consideration of these

various factors. The ACK reconstruction booster is a two element protocol booster, which

uses the cumulative nature of  TCP  acknowledgments  to  reduce  the  number of ACKs

flowing  on  the  bandwidth constrained ground  station- satellite link. While  this discussion  is

with  respect to  satellite environment, this booster can be used in other environments  such as

in ADSL where  a channel asymmetry is present.
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The two booster elements are  located at the two respective ends of the asymmetric channel.

For the purposes of  our discussion  we will refer to the ground station end as the  "sender" (of

ACKs ) and the satellite end as the "receiver".

The booster at the sender does the following.

• Whenever an ACK  is about to  be queued for  transmission,  the booster notes the

number of packets already in the queue. If this number exceeds a certain threshold, then

the booster is invoked. The booster  notes  the information  contained in this  ACK

namely the ACK sequence number,  window sequence  number,  the source IP  address,

the  destination  IP  address, the  source  port and  the  destination port. A special packet

called a “Boost” packet is constructed (possibly using Raw IP) and the above information

is written onto it.

• Then  the booster traverses  the  queue  from  head to tail. All plain ACKs (ACKs that

contain no data) are dropped. A record is maintained about the number of ACKs that are

dropped. This is again written onto the Boost packet. When the booster reaches a piggy-

backed ACK (an ACK along with user data) , a slightly different approach is employed.

Since we don’t want to lose the user data, we overwrite the ACK number and window

sequence number with that of the latest ACK , recompute the checksum and allow the

piggy-backed ACK to remain in the queue.

• The booster maintains a record of the rate at which the ACKs arrive at the ground station

router. This information is again written onto the Boost packet.

• The Boost packet is transmitted.
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However there are a few special cases which must be taken care of.

(1) We stated that the booster is invoked whenever an ACK is about to be queued for

transmission. What happens if the ACK to be queued is a piggy-backed ACK?  If we

incorporate the data from the piggy-backed ACK into the Boost packet and transmit it,

this may result in unnecessary reordering if any other piggy-backed ACKs are already

present in the queue. So we have to impose the further condition (policy) that the booster

be invoked, only for plain ACKs (ACKs that contain no user data).

(2) We must ensure fairness among the connections. We said that the booster on constructing

the Boost packet immediately transmits it. If we implement this scheme as is, this could

lead to unfairness. Consider the following scenario. Let us assume there are packets

belonging to two different connections- say connection A and connection B are queued up

for transmission. A packet belonging to connection B is currently at the head of the queue

and is about to be transmitted. At this point of time, a plain ACK belonging to connection

A arrives to be queued for transmission. The booster is promptly invoked, does all the

processing, and constructs the Boost packet. Now, if we immediately transmit this Boost

packet (for connection A), then we are unfair to connection B, because the next packet

that was in line to be transmitted was that of connection B. In order to prevent the booster

from causing such unfairness we have to add an additional detail to the booster

implementation. Whenever the Boost packet has been constructed, it should not be

immediately transmitted. Instead it should be queued up at the position of the first packet

(from the head of the queue) belonging to that particular connection. Implementing this

should be easy. When the booster traverses the queue from head to tail it can mark the
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position of the first plain ACK by allowing it to remain in the queue and not dropping it.

Later when the entire queue has been traversed, it can swap the plain ACK with the

Boost packet.

(3)  Implementing the above may lead to a situation where, the booster while traversing the

queue encounters another Boost packet. In such a situation the data from the earlier Boost

packet is also used in the construction of the new Boost packet. The old one is dropped.

At the receiving end (of ACKs) the booster, on receiving a Boost packet, uses the information

contained in the Boost packet to reconstruct the ACK stream. It generates ACKs with

increasing sequence numbers from the last ACK number to the ACK number contained in the

Boost packet. The number of ACKs regenerated is equal to the number of ACKs that were

dropped. Also, temporal spacing between the ACKs is maintained by regenerating ACKs at

intervals of time equal to the average arrival rate of ACKs at the ground station router.   These

reconstructed ACKs are then passed on to TCP.

4.5 The OPNET Model

The ACK reconstruction booster has been implemented in OPNET. The objective was to

develop a simple model, which would illustrate the concept and which would enable us to

study the performance benefits  and analyze  how it would vary with different asymmetry

ratios, different bit error rates, and the nature of the traffic flowing across the link. In the actual

implementation, this booster would have to be implemented in the modem firmware since
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queuing of ACKs takes place only at the modem. The OPNET model of this booster,

however is implemented at the IP layer. Figure 4.1  shows the OPNET node model for the

client (ground station) and Figure 4.2  the model for the server (satellite).

 

                               Figure 4.1  OPNET model for the client (ground station)

The client and server are connected via two point to point links – one from the client to the

server and the other from the server to client. We shall refer to the link from the server to the

client as the forward direction and the other as the reverse link. This model allows us to

independently set the bit rates for the forward and reverse links.
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This client – server model allows us to model typical real life applications such as ftp, rlogin

besides providing an interface to model customized applications.

  

Figure 4.2 OPNET model of the server (satellite)

The ACK Reconstruction Protocol Booster has been modeled within the IP module of the

client and in the TCP module of the server.  Figure 4.3 illustrates the IP process model that

was used to model the booster.
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The init  state performs all necessary initializations. An IP address is assigned for each

interface. In the wait state, the process waits for all other processes to register their IP

addresses in the global IP address table. The init_too state is used to broadcast a special IP

datagram on all network interfaces to allow IP nodes to discover their neighbors and construct

their interface tables. The arrival state handles the enqueuing of arriving datagrams.

Figure 4.3  IP process model state transition diagram

In the idle state, the process waits either for a datagram arrival or a service completion. The

svc_start state schedules a self interrupt to expire at the end of the service time. This indicates

that the process is now busy servicing a datagram. The svc_compl state is used to route a

datagram based on the destination IP address.

The SELF_NOTIFICATION transition occurs when the IP addresses have been assigned

and registered in the global IP Address Table. The ARRIVAL transition occurs when an IP
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datagram arrives either from the higher or lowere layer. The SVC_COMPLETION transition

occurs when a datagram has completed service and is ready to be forwarded on the

appropriate output interface. The transition !server_busy && insert_ok occurs if the

process is not busy servicing another datagram, and the arrived datagram was successfully

inserted into the queue. The !QUEUE_EMPTY transition occurs when the queue contains a

datagram that needs to be serviced. The END_SIM runs final reports for link utilization if link

utilization reporting is enabled.

 OPNET allows us to configure the IP forwarding rate of nodes. This is the rate (measured in

number of packets per second) at which the IP layer forwards the packets from its internal

queue. In the OPNET model, we force the ACKs to queue up at the IP layer by setting the IP

forwarding rate of the ground station to be a fraction of the IP forwarding rate of the satellite.

The ACK reconstruction booster is a two element protocol booster. The first element, resides

at the ground station (client). It deals with the construction of the Boost packet and is

implemented as a child process from the SVC_COMPL stage of the OPNET IP process

model described above. The state transition diagram for the booster process at the ground

station is shown in figure 4.4.
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 Figure 4.4 Ground station booster element state transition diagram

The wait state is an idle state, where the process awaits the arrival of a new

acknowledgement. On the arrival of a new acknowledgement, if the length of the queue is

greater than the threshold (newack && q_thresh), the process enters the info state. The info

state collects the connection information and the latest acknowledgement and window

sequence number. On passing an integrity check ( ready) the process enters the traverse

state. While  the end of the queue is not reached (!endq) the process examines successive

packets in the queue and performs the operations described in the algorithm. On reaching the

end of the queue (endq), the process enters the boost state, wherein the Boost packet is

constructed using the information collected. Upon completion of the construction of the Boost
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packet, the process enters the transmit state, where the Boost packet is queued for

transmission. The process then transits back to the wait state.

In order to simplify the OPNET model, we make the assumption that only plain non-duplicate

ACKs are queued up at the ground station.

At the other end, the second booster element reconstructs the ACK stream using the

information contained in the booster packet. Figure 4.5 illustrates the state transition diagram

of the second booster element.

Figure 4.5  State transition diagram of second booster element

The second booster element resides at the TCP module of the OPNET model. In the wait

state, the process awaits the arrival of the Boost packet. Upon arrival  of a Boost packet, the
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process transits to the reconstruction state where the ACK stream is regenerated based on

the count of ACKs contained in the Boost packet. The process then transits to the timer state.

Here based on the ACK inter arrival information, a timer is set to indicate the time of

transmission of the next ACK. At that time the process transits to the send state, which

delivers the ACK to the TCP module. This continues until the entire ACK stream has been

regenerated (!q_empty) and sent to TCP. When the regeneration queue becomes empty

(q_empty) the process transits back to the wait state.

4.6 Results

The simulations were performed on a simple network consisting of two nodes interconnected

by two point-to-point links. The simulations were repeated for different asymmetry ratios, bit

error rates and traffic loads.

Different asymmetry ratios

The objective of this set of simulations was to analyze the behavior of the booster at different

ratios of bandwidth asymmetry. The forward transfer rate was set to 10Mbps and the

simulations were done for varying degrees of asymmetry ranging from 1:1000 to 1:1. The

results are presented in figures 4.6 to 4.10. It can be observed that, as the degree of

asymmetry increases, the performance benefits gained from the booster correspondingly

increases. At the largest asymmetry ratio of 1:1000 the booster yields maximum performance
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gain (almost 83 %) while at an asymmetry ratio of 1:1 the performance with the booster is

almost the same as that without the booster.

Thus it is apparent that the ACK reconstruction booster definitely enhances the throughput of

TCP connections, whenever there is significant asymmetry in the channel.
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Figure 4.6: TCP throughput  (number of bits transferred to application layer) with and without

the booster for asymmetry ratio 1:1000
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Figure 4.7: TCP throughput (number of bits transferred to application layer) with and without

the booster for asymmetry ratio 1:500
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Figure 4.8: TCP throughput (number of bits transferred to the application layer )  with and

without the booster for asymmetry ratio 1:100
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Figure 4.9: TCP throughput (number of bits transferred to application layer) with and without

the booster for asymmetry ratio 1:10
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Figure 4.10: TCP throughput (number of bits transferred to application layer) with and without

the booster for asymmetry ratio 1:1
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Different reverse bandwidths

The objective of this set of simulations was to study the effect of  higher line rate modems.

Simulations were done for reverse bandwidths 9600 bps and 56000 bps. The asymmetry

ratio was maintained at 1:100.

The results are presented in figures 4.11 and 4.12. It is observed that the booster continues to

yield higher performance notwithstanding the higher reverse bandwidth. The utility of the

booster is thus a function of the asymmetry ratio and not the reverse bandwidth.
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Figure 4.11 TCP throughput (number of bits transferred to application layer)  with and without

the booster at a bit rate ratio of 9600:960000
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Figure 4.12: TCP throughput (number of bits transferred to application layer)  with and

without the booster at a bit rate ratio of 56000:5600000
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Different traffic loads

The objective of this set of simulations was to study the performance of the booster under

varying traffic loads and types. Simulations were done with varying FTP traffic loads – high,

medium and low. Also, the performance of the booster under interactive applications like

rlogin was studied. The results are shown in figures 4.13 to 4.16. It is observed that the

booster yields the highest performance gain when there is heavy transfer of data in the forward

direction and large number of ACKs traversing the reverse link (FTP high load). For

interactive applications like rlogin, it is observed that the booster does not significantly improve

performance. This can be attributed to the fact that there is no queuing up of  ACKs.

However for applications such as ftp which involve bulk data flow in the forward direction

which in turn generate a correspondingly large number of ACKs, the booster definitely

improves performance.
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Figure 4.13: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for FTP-high load.
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Figure 4.14: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for FTP-medium load.
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Figure 4.15: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for FTP-low load.
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Figure 4.16: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for rlogin.
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Different bit error rates

The objective of this set of simulations was to study the effect of increasing bit error rates on

the performance of the booster. The simulations were done with a forward bandwidth of

10Mbps and reverse bandwidth of 28.8Kbps. The bit error rate of the link was varied from

1E-7 to 1E-5. The results are shown in figures 4.17 to 4.19. It is observed that as the bit error

rate of the link increases, the throughput drops- but the booster still yields significant

performance enhancement.
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Figure 4.17: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for BER: 1E-7.
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Figure 4.18: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for BER: 1E-6.
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Figure 4.19: TCP throughput (total number of bits forwarded to the application layer) with and

without booster for BER: 1E-5.

Congestion window

The growth of the congestion window was studied for the boosted and normal case. As

shown in figures 4.20 and 4.21, the congestion window grows at a much faster rate for the

boosted case when there is an asymmetry in the bandwidths of the forward and reverse links.

When the link bandwidths are the same, the booster does not yield any significant

improvement.
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Figure 4.20: Congestion window (in bytes) growth, when there is channel bandwidth

asymmetry for the boosted and normal case.
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Figure 4.21: Congestion window (in bytes) growth , when there is no channel bandwidth

asymmetry for the boosted and normal case.
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Chapter 5

The FZC Booster

5.1 Introduction

The Forward eraZure Correction (FZC) booster is a multi-element protocol booster, which

reduces the effective packet loss rate on noisy links such as terrestrial and satellite wireless

networks[16]. Although packet error correction is normally most efficiently and flexibly done

by packet retransmission (automatic repeat request, ARQ), forward error correction (FEC) is

desirable for some latency-constrained and multicast applications, or where the return channel

is unavailable or slow and where the loss of a single packet causes other packets to need

retransmission. Figure 5.1 highlights the operation of the FZC booster.

The FZC booster uses a packet FEC code with erasure decoding. This booster is a part of

the TCP/IP booster family, which also includes ARQ boosters, a reorder booster, an error

detection booster and an ACK reconstruction booster. Each booster is designed to provide a

specific function and work harmoniously with the other boosters in the family. The FZC

booster is not well suited for dealing with packet loss due to congestion; other members of the

TCP/IP error control booster family handle this

situation.
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 5.2 The Modus Operandi

At the transmitter side of the wireless network, the FZC booster adds parity packets. The

FZC booster at the receiver side of the wireless network removes the parity packets and

regenerates missing data packets. This appears similar to link FEC; however, link FEC only

corrects bits (or words), not IP packets or TCP segments, and cannot be applied between

any two points in a network (including the end systems). Also, the FZC booster can be

applied incrementally. In figure 5.1, for example, we could add an extra FZC booster at the

fixed terminal. If this booster adds h1 parity packets and the second booster adds h2 parity

packets, the portable terminal can recover from up to h1+h2 packet erasures. In the reverse

direction, the second booster could reduce the number of redundant packets to reduce

congestion in the wireline network.
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5.3 Implementation in the Linux kernel

The FZC booster was implemented on the kernel infrastructure described in the previous

chapter. This booster caches, then immediately forwards, each data packet it receives,

whether the packet is from an upper layer protocol or the IP forwarder. The only modification

to each data packet is that the FZC booster over writes the IP packet’s 16-bit  identification

field with a sequence number, allowing the decoder to know the packet’s position information.

Practically speaking, this does not change the end-to-end UDP datagrams or TCP segments.

However, if an application requires, IP options can be used for packet sequence information.

After receiving k packets (k is defined per channel) on a given channel, the cached packets

are zero padded to the size of the largest packet in the cache. Also, each packet’s size and

protocol type are appended to the packet’s tail. The transmitter performs an FZC matrix

multiplication over the payload, padding, and appended tail of the k packets. The h overcode

packet payloads produced by the FEC encoder are then prepended with an IP header and a

booster header. This IP header contains a prototype field identifying it as a protocol booster

packet and a sequence number in the 16-bit identification field. The booster header contains

the type of booster (FZC booster), the value k, and the sequence number of the first of the k

packets. The h packets are then transmitted towards the same destination as the data packets.
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The FZC booster at the receive side caches incoming data packets and immediately forwards

them either to an upper layer protocol or towards their eventual destination. Overcode

packets are also cached, but are not forwarded. Packets are released from the cache when

either:

1. An entire collection of k data packets is present.

2. The received data packets plus parity packets equal k.

3. The cache occupancy dictates cache content replacement.

Only in situation 2 are the matrix computations performed to generate the missing data

packets.

To assess the effectiveness of this booster arrangement it was deployed in a simulated wireless

environment running UDP. It was found that running the FZC booster using 4 percent (k=50,

h=2) and 30 percent (k=20, h=6) overcode, respectively, reduces the throughput to

approximately 7.7 Mbps and 3.9 Mbps from 9.6 Mbps, which is still very acceptable for

most current access network technologies.

5.4 The OPNET Model

An OPNET model of the FZC booster has been developed. Since OPNET does not support

modeling the actual data packets, the encoding and decoding operations of the FZC booster

could not be modeled. However, using the data from the above tests, the effect of the FZC

booster has been modeled in the transceiver pipeline stages of OPNET.
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OPNET allows us to model the characteristics of three different types of communication links-

point-to-point, bus and radio links. Each type of link provides a fundamentally different type of

connectivity: point-to-point links connect a single source node to a single destination node; bus

links connect a fixed set of nodes to each other; and radio links potentially allow all nodes in a

model to communicate with each other, based on a dynamic evaluation. While the general type

of connectivity provided by these links is predefined by OPNET, an open architecture is

provided to allow developers to specify customized behavior for each individual link on a per-

transmission basis. This architecture is referred to as the transceiver pipeline because it

provides a conduit connecting a transmitter to one or more receivers.

The transceiver pipeline has a similar structure for each of the three supported link types. In

each case, the simulation kernel manages the transfer of packets by implementing a series of

computations, each of which models particular aspects of link behavior. The sequence of the

computations and their interface are standardized for each type of link. However each

computation, referred to as a pipeline stage, is performed outside the simulation kernel by a

user-supplied procedure, called a pipeline procedure. In this manner, OPNET provides an

open and modular architecture for implementing link behavior.

A link’s underlying implementation can generally be thought of as a sequentially executed set

of pipeline stages. The pipeline stage sequence of a link is executed once for each packet

transmission that is submitted at the source of the link. In other words, when a packet is sent

to a transmitter, the simulation kernel  proceeds to call appropriate pipeline stages to process
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the packet. Certain pipeline stages are executed when the packet is transmitted, and others

are executed later due to the delay associated with the traversal of the link and transmission of

the packet.

The principal objective of a transceiver pipeline is to determine whether or not a packet can

be received at the link’s destination. This determination is usually made in the final stages of the

pipeline based on information computed during earlier stages. The vehicle used to convey

information between the stages is the packet itself, which is provided as an argument to each

pipeline procedure. The packet is also used by the pipeline stags to return information to the

simulation kernel.

Figure 5.2 illustrates the radio link transceiver pipeline execution sequence. The FZC booster

is modeled in the transmission delay pipeline stage and the error correction pipeline stage.  The

transmission delay stage is the first stage of the pipeline, and is specified by the “txdel model”

attribute of the point-to-point link. It is invoked immediately upon beginning transmission of a

packet, in order to calculate the amount of time required for the entire packet to complete

transmission. This result can be thought of as the simulation time difference between the

beginning of transmission of the first bit and the end of transmission of the last bit of the

packet. The simulation kernel uses the result provided by this stage to schedule an end-of-

transmission event for the transmitter
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Figure 5.2: Radio Link Transceiver Pipeline Stages

channel that is used to send the packet. When this event occurs, the transmitter may begin

transmission of the next packet in the channel’s internal queue, if any are present; otherwise

the transmitter channel becomes idle. In addition, the transmission delay result is used in

conjunction with the result of the propagation delay stage to compute the time at which the

packet completes reception at the link’s destination (i.e., the time at which the last bit finishes

arriving is the time at which it finishes transmitting added to the propagation delay on the link).

The transmission delay is computed as packet_length/data_rate ; the data_rate being the

data rate of the link. The performance cost (i.e., the reduction in throughput) that results from

using the booster, can be modeled by reducing the data_rate appropriately, before it is used

to compute the transmission delay. A variable degradation reflects the reduction in
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throughput, as a consequence of the redundancy of the parity packets. This variable

degradation is computed based on the overcode (the percentage of packet erasures sought

to be corrected). This overcode, is a user configurable parameter, which can be set at run

time. The relation between the overcode and the degradation is arrived at, using the data

supplied from the real-life experiments.

Based on the available data, we have derived: degradation  =  0.862  –  1.538 * overcode.

For example, to correct 2 packets out of 50 packets (4 percent overcode), the degradation

= 0.862 – 1.538 * 0.04 ~  0.8  which is in agreement with the actual experimental data. So

we multiply the data_rate by 0.8 to simulate the performance cost that results from using this

booster.

The closure stage is the second stage of the pipeline. The purpose of this stage is to determine

whether a particular receiver channel can be affected by a transmission. The ability of the

transmission to reach the receiver is referred to as closure between the transmitter channel and

the receiver channel, hence the name of the stage. Note that the goal of the closure stage is not

to determine if a transmission is valid or appropriate for a particular channel, but only if the

transmitted signal can physically attain the candidate receiver channel and affect it in any way;

thus this stage applies to interfering transmissions as well as to desired ones.
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The channel match stage is the third stage of the pipeline. The purpose of this stage is to

classify the transmission with respect to the receiver channel. One of three possible categories

must be assigned to the packet, as defined below:

• Valid. Packets in this category are considered compatible with the receiver channel and

will possibly be accepted and forwarded to other modules in the receiving node, provided

that they are not affected by an excessive number of errors

• Noise. This classification is used to identify packets whose data content cannot be

received, but that have an impact on the receiver channel’s performance by generating

interference.

• Ignored. If a transmission is determined to have no effect whatsoever on a receiver

channel’s state or performance, then it should be identified using this classification.

The transmitter antenna gain is the fourth stage of the radio transceiver pipeline. The purpose

of this stage is to compute the gain provided by the transmitter’s associated antenna, based on

the direction of the vector leading from the transmitter to the receiver.

The propagation delay stage is the fifth stage of the pipeline. The purpose of this stage is to

calculate the amount of time required for the packet’s signal to travel from the radio transmitter

to the radio receiver. This result is generally dependent on the distance between the source

and the destination.



94

The receiver antenna gain is the sixth stage of the pipeline. Its purpose is to compute the gain

provided by the receiver’s associated antenna, based on the vector leading from the receiver

to the transmitter.

The seventh stage of the radio transciever pipeline is the Receiever Power stage. This stage

computes the received power of the arriving packet’s signal based on factors such as the

power of the transmitter, the distance separating the transmitter and the receiver, the

transmission frequency, and transmitter and receiver antenna gains.

The background noise stage is the eighth stage of the pipeline. The purpose of this stage is to

represent the effect of all noise sources, except for other concurrently arriving transmissions,

since these are accounted for by the interference noise stage. The expected result is the sum of

the power of other noise sources, measured at the receiver’s location and in the receiver

channel’s band. Typical background noise sources include thermal or galactic noise, emissions

from neighbouring electronics, and otherwise unmodeled radio transmissions (e.g., commercial

radio, amateur radio, television, depending on frequency). It takes as input, the Rx noise figure

– an integer value which indicates the noise level associated with a particular receiver. In most

of our simulations we evaluate the performance of the FZC booster by varying this Rx noise

figure.

The ninth stage is the interference noise stage and its purpose is to account for the interactions

between transmissions that arrive concurrently at the same receiver channel
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The SNR stage is the tenth stage and it computes the current average power SNR result for

the arriving packet. This calculation is usually based on values obtained during earlier stages,

including received power, background noise and interference noise

The Bit error rate stage is the eleventh stage and its purpose is to derive the probability of bit

errors during the past interval of constant SNR

The error allocation stage is the twelfth  stage of the pipeline and its purpose is to estimate the

number of bit errors in a packet segment where the bit error probabilityhas been calculated

and is constant. Bit error count estimation is usually based on the bit error probability and the

length of the affected segment.

The error correction effect of the FZC booster is modeled in the error correction pipeline

stage. The error correction stage is the final stage of the pipeline and is specified by the “ecc

model” attribute of the link. The purpose of this stage is to determine whether or not the

arriving packet can be accepted and forwarded via the channel’s corresponding output stream

to one of the neighboring modules in the destination node. This is usually dependent upon the

result computed in the error allocation stage and the ability of the receiver to correct the errors

affecting the packet, hence the name of the stage. Based on the determination of this stage, the

kernel will either destroy the packet, or allow it to proceed into the destination node. In

addition, this result affects error and throughput statistics collected for the receiver channel. A
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counter, pkt_count  keeps track of the number of packets received. It is decremented on the

arrival of a new packet. Another counter, count_parity keeps track of the number of packets

that can be corrected. The initial value of count_parity = pkt_count * overcode. The value

of count_parity is decremented by one, every time a packet has been corrected. When a

packet arrives at the error correction transceiver pipeline stage, the number of errors in the

packet is computed. Then, a test is made to determine whether the packet can be accepted

based on the error correction threshold of the receiver. If the number of errors is lesser than or

equal to the error correction threshold, then the packet is accepted, else it is rejected. A

variable accept is assigned the value OPC_TRUE or OPC_FALSE , depending on whether

the packet is accepted or rejected. When a packet has been rejected (i.e., accept

==OPC_FALSE),  if  count_parity has a non zero value, the packet is accepted and the

value of accept is changed to OPC_TRUE. The counter, count_parity is then decremented

by one.  When the counter pkt_count becomes zero, it is reinitialized and count_parity is

reinitialized to (pkt_count * overcode).

5.5 Results

The above model for the FZC booster has been incorporated in the ARL simulation  testbed

consisting of  a network of several  mobile units communicating via wireless links.
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Effect of level of noise on the performance gain

The noise level ( the Rx noise figure – as discussed in the background noise pipeline stage) of

the links were varied over a wide range, spanning several orders of magnitude and the

throughput attained was recorded. For purposes of comparison, the same was done for the

network, without the booster. The results, show that below a certain noise level, the

throughput of the normal (i.e., “un-boosted”) network was greater than the boosted network.

But above that threshold, the performance of the boosted network improves and is several

magnitudes greater than the normal network. This is because for lower bit error rates, the

network has the overhead of the additional parity packets without any benefit. But for higher

bit error rates, the error correction achieved, compensates for the overhead and the boosted

network outscores the “un-boosted” network. Based on these results, it is suggested that the

FZC booster be employed only in situations warranting its need i.e.,   in networks with links

with high bit error rates. This can be done by having a policy module, which loads the booster

only when the bit error rate exceeds a certain threshold.
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Figure 5.3: Comparison of  normal and boosted network at noise level 75000
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Figure 5.4: Comparison of  normal and boosted network at noise level 50000
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Figure 5.5: Comparison of  normal and boosted network at noise level 25000
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Figure 5.6: Comparison of  normal and boosted network at noise level 9500
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Figure 5.7: Comparison of  normal and boosted network at noise level 6000
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Effect of packet size on performance

In order to study the effect of packet size on the performance of the booster we ran

simulations with packet sizes ranging from 512 bytes to 16000 bytes. It has been noticed that

packet size has minimal effect on the booster performance. The booster continues to yield

consistently high throughput for various packet sizes.
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Figure 5.8: Comparison of  normal and boosted network at noise level 75000 and packet size

16000 bytes
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Figure 5.9: Comparison of  normal and boosted network at noise level 75000 and packet size

4096 bytes
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Figure 5.10: Comparison of  normal and boosted network at noise level 75000 and packet

size 1024 bytes
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Figure 5.11: Comparison of  normal and boosted network at noise level 75000 and packet

size 512 bytes
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Effect of  different percentage overcodes

The same set of simulations were repeated with different overcode percentages. Figure 5.11

represents the comparison of boosted vs normal network at noise level 750000 and 4%

overcode. Figures 5.12 is  the simulation result for 30% overcode. It is observed that higher

percentage overcode yields better performance over highly noisy links.
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Figure 5.12: Comparison of  normal and boosted network at noise level 75000 and packet

size 512 bytes with overcode 4%
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Figure 5.13: Comparison of  normal and boosted network at noise level 75000 and packet

size 512 bytes with overcode 30%
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Chapter 6

Conclusion

Protocol boosters can be viewed as a step towards the fully programmable infrastructure

proposed by a number of researchers under the rubric of  “Active Networks”[24]. While

many of the problems are the same (e.g., robust end-to-end behavior, security for systems

into which boosters are loaded, etc.), a key advantage of boosters is that they can easily be

injected into today’s systems without a wholesale change in the network infrastructure. In that

sense, they offer an early test of the promise of active networks.

In this thesis we have presented a novel design for an ACK Reconstruction Protocol Booster

to improve the performance of TCP over satellite channels. Unlike link layer methods, our

booster preserves the original ACK stream and hence, does not jeopardize the normal

functionality of TCP. Unlike protocol termination, the end-to-end properties of TCP are

preserved. Also, since it does not convert the protocol, it does not involve too much

processing  overhead. Through extensive simulations using OPNET we have shown  that this

booster is a definite boon to TCP communication over satellite links yielding significant

improvement in TCP throughput.

Another contribution of this thesis was the modeling and evaluation of the Forward Erazure

Correction Booster and its incorporation within the ARL simulation testbed.  The Forward
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EraZure Correction (FZC) booster is a multi-element protocol booster, which reduces the

effective packet loss rate on noisy links such as terrestrial and satellite wireless networks.

While the developers of this booster were able to demonstrate through simple proof-of-

concept tests that this booster enhanced performance, there was no reliable model to analyze

the performance of this booster within an actual hybrid wireless network. We have attempted

to fill this void, by modeling the FZC booster in OPNET and incorporating it within the ARL

testbed. Simulation results have proved to be illuminating in that we are now able to determine

the degree of usefulness of this booster given the networking environment.

Also , we have provided a detailed description of the protocol booster methodology and

showed how protocol boosters can be an effective solution to the problems faced by current

networking protocols. We discussed various design issues to be considered when we

implement protocol boosters in the operating system. A detailed description of the kernel level

implementation in Linux was provided.

There are a number of situations warranting the use of boosters some of which were cited

earlier. Other boosters which can be developed in the future include:
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Two-Element Encryption Booster

In the case of sensitive data traveling over an insecure subnet, an encryption  booster  can

transparently   increase  the security of  the  network services provided.  For sensitive data

traveling between secure clouds, it may be less expensive to encrypt the data only over the

insecure hop thereby reducing CPU cost on the end points. A policy module could detect the

insecure hop by IP address or by other means.

One-Element Congestion Control Booster for TCP

Congestion control reduces buffer overflow loss by reducing transmission rate at the source

when the network is congested. A TCP transmitter deduces information about network

congestion by examining acknowledgments (ACKs) sent by the TCP receiver. If the

transmitter sees several ACKs with the same sequence number, then it assumes that network

congestion caused a loss of data messages. If congestion is noted in a subnet, then a

congestion control booster could artificially produce duplicate ACKs. The TCP receiver

would think that data messages have been lost because of congestion and would reduce its

window size; thus, reducing the amount of data it injects into the network.

Two-Element Selective ARQ Booster for IP or TCP

For links with significant error rate using a selective ARQ protocol (with selective

acknowledgment and selective retransmission) can significantly improve efficiency compared
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to using TCP’s ARQ (with cumulative acknowledgment and possibly go-back-N

retransmission). The two element ARQ booster uses a selective ARQ booster to supplement

TCP by : a) caching packets in the upstream booster; b) sending negative acknowledgments

when gaps are detected in the downstream booster; c) selectively retransmitting the packets

requested in the negative acknowledgments (if they are in the cache).

The protocol booster  methodology offers some exciting possibilities for accelerating the

evolution of protocols, for changing the economics of protocol development, and for creating

useful “hybrid” protocols which have “just enough” support for the heterogeneity actually

encountered. Protocol boosters can thus be viewed as an optimistic approach to protocol

design. Applications implement application-application protocols  assuming an ideal world.

Protocol boosters add functions on an as-needed basis to provide this ideal world; when the

real world is really ideal (e.g., homogeneous workstations on a LAN) no overhead is incurred.
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