
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

MASTER'S THESIS

Issues in Resource Allocation and Design of Hybrid
Gateways

by Ravichander Vaidyanathan
Advisor: John S. Baras

CSHCN M.S. 99-5
(ISR M.S. 99-8)

Sponsored by : NASA

ABSTRACT

Title of Thesis: ISSUES IN RESOURCE ALLOCATION AND DESIGN

OF HYBRID GATEWAYS

Degree candidate: Ravichander Vaidyanathan

Degree and year: Master of Science, 1999

Thesis directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

Considerable attention has been focussed on active queue management and fair

resource allocation techniques in the Internet. However, few real-world instances

exist of deployment of IP routers/gateways which implement such techniques. In

the �rst part of this thesis, we analyze the implementation feasibility and

overhead of these schemes to determine whether this overhead represents an

obstacle to deployment. To this end, we employ a novel approach with real tra�c

traces from the Internet and a passive gateway simulator. Having established the

feasibility of such algorithms, we turn our attention to bu�er management

techniques in the presence of fair resource allocation. Our speci�c focus is on

developing an e�ective bu�er management technique for satellite networks. The

limitations of existing schemes lead us to propose a new bu�er management

scheme designed with our problem space in mind. Finally, we look at a class of

satellite enhanced gateways, termed as connection splitting or spoo�ng gateways,

proposed for implementing high performance satellite systems. The speci�c

design issues peculiar to this class of gateways are analyzed. A novel architecture

for fair resource allocation in spoo�ng gateways is then proposed. The e�cacy of

our architecture in providing fairness and protecting adaptive
ows against

misbehaved and non-adaptive
ows is demonstrated by means of simulation.

ISSUES IN RESOURCE ALLOCATION AND DESIGN

OF HYBRID GATEWAYS

by

Ravichander Vaidyanathan

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial ful�llment

of the requirements for the degree of

Master of Science

1999

Advisory Committee:

Professor John S. Baras, Chair

Professor Leandros Tassiulas

Dr. M. Scott Corson

DEDICATION

For Dad and Mom

ii

ACKNOWLEDGMENTS

I am grateful to my advisor, Dr. John S. Baras, for his encouragement and

guidance throughout my time here. This work would not have been possible

without his support. I am indebted to the research environment at the Center for

Satellite and Hybrid Communication Networks (CSHCN) and the Institute for

Systems Research (ISR) for helping shape my Masters' career. I would also like

to express my appreciation for the support received by several sponsors

throughout my studies at the University of Maryland. This work was supported

in part by NASA under the Commercial Space Center program, cooperative

agreement NASA-NCC3528, and by Lockheed Martin Global

Telecommunications through a contract. I have also bene�ted from an exciting

summer CSHCN internship at Bellcore (now Telcordia Technologies).

This thesis would have looked very di�erent if not for the "guys" at the

Center and ISR who were always there when I needed technical or moral support.

They made it that much more fun to stay up all night working: to Manish,

Mingyan, Roshni and Vijay. Many thanks to Steve, for showing me the "way of

the graduating student". To Shashi and Himanshu, for making life 10,000 miles

away from home more livable. To my rejuvenating escapes to NY; to party with

my Radha akka. She made it seem like there was always family in driving range.

And �nally to Preethi, my �ance, for everything.

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1

2 A Feasibility Analysis of Fair Queueing 7

2.1 Introduction . 7

2.2 Scheduling Algorithms . 10

2.3 A Framework for Complexity and Overhead Evaluation 15

2.4 Quanti�cation of Fair Queueing Overhead 17

2.5 Simulation Study of Fair Queueing 21

2.5.1 Fair Queueing : an architectural overview 21

2.5.2 The ASQG trace simulator 23

2.6 Some Trace Analysis and Results 27

2.6.1 Flow timeouts . 28

2.6.2 Flow aggregation . 31

2.6.3 Some more about the traces 33

iv

2.6.4 Overhead evaluation . 34

2.7 Conclusions and Future Work . 37

3 Bu�er Management Strategies for Per Flow Queueing Hybrid Gateways 40

3.1 Introduction . 40

3.2 Related Approaches to Bu�er Management 43

3.3 The Probabilistic Fair Drop (PFD) Algorithm 49

3.4 Simulation Methodology & Results 51

3.4.1 Performance measures . 52

3.4.2 Comparison with other schemes 54

3.4.3 Bu�er dimensioning . 57

3.5 Implementation Considerations . 60

3.6 Conclusions and Future Work . 63

4 Bu�er Management and Scheduling in Spoo�ng Gateways 65

4.1 Introduction . 65

4.2 Design Considerations in Spoo�ng Gateways 68

4.3 An Architecture for Queue Management in Spoo�ng Gateways . . . 73

4.4 Simulation Study & Results . 76

4.4.1 Simulation setup . 77

4.4.2 Bu�ering characteristics of a spoo�ng system 78

4.4.3 E�ects of the two-server model 80

4.4.4 Determination of an optimal rate 83

v

4.4.5 Deployment of fair queueing 85

4.5 Conclusions and Future Work . 88

5 Contributions of this work 90

vi

LIST OF TABLES

2.1 Comparison of Scheduling Discipline Overhead : The bu�er man-

agement overhead is not incurred on a per packet basis, but rather

scales with the number of discarded packets. The Flow classi�cation

overhead listed assumes the possibility of a binary search on a hash

bucket in case of collision. 21

2.2 E�ects of inactivity timer variation : While the max
ows decreases,

the number of
ow operations scale proportionally. The
ow de�ni-

tion used is
ow type 1. 29

2.3 E�ects of
ow aggregation : The hash function e�ciency is across

ow de�nitions and re
ects the goodness of the hashing function for

each
ow de�nition. 31

2.4 The packets by protocol in some of the traces used 33

vii

LIST OF FIGURES

2.1 Architecture of a scheduling router with two ports. The solid lines

represent the path of packets as they traverse the system. The

dashed line indicates layering and typical hardware/software bound-

aries. 22

2.2 An abstraction of the ASQG trace simulator 24

2.3 E�ects of variation in
ow timeout values 28

2.4 E�ects of
ow aggregation . 31

2.5 A comparative per packet overhead evaluation for some common

scheduling disciplines. 35

2.6 Implementation cost of DRR vs. Stochastic FQ. Only a minimal

performance gain is achieved by Stochastic FQ over DRR. 36

3.1 Hybrid System of Interest. Both short RTT terrestrial connections

and long RTT satellite connections traverse the bottleneck gateway. 43

viii

3.2 Multiple drops in RND : connection 1 and connection 3 su�er drops

with high temporal locality and drop their windows simultaneously.

connection 2 su�ers multiple drops initially and experiences severely

degraded performance. 47

3.3 The Probabilistic Fair Drop Algorithm 50

3.4 Simulation Model . 51

3.5 Evolution of TCP goodput with time for 10 low RTT TCP-reno

connections sharing a bottleneck link of 2 Mbps 53

3.6 TCP goodput (after 500 sec) versus bu�er size at the bottleneck

router for 10 low RTT TCP-reno connections sharing a bottleneck

link of 2 Mbps . 54

3.7 TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er

size at the bottleneck router for 10 TCP-Reno connections with

RTTs varying between 20 and 200 ms 56

3.8 TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er

size at the bottleneck router with and without bu�er dimensioning. 59

3.9 TCP goodput and Fairness coe�cient of PFD versus Quasi-pushout

PFD for 10 connections with round trip times between 20 and 200

ms. 62

ix

4.1 A generic connection splitting/spoo�ng overview. TCP connections

are terminated in each segment and a new connection is established

in the next segment. 67

4.2 Data
ow in a spoo�ng gateway. The solid lines represent data and

the dashed lines represent acknowledgments. 70

4.3 An architecture for queue management in a spoo�ng gateway. The

solid lines represent the
ow of data. The arcs represent the service

rates of the respective queues. 75

4.4 OPNET Simulation setup for the simulation study. The link be-

tween the two gateways is modeled as a satellite link with a round

trip latency of 500 ms. 77

4.5 Satellite link throughput, RHS TCP send bu�er size and RHS TCP

congestion window evolution for a large �le transfer with T1 link

rates. 79

4.6 Satellite link throughput, RHS TCP send bu�er size and RHS TCP

congestion window evolution for a large �le transfer with T3 link

rates and varying RCV bu�er on gateway2. 80

4.7 Comparison of satellite link throughput and RHS TCP send bu�er

size with and without the deployment of the two server mode. . . . 81

4.8 Comparison of IP layer bu�ering in hybrid gateway1 with and with-

out the deployment of the two server mode. 83

x

4.9 Determination of an optimal scheduler rate for the two server archi-

tecture. 84

4.10 Throughput comparison of a TCP and UDP connection sharing a

bottlenecked spoo�ng system. 86

4.11 Throughput comparison of a TCP and UDP connection sharing a

bottlenecked spoo�ng system in the presence of fair queueing. . . . 87

xi

Chapter 1

Introduction

The Internet, a heterogeneous interconnection of networks that span all corners

of the world, has come to govern much of modern communication. The rapid

interconnection and interoperation between a score of technologies that comprise

the Internet has been made possible by the philosophies underlying the design of

the protocol that glues most of the Internet together, the Internet Protocol (IP)

[1].

The essential philosophy behind the design of IP was to keep it simple and

robust. IP o�ers a best e�ort, datagram type of service interface and maintains

minimal state in the network. The service o�ered by IP is connectionless and

operates on a hop by hop basis, with each intermediate node along a route being

aware of only its next hop neighbor. In such a scenario, applications requiring

value-added services such as reliable delivery utilize suitable end-to-end protocols

in the Internet Protocol suite such as the Transmission Control Protocol (TCP)

[37].

1

The exponential growth in user demand for bandwidth and the increasing

interest in interactive and multimedia applications led to the development of

more sophisticated network technologies. In the forefront were technologies such

as Asynchronous Transfer Mode (ATM) [2] which o�ers bene�ts such as Quality

of Service(QoS) di�erentiation in tra�c traversing the network and bandwidth on

demand at the price of additional complexity at the core of the network. Such

technologies are aimed at providing di�erentiated service levels to incoming

tra�c based on requirements such as delay, loss and jitter. The best e�ort

paradigm is replaced by a paradigm which attempts to shape and optimize the

behavior of incoming tra�c. This is accomplished by policy based resource

allocation in the intermediate nodes. Speci�cally, the shared resources we refer to

are the processor and the available bu�er space at the intermediate node.

While ATM itself has not found the kind of widespread deployment that it

appeared to be destined for, it brought into harsh relief the limitations of the

best e�ort paradigm. Ongoing e�orts such as the Di�erentiated Services Charter

of the IETF [3] are focussed at de�ning coarse di�erentiated levels of service for

Internet tra�c. Coupled with the increasing scarcity of bandwidth, this has led

to widespread interest in the optimization of tra�c behavior.

In the best e�ort paradigm, no e�ort is made by intermediate nodes to

optimize tra�c behavior and resource allocation at the intermediate nodes is

often not explicitly managed. In such a case, the dynamics of tra�c are governed

to a large extent by end-to-end protocols such as TCP. Recent research [36] has

2

shown the undesirable e�ects of such a lack of policy in resource allocation such

as unfair link sharing and reduced overall performance. In the absence of policy

based resource allocation in the intermediate nodes, malicious users can procure

an unfair share of the resources.

Among the fundamental requirements for tra�c optimization and

di�erentiated levels of service at intermediate nodes are good algorithms for

bu�er management and scheduling. In spite of extensive research in this area,

there are few instances of real-world deployment of routers and gateways with

such fair resource allocation techniques [13]. The lack of such deployment leads

us to investigate the implementation feasibility of fair resource allocation

techniques and whether the overheads involved are an obstacle to deployment.

Having analyzed the feasibility of such resource allocation techniques, we turn

our attention to an analysis of the algorithms for resource sharing. A considerable

base of research already exists in this area. Our work is delineated by our speci�c

focus on satellite networks and their interaction with terrestrial networks.

Satellites have always played a crucial role in Internet connectivity. The

linking of remote regions of the world and third world countries which lack a

good communication infrastructure to the Global Information Infrastructure

(GII) is best accomplished by satellite networks. The explosion in portable

devices and the requirement that they be connected to the Internet a�ord further

roles for satellite interconnectivity.

The physical characteristics of satellite networks create several unique

3

problems in networking. Among the best studied are the nature of errors on

satellite links and the long latency over satellite. Satellite links are less reliable

by several orders of magnitude than terrestrial links in common use today. Errors

on a satellite link also tend to be bursty in comparison to terrestrial links. Most

protocols in use today were speci�cally developed for terrestrial networks and

perform poorly over satellite links. Concerns such as interoperability surface in

the development of satellite-speci�c protocols. Hence, the focus of current

research is to selectively optimize existing protocols over satellite links.

Well known solutions to improve the reliability of satellite links such as strong

Forward Error Correction (FEC) focus on encoding for error correction at the

link layer. A survey of common techniques including protocols such as the

SNOOP protocol, which performs link-level Automatic Repeat Request(ARQ) by

using TCP acknowledgements, can be found in [46]. Commercial products such

as COMSAT Corporation's ATM Link Enhancer (ALE) [4] utilize cell

interleaving and Reed Solomon encoding to enhance link characteristics. Our

focus is on the performance and optimization of higher layer protocols,

speci�cally IP and TCP, of the Internet protocol suite. Much of our attention is

focussed on improving the end-to-end performance of TCP, the most commonly

used protocol for reliable data transport in the Internet.

We term intermediate nodes, which serve as interconnects between satellite

and terrestrial networks, hybrid gateways. Such gateways, incorporating

innovative modi�cations to the TCP protocol, were �rst introduced in the work

4

that led to the development of the TurboTM Internet product of DirecPCTM [48]

and the high data rate satellite gateway developed in [44]. Throughout this work,

our focus is on solving the resource allocation and design problems particular to

this class of gateways for enhanced performance over satellite. The rest of this

dissertation is organized as follows.

Chapter 2 evaluates the implementation and deployment feasibility of

resource allocation techniques in gateways and routers in the Internet without

speci�c reference to satellite. To this end, we employ a novel approach utilizing

Internet tra�c traces and a passive gateway simulator. The overhead of various

fair scheduling disciplines are quanti�ed and techniques to reduce this overhead

are explored. The results of chapter 2 demonstrate both the need and feasibility

of fair resource allocation techniques.

Having demonstrated the practical feasibility of resource allocation

techniques, we turn our attention to commonly employed bu�er management

techniques in the presence of fair resource allocation. Their limitations when

deployed on hybrid gateways lead us to propose a new bu�er management

technique designed with the unique characteristics of satellite networks in mind.

We analyze and evaluate our bu�er management technique by simulation and

compare it with several commonly used bu�er management techniques. Our

results suggest that the proposed technique is well suited for the domain of

hybrid gateways. This forms the subject of chapter 3.

Any work on hybrid gateways is incomplete without a discussion of a speci�c

5

class of proxy based solutions proposed for implementing high performance

satellite systems �rst introduced in [48]. A proxy based architecture is deployed

at the hybrid gateways to improve the observed end-to-end performance over

satellite networks. We examine such an architecture in chapter 4 and propose a

new architecture for resource allocation in such a setup. We demonstrate that

the proposed architecture results in reduced bu�ering with no loss of throughput

performance and is e�ective in protecting fragile adaptive
ows threading the

hybrid gateway.

Finally, we conclude with some observations on the design and resource

allocation issues involved in the implementation and deployment of hybrid

gateways. The contributions and importance of this work are delineated.

6

Chapter 2

A Feasibility Analysis of Fair Queueing

2.1 Introduction

Most gateways and routers deployed in the current internet deploy a single queue

in which packets awaiting service are enqueued. The queues are First In First

Out (FIFO) queues and usually drop the last packet in the queue, in the case of

queue over
ow. Such systems do not seek to optimize the behavior of tra�c on

the Internet. Tra�c shaping is left to end system implementations.

The need for optimization of tra�c behavior is motivated by the varying

requirements of di�erent types of tra�c on end to end parameters such as delay,

jitter, bandwidth and reliability. From a service point of view, tra�c may indeed

be classi�ed by its service requirements.

A fundamental requirement for treating tra�c "fairly"(we de�ne fairness

formally later) or preferentially is the separation of the tra�c into classes or

ows. In the terms of the Internet protocol, a
ow may be loosely de�ned as a

7

sequence of IP datagrams which traverse similar paths through the network.

While a
ow is end-to-end, we con�ne our view of a
ow by observation at an

intermediate node, such as a gateway. The view of a
ow at an intermediate

node, such as a queueing system is termed in the literature as a conversation [5].

We use the term
ow to imply a conversation in the rest of this discussion.

Scheduling disciplines and bu�er management policies together determine the

fraction of service provided (or resources allocated) by an intermediate node to a

particular
ow. Thus they determine the tra�c shaping behavior of an

intermediate node in the network.

Scheduling disciplines may be broadly classi�ed as work conserving and

non-work conserving [13]. Work conserving schedulers refer to the class of

schedulers which are idle only if there is no packet in the system currently

awaiting service. Non-work conserving schedulers may be idle even if packets are

enqueued in the system. Non-work conserving schedulers �nd applications in

tra�c shaping and the provision of delay jitter guarantees. However, with the

rapidly decreasing cost of memory delay, jitter guarantees are often satis�ed by

bu�ering at the endsystem. The feasibility of non-work conserving schedulers for

deployment in a real system is questionable and we shall not discuss them further.

Priority scheduling refers to the speci�cation of a number of priority levels for

di�erent types of tra�c. Priority enables a scheduler to assign di�erentiated

service levels to incoming tra�c e.g. the provision of lower mean queueing delays

to real-time applications. Often priority scheduling is associated with some form

8

of resource reservation, the details of which are beyond the scope of this

discussion.

A slightly orthogonal but highly relevant issue to the implementation of a

scheduling discipline is the level of aggregation or the
ow de�nition. Flows may

be more strictly de�ned by specifying classi�cation mechanisms. Typical
ow

classi�cation mechanisms operate on the IP header and de�ne a
ow as a

source-destination IP address pair. We de�ne the granularity of a
ow in

relation to the number of distinct transport layer
ows it may encompass at any

given instant of time. The granularity of a
ow de�nition may be coarse, e.g.

source-destination IP subnet number. An instance of a �nely granulated
ow

de�nition is source-destination IP address pair + protocol + source-destination

transport protocol port number. The level of aggregation is thus tied into the

granularity of the
ow classi�er.

The de�nition of fairness is tied closely into the system requirements and the

levels of service that are required to be supported. A scheduler for a best e�ort

tra�c
ow can arguably trade implementation e�ciency for looser fairness and

delay bounds. A scheduler in a guaranteed service model would ideally have

tighter bounds on the above. Another design issue is related to scheduling

between
ows of the same priority class in a priority scheduler.

We brie
y review existing schemes for fair queueing in the literature. The

motivation is not to furnish an exhaustive review but to set up an evaluation of

the complexity and performance tradeo�s between a subset of these schemes.

9

The evaluation methodology is easily applicable to many scheduling algorithms

not explicitly discussed in this survey and the evaluation process follows along

the same lines. We ignore details such as the assignment of prioritized tra�c

levels and focus to a large extent on the best-e�ort type of tra�c. Our objective

is to setup a framework for evaluating the overhead incurred in the

implementation of various scheduling algorithms.

2.2 Scheduling Algorithms

We cite a number of parameters from the literature to evaluate and de�ne the

performance of a fair queueing algorithm. We use these parameters to contrast

the various schemes discussed in this section.

1. Isolation and protection : the insensitivity of a
ow to the (mis) behavior of

other
ows in the system.

2. Fairness and Bandwidth Sharing : we refer to the concept of the max-min

criterion. In a system where low rate
ows are competing (fairly) with

higher rate
ows, the low rate
ows must be serviced at their maximum

request. The remaining bandwidth is then divided up between the higher

rate
ows.

3. Delay and loss bounds : This refers to the provision of bounded delays and

loss guarantees to
ows irrespective of the behavior of other
ows in the

10

system. Such bounds are usually available at the expense of a resource

reservation protocol.

4. Implementation e�ciency : The ease of implementation of the scheduling

algorithm. Throughout this chapter we use the so-called big-O notation to

quantify the scalability of speci�c algorithms, i.e. their growth in terms of

computational complexity.

Nagle in [5] noted that the general problems of congestion in datagram

networks are not solved by the availability of in�nite bu�er space at the gateway.

The author observed that FIFO queueing allocates the most resources to the

source which sends the maximum data. A misbehaving sender, such as a voice

application which sends at a constant rate, could capture more resources than a

well behaved transport protocol implementation which is adaptive and reacts to

loss. Nagle's proposal replaces the single FIFO queue at the gateway by multiple

queues, one for each source host. The multiple queues are then serviced in a

round robin fashion, with empty queues being skipped over. In the case of bu�er

over
ow, a packet is dropped from the longest queue.

The intent of o�ering a fair share of the available bandwidth in [5] is defeated

if di�erent sources have di�erent packet lengths. Also, in terms of service of a

packet based on its arrival time, static round robin service does not provide

continuity. The obvious
aws in Nagle's scheme and its discrimination against

sources with smaller packet lengths led to the proposal of Generalized Processor

11

Sharing (GPS) [6] or bit-wise round robin. GPS is based on the
uid
ow model

where packets are assumed to be in�nitesimally divisible. Multiple
ows can

traverse the same link simultaneously, at di�ering rates. GPS is an ideal

scheduling discipline but is practically infeasible.

The packet approximation to GPS, Weighted Fair Queueing(WFQ) [7],

functions by simulating the
uid
ow model in parallel with the packet by packet

approximation to identify backlogged
ows. WFQ works by calculating the time

at which a packet would have left the system in an ideal GPS environment, the

so-called timestamp. Packets are timestamped with their departure times and

then served in the order of their timestamps (�nish numbers). A bu�er

management policy is also outlined in [7], where in the case of an arriving packet

�nding all bu�ers full, packets are discarded in the order of decreasing �nish

numbers until there is enough room for the arriving packet. WFQ provides good

delay and fairness bounds but is prohibitive in terms of computational

complexity.

[18] studies the components of an FQ server and discusses implementation

issues for WFQ. An evaluation of the e�cacy of algorithms and associated data

structures is studied with the aid of a network simulator and a real workload.

The simulation of a bit-by-bit round robin server to compute the timestamps in

WFQ may require the processing of O(N) events per packet processing time. This

complexity involved in computing timestamps makes the scheduler di�cult to

deploy in terms of implementation cost. Also, even the cheapest implementation

12

of the scheduling discipline requires the sorted insertion of a packet based on the

timestamps. The worst case running time of e�cient algorithms for this problem

space [19] scales as O(log2N) where N is the number of active
ows. We note

that the second problem is one that is shared by any fair queueing algorithm that

uses some form of packet reordering or tagging and is not unique to WFQ.

Stochastic Fair Queueing [16] attempts to solve the
ow classi�cation problem

and eliminate the overhead associated with it. A hash function is implemented in

Stochastic FQ to assign a queue to an arriving packet. In the case of a collision,

packets from multiple
ows share the same queue. In order to avoid persistent

unfairness to colliding
ows, the hash function is regularly perturbed. The term

stochastic arises from the random fairness received by each
ow, as a function of

the hash scheme. A bu�er theft mechanism is also outlined where an arriving

packet that �nds all the bu�ers full steals a bu�er slot from the longest queue.

An e�cient implementation for bu�er theft is also discussed in [16]. The

techniques described in Stochastic FQ can be applied to most fair queueing

algorithms without loss of generality. At the altar of implementation e�ciency,

the delay and fairness bounds of WFQ are sacri�ced in this scheme.

De�cit Round Robin(DRR) [17] attempts to solve another implementation

problem associated with fair queueing: the overhead involved in choosing a

packet to schedule on the outgoing link. DRR builds on Weighted Round Robin

(WRR). WRR enhances round robin service by assigning weights to the

connections based on their mean packet lengths. The scheme assumes that such a

13

mean value is readily available or can be estimated. DRR takes the concept

further by eliminating the need for a mean value. In DRR, each connection is

assigned a quantum of service and a de�cit counter. In each round, the scheduler

attempts to serve a quantum's worth of packets from each queue. If the packet at

the head of the queue exceeds the quantum of service, then the quantum is added

to the de�cit counter and the queue is skipped over. Empty queues have their

de�cit counter reset. These schemes su�er from short term unfairness since in

time intervals less than that of an entire round of service, they may be unfair.

For a large number of connections this time interval may be quite large.

Schemes such as DRR and Stochastic FQ were designed with an

implementation perspective in mind and di�er from the more rigorous approach

embodied in WFQ and its variants, which we describe subsequently.

An approximation to WFQ, Self Clocked Fair Queueing(SCFQ) [8] speeds up

the biggest limitation of WFQ, the timestamping. SCFQ computes timestamps

based only on the packet in service, thus scaling as O(1) in computational

complexity. The performance improvement of SCFQ comes at the cost of loss of

the delay and short term fairness bounds of WFQ. The delay bounds of SCFQ

grow linearly with the number of active
ows.

Start Time Fair Queueing (SFQ) [9] leverages the computational bene�ts of

SCFQ but demonstrates better bounds on the worst case delay and the short

term unfairness. SFQ schedulers maintain a virtual time and service packets

based on their start tags. The start tag of a packet is assigned based on the

14

system virtual time and the �nish time of the packet ahead of it in this
ow.

SFQ thus utilizes the notion of both start and �nish tags. [9] also notes that,

under some conditions, SFQ has lower end-to-end delay bounds than WFQ.

Intuitively, this can be attributed to the fact that by using the start tags to

schedule service, SFQ schedules a packet as early as possible while WFQ delays

packet service as long as possible by using the �nish numbers.

Several scheduling disciplines such as VirtualClock [10] and Delay Earliest

Due Date [11] to name only a few are not described here. We note that in terms

of design and implementation the overheads su�ered by these disciplines and

their performance is comparable. Our evaluation revolves around a feasibility

study conducted by analyzing the overhead of these scheduling disciplines with a

trace simulator driven by real tra�c traces from the Internet. We �rst de�ne the

overhead of a fair queueing algorithm in more detail.

2.3 A Framework for Complexity and Overhead Evaluation

We now present a framework within which to evaluate the feasibility of fair

queueing, with respect to implementation and deployment expense. Earlier

investigations [18] [16] [17] concerned themselves with e�cient algorithms to

minimize the overhead incurred in the deployment of fair queueing schemes. We

attempt a di�erent approach that is based on the following :

15

1. A quanti�cation of the di�erent overheads involved in fair queueing and

their application to various fair queueing algorithms discussed previously.

2. An analysis of live tra�c traces with the help of our trace simulator, A

Simple Queueing Gateway (ASQG). This includes

(a) A study of the e�ects of
ow de�nition on the scalability of fair

queueing schemes.

(b) A quanti�cation of the operating requirements of an intermediate node

for scalable fair queueing deployments at di�erent areas in the

Internet.

(c) A performance comparison between di�erent scheduling algorithms in

terms of implementation e�ciency.

We also note that studies of
ow classi�cation have been performed in [21]

[22]. These, however, are relevant to IP over ATM or IP switching scenarios and

tackle a di�erent problem space. We believe that our analysis framework is

extensible to most fair queueing schemes and furnish speci�c instances of fair

queueing algorithms within our framework.

The following section quanti�es the fair queueing overhead formally and

contrasts the overheads incurred by di�erent scheduling algorithms. E�cient

implementation techniques for various aspects of a fair queueing algorithm are

also presented. We then describe our simulation study of fair queueing along with

an architectural overview to enable a deployment perspective.

16

2.4 Quanti�cation of Fair Queueing Overhead

The following overheads may be identi�ed as directly or indirectly resulting from

a fair queueing deployment.

1. Flow Classi�cation : Identi�cation and separation of
ows into multiple

queues. This is a fundamental requirement of any form of fair queueing

algorithm, but is rarely lumped together with some of the other

considerations.

2. Scheduler tagging : Several fair queueing schemes compute and associate

some form of per-packet tag based on which packets are scheduled for

service. This corresponds to the �nish number in WFQ or the start and

�nish tags in SFQ. Schemes which use an enhanced form of round robin

service (such as WRR or DRR) do not su�er this overhead.

3. Flow state : All fair queueing schemes necessarily maintain some form of

per
ow state which is usually associated with the active queues. A

queue/
ow is often considered active only if it is backlogged (has packets in

the system).

4. Scheduling for service : Schemes which associate tags with packets or

queues require a mechanism to schedule a packet for service based on the

tag value. This may require scanning the per-
ow queues to �nd the queue

with the appropriate tag or the maintenance of some form of sorted data

17

structure.

5. Bu�er management/Drop policy : Another overhead associated with fair

queueing that is often overlooked is the e�ect of the bu�er management

policy. For a �nite bu�er space, a fair queueing policy must also manage or

divide bu�er space fairly among competing
ows. On bu�er over
ow, the

packet discard policy thus becomes important. The implementation

overhead associated with a fair drop policy thus comes into play.

We look more closely at each of these overheads and describe e�cient

algorithms for their implementation and how each of these factors scale.

At �rst glance, it appears that the
ow classi�cation overhead is similar to

the routing overhead su�ered by gateways. We begin by assuming that matching

of the header �elds required for
ow classi�cation can be done in constant time.

This overhead is su�ered for each active
ow in the system, since in a brute force

method we match the header of an arriving packet with each active
ow in the

system. It is easy to do better than this, by using a hash function based on the

�elds of the header to index into the classi�cation table. Commonly used hashing

functions may be found in [20] [16]. In the case of collision some standard

techniques such as chaining [19] may be deployed. Clearly, in this case the

performance is closely tied into the de�nition of the hashing function and the

tra�c patterns. We denote the per-packet overhead in
ow classi�cation by F .

For hashing combined with chaining the worst case performance is de�ned by :

18

F = a � ni

where a is the constant coe�cient of the classi�cation algorithm and ni denotes

the number of
ows that map to the same hash bucket and is a non-deterministic

function of the number of active
ows and the hashing function. If we use a

binary tree search on the hash bucket or sub-table, then we may improve this to

O(log2(2 � ni)). However, the index on which such a binary tree would be based

on is not apparent. For varying
ow de�nitions we may be unable to do better

than in the linear case.

We note that a scheme such as Stochastic FQ maps colliding
ows into the

same queue and hence has a constant per-packet overhead of a. In general, the

coe�cient ni may be improved by the hash function, a larger number of hash

buckets and by higher levels of
ow aggregation (and hence fewer active
ows).

Scheduler tagging is computationally complex in schemes such as WFQ, but

succeeding schemes such as SFQ tag packets in O(1) time. Again, this is a per

packet overhead.

The Flow state scales linearly with N , the number of active
ows in the

system. The constant coe�cient denoting the amount of state maintained per

ow depends on the speci�c algorithm. Flow state is a memory overhead rather

than a computational overhead and becomes important in hardware

implementations such as those described in [12]. Flow aggregation helps

minimize the
ow state by reducing the number of
ows.

19

The overhead involved in scheduling a packet for service is similar in schemes

that use some form of tagging for packet reordering. In [18], the author suggests

the use of per
ow queueing with a double heap for implementing the packet

scheduling and bu�er management mechanisms. In general, the cost of

scheduling a packet in such an implementation has a worst case performance of

O(log22N). This derives directly from the heap property, where a heap insertion

costs O(log2N) and removing the in�mum of heap values costs O(1).

The bu�er management strategy varies across algorithms. Several fair

queueing schemes approximate the strategy proposed in WFQ, where packets are

discarded in the order of maximum �nish number, to make room for the arriving

packet. Such a computation requires another heap sorted on the maximum �nish

time and since �nish numbers grow monotonically within a
ow, this requires an

O(log22N) overhead. In Stochastic FQ and DRR, the bu�er stealing approach is

deployed, where a packet is discarded from the longest queue. To implement

bu�er stealing, the author in [16] deploys an array of doubly linked lists, one

element for each integral number of elements. All the computations in this

implementation are O(1), but the memory requirements make a hardware

implementation di�cult. Also for each arriving and departing packet, two doubly

linked and one singly linked list operations is required. In the case of bu�er

over
ow an additional two doubly linked and one singly linked list operations are

required. Such an implementation does not account for varying packet lengths

across di�erent
ows.

20

Scheduling Flow Tag Flow Scheduler Bu�er
Discipline Classi�cation Computation State Service Mgt
WFQ O(log22ni) O(N) O(N) O(log22N) O(log22N)
Stochastic FQ O(1) NA O(N) NA O(1)
DRR O(log22ni) NA O(N) NA O(1)
SFQ O(log22ni) O(1) O(N) O(log22N) O(log22N)

Table 2.1: Comparison of Scheduling Discipline Overhead : The bu�er manage-
ment overhead is not incurred on a per packet basis, but rather scales with the
number of discarded packets. The Flow classi�cation overhead listed assumes the
possibility of a binary search on a hash bucket in case of collision.

In summary, we furnish Table 2.1 to quantify the overheads of some common

fair queueing disciplines.

2.5 Simulation Study of Fair Queueing

This section is organized as follows. We �rst present an architectural overview of

fair queueing in an intermediate node for a deployment perspective. We then

describe our trace simulator which builds upon this architecture and attempts to

simulate it. The �nal subsection describes the experiments performed and the

results of our simulation study.

2.5.1 Fair Queueing : an architectural overview

Before we attempt to evaluate the feasibility of a fair queueing gateway for

deployment in the carrier/backbone network, a clearer understanding of where

scheduling �ts in the layered architecture is required.

Proposed implementations for fair scheduling and references in the literature

21

FIFO Queue

IP CORE Routing/Processing

Per Flow Output
Queues Network Interface Cards

PROTOCOL (IP) LAYER

LINK LAYER

(SOFTWARE)

(HARDWARE)

Packet Flows

Packet Scheduler Packet Scheduler

Figure 2.1: Architecture of a scheduling router with two ports. The solid lines
represent the path of packets as they traverse the system. The dashed line indicates
layering and typical hardware/software boundaries.

[12] [15] generally focus on ATM technology, since applications which require QoS

support have been the prime goal of fair queueing algorithms. We attempt a

more general description of the deployment of fair queueing.

The components of a generic router include input ports, output ports, a

switching fabric and processing element for routing [14]. In general, routers are

classi�ed as input queued or output queued based on the comparative bandwidth

of the switching fabric and the input ports. Routers with switching fabrics faster

than the cumulative bandwidth of the input ports may be classi�ed as output

queued routers. In output queued routers, there is no queueing on the input

ports, and hence the routing decision must also be made faster than the

cumulative bandwidth of the input ports.

We do not look into the problem of accelerating route lookups, or algorithms

22

for the same. A lot of work has been done in this area in the past and the

interested reader is referred to [14] for a survey. Instead we focus on de�ning and

evaluating the cost and algorithms involved in scheduling.

Focusing speci�cally on Internet Routers, we note that from a layering

perspective, the routing decision is taken at the IP layer. Most routers deployed

today make this decision in software (or general purpose processors). Cost

e�cient hardware techniques, specially ones that scale to the requirements of

backbone routers, are still an open problem. Scheduling of packets from multiple

queues usually assumes an output link/port bottleneck. Hence, packet scheduling

is done on a per output port basis. From a layering perspective, per
ow queueing

may be implemented at the link layer(per output port). Such implementations

are traditionally in hardware and are often bundled with the network interface

card. An architecture for a scheduling router is depicted in Figure 2.1.

We attempt to study the scalability and feasibility of fair scheduling from the

perspective of this architecture. To this end, we have built a trace driven

simulator to analyze the component overheads described previously in relation to

an implementation scenario such as the above.

2.5.2 The ASQG trace simulator

In this section we describe the salient features of our trace simulator, A Simple

Queueing Gateway (ASQG). The simulator attempts to emulate a fair queueing

23

gateway. An abstraction of the operation of the trace simulator is depicted in

Figure 2.2.

FIFO Queue

Flow Classification
and Routing Delay

Incoming Packets

Per Flow Queues

Scheduling and

Transmission Delays

Figure 2.2: An abstraction of the ASQG trace simulator

ASQG is a discrete event trace simulator. It models a many input-single

output port forwarding on a router or gateway node. It may be used to emulate

both input queued as well as output queued operation. As shown in Figure 2.2,

incoming packets are by default placed in a FIFO input queue. The following

operations may be characterized on a per packet basis on packets stored in the

input queue.

1. Routing latency : The latency involved in making a routing decision is

modeled as a constant per-packet delay. The inherent assumption is that

the size of the routing table is stable.

2. Flow Classi�cation latency: The latency involved in
ow classi�cation may

be modeled as a constant or as a variable latency. In the case of a variable

latency, the latency is computed based on the deployed algorithm. For

instance, if Stochastic Fair Queueing is simulated then a constant delay

24

model is used. For other fair queueing algorithms, the classi�cation delay is

represented as F = a � (log2(2 � ni)), where a is the per packet delay and ni

is the number of entries in a hash bucket. In practice, the ni is a computed

constant which re
ects the "goodness" of the employed hashing scheme.

The reason for this is twofold. First, our intention is not investigate hashing

schemes across di�erent
ow de�nitions. Second, many of the traces we

employ in the study are some form of "sanitized" traces (See [23] for the

sanitize scripts). For reasons of security and privacy, these traces have been

encoded and do not re
ect true Internet addresses. Thus hashing

comparisons on these traces are unlikely to re
ect "real" performance.

3. Switching fabric latency : A constant latency is used to model the memory

access and data transfer time required to transfer a packet from the FIFO

queue to the output queues.

Note that to emulate input queued routers with ASQG, the sum of the above

must be greater than the bandwidth of the input port (i.e. less than the packet

interarrival times in a trace).

On completion of
ow classi�cation and routing, a packet is "switched" to the

appropriate output queue on the output port. Several di�erent
ow de�nitions

are supported in ASQG. They include the (source address, destination address,

protocol, source port, destination port) quintet, (source address, destination

address) tuple, (source, destination network number) tuple (based on the Class

25

A/B/C addresses), as well as source address, destination address, source network

number and destination network number. However, for reasons of sanitized

traces, most of our
ow classi�cation studies are restricted to work without the

network number levels of aggregation. The
ow de�nition mechanism may be

passed as a command line parameter.

Once in the output queue, a packet is scheduled for service according to a fair

queueing discipline. The following operations are characterized by a

corresponding latency on the output queues.

1. Scheduling latency : This is a variable latency that is calculated based on

the number of currently active
ows (scales as O(log22N)).

2. Transmission latency : A constant delay is associated in ASQG with the

transmission of a packet. This delay is based on the estimate of the

transmission line speed that this gateway serves.

All constant delays may be speci�ed at the command line when invoking the

ASQG trace simulator. An event queue is used to track discrete event scheduling

and progress of time in the simulator.

ASQG also supports speci�able
ow timeouts which impact the number of

ows and the de�nition of active
ows in a scheduling system. The simulator is

intended to be
exible and lends itself to a variety of di�erent studies ranging

from
ow classi�cation to determining a stable operating point for gateway

processing rates.

26

ASQG is a passive processing element, since the operations of the gateway on

the tra�c traces do not a�ect end-to-end performance or modify the end-to- end

behavior. Hence, ASQG is not appropriate for the evaluation of end-to-end

performance metrics such as the throughput or end-to-end delay. However, it

proves to be a suitable tool for studying the performance of a gateway under a

given tra�c load and to analyze the feasibility of deployment of a gateway with a

given set of speci�cations.

2.6 Some Trace Analysis and Results

We study the following aspects with the help of the trace simulator. Our prime

focus is on recommendations for deployment based on a feasibility analysis. We

�rst determine the e�ects of
ow de�nition and
ow timeout as a means of

reducing state and processing time in a fair queueing router. As an aside, we

motivate the need for scheduling with some observations on the trace data. The

implication of the equations embodied by table 2.1 is then discussed in the light

of preceding results. We conclude with some �nal notes on the scalability and

deployment of fair queueing gateways.

The tra�c traces used in this section are derived from the Internet Tra�c

Archive(ITA) [24] and from NLANR [25]. These traces are available for free

download.

27

2.6.1 Flow timeouts

The view of a
ow at an intermediate router or gateway node is open to

interpretation. Speci�cally in the context of QoS based and hybrid IP/ATM

systems, a
ow is often speci�ed with an associated
ow timeout. A
ow is

considered to be active for
ow timeout seconds even if it has no packets queued

at the intermediate node. If a packet from this
ow arrives in this interval, the

ow timer is reset.

Some fair queueing schemes require maintenance of state information even

when (temporarily) the
ow has no packets in the bu�er. Networks which reserve

resources based on some form of signaling protocol also maintain state for

temporarily inactive
ows. In such systems,
ow state is maintained until an

explicit connection teardown is received or some form of
ow timeouts are used.

Figure 2.3: E�ects of variation in
ow timeout values

An obvious way to minimize
ow state overhead as well as the number of

active
ows is to reduce the timeout constraint. An extreme timeout of 0 may be

deployed by fair queueing gateways in order to minimize overhead. However, it is

28

of interest to note that the reduction in number of
ows comes with the caveat

that the number of
ow operations increases proportionally. We de�ne a
ow

operation as a
ow deletion/creation. Figure 2.3 depicts the variation in the

instantaneous number of active
ows for di�ering
ow timeouts. A sampling

interval between 100 and 200 ms. is used to collect all data in this chapter.

Trace : Corporate gateway(dec-pkt-1.tcp),Sample size : 500000 packets
Timeout(secs) Max Flows Flow Operations Collisions Hash fn. e�ciency

10 364 9247*2 6590 0.986820
5 304 13417*2 4376 0.991248
1 238 32741*2 3237 0.993526
0 192 83904*2 2738 0.994524

Trace : Backbone router(FIXWEST),Sample size : 500000 packets
Timeout(secs) Max Flows Flow Operations Collisions Hash fn. e�ciency

10 14220 57892*2 229222 0.541502
5 8792 70881*2 220902 0.558144
1 2913 105054*2 177489 0.644980
0 589 178481*2 113173 0.773627

Table 2.2: E�ects of inactivity timer variation : While the max
ows decreases,
the number of
ow operations scale proportionally. The
ow de�nition used is
ow
type 1.

Table 2.2 depicts the increase in
ow operations with the decrease in
ow

timeout values. We look closer into the overhead incurred in a
ow

creation/deletion versus that of a
ow classi�cation. We note that both

operations incur a similar search cost, as previously described. In the case of a

ow operation, an additional O(1) cost is incurred in creating or deleting state.

The large number of such
ow operations required suggests that this may still be

a signi�cant factor. However, in view of the bene�ts accorded by a reduction in

the number of
ows, this overhead is justi�ed. Another point of interest in this

29

regard, is the overhead incurred with the maintenance of per
ow timers for the

case when a
ow has a �nite timeout. This may be non-trivial with large

numbers of
ows. A timeout of 0 also avoids this overhead.

The numbers for the FIXWEST backbone router trace indicate that in the

presence of �nite
ow timeouts, the gateway would have to deal with an

extremely large number of
ows. Such a routing box would be expensive to build.

A reduction in the timeout values for
ows pays big dividends in terms of the

number of
ows that a backbone router needs to handle.

In summary, we conclude that for a gateway operating in the absence of a

reservation mechanism an inactive timeout is an unnecessary overhead. The cost

of timer maintenance in addition to the increase in number of active
ows may

be avoided. Schemes such as Weighted Round Robin(WRR), which require mean

packet length estimates, would necessarily have to re-estimate mean packet

lengths in the absence of a non-zero
ow timeout.

Another point of interest is the deterioration of e�ciency of the hashing

function with the active number of
ows. This demonstrates that the
ow

classi�cation overhead is a "strong" function of the hashing function and a

"weak" function of the active number of
ows 1. The absolute e�ciency numbers

may be biased due to the sanitized nature of the utilized traces.

1This dependence of the
ow classi�cation overhead on the active number of
ows is not easily

characterized and is not re
ected in table 2.1.

30

Trace : Corporate gateway(dec-pkt-1.tcp),Sample size : 500000 packets
Flow De�nition Max Flows Flow Operations Collisions Hash fn. e�ciency

f3 24 194585*2 0 1
f2 42 154524*2 0 1
f1 192 83904*2 2738 0.994524
f0 269 83174*2 74691 0.850618

Trace : Backbone router (FIXWEST),Sample size : 500000 packets
Flow De�nition Max Flows Flow Operations Collisions Hash fn. e�ciency

f3 47 187582*2 2818 0.994363
f2 58 179047*2 4582 0.990835
f1 589 178481*2 113173 0.773627
f0 795 191026*2 116982 0.766008

Table 2.3: E�ects of
ow aggregation : The hash function e�ciency is across
ow
de�nitions and re
ects the goodness of the hashing function for each
ow de�nition.

2.6.2 Flow aggregation

Figure 2.4: E�ects of
ow aggregation

Another option to minimize
ow state is to play with the level of aggregation or

granularity of a
ow. Such a discussion is closely tied in with the de�nition of

fairness to be applied, as well as to the various prioritized levels of service

desired. We note in passing that coarse
ow de�nitions may be used to

di�erentiate between
ows in a particular service class, in a hierarchical

structure. A de�nition of such a structure is closely tied in to system

31

requirements and is beyond the scope of this discussion.

We experiment with several di�erent
ow types :

1. Flow Type 0 : Source and Destination Protocol Address, protocol number

and source and destination port pair.

2. Flow Type 1 : Source and Destination Protocol Address.

3. Flow Type 2 : Destination Protocol Address.

4. Flow Type 3 : Source Protocol Address.

Several interesting observations may be made from Figure 2.4 and table 2.3.

Primarily, we note that the e�ect of
ow aggregation is more marked than that of

ow timeouts in the case of the corporate gateway (DEC-PKT-1). De�nitions

such as source protocol address, while providing some form of fairness, limit the

number of
ows signi�cantly. Clearly, some isolation may be achieved with such

aggregated
ow de�nitions, between misbehaved and well behaved end systems.

Another interesting point is the performance improvement in the hashing

function with
ow aggregation. E�ective hashing schemes can be found which

map a single protocol address �eld to a non-colliding hash bucket. This explains

the decrease in number of collisions with
ow aggregation in this case. While the

absolute numbers are presented with the familiar caveat of sanitized traces, they

point in the right direction.

32

A point of academic interest which we also came across in the course of our

ow analysis is that fewer
ows result from source protocol address
ow

de�nition than in the case of destination protocol address classi�cation. This

points towards a few active sources at any given time instant communicating

with a larger destination space.

In summary, a
ow aggregation level such as a protocol source address is

recommended in systems which need minimal service di�erentiation or need only

to ensure fairness between competing sources. It may also be used within a

service class to ensure fairness between the
ows of that class, in a hierarchical

system.

2.6.3 Some more about the traces

Trace Name Sample size TCP packets UDP Packets Other
FIXWEST 1008918 270643(26.8%) 409160(40.55%) 329115(32.6%)
DEC-PKT-1 3362373 2153462(64%) 829759(24.6%) 379152(11.2%)

Table 2.4: The packets by protocol in some of the traces used

A signi�cant percentage of non-adaptive packets were observed in several of the

traces studied. Table 2.4 indicates this trend especially in the backbone router

trace FIXWEST. A large percentage of packets in the other category were noted

to be General Routing Encapsulation (GRE) packets (about 24% of the total, in

fact). The numbers for the FIXWEST router are not representative of the general

trends that we observed. However, the statistics for the DEC-PKT-1 trace are

33

representative and demonstrate a high percentage of non-adaptive UDP packets.

These results provide another strong motivation for the separation of packets

into logical
ows. Adaptive or well-behaved
ows require some method of

isolation from non-adaptive
ows. Some form of per-
ow queueing is therefore

essential to ensure fair resource sharing.

2.6.4 Overhead evaluation

We now attempt to compare the implementation cost incurred by some common

scheduling disciplines. To this end, we draw up on the analysis of section 2.4.

Each of the overheads in Table 2.1 is assigned an equal weight. Thus, we

ignore the constant cost coe�cient associated with each of the overheads and

focus instead on its scalability. Such a simpli�cation is valid for a relative cost

comparison. Also, we note that accounting for constant coe�cients in terms of

say, number of executable instructions per operation, must take into account

speci�c machine architectures.

The computed cost includes the computational cost (such as the cost of

scheduler tagging) as well as the cost of memory (maintenance of
ow state).

The cost function is computed as follows :

1. Traces of the active
ows versus time from ASQG are fed into the cost

function. The equations of Table 2.1 are then applied to these traces to

compute the Tag computation,
ow state and scheduler service overheads.

34

2. The
ow classi�cation overhead is computed using the average e�ciency of

the hashing function over a simulation run and the average number of

colliding
ows over that simulation run. We assume a linear search over the

colliding
ows unlike in Table 2.1.

Quanti�cation of the bu�er management overhead requires assumptions

about bu�er size on the gateway and scales with the number of discarded

packets. Hence, this is not accounted for in the cost function.

Figure 2.5: A comparative per packet overhead evaluation for some common
scheduling disciplines.

Figure 2.5 shows the computed cost for Weighted Fair Queueing(WFQ),

De�cit Round Robin(DRR) and Start-time Fair Queueing(SFQ) over the

dec-pkt-1 and �xwest traces. The numbers on the Y-axis represent the number of

operations required for each arriving packet in the sampling interval. The
ow

de�nition used was
ow type 0.

The following observations may be made from the traces. WFQ has the

highest implementation cost and a scheme such as SFQ which a�ords comparable

35

performance should be chosen over it. More interestingly, we note that SFQ and

DRR appear to di�er only slightly in cost. However, we note that this cost is

incurred on a per packet basis and small di�erences in cost represent large

performance drops in terms of processing ability.

Figure 2.6: Implementation cost of DRR vs. Stochastic FQ. Only a minimal
performance gain is achieved by Stochastic FQ over DRR.

It may be noted from 2.6 that even with relatively poor hash function

performance (see Table 2.4), very little performance gain is achieved by

Stochastic Fair Queueing over DRR. This trend was observed over a large

number of traces studied. Hence, DRR may be chosen over Stochastic FQ since it

has marginally higher implementation cost for improved performance in terms of

fairness and bounded delay.

Further, the cost implementing a scheme such as De�cit Round Robin over

that of simple FIFO queueing can be localized to two factors, the
ow

classi�cation and
ow state overheads. From our trace studies, we have shown

36

that the
ow classi�cation overhead, given a good hashing scheme, is not

excessive in the light of recent strides in computer processing power. Also,

optimizations such as Stochastic FQ eliminate this overhead almost completely.

With the reduced cost of memory, maintenance of per
ow state is another

overhead which should not be an enduring obstacle to the deployment of fair

queueing.

2.7 Conclusions and Future Work

In this chapter, we have attempted to present a framework within which the

feasibility of deployment of fair queueing for a particular set of system

requirements can be evaluated. The various issues that need to be considered for

such an evaluation have been analyzed in detail, with the trace analysis

presenting concrete examples and quantitative results based on live tra�c.

The choice of a fair queueing discipline for a system is usually based on the

characteristics required for the system in terms of the delay and fairness bounds

of the discipline. In this chapter, we have presented methods and sample analysis

to evaluate the implementation feasibility of such a system. A discussion on

e�cient implementation algorithms to minimize fair queueing overhead is

summarized in Table 2.1 for several common fair queueing disciplines. In

conjunction with the trace analysis in section 2.6.4, this provides an e�ective

quanti�cation of the expense involved in the deployment of a fair queueing

37

discipline.

We note from the results presented in the above that schemes such as

Weighted Round Robin or De�cit Round Robin are easily implemented with a

small increase in overhead over FIFO queueing. Hence, the implementation of

such disciplines is feasible even with the performance demands of the current

Internet.

Sections 2.6.1 and 2.6.2 outline methods to minimize fair queueing overhead

independent of the fair queueing discipline. A reduction in
ow timeout values

can signi�cantly reduce the maintenance of
ow state as well as the number of

active
ows. The bene�ts incurred from such a reduction outweigh the

corresponding increase in the number of
ow operations.

Flow aggregation techniques which minimize
ow state are also presented in

this context. While
ow aggregation is usually at the cost of coarser service

di�erentiation,
ow aggregation can be used within service classes in a

hierarchical scheduling system to minimize overhead.

Section 2.6.3 provides additional motivation for some form of fair queueing by

noting that a sizable percentage of
ows in the Internet are non-adaptive and

hence the need for fair queueing to provide isolation between

well-behaved(adaptive) and misbehaved sources.

Signi�cant problems for future research include : Development of analytical

methods for performance analysis of these fair queueing algorithms;

Consideration of other performance metrics and a systematic trade-o� analysis

38

and investigation of performance under realistic tra�c models (e.g. self-similar

and multifractal).

39

Chapter 3

Bu�er Management Strategies for Per Flow

Queueing Hybrid Gateways

3.1 Introduction

In Chapter 2 we analyzed the feasibility of deployment of fair queueing

techniques on gateways and routers in the Internet. We contend that fair

queueing in the absence of e�ective bu�er management strategies is inadequate in

optimizing tra�c behavior at the intermediate node. While fair queueing ensures

fair and e�cient use of network bandwidth, the role of bu�er management

becomes evident during periods of network congestion. Congestion recovery and

congestion avoidance in the Internet usually involve packet discard. Packets must

be discarded in accordance to a policy that satis�es the following criteria.

1. Isolation and fairness: A well-behaved source must be protected from

sources that are mis-behaved or exceed their "fair" share of the bu�er.

40

Fairness refers to the dropping of packets from a
ow in proportion to the

bu�er occupancy of the
ow.

2. Throughput : While being fair, a bu�er management strategy should allow

high link utilization and end-to-end throughput.

3. Implementation E�ciency : The policy should be simple and easy to

implement and its running cost/overhead should be low.

In this chapter, we explore various bu�er management schemes in the context

of both fair queueing and hybrid gateways. Several limitations associated with

existing approaches to bu�er management are exposed. We then propose

Probabilistic Fair Drop (PFD), a new approach to bu�er management speci�cally

targeted at our problem space.

Throughout this chapter, our primary focus is on optimizing the behavior of

adaptive transport layer protocols, that react to congestion noti�cation. The

method of congestion noti�cation assumed is packet discard. We use the

Transmission Control Protocol (TCP) [37], the most commonly used protocol for

reliable data transfer on the Internet, to illustrate our discussion and in our

simulations.

TCP is an adaptive window based protocol that performs
ow and congestion

control. The rate of a TCP source is controlled by a sliding window whose size

varies in response to acknowledgements, timeouts and packet losses. The growth

of the sliding window is in response to acknowledgements received from the

41

remote receiver. Thus, the sending rate of a TCP source is tied closely to the

round trip time between the source and the destination of a TCP connection.

When multiple TCP connections share a bottleneck link with a

high-bandwidth delay product, it has been demonstrated that smaller RTT

connections capture most of the network bandwidth at the expense of long RTT

connections since they can step up their sending rates more rapidly [36]. The

cumulative nature of the TCP acknowledgements allows the discovery of only one

packet loss per window of data. Hence, multiple packet losses result in highly

degraded performance and low link utilization.

The inherent unfairness of TCP to connections with long RTTs is

compounded when a connection that traverses a long latency satellite hop shares

a bottleneck link with other connections that have relatively smaller RTT's. Our

speci�c focus in this chapter is to optimize performance for such a setup as

illustrated in Figure 3.1.

In the following section, a critical review of existing approaches to bu�er

management and an exposition of some of their limitations is o�ered. The PFD

algorithm is then outlined in the next section. We compare the performance of

PFD with existing schemes by means of simulation and present the results in

subsequent sections. Some further optimizations to improve the performance of

long RTT connections are then discussed and simulated. Some e�cient

implementations for PFD are discussed in the following section. Most of the work

presented in this chapter was conceived in conjunction with the authors in [26].

42

Source
Long latency satellite hop

Gateway

Bottleneck
Link

Destination(s)

Source(s)

Figure 3.1: Hybrid System of Interest. Both short RTT terrestrial connections and
long RTT satellite connections traverse the bottleneck gateway.

3.2 Related Approaches to Bu�er Management

Most gateways deployed in the current Internet do not explicitly manage their

�nite bu�ers. In the case of congestion, packets that arrive when the bu�er is full

are simply dropped. This lack of policy is commonly referred to as "drop-tail".

While such a stateless scheme o�ers great ease of implementation and preserves

the "best-e�ort" nature of the Internet, it has several undesirable e�ects.

The authors in [32] outline the e�ects of strongly periodic network tra�c on

deterministic bu�er management schemes such as drop-tail and demonstrate the

resulting bias towards some connections. [32] also demonstrates that drop-tail is

biased towards bursty connections. The inherent bias towards connections with

large round trip times is attributed to the window increase algorithm of TCP.

The authors note that the throughput increase of a TCP connection is roughly

43

r�2 pkts/sec every second, where r is the round trip time of the connection. They

propose a window increase algorithm where a node increases its window by c *

r2, which results in a constant increase in throughput of c pkts/sec for every

second, for some constant c.

Random drop attempts to alleviate the bias due to tra�c phase e�ects as well

as the bias towards bursty connections. In Random drop congestion recovery, a

packet is discarded at a random position in the bu�er on bu�er over
ow. Among

the drawbacks of this scheme are its extremely expensive implementation costs.

A congestion avoidance mechanism was also proposed with Random Drop [27].

This involves a selection of incoming packets to be randomly dropped at a rate

that depends on the operating point of the gateway.

Early Random Drop (ERD) [28] attempts to randomize the bu�er

management policy by randomly dropping a packet from the bu�er with a �xed

probability when the instantaneous bu�er size exceeds a speci�ed threshold.

Thus Early Random Drop also attempts to anticipate congestion by dropping

packets before bu�er over
ow. However, the simplistic �xed parameters in Early

Random Drop do not work well in all cases and more sophisticated early discard

schemes were called for.

Random Early Detection (RED) [29] gateways attempt to detect incipient

congestion by monitoring the low pass �ltered average queue size . The random

drop notion of RED built on previous work on Random Drop and Early Random

Drop gateways. RED attempts to alleviate tra�c phase e�ects as well as the

44

unfairness to bursty connections.

The decision to accept an incoming packet in RED is based on whether the

average queue size exceeds or conforms to predetermined thresholds. If the

average queue size is between minth and maxth then the arriving packet is

dropped with a probability that is an increasing function of the average queue

size. If the average queue size exceeds maxth then arriving packets are dropped

with probability one. RED attempts to maintain a low average queue size while

admitting occasional bursts of packets. The goal of RED is to drop packets at

evenly spaced intervals to avoid both an unfair bias towards some connections as

well as global synchronization. Some form of per
ow fairness is ensured in RED

since the packet drops experienced by a connection during congestion is roughly

proportional to its bu�er occupancy. The randomness of the drop decision

combined with the dropping of the incoming packet in RED could cause the

congestion window of a
ow to be halved even if it does not exceed its fair share.

RED implementations may su�er from short term unfairness.

Flow Random Early Detection (FRED) [30] was motivated by the unfair

bandwidth sharing of RED gateways between adaptive and non-adaptive
ows.

FRED imposes per-
ow accounting and the loss rate of a
ow in FRED is

proportional to the
ow's bu�er use. FRED introduces per
ow parameters minq

and maxq, which are the minimum and maximum number of packets each
ow is

allowed to bu�er FRED also de�nes avgcq, a per
ow bu�er utilization estimate.

Flows which exceed avgcq are penalized over
ows which have less than avgcq

45

packets enqueued. For simplicity, avgcq is de�ned as avg by the number of active

ows. The general RED algorithm is preserved in FRED, with the low pass �lter

average estimated both at packet arrival as well as departure.

FRED provides greater
ow isolation than global schemes such as RED.

However, the dropping of the incoming packet is still preserved in FRED and

when a drop decision is evaluated, only the queue pertaining to the arriving

packet is examined. A rigid allocation of thresholds and a parameter explosion is

associated with a scheme such as FRED.

The Drop from Front strategy proposed by the authors in [35] is based on the

interaction of the bu�er management policy with the fast retransmit mechanism

of TCP [38]. In fast retransmit, a TCP segment is considered lost if three

duplicate acknowledgements are received and the segment retransmitted. If a

packet is discarded from the head of the bu�er, then duplicate acknowledgements

are sent one bu�er drain time earlier, and the dropped segment retransmitted

earlier. Thus, in the presence of TCP's fast retransmit mechanism, the drop from

front strategy achieves some performance improvements over the usual drop from

tail mechanism.

The attention focussed on Fair Queueing strategies and their e�cient

implementation motivated the authors in [31] to consider bu�er management

strategies applicable to a fair queueing scenario. The authors propose the use of

"soft" per
ow bu�er thresholds to dynamically share the total available bu�er

space among the active connections. In the case of bu�er over
ow, a packet is

46

discarded from the connection which exceeds its fair share (de�ned as B=n,

where B is the global bu�er space and n is the number of active connections) the

most. The drop policy, termed Longest Queue Drop (LQD) discards the packet

at the head of the queue, thus leveraging TCP's FRR mechanism [35]. LQD uses

the instantaneous queue size to determine non-conformance. A variant of LQD,

Random LQD (RND) is also proposed. RND picks a queue at random from the

non-conformant queues and discards a packet from the head of that queue.

Figure 3.2: Multiple drops in RND : connection 1 and connection 3 su�er drops
with high temporal locality and drop their windows simultaneously. connection 2
su�ers multiple drops initially and experiences severely degraded performance.

LQD and RND do not attempt to detect incipient congestion and are forced

to drop packets when the bu�er over
ows. It is to be noted that the contents of

47

the gateway queues when the bu�er over
ows are not necessarily representative

of the average tra�c through the bu�er. Strongly periodic tra�c may bias a drop

mechanism such as LQD.

By waiting until the onset of congestion, it is highly likely that multiple

packet drops occur with high temporal locality, leading to one of two undesirable

behaviors.

1. The same source is penalized multiple times, leading to severe degradation

in the throughput of this source (LQD).

2. Multiple sources are penalized, causing
ow synchronization and hence

degradation in the link utilization(RND).

Such behavior is more likely to occur in
ows which are slow to react, such as

long RTT
ows. In summary, and to motivate our approach, we make the

following observations on existing bu�er management schemes.

1. Predicting the onset of congestion helps avoid multiple drops with high

temporal locality.

2. Per
ow schemes such as FRED however, are rigid in their threshold

allocations, and do not allow a
ow to expand into the global bu�er space

even when bu�er space is available.

3. Schemes with a global threshold such as RED are unfair to low rate TCP

ows and in the short-term.

48

3.3 The Probabilistic Fair Drop (PFD) Algorithm

In the presence of per
ow queueing, we dynamically allocate the total available

bu�er B equally among all currently active connections n. A soft threshold bi is

allocated for each
ow bi = B=n. Later sections discuss bu�er dimensioning to

alleviate TCP's unfairness to long RTT connections.

We attempt to predict the onset of congestion by monitoring the total

instantaneous bu�er occupancy q size = (
Pn

i=1 qi) against a single global

threshold, thresh. As long as the bu�er occupancy does not exceed thresh, no

packets are discarded and a
ow may expand to �ll all the available bu�er space.

Once thresh is exceeded, a drop decision is executed with a �xed probability p.

This decision is independent of the choice of the
ow to be penalized.

If the decision is made to discard a packet, a
ow is chosen as follows. We

de�ne a normalized instantaneous
ow size, ni = qi=bi. We now choose the
ow

with the highest normalized instantaneous
ow size and push-out the packet at

the head of the chosen
ow.

The drop probability p and threshold thresh prove to be e�ective measures to

counter the e�ects of multiple packet losses for a single connection as well as
ow

synchronization.

Probabilistic discard with a conservative threshold and a low value of p

ensure that a bursty connection will su�er packet losses that are further apart on

the time axis, and not be penalized repeatedly. This also allows more time for

49

the connection to respond to congestion. Unlike RND, where packets necessarily

had to be discarded from a set of
ows when the bu�er over
owed, with PFD,

packet discards from di�erent sources occur with low temporal locality, thus

preventing
ow synchronization.

Speci�ed Parameters :
p : �xed drop probability
thresh : �xed threshold (0 < thresh < 1)
B : global bu�er space

Variables :
q size : global instantaneous bu�er occupancy
qi : instantaneous occupancy of queue i
ni : normalized instantaneous occupancy of queue i
bi : dynamic soft threshold of queue i
drop q : queue to discard from i

Algorithm :
For each packet arrival

increment q size
classify packet into
ow i
increment qi
compute ni =

qi
bi

if q size > B
drop from longest normalized q

else if q size > thresh �B
with prob p
drop from longest normalized q

else continue

drop from longest normalized q

choose drop q =
argmax

i (ni)
push-out the packet at the head of drop q
decrement q size

Figure 3.3: The Probabilistic Fair Drop Algorithm

Packet drops in PFD are not always from non-conformant sources, thus

providing an early warning mechanism for conformant sources with large queue

buildups as well. Since PFD penalizes the queue which utilizes its largest

50

normalized bu�er share, the drop probability for a queue is proportional to its

normalized bu�er occupancy.

The choice of the values of parameters thresh and p now becomes an

important design consideration. We studied the link utilization resulting from

the scheme over a range of values for thresh and p to arrive at the best

combination. For all the simulations in this chapter, we adopted a threshold

value of 0.2 (20% of the bu�er) and a drop probability of 0.02.

3.4 Simulation Methodology & Results

(Buffer Size B)

Router Bottleneck Link

(capacity C)

Varying link speeds

Source 1

Source 2

Source 3

Source n

τ2
τ1

τ3

τ n

Propagation delay

Destination(s)

Figure 3.4: Simulation Model

Simulations were carried out using the OPNET Network simulator [41]. We adopt

the n source TCP con�guration for the network model as shown in Figure 3.4. In

this con�guration, the TCP sources share a common bottleneck link of capacity

C and are subjected to varying propagation delays. The TCP sources implement

TCP Reno with the Fast Retransmit and Fast Recovery algorithms [38].

51

The router at the bottleneck link implements packetized versions of several

bu�er management strategies including Tail Drop, Drop from Front, RED, LQD,

RND and PFD. Scheduling strategies such as FCFS, Round Robin and

Start-time Fair Queueing (SFQ) [9] are also con�gurable at this router. Queueing

e�ects are limited to the IP queues in the gateway by matching the IP forwarding

rate at the router with the desired bottleneck link rate C. The Fair Queueing

scheduler used implements the SFQ algorithm. The algorithm is scalable and

lends itself well to high-speed implementations.

In our simulations, we studied the performance of the PFD bu�er

management scheme with a FQ scheduler when multiple TCP connections with

di�erent rates and propagation delays share a bottleneck link. The router at this

bottleneck link is con�gured with various bu�er management and scheduling

policy combinations used for the study. We compare the performance of FQ-PFD

with FQ-RED, FQ-LQD and FQ-RND.

3.4.1 Performance measures

We evaluate the performance of the various schemes using the TCP "goodput".

We de�ne the goodput as the average rate of data delivered to the application by

TCP. To evaluate the steady state performance in�nite sources are run for "long"

periods of time until the average rate stabilizes. In the rest of our discussion, we

use the terms throughput and goodput interchangeably.

52

Figure 3.5: Evolution of TCP goodput with time for 10 low RTT TCP-reno con-
nections sharing a bottleneck link of 2 Mbps

The ideal combination of scheduling discipline and bu�er management policy

would ensure that each
ow threading the bottleneck router receives the same

amount of service over any interval of time. A good scheme would penalize a
ow

that exceeds its fair share and ensure that excess bandwidth is shared fairly

among backlogged
ows when the network is not congested. We use the Fairness

Coe�cient de�ned in [40] as a measure of how fairly the scheme distributes

bandwidth among competing
ows. The Fairness Coe�cient, F is de�ned as

F =
(
PN

k=1 bi)
2

n
PN

k=1 b
2

i

(3.1)

where n is the number of
ows and bi is the bandwidth obtained by flow i. From

53

this de�nition, we see that an ideally fair scheme would have a fairness coe�cient

of 1, while a completely unfair scheme would result in a coe�cient of 1=n.

3.4.2 Comparison with other schemes

60 70 80 90 100 110 120
7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

5

Buffer Size (ms)

T
C

P
 T

ot
al

 S
ca

la
r

G
oo

dp
ut

(b
its

/s
ec

)

LQD
RND
RED
PFD

Figure 3.6: TCP goodput (after 500 sec) versus bu�er size at the bottleneck router
for 10 low RTT TCP-reno connections sharing a bottleneck link of 2 Mbps

We compare the performance of RED, LQD and RND with PFD with an SFQ

scheduler. For all the simulations in this section, the TCP sources are modeled as

large �le transfer applications. Thus, we contrast the steady state performance of

PFD with that of the other schemes. From Figure 3.5 we see that in steady state

PFD outperforms RED,LQD and RND. The early warning system of PFD

combined with the pushout drop policy allows PFD to ramp up to a higher

average rate.

Figure 3.6 shows that PFD in general outperforms other schemes even in the

case of short RTT connections sharing a bottleneck link. The bu�er size is

54

represented as a link-speed equivalent bu�er in ms. We note that though the

PFD algorithm is targeted for deployment on hybrid gateways, excellent

performance is achieved in this setup for connections with propagation delays in

the region of a typical WAN round trip time (20 ms). For this simulation setup it

was observed that all the schemes have a fairness coe�cient close to 1. This may

be attributed to the similar propagation delays and source rates of the

connections sharing the bottleneck link. In such a scenario, a fair queueing

system is adequate to provide fair service even in the absence of a fair bu�er

management policy.

We now turn our attention to connections with widely varying RTTs. We

consider the goodput of 10 TCP-Reno connections with RTTs varying from 20

ms to 200 ms (of the order of a satellite RTT) sharing the same bottleneck link.

Note that our version of TCP-Reno also implements the TCP window scale

option [39] and hence the goodput of the large RTT connections are not limited

by the TCP congestion window growth. We plot the performance over a widely

varying range of bu�er sizes and attempt thereby to capture the goodput and the

fairness metrics over this range. The range of bu�er sizes is chosen to capture

regions in which the queueing delay is insigni�cant in comparison to the longest

RTT as well as regions in which the queueing delay is signi�cant and is

comparable to the RTT of the longest RTT connection.

From Figure 3.7 we see that for lower bu�er sizes RND performs better than

PFD in terms of goodput. A comparison with the fairness coe�cient curve

55

60 80 100 120 140 160 180 200 220
6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

5

Buffer Size (ms)

T
C

P
 T

ot
al

 S
ca

la
r

G
oo

dp
ut

(b
its

/s
ec

)

LQD
RND
RED
PFD

60 80 100 120 140 160 180 200 220
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Buffer Size (ms)

F
ai

rn
es

s
C

oe
ffi

ci
en

t

LQD
RND
RED
PFD

Figure 3.7: TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er size
at the bottleneck router for 10 TCP-Reno connections with RTTs varying between
20 and 200 ms

indicates, however, that the improved goodput is at the expense of fairness to

long RTT connections. This may be attributed to the random choice that RND

makes from the set of non-conformant connections when choosing a
ow to

penalize.

Not surprisingly, LQD is observed to be consistently fairer than RND. PFD's

higher fairness coe�cient can be explained by observing that while both LQD

and PFD are similar in
avor when picking a
ow to penalize, the early drop

56

nature of PFD allows longer RTT
ows more time to react, thus guarding against

the possibility of multiple drops.

As expected, RED experiences the worst performance in terms of goodput.

The high degree of fairness of RED in this case may be explained by observing

that like PFD, RED also employs an early detection mechanism and the random

choice of
ow appears to even out over longer periods of time. Also we note that

in the regions of lower bu�er sizes, PFD outperforms RED in terms of fairness.

With larger bu�er sizes, RED's averaging mechanism allows it to maintain low

average queue occupancy resulting in fewer drop decisions and hence an improved

fairness coe�cient. It may also be noted that schemes such as PFD are strictly

fair over shorter time scales. Also, for asymmetric channels studied in [31], RED

performs very poorly in terms of fairness due to its drop tail nature.

We note that PFD o�ers the best performance in terms of a combined

fairness and goodput perspective. Excellent fairness is achieved in PFD without

experiencing a hit in terms of goodput.

3.4.3 Bu�er dimensioning

In previous sections we explored bu�er management schemes that were tuned to

achieve fair link sharing between terrestrial and satellite connections. No a priori

knowledge about the characteristics of the connections were assumed. In this

section, we rede�ne the bu�er allocation based on the connection's RTT to

57

achieve a higher degree of fairness. Such information is available to TCP-aware

gateways, such as the connection spoo�ng/splitting gateways, which are the

subject of the next chapter.

An analysis of TCP throughput as a function of loss probability [42] has

shown that TCP throughput varies inversely as the Round Trip Time (RTT).

The dynamics of the algorithm also causes the rate of window growth to be

inversely proportional to RTT, both in the Slow Start and Congestion Avoidance

phases of the algorithm. This inherent bias towards long RTT connections is

further worsened by global bu�er management strategies, that do not allow long

RTT connections to build up the larger windows they need in order to maintain

the same throughput as shorter RTT connections.

We examine the throughput of long RTT connections when FQ is used in

conjunction with proportional bu�er allocation and PFD. The "soft" per-
ow

bu�er thresholds are allocated in proportion to RTT, with bi now being allocated

as

bi = fRTTi=(
Pn

i=1RTTi)gB

This proportional allocation of soft thresholds allows longer RTT connections a

better chance to build up their larger windows. PFD is used for packet discard

decisions. The assignment of equal weights to all connections ensures that the

scheduler still treats all connections with equal priority, giving each a fair share

of the link bandwidth.

58

60 80 100 120 140 160 180 200 220
7

7.5

8

8.5

9

9.5

10
x 10

5

Buffer Size (ms)

T
C

P
 T

ot
al

 S
ca

la
r

G
oo

dp
ut

(b
its

/s
ec

)

Buffer Dimensioning off
Buffer Dimensioning on

60 80 100 120 140 160 180 200 220
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Buffer Size (ms)

F
ai

rn
es

s
C

oe
ffi

ci
en

t

Buffer Dimensioning off
Buffer Dimensioning on

Figure 3.8: TCP goodput and Fairness Coe�cient (after 500 sec) versus bu�er size
at the bottleneck router with and without bu�er dimensioning.

The graphs of Figure 3.8 depict these trends. While a decrease in TCP

goodput is observed with Bu�er Dimensioning, a corresponding increase in

fairness towards connections with higher RTTs results in a higher fairness

coe�cient. In the case of a hybrid gateway, bandwidth is usually purchased from

a satellite provider. The pricing is tied into the time for which the uplink

bandwidth is purchased rather than on the utilization. In such a scenario, it is

economically important for a hybrid gateway to keep the satellite pipe full. In

59

this context, an overall decrease in throughput, such as the one su�ered due to

bu�er dimensioning, is o�set by the increased throughput of the higher RTT

connections.

A point of note is the decline of the fairness coe�cient with increase in the

bu�er size. With an increase in the bu�er size, there is less pressure on the bu�er

and hence, fewer discarded packets. In the limit, as the bu�er approaches in�nity,

there will be no discarded packets. In such a case, the only limitation on the

throughput of a TCP connection is the RTT of a connection. Thus, even in the

presence of perfect fair queueing, shorter RTT connections will have increased

throughput over longer RTT connections. This bias is related to the nature of the

TCP algorithm and can only be corrected by modi�cation of end system TCP

implementations. Such modi�cations are beyond the scope of this discussion.

3.5 Implementation Considerations

In this section, we discuss the computational complexity of implementing a

scheme such as PFD and discuss algorithms for its e�cient implementation. We

also propose Quasi-pushout PFD, an e�cient version of PFD which uses the

concept of quasi-pushout cell discarding [43].

Once a decision has been made to discard a packet in PFD, the algorithm

picks a queue to penalize based on the normalized bu�er occupancy of the queue.

The penalized queue is one which has the highest normalized bu�er occupancy.

60

Selection of a queue to discard a packet from is computationally expensive as it

may involve a large number of comparisons between all the active queues in the

system. The trace analysis of chapter 2 shows that this number may be as large

as 795 active
ows in a backbone router (FIXWEST).

Among the known e�cient implementations of a drop from longest queue

scheme is the bu�er stealing approach presented in [16]. However, such a scheme

is not applicable in the case of PFD due to the non-integer nature of the

parameter in consideration, i.e. the normalized bu�er occupancy. We borrow the

concept of quasi-pushout from the authors in [43]. We term the resulting variant

of PFD as Quasi-pushout PFD.

In Quasi-pushout PFD, two additional variables, discard q and

discard q occupancy are maintained. On every enqueue, dequeue and queue

discard operation, the normalized occupancy of the active queue is compared to

the discard q occupancy. If the active queue has a higher normalized occupancy,

then discard q is set to the active queue and the discard q occupancy variable is

updated with the new value. If the active queue is the same as the discard q

then the discard q occupancy estimate is updated to re
ect the new occupancy.

Once a decision is taken to discard a packet, the discard q is chosen as the queue

to penalize.

Thus, Quasi-pushout PFD trades e�cient implementation for the strict

fairness of PFD. We evaluate the performance of Quasi-pushout PFD in relation

to PFD by simulation. The results are presented in Figure 3.9. As expected,

61

60 80 100 120 140 160 180 200 220
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Buffer Size (ms)

F
ai

rn
es

s
C

oe
ffi

ci
en

t
PFD
Quasi−pushout PFD

60 80 100 120 140 160 180 200 220 240
7.5

8

8.5

9

9.5

10
x 10

5

Buffer Size (ms)

T
C

P
 G

oo
dp

ut
 (

bi
ts

/s
ec

)

PFD
Quasi−pushout PFD

Figure 3.9: TCP goodput and Fairness coe�cient of PFD versus Quasi-pushout
PFD for 10 connections with round trip times between 20 and 200 ms.

Quasi-pushout PFD does not perform as well as PFD in terms of fairness but

still yields a fairness coe�cient of at least 0.92 in the simulation setup studied. In

terms of TCP goodput, both schemes have comparable performance and no

general trends may be observed. Our results indicate that for the sake of

implementation e�ciency, Quasi-pushout PFD may be chosen over PFD in

backbone routers.

62

3.6 Conclusions and Future Work

In the course of this chapter, we investigated several commonly used bu�er

management schemes. Some of their limitations prompted the proposal of

Probabilistic Fair Drop (PFD), a new bu�er management scheme for use in

hybrid gateways in conjunction with per
ow queueing. The performance of PFD

was then compared with other bu�er management schemes by extensive

simulation. Our simulation results indicate that PFD is best suited for

deployment on hybrid gateways, as it has the best performance in terms of a

combined fairness and goodput perspective.

Bu�er dimensioning based on the individual round-trip times of each

connection sharing the bottleneck link is also proposed and evaluated. While

bu�er dimensioning results in a small degradation in overall throughput, it aids

connections with higher RTT and results in a better fairness coe�cient.

Though simulation results are not presented for common scenarios in hybrid

networks such as asymmetric channels, these have been the subject of extensive

simulation in [31]. The results presented in [31] may be generalized to drop from

front schemes such as PFD and are hence applicable to PFD performance.

E�cient implementation techniques for PFD are also discussed and

Quasi-pushout PFD is introduced and evaluated in this context. Quasi-pushout

PFD lends itself to high speed implementation while o�ering comparable fairness

and goodput performance to the more rigorous PFD algorithm.

63

Some of our results indicate that an adaptive estimation of the �xed

parameters in PFD, i.e. the drop probability and the threshold, is desirable. A

level of performance tuning by parameter estimation is required for a scheme

such as PFD. While the parameters chosen worked extremely well for most of the

simulations in this chapter, it may be noted that under di�erent conditions of

bu�er sizes and utilization, they may be less than optimal. Methods of

dynamically estimating the drop probability and threshold based on the bu�er

size and utilization are the subject of future research.

64

Chapter 4

Bu�er Management and Scheduling in Spoo�ng

Gateways

4.1 Introduction

Internet over satellite has been widely investigated as a solution for providing the

increasing bandwidth requirements of the end-user. In this context, Hughes

Network Systems developed the TurboTM Internet product of DirecPCTM in

conjunction with the Center for Satellite and Hybrid Communication Networks

at the University of Maryland [47, 48]. The asymmetric DirecPCTM system uses

receive-only satellite links for downstream data and uses a modem connection for

the uplink data. Such a system enables delivery of high-bandwidth Internet

access to the subscriber at up to ten times the speed achieved by conventional

telephone line modems [47].

The authors in [48] note that this performance is bottlenecked by two factors.

65

First, the delay of the satellite link does not allow TCP to achieve high levels of

throughput due to the time taken for the acknowledgments to return to the

source. Second, the low bandwidth return path makes it expensive to

acknowledge every TCP segment. The authors suggest the splitting of the end to

end TCP connection into two segments, one from the application server to the

hybrid gateway and the other across the satellite link. The hybrid gateway now

emulates a TCP endsystem by acknowledging data from the application server.

The latency of the satellite link is now hidden from the application server and

does not a�ect throughput in the downstream direction. We refer to such

connection splitting gateways as spoo�ng gateways in the rest of our discussion.

E�ects due to the low bandwidth return path are dealt with by selectively

discarding acknowledgments in a "drop from front" manner. We note that

schemes such as Probabilistic Fair Drop described in chapter 3 work well in such

a scenario.

The DirecPC system is deployed at the edge of the network. [44] describes

the deployment of connection splitting in a more generic architecture, in the

middle of the network. The authors note that connection splitting proxies may

employ a knowledge of underlying link characteristics to enhance performance,

while the end to end semantics remain una�ected. Such an approach enables the

interconnection of heterogeneous networks without an associated loss of

performance, while the end to end protocols themselves remain una�ected by

speci�c link level considerations.

66

[45] reports a simulation study of a similar spoo�ng system over satellite

links. The satellite link is assumed to lie in the middle of the network, and the

spoo�ng gateways operate with TCP enhancements for high performance such as

window scaling, fast retransmit and recovery etc. The authors in [45] contend

that a high performance satellite or hybrid system must implement a technique

such as connection splitting to improve TCP performance. Their simulation

results show increased link utilization and a decrease in the �le download times

observed by ftp clients.

End Host End HostSpoofing gateway Spoofing gateway

Connection segment C2 (long RTT)Connection segment C1 Connection segment C3

Figure 4.1: A generic connection splitting/spoo�ng overview. TCP connections
are terminated in each segment and a new connection is established in the next
segment.

Among the open problem areas related to spoo�ng are those of
ow control

and of queue management at the spoo�ng gateways. The nature of a spoo�ng

gateway requires a large amount of bu�ering to keep the high-bandwidth satellite

link full. In such a context, e�ective queue management as well as bu�er

dimensioning becomes vital. A generic spoo�ng architecture is depicted in Figure

67

4.1.

In preceding chapters, we outlined approaches to bu�er management and

scheduling on hybrid gateways in the Internet and stressed the need for the same.

In this chapter, we investigate the speci�c class of spoo�ng gateways developed to

enhance TCP/IP performance over satellite networks. Approaches to performing

bu�er management and scheduling are then evaluated in this scenario. We then

propose an architecture for fair queueing and bu�er management with these

enhanced gateways and evaluate it by means of simulation.

4.2 Design Considerations in Spoo�ng Gateways

Several implementations of connection splitting gateways have been proposed in

the literature [44] [46]. Our discussion closely follows the implementation of [44]

and the simulation setup of [45]. We also consider the DirecPCTM system setup

in our discussions.

Spoo�ng or connection splitting gateways o�er two primary advantages :

1. They isolate the satellite link from the terrestrial network (connection

segment C2, in Figure 4.1). Thus, the satellite link may now run several

TCP enhancements for high performance over high-bandwidth delay links

while the end systems themselves need not implement these. Furthermore,

the satellite link is not limited to using standardized protocols such as

TCP. Implementations such as [44] report the use of increased values of the

68

initial window size over the satellite connection segment.

2. Spoo�ng gateways hide the latency of the satellite link from the terrestrial

network. Since the �rst segment of the TCP connection is terminated at

the satellite link (connection segment C1 in Figure 4.1), an end-host only

sees the latency associated with the terrestrial segment C1. This reduction

in observed round trip delay by the end host translates to an increase in

throughput due to the "ACK-clocking" nature of TCP.

Several considerations must be taken into account when implementing a

spoo�ng gateway. During connection establishment, a spoo�ng gateway must not

establish connection segment C1 before it receives a response from the remote

host. Thus a SYNACK must be returned to the source only after the receipt of

an acknowledgment from the remote host. This introduces an unavoidable delay

in connection setup which may be signi�cant due to the long latency over

satellite. Sequence numbers used on the connection segments C1 and C3 are also

synchronized at the time of connection setup from information in the SYN

segments. This enables recovery from data loss in the case of routing changes and

so forth.

We now look closer into the data
ow within a spoo�ng gateway. Our

discussion draws upon the OPNET simulations described in [45].

Figure 4.2 depicts the data
ow within a spoo�ng gateway for a unidirectional

stream of data. The connection segments C1 and C2 are the same as in Figure

69

4.1. Incoming data on connection segment C1 traverses the link layer and is then

queued at the FIFO queues of the IP layer. All TCP packets are now forwarded

up to the TCP layer of the spoo�ng gateway. UDP datagrams and packets

belonging to other protocols follow the normal
ow of data in a traditional IP

router, i.e. a routing decision is performed and these packets are forwarded to the

appropriate outgoing interface.

ACKS ACKS

TCP LAYER

LHS Connections RHS Connections

IP LAYER (FIFO queues)

LINK LAYER

DATA DATA

Connection Segment C1 Connection Segment C2

Figure 4.2: Data
ow in a spoo�ng gateway. The solid lines represent data and
the dashed lines represent acknowledgments.

At the TCP layer, the packets of each connection are copied and routed to

two separate TCP connection processes. The �rst connection process , which we

term the "left hand side" (LHS) connection terminates connection segment C1.

The second connection process, the "right hand side" (RHS) connection initiates

the connection segment C2. The LHS connection acknowledges the arriving TCP

segment by sending back an acknowledgment to the initiator of the TCP

70

connection. The data received by the LHS is discarded after the

acknowledgments are sent. This is accomplished by a periodic
ush of the receive

bu�er. Note that this is necessary since there is no application process operating

over the TCP layer.

The RHS connection bu�ers the data in the send bu�er to be sent out on

connection segment C2 until the o�ered window grows enough to enable it to

transmit the received segment. The transmitted segment now passes through the

FIFO queue in the IP layer again. The IP layer identi�es it as a packet that has

been processed by the spoo�ng gateway and forwards the IP datagram on the

outgoing (satellite) interface.

There are several interesting artifacts about this data path. First, all TCP

packets pass through the IP layer twice. An additional overhead is also

introduced by the TCP layer processing. Thus, spoo�ng gateways introduce a

signi�cant amount of processing overhead at the cost of improved throughput

performance.

Another point of note is the large bu�ering requirement of spoo�ng gateways.

Since the LHS connection serves a much shorter round trip time segment than the

RHS connection, the TCP connection in segment C1 is likely to build its window

much faster than the TCP connection of segment C2. This rate mismatch needs

to be absorbed in the spoo�ng gateway and such systems often have large bu�ers.

Flow control may also be implemented at the TCP layer in spoo�ng

gateways. When acknowledgments are transmitted from the LHS connection on

71

connection segment C1, they re
ect the available bu�er from the RHS

connection. This helps prevent the source host from transmitting at a rate that

over
ows the bu�ers of the RHS connection at the spoo�ng gateway.

We now take a closer look at the bu�ering of data in a spoo�ng gateway. Our

intent is to motivate approaches to bu�er management and scheduling in a

spoo�ng system. Typically, packets are removed from the FIFO IP queues at the

processing rate of the IP route server. This rate is unlikely to be a bottleneck in

the system given the high processing rates of current day route servers. The

bu�ering of data is predominantly limited to the RHS TCP send bu�er queues.

Thus on �rst glance, this appears to be the natural point for implementing some

form of bu�er management scheme. However, a closer observation shows that

this is not the case. The TCP segments that occupy the bu�ers of the RHS

connections have already been acknowledged. Thus, traditional bu�er

management schemes, which discard packets in anticipation of bu�er over
ow or

to ensure a fair share, cannot be applied here. Furthermore, any bu�er

management scheme at the TCP layer would exclude packets from other

protocols such as UDP. From our trace analysis of chapter 2, we know that in

some scenarios this can be a considerable proportion of the tra�c. An alternate

approach is therefore called for.

72

4.3 An Architecture for Queue Management in Spoo�ng

Gateways

The discussion in the previous section highlights several issues that we use to

motivate our approach.

1. Spoo�ng gateways are likely to build up large bu�ers and hence intelligent

management of these bu�ers is required.

2. Practically all the bu�ering in a spoo�ng system is at the RHS connections

in the TCP layer. Traditional bu�er management schemes, which discard

packets, are not directly applicable here. Furthermore, any queueing

strategy deployed here would not take into account packets from other

protocols such as UDP.

Thus, spoo�ng gateways present a unique problem in queue management.

From the preceding discussion, it is clear that any e�ective bu�er management

strategy would have to be applied below the TCP layer to account for non TCP

ows. We consider the IP layer as a candidate for queue management. Several

issues need to be resolved before e�ective bu�er management strategies can be

implemented at the IP layer. We consider each of them and propose solutions

and work-arounds for them.

Multiple traversals of queueing system : In the spoo�ng architecture, TCP

packets traverse the IP queues twice. If the IP layer is assumed to be a FIFO

73

queue, the TCP packets after being processed at the TCP layer, are placed at the

tail of the queue a second time. Such a system is undesirable, but works in a

"vanilla" spoo�ng system since there is not an appreciable amount of bu�ering at

the IP layer. With bu�er management and fair queueing strategies implemented

at the IP layer such a data
ow path is not desirable. Hence, we separate the IP

queueing system into two subsystems. The �rst, which we term the fair queueing

subsystem, enqueues packets that arrive from external interfaces and are yet to

be processed. The second subsystem, the FIFO subsystem, enqueues processed

TCP packets which arrive from the TCP layer.

Scheduling and queue management are performed at the �rst subsystem,

while the second subsystem models a FIFO queue with no bu�er mangement

strategy. The validity of such an approach will be clear from the succeeding

discussion. Figure 4.3 depicts the proposed architecture for queue management.

We term this architecture as the two server model since a separate server is used

for scheduling and another for IP route calculation.

What about TCP bu�ers ? The discussion in section 4.2 highlights that

practically all the bu�ering in a spoo�ng system is at the TCP layer. This is

because the bottleneck is likely to be the TCP sending rate which is window

controlled. In such a scenario, bu�er management at the IP layer is super
uous.

Thus, any approach to bu�er management at IP must �rst restrict the bu�ering

in the system predominantly to the IP layer.

74

Fair Queuing Subsystem FIFO Subsystem

per-flow queues FIFO queue

RHS TCP connectionsLHS TCP connections

IP service rate

RHS drain rate

"matched" service
rate

IP LAYER

TCP LAYER

Connection Segment C1 Connection Segment C2

Figure 4.3: An architecture for queue management in a spoo�ng gateway. The
solid lines represent the
ow of data. The arcs represent the service rates of the
respective queues.

To this end, we introduce the concept of a "rate-matching" server. We

restrict the scheduling server in the fair queueing subsystem to serve the

(per-
ow) queues at a rate which matches the rate of the drain of the RHS TCP

queues. The importance of rate-matching cannot be overemphasized. If the rate

at which the per
ow queues are served is much greater than the rate of drain of

the TCP queues, then we cannot limit queueing e�ects to the IP queues. If the

rate is too low, then starvation of the RHS TCP would result. An optimal rate

for this server implies that packets arrive at the RHS TCP queues at a rate that

minimizes bu�ering while not resulting in starvation. The determination of the

optimal rate for this server is non-trivial and we discuss it further in a later

section.

75

The rate-matching server now enables us to restrict the queueing e�ects to

the IP fair queueing subsystem. Note that the presence of such a server also

enables us to make do with FIFO queueing in the IP FIFO subsystem since a

similar argument applies to this subsystem as to the RHS TCP queues.

The deployment of such a queueing architecture also enables a more tightly

coupled feedback loop between adjacent connection segments. To understand

this, we note that the received TCP segment for a connection is acknowledged

after it is scheduled for service. Thus the propagation of acknowledgments on

connection segment C1 is also scheduled under the auspices of the scheduling

algorithm deployed. The vanilla spoo�ng architecture, even in the presence of

fair queueing at the TCP layer, o�ers a much looser coupling between the

adjacent connection segments. Backpressure, due to a connection attempting to

grab more than its fair share of the resources, would thus percolate to the TCP

source faster than in the vanilla case.

4.4 Simulation Study & Results

In this section, we study the bu�ering characteristics of the spoo�ng architecture

by means of simulation. We deploy the two server architecture of section 4.3 for

queue management and evaluate its e�ectiveness by means of simulation. Finally,

we show that the proposed queue management architecture is e�ective in

providing fair resource allocation on a hybrid gateway.

76

4.4.1 Simulation setup

Figure 4.4: OPNET Simulation setup for the simulation study. The link between
the two gateways is modeled as a satellite link with a round trip latency of 500
ms.

Our basic simulation setup parallels the one described by the authors in [45]. The

OPNET network simulator [49] was used for all the simulations in this chapter.

The network model used for most of the simulations is depicted in Figure 4.4.

The TCP layer on the hybrid gateways is con�gured with several standard

TCP extensions for high performance. These include fast retransmit and recovery

[38], window scaling [39] and Selective Acknowledgments (SACK) [50]. The

gateways perform connection splitting and spoo�ng as described in [45]. The link

between the hybrid gateways models a satellite link with a long round trip time

(500 ms.). We do not account for satellite link error models and assume that

these are dealt with at the link layer by an appropriate forward error correction

scheme.

The server and the client are attached by 10BaseT Ethernet links to the

gateways and the link delays are negligible in relation to the delay of the satellite

link. The link rate of the satellite link is a con�gurable parameter.

77

4.4.2 Bu�ering characteristics of a spoo�ng system

To investigate the bu�ering characteristics of a spoo�ng system, we model �le

transfers involving large �les from the server to the client in Figure 4.4. The

parameters of interest are the utilization of the satellite link and bu�ering at the

RHS TCP connections on the hybrid gateway. We focus our attention on

gateway1 in Figure 4.4.

The link rate of the satellite link is set to T1 rate. The hybrid gateways are

modeled with in�nite send bu�er capacity at the TCP layer for the purpose of

simulation. Note that there is no
ow control exercised by the spoo�ng gateways

in our simulation setup. We tap the send bu�er buildup in the RHS TCP layer of

gateway1.

From the graphs of Figure 4.5, we see that the throughput on the satellite

link is initially limited by the congestion window growth of the RHS TCP. The

throughput graph
attens out when it hits the link bottleneck rate. A persistent

bu�er buildup may be observed in the RHS TCP send bu�ers even after the link

throughput has stabilized. This may be attributed to the shorter RTT

connection segment
ooding the bu�ers of the hybrid gateway1. Since the long

RTT connection segment operates with window scaling, the congestion window of

TCP is not a bottleneck after the initial window buildup.

We now set the link rate of the satellite link to T3 rate. In this con�guration,

the satellite link rate is no longer the bottleneck in the system. We note from

78

Figure 4.5: Satellite link throughput, RHS TCP send bu�er size and RHS TCP
congestion window evolution for a large �le transfer with T1 link rates.

Figure 4.6 that the throughput curve
attens at a rate of about 1.6 Mbps with

the gateway2 receive bu�ers set to 200 Kbytes. The bottleneck in this case was

observed to be the receive bu�ers of the hybrid gateway terminating the long

RTT connection segment. An increase in the receive bu�ers of the hybrid

gateway results in a corresponding increase in the steady state throughput

achieved over the spoo�ng system. This trend may be seen in the throughput

curve with the receive bu�er set to 400 Kbytes. In this case the steady state rate

is about 3.4 Mbps. Corresponding increases in congestion window evolution and

bu�er drain rates can also be observed from the graphs of Figure 4.6.

79

Figure 4.6: Satellite link throughput, RHS TCP send bu�er size and RHS TCP
congestion window evolution for a large �le transfer with T3 link rates and varying
RCV bu�er on gateway2.

4.4.3 E�ects of the two-server model

The OPNET TCP implementation maintains separate bu�ers for unsent data

(the send bu�er) and data that has been transmitted but has not yet been

acknowledged (the unacknowledged bu�er). The size of the unacknowledged

bu�er represents the current window size and is a function of the congestion

window evolution and the bandwidth delay product of the outgoing link. The

send bu�er size is data that is bu�ered awaiting transmission. We are interested

in limiting the size of the send bu�er size on the spoo�ng gateways without a loss

in throughput.

80

Our goal is therefore to maintain a backlog in the send bu�er that is su�cient

to feed the outgoing link without causing starvation and an associated loss of

throughput. A drop in the size of the send bu�er to zero is indicative of

starvation while an unbounded increase in the size of the send bu�er indicates

unnecessary bu�ering of data. The latter trend is observed in the graphs of

Figure 4.5 and Figure 4.6. In these scenarios, the bottlenecks arise from the link

throughput and the receive bu�ers of the receiving node respectively, and the

bu�er buildup at the send bu�ers of the RHS TCP is wasteful and does not

result in higher link utilization.

We now investigate the e�ects of deploying the two server model described in

section 4.3. The service rate of the scheduler of the fair queueing subsystem is set

to 500 packets/sec. We compare the obtained results with that of a vanilla

spoo�ng system such as the one studied in the preceding section. The satellite

link rate is set to T3 rates. The results are shown in Figure 4.7.

Figure 4.7: Comparison of satellite link throughput and RHS TCP send bu�er size
with and without the deployment of the two server mode.

81

The two server model has comparable throughput curves while successfully

eliminating the wasteful bu�ering at the RHS TCP layer of the hybrid gateway

to a large extent. This may be attributed to two factors :

1. The depressed service rate of the scheduler in the IP fair queueing

subsystem exerts a form of implicit
ow control on the sending TCP host,

in this case the �le server. Acknowledgments to the �le server are delayed

due to slower service rate of the scheduler. The scheduler rate is chosen

such that it does not bottleneck the throughput of the spoo�ng system. In

this case, the bottleneck is the size of the receive bu�ers of hybrid gateway

2. Thus, the delayed acknowledgments reduce the rate of the �le server and

thus reduce the unnecessary bu�ering at the RHS TCP layer.

2. This depressed rate also introduces increased bu�ering in the IP fair

queueing subsystem. We compare the IP bu�er sizes with and without the

two server model. The results are shown in Figure 4.8. They indicate that

though the bu�ering in the fair queueing subsystem is increased, the overall

bu�ering in the spoo�ng system (TCP + IP) is still more than an order of

magnitude lower. Thus, the e�ect of delayed acknowledgments dominates

resulting in less wasteful bu�ering in the spoo�ng system.

82

Figure 4.8: Comparison of IP layer bu�ering in hybrid gateway1 with and without
the deployment of the two server mode.

4.4.4 Determination of an optimal rate

The results of section 4.4.3 demonstrate the e�ectiveness of the two server model

in controlling the bu�er space at the RHS TCP layer. We note that the a priori

rate chosen in the previous section may be less than optimal and attempt to

determine the optimal rate of the scheduling server by means of simulation. In

this context, the optimal rate is one that o�ers minimum bu�ering at the RHS

TCP layer with no loss of throughput. To this end, we run the simulations of the

previous section with T3 satellite link rates and varying scheduler service rates.

The results are shown in Figure 4.9. For the lower scheduler rates of 400 and

450 packets/sec we note that the link throughput is bottlenecked by the rate of

the scheduler and is lower than that observed with the vanilla spoo�ng system in

Figure 4.6. In this case, the RHS TCP is starved after the initial burst in bu�er

size and the RHS TCP send bu�ers drop to zero. For the scheduler rate of 500

packets/sec some interesting behavior is observed. Initially the RHS TCP send

83

bu�er builds up and the link throughput reaches the steady state value limited

by the receive bu�ers of hybrid gateway 2. However, a decline in throughput is

observed around 300 secs and the throughput settles down to a lower scheduler

bottlenecked value.

Figure 4.9: Determination of an optimal scheduler rate for the two server archi-
tecture.

To understand this behavior, we note that the scheduler serves the per
ow

queues at the IP layer not only for the data propagating in the forward direction

but also for the TCP acknowledgments in the reverse direction. With increase in

the window size and the data tra�c, the load on the scheduler due to

acknowledgments propagating in the reverse direction increases. This causes a

decrease in the service rate available to the data in the forward direction. This

decreased service rate now becomes a bottleneck in the system and the TCP send

bu�ers begin to empty eventually resulting in a lower bottleneck rate for the

system. The scheduler rate of 550 packets/sec is seen to be adequate to maintain

the steady state link throughput.

84

The optimal rate appears to lie between 500 and 550 packets/sec for this

simulation setup. Simulation estimates of the average serviced packet size at the

IP fair queueing subsystem are approximately 3300-3400 bits/packet. Thus we

see that this range represents the steady state throughput value of about 1.67

Mbps attained over the satellite link. Thus the simulation results corroborate our

discussions of section 4.3. The optimal rate in this simulation setup is observed to

be at a scheduler rate of 540 packets/sec. For this rate, the RHS TCP send bu�er

sizes achieves steady state with neither an unbounded increase nor a depletion to

zero, as seen in Figure 4.9. The throughput graph for this scheduler rate is not

depicted for the sake of clarity, but closely follows the 550 packets/sec curve.

4.4.5 Deployment of fair queueing

In this section, we evaluate the performance of fair queueing in a spoo�ng system

with our proposed fair queueing architecture. We deploy the Start Time Fair

Queueing (SFQ) [9] for its ease of high speed implementation. The bu�er

management technique employed is Probabilistic Fair Drop (PFD), since our

results from chapter 3 indicate that it is ideal for such a scenario with long rtt

connections over satellite.

TCP connections over satellite are fragile because of the long round trip time.

The deployment of a spoo�ng architecture, while improving TCP performance

dramatically, still renders them fragile in the presence of non adaptive
ows such

85

as UDP and constant bit rate
ows. To understand this, we note that in a vanilla

spoo�ng system, TCP
ows traverse the IP layer twice. On the second traversal,

the packets are again enqueued at the tail of IP's FIFO queues and must await

service a second time. Furthermore, in the absence of a fair queueing mechanism,

non-adaptive
ows are likely to grab a higher share of the resources at the

bottlenecked system. The tra�c analysis of chapter 2 indicates that the

percentage of non TCP
ows may not be negligible in several areas of the

Internet. The rationale for the deployment of fair queueing at the IP layer follows

from these observations. A spoo�ng system similar to the DirecPCTM is

employed for the simulations in this section.

Figure 4.10: Throughput comparison of a TCP and UDP connection sharing a
bottlenecked spoo�ng system.

We simulate an adaptive TCP connection and a non-adaptive UDP

connection sharing a bottlenecked spoo�ng system. TCP extensions for improved

performance such as window scaling and SACK etc. are deployed as before. The

IP layer is modeled as a single FIFO queue. The results are shown in Figure 4.10.

86

The non adaptive connection manages to acquire most of the available link

bandwidth and succeeds in shutting out the fragile TCP
ow. The
uctuations in

TCP throughput are caused by timeouts and retransmissions.

Figure 4.11: Throughput comparison of a TCP and UDP connection sharing a
bottlenecked spoo�ng system in the presence of fair queueing.

The fair queueing architecture of section 4.3 is now deployed. The throughput

comparison between the TCP and UDP connection is depicted in Figure 4.11.

Initially, the UDP connection gains a large share of the resources while the long

RTT TCP connection builds up its window. Once the TCP connection attains a

large enough sending window, it obtains a fair share of the resources. In this

case, the fragile TCP connection is protected by the deployment of fair queueing

resulting in highly improved performance. The TCP connection in this case is

bottlenecked only by the receive bu�er size on the receiving node. An increase in

the receive bu�er size to 100K results in further performance improvement for

the TCP connection as seen in Figure 4.11.

87

4.5 Conclusions and Future Work

In this chapter we investigated a special class of gateways proposed to enhance

TCP performance over satellite networks, termed connection splitting or spoo�ng

gateways. The unique characteristics of this system led us to propose a new

architecture for fair resource allocation, which we term the two server

architecture.

In section 4.4.2, we study the characteristics of a spoo�ng system and identify

the various bottlenecks in a connection splitting/spoo�ng implementation. A

large amount of wasteful bu�ering in the spoo�ng system due to the lack of
ow

control is uncovered. While our objective is not the deployment of e�ective
ow

control on a spoo�ng gateway, we show in section 4.4.3 that the wasteful

bu�ering in a spoo�ng gateway may be reduced by more than an order of

magnitude with no e�ect on the overall throughput performance of the system,

with the help of the two server architecture. The determination of an optimal

rate for the two server architecture is highlighted in the following section. The

dynamic determination of an optimal rate in a spoo�ng system, for the purposes

of auto-con�guration, is an area for future research.

Finally, we evaluate the e�ectiveness of the two server architecture for fair

queueing. Excellent results were observed in the case of adaptive and

non-adaptive connections sharing a bottlenecked spoo�ng system. The

deployment of the two server architecture coupled with fair queueing and bu�er

88

management algorithms, succeeded in protecting fragile long RTT TCP
ows

from mis-behaved
ows.

In this chapter, we have considered a spoo�ng system which does not deploy

e�cient
ow control. E�orts are underway to develop e�cient
ow control

algorithms for spoo�ng systems [51]. The interaction of such
ow control

algorithms with the architecture proposed in this chapter is an area for future

research.

89

Chapter 5

Contributions of this work

In this chapter, we highlight the contributions of this dissertation.

Chapter 2 presents a framework within which the implementation overhead

and hence feasibility of a fair queuing system can be evaluated. The various

operations in a fair queuing system such as
ow classi�cation, scheduler tagging

and issues such as the maintenance of
ow state are analyzed in detail. A

discussion on e�cient algorithms to minimize implementation overhead uncovers

the scalability associated with each of these operations.

This implementation overhead is further quanti�ed by means of our trace

analysis with the ASQG trace simulator. While
ow classi�cation studies abound

in the literature, they either pertain to IP over ATM systems [21] [22] or are
ow

parsing studies, which do not utilize a processing element [52]. The latter class of

studies, while providing interesting information about the nature of the tra�c on

a link, does not support analysis of the nature presented in chapter 2.

We analyze e�ects of
ow aggregation and
ow timeout values as a means of

90

improving the scalability of fair queuing implementations. Our results and

analysis indicate that fair queuing schemes such as De�cit Round Robin (DRR)

can be e�ciently implemented with a small increase in overhead over FIFO

queuing. The deployment of such systems appears to be feasible even with

current demands of the Internet.

We contend that an analysis on the lines of chapter 2 coupled with a

knowledge of system requirements is essential to determine the feasibility of

deployment of fair queuing on a particular system. In this context, chapter 2

outlines an analysis methodology as well as presenting a set of sample results.

Our investigation of bu�er management schemes in chapter 3, revealed several

limitations of these schemes when used in conjunction with fair queuing over

satellite networks. Probabilistic Fair Drop (PFD), our proposed bu�er

management scheme exhibits excellent performance in a combined throughput

and fairness perspective. The use of soft thresholds and drop from front is

combined with early detection of congestion in PFD to provide improved

performance over satellite delay links.

Further extensions to PFD such as the bu�er dimensioning based on an a

priori knowledge of the individual round-trip times of TCP connections further

alleviate the poor performance of long round-trip time connections. We note that

in scenarios like the spoo�ng system of chapter 4 such round-trip time estimates

are readily available from the split connections on the spoo�ng gateway.

The implementation overhead of a technique such as PFD, which requires the

91

scanning of multiple queues to determine the queue with the largest normalized

bu�er share, lead us to propose Quasi-pushout PFD. Quasi-pushout PFD

provides an excellent approximation to PFD performance while lending itself to

high-speed implementation.

The PFD algorithm, while o�ering excellent performance when deployed on

hybrid gateways, requires performance tuning due to the �xed parameters in the

algorithm. Dynamic parameter estimation for the PFD algorithm is the subject

of future research.

The connection splitting/spoo�ng system [48] [44] is deployed to achieve

improved performance over satellites. In chapter 4 we analyze the bu�ering

dynamics of the spoo�ng system and present a novel architecture for queue

management, the two server architecture. We uncover wasteful bu�ering in a

spoo�ng system and show how it may be reduced by more than an order of

magnitude with no impact on the throughput performance of the spoo�ng

system.

The fragility of spoofed TCP connections in the presence of non-adaptive

ows is one of the serious problems with spoo�ng gateways. The deployment of

our two server architecture in conjunction with the fair queuing algorithms which

are the subject of the earlier chapters, is shown to be e�ective in isolating

non-adaptive
ows and providing protection to the TCP connections.

While the two server architecture is not intended to replace
ow control on

spoo�ng gateways, it is intended to complement it. We believe that such an

92

architecture is essential for providing fair resource allocation and thereby robust

TCP performance in a spoo�ng gateway. The importance of protecting adaptive

ows from non-adaptive
ows, is heightened by some of our trace analysis results

of chapter 2, which show that a non-negligible proportion of
ows on the Internet

may be attributed to non-adaptive protocols such as UDP.

Indeed, such an argument may be applied in general to intermediate nodes on

the Internet. Mechanisms for fair resource allocation and for optimizing tra�c

behavior are essential for the envisaged Internet of the future, with support for

multiple classes of service, comprising the range from data through voice and

video.

93

BIBLIOGRAPHY

[1] J. Postel (ed.), "Internet Protocol - DARPA Internet Program Protocol

Speci�cation",RFC 791, September 1981.

[2] The ATM Forum, http://www.atmforum.com.

[3] The Di�erentiated Services Charter,

http://www.ietf.org/html.charters/di�serv-charter.html.

[4] COMSAT Corporation's ATM Link Enhancer (ALE-2000),

http://www.comsat.com/products.

[5] J. Nagle, "On packet switches with in�nite storage", IEEE Transactions on

Communications,vol. COM-35, no. 4, pp 435-438, April 1987.

[6] A.K. Parekh and R. Gallagher, "A generalized processor sharing approach

to
ow control - the single node case", Proceedings of IEEE INFOCOM

1992, vol. 2, pp 915-924, May 1992.

[7] A. Demers, S. Keshav and S. Shenker, "Analysis and Simulation of a Fair

Queueing Algorithm", Internetworking: Research and Experience, vol. 1,

no. 1, pp 3-26, September 1990.

94

[8] S.J. Golestani, A Self-clocked Fair Queueing scheme for broadband

applications", Proceedings of IEEE INFOCOM 1994, vol. 2, pp 636-646,

April 1994.

[9] P. Goyal, H. Vin and H. Cheng, "Start-time Fair Queueing: A Scheduling

Algorithm for Integrated Services Packet Switching Networks", IEEE/ACM

Transactions on Networking, vol. 5, no. 5, pp 690-704, October 1997.

[10] L. Zhang, "VirtualClock: a new tra�c control algorithm for packet

switching networks", ACM Transactions on Computer Systems, vol. 9, pp

101-124, May 1991.

[11] D. Ferrari and D. Verma, "A scheme for real-time channel establishment in

wide-area networks", IEEE Journal on Selected Areas in Communications,

vol. 8, pp 368-179, April 1990.

[12] A. Varma and D. Stiliadis, "Hardware Implementations of Fair Queueing

Algorithms for Asynchronous Transfer Mode Networks", IEEE

Communications Magazine, pp 54-58, December 1997.

[13] S. Keshav, "An Engineering Approach to Computer Networking: ATM

Networks, the Internet and the Telephone Network", Addison Wesley, 1997.

[14] S. Keshav and R. Sharma,"Issues and Trends in Router Design,IEEE

Communications Magazine, May 1998.

95

[15] D. Decasper, M. Waldvogel, Z. Dittia, H. Adiseshu, G. Parulkar and B.

Plattner,"Crossbow - A Toolkit for Integrated Services over Cell Switched

IPv6",Proceedings of the IEEE ATM'97 workshop.

[16] P. McKenney, "Stochastic Fairness Queueing", Proceedings of IEEE

INFOCOM 1990, vol. 2, pp 733-740, June 1990.

[17] M. Shreedhar and G. Varghese, "E�cient Fair Queueing using De�cit

Round Robin", IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp

375-385, June 1996.

[18] S. Keshav, "On the e�cient implementation of fair queueing",

Internetworking: Research and Experience,vol. 1, pp 157-173, September

1991.

[19] T. Cormen, C. Leiserson and R. Rivest, "Introduction to Algorithms", MIT

Press/McGraw-Hill, 1990.

[20] R. Jain, "A Comparison of Hashing Schemes for Address Lookup in

Computer Networks," IEEE Transactions on Communications, vol. 40, no.

3, pp 1570-1573, October 1992.

[21] S. Lin and N. McKeown, "A Simulation study of IP Switching", Proceedings

of ACM SIGCOMM 1997, vol. 27, no. 4, pp 15-24, October 1997.

96

[22] H. Che and S. Li, "Adaptive Resource Management for Flow- Based

IP/ATM Hybrid Switching Systems", IEEE/ACM Transactions on

Networking, vol. 6, no. 5, pp 544-557, October 1998.

[23] Sanitize scripts from the Internet Tra�c Archive, available for download at

http://ita.ee.lbl.gov/html/contrib/sanitize.html.

[24] Traces in the Internet Tra�c Archive,

http://ita.ee.lbl.gov/html/traces.html.

[25] National Laboratory for Applied Network Research(NLANR) network

tra�c traces, http://moat.nlanr.net/Traces/.

[26] R. Vaidyanathan, R. Srinivasan and J.S. Baras, "Bu�er Management

strategies for per
ow queueing hybrid satellite gateways", paper in

preparation.

[27] V. Jacobson, "Presentations to the IETF Performance and Congestion

Control Group",1989.

[28] E. Hashem,"Random Drop Congestion Control", M.S. Thesis,

Massachusetts Institute of Technology, Department of Computer Science,

1990.

[29] S. Floyd and V. Jacobson, "Random Early Detection Gateways for

Congestion Avoidance", IEEE/ACM Transactions on Networking, vol. 1,

no. 3, pp 397-413, August 1993.

97

[30] D. Lin and R. Morris, "Dynamics of random early detection", Proceedings

of ACM SIGCOMM 1997, vol. 27, no. 4, pp 127-137, October 1997.

[31] B. Suter, T.V. Lakshman, D. Stiliadis and A. K. Choudhury, "Design

considerations for supporting TCP with per-
ow queueing", Proceedings of

IEEE INFOCOM 1998, vol. 1, pp 299-306, April 1998.

[32] S. Floyd and V. Jacobson, "On tra�c phase e�ects in packet-switched

gateways," Internetworking: Research and Experience, vol. 3, pp. 115-156,

September 1992.

[33] V. Jacobson,"Congestion Avoidance and Control", Proceedings of ACM

SIGCOMM 1988, vol. 18, no. 4, pp 314-329, August 1988.

[34] A. Mankin and K.K. Ramakrishnan, "Gateway Congestion Control

Survey",RFC 1254, August 1991.

[35] T.V. Lakshman, A. Nierhardt and T.J. Ott, "The Drop from front strategy

in TCP over ATM and its Interworking with other Control Features",

Proceedings of IEEE INFOCOM 1996, vol. 3, pp. 1242-1250, March 1996.

[36] T.V. Lakshman and U. Madhow, "The Performance of TCP/IP for

Networks with High Bandwidth-Delay Products and Random Loss",

IEEE/ACM Transactions on Networking, pp. 336-350, June 1997.

[37] J. Postel(ed.), "Transmission Control Protocol - DARPA Internet Program

Protocol Speci�cation", RFC 793, September 1981.

98

[38] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast Retransmit and

Recovery Algorithms", RFC 2001, January 1997.

[39] V. Jacobson, "TCP Extensions for High Performance", RFC 1323, May

1992.

[40] D. Chiu and R. Jain, "Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks", Computer Networks and

ISDN Systems, vol. 17, no. 5, pp 1-14, 1989.

[41] OPNET Modeler/Radio release 4.0A, http://www.mil3.com.

[42] J. Padhye, V. Firoiu, D. Towsley and J. Kurose,"Modeling TCP

Throughput : A Simple Model and its Empirical Validation", Proceedings

of ACM SIGCOMM 1998, vol. 28, no. 4, pp 303-314, October 1998.

[43] Y.S. Lin and C.B. Shung, "Quasi-pushout cell discarding", IEEE

Communications Letters, vol. 1, no. 5, pp. 146-148.

[44] N.P. Butts, V.G. Bharadwaj and J.S. Baras, "Internet Service via

Broadband Satellite Networks", Multimedia Systems and Applications:

Proceedings of SPIE, pp. 169-180, February 1999.

[45] M. Karir, M. Liu, B.A. Barrett, J.S. Baras, "A Simulation Study of

Enhanced TCP/IP Gateways for Broadband Internet over Satellite",

submitted to OPNETWORK '99, September 1999.

99

[46] H. Balakrishnan, V.N. Padmanabhan, S. Seshan and R.H. Katz, "A

Comparison of Mechanisms for Improving TCP Performance over Wireless

Links",Proceedings of ACM SIGCOMM 1996, vol. 26, no. 4, pp 256-269,

October 1996.

[47] A.D. Falk, "A System Design for a Hybrid Network Data Communications

Terminal Using Asymmetric TCP/IP to Support Internet Applications",

M.S. Thesis, University of Maryland, 1994.

[48] V. Arora, N. Suphasindhu, J.S. Baras, D. Dillon, "Asymmetric Internet

Access over Satellite-Terrestrial Networks", Proceedings of the AIAA: 16th

International Communications Satellite Systems Conference and Exhibit,

Part 1, pp 476-482, February 1996.

[49] OPNET Modeler/Radio release 5.1C, http://www.mil3.com.

[50] S. Floyd, M. Mathis, J. Mahdavi and A. Romanov, "TCP Selective

Acknowledgment options",RFC 2018, October 1996.

[51] V.G. Bharadwaj, "Improving TCP Performance over Satellite Links",M.S.

Thesis, University of Maryland, August 1999.

[52] NLANR Tutorial, Flow counts as a function of
ow granularity,

http://www.nlanr.net/NA/Learn/aggregation.html.

100

