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The Transmission Control Protocol (TCP) is the most widely used transport
protocol in the Internet today. The problem of poor TCP performance over
satellite networks has recently received much attention, and much work has been
done in characterizing the behavior of TCP and proposing methods for
improvement. Meanwhile it remains hard to upgrade the majority of legacy host
and gateway systems in the Internet that are running old and outdated software
so that they can perform better in the changing networks of today.

In this thesis we consider an alternative network architecture, where large

heterogeneous networks are built from small homogeneous networks



interconnected by carefully designed proxy systems. We describe the design and
implementation of such a proxy and demonstrate marked performance
improvements over both actual and simulated satellite channels. We also discuss
some benefits and drawbacks of using proxies in networks and explore some

tradeoffs in proxy design.
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Chapter 1

Introduction

1.1 The Internet Architecture

The Internet suite of communication protocols follows a four-layer model, as
described in [1]. All Internet hosts and gateways use the Internet Protocol (IP,
2]) at the network layer. Various higher layer protocols run over IP; the most
important transport layer protocols are the Transmission Control Protocol (TCP,
[3]) and the User Datagram Protocol (UDP, [4]). A significant fraction of
Internet traffic is TCP; important application layer protocols built over TCP
include the Simple Mail Transfer Protocol (SMTP), the HyperText Transfer
Protocol (HTTP), the File Transfer Protocol (FTP), the Network News Transfer
Protocol (NNTP) and the Telnet Protocol.

When the Internet protocols were originally designed, the communication
speeds supported by networks were relatively low, communication links were
unreliable and of low quality by today’s standards, and routers were also

unreliable. The protocols were intended to be able to support communication
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Figure 1.1: Protocol layering in the Internet architecture. Note that the host-
network interface is identical to the network-network interface. Also note the clear
separation between the network-network interface and the host-host interface.

even in extreme cases such as large-scale network failures or the physical
destruction of large parts of the network. Therefore the design emphasizes an
end-to-end philosophy; all intelligence is located in the hosts, who are at the
edges of the network, whereas nodes inside the network are very simple in terms
of both their functioning and their interfaces.

The assumptions of the Internet architecture are set out in [1]:

1. The Internet is a network of networks.

2. Gateways do not keep connection state information.

3. Routing complexity should be in the gateways.

4. The system must tolerate wide network variation.

The first three requirements imply a clear separation between the

responsibilities of hosts and gateways (also known as routers). Transport layer



and application layer functionality is present only in hosts, while routing
functionality is present mainly in gateways and is transparent to hosts. The first
requirement makes the overall design of the Internet independent of link layer
technologies, and leads to a hierarchical organization, which makes for scalability.
It also simplifies the functionality required at the network layer and allows

routing to be carried out in a stateless manner - IP is a ¢

‘next hop” routing
protocol. Thus the Internet is resilient to failures of individual nodes as these
nodes are independent of each other.

The fourth requirement is more vague. It does not imply any particular
design choice but instead states a general philosophy. Later we will argue that in
the current Internet, this requirement sometimes contradicts one or more of the

others, and that it may be worthwhile to slightly alter the other requirement in

such a case.

1.1.1 The Transmission Control Protocol

The Transmission Control Protocol (TCP) is the transport protocol used for
reliable data transmission in the Internet. It is a connection-oriented,
byte-stream based, reliable, sequenced delivery protocol. TCP connections are
full-duplex, and each byte of data transmitted in a given direction of a TCP flow
is assigned a unique sequence number by the sender. This number is used for

resequencing at the receiver and in acknowledgments.
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Figure 1.2: Bandwidth, delay and optimal window size. Here the window is equiv-
alent to n packets and fully utilized. If the sender is to steadily send data with-
out having to pause and wait for acknowledgments, the window must be at least
be(ts +tp) - i.e. the product of forward bandwidth and round-trip delay.

A host initiates a TCP connection with another host by sending a segment
with the SYN flag. This segment also contains an initial sequence number and
any TCP options the host might wish to negotiate. The second host responds
with an acknowledgment - a SYNACK, with its own initial sequence number and
the options it is prepared to accept. When the initiating host receives this
message it can start sending data. The purpose of this exchange, known as a
three-way handshake, is to allow hosts to set up the data structures associated
with the connection, and to achieve synchronization with respect to sequence
numbers in both directions of the connection.

During the data transfer phase, data can be sent in both directions at once.
A selective retransmission strategy is used to provide reliable delivery of data -
the receiver of data returns acknowledgments for data that is successfully
received, and unacknowledged data is assumed lost and is retransmitted.
Transmissions use a self-clocking mechanism - the acknowledgments provide the

clock by which the sender paces its transmissions.



A window-based flow control scheme is used. A sender’s window represents
the maximum amount of data that can be sent without waiting for an
acknowledgment. Since it takes one round trip time to receive an
acknowledgment after data is sent, a network path can only be fully utilized
when the window is at least as large as the product of the bandwidth (strictly
speaking, forward bandwidth) and round-trip delay of the path (see Figure 1.2).

The sender’s window is the smaller of the receiver’s offered window and the
sender’s congestion window. The offered window serves as an upper bound on
the sender’s window, and is determined by the receiver based on the memory
available. It is advertised by the receiver in the header of every data or
acknowledgment segment it sends. The congestion window represents the
sender’s estimate of network congestion, and is calculated based on feedback
received from the network. TCP uses implicit feedback - packet losses or large
increases in round trip delays are interpreted as indications of congestion.

The evolution of the congestion window occurs in two phases [5]. In the first
phase, known as slow start, the congestion window is initialized to one segment
(resulting in a transmission rate of one segment per round trip time), and is
increased by one segment for every new acknowledgment received. When the
congestion window passes a threshold, the congestion avoidance phase is started,
and the window is increased by one segment every time a complete window of
data is acknowledged. All packet losses are assumed to be due to congestion. In

effect, TCP assumes that there are no bit errors in the network. When a packet



loss is encountered, the lost packet is retransmitted and the rate of sending is
reduced (at least halved) [3, 5]. Thus the window grows exponentially with time
in slow start, and linearly in the congestion avoidance phase, unless restricted by
the offered window.

When a host has finished sending data, it sends a FIN message to close its
half of the full-duplex connection. Data transfer can still proceed in the other
direction until the other host also sends a FIN. When both FINs have been
received and acknowledged, the connection is closed and the associated data
structures are destroyed by both hosts. In some cases one or both hosts enter a
state known as TIME_WAIT, during which they retain the data structures for a
certain time and consume any old duplicate segments that might be received.

Some other special signaling messages are also used in TCP. The RST
message is used to abort a connection. The PSH flag on a data-bearing segment
elicits an immediate acknowledgment, and the URG flag provides a means of

sending urgent data.

1.1.2 Problems with TCP

Most TCP implementations in common use have deficiencies that cause them to

perform poorly in some environments. We describe the best-known ones below.

Limited size of receiver window. The receiver’s offered window is represented in

the TCP header by a 16-bit field, which restricts its value to 64 kilobytes. Some



implementations limit the maximum window size even further. This limitation
reduces throughput over paths with high bandwidth-delay products, such as
geostationary satellite links, as TCP can only transfer one window of data every

round-trip time.

Dependence of window growth on RTT. The self-clocking mechanism leads to
unfairness between connections that traverse widely differing paths in the
network - connections with smaller round-trip times can increase their rate of
sending more rapidly, and so end up capturing most of the network bandwidth,
at the expense of long-delay connections [6]. In other words, connections with
lower round-trip delays are at an advantage as their clocks run faster. To make
matters worse, the optimum window size on paths with large bandwidth-delay
products is also larger, and many round trips are required before the congestion
window grows to its optimal size. Over long-delay links such as satellite, this
process takes a very long time. In many cases data transfer completes before the

window can grow large enough, and the transfer rate obtained is very low.

Poor performance over bandwidth-asymmetric links. TCP’s reliance on
self-clocking leads to another problem - in order to keep a smooth flow of data
going, frequent acknowledgments are required. This wastes reverse channel
bandwidth and leads to problems on bandwidth-asymmetric paths. For example,

typical TCP connections use a TCP segment size of 1480 bytes, giving an IP



packet of size 1500 bytes. Nearly all current TCP stacks adopt a policy of
acknowledging every other full-sized segment received. Since a minimal ACK
segment is 20 bytes, this gives us an IP packet of 40 bytes returned for every two
1500-byte packets sent. Ignoring lower layer headers for simplicity, this means
that on paths with more than a 150:1 ratio of forward bandwidth to reverse
bandwidth, the reverse path becomes a bottleneck and prevents full utilization of
the forward path. For connections using the default IP packet size of 576 bytes (a

fairly common occurrence) the problem sets in at bandwidth ratios of about 50:1.

Sensitivity to bit errors. The assumption that all loss is congestion-based leads
to many problems on links on which the probability of corruption loss is
comparable to or larger than the probability of congestion loss. When a packet is
lost due to bit errors, the sender’s congestion window is halved even though no
congestion is present, thus under-utilizing the link. Moreover, TCP’s cumulative
acknowledgment scheme can discover only one segment loss every round trip.
Thus if multiple segments are lost in one window of data, throughput is reduced

sharply.

Implementation complexity. From an implementation point of view, TCP is a
fairly complex protocol. It requires the host to maintain multiple timers per TCP
flow, and consumes a fair amount of system resource in terms of memory and

processing power. This is typically not a problem for desktop computers, but is a



significant drawback for small handheld and mobile devices, which are usually
limited to small amounts of battery power and cannot afford large memories or

fast processors. Therefore, for these devices, a complete TCP stack is impractical.

1.1.3 Proposed solutions

Many of the above problems appear in networks with satellite links. Such links
have high delays and, often, high bandwidth-delay products. They are often
asymmetric, with the bandwidth on the downlink being much greater than that
on the uplink. User terminals are often mobile, and are power-constrained.
Finally, many satellite channels have bit error rates exceeding those of terrestrial
channels.

A number of methods have been proposed to solve, mitigate or avoid the
above problems by modifying existing networks or existing TCP
implementations [7, 8]. Some TCP enhancements have been standardized as
TCP options by the Internet Engineering Task Force (IETF). Of these, the
Window Scaling option [9] allows the effective size of the offered window to be
increased to 30 bits - network applications can be modified easily to use the
larger window sizes. The Selective Acknowledgment option [10] prevents serious
performance degradation when multiple (up to three) packets are lost in one
round trip, and transfer rates over long-delay connections can be improved by

increasing the initial value of the congestion window during slow start [11].



The problem of TCP sensitivity to bit errors can often be bypassed by using
link-layer techniques such as Forward Error Correction (FEC), power control, or
Automatic Repeat Request (ARQ) to reduce the packet loss rate seen by TCP.

Asymmetric links remain a problem for TCP. One proposed solution is to
change the frequency of acknowledgments when bandwidth asymmetry is
detected, but that leads to much burstier TCP traffic, which is undesirable.
Another solution is to use larger segment sizes, but that is not always practical as
it may have other adverse effects, such as increasing the packet loss rate of TCP.

There is at present no solution for the problem of TCP unfairness to flows
over long-delay paths. At best, network-level practices such as appropriate
queueing schemes in routers, can be used to avoid exacerbating the situation in
times of congestion.

The problem of implementation complexity is being studied - TCP
implementations today are much more optimized than those of some years ago -
but typical implementations are still large and do not scale well. The typical
case, or fast path, in a TCP implementation is often well optimized and fast; the
slower path, which includes handling of errors and various unusual but essential
cases such as connection setup and closing, is however bulky and complex.
Unfortunately, a TCP implementation consisting solely of the fast path is

completely unusable.
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1.2 Thesis Organization and Contributions

In this thesis we look at an approach which attempts to solve many of these
problems by decomposing large, heterogeneous networks into smaller, nearly
homogeneous parts and by using proxies to perform transport-layer protocol
translations between these smaller networks. We describe the principle behind
these TCP Performance Enhancing Proxies (or TCPPEPs as they are now
known), and describe the design and implementation of a particular TCPPEP.
We present results showing that in many realistic situations, deploying such
proxies can deliver significant gains in performance.

The rest of this thesis is organized as follows: in Chapter 2 we describe the
functioning of TCPPEPs and look at various types of such proxies, and in
Chapter 3 we describe the design of our proxy implementation. Chapter 4
describes implementation issues, and Chapter 5 presents some results from this
implementation. In Chapter 6 we discuss some issues that arose during
implementation and testing, and derive a flow control scheme for our
architecture. We then use the results to explore some tradeoffs in proxy design.

Finally, some possibilities for future work are presented in Chapter 7.

11



Chapter 2

A Modification of the Internet Architecture

We have seen that TCP performs poorly over some network topologies, such as
those with highly asymmetric links, high-bandwidth satellite links, or terrestrial
wireless links. Often these problems arise from inadequacies in the layered
communication model - in many situations, the layers are not independent but
depend on each other in complicated ways. For example, the transport layer
depends on link layer parameters such as delay and error rate, the network layer
is affected by the stability of individual links, and so on. Even the application
layer is not independent of the link layer - interactive applications, for instance,
require short round trip times. Problems also arise when functionality is
duplicated across layers; for example, TCP may perform poorly over networks
that use link-layer ARQ mechanisms, due to the round trip time variance
induced by link ARQ.

If a network is homogeneous or nearly so, then layered protocol design yields
simple and effective solutions. For example, the Internet protocols work

extremely well in a network comprising symmetric bidirectional links with low or

12



P2

P4
P3

Figure 2.1: “Network of networks” using modified architecture. S1, N1, N2, N3
and N4 are all networks consisting of homogeneous elements. S1 is significantly
different from N1 through N4, so P1 through P4 provide a layer of indirection that
translates between the different networks.

medium latencies, rare and uncorrelated errors, and low failure rates, especially if
the links are in a richly connected topology so that alternate routes can usually
be found between hosts. However, a layered protocol suite designed for a given
type of network may perform badly in a network with significantly different
characteristics, and this is the case with the Internet protocols over link layer

technologies such as high-bandwidth satellite.

2.1 Modified Architecture

This observation suggests a way to modify the Internet for better performance -
partition the network into parts that are homogeneous or nearly so, and apply
layered protocol design to each part. This involves introducing a layer of
indirection between different parts of the network (Figure 2.1). The modified

architecture is still a “network of networks”, with routing functionality in the

13



gateways. The only change is that we may allow some gateways (in this case, P1
through P4) to perform higher layer functions, which may involve keeping some
connection state information. In a way, we violate the second of the four design
principles in Section 1.1, in order to strengthen the fourth.

The proxies P1 through P4 mediate between different networks by performing
some translations that attempt to insulate the hosts on N1 through N4 from the
special link-layer characteristics of S1. For example, they may use a different
protocol within S1 for carrying out some transport level functions, and then
perform a translation so that the change is transparent to the hosts. For
example, many limitations of TCP arise from the intertwining of its error
recovery and congestion control functions, and the proxies could try to change
this by handling congestion control on a local basis.

This model can be viewed as a generalization of the Internet architecture:
instead of restricting the functionality of gateways to the network layer and
below, the dividing line between host and network functionality can be chosen
arbitrarily, allowing the designer to trade network node complexity for host
complexity. In practice this approach is advantageous because host software
tends to be a commodity, while network nodes are fewer and more complex.
Thus network nodes are better managed and easier for a network provider to
maintain and upgrade.

Application proxies such as web caches are examples of this architecture.

They put the line of separation between network and host functionality at the

14
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Figure 2.2: Protocol layering in proposed architecture.

application layer. Proxies have been written for many applications that have
been found to perform poorly under various sets of circumstances. Each such
proxy is specific to an application, and the application must be modified to use
the proxy. In our case, however, a closer look at the problem reveals that almost
all TCP applications suffer from similar shortcomings, all of which arise from
limitations of TCP. Further, since TCP is the only connection-oriented transport
protocol in the Internet suite, it is the only transport protocol that suffers from
such problems. Application built on UDP, for instance, may also perform poorly
in similar circumstances, but these problems are not attributable to UDP. Thus
it appears worthwhile to introduce proxies in the network that allow gateways to
perform functions up to the transport layer. Such a change can be made
transparent to hosts, so that it does not require applications to be rewritten.
Devices that implement this approach are known as TCP Performance
Enhancing Proxies (TCPPEPs).

Any modification to the present Internet must be interoperable with the large

15



installed base of systems using traditional TCP/IP protocols, without harming
the network as a whole. It should also be at least as flexible as IP; it should allow
for flexibility in designing and provisioning the network, and should not restrict
network expansion. Finally, the benefits of the change must be large enough to
make implementation worthwhile. We will attempt to show that TCPPEPs can

be designed to meet all these criteria.

2.2 TCP Performance Enhancing Proxies

We define TCP Performance Enhancing Proxies as agents residing in the network
that perform specific actions which modify the behavior of the transport layer in
order to improve the performance seen by the end user. Network nodes that
perform link-level functions such as ARQ or Forward Error Correction (FEC) to
improve TCP performance will be excluded from our definition, as they are in no
way TCP-specific, nor do they use any knowledge of TCP in their working.
Application-layer entities such as web proxies will also fall outside our definition.

PEPs may be classified into two categories depending on their relationship
with the end user. User-visible proxies are similar to conventional proxies such as
web proxies, and require some explicit configuration or similar action by the end
user in order to be effective. Transparent proxies on the other hand work without
user intervention and in many cases without the end user’s knowledge.

PEPs can also be classified by their mode of functioning into passive and

16



active proxies. Passive proxies do not change the contents of the data or control
stream, but may alter other characteristics, such as the timing of TCP segments
or of acknowledgments on the link. Examples of such proxies are ACK pacing
agents and rate-pacing agents. Usually passive proxies are deployed singly, and do
not collaborate with other proxies of the same type. Active proxies alter the TCP
data or control stream in some way, and may perform actions such as protocol
translation or connection splitting. Often these proxies occur in sets of two or
more, and the alteration takes place on the links between pairs of proxies. For
this reason sets of active proxies are often thought of as “shielding” the network
between them from the rest of the network path, and they often use fairly

detailed knowledge of the characteristics of the link or network between them.

2.3 Review of Existing PEP Designs

One of the earliest PEPs to be proposed and implemented was the DirecPCTM
Turbo Internet™ product [12, 13]. This product was designed to provide home
Internet access through a receive-only satellite dish, utilizing a phone line for the
reverse channel. Thus the user was linked to the Internet through a link with
asymmetric bandwidth and delay characteristics. A user-visible active PEP,
deployed at the satellite uplink, performs a form of TCP connection splitting.
Data received over the terrestrial link is acknowledged as it is received. It is then

transmitted, using a separate TCP connection over the satellite link, to the

17



receiver. The PEP identifies TCP flows by watching for SYN and FIN exchanges.
ACK compression is used to overcome the problem of link bandwidth asymmetry.
If multiple acknowledgments are queued for transmission, all but the last one are
dropped. Thus the cumulative nature of TCP acknowledgments is used to
conserve bandwidth on the reverse channel.

This system delivers transfer rates up to 400 kbps to users over a receive-only
satellite dish, even with only a 9.6 kbps modem return link. Most other
commercial products providing similar services today also use PEP-based
architectures. This architecture does not require any changes to the TCP
implementation in the user terminal. The PEP software can be upgraded, and
new services can be added easily, without changes to the user’s operating system
software.

The Snoop architecture [14] was an early implementation of a transparent
active PEP. It was mainly intended for enhancing TCP performance for users of
terrestrial wireless links. The wireless link is assumed to be the last hop to the
user, and a PEP (the Snoop agent) is deployed at the network end of this link.
The agent watches for duplicate TCP acknowledgments, and uses them as an
indication of corruption loss on the wireless link. It discards these duplicate
acknowledgments, and retransmits the lost segment from its cache. Thus Snoop
is functionally identical to link layer ARQ in its design and objectives, except
that TCP acknowledgments are used as the triggering mechanism.

The major advantage of this design is that the PEP uses soft state - if the
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lost segment is not in the Snoop agent’s cache, the duplicate ACKs are
propagated back to the sender, who retransmits the missing segment. This makes
the architecture robust to system failures at the Snoop agent. The major
disadvantage of Snoop vis-a-vis link-layer ARQ is that while link layer ARQ can
safely be used anywhere in the network, Snoop can only be used at the edges of
the network in last-hop links. If a Snoop agent is deployed in the middle of a
network and congestion occurs downstream of it, the Snoop agent will absorb the
duplicate ACKs and prevent the sender from discovering the congestion, and may
lead to network collapse.

A recent commercial implementation of a transparent active PEP is described
in [15]. This product is primarily a traffic management tool. It performs many
complex bandwidth management functions, including admission control for TCP
connections, TCP rate pacing and priority-based bandwidth sharing. Its
strengths are its ease of administration and the ability for central control and
administration of an enterprise-level network. The primary disadvantage is that
the PEP relies on a large amount of hard state. Thus it cannot easily deal with
richly-connected network topologies, where packets may be routed around the
proxy. Also a system failure in the PEP may cause data loss and failure of

communications.
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Chapter 3

Design of a TCP Performance Enhancing Proxy

Each of the TCPPEP designs described so far assumes a particular kind of
network topology, and may behave unpredictably if this assumption is violated.
These proxies are also not transparent to applications - in many common
situations, they can cause unusual application behavior and may even cause
connection failures or data loss. These proxies were all intended for use in
last-hop situations, and can deliver benefits in such situations, but they place
constraints on future network expansion, and have limited applicability. For
example, when a satellite link is deployed in the middle of the network, it would
not be appropriate to use such proxies around the link. Performance may be
improved for some users, but there is a potential for many undesired side-effects.
In this chapter we describe the design of a TCPPEP that is completely
transparent to end-user applications under nearly all circumstances. This proxy
was originally designed to improve TCP performance for users of a
high-bandwidth geostationary satellite link deployed in the middle of a Wide

Area Network. The TCPPEP model was chosen for the design so that the proxy
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Figure 3.1: TCP connection splitting.
could be deployed by the network provider operating the satellite link, and
immediately offer enhanced performance to end-users without requiring any

intervention from them.

3.1 TCP Connection Splitting

Our proxy implements connection splitting to shield end-users from the effect of
delay and bit errors on the satellite link. It is a transparent active TCPPEPs,
intended to be deployed at the ends of the satellite hop. When deployed in this
manner, the proxies split end-to-end TCP connections passing through them into
separate “connection segments”. A typical scenario is shown in Figure 3.1.
Connections C1 and C3 are TCP connections, with the respective gateway
proxying for the remote host by generating TCP acknowledgments on its behalf.
For instance, whenever G1 receives data from H1, it immediately sends an

acknowledgment to H1, and takes responsibility for delivering the data all the
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Figure 3.2: Timing diagram for connection splitting in the network of Figure 3.1.
This diagram shows a simple unidirectional data transfer from H1 to H2.

way to H2. The connection segment C2 involves only the proxies G1 and G2, and
so may use any transport layer protocol to ensure reliable transmission of data.
Our implementation used TCP with all the enhancements recommended in [9],
[10] and [11].

This system can provide performance gains even compared to deploying
enhanced TCP implementations on all end hosts. An obvious advantage is that

error recovery can be carried out locally on each connection segment instead of
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end to end, potentially reducing delay and conserving satellite bandwidth. Some
other benefits will be discussed in Chapter 6.

The operation of the PEP is illustrated in Figure 3.2. Whenever a proxy sees
a connection request (i.e. a SYN segment), it intercepts the request and
originates a similar connection request with an enhanced option set. When all
downstream connections are completed, an acknowledgment (i.e. a SYN ACK) is
returned to the host that originated the original request. Both the proxies always
negotiate and accept all the TCP options referenced above during connection
setup, so that the connection between G1 and G2 will always use all these
options. TCP implementations are required to simply ignore unrecognized TCP
options, so this mechanism allows a proxy to detect and utilize the capabilities of
the other end-point of its connection segment, without having to know
beforehand if the other end-point is another proxy or a host.

Once the connection has been set up, the proxy intercepts all data on that
connection, returns acknowledgments to the sender bearing the address of the
destination, and buffers the data for downstream transmission. When a proxy
receives a FIN segment, it immediately closes the corresponding half-duplex
connections. When a FIN has been received and relayed for both directions of a
TCP connection, all the resources for the corresponding connection segments are
freed.

There is a variable delay due to buffering at G1 as well as G2, which is not

shown in Figure 3.2. Also, a host may choose to piggyback ACKs on other TCP
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packets. In the figure, AckH1 may be piggybacked on the data following it, and

FinH2 may be combined with the ACK immediately preceding it.

3.2 The Design Process

The design objective was to make a PEP that could be used as a plug-in
replacement for a router, and would be indistinguishable from a router to
end-user TCP applications. During the design phase, all the deployment
scenarios shown in Figure 3.3 were considered, in addition to the topology of
Figure 3.1, to evaluate the correctness of the proxy’s behavior in this respect.

In this section we describe the broad principles of the design and discuss their

application to specific issues, pointing out possible problem cases.

3.2.1 General Considerations

It is often argued that a connection splitting proxy violates the semantics of TCP
and therefore can never be deployed without undesirable side-effects. This is not
true. RFC 793, which specifies the TCP standard, explicitly acknowledges the
possibility of connection splitting, and carefully limits the semantics of TCP to

provide for such a situation.

Some computer systems will be connected to networks via front-end
computers which house the TCP and internet protocol layers, as well

as network specific software. The TCP specification describes an
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Figure 3.3: Alternative network topologies considered in PEP design.
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interface to the higher level protocols which appears to be
implementable even for the front-end case, as long as a suitable

host-to-front end protocol is implemented.

(RFC 793, Section 1.1)

An acknowledgment by TCP does not guarantee that the data has
been delivered to the end user, but only that the receiving TCP has

taken the responsibility to do so.

(RFC 793, Section 2.6)

We try to define some characteristics of the “suitable host-to-front-end
protocol” referred to above. Our goal is to design the proxies so that each proxy
appears to all its adjacent TCP entities as a front-end for the remote host. For
example, in Figure 3.1, G1 must appear to H1 as a front-end for H2, and to G2
as front-end for H1. Similarly G2 must appear to G1 as a front-end for H2 and to
H2 as a front-end for H1. Thus the main contribution of this design is to show
that TCP itself is suitable for use as a host-to-front-end protocol as envisaged in

RFC 793.

3.2.1.1 Protocol Correctness

For the PEP to be transparent to hosts, it must guarantee that the various TCPs

associated with a connection are consistent. In other words the proxy should not
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put the TCPs at the connection endpoints in a combination of states that would
not occur normally in TCP.

The proxy must not disturb the end-to-end flow of TCP control and signaling
information. It should never try to anticipate the actions of a host. Specifically, a
proxy must not originate any segment containing a SYN, RST, URG or FIN flag;
these flags only meaningful in a host-to-host context. The proxy should correctly
relay all TCP header information sent by the end host, including special flags,
lest it affect application behavior in unpredictable ways.

The congestion control algorithms used on networks outside the ones shielded
by the PEPs must not be more aggressive than TCP. Thus a connection from a
proxy to a host must maintain the conservative approach of TCP. Otherwise
installing the PEPs could cause unfairness to other flows and lead to network

instability.

3.2.1.2 Robustness

The Internet is a robust system - the hosts and the network are each resilient to
failures of the other. Data can be transparently routed around failures in the
network without causing active TCP connections to fail. Similarly, network
nodes can quickly recover from the effects of a host failure - router buffers used
up by connections to or from that host are quickly freed up, as the packets are
transmitted downstream. A proxy must maintain this characteristic. It must also

deal gracefully with asymmetric routes and with route changes during the
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lifetime of a connection.

A truly transparent proxy should not exercise stricter admission control
policies for packets than an IP router would. Violating this requirement might
create a “black hole” situation wherein the endpoints of a connection would
completely lose connectivity even though a link existed between them. The proxy
should also be able to detect host failures and reclaim resources committed to the
associated connections.

Additionally, if the proxy modifies the TCP stream on some set of links, it
must be designed to prevent this modified stream from leaking into the larger

Internet, and to minimize undesirable effects in case this happens.

3.2.1.3 Security Issues

The proxy should avoid weakening the security of the end-to-end TCP
connection - it should not make attacks such as sequence number spoofing
attacks easier than they would be in the absence of the proxies. The proxy must

also be able to withstand attacks directed against itself.

3.2.1.4 TImplementation And Performance Issues

The most important issues in a proxy implementation are configurability,
scalability, performance and efficiency.
The proxy should be flexible - an administrator should be able to control its

behavior as much as possible. For example, telnet streams do not gain much from
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connection splitting - it should be possible to configure the proxy to simply
forward such streams without acting on them. The ability to turn splitting “on”
or “off” on certain interfaces, or for connections to or from certain hosts or
networks, would also be desirable.

The proxy should be capable of maintaining high rates of data transfer under
a wide range of conditions, and should be capable of scaling smoothly to large
numbers of TCP connections. It should have fallback mechanisms for cases when
it is temporarily overloaded, so that it can ride out temporary spikes in its
workload.

The proxy must be computationally efficient. The operation of the proxy
should be as simple as possible, and preferably not more complex than that of a

typical TCP implementation.

3.2.2  Specific Issues and Discussion

3.2.2.1 Choice of Protocol

As remarked earlier, with reference to Figure 3.1, the connection segment
between G1 and G2 can use any protocol, as long as the proxies can translate
this protocol back to TCP for the benefit of the hosts. In our implementation, we

chose to use TCP on this segment as well for a number of reasons:

e TCP provides a flexible and extensible framework for alternative protocols.

TCP options can be negotiated at connection setup, and all TCP
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implementations are required to ignore any options they do not recognize.
Thus if we want to run a different protocol on proxy-to-proxy links, we can
set up the proxy to always negotiate this by setting a special TCP option
during connection setup. If we are communicating with another proxy, it
will accept this option; otherwise it will ignore the option. Since this
process can be done during the three-way handshake, it does not add any
appreciable overhead (except perhaps for a small processing delay). Thus
the proxy becomes self-configuring, and can also be used in all the

topologies of Figure 3.3 without any modification.

If one of the proxies fails or is overloaded, the system will still work, as the
other proxy will discover that it is communicating with a host and adapt
accordingly. For example, in Figure 3.1, assume the proxy at G2 fails (but
G2 is still functioning as an IP router). Then if H1 originates a connection
request, the end-to-end connection will be split into two segments instead of

three (namely, H1-G1 and G1-H2) and data transfer will proceed normally.

If due to some reason a packet gets routed around one of the proxies, it is
still in a format that a host can understand; thus connectivity is not lost
when routes change and the proxy can no longer perform protocol

translation.

Protocol translation at the proxies is simplified. The TCP header

information is passed through unchanged, so it does not need to be
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reconstructed at the second proxy.

In sum, we use TCP over the satellite link mainly as a data format.
Alternative flow control or congestion control methods can still be negotiated at
connection setup, and any extra information required by these methods can be

conveyed as TCP options, at any stage during the lifetime of the connection.

3.2.2.2 Connection setup

By default our proxy does not perform admission control for TCP connections.
However, it can be configured to do so. When performing admission control, if a
connection is rejected, an ICMP message is returned to the originating host.
Using RST messages to perform this function (as some commercial proxy
implementations do) violates the semantics of the RST flag.

When a proxy receives a connection request (SYN) for a new TCP
connection, it makes an entry in an internal cache and sends a similar SYN
downstream. This new request has the same sequence number but has enhanced
TCP options added to it. Once this SYN is acknowledged by the remote host the
proxy returns an acknowledgment to the originating party (Figure 3.2). If no
response is received for a specified interval, the entry is removed from the cache.

If at any stage in the above process the proxy does not have the resources to
set up connection splitting, the SYN (or SYNACK) is simply forwarded. This

way the end-to-end TCP connection will still be completed end-to-end, though it
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may not perform as well as connections for which splitting was successful. This
method is used by the proxy to reduce its workload when necessary.

Retaining sequence numbers on TCP segments avoids problems with
asymmetric routing. If we change the sequence number on a SYN and the
SYNACK bypasses the proxy, the acknowledgment will be invalid and the
originating host will abort the connection with an RST. Another reason for
maintaining the sequence numbers is that the randomness of the initial sequence
number is a sort of security measure which prevents some security attacks in TCP
[16]. By altering it we may make it more predictable, thus weakening its security.

The proxy will not retransmit a SYN for which no response has been received,
unless a retransmitted SYN is received from the originating host. Again, this is
to allow for asymmetric routing. Consider the network topology of Figure 3.1,
and assume that there is another route (not shown) from H2 to H1 that does not
pass through P1 and P2. Suppose Host H1 sends a SYN. The SYN propagates to
host H2, which returns a SYNACK that bypasses P1 and P2. This SYNACK is
valid when it is received by H1, and this host starts sending data. Now if a proxy
keeps retransmitting the SYN, H2 keeps responding with acknowledgments, none
of which the proxy sees. This creates unnecessary network traffic.

There are many reasons for delaying the SYNACK from the proxy until a

SYNACK is received from the remote host:

e Returning a SYNACK too early could lead to an “impossible” combination
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of states in the hosts. If the SYNACK reaches the originating host before
the SYN reaches the destination, the origin TCP will be in the
ESTABLISHED state, which is a synchronized state, while the destination
TCP will be in the CLOSED state, which is an unsynchronized state. This
would lead to problems if the proxy failed, or if subsequent packets were

routed around the proxy.

e It is a violation of the end-to-end semantics of the SYNACK. In the
Internet, when a host receives a SYNACK, it infers that the remote host
exists and is ready to receive data. Therefore a proxy must return a
SYNACK only when it can reasonably take responsibility for delivering any
data received on the connection to its destination, i.e. when it is sure that

the destination host exists and will accept the connection.

e When a proxy returns a SYNACK, the originating host can start sending
data. A malicious party could use this fact to launch a denial-of-service
attack against the proxy. By sending a large number of SYN segments with
bogus destination addresses and following them up with large amounts of
data, the attacker could use up all the memory at the proxy, thus

preventing other users from getting any service.

The cache of SYN requests prevents an attack similar to the above in the
reverse direction. In the absence of such a cache, an attacker can send large

numbers of SYNACKSs with bogus source and destination addresses and follow
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them up with data, thus exhausting all the memory on the proxy. If it were not
for this consideration, the cache would be unnecessary, as all the information

required to set up connection splitting can be deduced from the SYNACK.

3.2.2.3 Data Transfer

The proxy preserves the TCP sequence numbers on data passing through it. If
sequence numbers are not preserved and if a packet somehow gets routed around
the proxies due to a routing change or a proxy failure, this packet will probably
be outside the window when it arrives at the receiver, and the receiver will
generate an ACK and drop the packet. This would cause silent data loss. A
second argument against changing the sequence numbers is that it puts hard state
in the network - in case of a system crash at the proxy, the state information
required to do the sequence number translation would be lost, and the connection
would be irrecoverable even if a link existed between the communicating hosts.

The proxy also preserves URG flags and URG pointers, if any are present, to
preserve the end-to-end semantics of this flag.

From the point of view of congestion control, splitting an end-to-end TCP
connection into multiple connections is equivalent to breaking one feedback loop
into multiple smaller loops. In order to achieve the same effect as end-to-end
congestion control, we implement mechanisms to allow the different connection
segments to sense and adapt to congestion on other segments. These are

discussed in later chapters.
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3.2.2.4 Connection Closing

When a host TCP has no more data to send, it sends a segment with the FIN
flag set, signifying that it is closing its half of the full-duplex connection. When
both hosts have sent a FIN and had it acknowledged, the connection is closed.
Thus a proxy cannot generate a FIN because it does not know when a host has
finished sending data.

Strictly speaking, to ensure that the hosts are never in a combination of
states not permitted in TCP, the proxy would have to delay acknowledging a FIN
until it has been acknowledged by the remote host, as it does in the case of a
SYN. However, the situation here is somewhat different than for the SYN.
Firstly, there is no way for the application to know through the TCP API when
the FIN has been acknowledged, whereas an application can ascertain if the SYN
exchange has been completed. Thus any application that needs to know if a
transfer has completed successfully must implement its own application-layer
acknowledgment mechanism - FTP is an example of this behavior. Secondly, the
sender now has an estimate of the round-trip delay of its connection segment,
and will retransmit the FIN unless it receives an acknowledgment in this time,
creating unnecessary network traffic. Due to these differences, our
implementation acknowledges a FIN as soon as it is received.

Different TCP implementations behave differently when in the TIME-WAIT

state, especially with regard to incoming SYN packets. Some implementations
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accept a new connection which has the same source and destination addresses
and port numbers as one in TIME-WAIT, reusing the data structures associated
with the old connection. Other stacks drop all packets received on a connection
in TIME-WAIT, including SYN packets. Our proxy respects the decision of the
end system in this matter. Connections are never placed in TIME_WAIT; their
state information is destroyed as soon as the full-duplex close has been
performed. This also makes the implementation simpler, as it avoids the need to

keep a TIME_WAIT timer for the connection.

3.2.2.5 Errors and Exceptional Events

If a pair of hosts uses IP-level encryption, such as IPSEC, between them, the
proxy does not have access to the TCP header, and so cannot extract the
information needed to set up connection splitting. In this case the proxy forwards
the packets, and does not attempt to split the connection.

If the proxy receives a TCP segment on a connection for which it has no state
information, it simply forwards the segment. This segment may belong to a
connection that was using another route and whose route has now changed, or it
may belong to a connection for which connection splitting could not be set up
due to the proxy being overloaded at the time. Alternatively the segment may
belong to a connection that was set up before the proxy was activated. Yet
another possibility is that the segment belongs to a connection for which splitting

could not be set up due to asymmetric routing, as described earlier.
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If the proxy receives an RST segment on a connection, it will forward the
RST and destroy all data and state information associated with that connection.
Since RSTs are used only in exceptional circumstances, and indicate that an
irrecoverable error has occurred, continuing to send queued data would merely

waste network resources as the data will be dropped at the destination anyway.
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Chapter 4

Proxy Implementation

4.1 Overview

Our implementation of the TCP connection splitting proxy consists of the

following components:

Minor patches to the Linux kernel to fix various TCP bugs, export some
symbols and to bypass unnecessary processing for sockets created by the

proxy module.

A loadable kernel module for the proxy functionality.

A script for starting up and shutting down proxy operation, as well as

setting various parameters at run time.

A utility for obtaining profiling information about the proxy module. The
proxy module includes a profiling facility which uses the cycle counter on
the Pentium microprocessors to gather highly accurate data on the time

taken to complete each of its function calls.
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e Miscellaneous documentation files.

The proxy is implemented as kernel code for efficiency; this avoids the
overhead of extra data copies and context switches, and it allows us to take
advantage of the TCP/IP code already present in the kernel. Implementing the
proxy as a loadable module allows us to develop it separately from the kernel
itself, and simplifies its testing and use.

Our first implementation used version 2.1.36 of the Linux operating system.
The proxy was implemented as an IP protocol handler. This was considered the
best option available at the time, but it had the disadvantage that the proxy
module also had to duplicate the IP forwarding functionality included in the
Linux kernel.

When this version was being tested, version 2.1.95 of the Linux kernel was
released, and further development of the proxy was moved to this version. The
proxy now uses the firewalling capabilities of Linux; this new architecture
eliminates the duplication of functionality between the proxy module and the
kernel. The current version of the proxy module uses the kernel TCP and IP
routines whenever possible, and only includes the minimal functionality required
for connection splitting. Thus the design is compact and efficient - the module
code requires less than 10 Kilobytes of memory, and adds no more than a few

hundred clock cycles to the processing time of a packet.
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Much of the operation of the proxy can be controlled using the Linux firewall
administration tools. Thus the proxy can be configured with rules to select the
TCP connections on which to carry out splitting. For example, we could set up
the proxy not to carry out connection splitting on telnet connections, as these do
not benefit much from connection splitting. A special class of rules known as
accounting rules can be used to gather statistics on specific connections or groups
of connections. The proxy can be dynamically reconfigured to collect statistics on
any group of connections in this manner.

The proxy module also provides an interface for setting some internal
parameters during its operation. These parameters are discussed in a later
section. Finally, the module includes facilities for accurately profiling various
parts of its execution, so that the actual processing time taken to perform various
actions can be determined.

During the implementation, four bugs in the Linux kernel were found and
fixed. Two of these related to the handling of zero-window probes and other
out-of-window data fragments, one related to the handling of received SACK
blocks, and one affected duplicate ACK counting when SACK was enabled.
These bugfixes were merged into the mainstream Linux kernel, and were
incorporated in version 2.1.126.

Our current implementation of the proxy runs on the Linux operating system,
kernel version 2.1.95 (with the above bugfixes added). The implementation uses

TCP, enhanced with timestamp, window scaling and SACK options, as well as

40



the FACK [17] congestion control algorithm and an increased value for the initial

congestion window during connection startup.

4.2 Program Flow

The following sequence of events takes place when a packet is received at one of

the proxies:

1. The interface card raises a hardware interrupt, causing Linux to execute

the appropriate interrupt handling routine.

2. The interrupt handler performs a few basic functions, usually related to
transferring data from the interface card to memory, schedules a software
interrupt (also known as an interrupt bottom half) and exits. This is
because further interrupts are disabled during the execution of the

interrupt handler, so it must be very fast in order to avoid losing interrupts.

3. The bottom half is scheduled by the OS kernel in such a way that atomicity
is ensured - specifically, once a bottom half is scheduled, no other instance

of the same bottom half handler can execute until it completes.

All TCP/IP processing, including the proxy module, is done within the
bottom half handler. The bottom half handler first performs appropriate link
layer protocol processing (for example, removing the Ethernet header after

verifying the checksum). Then it begins the IP processing.
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First the IP checksum is verified and any necessary defragmentation
performed by the kernel. Then the packet is checked against a set of input
firewall rules. If it is rejected by any of these rules, the packet is discarded and
processing ends. Otherwise the destination address of the packet is checked. If
the packet is bound for the local machine, it is delivered to the appropriate
higher-layer protocol for further processing.

If the packet is not destined for the local machine, it is checked against a
series of forwarding rules. Each rules is checked in order of priority. The proxy
module defines a medium-priority forwarding rule. This setup allows for
higher-priority rules which might elect to forward the packet without performing
connection splitting, and also allows for lower priority rules which can take
appropriate actions on packets not processed by the proxy module. Once the
proxy module receives a valid packet, it performs various TCP-level functions on
it, and when this processing is completed the bottom half handler exits. If
unexpected errors are encountered or system resources are unavailable for
processing, the packet is skipped and handed down the firewall rule chain. In this
case the packet will usually be forwarded (if it passes the output firewall rules),
thus completing the bottom half processing.

A simplified flow diagram of the proxy module is shown in Figure 4.1. This
diagram does not include the monitoring and profiling facilities present in the
module. It also does not show the various parameters that can be set when the

module is running. The functional units are described below.
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Figure 4.1: Functional flow diagram of proxy module.

e Filter invalid packets. Corrupted packets and other invalid requests are

detected and filtered out.

e Protocol switch. TCP packets are separated from non-TCP packets.

Non-TCP packets are handed down the forwarding firewall chain.

e Connection demultiplexing. A connection corresponding to the packet is
searched for. If none exists and the packet is not a SYN, the packet is
forwarded on the firewall chain. If a connection exists, the packet is
delivered to the appropriate queue for processing by the kernel TCP
functions. If the packet is a new SYN, data structures for handling a new

connection are set up.
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e Connection setup processing. If the packet is a SYN, it is added to the
cache of pending SYN requests. If it is a SYNACK and matches a pending
SYN, data structures are set up to handle the new connection and a
SYNACK is relayed on. Otherwise the packet is handed down on the

firewall chain.

e (Queue management. If there is too much data already queued and pending

on this connection, the packet is dropped without acknowledgment.

e Data receive. The packet is acknowledged and queued for downstream

transmission.

e Flow control. Data is queued for transmission if there is a window available
on the downstream connection segment. Otherwise it is left in the receive
queue. This gives rise to a back-pressure effect, which allows congestion

information to propagate upstream.

e Data transmit. Data is sent downstream with appropriate TCP options

added.

In our first implementation we used very simple schemes for queue
management and flow control. During the lifetime of a connection, the
“back-pressure” algorithm described above is used for flow control; incoming
segments on the upstream connection are served at a rate that matches the rate

of transmission on the downstream connection. Thus when the downstream path
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gets congested, the offered window on the upstream connection reduces
correspondingly, and congestion information is propagated back to the sender.

However, the above scheme leads to very long queues, and may cause
occasional stalls when the buffer on a proxy fills up. Therefore an additional
mechanism is used to limit the size of the buffers at the gateways. If data is
arriving on a connection at a much higher rate than it can be sent out, and if a
large enough amount of data is already buffered for that connection, then an
arriving packet is discarded without acknowledgment. This causes the sender to
retransmit the segment and reduce its congestion window, and so keeps the
buffers small without appreciably affecting end-to-end throughput. The
implementation is careful not to drop more than one packet per window, to avoid
causing serious performance degradation.

The threshold for dropping a segment in this way was set to the larger of half
the receive window on the upstream segment and twice the congestion window on
the downstream segment. This choice of threshold was motivated by the
observation that in our setup, most of the queueing was happening at the
satellite uplink. Therefore, using this threshold ensured that data transfer would
never be interrupted for lack of data (as the upstream link, which had a much
shorter round trip delay, would recover quickly and supply the data in time). In
our implementation, once a packet is dropped, no more packets are dropped until
a retransmission of the dropped packet has been received. This ensures that the

upstream sender can recover from the loss using fast retransmit and so avoids a
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TCP timeout.

This scheme gave us good results in our test setup. Stalls were eliminated,
and shorter queue lengths were observed. However, this is not a general solution
and certainly not an optimal solution - it reduces memory requirements by half,
but it does not change the fact that the total memory requirement increases
linearly with the number of active connections. We discuss flow control and

memory issues further in Chapter 6.

4.3 Limiting Factors

We now look at some of the factors that limit the capacity of the proxy in terms
of the number of connections and the bandwidth it can handle. In this discussion
we leave out factors that are common to IP routers, such as interrupt service
latency and link-layer protocol processing.

In order to perform splitting, the proxies must perform IP fragment
reassembly. This is done by the IP firewalling code - firewall rules are applied to
whole IP packets. Fragment reassembly is a complex operation that may require
an extra data copy, and therefore can limit the maximum bandwidth handled by
the proxy. However, IP fragmentation in the Internet is rare, since most current
TCP implementations use path MTU discovery. Most hosts that do not perform
path MTU discovery use the default MTU of 576 bytes, which is small enough to

avoid fragmentation in nearly all cases. In our testing, which involved hosts
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running five different popular operating systems, no fragmentation was observed.

The data structures required for connection splitting are stored in a static
hash table. This can slow down lookup operations when the number of
connections becomes large enough that a sizeable number of hash collisions begin
to occur. This was not found to be a significant limitation for the link speeds at
which our tests were carried out, because sufficient processing power was
available to handle each packet. At higher link speeds this might be a significant
constraint.

Running the proxy module was also found to increase the IP processing time
(even for non-TCP traffic) in some cases. This is because when the gateways are
working as IP routers, the IP forwarding rules are all present in cached memory.
However, connection splitting requires the proxies to perform frequent lookups of
TCP connections, which are represented by bulky data structures that may not
all fit in cache. The increased probability of cache misses mainly increases the
variance of IP processing times. We observed this effect while profiling the proxy,
but it was not easily repeatable and so proved difficult to quantify.

The biggest constraint on the proxy is the large amount of memory required
for the TCP transmit and receive buffers of the different connection segments. In
the absence of efficient flow control algorithms, memory usage grows linearly with
the number of concurrent connections. An associated problem is that brief stalls
can occur in the data transfer whenever the receive buffer on a connection

segment fills up, making the proxy advertise a zero window on its upstream
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connection. Such stalls have also been reported earlier in the literature [18]. In

our testing we found various reasons for these stalls.

e The Linux TCP implementation had bugs that caused incorrect handling of

zero window probes and a failure to send window updates correctly.

e TCP generates ACKs containing window updates in response to zero
window probes, but these are spaced at long and increasing intervals, so

feedback to the sender about window opening is often delayed.

o If the zero window condition persists for a long period, then that TCP
connection must restart from idle [5], i.e. reduce its congestion window to
one segment and enter slow start. This causes a period of very slow data

transfer, which appears similar to a stall.

e Stalls were more frequent when adjacent connections had drastically
different round trip times. If there was congestion on a low-delay connection
which was being fed by a long-delay connection, a stall would be much more
likely to occur, as the low-delay connection would quickly drain the backlog

in its buffers before the high-delay connection could start sending new data.

The first two problems can be eliminated by fixing the bugs and ensuring that
the proxies generate prompt and correct window updates. However, the last two
problems point to the need for a better flow control mechanism at the proxies,

which prevents the zero window condition from occurring very often and which
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maintains a smooth flow of data through the proxies. Such a flow control scheme
would also reduce average queue lengths and hence memory requirements at the

proxies.

4.4 Parameter tuning issues

4.4.1 Proxy parameters

The following parameters can be configured for the proxy module:

1. Send buffer size: This is the maximum size that can be allocated for the
send buffer on a single TCP connection. For all the tests reported here, this
was set equal to the product of the bandwidth and round-trip delay of the

satellite link.

2. Receive buffer size: This is the maximum size that can be allocated for the
receive buffer of a single TCP connection. For the tests reported here this
was set to the product of the bandwidth and round-trip delay of the

satellite link.

3. Default congestion window: This is the initial value of congestion window
used on TCP connections over terrestrial and low-bandwidth satellite links.

In all our tests this was set equal to one segment.
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4. Higher congestion window: This is the initial value of the congestion
window used on TCP connections over high bandwidth-delay product links.

We tried values of one, four and sixteen segments.

5. Use of packet dropping for flow control: This determines whether the
proxy’s queue management algorithm, which uses packet drops to slow
down the sender during periods of congestion on the downstream link, is

used. Packet dropping was enabled during all the tests reported here.

The settings of these parameters have a significant effect on TCP
performance. In particular, the send and receive buffer sizes should be set at
least as large as the bandwidth-RTT product of the satellite link, otherwise the
TCP on the proxies may be window-limited, leading to lower throughput.

When a TCP connection is set up, an estimate of round-trip delay is used
along with any past knowledge of bandwidth usage on that route to calculate the
initial offered window. If the other endpoint of the connection supports window
scaling, then a suitable window scaling factor is chosen for the connection. If the
initial offered window is large enough that the window scaling parameter is
nonzero, then the higher congestion window is used on this connection, otherwise
the default congestion window is used. This has the benefit of reducing startup
times on connections with high bandwidth-delay products.

Therefore the default congestion window should be kept at one segment; it

should definitely not be increased beyond four segments as this would risk
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increased congestion for no real benefit. The higher congestion window can be set
as high as desired, depending on the bandwidth-delay products expected from
the network. However, setting it to very large values may cause congestion if a
large number of connections are using the satellite link. The duration of slow
start is reduced by one round trip each time this value is doubled; this fact, along
with an estimate of the average traffic patterns on the link, can be used to decide
an appropriate value for this parameter.

The use of the queue management policy appears to reduce the amount of
queued data at the proxies without noticeably affecting throughput in our setup.
However, its use can cause problems with hosts that do not implement the fast
retransmit algorithm. When such hosts encounter a packet loss, they incur a
TCP timeout, and so do not send any data for a significant length of time (the
exact duration depends on round-trip time estimates). The proxy is then unable
to fully utilize the send window on the downstream link, and throughput for the
connection is reduced. Almost all servers in the present-day Internet implement
the fast retransmit algorithm; it is part of the TCP Tahoe implementation, which

is estimated to account for the majority of Internet hosts.

4.4.2 External effects

In our setup, two Cisco 1600 routers were used to convert the Ethernet frames

output by the proxies to a serial format for transmission over the satellite link. If

o1



the queue sizes on these routers were not configured large enough, many packets
were dropped at the routers. This reduced the throughput as the congestion
window was restricted to small values.

This effect is not directly attributable to the proxies. It is due to the fact that
when a TCP segment is dropped due to congestion, it takes at least one round
trip time for the sender to detect the loss and reduce its transmission rate. If
during this time more packets are dropped, then the sender may suffer multiple
losses within the same window, and may be unable to recover without a timeout.
Configuring the router buffers to be roughly as large as the bandwidth-delay
product of the satellite link appeared to reduce the loss rates to acceptable levels
in all the cases we tested.

The behavior of the system with bit errors on the satellite link showed some
limitations of TCP. At low error rates with uncongested links, the congestion
window on the satellite link can grow quite large. However, when a single packet
is lost due to bit errors, the congestion window is halved, and TCP enters
congestion avoidance. In this case the link is underutilized for a long time, until
the congestion window can grow back to its former value. Throughput decreases
appreciably, even at moderate BER values.

At higher error rates, when the rate of errors is close to one error per round
trip, the congestion window is halved very frequently, even when the fast
recovery algorithm [5] is used. TCP throughput degrades very sharply at this

point. These effects are explored in the next chapter.

52



Chapter 5

Performance of Proxy Implementation

5.1 Single TCP Connection

5.1.1 Test methodology

The test configuration is shown in Figure 5.1. The proxy module was run on a
pair of Pentium PCs clocked at 166 MHz. The server host was a PC running
Microsoft Windows NT Workstation 4.0 with the default TCP/IP parameters,
and the client host was running Microsoft Windows 95 with the default
parameters. We used the F'TP server and the HT'TP server from the NT Peer

Web Services software. The client for the FTP testing was the standard FTP

Router Router
(Cisco 1602) (Cisco 1602)

.

)

Server Gateway Channel simulator Gateway Client
Pentium PC Pentium PC (Adtech) Pentium PC Pentium PC
Windows NT 4.0 Linux 2.1.95 Linux 2.1.95 Windows 95
Gateway module Gateway module

Figure 5.1: Test configuration. The proxy module was run on the two gateways.

93



client supplied with Windows 95, while the HTTP client was Netscape
Communicator 4.05. Tests were carried out using a data channel simulator to
simulate the satellite channel, as well as over a commercial Ku band satellite link.
We measured throughput for single FTP connections using different file sizes,
with different data rates, delays and error rates on the simulated satellite link,
with no other traffic on the link. Various combinations of the following parameter

values were used:

File sizes: 10 KB, 100 KB, 1000 KB, 10000 KB, 100000 KB

Link rates: 384 kbps, 1.536 Mbps, 8 Mbps

One-way link delay: 0, 250 ms

Bit Error Rates: 0, 1079, 1078, 1077, 1076

To provide a baseline for comparison, identical tests were carried out with
connection splitting disabled on the proxy machines.

HTTP tests using different kinds of webpages were carried out over the same
range of link rates and delays. In this case we measured the total time required
to load a page. Throughput is not meaningful in this situation, since the
request-response mechanism of HT'TP causes unavoidable periods of zero link
utilization.

Three webpages were used for testing:
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o Test Page 1 comprised an HTML document of 356 bytes, which referred to

one image of size 391 KB.

e Test Page 2 comprised an HTML document of 1.7 KB, which referred to 16
images with sizes varying from 19 KB to 100 KB. The total size of the

images was 669 KB.

e Test Page 3 comprised an HTML document of 1.6 KB, which referred to 16

small images of nearly equal sizes, with total size 262 KB.

It can be argued that these tests are quite simplistic and do not reflect
real-life situations. However, they do represent important benchmarks, and serve
to establish some basic capabilities of the proxies. More realistic situations are

explored in the next section.

5.1.2 Results - Simulated Satellite Channel

Test results for FTP transfers are presented in Table 5.1, Table 5.2, Table 5.3
and Table 5.4.

Figure 5.2 shows the degradation of TCP performance when delay and errors
are added to a link. The end-to-end TCP transfer is limited to a constant
maximum transfer rate, independent of link bandwidth, by the fact that its
offered window is restricted to small values. Thus link utilization decreases with
increasing link bandwidth. The connection splitting approach, which uses much

larger window sizes on the satellite link, yields better throughput, and always
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End-to-end | Proxy, IW=1 | Proxy, IW=4 | Proxy, IW=16

Line |File size Thro- Thro- Thro- Thro-
rate | (KB) | Time |ughput| Time |ughput| Time [ughput| Time |ughput
(kbps) (s) |(KB/s)| (s) [(KB/s)| (s) |(KB/s)| (s) |(KB/s)
384 10| 0.22| 46.55| 0.22| 46.55| 0.33] 31.03| 0.22]| 46.55

384 100| 2.36| 43.39| 2.20| 46.55| 2.20| 46.55| 2.20| 46.55
384 1000| 22.41| 45.69| 22.57| 45.37| 22.58| 45.35| 22.52| 45.47
384 10000(224.42| 45.63|229.42| 44.63|225.91| 45.33|229.42| 44.63
1536 10/ 0.06| 170.76| 0.16| 64.00f 0.22| 46.55| 0.16] 64.00
1536 100| 0.66| 155.15] 1.15| 89.04| 0.49| 208.98| 0.49| 180.50
1536 1000| 5.55| 184.50| 5.99| 170.95| 5.76| 177.58| b.77| 177.47
1536 10000| 56.30| 181.88| 57.18| 179.08| 56.41| 181.53| 56.36| 181.69
1536| 100000|562.16| 182.15
8000 10/ 0.02| 513.19| 0.17| 60.24| 0.16| 64.00f 0.17] 60.24
8000 100 0.55| 186.18| 0.44| 232.73| 0.33] 310.30| 0.39| 262.56
8000 1000 1.98| 517.17| 1.26| 812.70| 1.49| 687.25| 1.32| 775.76
8000 10000| 19.39| 528.11| 12.41| 825.14| 12.08| 847.68| 12.09| 846.98
8000| 100000|190.48| 537.59{123.09| 831.91{120.56| 849.37|120.40| 850.50

Table 5.1: FTP test results for simulated channel with channel simulator set to
zero delay and zero BER.
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End-to-end Proxy, IW=1 | Proxy, IW=4 | Proxy, IW=16

Line |File size Thro- Thro- Thro- Thro-
rate | (KB) | Time [ughput| Time |ughput| Time |ughput| Time |ughput
(kbps) (s) [(KB/s)| (s) [(KB/s)| (s) |[(KB/s)| (s) |(KB/s)
384 10 1.70 6.02| 1.70 6.02| 1.71 5.99| 1.70 6.02

384 100 8.68| 11.80| 4.01| 25.54| 4.07| 25.16| 4.01| 25.54
384 1000 79.92 12.81| 25.87| 39.58| 25.86| 39.60| 25.87| 39.58
384| 10000| 787.80| 13.08]251.01| 40.80(243.43| 42.07|238.87| 42.87

1536 10 1.54 6.65| 1.54 6.65| 1.04 9.85| 0.60 17.07
1536 100 7.58| 13.51| 3.68| 27.83| 2.19| 46.76| 1.27| 80.63
1536 1000 68.38| 14.98| 9.34| 109.64| 7.86| 130.28| 6.97| 146.92
1536 10000| 672.78| 15.22| 59.81| 171.20| 58.17| 176.04| 57.28| 178.77
1536 100000|7017.45| 14.59

2048 10 1.60 6.40| 1.54 6.65| 1.05 9.75| 0.55| 18.62
2048 100| 10.66 9.61] 3.63| 28.21| 2.64| 38.79| 1.21| 84.63
2048 1000| 67.45| 15.18| 8.07| 126.89| 6.64| 154.22| 5.77| 177.47
2048| 10000| 663.00| 15.44| 46.19| 221.69| 44.27| 231.31| 43.40| 235.94
2048| 100000 425.83| 240.47

8000 10 1.60 6.40) 1.54 6.65| 0.99| 10.34| 0.55| 18.62
8000 100 8.19| 1250 3.52| 29.09| 2.09| 49.08| 1.10| 93.09
8000 1000{ 65.53| 15.63| 5.93| 172.68| 4.50| 227.56| 4.07| 251.60
8000 10000| 644.22| 15.90| 15.82| 647.28| 13.84| 739.88| 15.00| 650.00
8000| 100000 130.45| 784.98(122.26| 837.56|123.20| 831.70

Table 5.2: FTP test results for simulated channel. Delay=250 ms each way,
BER=0.
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End-to-end Proxy, IW=1 | Proxy, IW=4 | Proxy, IW=16

Line |File size Thro- Thro- Thro- Thro-
rate | (KB) | Time [ughput| Time |ughput| Time |ughput| Time |ughput
(kbps) (s) |(KB/s)| (s) |[(KB/s)| (s) |(KB/s)| (s) |(KB/s)
384 10 1.94 5.28| 1.70 6.02| 1.76 5.82| 1.70 6.02

384 100| 16.09 6.36| 4.72| 21.69| 4.61| 22.21| 4.94| 20.73
384 1000| 105.34 9.72| 30.04| 34.09| 31.58| 32.43| 37.18| 27.54
384| 10000|1032.98 9.91|296.98| 34.48|299.34| 34.21|293.03| 34.95

1536 10 1.54 6.65| 1.54 6.65| 1.04 9.85| 0.60 17.07
1536 100 10.71 9.56| 3.74| 27.38| 2.59| 39.54| 1.49| 68.72
1536 1000| 111.39 9.19| 19.83| 64.48| 11.10| 92.25| 11.59| 88.35
1536 10000|1039.68 9.85(101.28| 101.11|110.34| 92.80(100.24| 102.15

8000 10 1.54 6.65| 1.54 6.65| 1.05 9.75| 0.55| 18.62
8000 100 8.18| 1252 3.68| 27.83| 2.09| 49.08| 1.10| 93.09
8000 1000| 119.73 8.55| 8.62| 133.16| 8.78| 116.63| 11.70| &87.52
8000 10000|1005.47| 10.18| 84.04| 121.85| 85.85| 119.28| 83.44| 122.72
8000| 100000 869.25| 117.80|715.74| 143.07(832.34| 123.03

Table 5.3: FTP test results for simulated channel. Delay=250 ms each way,
BER=10"5.

Line rate | Bit Error Time | Throughput
(kbps) Rate (s) (KB/s)
384 1079 242.93 42.15
384 1078 242.06 40.39
384 1077 259.25 39.50
1536 1079 58.16 176.07
1536 1078 58.16 176.07
1536 1077 63.33 161.69
8000 107° 15.99 640.40
8000 1078 16.26 629.77
8000 1077 21.75 470.80

Table 5.4: FTP test results for simulated channel. In these tests connection split-
ting was enabled with the proxies using an initial congestion window (IW) of 1
segment. Delay=250 ms each way, BER=0. File size=1000 KB.
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Figure 5.2: Effect of delay and errors on FTP performance. File size=10 MB.

uses a large fraction of link bandwidth. Both approaches suffer significantly from
bit errors, especially at higher link speeds. This is due to TCP assuming that all
losses are caused by congestion.

Figure 5.3 shows the dependence of throughput on the size of the file
transferred. As expected, the end-to-end approach is limited to a constant rate
due to the small size of the window. The proxy approach, which uses larger
windows, does considerably better. As the file size is increased, the cost of low
utilization during slow start is amortized over a longer interval of near-line-rate
transfer, and the utilization improves. This is shown clearly in Figure 5.3(b),
which plots the throughput against the ratio of file size to bandwidth-RTT
product. Clearly, for good performance, the file size should be an order of

magnitude larger than the bandwidth-RTT product.
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The effect of slow start on throughput can be reduced by increasing the value
of the initial congestion window from its standard value of one segment. As
Figure 5.4 shows, this improves throughput at all link rates, but the increase is
appreciable only for medium-sized files at higher link speeds. This is because
each time the initial window is doubled, the slow start phase is shortened by one
round trip. Thus increasing the initial window from one segment to four
segments reduces the duration of slow start by two round trip times, and reduces
the time required for the transfer by at most two round trips. For very large
transfers, this is a small fraction of the total number of round trips required, and
has little effect on average throughput. For small transfers, increasing the
window fails to make any difference beyond a point, since the transfer time
cannot be reduced to less than one round trip time. For medium-sized files (i.e.
those with size approximately equal to the bandwidth-RTT product), the entire
transfer is completed during slow start, so doubling the initial window has a
significant effect.

In other words, doubling the initial congestion window can at most double
the average throughput. However this increase is achieved at file sizes for which
throughput is low to begin with, and not at large file sizes where utilization is
relatively high. Thus increasing the initial congestion window, at least up to sizes
that are small compared to the bandwidth-RTT product, does not change the
essential characteristic of TCP that high link utilization can be achieved only

when the transfer size is an order of magnitude larger than the bandwidth-RTT
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Figure 5.5: Effect of bit errors on FTP performance at different link speeds. File
size=1 MB, delay=250 ms each way. Proxies enabled, IW=1.

product.

Figure 5.5 shows the link utilization achieved by the split-connection system
when bit errors are present on the satellite link. The split-connection system
performs fairly well even at relatively high error rates. This is mostly due to our
use of SACK information and the FACK algorithm on the satellite link.
Throughput is more affected by bit errors at higher link speeds, since the
susceptibility of TCP to errors (in terms of reducing the congestion window)
depends on the number of errors per round trip time and not on the absolute
BER. Figure 5.5(b) plots the throughput as a function of the error rate per round
trip. We see that performance drops sharply when the error rate approaches one

error per round trip, as is characteristic of TCP.
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Table 5.5: HTTP test results for simulated channel. Delay=0, BER=0.

Table 5.6: HTTP test results for simulated channel.

BER=0.

Transfer time (s)

Line rate | Test End-to- | Proxy,
(kbps) | Page | end TCP | IW=1
384 1 9.60 9.60
384 2 16.50 | 17.50
384 3 6.87 7.40
1536 1 3.10 3.06
1536 2 4.85 4.85
1536 3 2.42 2.73
8000 1 1.15 1.35
8000 2 3.78 4.00
8000 3 1.50 1.50

Transfer time (s)

Line rate | Test End-to- | Proxy, | Proxy, | Proxy,
(kbps) | Page | end TCP | IW=1 | IW=4 | IW=16
384 1 32.69 | 1234 | 11.78 11.65
384 2 37.21 | 1272 11.28 11.34
384 3 18.48 | 12.00 | 10.81 12.20
1536 1 28.34 7.37 6.74 6.59
1536 2 3290 | 11.61 | 10.80 10.84
1536 3 16.78 9.30 8.18 7.96
8000 1 27.10 7.05 6.09 4.98
8000 2 30.98 9.87 9.62 8.90
8000 3 16.00 7.91 7.91 7.36
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Test results for HI'TP transfers are presented in Table 5.5 and Table 5.6. In
this case performance is measured by the total time required for each webpage to
load, as measured by a stopwatch. Due to the imprecise nature of this
measurement method, as well as due to the variance introduced by the HTTP
client (which requires a significant amount of time and processing power for its
image manipulation and rendering algorithms), these results are by no means
exact. However they serve very well to illustrate some general trends.

HTTP, like FTP, uses a request-response mechanism, wherein the client
requests one object at a time from the server. However, each FTP transfer
consists of a single file, whereas a single webpage typically consists of several
smaller objects, each of which must be requested separately by the client. Due to
the request-response mechanism, there is an interval of one round trip between
the time that the client finishes receiving an object and the time that it begins to
receive the next object. During this time, there is no traffic on the link except for
the request by the client. Therefore the traffic generated by an HTTP session is
intermittent in nature, with long pauses. These pauses are the major limiting
factor for HT'TP performance over long delay paths, so increasing the link rate or
the initial congestion window does not improve performance. The only way to
overcome this problem seems to be to add request aggregation capabilities to
HTTP.

Figure 5.6 bears out this analysis. HT'TP performance declines markedly with

increasing link delay, and in this case the improvements due to using the proxy,
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Figure 5.6: Effect of delay on HTTP performance for three sample webpages. For
these tests, the proxies were set to IW=1 and the channel simulator to BER=0.
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Figure 5.7: Effect of increasing IW on HT'TP performance over simulated satellite
link on three sample webpages. For these tests, the channel simulator was set to

BER=0.
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End-to-end TCP| Proxy, IW=1 | Proxy, IW=4 | Proxy, IW=16
File Size Through Through Through Through
(KB) | Time put |Time| put Time put |[Time| put
(s) | (KB/s) | (s) | (KB/s) | (s) | (KB/s)| (s) | (KB/s)

10| 1.60 6.40| 1.65 6.21| 1.10 9.31| 0.60 17.07

100| 10.65 9.62| 3.24 31.60| 2.80 36.57| 1.27 80.63
1000| 69.54 14.73| 7.69| 133.16| 6.70| 152.84| 5.87| 174.45
10000 | 683.66 14.98145.31| 226.00| 44.27| 231.31(43.44| 235.73
100000 426.00| 240.38

Table 5.7: FTP test results for Ku band satellite link.

though still large, are not as remarkable as in the case of FTP. Further, as seen
from Figure 5.7, increasing the initial congestion window does not have much
effect on performance, which indicates that the performance is limited mainly by
the request-response delays when the proxy is used. It is worth noting that for
test pages number 2 and 3, the request-response delays contribute 8 seconds (16
round trips of 0.5 second each), which is a major portion of the total loading

delay.

5.1.3 Results - Ku band satellite

Table 5.7 shows the results obtained when the above F'TP tests were repeated
over a commercial Ku band satellite link. The bandwidth of the satellite link was
E1 (2.048 Mbps). During the tests, the satellite modems on the two ends of the
link reported bit error rates of 107% and 4.5 x 107° respectively on the raw

channel. The Reed-Solomon coding used by the modems reduced the error rate
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Transfer 1 Transfer 2
File Size Through Through
(KB) | Time put Time put
(s) | (KB/s) | (s) | (KB/s)

10 | 1.04 9.85 | 1.10 9.31
100 | 2.30 44.52 | 2.20 46.55
1000 | 8.85 115.71 | 10.99 93.18
10000 | 94.26 108.64 | 93.98 108.96

Table 5.8: FTP test results for Ku band satellite link. Two simultaneous identical
transfers.
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Figure 5.8: FTP Performance over Ku band satellite link.

to 102 or better in both directions, and so for all practical purposes the channel
was error-free. Thus the results obtained were very similar to those obtained
with the channel simulator at the same link speed with the BER set to zero.

Figure 5.8(a) shows the variation of throughput with changing file size. As
expected, performance with proxies enabled is much better than with end-to-end
TCP. A simple calculation shows that the bandwidth-RTT product of the

satellite link is approximately 125 KB. We see that performance picks up when
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file size is about an order of magnitude larger than the bandwidth-RTT product,
and that only medium-sized file transfers are affected by increasing the initial
congestion window.

Figure 5.8(b) shows the performance achieved by two identical simultaneous
FTP connections sharing the satellite link. We see that for large enough file sizes,
link utilization is still high, with each of the two connections getting a roughly

equal share of bandwidth.

5.2 Multiple TCP Connections

5.2.1 Test Methodology

A setup similar to the single connection case with the channel simulator was
used. The server and client machines in this case were PCs running Linux. As
before, all links were 10 Mbps Ethernet links, except for the simulated satellite
link, which was an 8 Mbps serial link. The TCP benchmarking tool DBS
(Distributed Benchmarking System, [19]) was used to create multiple connections
between these two machines. In the tests for measuring fairness to flows with
different RTTs, a third machine was used as an additional client. This machine
was also a Pentium PC running Linux connected to the server through a Cisco
7000 series router.

We measured application-level throughput at the receiver for different
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numbers of parallel connections transferring data from the server to the client(s).
Receiver throughput is measured instead of sender throughput because the latter
merely measures how quickly the program could write its data to the TCP send
buffer, and is in no way related to the actual rate of data transfer. All
connections were made before the measurement was started, so that differing
connection setup times did not affect throughput measurements. This was done
using the BEFORE connection mode of DBS.

We measured throughput for transfers of size 10 KB and 100 KB. These sizes
were chosen to approximate the typical size range of HI'TP objects, so that the
measurements would be somewhat realistic. Tests were carried out with the
channel simulator set to 250 ms delay each way. In none of the tests were any bit
errors introduced by the channel simulator. This was done for two reasons:
firstly, the preceding tests show that bit errors do not have an appreciable effect
on performance on typical Ku band satellite channels. Secondly, at the file sizes
we tested, the probability of any single transfer encountering a bit error, even at
relatively high error rates such as 1079, is so low that any results obtained from a
small number of tests would not be statistically significant.

We performed tests with 10, 20, 30 and 40 simultaneous connections. These
numbers were chosen so a wide range of system behavior could be explored. We
know that the total bandwidth-RTT product of the link is 500 kB, or
approximately 343 segments at our chosen MTU of 1500 bytes. Therefore when

10 connections share the channel, the optimal window for each of them is about
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Mean throughput (Mbps) Standard deviation (Mbps)

No. of | End-to- | Proxy | Proxy | Proxy | End-to- | Proxy | Proxy | Proxy
conns. | end TCP | IW=1 | IW=4 | IW=16 | end TCP | IW=1 | IW=4 | IW=16

1 0.0653 | 0.0611 | 0.1015 | 0.2146
10 0.0613 | 0.0581 | 0.0938 | 0.1882 | 0.0002 | 0.0010 | 0.0008 | 0.0044
20 0.0617 | 0.0585|0.0979 | 0.1490 | 0.0004 |0.0006 | 0.0023 | 0.0059
30 0.0609 |0.0580|0.0953 | 0.1374 | 0.0014 |0.0011 | 0.0027 | 0.0059
40 0.0606 | 0.0581]0.0901 | 0.1244 | 0.0016 |0.0011 | 0.0094 | 0.0045

Table 5.9: Throughput for simultaneous TCP connections. Individual transfer
size=10 KB, delay=250 ms each way.

50 kB, and we can expect to see some effects of limited receive window sizes, as
the client and server were using the Linux default window sizes of 32 KB. On the
other hand, when 40 connections share the channel, the optimal window size for
each is around 12.5 kB, or about 9 segments. So at this point we do not expect to
see any effects due to limited receive window sizes; instead we expect to see severe
congestion when we increase the initial window on the proxies to 16 segments.
We note that some of the results shown here, especially for the 10 KB
transfer size, may not be very accurate, due to limits imposed by timer
granularity on the test systems. However, the general trends are quite reliable,

and reveal some interesting insights.

5.2.2 Results - Simulated Channel

Table 5.9 and Table 5.10 shows the results when different numbers of parallel

TCP connections transfer data simultaneously over the simulated link. These
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Mean throughput (Mbps)

Standard deviation (Mbps)

No. of | End-to- | Proxy | Proxy | Proxy | End-to- | Proxy | Proxy | Proxy
conns. | end TCP | IW=1 | IW=4 | IW=16 | end TCP | IW=1 | IW=4 | IW=16
1 0.2222 |0.2644 | 0.3286 | 0.8039
10 0.2168 |0.2517 | 0.3201 | 0.5387 | 0.0023 |0.0034 | 0.0071 | 0.1293
20 0.2017 |0.2127 | 0.2415 | 0.3916 | 0.0037 |0.0133 | 0.0400 | 0.1206
30 0.1170 |0.1496 | 0.2024 | 0.2706 | 0.0292 |0.0370 | 0.0306 | 0.1037
40 0.1030 |0.1519]0.1770 | 0.1971 | 0.0310 |0.0229 | 0.0357 | 0.0452

Table 5.10: Throughput for simultaneous TCP connections. Individual transfer

size=100 KB, delay=250 ms each way.
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Figure 5.10: Throughput for simultaneous 100 KB transfers. Delay=250ms each
way.

results are plotted graphically in Figure 5.9 and Figure 5.10. As expected,
throughput is low for small transfers, as the transfer time is dominated by delays
due to slow start. Even 40 transfers of 10 KB each only represent a total transfer
of 400 KB, which is less than the bandwidth-RTT product of our link, so it is not
surprising that the use of proxies does not help much. Increasing the initial
window makes a large difference to throughput - when IW is increased to
16 segments, the entire transfer can be accomplished in a single round-trip time.
More interesting results are observed for the larger transfer size of 100 KB.
Here each transfer involves approximately 70 segments, which means that,
starting with IW=1, the transfer takes about six round trips to complete, with

the sender’s congestion window growing to 32 segments. Increasing the IW to
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4 segments reduces the transfer time by two round trips, and so yields significant
benefit. Further increasing IW to 16 segments reduces the transfer time by
another round trip, improving throughput even more.

With 40 simultaneous transfers of 100 KB each, the total amount of data
transferred is 4000 KB, which is about an order of magnitude larger than the
bandwidth-RTT product of the link. Therefore it is not surprising that the
proxies perform well. However, it is remarkable that end-to-end TCP does not do
as well, since for this case the optimal window size is only 12.5 KB. A possible
explanation is provided by Figure 5.10(b). These plots show the standard
deviation of the throughput of individual connections in each experiment,
normalized by the mean throughput for connections in that experiment. We see
that when the number of connections becomes large enough for the sum of the
senders’ windows to exceed the path bandwidth-RTT product, the standard
deviation rises sharply. This occurs when the number of connections is about 20
(20 connections, each with window 32, make a total window of 640 segments,
which is slightly less than twice the bandwidth-RTT product of the simulated
satellite link). This indicates that, at least for the transfer sizes and link
parameters involved, the bandwidth sharing mechanisms of TCP do not work
very well when utilization is high. This observation, if true, would indicate that
increasing the IW too much may have harmful effects on throughput.

The measurements in Table 5.11 and Table 5.12, plotted in Figure 5.11 and

Figure 5.12, show how proxies can improve performance by performing localized
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Mean throughput (Mbps) Standard deviation (Mbps)
No. of | End-to- | Proxy | Proxy | Proxy | End-to- | Proxy | Proxy | Proxy
conns. | end TCP | IW=1 | IW=4 | IW=16 | end TCP | IW=1 | IW=4 | IW=16

1 0.0436 | 0.0618 | 0.0885 | 0.1919
10 0.0393 |0.0614 | 0.0923 | 0.2382 | 0.0001 | 0.0003 | 0.0079 | 0.0043
20 0.0436 | 0.0712|0.1230 | 0.2058 | 0.0025 |0.0015 | 0.0081 | 0.0064
30 0.0388 |0.0617|0.1325 | 0.0311 | 0.0098 |0.0043 | 0.0137 | 0.0163
40 0.0322 | 0.0583 | 0.1027 | 0.0302 | 0.0098 |0.0046 | 0.0204 | 0.0240

Table 5.11: Throughput with congested terrestrial link. Individual transfer
size=10 KB, delay=250 ms each way.

Mean throughput (Mbps) Standard deviation (Mbps)

No. of | End-to- | Proxy | Proxy | Proxy | End-to- | Proxy | Proxy | Proxy
conns. | end TCP | IW=1 | IW=4 | IW=16 | end TCP | IW=1 | IW=4 | IW=16

1 0.1546 | 0.2584 | 0.3239 | 0.9274
10 0.1091 |0.2431]0.2087 | 0.3201 | 0.0188 |0.0122|0.1027 | 0.1772
20 0.0877 |0.1268 | 0.1068 | 0.1111 | 0.0320 |0.0371|0.0692 | 0.1092
30 0.0712 | 0.1167 | 0.1091 | 0.0966 | 0.0314 |0.0341 | 0.0467 | 0.0624
40 0.0662 | 0.0948 | 0.0928 | 0.0975 | 0.0358 |0.0304 | 0.0431 | 0.0567

Table 5.12: Throughput with congested terrestrial link. Individual transfer
size=100 KB, delay=250 ms each way.
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Figure 5.11: Throughput for 10 KB transfers with congested terrestrial link. Con-
gested link is downstream of satellite link, which has delay=250 ms in each direc-

tion.
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error recovery. During these tests, two simultaneous flood pings were carried out
from the client host to its adjacent proxy, alongside the TCP transfers. A flood
ping consists of ICMP Echo Request messages sent from one machine to the other
100 times a second or as fast as Echo Response messages are received by the
sender, whichever is greater. We used Echo Request messages with 1472 bytes of
data, so that the final IP packets containing these messages were exactly 1500
bytes long, i.e. sized equal to the Ethernet MTU. This arrangement simulates
congestion on the terrestrial link, making it the bottleneck instead of the satellite
link. As expected, the proxies perform better, since any packets dropped due to
congestion can be retransmitted locally without traversing the satellite link.

In this case, increasing IW does not help much; it may even be harmful for
throughput, though our data are not clear enough to say for certain. It is worth
noting that with increased IW the standard deviation of throughput among
simultaneous connections becomes very large, and of the order of the mean
throughput.

For the experiments in Table 5.13, a third host was used in addition to the
setup in the preceding tests. This machine was connected to the server by
Ethernet through a Cisco 7000 router, and served as an additional client host. In
each case, half the total number of transfers (referred to as set L, for low delay)
were to this additional client while the rest (set H, for high delay) were to the
client on the other side of the simulated satellite link. Thus the only link

common to set L and set H was the Ethernet link connected to the server.
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Total Mean throughput (Mbps) Standard deviation (Mbps)

no. of |Set| End-to- | Proxy | Proxy | Proxy | End-to- | Proxy | Proxy | Proxy

conns. end TCP |IW=1|IW=4|IW=16|end TCP |IW=1|IW=4 | IW=16
10 | L | 1.8090 |0.7738]0.9450| 0.8269 | 0.2248 |0.0348|0.1746| 0.2598
10 | H| 0.2215 |0.2579|0.3017{ 0.4974 | 0.0005 |0.0024|0.0577|0.1171
20 | L | 0.5529 |0.4396(0.4397| 0.4317 | 0.1846 |0.1096|0.0624| 0.0886
20 | H| 0.2112 |0.2521{0.3345| 0.3718 | 0.0027 ]0.0033]0.0056| 0.0498
30 | L | 0.5979 ]0.3465]0.5605| 0.3479 | 0.1764 |0.0939{0.1230| 0.0907
30 | H| 0.2077 10.2447]0.2409| 0.2467 | 0.0046 [0.0029]0.0199| 0.0899
40 L | 0.4640 |0.2947|0.3164| 0.2610 | 0.1017 |0.1124{0.1629| 0.0887
40 | H | 0.1809 |0.2257]0.2570| 0.2868 | 0.0240 |0.0177|0.0451| 0.1469

Table 5.13: Comparison of fairness to long-delay flows. Individual transfer
size=100 KB. In each case, half the connections (set L) went over a low-delay
path, while the others (set H) went over a path with delay 250 ms in each direc-
tion.

The results are plotted in Figure 5.13 and Figure 5.14. Due to the much
larger round-trip delay experienced by clients in set H, end-to-end TCP is seen to
be extremely unfair to them. However the proxies do a much better job of
sharing bandwidth between the connections by enabling long-delay connections
to compete on equal terms with low-delay wired links. As the initial window is
increased, the sharing behavior improves. The remaining unfairness is due to the
fact that the proxies use TCP over the satellite link, where the window evolves
much slower than over the terrestrial low-delay link. This points to the need for a
more efficient protocol over the satellite link. One obvious solution to this
problem could be to use TCP with different window increments during slow start

and congestion avoidance depending on the round-trip time.
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Figure 5.14 shows an interesting trend - the standard deviation for set L is
much higher than that for set H. This seems to strengthen the argument that
TCP does not share bandwidth equally between identical connections when

congestion is present.

5.3  Some Comments

From the above, we see that the value of IW plays a major role in determining
throughput. However, it is not possible for a host to know such a value when it
sets up the connection. This suggests that it might be useful to have the network
participate in flow control by determining a good value for the initial window at
connection setup, and informing the host about this value. In any event, it is
clear that at least for the transfer sizes tested, the transfer does not last long
enough for the window to stabilize or for equilibrium to be reached.

Looking closer at Figure 5.13, a disturbing fact becomes apparent. The
throughput achieved by set H in the proxy case with IW=1 is only slightly higher
than that achieved under end-to-end TCP. However, the throughput for set L is
much lower. This suggests that with the proxies enabled, high-RTT connections
become unnecessarily aggressive. Further investigation shows that the use of
proxies for set H causes the window for these connections to grow as rapidly as
for set L, and so all the data is transferred very quickly to the first proxy on the

path, where it must wait for transmission when the congestion window on the
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satellite link grows sufficiently large. This behavior unnecessarily reduces the
throughput of set L, and uses up large amounts of memory on the proxy.

The above observation motivates us to consider methods for flow control at
the proxies, so that they are never unnecessarily aggressive, and can keep their
memory requirements low without sacrificing throughput. Such issues are the

subject of the next chapter.
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Chapter 6

Discussion: Flow Control Methods

6.1 Motivation

Every connection splitting proxy maintains, at least notionally, two sets of buffers
for each direction of a split TCP connection - the receive buffer, into which data
is received from the upstream data source, and the transmit buffer, which is used
to hold data waiting to be sent downstream or data that has been sent
downstream but not yet acknowledged. Often these are physically the same area
of memory, but even then the proxy must keep track of them separately in order
to maintain the splitting correctly.

The simplest way to achieve flow control, then, is to use a “back-pressure”
mechanism. In its simplest form, this method consists of placing a fixed
constraint on the size of the transmit buffer of each connection segment at a
proxy, so that when this limit is exceeded a backlog accumulates in the receive
buffers of the upstream connection segment and slows down the transfer on that

portion accordingly. In this way congestion indications finally propagate back to
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the sending host. This simple method is used by nearly all current
implementations.

Our proxy implementation uses a slightly improved version of this method.
The fixed constraint on the transmit buffer is replaced with a variable constraint,
equal to the current value of the TCP send window on that connection segment.
This speeds up the propagation of congestion information to the sender, as the
receive buffers begin to get backlogged as soon as the inflow rate into the proxy
exceeds the outflow rate from it. This modification also reduces memory
requirements at the proxy. The storage required for transmit buffers at the proxy
becomes equal to the sum of the send windows of all active connections, which is
directly proportional to the sum of bandwidth-RTT products of the outgoing
network paths at the proxy. In the simple scheme, on the other hand, the memory
required for transmit buffers is proportional to the number of active connections.

This improved scheme still has some of the same drawbacks as the simple
scheme, in that the total memory required for receive buffers is still directly
proportional to the number of active split connections. We now explore methods
of reducing this requirement, preferably to a quantity independent of the number
of active connections, so that the proxy can scale easily to handle large numbers
of split connections. In the rest of this chapter, we will consider only
unidirectional transfers for simplicity. However, the methods derived can be
easily extended to full-duplex TCP connections by using the same method in

each direction independently.
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Figure 6.1: Back-pressure in split TCP connections. This diagram shows a uni-
directional data transfer from H1 to H2 in the topology of Figure 3.1. Queues
belonging to the same TCP connection are enclosed by dotted lines.

6.2 Problem Constraints

In Figure 6.1, for i € {1,2,3}, let B; represent the receive buffer (i.e. maximum
possible offered window) on segment C;, R; the available receive buffer (i.e.
current offered window) on segment C;, @; the amount of data queued after
acknowledgment on connection C;, W; the congestion window on segment Cj, S;
the send window on segment C; (corresponding to SND.WND in [3]), Q) the
amount of data sent or queued for transmission on segment C;, and 7; the
round-trip delay on segment C;. Note that these quantities are all functions of
time, except for 7;, which we assume constant.

So using this terminology, we can say that our proxy achieves flow control by
keeping ). as large as possible under the constraint @} < S;, i.e. by sending as
much data on C}; as possible with the current window sizes, and buffering the rest
in the receive buffer on C;_;. The simple back-pressure scheme corresponds to
keeping @, < M;, where M; is some constant. The problem with both schemes is

that they allow the queues at the proxy to grow very large (up to Q; = B;, where
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B; is a constant chosen at connection setup time) before the sender finally stops
sending data and waits for the proxy to clear its backlog. To explore the issues
involved in changing this behavior, let us try to design a more aggressive flow
control scheme to reduce the memory required by actively regulating the flow on
the upstream connection segment.

We look at some of the desirable characteristics such a scheme should have.
Most importantly, we would like a scheme that uses only standard TCP
mechanisms, as every network path of interest to us will include at least one
segment between a proxy and a host, where we would like to use flow control.
Such a scheme would also maintain the ability of the proxy to be deployed in any
of the topologies in Figure 3.3 without modification.

While designing our new scheme we will assume that congestion patterns on a
TCP connection vary on time scales that are at least of the order of the
round-trip time of the connection and are short compared to its total lifetime.
The first of these assumptions is usually a reasonable one, due to the dynamics of
TCP congestion control. The second is more debatable, as it requires long-lived
TCP connections, but it is necessary otherwise we will be in a position of trying
to control transients that die out before we can observe them.

An obvious approach is to try and design a scheme that equates the transfer
rates into and out of each proxy at all times. Under ideal conditions, such a
scheme would make memory requirements for a proxy equal to the sum of the

bandwidth-delay products of its outgoing paths, as memory would only be
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required for transmit buffers and receive buffers could always be empty or nearly
so. Thus memory requirements would be reduced while maintaining
uninterrupted end-to-end transfer of data at the optimal rate.

For example, in Figure 6.1, consider proxy G1 and assume the bottleneck is
downstream of it. Then S; /7 represents the rate at which H1 is sending data on
C1, and S, /7o represents the rate at which G1 is sending data on Cy. If we make
these equal, very little buffering will be required at G1. If the bottleneck is
upstream of G1, very little needs to be buffered at G1 anyway - data can be sent
on (5 as soon as it arrives on ;. The major challenges in implementing such a

scheme using standard TCP mechanisms are

e There is a delay in the feedback loop. Whenever G1 takes any action to try
to make H1 change the rate of transmission on Cf, there is a delay of 7
before the change can take effect, due to the propagation delay between G1

and H1. However, in this time, S; might have changed.

e The receiver may not have an estimate of the round trip delay on a
connection. This is the case for unidirectional transfers. Thus G1 may not

know 7.

e In TCP, no direct information about the sender’s congestion window is
available to the receiver. Also, the congestion window keeps evolving with

time, so it is hard for the receiver to track.
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e A TCP receiver does not have a simple mechanism to tell the sender to
increase the sending rate - it can only tell the sender to decrease its rate by

reducing the offered window or by dropping a packet.

Thus we need a scheme that does not require any knowledge of W; or ;. We

will now look at a simple algorithm that satisfies these conditions.

6.3 A Simple Algorithm

We observe that if 73 be known, it is easy to design a good flow control scheme
for G1. Essentially, at any time ¢, the scheme would need to predict the amount
of data that will be sent on Cs in the time interval [t 4+ 71,t 4 271), and set the
receive window on C; equal to this value. An upper bound on the amount of
data sent in [t + 71,t + 277) can be calculated easily given 7, and the current state
of (s, since the evolution of the TCP congestion window in a given interval can
be bounded.

In our case we do not know 71, but we can make two simple observations

about the behavior of the quantities in Figure 6.1:

1. In any period [t,t 4 71), the amount of data received by G1 on C; cannot
exceed R;(t), unless the value of By has been reduced in (¢t — 7,t]. Thus
the total amount of data available at G1 in [t,¢ + 71) is at most By (t), and

G1 cannot have sent more than (B;(t) — Q1(t + 71)) on Cs in this period.
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2. When the inflow and outflow rates at G1 are perfectly balanced,

by _ 5 (6.1)
T1 T2 '

Let us construct a flow control scheme based on these observations. We
assume that TCP is used on all segments, and that our improved back-pressure
scheme is in operation, i.e. Q; < .S; for all ¢ at all times, and Q;—; > 0= Q) = 5,.

There are four possible cases at G1:

1. @1 =0 and Q) = Sy, i.e. there is no queueing at the proxy and the

downstream link is fully utilized.

2. @1 > 0 and Sy < Wa, i.e. there is queueing at G1 and G1 is limited by G2’s

offered window.

3. @1 >0 and Sy = Wj. i.e. there is queueing at G1 and G1 is limited by its

congestion window.

4. Q1 =0 and Q% < Sy, i.e. there is a bottleneck upstream.

We now consider these cases one by one. In each case we assume that the value

of B; has been held constant for at least 27.

Case 1: @1 =0 and Q) = Sy. In this case the system is working perfectly, and

there is no need to change anything.
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Figure 6.2: Example evolution of congestion window.

Case 2: )1 > 0 and Sy < W5. During the last 71, G1 can have sent at most
(B1(t) — Q1(t)) on Csy. Since the outflow rate is limited to a constant, we can

safely reduce B; to a value b such that

b= Bi(t) — Qu(t) = Ru(t)
without reducing the throughput of the connection. Also, from (6.1), we have

Ry(t)
71 < S (0)

T2

Case 3: ()1 > 0 and Sy, = W5. We look at the dynamics of W5. In steady state,
it has cycles as shown in Figure 6.2. Consider the interval [to, ;). The average
rate in this interval is as shown by the flat dotted line. One possible approach is
to use Bj to limit H1 to this rate. However, to maintain Q) = Ss, G1 will need to
buffer an amount of data equivalent to the shaded area on the graph, i.e. a
second-order polynomial of the rate. Also, B; must be continuously adjusted so

that R; stays constant. Therefore this approach is not practical.
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If the value of T" were somehow known to us beforehand, then we could
allocate By large enough so that G1 would have enough data to fill its send
window at all times. Then back-pressure would slow down H1 whenever G1 had
a backlog in its queue, so that G1 would not have to buffer too much data. In

other words, we could assign B; = b such that

b2 (6.2)

T1 T2

Since the next value of T" is not known to us beforehand, the easiest solution
is to use the previous value of the slow start threshold, say 71", as an estimate.
Given some assumptions on system behavior, we could even derive a bound for
the error of this estimate. However, in practice, we will have problems whenever
the window grows larger than 27", as we will not be able to maintain full link
utilization. An alternative estimation technique would be to use a weighted
average of past threshold values, though it has the disadvantage that we must
keep track of an extra state variable for each connection.

We know that G1 has sent W(t) on Cs in the last 7. If it is in congestion
avoidance, its window is increasing linearly so in the last 71 the amount of data

sent by G1 is bounded by

lTl

Walt) — —]

27'2

Wy >

1

T2

where [ is the segment size for the connection. Now, we also know that G1 must

have sent at most R;(t) in the last 7, so
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Ri(t) > |Wa(t) —

lTl T1
27’2 T2

Thus we get a quadratic expression in 7y on the right-hand side, which would
require a significant amount of processing to solve. However, if we already know
an upper bound for 71, we can substitute it into the negative term inside the
parentheses and so get a linear inequality from which a new upper bound for 7
can be found. This new bound can then be substituted into (6.2) to give an

upper bound on b.

Case 4: @1 =0 and Q) < Sy G1 cannot know if this is due to B; being set too
small, or if it is due to some other bottleneck in C. If it is due to B; being too

small, we have the inequality

Bi(t)
2(t)

71 < T2

This gives us an upper bound on 7;. Using (6.1), we set buffer size to b where

Sa(t)

b= B0%0

6.4 Implementing the Scheme

Using the above ideas we can easily formulate an algorithm for performing flow

control. As before we use G1 and the associated quantities for clarity.
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In order to formulate an algorithm based on the above observations we must
specify how often By should be updated. We note that once the value of B is
changed, an interval of 27 is required for the queue lengths at G1 to stabilize.
Returning to the equations in the four cases above we find that in each case we
also get an upper bound on 7; as a result of the calculation.

Finally, we note that if a bottleneck is present upstream of G1, repeated
application of the inequality in Case 4 may cause B; to be increased indefinitely.
Therefore, if increasing B; once does not cause 5, to increase, we deduce that
the bottleneck is upstream.

Thus the implementation of the algorithm is very simple. We keep four state
variables - 7 holds the time when the algorithm was last invoked, ¢; is the value
of @ at 7, t; is our current estimate of 71, and g holds the last value of @Q,. The

algorithm consists of the following steps:

1. Initialization. At connection setup, we can either start with an estimate of
71 and set By accordingly or we can start with B; set to its maximum
value, and with the initial estimate of 7 set to the Maximum Segment

Lifetime of the Internet. Set all the other three state variables to zero.

2. Do nothing until ¢); becomes greater than zero. When it does, go to the

next step.

3. If g2 = 0 (bottleneck is upstream), or @), = 0 (connection is idle), or R; =0

(last reduction in Bj has still not stabilized), set 7 to the current time and
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skip to step 5. Otherwise go to step 4.

4. Adjust B; according to the appropriate case. Then calculate the bound on
71 and assign it to ¢;. Set 7 to the current time, and ¢; to the current value

of Q1. If ¢ = 0, set ¢o to the current value of )5, otherwise set it to zero.

5. Whenever a packet arrives on (1, check if the current time exceeds

(T + 2t1). If so, go back to step 3.

This scheme keeps the queues in the receive buffer at G1 much smaller than
the previous back-pressure scheme. Also, since at each step we only used upper
bounds on b to update By, we are assured that we will never have a situation
where we reduce the offered window too much.

This scheme was added to our proxy implementation. It reduced memory
requirements in many situations, but its failings were also interesting and they

give some insight into the construction of TCPPEPs in general.

6.5 Proxies and Scalability

In designing the above scheme, we have overlooked three key factors. First, the
memory requirements of a connection splitting proxy can never be truly upper
bounded if the proxy is to maintain optimal link utilization. This is because the
proxy cannot discard data it has acknowledged until it has successfully

transmitted it and received an acknowledgment. There can be many cases, such
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as a failure on the downstream host, in which the proxy would have to buffer
data for an unusually long time.

A second problem is that any such flow control scheme can only work well
when the upstream RTT is much less than the downstream RTT. For instance in
our example above, it works when 7, < 75, but not when the reverse is true. The
reason for this is that the proxy can only change the behavior of its upstream
segment over intervals of the order of 71, whereas the downstream segment
changes over intervals of the order of 7. In a sense, having 7 > 7, is like trying
to control a system with a controller that can only vary at a rate much slower
than the system itself. In our test system, the satellite link had an RTT of 500 ms
while the terrestrial Ethernet had an RTT of about 2 ms, and this problem was
easily observed. Whenever the satellite link was the bottleneck on a connection,
our flow control scheme worked well, as there was very little to do on the proxy
downstream of the satellite link. However when the bottleneck was downstream
of the satellite link (as in the tests where we simulated terrestrial congestion)
very large queues built up at the proxy downstream of the satellite link.

A third problem is purely practical - as observed in Chapter 5, typical TCP
flows on the Internet are relatively short and do not last for a large enough
number of round trips to allow schemes such as this to reach steady state.
Therefore we often see fairly large queues even with our scheme in place, because
data transfer often completes while the scheme is still in a transient stage.

It bears repetition that none of the above drawbacks is specific to our scheme
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- they are general problems that apply to any connection-splitting proxy
implementation. Therefore it is now relevant to take a closer look at the
limitations of this architecture.

It is clear from the results in Chapter 5 that both localized flow control and
localized error recovery are useful techniques in satellite networks. In nearly all
the experiments with multiple TCP connections, the most important factor in
ensuring maximum throughput was the choice of a good initial window size.
Since a host is not expected to know the actual path a TCP connection will
traverse in the network, it follows that it is useful for the network to be able to
give feedback to hosts regarding a good initial window. This could be done, for
example, during the initial three-way handshake to set up a TCP connection.

Localized error recovery is also seen to help, but in a proper
connection-splitting implementation it is also the reason for high, and in fact
unbounded, memory requirements. However, error recovery and flow control are
so inextricably linked in TCP that it is not possible for the network to
participate in flow control without also taking over at least some error recovery
functions. Therefore it is an interesting topic for future research to explore ways
to delink error recovery from flow control in transport protocols such as TCP
while maintaining other desirable characteristics of TCP. It seems that a proxy
that did semi-reliable local error recovery, similar to a Snoop agent, and also
participated in flow control might significantly improve throughput while keeping

memory requirements bounded.
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Chapter 7

Conclusions and Future Work

In this thesis we demonstrated the feasibility of implementing a TCP
Performance Enhancing Proxy in any part of the Internet by showing an
implementation of such a proxy for a geostationary satellite link in a general
network topology. The results obtained from testing this proxy show large
improvements in the data transfer rates achieved by users under a wide range of
conditions, and also point out many interesting issues for future work.

It is shown that TCP has many drawbacks for geostationary satellite links,
and that using proxies to allow different methods of flow control on the satellite
link would have significant benefits. We also see that it is useful to separate the
functions of error recovery and flow control in transport protocols, and to allow
the network to handle some part of this functionality. The search for methods to
achieve this separation, and for good localized flow control schemes is a topic for
future investigation.

Recent months have seen increasing deployment of next-generation Internet

protocols such as IPSEC and IPv6 in the Internet. These protocols change some
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of the characteristics of Internet traffic, and also the information available to
network nodes about end-to-end traffic. The impact of these changes on proxy
architectures such as the one described here is also an important aspect for

future study.
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