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It is often observed that human experts can tune the parameters of a con-
troller based on their knowledge and experience, rather than on complicated algo-
rithms. In fact, more often than not, they have only a vague idea of the process
model. An attempt is made here to create a fuzzy-logic based expert which would
emulate such behaviour. The expert is, specifically designed to tune the gains of a
Proportional-Integral-Derivative (PID) controller, applied to stable dominant pole
plants having large rise times. It is observed, that a number of plants found in
the chemical process industry can be suitably modeled as such systems. A rule
base for the expert was developed after analysis and simulation studies. Attempts
have been made to keep the rules as few and simple as possible. At no point is
any attempt made to estimate the parameters of the plant model. The expert

observes only the output from the plant. Results of the application of the expert



to a second order plant, to the separator temperature control loop of the Tennessee
Eastman problem, and to a third order plant are presented. The expert is found
to successfully tune the PID gains, and the results provide encouragement for the

creation of such experts which can handle a class of plants.
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Chapter 1

Introduction

The recent stimulus for the application of Intelligent Control systems to the chem-
ical process industry has resulted in the proposal of a variety of schemes. However,
most of these are targeted toward specific applications. The need is to develop al-
gorithms for Intelligent Control that are applicable to a broader class of problems

[Astrém and McAvoy, 1992].

It is often seen that control experts tune the parameters of a controller ac-
cording to error verses time curves based on their knowledge and experience, rather
than on complicated algorithms (the latter mean complicated calculations, which
makes it very difficult to control a process effectively and successfully). In fact,
when a process is controlled, there are interior relations between the shapes of a
control curve and the parameters of a controller, which are an important basis for
the tuning action of a control expert. This kind of tuning method, if realizable is

captivating because it does not require an accurate process model, which is gen-



erally unavailable in practice. Hence, an ezpert developed with such a principle in
mind will be intelligent and universal to various controlled processes. This thesis
describes the development of such an expert for processes which can be modelled
approximately as second order systems. This expert tunes the parameters of a
Proportional-Integral-Derivative (PID) controller which is being used in the feed-
back loop to control the process. The tuning strategy is based on a comparison of
the response and error curves generated by the plant to a desired good response.
It should be mentioned here that the response obtained cannot be called optimal
in any given sense. The fact that this strategy, is applicable to cases where the
plant model is néver precisely known precludes any notion of optimality. Rather,
what is desired here is that the response be acceptable in some sense. It should be
noted here, that this tuning strategy deviates from the current trend, where effort
is made to obtain information about the plant by carrying out data analysis and

modeling. A review of these techniques can be found in [Koivo and Tanttu, 1991].

A major effort of this thesis is the derivation of the fuzzy relational equations
which are used to represent the tuning strategy. Since no purely second order
process exists in practice, it is not possible to obtain these relational equations by
emulating a human expert. Rather, they have been constructed after extensive root
locus studies and simulations. All efforts have been made to keep these equations
as few in number, and as simple as possible, so that they may give some insight

into their behaviour, and lend themselves to some kind of mathematical analysis



(though further work is required on the latter due to the lack of mathematical tools
to handle fuzzy quantities). An order of magnitude analysis presented shows that
these rules indeed function as required. The latter is another effort of this thesis,

sinceé most fuzzy control applications found in the literature ignore such analysis.

Chapter 2 of this thesis states the problem and the approach used to arrive
at the solution. The validity of choosing this class of second order systems is
addressed. Justification is provided for the use of fuzzy logic. Also addressed is
the question of using fuzzy control for parameter tuning, rather than for direct

control.

Chapter 3 deals with the derivation of the fuzzy ?elational equations. Starting
with initial actions based on damping and the natural frequency, the required
movement of the closed loop poles is illustrated. The idea of moving these poles
by manipulating the PID controller zeroes is then discussed. At the conclusion of

the chapter, the fuzzy relational equations are presented.

Chapter 4 deals with the implementation of the expert. The definition of the
fuzzy membership functions for the various measured and manipulated variables
is discussed. The method used to combine the output classes to get a numerical
quantity is presented. The advantage of scaling the outputs for different PID

controller gains is illustrated, especially in lieu of the order of magnitude analysis.

The application of this expert is the content of Chapter 5. Three applica-



tions are discussed. Firstly to a known second order system, and secondly to the
separator temperature control in the Tennessee Eastman test problem, and thirdly

to a third order plant.

Conclusions are discussed in Chapter 6. Also included are suggestions for
future work. The importance of the need of mathematical methods to handle

fuzzy quantities is reiterated.

Appendix A gives a discussion on the influence of the PID zeroes on the

closed loop poles when the plant is of second order.

The Appendix B gives an order of magnitude analysis which is used to verify

the validity of the fuzzy relational equations under specific assumptions.

It should be noted that the expert has to satisfy at least two performancg
criteria. 1) As with humans, satisfactory learning requires frequent repetition of
the same effort, so the system is improved by being restarted from the same initial
conditions again and again. 2) Important for technical control problems is the
ability to stabilize the control loop in the first trial, however, with relatively bad

performance in general.



Chapter 2

Overview of the Problem

2.1 Statement of the Problem

By large, chemical plants comprise of components designed to exhibit open loop
stability. It has been recognized long ago [Oldenbufg and Sartorius, 1948] that
most systems can be represented by a second order system together with a delay

as
Y(s) Kestp

E(s) N (ris +1)(m2s + 1) (2.1)

where Y(s) = Output Signal
E(s) = Input Signal
K = Process Gain
tp = Dead Time (Delay)

71, T2 = Process Time Constants



An extensive bibliography of the different chemical processes that have been ap-
proximated successfully by this model is given in [Latour et al., 1967], and [Bohl
and McAvoy, 1976]. The interest here is in systems which have 7, > 7, i.e. the
response is dominated by a single mode. It is also assumed for the moment that
the dead time does not have a significant influence on the dynamic behaviour of
the system. This is elaborated upon in Chapter 3, where the influence of dead

times on the root locus is examined. For the moment the dead time is neglected.

Hence given a second order plant

Y(s) K
E(s)  (ns+1)(rs+1)

where 71 > 79, along with a PID controller

C(S) = —}-R;% = K¢+ -I—gl + Kps (23)

configured as in Figure 2.1, the aim is to develop a strategy to tune N¢,A; and

Kp so as to get a good response to setpoint changes S(s). This concept of a good

response is explained in Section 4.1.

An important factor to be considered here is the amount of information
required about the plant P(s). It is assumed that the only information available
is the approximate response time to changes in F(s), and an estimate of the dead

time if any. Such information is easily available from designers or an expert.



S(s) /\ E(s) b Y(s)

R(s)

C(s)

Figure 2.1: Plant-Controller Configuration

2.2 Fuzzy Control

Due to the general nature of the problem, the solution if any, may be expected to
be numerically complex. Since the plant itself is not precisely specified (i.e. 71,7
and K are unknown), and no attempt is made to identify it, not much mileage is
expected out of conventional approaches. On the other hand such a problem is an
ideal candidate for fuzzy logic-based control. A good introduction to fuzzy logic
can be found in [Self, 1990]. For a more thorough treatment, the reader is referred
to [Pedrycz, 1989]. Interest in fuzzy control has increased recently because of good
practical experiences in the control of cement kilns [Holmblad and @stergaard,

1981], and other areas, and the creation of the institute of fuzzy control in Japan

[Sugeno, 1985], [van der Rhee et al., 1990].

Fuzzy logic-based control has been observed to have excellent robustness char-



LOT 47

memb

X

Figure 2.2: Fuzzy Membership Function

acteristics [Bernard, 1988], perhaps because the inherent imprecision, or generality
of the fuzzy decision rules is well suited to imprecise systems whose behaviour is
known only in the large. Hence, fuzzy control systems are able to achieve satisfac-
tory, stable behaviour, albeit a non-optimal one over wide fluctuations in system

parameter values [Chiu et al., 1990].

At the basis of such a controller is the concept of membership functions
[Zadeh, 1973]. These are used to generate linguistic descriptions. These member-
ship functions indicate the degree to which a value belongs to the class labeled by
the linguistic description. For example, the linguistic description Positive Large
maybe represented by the membership function PL(x) shown in Figure 2.2, where
the abscissa is a measured input and the ordinate is the degree to which the input

value can be classified as Positive Large. In this example, the degree to which 0.9

is considered to be Positive Large is 0.7, i.e. PL(0.9) = 0.7.
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Figure 2.3: Fuzzy Controller Schematic

Fuzzy control rules are typically expressed in the following form:
If Xyis Aiy and Xa is Ais then U is B (2.4)

where X; and X are the inputs to the controller, U is the output, A’s and B’s are
membership functions, and the subscript ¢ denotes the rule number. For example,
a rule for engine speed control may state If speed error is negative small and the
change in speed error is positive large, then the change in throttle is positive small.

Given input values X, and Xs, the degree of fulfillment (DOF) of rule ¢ is given by

the minimun of the degree of satisfaction of the individual antecedent clauses. 1.e.

DOF; = min{A4;1(X1), Ai2(X2)}

—~
o
(&1}

~—

The output value is computed by

Xn:(DOFi)B;I
w == (2.6)

n

> (DOF,)

=1

where B¢ is the defuzzified value of the membership function B;, and n is the
number of rules. The defuzzified value of a membership function is the single

9



value that best represents the linguistic description. Typically the abscissa of the

centroid of a membership function is taken as the defuzzified value.

In essence, each rule contributes a conclusion weighed by the degree to which
the antecedent of the rule is fulfilled. The final control decision is obtained as the

weighed average of all the contributed conclusions.

A schematic of a fuzzy controller is shown in Figure 2.3. The evaluation of

fuzzy rules can be done either sequentially, or in parallel using a Fuzzy Associative

Memory (FAM) to store the rules [Kosko, 1990].

2.3 System Architecture

The intent here is to tune the gains of a PID controller, so as to push the closed
loop response towards a desired response. The measurements available are 1) the
plant output y(¢), and 2) the setpoint s, which is assumed to be constant for the
period of the response. Based on these measurements, the overall system level
architecture is as shown in Figure 9.4. Tt should be observed that there are two

objectives to be satisfied.

1. To ensure that the rise time of the response is as close to the specified value

as possible.

2. The settling time is small.

10



S(s) E(s)
o

R(s)

P(s)

Y(s)

C(s)

l Reference

Figure 2.4: Overall System Architecture

Expert
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YO ——frame 1— frame 2

t(sec)
Figure 2.5: Division of the Response into Frames

The rise time is specified through the good response curve. There is however
no provision for specifying the settling time, although the expert tends to make
it reasonably small. Both these requirements are kind of contradictory since a
short rise time will result in more oscillations about the steady state due to lower
damping. Also due to the nature of the measurements, it is seen that two sets of
rules are required, and the actions of the expert are different in the two regimes
of the response. Hence the response is divided into two frames . The response
is in frame 1 till it first reaches the set point, and in frame 2 thereafter. This is
illustrated in Figure 2.5. The damping requirements, and the rule bases for these

two regimes is the éubject of Chapter 3.

Justification is needed to explain the use of fuzzy logic for indirect control
rather than direct control. If fuzzy control is robust then why not use it directly in

the feedback loop, instead of using it to tune the parameters of a PID controller ?

12



This is explained by the fact that due to the nature of its generality, fuzzy control
is inherently imprecise and if used directly in the feedback loop, would introduce
error into the control signal. Hence a PID controller is retained since it is not
prone to such imprecision and the response characteristics are controlled through

the fuzzy controller by tuning the PID gains.

13



Chapter 3

Derivation of Fuzzy Rules

3.1 Specifications and Measurements

The reference response is specified by two parameters 7} and T,. T} specifies a
dead time, i.e. it is the time taken by the systemfto start responding, and T3
specifies the time taken by the system to reach the set-point value from zero for
the first time. This response curve is illustrated in Figure 3.1. Hence all one
needs to determine is, what dead time and rise time values are required for the
particular case at hand. Conservative estimates of these can be obtained from

the plant designer, or an expert. The steady state value of the reference response

always equals 1.

For the purposes of tuning the parameters of the PID controller, the set-point

(s), and the plant output (y(t)) are measured. While the response is in frame 1

14



yref(t)

1.0

0 £ =
P—1—* T (s)

Figure 3.1: Reference Response

(see Figure 2.5) the plant output is scaled as

y(t) — Sold

Snew — Sold

(3.1)

where s, 1s the new set-point and s,4 is the previous set-point. This scales the
output, and y/(t) lies in the range between 0 and 1. The error fed to the expert is

then calculated as
el(t) = yref(t) - y/(t) (3.2)

where y,.f(t) is the value of the reference response specified as explained above,

and the subscript 1 in e;(t) refers to frame 1.
For frame 2 the error ey(t) is calculated directly as
62(t) = Snew — y(t) (3.3)

where the subscript 2 refers to frame 2. The reason for not scaling the error

in this frame is that irrespective of the magnitude of the set-point change, the

15



measurement noise remains the same, and hence scaling especially for a small
set-point change could result in erroneous behaviour. Once ey(t) is known, its

e e d
derivative -—%ﬂ can be calculated.

3.2 Action in Frame 2

A special note needs to be made about how the expert is made to handle frame 2.
Consider a typical response as shown in Figure 3.2. The response is in frame 1 till
it reaches the set-point (s) value for the first time. Since the plant model is not
known, there is no way to judge the response as being unstable, underdamped but
stable, or perfectly damped. Too much damping applied at this point may delay
the return of the response back to steady state. On the other hand, reduction
of damping may result in large oscillations. So at this point in time, the expert
does nothing except wait for the response to reach point 2 i.e. at the peak of the

overshoot /undershoot.

Once point 2 is reached and the response starts returning to the steady state
value, action is taken by the expert. Hence in frame 2 the expert acts only when
the response is returning to the steady state value (i.e. between points 2 and 3, 4

and 5 etc.).

One may argue that since the plant is assumed to be approximately second

order, one may use the wealth of formulae available for analyzing underdamped

16



y(®)

old
t(sec)

Figure 3.2: A Typical Response

second order systems. It is trivial to see that due to the integral mode in the
controller, the system is actually of order 3, and since the plant poles are not

known one cannot carry out order reduction.

3.3 Response and Damping

To tune the closed-loop response to approximate the desired response, the damping
ratio (¢) and the natural frequency (w) have to be manipulated. The relationship

between these and the poles of the closed-loop system are illustrated in Figure 3.3.

It is worthwile to stop here and review the influence of ¢ and w on the rise
time (¢,) and settling time (ts) of a second order system. The following equations

[Kuo, 1991] hold for a pure second order system in response to a step change in

17



Im(s)
pole N s-plane
(0]
E= cos@) 5
0 Re(s)
pole x

Figure 3.3: Poles, Damping ({), and Natural Frequency (w)
the set-point.

, o, 08+25¢

T

,0< <l (3.4)
ts = —Zlaln(o'% 1—¢£2) ,0<E<l (3.5)

where t, is the time taken by the response to reach within £5% of the steady state

value, and remain within this bound for all future time.

Although systems in practice are never going to be purely second order, the
above helps in a qualitative description of the dependenc-ies between the various
variables. Hence to decrease the rise time (¢,) one needs to decrease £ or increase
w or do both. Also to decrease the settling time (t,) one needs to increase £ or

increase w or do both.

de—;t(—tl are each divided into

The inputs to the fuzzy controller e;(t), e3(t), and
seven fuzzy classes. Namely: 1) Positive Large (PL), 2) Positive Medium (PM),
3) Positive Small (PS), 4) Zero (Z), 5) Negative Small (NS), 6) Negative Medium
(NM), and 7) Negative Large (NL).

18



For frame 1 only e;(t) is measured. If the current closed loop response is
slower than the reference response, then e;(t) is positive. To compensate for this,
the damping ratio should be decreased and/or the natural frequency increased i.e.
the closed loop poles are moved towards the imaginary axis, and/or away from
the real axis, the latter by a greater amount. The larger the error (e;(t)), the
larger the movement of the poles. If on the other hand, the response is faster
than the desired reference response, then e;(t¢) is negative and the damping ratio
is increased, and/or the natural frequency decreased i.e. the closed loop poles are
moved away from the imaginary axis, and/or towards the real axis, the latter by

a greater amount.

In frame 2 both the error (e3(t)), and the rate of change of error (de;t(t ) are

|

used to characterize the response. If ey(¢) is not small , and if g—e;—t(—tl is not zero ,
the damping factor is increased and the natural frequency increased by an amount
determined by the fuzzy membership of both e,(t) and %t@. If however e,(t) is
small and d—%ﬁ is zero then the damping factor is decreased to enable the response

to return to steady state as quickly as possible.

The variation in controller gains required to achieve this is discussed after

some more discussion based on the root locus technique is presented.

19



3.4 Analysis Based on the Root Locus Tech-
nique

The root locus technique is useful in a qualitative discussion on the influence of
higher order poles, and the relationship between the closed-loop poles and the

controller zeroes.

Given a closed loop system

P(s)
= 3.6
“) = 15 em) P (3:6)
the roots of the characteristic equation must satisfy
1+C(s)P(s)=0 . - (3.7)

Suppose that C(s)P(s) contains a variable parameter N as a factor, such that

C(s)P(s) = NC1(s)Pi(s) (3.8)

then the characteristic equation can be written as

= Ci(s)Pi(s) = —-jlv . (3.10)

To satisfy the last equation for N > 0, the following two conditions must be met

simultaneously.

| C(5)Py(s) |= Wif—l N >0 (3.11)

20



and

LC(s)Pi(s)=(2k+ 1) ,N>0 (3.12)

where k = 0,+1,+£2,...
Of all the properties of the root locus, the following ones are of primary
importance here. Their proof is omitted for brevity (see [Kuo, 1991)).
1. The N = 0 points on the root locus are at the poles of C'(s)P(s).

2. N = oo points on the root locus are at the zeroes of C(s)P(s), including

zeroes at infinity.
3. The root loci are symmetrical with respect to the real axis of the s-plane.

4. The root loci for N > 0 are found in a section of the real axis only if the

total number of real poles and zeroes of C(s)P(s) to the right of the section

is odd.

For the class of systems of concern here one has

K(Kps® + Kos + Ki)

C(S)P(S) = s(s+ A1)(s + A2) (3
Assuming Kp # 0
o KEp(s* + 585+ £2) (3.14)
P = TG T )
_ N(s +21)(s + 23) (3.15)

- 'S(S -+ /\1)(8 + )\2)

21



Im(s)

-22
0 N0
-Zl

Figure 3.4: Root Locus of Class of Interest

where N = K Kp, and z; and z; are the controller zeroes. If N is varied keeping
%‘2 and ?\K—L constant a root locus of such a system is as given in Figure 3.4. This
D D

excludes the limiting case when Kp = 0, as then only one zero remains.

Since the system may have higher order poles, it is worthwile examining their
influence on the general root locus characteristics. The root loci for two cases when
there is 1) a pole —A3 with A3 > ), and 2) a pair of complex conjugate poles with
their real part equal to —A, are illustrated in Figure 3.5. In both cases the real
part of the root loci originating from the two poles of greater absolute magnitude
is smaller than —\;. Hence, the dynamics due to the higher order poles are very
fast, and are damped out quickly. Also note that the shape of the root locus due

to the poles near the origin has remained more or less the same.

Hence, one can restrict ones attention to a second order open loop system

22
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Figure 3.5: Effect of Additional Poles on the Root Locus

and concentrate on the behaviour of the root locus due to the pole closest to the
origin. Thus, it is observed that the portion of the root locus of importance is not

greatly influenced by the presence of unaccounted higher order poles.

3.5 Pole-Zero Placement

The portion of the root locus of interest is the one closest to the imaginary axis of

the s-plane. Two of the roots of the characteristic equation
14+ C(s)P(s)=0 (3.16)

lie somewhere on this root locus, whereas the third root is further away from the
origin, and hence its effect is quickly damped out. Hence the two dominant poles
of the closed loop system lie on the root locus between the poles 0 and —A; and
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the two zeroes of the controller z; and z,.

The aim here is to determine the movement of these two poles due to move-

ment of the controller zeroes. The latter are given by

ﬂ’c 4]{[)]{[ -
I — ————— 1 - '3.1’-"
a4 =5y K7 (3.17)
K¢ 4KpK;
= = (1 = - 3.18
Z9 21’\’13(1 1 K2 ) (3.18)

and hence can be moved about by varying the PID gains K¢, Ap and K in a

suitable manner.

It is intuitive to see that the non-real part of the root locus is dragged about
by the movement of the zeroes of C(s). This is illustrated in Figure 3.6. Hence, if

the zeroes are moved away from the imaginary axis so is the root loci.

The movement of the poles as a result of the movement of zeroes can be
seen more clearly by considering a simpler closed loop system (Appendix A gives
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a discussion on the effect of PID zeroes on the closed loop poles for the case of a

second order plant). Let the system be given by

C(s)P(s) = B j(szﬁ(f\)* 22) (3.19)

where z; and z; are complex conjugate controller zeroes. The characteristic equa-

tion to be satisfied by the closed loop poles is given by

K(s+ z1)(s+ z2)
s(s+A)

14+ C(s)P(s) =1+ =0 (3.20)

1+ K)s* + (A 4+ K(z1 + 22))s + K212, = 0 (3.21)

Assuming this to have complex conjugate roots p; and p; one obtains

_)\ -+ I{(zl + 2;2) " \/4](2122(1’** I() —_ ()\ + [\’(21 -+ 32))2

pupe=vEjp= 51+ K) J S+ LK)

(3.22)

Letting z1,z2 = o + 73 equation 3.22 can be written after seperating v and p as

A+ 2aK
o L 3.2:
YT T+ k) (3:23)
and
VAK (a2 + B2)(1+ K) — (A + 2K a)?
§= (3.24)
2(1 + K)
=
dv K
_——= - 3.25
da 1+ K (3:25)
du K(2a— ) (3.26)

da (14 K)\J4K (a2 + f2)(1 + K) — (A + 2Ka)?
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B \JiK(a? + A?)(1 + K) — (A + 2K a)? '

It can be seen from equations 3.25-3.28 that the closed loop poles are influ-
enced by the movement of the controller zeroes. If the zeroes are moved towards
the imaginary axis, v increases and the poles also move towards the imaginary
axis. The movement of the imaginary part of the poles p is not so straightforward
as, the sign of %—i depends on the magnitude of o and A. On the other hand the
imaginary component of the controller zeroes influences only the imaginary part
of the closed loop poles. It should be noted here that if o < -2\- then % < 0 and
hence, there is a region near the imaginary axis where % < 0 as desired. Also note

that

|51 _ 2801+ K)
EIREE

do

(3.29)

Once a > 2

5, the direction of change in the imaginary component of the poles

is determined by this ratio. The larger this ratio, the more the influence of a
change in 3 on the imaginary component of the poles(x). In practice the change
in f is made much larger than that for « for frame 1, so that it can influence the

closed-loop poles to a still larger extent.

From the analysis of the class of interest presented in Appendix A, it is seen
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that even this class of systems has a similar relationship between the controller
zeroes and the closed-loop poles. Also, there exists a region near the imaginary
axis, where j—g < 0. Since chemical processes normally have a very large rise time,
from equation 3.4, one gets w <« 1. If this is true, then one obtains a reasonably
large region where % < 0. It seems that this regio’ﬁ is sufficiently large for the
purpose here, and this fact is further strengthened by simulation studies and the
results presented in Chapter 5. Hence a significant control can be exerted on the
poles of the closed loop system by moving the controller zeroes. This is shown in

Figure 3.7.

On the premise, that the main purpose of the expert is to decrease the rise

time, the actions for frame 1 are geared towards achieving this goal. If the poles are

currently out of the region where g—g— < 0 and the response is faster than desired,

then the poles are moved towards the imaginary axis in frame 2. This will be

further elaborated upon below.
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Based on all the above observations the following rules are postulated for

influencing the damping factor and the natural frequency.

1. Frame 1

(a)

(b)

To decrease the damping factor and to increase the natural frequency,

increase Re(z;) and increase Im(z;) by a greater amount.

To increase the damping factor and to decrease the natural frequency,

decrease Re(z;) and decrease Im(z;) by a greater amount.

2. Frame 2

(a)

If the amplitude of oscillations is not small or the rate of change of
error is not zero , then decrease Re(z;). ;Xs seen by the analysis pre-
sented above, if the zeroes are sufficiently close to the imaginary axis,
the poles will move closer together and will cause the damping factor
to increase. If however, the zeroes are further away then the natural

frequency increases. Either way the settling time decreases.

Once the amplitude of oscillations is small , and the rate of change
of error is zero , increase Re(z;) and increase Im(z;). This leads to a
decrease in the damping factor, and aids in returning the response to
steady state. This action is usually taken over a fixed period of time
to prevent unwanted action due to measurement noise. This time is
usually 4 to 5 times the response time (7%) of the reference response.
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Hence, if one wants to slow down a fast response due to poles which lie
outside the region where % < 0, then 2(b) above causes the controller zeroes
and hence, the closed-loop poles to move towards the region of interest near the
imaginary axis. This is because, with such an initial response the expert’s actions
are predominantly those in 2(b), as the amount of time spent by the system in
frame 1 and in frame 2 with the response oscillation amplitude greater than small is
very small compared to the fixed amount of time spent in the phase where actions
in 2(b) are carried out. Thus the poles ultimately end up in the region of interest,

and the expert can then compensate.
3.6 Discussion on Stability

If Kp, K¢ and K are restricted to be positive, the controller zeroes are restricted
to the left half of the s-plane. Hence if the closed loop system becomes unstable,
it does through complex conjugate poles. This is illustrated Figure 3.8. Thus
the only unstable response possible is an exponentially growing sinusoidal. This
implies that the response enters frame 2, and once there the zeroes are moved
away from the imaginary axis due to increased damping. Hence ultimately the

root locus will be pulled back into the left half plane and the system stabilized.
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Figure 3.8: Root Locus Exhibiting Instability Due to Complex Conjugate Poles

3.7 Effect of Small Dead Time

The dead time is taken as a parameter in the specified response. Since that value
is approximate, there may still be a small dead time present. This can be approx-

imated by a second order Pade approximation as

. ths? — 6tps + 12

~ 3.30
ths? + 6tps + 12 (3.30)

This gives rise to complex conjugate zeroes in the right half plane, and complex
conjugate poles in the left half plane, all placed symmetrically around the origin.

A root locus for such a system is shown in Figure 3.9.

By looking at the root locus, one can see that the system may become unsta-
ble. However, by decreasing the loop gain N, one can stabilize the system. This

strategy works even for large dead times.
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3.8 Variation of Gain(N)

So far, the discussion has been concerned with the relationship between movement
of controller zeroes and the movement of the closed-loop poles. However. one has

to also consider the variation in the gain(N). Recalling equation 3.14, one has
N=KKp (3.31)

where K is the open-loop plant gain, and Kp is the derivative mode gain. For
the moment assume that the controller zeroes are fixed. Varying N results in the
movement of the closed-loop poles along the root locus. The larger the value of N,
the closer the closed-loop poles are to the controller zeroes. The net movement of
the closed-loop poles is the combination of, the movement due to the movement in

the controller zeroes and the movement due to a change in V. Hence for varying
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N, the following rules are postulated.

1. Frame 1

(a) If the response is very slow then, increase N. This results in an increase

in the natural frequency(w).

(b) If the response is very fast then, decrease N. This results in a decrease

in the natural frequency.

The effect on the damping factor(¢) depends on the shape of the root locus
(which in turn depends on the location of the controller zeroes). However,
as seen by equation 3.4, the effect of £ on the rise time is much smaller than

the effect of w.

2. Frame 2

(a) Initially, if the amplitude of oscillations is not small or the rate of change
of error is not zero , then decrease N. This will result in an increase in

€. This tends to help damp out oscillations.

(b) If the amplitude of oscillations is small and the rate of change of error
is zero then the gain N is increased. The chief aim of doing so is to
move the complex closed-loop poles back towards the controller zeroes.
This increases w, and helps speed up the return of the response to the

steady state value.
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| el(t) ” Ak | Ak, I Ag, [
PL NL PS PL
PM | NM Z PM
PS NS Z PS
Z Z Z Z
NS PS Z NS
NM (| PM Z NM
NL PL NS NL

Table 3.1: Rules for Frame 1

3.9 PID Gain Variation

After all the discussion, the rules to vary K¢, Kp and [} are now presented. Since
Kp is the only parameter which influences the gain N, its variation is determined
by the manner in which N has to be changed as discussed in Section 3.8. It should
be noted that

AN = KAKp. (3.32)

Ko and Ky are varied to ensure that in conjunction with the variation in
Kp as obtained above, the controller zeroes move as discussed in Section 3.7. The
issue is further complicated by the dependence of the changes in Re(z;) and Im(z;)
on the values of the PID gains. Appendix B gives an approximate analysis of the
effect of varying the PID gains on the controller zeroes. The actual rules used to

implement the PID gain variations are illustrated in Table 3.1 for frame 1, and in

Table 3.2 for frame 2.

Though the analysis in the Appendix B illustrates that these rules work for
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ez(t)

dez!t!

d
PL [PM[PS| Z [ NS|NM ] NU

PL | Z | Z | Z]| Z |PS| PS | PM
PM | Z | Z | 2 | Z | PS | PM | PM
PS | Z | Z | Z |NS|PS|PM | PM
Z | Z |2 |2 |2 |2 | 2| 2
NS [PM|PM|PS|NS| Z | Z | Z
NM [PM|PM|PS| Z | Z | Z | %
NL [PM|PS|PS| Z | 2| Z | 2

Ax,

1G]

dt
ex(t) [PL[PM | PS | Z | NS [ NM | NL
PL | Z | Z | Z | Z | NM|NM| NL
PM | Z | Z | 72 | Z | NM| NL | NL
PS | Z | Z | Z |PS|NM| NL | NL
7 | Z | Z | Z %2 ]| Z | 7|2
NS |NL | NL |[NM|PS| Z | 2 | Z
NM ||NL|NL |[NM| Z | 2 | Z | Z
NL [NL|NM|NM| Z | Z | Z | Z

Ary

G210}

d
ex(t) | PL [PM [ PS | Z [ NS NM] NL
PL | Z | Z | Z | Z [NS| NS |NM
PM | Z | % | Z | Z | NS | NM | NM
PS | Z | %2 | Z |PS|NS|NM|NM
Z | 2 |4 |Z2|Z2]|2]| 7| %
NS |[NM|NM|NS|PS| Z | Z | Z
NM | NM |NM NS | Z | Z | Z | Z
NL [NM| NS |NS| Z | Z | Z | Z

Ak,

Table 3.2: Rules for Frame 2
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particular ranges of the gains, the general case seems to be unclear. However

simulation results have proven encouraging.
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Chapter 4

Implementation Issues

This chapter discusses some of the issues concerned with constructing the expert.
The fuzzy membership functions for the measured quantities and the outputs are
defined. The idea of scaling the outputs to obtain the actual PID gain variation is

discussed. A brief note on the duration of the expert’s action is made.

4.1 Fuzzy Membership Functions

dea(t)
dt

This section discusses the fuzzy membership functions for e;(t), ex(?), and
the output set (A). The output set is the same for all three of the PID parameters

K¢, Kp and Kj. Scaling is used to obtain their actual numerical values (AL,

AKp and AKj), from the unscaled values 6, 0k, and ég,.

These membership functions are best represented as figures. Figure 4.1 shows

the membership functions. Note that for the error membership functions, there is
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a region around zero, that belongs only to the Zero membership function. This is
for the purposes of noise immunity. Since all the values are assumed to range from
-1 to +1, the measured values need to be scaled, before their membership can be

evaluated.

l.e. e/(t) = niey(t), eat(t)= nqyea(t), and des(t) _. . de2()  These / values are then
n dt M3 gt

used to evaluate the membership values of the respective inputs.

Membership functions, though can be of any shape have been chosen here to
be triangular. This is to reduce the computational complexity in evaluating the
membership values. Once these are evaluated, the classification(s) (NL,NS etc.)

and their membership values are passed onto the rule evaluator.

4.2 Rule Evaluation and Scaling of Outputs

There are two sets of rules used to determine the outputs.

1. One set is used during frame 1 to adjust the rise time.

2. The second set is used during frame 2 to damp out oscillations.

The rule evaluation block is told which frame the response is in and applies the
corresponding set of rules. These rules are implemented as a set of if-then clauses

as described in Section 2.2.
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Figure 4.1: Fuzzy Membership Functions
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After the rules are evaluated, the numerical values of Ay, Ax, and Ag,
are evaluated by applying equation 2.6. Let these be represented by ér., ox, and

6x,. From these the actual outputs are obtained after scaling as

AKc = pro[KOma: = KCminlOKc (4.1)
AKp = pp[KDmaz = KDpmin 0K (4.2)
AI{I = pKI [KIma:x: - I{Imin](s}_\"f (4:'3>

where px., prp, Pk, represent sensitivities, Kcous KDmazs Nimas the maximun
allowed values of the gains, and Ko, Kp,... and Ki,,, the minimun values of

the gains.

In practice the expert will be operating in systé;ms with measurement noise.
Since the expert, as described so far has no means of knowing when the response
is in steady state, it will mistake deviations due to noise as oscillations and hence
will keep increasing the damping. To avoid this additional logic needs to be incor-
porated to inform the expert of the achievement of steady state. This is done by
using a timer which starts once the amplitude of oscillation about the steady state
value is within small . After a certain time, usually 4 to 5 times the response time
T, the expert is deactivated. For all the results presented in the next chapter, this

timer is incorporated in the expert.

The overall architecture of the expert is shown in Figure 4.2. FLC; and
FLC, refer to two fuzzy logic controllers having an internal structure as shown
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Figure 4.2: Architecture of the Expert (Shown Operating in Frame 2 Mode)

in Figure 2.3. The scaling factors 71, 7, and n3 are chosen depending on the
reference response desired. In the applications discussed, 7, = n2 = 1 was found to
be sufficient. However 7, should be chosen dependiﬁg upon the expected overshoot,
but its value is not critical in the sense that after the gains have stabilized. the
response will be well behaved, and hence a not too large overshoot maybe expected.
13 is chosen so that the slope of the reference response (= -Tl—z) falls between Medium

and Large .
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The output sensitivities px, px, and pg, are chosen depending on how much
rate of change of the gains is allowable. If nothing is known about the process,
conservative values can be chosen e.g. 0.001 used for the separator temperature
control in the Tennessee Eastman Problem. The gain ranges are usually set by
the PID controller limitations. They are incorporated so as to scale the Posi-
tive/Negative Large value of the output set to correspond to the full range of the
controller gains. Since one would expect the actual gain values to be of the same
order of magnitude as their respective ranges, these ranges also prove useful in the

analysis presented in the Appendix B.

4.3 Overshoot Control and Adaptive Scaling

1. Overshoot Monitor:
So far, the expert has no means of dealing with overshoot. Although, sim-
ulation studies show that usually the amount of overshoot is small, it may
not be small enough. For this purpose an overshoot controller is built on top
of the expert. It measures two quantities i) the maximum overshoot, and ii)
the rise time. It should be noted here that priority is now given to control
of the overshoot, rather than the control of rise time. This is in contrast to
the original expert, which gave priority to the control of rise time. The over-
shoot controller tries to ensure that the overshoot is less than the prescribed

maximum, while at the same time keeping the rise time as close to that of
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the reference response as possible.

To achieve this, the overshoot controller adaptively adjusts the switching
point between frame 1 and frame 2. The action taken is proportional to
the amount of overshoot, and is taken only if the overshoot exceeds the pre-
scribed maximum. In particular, if the overshoot is larger than the maximum
allowed, the expert is switched into the frame 2 mode sooner. If the over-
shoot requirement is satisfied, but the rise time requirement is not, then the

expert is forced to remain in the frame 1 mode for a longer duration.

. Adaptive Scaling:

The scaling factors (72 and 753) for frame 2, are adaptively changed from
iteration to iteration depending upon the maﬁ’(imum error (e, .. ), and the
maximum rate of change of error ((%)max) during the previous iteration. In

particular, the rules are

1 1.2
'lf I €2maz I > Anoise then Ny = ' - '
2"101
and
) de 1
Zf I("E’tz)mam|> Bthenng,:'(iel) |
dt /mazx

where A,.ise 1s the maximum noise amplitude and, B is a small number
chosen to limit the magnitude of 3. For example in the application presented
in Section 5.4 A,.ise = 0.1 and, B = 0.001 were chosen. This adaption of the

scaling factors results in a more uniform action by the expert during frame
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2. In fact it, enables the expert to damp out oscillations.

To evaluate the performance of the overshoot controller and adaptive scaling,
an application is considered in Chapter 5 where the expert alone fails to give a
satisfactory response in terms of the overshoot and oscillations about the steady

state value.
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Chapter 5

Applications

This chapter presents some applications of the expert described in the preceeding

chapters. These are

1. To a known second order plant.

2. For the separator temperature control in the Tennessee Eastman Test Prob-

lem [Vogel and Downs, 1990].

3. To a third order plant.

The results of these applicatons are presented graphically in the following
pages. The results for the third order plant are presented to verify the claim made
in Section 3.4 concerning the robustness of the root locus with respect to addition
of higher order poles. In the above applications, the expert is applied without the
overshoot controller, and with fixed scale factors for frame 2. It is observed that

the expert is unable to satisfactorily compensate the PID gains for the seperator
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temperature loop in the presence of liquid level change. More specifically, it results
in a highly under damped response. This case is taken up again in Section 5.4,
where the expert is applied along with the overshoot controller and with adaptive

scaling.

5.1 Second Order Plant

The plant considered has the following transfer function

0.0301
(s + 0.003)(s + 10)

<

P(S) = Z(P; =

8

Here Al = -0003, )\2 = -10 and Ag X /\1.
The desired response has T7 = 50 seconds and T3 = 700 seconds. This is shown in
Figure 5.1.

Two initial closed loop responses are considered

1. The initial PID parameters yield a very large rise time.
2. The closed loop system is initially unstable.
For both the cases the following parameters are selected for the expert.
m =1n2 =1, 13 = 60, pr, = px, = px, = 0.0005, Ke,,.. = 2, Ac,,, =0.

Kp,... =500, Kp,, =0, Kp,,. =05,and Kz, = 0.00001.

A set-point change from 0 to 10 is considered in both cases.
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Figure 5.1: Second Order Plant: Reference Response

For the case with a large initial rise time, the initial response and the final
response after the expert has tuned the gains is shown in Figure 5.2. Figure 5.3
shows the variation of the steady state gain values from iteration to iteration. The
expert also acts as a gain scheduler, and the gain variation during a set-point

change is shown in Figure 5.4.

Figure 5.5 illustrates the application of the expert to the case of an unstable
initial response. The stabilizing feature of the expert can be seen by comparing
the initial unstable response to the response during the first iteration. The final
response is also illustrated. The gain variation from iteration to iteration is illus-

trated in Figure 5.6, and the gain scheduling behaviour is shown in Figure 5.7.

It is seen that in both the cases the expert greatly improves the closed loop

response, moving it close to the desired response.
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5.2 Separator Temperature Control

The expert is applied to tune the PID parameters of the separator temperature
control loop in the Tennessee Eastman Test Problem. Figure 5.8 shows the di-
agram of the process. For the purposes of separator temperature control, the
condensor cooling water valve is chosen as the manipulated variable, and the sepa-
rator temperature as the measured variable. The separator along with the chosen
control loop is illustrated in Figure 5.9. This system has i)measurement noise,
ii)an unknown number of plant poles, iii)measurement noise, and iv)bounds on
the manipulated variables. Figure 5.10 shows the open loop response to a negative
step change in the condensor cooling water flow. TWQ initial closed loop responses

are considered here.

1. Initial PID settings give a very slow rise time.

2. The initial closed loop response is oscillatory.

Since the plant gain is negative, the input to the plant is multiplied by -1, to
enable the use of positive controller gains. The adaptive property of the expert
is also illustrated by changing the liquid level in the separator from 50% to 70%.
Increasing the liquid level changes the plant characteristics and leads to a slower
open loop response. The following parameters were used for the expert.

m =mn2 =1, 13 = 930, px, = pkp = px; = 0.001, K¢, = 15, K¢, = 2,
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Kp,,.. =600, Kp_. =0, K, =0.1,and K7, = 0.0L

min

The reference response has 77 = 80 seconds, and T5 = 300 seconds. This is shown

in Figure 5.11. A set-point change from 80.109 deg C to 85 deg C is chosen.

Figure 5.12 illustrates the initial and final responses for the large initial rise
time case. The change in the steady state gain values from iteration to iteration
is illustrated in Figure 5.13, and the gain scheduling behaviour can be observed in

Figure 5.14.

Modification of the initially oscillatory closed loop behaviour is illustrated in
Figure 5.15. It is seen that the oscillations are damped out in the first iteration
itself. The final response is found to be close to the desired one. Changes in the
steady state gains from iteration to iteration is shown in Figure 5.16, and the gain

scheduling behaviour can be see in Figure 5.17.

Once the response is close to the desired one, the liquid level in the separator

is changed from 50% to 70%. This changes the characteristics of the system. This
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can be seen in the initial response shown in Figure 5.18. Figure 5.18 also shows the
final response obtained after the gains have settled. It is seen that the rise time
is again small. However this is obtained at the expense of a greater overshoot.
This is to be expected, as the response is being forced to rise at its original rate ,
even though the capacity, or the time constant of the open loop system has been
increased due to a greater amount of liquid. The plot of steady state gains with
respect to iteration number is illustrated in Figure 5.19. This case is considered

again in Section 5.4.
5.3 Third Order Plant

The plant considered has the following transfer function

Y(s) 0.0301

Here Ay = —0.01, A;3 = —5 % 74, and A is the dominant pole. The reference
response (Figure 5.20) has T; = 20 seconds, and T, = 250 seconds. The initial
PID parameters yield a very large rise time (Figure 5.20). The following parameters
are chosen for the expert.

m=mn =1, 13 =30, pg, = pr, = pr,; = 0.005, Ac,az = 30, Kcnin = 0,
Kp, o = 1500, Kp,in = 10, K1,z = 1, and K i»n = 0. A set-point change from

0 to 10 is considered.

The final response after the application of the expert is shown in Figure
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5.20. Figure 5.21 shows the variation in the steady state gains from iteration to
iteration. It is seen that the expert successfully tunes the gains, and this supports
the claim made in Section 3.4, concerning robustness of the portion of the root

locus of interest with respect to unaccounted higher order poles.

5.4 Expert With Overshoot Control and Adap-
tive Scaling

In the case of seperator temperature control with a change in the liquid level, it
is seen that the final response is highly oscillatory (Figure 5.18). This is because,
an increase in the liquid level pushes the dominant pole towards the origin. Due
to this the root locus also shifts, and this results in low damping, leading to a
highly oscillatory response. The same system is considered again, however now
the expert is augmented with the overshoot controller and adaptively modifies the
frame 2 scaling factors. The maximum allowable overshoot is fixed at 10%. The
final response obtained after the expert has tuned the gains is illustrated in Figure
5.22. It 1s observed that there is a dramatic improvement in the quality of the

response obtained here as compared to that obtained by using the expert alone.
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Chapter 6

Conclusion

As seen in the applications discussed in Chapter 5, the expert is successful in tuning
the gains of the PID controllers. The way the fuzzy rules have been formulated, it
is seen that the derivative mode gain(Kp) is usually very small. For example in
case of the separator, Cohen-Coon tuning [Coon, 1956] gives a derivative gain of
186, as compared to 115 and 132 obtained by using the expert. Smaller derivative
gains are desirable as they imply less valve jitter in the presence of measurement

noise.

Since many chemical control loops have plants which have a similar open
loop characteristics as the cases discussed, the expert maybe applied to them for
the tuning of their PID gains. Further flexibility maybe obtained by creating a
superuvisor for the expert. The performance improvement achieved by incorporating
an overshoot controller and by using adaptive scaling have been demonstrated in

Section 5.4.
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In this thesis, a great amount of emphasis has been placed on the concept
of manipulating the root locus and hence, the poles of the closed-loop system via
movement of the controller zeroes. This approach could lead to a better means
of improving the system response, rather than gain(/V) variation (which is more
common in the literature), especially since noise restricts the range over which the

gain can be varied.

It is seen that the rule base presented in this thesis adequately tunes the gains.
There is no claim made that modifications in the rule base will not result in a better
performance. In fact, another rule base may result in a better performance by
manipulating the zeroes in a different manner. A surprising fact is, that although
the analysis presented in Appendix B only ensures that the rules manipulate the
zeroes as desired for particular values of the controller gains, they seem to be able
to compensate even if the gains are much smaller than those assumed. E.g. this is
seen in the case of the second order plant, where the derivative gain(Kp) is almost

zero, whereas its range is of a much greater magnitude.

Finally it can be said that the results obtained provide encouragement to-
wards the goal of developing intelligent controllers to handle a class of systems.
However, there is a strong need for the development of mathematical tools for
the analysis of fuzzy systems. Without precise mathematical statements, the ac-
ceptance of such controllers in industry will remain doubtful. The results also

demonstrate the need for developing methods for evaluating the performance of
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such intelligent controllers.
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Appendix A

Controller Zeroes and Closed
Loop Poles

This appendix considers the effect of the movement of the complex controller zeroes
on the complex closed-loop poles. Attention is restricted to moving the poles and
zeroes towards the imaginary axis, and away from the real axis. The closed loop

transfer function is given by

G(s) = ﬁ—gT(SS))YJ@ (A.1)
where the closed loop poles have to satisfy
14+ C(s)P(s)=0 (A.2)
This reduces in the case of interest to
1+ K(s+ z1)(s + 2z2) (A3)

8(3 + /\1)(3 + )\2)
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where -z, -z, are the controller zeroes, -Ay, -\, are the plant poles and K is the

plant gain. Now let z; = a+j8 and z; = o-j3. Hence equation A.3 reduces to
S+ (A + A+ K)s? + (MAg +2aK)s + (@® + 2K =0 (A.4)

The roots sy, s, and s3 of this equation have to satisfy

$1 -+ Sq + S3 = —()\1 + /\2 -+ I{) (A5)
8182 + 8983 + 8381 = A Ay + 20K (A.6)
818983 = —(a* 4+ BHK (A.T)

Let f; = %sa—", i=1,2,3. Then differentiating A.5 - A.7 with respect to « one obtains

i+t fa=0 (A.8)
sifo+safi +s2fa+s3fots1fs+s3fi = 2K (A.9)
s183fa + S283f1 + s182f3 = —2akK (A.10)

Writing it in matrix form gives

1 1 177 f 0
So+ 583 81+ 383 81+ 392 f2 = 2K (All)

8983 8183 S182 f3 —2ak
=
fi 1 3%(32 —83) —s1(s2 —83) 82— 83 0
fz = 'A" 83(83 - 81) —32(83 - 81) S3 — S1 2K (AIQ)
f3 s3(s1 —s2) —sa(s1—82) 81— 8 —2aK

where A = s%(s; — s3) + s3(s3 — $1) + s3(s1 — S2). Let v = s3 be the real root.
Hence one can write the other two roots as s = A + jw and s; = A — jw where
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\ < 0. Since the interest here is in the movement of the complex roots, it suffices

to study only fi. From equation A.12 one obtains

—2Ks1(sy — 83) — 2a/(s5 —
fi= s1(s2 SB)A aK (s — 53) (A.13)

Substituting for the values of s1, sa and s3 one gets

K(y+a) + K(w? —(y =N\ +a))

fi= = N o J w((7 ) +w?) (A.14)
=
A _ M
2. (A.15)
do _ KW =(y=N(A+a) (A.16)

doa  w((y—X)?+w?)

Now let g; = %—sg’, i=1,2,3. Then differentiating equations A.5 - A.T with

respect to B one obtains

g+g:+93=0 (A.1T)
5192 + 5201 + $203 + S3ga + 5193 + 5391 = 0 (A.18)
$15292 + $253g1 + 815293 = —28K (A.19) .

Under similar assumptions one gets

_ BK . BK(y—A)
g1 = RS Jw((7 “N 4 o) (A.20)
and hence
dy BK
B (421
dw —BK(y—A) (A.22)

B~ w((y— A +w?)
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Under the assumption that |y | > | A |, | « | one gets from equations A.15,
A.21 and A.22

dA dA dw
il i) T Qs
Ta <0 7 >0 ,and > 0. (A.23)

Hence moving the controller zeroes towards the imaginary axis and away from
the real axis pushes the closed loop poles towards the imaginary axis. Now lets

consider equation A.16. Setting o = 0 (i.e. zeroes on the imaginary axis), gives

dw KW — Ay — X))

= = 2
PR (g (A2
Soifw? +A? < Ay (*) =
o< (A.25)
«

Hence if the above condition(*) holds then by the continuity of %‘(‘f there exists
a region near the imaginary axis where A.25 is satisfied. Hence if the zeroes are
sufficiently close to the imaginary axis then the poles follow the zeroes. However in
practice, the extent of the region where A.25 holds is not known. What is known
however, is that such a region does exist and is near the origin. Since the aim here
is to influence w using both « and beta, and the sign of Z—‘E is known to be greater
than zero, one makes | AB | > | A |. A positive sign on 2 is advantageous as, if
the poles are too far away from the origin, then moving the zeroes away from the
real axis causes w to increase. Too large a value of w drives all the derivative terms
to zero and ultimately the influence of the zeroes on the poles will be negligible.

% counters this growth of w .
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Once the zeroes are close to the imaginary axis, change in « is small, since it
can only reach zero in the limit. Hence now the zero-pole movement is determined

by 8, whose influence on A and w is known.

Note that in the first order plant case, one can set ¥ — co. Hence condition

(*) holds trivially.
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Appendix B

Analysis of Fuzzy Rules

This appendix presents an order of magnitude analysis of the fuzzy rules presented
in Table 3.1 and Table 3.2. The analysis is carried out under certain assumptions.

These are
1. The PID gains are of the same order of magnitude as their respective ranges
(Rke, Rip and Rg,).
2. The output scaling factors are approximately the samei.e. pr, = pr, = pK;,-

3. The controller zeroes are complex.

The ranges are defined as follows
RK(’: = Kcma:: - [{Cmin

Ry, = Kp,... — Kp

min
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Ry, = Ky,,..., — Ki

min

Let the controller zero z; be given by

Zi=« + J;B (Bl)
where
—-K¢
— .2
*= 9K, (B-2)
and

K¢ [4KpK; n
\/f -1 B.3
b= 2Kp K% (B-3)

Differentiating equation B.2 one gets

K¢

~9Kn (B.4

o 2KD —AKe + 2K3 oz Afp (B.4)

1 K¢ ]

Daw 2[(])([{4 pKDRI\D‘SKD chRI\cékc) (B.O)

. KGR
By the assumptions, —3=2 =~ Rk, and pk, ~ px, = p. Hence one has

Aa =~ ”RK"(‘;’;{DD OKc) (B.6)

Differentiating equation B.3 one gets

4K p K 2K, ~Ke 4KpKi _ Ki o .

A - AK, \A
b~ {[21{ Kz VT A Ket gpg (g — U A el
DN Sum— (B.7)

Ko f '

VIR

79



K 1
AB = { AI(C-I- AK[-{ ( - )AI{D}———————— (B.S)
2Kp Kp 2K2 Ko Kp I\QCAZ 1
=
AP~
—prcBKe pKDRKDKC px Rk, Kipx, Rk 1
—PRe e g + — 6 PR r g, — 2B 2P g f e
Sy 2K, Ko T TR, K1 T TRGKp o gl |
KZ
(B.9)

. K ~ ~ _
By the assumptions, 'E%RK ~ Rk, , A KLRk, ~ Ry, and prc = pr; = PKp =

p. Hence one has

1 pRK PRI\
AB =~ { S (bx, — 6Kko) + —(6n; — §Kp)} (B.10)
2]{ C I D
T 1 2 |

Frame 1: If ey/(t) Positive Small or Positive Medium then one has 6x, = 0, O,
> 0 and 6k, < 0, with | §x. |=| 6k, |. = Aa > 0, and A3 > 0.
If on the other hand ey/(t) is Positive Large then §g, < 0 < b < §r;- = Aa >

0, and AB > 0. It is also clear that |AB| > |Aa| as AS can be written as
AﬂNAa—i— (6KI —61\19) (B.ll)

and %1(6;{, — 6k,) is always the same sign as A« and AB. Hence the zeroes

move as desired.

Frame 2: If ey/(t) # Small or é’—f}t@ # Zero then 0k, < 0, 6xc > 0, and 0, < 0

RI\'[
I\'C :

with |6x.| = |6k,| < 18kl = Ba <0, and AB ~ 0 assuming %i\‘fg— ~

If ey/(t) is Small and é—%’;@l is Zero then 6x, > 0, 0x; <0, and 8, > 0 with |65 51
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~ |6ko| ~ |6k, = Aa > 0, and AB > 0. Hence once again the zeroes move as

required.

Thus it is seen that under the given assumptions, the fuzzy rules manipulate

the zeroes as desired.
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