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CHAPTER

ONE

Introduction and Systems Approach

In recent years, the size of satellites’ structures that are being developed has
increased dramatically. Operational power requ‘:ii‘ernent growth has outpaced
the-ability of standard solar panels. Correspondingly, new design problems have
arisen. In order to handle these technological difficulties, a systematic analysis
of the space structures is required. This study incorporates a cross-disciplinary
approach that is required in order to analyze a technological requirement, namely
on-orbit structural identification.

In the following sections, the basis of the need for larger satellites and so-
lar panels is explained. The power requirement solution may follow different
technical paths. A very simple trade-off analysis leaves the designer with solar
panels as the preferred power source. The power requirement thus drives the
requirement for larger sized panels. These larger panels cause structural prob-
lems which require monitoring and analysis. The identification and monitoring
requirement leads to the topic of this thesis, which is ground based laser mea-

surement of satellite motion and the parameter identification of the structural



modes.

A top-down diagram of the technological flow that drives this experiment
is shown in Figure 1.1. This figure diagrams how disperse top-level factors of
requirements lead to the need for Jarge space systems. These systems generate
technological concerns, one of which is structural analysis. The solutions of this
concern fan out to a variety of choices. The choice of remote sensing is the topic
of this thesis. The following sections will explain in more detail the technological

factors that contribute to the system.

Power Increased
Demands&—D Paylioads
Large QJ

Space
Structures

Technology
Concerns
e Control/Structure Interaction
e Health Monitoring

I

Co-l -
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Sensors Mataria's

Figure 1.1: Top-Down Flow of Technological Forces affecting System Analysis
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1.1 Technological Forces on Spacecraft Size

There are two technological forces driviﬂg the increasing size of space structures.
The first is the increased on-board power demands for communication, scientific,
and military payloads. Typical communication satellites require between 1 and
1.5 kilowatts of power during their lifetimes.. The new SDI space-borne weapon
systems may require 20 times this amount. These power requirements have
surpassed the capacity of solar panels directly mounted to the rigid body. To
satisfy these requirements either solar panels or r;hclear reactors can be used (see
Figure 1.2). The latter source is typically an unacceptable solution because of

safety and political reasons. Still, the current technology for solar panels can
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g .
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Figure 1.2: Modern Satellite Power Sources

only keep up with such demands by increasing the size of solar panels. Simply

increasing the size of the spacecraft, however, will not provide enough surface



area exposed to solar radiation to meet the required power demands.

The solution has been to use large deployable solar panels or wings. These
large wings are light weight and constructed with graphite composite material
but are susceptible to large flexible motion. This motion may be driven by
solar wind, atmospheric drag, or interaction with the spacecraft’s main body.
Rigid body dynamics, system vibratory motion, and solar tracking actuators
characterize this latter motion which is transferred to the solar wings at the
wing/bus interface thus exciting the wings’ vibration (See Figure 1.3).

The second technological force is the development of complex scientific ex-
periments and payloads. These payload require large structures such as the
space station or complex antenna booms. Construction of such structure will
require extended light weight booms and elements. These elements typically will
be built from hinged graphite elements and deployable truss booms (See Figure
1.4). The spacecraft that is the subject of this study will fall into this second
category of large space structures.

These new space structures utilize light weight materials which will have low
damping factors. Stiffness requirements for structural rigidity contribute to the
low internal da,mping.. The combination of large elements and low damping cre-
ates new design challenges as the spacecraft lowest vibration frequencies begin to
extend into the lower frequencies. Because of light damping, all control signals
or input forces are required not to generate signal with frequency components

near these vibrational modes. Any dynamic motion that generates forces near



these modes may excite large vibrational motion. This resonant motion may
present an operational nuisance, but in some cases, it could become disastrous.
Unfortunately, as the scale of deployed structures get larger, the lower modal
frequencies may begin to seriously limit the actuator operating range. Addi-
tionally, many actuators provide incremental pulses (such as stepper motors
and thrusters) and the spectrum of such pulses are broad and will excite the

structural modes.

Figure 1.3: Modern satellite high power solar panels
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Figure 1.4: Modern space structures

1.2 The Need for Structural Identification

While structural analysis can predict modal frequencies with some degree of con-
fidence, the structure configuration over a space structures life-cycle will not be
constant. Normal reconfiguration requirements, mechanism decay and failure,
and changes in structural properties will create complex structural configura-
tions that may be increasingly hard to model, especially as unknown elements
creep into the model formulation. Therefore, there exists a need to indepen-
dently verify and identify structural behavior. A structural identification of the

spacecraft in its “true” environment will provide confidence in analytical models



and hopefully point to areas where more research is needed. Identification can
be used to monitor the spacecraft over its life and analyze trends in performance.
Finally, in-flight modeling is a major step toward the goal of real-time adaptive
attitude contol and stabilization.

Interest in structural identification has recently expanded. Tests have been
done by the US Air Force that tested structural modes on a boom while in a
zero-gravity environment. This was done in the hold of an girpla.ne while in a
parabolic dive. Currently, there are plans to perform a similar experiment in
the hold of the space shuttle. The experiment of this thesis has the advantage
of testing flight hardware using simple low cost hardware and accomplishing

similar goals.

1.3 Thesis Overview

This thesis accomplishes parameter identification on an in-orbit .satellite. In
Chapter 2, the satellite on which the structural identification will be performed
is described. In Chapter 3, the structural modeling techniques used to model
the spacecraft are presented. In Chapter 4, various algorithmic approaches are
described that handle identification when dealing with noise corrup.ted data.
In Chapter 5 the actual experiment is described and the results are presented.
These results are fascinating in that using only small observation windows, the

first three of four structural modes were detected.



CHAPTER

TWO

Spacecraft Configuration and Experiment Description

The experiment was designed for the Low Atmospheric Control Experiment
or LACE spacecraft. It is a low earth orbit satellite that was launched into a
cil;cular orbit with an altitude of approximately 550 kilometers and an inclination
of 43 degrees. The LACE spacecraft structure is composed of a central rigid body
or bus with three deployable booms (See Figure 2.1). The bus carries mission
sensors and experiments, all supporting telemetry/command modules, attitude
and control subsystem, and the solar panels.

Each of the deployable booms has a different mission function. The first
boom is the gravity gradient boom and is oriented directly away from the earth.
It has an electro-magnetic energy dissipating unit located at the tip. The energy
dissipation unit is part of a passive attitude stabilization system that dumps
destabilizing dynamic energy using the earth’s magnetic fields.

The second boom is the retro-reflector boom and is deployed in the direc-
tion of the spacecraft velocity vector. The retro-reflector boom tip has a laser

reflector unit mounted on it. These reflectors are part of the primary spacecraft



mission. Amongst these reflectors is a germanium reflector (approximately 1
inch diameter) that is dedicated to this structural dynamics experiment.

The third boom is the balance boom and is oriented 180 degrees from the
retro-reflector boom. The balance boom has a strictly passive role of counter-
acting the rigid body dynamics due to the retro-reflector boom. The rigid body
and the balance boom also have germanium reflectors mounted upon them.

The spacecraft booms are both deployable and retractable. The deployed
length varies from 0 feet up to 150 feet. The booms are constructed of light
weight composite material with continuous longerons and stiff cross elements
(See Figure 2.2). Since the boom lengths are variable, the system vibration
modes are variable as well and are a function of the deployed length . The un-
deployed portion of the booms remains elastically coiled in the deploying canister
mounted to the main spacecraft body. Additionally, the deploying canister has
an elastic compliance. This compliance is incorporated in the vibration analysis,

see Table 2.1 (also see Chapter 3).

density bending torsional | Rotating | boom canister
unit stiffness stiffness | Inertia I, compliance
length (ET) (GJ) | unit/length

kg/m N-m? N-m? kg-m N/radian
0.291 | ~ 1.55 x 10° 631 133 x 10— | 1.695 x 10*

Table 2.1: Boom Structural Properties

The rigid central body has a mass of 1177 kilograms with moments and

products of inertia listed in Table 2.2. These properties were experimentally



measured. The tip masses on each boom are listed in Table 2.3.

Tnertia | kg — m?
I, 1448.7
I, | 14264
I.. 1026.2
Iy 3.61
I.. 19.98
I. | 14.86

Table 2.2: LACE Bus Inertial Properties

boom kg
Gravity 90.7
Retro-reflector | 15.9
Balance 15.9

Table 2.3: LACE Boom tip masses

10
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2.1 Experiment Description

The experiment is to measure linear vibration of the complete structure and
calculate the system modal frequencies and damping factors. The vibrations
will be excited by the deployment and retraction of the lead boom. This type of
excitation is due to the nonlinear coupling of the elastic strains of the booms in
the canister. Additionally, the lead tip mass is offset from the axis of the boom.
This offset provides a moment at the boom tip which will exci‘;é vibration. While
thev excitation forces involve nonlinear factors, ti\le resulting vibration will end
up being within the linear range (See chapter 3 on beam modeling).

Sampling the vibrations will be done remotely. Since the LACE spacecraft
does not have telemetered data that directly indicates vibratory motion ( such
as strain gauges, gyros), the measurements must be taken indirectly or using

off-board devices. Originally, the experiment had been designed to use two

techniques to acquire vibration data.

1. The first technique uses a ground based laser to illuminate the germanium
mirrors on the satellite (See section 1.1). The reflected laser signal will
have a Doppler shift due to the relative motion of the satellite with respect
to the laser source. The detected Doppler shift from each of the illuminated

mirrors is then used to calculate this relative motion. (See Figure 2.3)

Lo

The second technique uses a spacecraft mounted optical sensor to detect

vibration motion. The spacecraft sensor used to track stars or ground

13



based lasers. This sensor can track within precise tolerances ( =~ millira-
dians ). Using this sensor, the vibrations that influence the central body
can be detected. Thus by calculating several coordinate transformations,
the motion detected by the sensor can be projected onto the expected

vibration axis.

Although considerable effort was put into the second approach, it was eliminated
eventually from the experimental technique due to operatibnal considerations.
Specifically, there exists an operational co11strairi£ against optical tracking while
thé spacecraft was being illuminated by an 800 watt infrared laser. Considering
that the reflected laser return provides greater resolution, the sensor tracking

approach had to be eliminated.

2.1.1 Doppler Shifted Laser Return

The laser source and detection facility used is located at Lincoln Laboratories
in Massachusetts. This facility was contracted to perform the actual laser mea-
surements. The collected data was then sent to the Naval Research Laboratory
where all the analysis was performed.

The data collection is done by pulsing the spacecraft with an infrared laser
source and measuring the Doppler shifted return. The laser pulsing used a duty
cycle of 62 Hz. This pulsing rate is higher than the modes targeted for detection
(Ref. Chapter 3), but the oversampling provides a more reliable data set from

which noise is more easily eliminated. Each pulse is sampled 4080 times in-phase

14



and in-quadrature (1.25 Mhz sample rate). The frequency components of the
Fourier transform of the complex data set is analyzed to detect Doppler shifts in
the return spectrum (See Figure 2.4). The Doppler shifts of each return source
is calculated from the sampled power spectrum. The relative Doppler shift of
each boom compared to the central bus is used to determine vibratory motion
(See Figure 2.5).

In addition to the vibration motion, the Doppler shift will include the rigid
body motion of thé satellite’s orbital motion. This rigid body motioﬁ becomes
significant on the line of sight vector from an earth base observation reference.
(See Figure 2.6). Considering that observation windows are time limited, elimi-
nation of this rigid body component will improve the potential resolution of the
lowest vibration frequency modes [15] (Reference Chapter 3 for modal frequency

analysis).
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CHAPTER

THREE

Modeling the Spacecraft Structural Properties

The modal analysis can be performed in two ways. The ﬁrét approach is finite
element modeling (FEM), and the second technique is a continuum approach
through a partial differential equation model (PDE). The LACE geometry mod-
eling lends itself to strai ghtforward PDE solution. Once formulated, the solution
of the PDE provides a quick and accurate solution. FEM also provides conve-
nient three dimensional modeling, but its results will converge to PDE solutions
only as the number of nodes becomes large. The advantage of FEM analysis
is that software packages are readily available and easy to use. For this work,
PDE solutions were used and FEM solutions were used as a comparison.

The PDE model provides some distinct advantages to the FEM approach.
One, the number of parameters used in the model is greatly reduced. For the
LACE experiment, the number of unknown structural properties are the boom
stiffness and torsional stiffness, boom canister complianf;e, and boom internal
damping factors (assuming all booms are identical). Additionally, any struc-

tural irregularities are lost within the homogenized model. The benefit of this

19



homogenization process was theoretically explained by Blankenship [10]. Fi-
nally, continuous models can be used directly in control analysis. The large
order FEM models must be approximated using model truncation techniques

before control system analysis can be performed ( (18], [14]).

3.1 Euler Beam Model

The basic structural model used was the Euler beam. The Euler beam is the
traditional choice because it is a linear model." More complicated models may
pi‘ovide more “accuracy”, however, they introduce nonlinear components. These
nonlinear components obscure the definition of modal frequency and damping.
Additionally, the degree of deflection expected in the experiment are within the
engineering bounds of linearity.

The Euler beam basic assumptions are :

1. The cross-sectional dimensions are << than the length of the beam. This
is the slender beam condition. For the booms of the LACE spacecraft,

this condition is easily satisfied.

S

A plane cross-section drawn normal to the beam axis remains planar and

normal to the beam axis after bending.
3. Shear displacement is very small compared to bending displacement.

4. The amount of rotation of any particular cross-section of the beam is <<

than the amount of deflection of the cross-section.



While these assumptions may be severe, they are essentially obeyed with the
small excitation due to boom deployments. The booms are assumed to be
cylindrical beams. This assumption was used in the FEM analysis also. Thus,

the PDE model describing the flexible motion of the beam through any axis is

described by:

9*w(z,t) o'w(z,t)
= T T

0 (3.1.1)
This equation assumes the material stiffness £J and mass per unit length p are
uniform along the beam. The values for EJ and p used in this equation are the

same as those in Table 2.1. The solution is calculated by using the Laplace

transform on the variable time in the equation. The equation ( 3.1.1) becomes:

o*a(z,s)  s°
(z,8) &P

2 (5, ) = 0 (3.1.2)

The solution to ( 3.1.2) is:

w(z,s) = Aicosiz + Agsindz + AscoshAz + AssinhXz (3.1.3)

N

A= (F5)

Ez (3.1.4)

[\

Given ( 3.1.4) and boundary conditions at each end of the beam, the co-
efficients A; i = 1,---,4 are solved. The boundary conditions considered for
this experiment are tip masses and the boom canisters represented as spring
elements at the bus (See Figure 3.1).

Likewise, the torsional partial differential equation is described by:

9%0(z,t) N GJBZG(z,t)

= 3.1.5
° ot? 022 0 (3.1.5)




This equation assumes the torsional stiffness GJ and rotating mass inertia per
unit lenght I, are uniform along the beam. The values for GJ and I, used in
this equation are the same as those in Table 2.1. The solution is calculated by

using the Laplace transform on the variable time in the equation. The equation

( 3.1.5) becomes:

920(z,s)  §*I»
a2 T GT 6(z,s) =0 (3.1.6)

The solution to ( 3.1.6) is shown to be

g(z,s) = Ajcosfz+ Arsinfz (3.1.7)
5210 1
8 = (GJ)2 (3.1.8)

Using equation( 3.1.8) and the boom’s boundary conditions, the coefficients A;
are solved.

The complete PDE solution is calculated be solving the matrix of boundary
conditions for all flexible motion equations. The individual booms connected at
the spacecraft bus satisfy the dynamic and boundary conditions of the bus. The

modal frequencies are then calculated from the boundary condition matrix .

| ]
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‘8epding Boundary Conditions:

moment=K8
shear =Kz
moment=0
shear =Mz
Torsion Boundary Conditions:
n rv:
angle=0
Ti ngarv

moment =180 je

I=moment of Inertia of disk

Figure 3.1: LACE boom boundary configuration



3.2 Model Analysis Results

Using the model of the previous section, the modal properties of the LACE
spacecraft were determined. The spacecraft boom length configuration analyzed
is listed in Table 3.1. This was the configuration of the spacecraft at the time
of the identification experiment.

The pitch modes are the most likely detectable modes. For simplification the
pitch modes were isolated from the yaw and roll modes. This- speeds up analysis
considerably. The isolation is accomplished by z;ssuming the cross products of
inertia are zero and that the booms are mounted exactly in line with the bus
center of mass. This assumption is reasonable given the values for the product
of inertia as shown in Table 2.2 are small. A study of the lowest pitch modes
showed that the pitch modal frequencies were not sensitive to this assumption.
Of course, for a more exact model all the vibration planes must be considered.
The actual bus dimensions do marginally affect calculated pitch modes. The
yaw and roll modes were calculated separately. In Table 3.2 the pitch modes
are listed. Additionally, Table 3.2 lists the relative magnitude of displacement
experienced at the lead tip for cach mode. Relative displacement is the ratio of
tip deflection to peak mode deflection. This ratio gives some insight to which
modes are most likely to be detected with the ground based laser. Displacement
ratios which exhibit large motions at the modal frequency are more likely to be

detected (See Figure 3.2 through 3.7). However, it should be noted that there



is no guarantee any particular mode will be excited. This is due to the lack
of control of the excitation mechanism. It should be noted that. the vibration
mode at .7567 Hz is primarily due to the modeled spring compliance of the
boom canister. Changing the boundary condition at the spacecraft to a fixed
clamp drastically changes this mode. As the modal frequencies get higher, the
displacement ratios get larger. This suggests that if the system higher modes
could be excited, then they could be easily detected. Unfortuna,tely, the low
energy excitation force used in this experiment is not exﬁected to generate the

higher modes.

Boom length (ft)
Gravity Gradient 150
Retro-Reflector 15
Balance 150

Table 3.1: LACE Boom Configuration Analyzed

PDE | FEM | Displacement
hz hz Ratio
.01908 | .01906 0.0242
1298 1§ .12981 0.0063
2581 | .25782 0.0284
.3238 | .32333 0.0565
7567 | 74952 0.4669
.8217 | .81880 0.1068

Table 3.2: LACE System Pitch vibration modes below 1 Hertz
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Figure 3.5: Pitch Plane modal shape: .3238 Hz
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Figure 3.6: Pitch Plane modal shape: .7567 Hz
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CHAPTER

FOUR

Structural Identification using Free-Decay Observations

The LACE structural identification problem presents uﬁique challenges. As
described in chapter 3, the form of the excita;ion or driving function cannot
be accurately modeled. Thus, the analysis will be limited to only the post-
excitation free-decay measurements. Additionally, the observable measurement
windows available for laser reflections are extremely limited in time. Given these
two major limitations, the identiﬁcatioq analysis must be robust in the presence
of significant noise and must converge to a model given only a small window of

measurements.

4.1 Identification Introduction

The project’s goal is the accurate identification of the LACE spacecraft’s system
modal frequencies and, if possible, damping factox:s . Such experiments are vital
compliments to a structural analysis computed by either finite element models
or continuous partial differential equation models. A successful structural iden-

tification of the spacecraft in its “true” environment will provide confidence in



analytical models and hopefully point to areas where more research is needed.
Additionally, in-flight modeling 1s a primdry comp‘onent toward the goal of real-
time adaptive attitude control and stabilization.

As mentioned, the experiment will rely completely on free decay measure-
ments. Thus limited, the system modeling will attempt to duplicate the struc-
tural internal dynamics with an impulse response model. The identification will
utilize linear system theory which provides error bounds on the model’s per-
formance. The performance criteria that will be considered are the functional
norms Lg, L]0,00), Leo, Frobenius ( ||.||7 ), Nuclear ( ||.]|~ ) and the Hankel (
]z ). The system identification’s performance is measured by the comparison
of the true structural free-decay and the linear model’s impulse response. Per-
formance in both the time domain and the frequency domain will be addressed.

Historically, the identification of large structures by using an impulse re-
sponse is relatively recent. The most striking improvement to structural identi-
fication was the Eigensystem Realization Algorithm (ERA) suggested by Juang
et al [13]. This algorithm is theoretically inspired by the Kalman-Ho algorithm
[2] but differs by utilizing the more numerically robust approach of singular value
decomposition. Even more recently, Mook et al [4] presented the Minimum
Model error approach. This approach, coupled with ERA, provides improved
performance over that of ERA alone (5].

VVhile these two approaches were effective in parametric identification, they

did not provide the theoretical background to explain the accuracy of the al-
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gorithms or to calculate any error bounds associated with the identification.
In this chapter the error bounds associated with ERA and ERA/MME will be
shown.

In section 4.2 the background of the Hankel operator is presented and the
error bounds of truncating models are shown for balanced truncation and of opti-
mal Hankel norm reductions. In section 4.3 the modeling of infinite dimensional
systems will be addressed. In section 4.4 the ERA algorithm is derived con-
sidering the balanced realization approach. In section 4.5 the Minimum Model
Error approach is explained using Pontryagin’s approach, and the solution to
the two-point boundary value problem is solved using linear algebra as proposed
by Mook [6]. In section 4.6 a novel approach of least-squares modeling with
balanced order reduction will be proposed. In section 4.7 explanation of opti-
mal sampling is discussed. Finally, section 4.8 an example will be explored using

data generated from the impulse response of a spacecraft model.

4.2 The Hankel Operator and Error Bounds of Model Reduction

schemes.

The Hankel operator and the properties of its singular values are central to all
fnodel order reduction schemes. In this section the relation of the Hankel oper-
ator and the controllability and observability grammians is shown. Using these
properties, a linear model can be constructed that will model the true response

within a given bound. In the background development, the Hankel operator is
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considered for both discrete and continuous systems. The motivation for this is
that although the spacecraft structural system is a distributed continuous infi-
nite dimensional system, all the experimental data is confined to the sampled
discrete domain. It was shown that the singular values of a continuous system

Hankel operator are identical to its discretized counterpart [11].

4.2.1 The Hankel Operator

All realizations constructed utilizing the properties of the Hankel operator will be
modeled using the standard state space notation {16]. For finite order continuous

systems this representation is:

i(t) = Az(t) + Bu(?) (4.2.1)

y(t) = Cz(t) + Du(t)

—~
-
!\.')
o

~—

For discrete systems this representation is:

z(n +1) = Az(n) + Bu(n)

y(n) = Cz(n) + Du(n)

Given this format, the controllability and observability operators are then de-

fined.

Definition 4.1 For a given a state space representation (A, B,C), the control-

lability operator maps future inputs to the internal states U, : Ly[0,00) — C™.



For continuous systems this is defined as:
Vou= —/ exp(—A7)Bu(r)dr
0
For discrete systems T, : 15[0,00) = C™ is defined ds:

U ou

il

o0

S~ A*Bu(k)

k=0

Definition 4.2 For a given state space representation (A, B,C) and internal

state z € C™, the observability operator maps the internal state to past outputs

U, : O™ — Ly(—00,0] . For continuous systems this is defined as:
(¥,z)(t) = Cexp(At)z

For discrete systems {f/o : O™ — ly(—00,0] is defined as:

o~

(T,z)(k) = CA*z

Note: That if (A, B) is controllable then ¥ is surjective and if (A4, C) is observ-
able then U, is injective. Since these operators are Hilbert space isomorphisms

(ie. they map from one Hilbert space to another), the adjoint operators exist.

Definition 4.3 For a given a state space representation (A, B,C), the adjoint
controllability operator maps internal states to future inputs ¥% : C™ — L,[0, 00)

. For continuous systems this is defined as:
(Tr2)(t) = —BTezp(—ATt)z
For discrete systems Tz : C™ — 1[0, 00) is defined as:

~

(Tro)(t) = BT (AT)*
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Definition 4.4 For a given a state space representation (A, B, C), the adjoint
observability operator maps past outputs to internal states ¥, : C™ — Lg(—OO,'O]

. For continuous systems this is defined as:
0
Ury = / exp(ATT)CTy(r)dr
For discrete systems U= : C™ — ly(—o00,0] is defined as:
T 2~ A T\EAT
(Uha)(t) = D_(A7)"CTy(r)
—00

The importance of these definitions, aside from proving reachability and de-
tectability, is in the construction of the controllability and observability gram-

mians and the Hankel operator.

Definition 4.5 Given a stable system (A, B,C,D) ( i.e. the eigenvalues of A
of a continuous system are all contained in the left hand side of the complez
plane, for discrete systems all the eigenvalues are contained within the interior

of the unit disc), the continuous controllability grammian is defined as:
P= /0 * eap(At)BBTexp(AT)dt = TV} (4.2.3)
and the discrete controllability grammian is defined as:
P= i A*BBT(ATY = T T} (4.2.4)
k=0

Likewise, the observability grammian for continuous systems is defined as:

Q= / * eap(ATHCT Cexp(A)dt = T3, (4.2.5)
0
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and the discrete controllability grammian is defined as:

Q=S (ATycTcAk =13, (4.2.6)

k=0

For a stable continuous system these grammians, P and Q, will solve the

following equations [16].
AP+ PAT + BBT =0 (4.2.7)
ATQ+QA+CTC =0 , (4.2.8)

and for stable discrete systems, these grammians will solve.
P— APAT - BBT =0 (4.2.9)
Q- ATQA-CTC =0 (4.2.10)

Definition 4.6 For a given system with impulse response h(t) ( h(k) for dis-
crete systems), the Hankel operator is defined as the operator that maps past
inputs to future outputs, I : Ly(—20,0] — L2[0,00). This operator for continu-

ous systems is expressed as:

(Tu)(t) = /Ooo h(t + s)u(s)ds

and for discrete systems T : Iz(—c0,0] — 12{0, ) is expressed as:

[e ]

(Tu)(n) = > h(k + n)u(k)

0

For linear systems, the Hanlkel operator is easily constructed using the con-

trollability and observability operators.

(Tu)(t) = U, T, (4.2.11)
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4.2.2 Hankel Operator Properties

The fundamental relation between the Hankel operator and the controllability

and observability grammians is shown in the following theorem.

Theorem 4.1 The Spectml decomposition of the Hankel operator is related to

the eigenvalue decomposition of PQ, as follows:

{or} = {N*(PQ)}

where op represent the singular values of the Hankel operator ( ref: Francis [9]

(ch 5)).

Proof: let A be a nonzero eigenvalue of I*T' with respective eigenvector v then
Ty =000, Vv = Av (4.2.12)

Premultiplying ( 4.2.12) by ¥. and using equations ( 4.2.8) and ( 4.2.5) and
letting z = W u gives:

PQz = Az | (4.2.13)
Likewise, premultiplying equation ( 4.2.18) by ¥:Q and defining u = ¥;Qz gives

equation ( 4.2.12) back again.

In the following section, the performance bounds of balanced truncations are
shown. These performance bounds are directly related to the singular values of
the Hankel operator.

All identification algorithms for this structural identification experiment are

performed within the discrete domain. The desire is to put the Markov param-
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eters into a format that allows for easy model construction and takes advantage
of the truncation properties of the Hankel singular values. This is demonstrated

by defining the controllability and observability operators in a matrix form.

Definition 4.7 Given a discrete system (A, B,C) and input u € l5(—00,0] ez-
pressed as:

v = [u(0)T,u(-1)7,..., u(-n)T,.. )T

The infinite controllability matriz operator is expressed as:

.= [ B AB A’B ... A"?B A™'B ... | (4.2.14)

Likewise, the infinite observability matriz operator can be expressed as:

¥,= [ cT ATcT (AT)*CT ... (ATyr2C0T (AT 10T ... F
(4.2.15)
Thus, the Hankel operator defined by equation ( 4.2.11) is in fact an infinite
dimensional matrix that maps lo(—00,0] — 1[0, 00) with the same singular
values as shown in Theorem 4.1.
The advantage of the discrete Hankel operator is that it can be constructed
directly from the Markov parameters or impulse response. The realization

(A, B,C) has an impulse response defined by:

h(k) = CA*'B



The infinite dimension matrix T, therefore, can easily be constructed as follows:

R(1)  h(k+ 1) ee.  h(k+n)

T = | h(k+1) h(k+2) ... h(k+n+1) ... (4.2.16)
CB CAB ... CAF'B
= | CAB CA!B ... CA* ... (4.2.17)

b -

Equation ( 4.2.17) is identical to equation ( 4.2.11).
Though constructing the Hankel matrix is simple, several factors must be

considered.

1. The Markov parameters A(k) will be corrupted by noise. For the experi-

ment of this report, the signal to noise ratio will most likely be low.

8]

Computationally, working with an infinite dimensional matrix is impossi-
ble. Therefore, the Hankel matrix must be truncgted to a finite order of

n. The effect of truncating this matrix must be quantified.

3. The experiment’s goal is parameter identification, thus the effects of noise

corruption must be quantified.

The next section presents an error bound on model truncation and provides an
explanation of the noise effects on the parameter identification. Following the

next section, the effects of truncating of the infinite matrix are investigated.
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4.2.3 Balanced Realizations and Error Bounds

The most important property of the Hankel operator is the relation between
the hankel singular values and the frequency response. This relation will be
exhibited with the error bound of a balanced order reduction.

VVhil'e the realization (A, B, C) is invariant to transformations, the grammi-
ans P and Q are not. Moore [25] was the first to appreciate this and showed
that there exists a transformation such that the grammians will become diago-

nal. That is:

TPTT = diag(1,22,0,0)
(TT)7'QT ™" = diag(%,,0,X3,0)

where the matrices T; are diagonal matrices with elements {73,032, ..., On;} ar-

ranged in descending order o1 2 02 > ...> o, > 0. The transformed represen-

tation (A, B,C) = (TAT*,TB,CT~") will become:

h )
il

o
I
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C= { éc,o 0 = 0 ]
where the subscripts denote controllable, uncontrollable, observable, and unob-
servable subspaces.
Given this transformation, the controllable and observable portion of the
representation will satisfy the following Lyaponov equations (for continuous sys-

tems).

Considering only the minimal portion of a representation, balanced model trun-

cations are performed.

Definition 4.8 Given an nt* order minimal balanced representation (A, B, C,D),
with P = Q = diag(Z1,X2), where ¥y = diag(o1,--.,0k) and Ty = diag(Tr41,- - .y On)
arranged in descending order oy > 09 > ... 2 0n = 0, and the realization

(A, B,C) conformally partitioned as:
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Then a k" order balanced reduced representation is (A1, Bi, C1, D). (Reference

[24] p-398)

Using the definition of the transfer function of G(s) = D+C(sI—A)™'B, it
was proven independently by Glover(1984) and Enns [8] using optimal Hankel
norm approximations that L, norm of the difference between the n** order true
system Gy (s) and the internally balanced truncated & order model Gi(s) has

the following bound.

(G — CalS)l = sup [Galjw) = Gauliw)| <2 3 o5 (4218)

wE(—09,00) i=k+1
The following engineering results may be deduced from the balanced order

model reductions.

1. The spirit of balanced order truncations is that the least observable and
controllable modes are the ones being truncated. The closer to zero the
truncation singular values, the less observable or controllable. In this sense
the truncation makes intuitive sense, since these modes are of least concern

to a controller designer.

o

The L., bound is significant if o > Ok41 and o4 is small. This implies
that the sum of the tail of singular values is small and thus the Lo bound

is tight.

3. The truncations can perform well, even when ox41 is close to op. Glover
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(1984) showed this could be true, since as o1 — 0% the poles of the trun-
cation can approach the imaginary axis. In fact, as a pole tends to the
imaginary axis, it tends to become either uncontrollable or unobservable.
Thus, the truncated modes will have less affect on the model’s perfor-

mance. (Theorem 4.2 [11]).

. If the realization (A, B, C) was constructed from noisy Markov parameters

(ie. ERA realization), and if an estimate of the noise variance exists, then
{

a comparison of the Lo, bound and the noise power spectrum is useful.

Given a noise power spectrum:
s 3
énoise(w) - Z Rnoise(T)e_ww
-0
if the Lo, bound satisfies:
n
2> o zlsuplfbno,-,,(w)l

t=k+1

then the effects of the truncation is limited to the removal of modes that

model the noise contributions.

4.2.4 Optimal Hankel Norm Model Reductions

An alternative model reduction scheme exists that provide the same Lo, bounds.

This approach is the optimal Hankel norm model reduction and was first pre-

sented by Glover (1984) using balanced realizations. The advantage of this

approach is that in addition to the L., bound the Hankel-norm bound is mini-

mized. Begin first with the definition of the Hankel norm.
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Definition 4.9 The Hankel-norm of a system G(s) with realization (A,B,C)

is the largest singular value of its Hankel operator and is defined as:
1G(s)lr = &(Te) = M (PQ) (4.2.19)

Glover showed that the Hankel the norm gives the L? gain for all past outputs

to all future outputs.

(Ge)la= swp AL (4.220)
u€L2(~00,0) HUHLQ(—oo,O)

The advantage of the optimal Hankel norm model reduction is that the Hankel
norm of the difference between the true model and the reduced kt* order estimate

is minimized and has the following Hankel norm.
1G(s) — G(S)HH = Ok+1

Computationally, the calculation of the optimal Hankel norm model reduction
is performed without a balancing transformation [22]. Nevertheless, for our
experiment the balanced order reduction approach is usually chosen since it can

be accomplished during construction of the realization (See section on ERA).

4.3 Modeling Infinite Dimensional Systems with Finite Dimensions

Equation ( 4.2.17) shows that the discrete time Hankel operator can be con-
structed exactly from the Markov parameters ( i.e. the impulse response sam-
ples). Once constructed, the Hankel operator may be used to construct a re-
alization (4, B,C) that will exactly duplicate the system’s impulse response.

Properties of this linear realization are:
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1. An nt® order realization will exactly match the first 2n Markov parameters.
The model’s Markov parameters later than 2n will differ from the true
systems impulse response due to noise, nonlinear components, and higher

order modes.

2. It requires an infinite dimensional system to exactly represent the true

system’s impulse response with added noise.

The second constraint can be visualized by 1oolcing at fhe frequency char-
acteristic of white noise ( See Figure 4.1 ). In order to exactly represent that
frequency response, the model would require an infinite number of poles inside
the unit disc.

Unfortunately, it is computationally impractical to consider handling infinite
dimensional matrices. Additionally, the experimental conditions preclude any-
thing but a finite test window. However, error bounds resulting from truncating
infinite systems to finite systems have been investigated by Curtain et al [14].
The error bounds determined by Curtain will now be presented.

In order to consider infinite dimension space the following definition is re-

quired [3].

Definition 4.10 An infinite dimensional discrete-time realization of a system

(A, B, C) operating on a real separable Hilbert space H 1is as follows:
Tnt1 = Az, + Bun,

Yn = an + Dun
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Figure 4.1: Modelling White Noise with Poles inside the Unit Disc
and A, B,C, D are linear operators such that:
A:-H—oHB:® —>HC:H—%R D:R" —&°
The transfer function described by this infinite dimensions model G(s) is defined
by :

G(z) = C(zI - A'B+D

4.3.1 Measuring the distance between truncated systems and infi-

nite systems

In order to measure the effects of truncating an infinite Hankel operator the

following norms will be used:
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Definition 4.11 A system is power-stable if there exists M > 0 and r € [0,1)
such that ||AFz|| < MrF for all z € H and k € {0,1,2,...} (Ref [3]). The
Hankel operator I' associated with a power-stable system is nuclear and satisfies
the following:

S or< oo (4.3.1)
k=1

The summation in equation ( 4.8.1) is referred to as the nuclear norm, IR
All bounded finite systems are nuclear, however, this is not strictly true with
infinite systems. Note that this norm is the trace of the singular values, thus it

is also called the trace norm [26].

Definition 4.12 A power bounded or ly-stable system will satisfy the following

constraint:
N
o)t < o0 (4.3.2)
k=1
The summation in equation ( 4.3.2) is referred to as the Frobentus norm, Il

The nuclear; Frobenius, and Hankel norms all satisfy the basic norm prop-

erties of:

L fleAl = <l A

2. ||A]| = 0 with equality if and only if A=0

3. |A+ B|| < |All + || Bl The triangle inequality
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Additionally, these norms are unitarily invariant. That is for any matrix U that

satisfies UUT = I the norm of T' is unaffected by multiplication with U.
luT|| = ITUl = |ITl

4.3.2 Bounds and Convergence of Truncated Systems

Systems with the property of nuclearity have an important bound on the /; norm
of the impulse response. This bound was shown by Curtain (1988)[Theorem 2.1]

and the bound for discrete systems is stated without proof.

(o]

> (@) = [lAll < 2[|Tlw (4.3.3)

i=0
What must be Quantiﬁed ave the effects of truncating the infinite Hankel operator
matrix in equation 4.2.11 to a finite order matrix. Let ', represent the n'*
order approximate to the complete Hankel operator I'. Of interest is the size of
appropriate norms on the difference between the truncated and infinite operators
T = Tall

Curtain et al showed that if the system impulse response h(t) € Ly N L and
the Hankel operator was nuclear, then the truncation of the Hankel operator

will converge to the true Hankel operator as the order n gets large. That is:

IT» —T|lx — 0 (4.3.4)
|hn — All1 — 0 (4.3.5)
th — h”z — 0 (4—36)



These intuitive conclusions for a stable system also come with error bounds
on performance. This error bound is similar to the one for balanced order

truncations. The bound is as follows:

|G — Gallo €220
i>n
Where G and G, are the transfer functions associated with the respective Hankel

operators. Additionally, there exist performance bounds on the Ly and L, norms

on the difference between the truncated and infinite impulse responses.

4.3.3 LACE nuclearity assumptions and measurement noise

A necessary assumption of Curtain et al (1988), is that the system is nuclear
and an element of L; N L functions. Nuclearity is dependent on the system
under study. It was shown by de Vries [7] that a system constructed via the
Laplace transform of a partial differential equation model of a deployed space-
craft essentially equivalent to the LACE spacecraft is in fact nuclear. A neces-
sary assumption is that the booms have viscous damping (See chapter 2). This
assumption is quite reasonable since the structural damping factor tested on
ground was greater than 1 percent. Additionally, any damped structural system
. is definitely an element of L;. Thus, the assumption of nuclearity is reasoﬁable.

Unfortunately, noisy experimental data will not be nuclear. Since the all
measurements are corrupted by noise, the assumption that the measured system
is an element of [; will not be valid. Referring to equation ( 4.3.3), it is clear

that the assumption of nuclearity of measured data will be violated.
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Thus, any model that includes the effects of measured noise will nullify pos-
sible bounds on the truncation of the Hankel operator. While this might seem
disappointing, it certainly is a logical outcome. However, modeling that is done
in a stochastic sense will not be confined to attempting to model noise. The con-
vergence of equations ( 4.3.4) through ( 4.3.6) may indeed occur. This difference
between deterministic modeling with truncation and stochastic modeling with
truncation is the primary advantage of the approaches MME and least-squares

modeling.

4.3.4 Convergence Criteria

In order to calculate the Nuclear, Frobenius and Hankel norms, the finite op-
erator ', will be augmented with zeros such that its dimensions match that of

the complete operator.

Lo L]
T.=1]0 o0
L ' : .‘.-

The trace norm has the property that for balanced hankel operators, the

norm of ||T — T llv will equal the difference of the independent trace norms.

IT = Tallw = [ITlly — [Tallv

The Hankel and Frobenius norms do not have this property, therefore, the tri-

angle inequality must be used to bound the performance of these two norms.
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How a truncated Hankel operator characteristics converges to the character-
istics of the infinite Hankel operator will be measured using a Cauchy sequence
of operators I'; where 1: 1 — oo. The quality of convergence will be determined

how close T; is to ['i41 that is:
ITipn = Till <€

if ¢ is sufficiently small and is converging toward zero, then the confidence in
T, with n > ¢ will be high. The trace and Hankel norms will be of particular

interest. Note: The Hankel norm represents the gain of the system ( H gain ).

4.4 Eigensystem Realization compared to Balanced Order Reduc-

tion

The most remarkable improvement in identification schemes was the Eigensys-
tem Realization Algorithm (ERA) propoéed by Juang and Pappa (1985). The
idea behind the algorithm is the realization algorithm of I{alman;Ho [2], but
it utilizes the numerically robust approach of singular value decomposition. In
this section it will be shown that ERA with its model reduction based on sin-
gular values is functionally equivalent to the Schur method of balanced order
reduction presented in 1989 by Safonov et al [21].

The Schur method is based on the large singular values of the Hankel operator

and its singular value decomposition. Singular value decomposition is defined



as follows (See Maciejowski [24]):

H=UsvVT (4.4.1)

U = is the matrix of the left eigenvectors of HH?Y. That is

HHT = U7,

VT = is the matrix of the right eigenvectors of HY H. That is

HTH = vz?vT.

S = diagloy, 02, . .., 0] where k equals the rank of H.

oi = \V2(HHT)

Safonov et al (1989) used singular value decomposition to develop an algo-
rithm to perform order reduction without requiring balancing the system first.
(Note: balancing transformations such as proposed by Moore (1981) can be
extremely numerically unstable). The approach performed an eigenvalue de-
composition of the matrix PQ. The matrices Vi pr¢ and Vg,BI6 composed of
the right and left eigenvectors associated with the “big” eigenvalues are used to

perform model reduction.
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4.4.1 Eigensystem Realization Algorithm Construction compared

to Schur method Order Reduction

The ERA approach assumes that the system response sampled is produced by
a linear system’s impulse response. First assume a single input multi-output
(SIMO) system (A, B,C). Working with this realization, the discrete system

impulse response is described by:
Y(k)=CA*'B

If the response is considered a free-decay from an initial condition z(0) the

response will be as follows:
Y (k) = CA*12(0)

From here forward, the free-decay case initial condition z(0) will be equated

with input matrix B.

Now consider H(k) to be the Hankel operator time shifted by k time units.

r =

Y(k) Y(k+1) ... Y(k+n)

Hk)=|Y(k+1) YE+2) ... Y(k+n+1)

It is easy to show that this matrix can be constructed by using the controllability

and observability operators, ¥, and ¥,, (see equations ( 4.2.11) and ( 4.2.17)).

H(k) = U,A,



It can be shown that the zero delayed Hankel operator H(0) has a left-pseudo

H(0)* = (H(0)TH(0))"*H(0) (4.4.2)

which satisfies the following condition:
U H0)*T, =1

I is the identity matrix of appropriate size. Now using the same notation as
equation ( 4.4.1), the zero delayed Hankel operatoxf‘has a singular value decom-
position of: |

H(0) =UzvT (4.4.3)

H0)* =vEtyT (4.4.4)

Using equation ( 4.4.2), the realization (A, B, C) is constructed from the Hankel

operator as follows (See Ref [13]).

Y(k+1) = EJCA*BE, - (4.4.5)
= EIH(K)E, = ETV,A*V.E, (4.4.6)
= ET0, 0. H*(0)V,A* T H(0)*T,V.E, (4.4.7)
= ETH(OV(ST'UTL AL VE'UTH(0)En (4.4.8)
= ETH(OV(ST'UTHQ)V)*TUH(0)En (4.4.9)

= ETust/A(E-vayT ) v e EAVTE, (4.4.10)

ET = [I,,0,0,---,]7 and ET = [1,0,0,---,]F. A full order realization is

constructed with A = E'IUTH(l)V, B=sUAYTE and C = EEUE(I/”. A
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realization that reduces order in a balanced sense will select only the “large”
singular values of the Hankel operator-in the construction. Letting &) =

. . . . ‘th . . .
diag(oy,- -+ ,01) representing the k™ largest singular values and using matrices

Uk andVj, that select the first & columns of U and V, the construction becomes:
A=YAUTHQ) KV

B = 2&1/2)%TET"

C = ETU,x{M?

4.5 Improvements to Eigensystem Realization using Minimum Model

Error Estimation

While ERA/Balanced order reduction and optimal Hankel-norm model reduc-
tion schemes provide nice error bounds in the frequency domain, they do not
provide any bounds or insight to what is happening in the time domain. These
realization approache; are deterministic, exactly matching 2n impulse response
samples with an n** order system. An approach presented by Mook et al [4],
[5] addresses time domain considerations. This section explains this technique
and applies it in a stochastic sense. The technique coupled with a realization
and truncation scheme ( such as Balanced order or Optimal Hankel-norm model
reduction) will produce results that model the system in the time domain with
a desired error variance and provide improved error bounds in the frequency

domain. The necessary background is presented first, and then followed by the
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actual minimization scheme.

4.5.1 Minimization of the Objective function

Given a differential system that is modeled as:

#(t) = f(2(t), 1, u(t)) (4.5.1)

with initial state z(t,) and a cost function ¢(-) associated with its final state
z(ts). Assume a cost, L(u(-),z(-),-), is incurred for using a state driving input
(note: The cost is a function of input, state and fime). The integrated cost of
this input will be [’ L(u(t),z(t), ¢)dt. A cost function J is then constructed to
sum all related costs. This cost function is dependent on the exogenous input

u(t) and is defined as:
minJ = dle(tp] + [ Lla(r), u(r), 7ldr

It was shown by Pontryagin that this system can be optimally driven from an
initial state to a final state [17]. Pontryagin’s optimization principle showed

that by constructing the co-state p(t) defined by:

ofT oLt
(t) = ———p(t) — — 4.5.2
B0 = =50l = 5 (452
with the boundary conditions:
9¢T
p(tf) = - oz Il‘(tf),tf

z(t,) speci fied

()]
(&1



the optimal input can be calculated to drive z(t,) — z(ty) such that J is mini-

mized. The optimizing input u(-) satisfies

OL[z(t), u(t), t]" _ _af(:v(t),u(t),t)T)‘
du du

(4.5.3)

Using Pontryagin’s optimization principle as our motivation, a system with
output 7(t) is used to optimally model the true outputs y(t). An alternative
cost function must be constructed to perform an optimization that accounts for
the model errors at each time sample. The cost function éo be minimized is

constructed as follows:
M ty
mind = S (s — 51) TR (s — 32) + / oI (1Y Wu(r)dr (4.5.4)
¢ k=1 to
yr = t; sample of the true free-decay
i = t; output of the modeling system, where
7¢) = g(z(),u(-), (1))
R, = Noise covariance matrix at time instant k
u(t) = input to system, the independent variable of optimization

W = Weighting function applied to inputs

This minimization of this cost function has two goals. The first is to minimize

the weighted squared difference between the model estimated output, the true

56



system output, and each sample instant. The weighting function Ry is the noise
covariance of the true system. Normally; this covariance is considered to be
constant, however, it may vary with time. Varying the noise covariance matrix
is very useful when the magnitude of the noise varies. (The noise covariance
variation feature will be utilized in the analysis). The second goal is to minimize
the weighted square of the exogenous input u(t). This weighting function may
be varied as well. While there is no advantage in varying its Yalue over time, its
magnitude is important in our experiment.

" These two goals are competing within the minimization process. The opti-
mization result depends on the importance given the respective weighting fac-
tors. For example, if the input weighting factor W is kept small, then the
optimization will calculate an input that will cause the system model’s output
to near exactly track the true output at each sample instant . If the input
weighting factor is large , then the optimization will calculate an optimal input
that contributes very little change to the modeled system’s output.

Given this background, an improved approach is now outlined (Ref [5]):

1. Optimally calculate an input u(t) so that the error covariance matrix is

approximately equal to the true noise covariance matrix as follows (Ref

[4]):
M

R{:\'r{rar(o) = H (yk - gk)T(yk - gk) ~ RHOiSC (455)
k=1

Calculate the modeled output § using the optimizing input u(t).

Q%]
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3. Calculate a realization using the modeling output i instead of the true

measurements yi.

4. Calculate the error bounds of this realization.

4.5.2 Optimization Problem formulation

The calculation of the optimizing input u(-) will require solving differential equa-
tions with boundary values for the states and the co-states. Equation ( 4.5.4)
will be re written as:

min J = %A +/ T(rYWu(r)dr (4.5.6)

i=1
The optimized co-states must include jumps discontinuities to account for
minimizing the cost of the error at each measurement (Ref [4] and [12]). This
discontinuity results from the summation term in equation ( 4.5.6) and requires
that the co-states be adjusted at each 6utput sample. Thus, if at time ¢; a
sample is taken, the co-states are adjusted by the derivative of the. summation.
g
dz

fT
AE) = M(t7) = 2 Kiloe s (4.5.7)

For the experiment under consideration, the modeling system will be chosen to
be linear and described by equations ( 4.2.1) and ( 4.2.2). Using this assumption,

equations ( 4.5.1) through ( 4.5.7) take on a much simpler form.
A= —4T) (4.5.8)

oW Tu(t) = —BTA (4.5.9)



A(tF) = A7) — 2CT R (y(ts) — Cz(ti)) (4.5.10)

J

Note: It can be shown that all optimiéing inputs u(-) are in range of BT.

Mook [6] suggested a problem formulation of the problem so that it would
lend itself to a linear algebra solution. This approach takes the n internal states
and the n co-states and combines the two parts into a 2n order system. This
new system is a first order differential problem with initial and final boundary

conditions. The 2n system will be described as:
2(t) = Az (4.5.11)

where: z(t) = [z1(t), 22(1), . - ., 2a(t), P1(t), P2(2)s - - ,pa(t)]T
The 2n X 2n matrix A is constructed from the original linear differential

equations.
- A ——%B(W'T)'lBT
A= | (4.5.12)
0 —AT
The differential equation ( 4.5.11) satisfies boundary values at t, and t ¢. The
boundary conditions for the co-states are assumed to be zero at the beginning
and the end, p(t,) = p(ty) = 0. This assumption is reasonable since there is
1o information about the internal states z. [Note: If the free-decay assumed to
be due to an initial condition, then the initial of z(t,) = B may be assumed.]

Using the assumption on co-state boundaries, the boundary value equation is

constructed:

8 = B,z(t,) + By(ty) (4.5.13)



where 8 = [p1(to), P2(to)s - - - Pnulto), P1(ts), P2(25), - - ,pn(t)])T = [07,07)7 and

S
0 I
B, =
00
0 0]
By =
0 I

where all submatrices are dimension n X n.

Finally, the jump discontinuities for the 2n system are ekpressed as:
z(tf) = Dy 2(t; ) + Y4y (4.5.14)

where yy is the k** sample of the true system and D, and Y;, are defined as:

I 0
Dy, =
—2CTR;C I
0
Y =
2CTR;*

4.5.3 Solving the Two-point boundary value problem by Multiple

Shooting

One approach to solving the two-point boundary value problem (TPBVP) is the
approach of shooting, That is, guess at the form of the solution and formulate

the problem so as to solve the solution.

y(t) = v(t) + V(t)c
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such that the boundary condition equation ( 4.5.13) is satisfied:
Bu[v(t,) + V(to)e] + Bslv(ts) + V(ts)d = 8 (4.5.15)

where:

1. cis the vector of coefficients for the time interval.

2. v(t) is a particular solution 2n vector. The particular solution will be

assumed to have zero initial condition v(t,) = 0.

3. V(t) is a solution 2n x 2n matrix. The solution matrix will be assumed

to have zero initial condition V(t,) = I.

Thus using the state space representation of equation ( 4.5.11), the solution has
a simplified form:

y(ts) = exp(Alts —to))c
Letting Jzitf_to = ezp(A(t; —t,)) and using the initial conditions for v(t) and
V (t) the solution of equation ( 4.5.15) can be expressed as:
¢ =[Bo + ByAi,-1,) '8 (4.5.16)

The solution to ¢ will exist if the inverse to [B, + B 1A ,—t,]7* exists. Mook
[6] showed that this is a necessary and sufficient condition to solve the simple
shooting problem. However, if the differential equation is stifl, then the solution

may end up numerically unstable [23].
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The problem of stiff differential equations can be solved by breaking the
time interval into subintervals wliere the boundary conditions between adjacent
subintervals are consistent. If m subintervals are created, then there will be
m + 1 simultaneous equations in the form of equation ( 4.5.16) to solve in order
to get the coefficients for each subinterval. This technique is called multiple
shooting.

Multiple jump discontinuities are easily encorporated infco the process. As-
sumning measurements taken at time instants ¢¢ with ke {1,---,M}, then

during any shooting time interval equation ( 4.5.14) becomes:

y(tz'*‘l) = Dtk+1;{tk—tk—1y(t;:) + Y

where ti, 141 are within shooting interval.
Thus with this formulation, the solution to the TPBVP becomes one of linear

algebra to solve for the coefficients of each subinterval.

4.6 Model Identification using Least-Squares model fitting

Previous sections have presented approaches for realization of a system assuming
that noisy samples of the impulse response are given. In this section an alternate
identification scheme is proposed given the same assumptions. The difference
between this algorithm and the previous algorithms is that the identification
will be done entirely in a stochastic sense. This identification scheme constructs

a realization that minimizes the norm between the modeled system’s impulse



response and the true measurements. The advantage of a stochastic based real-
ization will occur when the number of measurements becomes relatively high.
The realization schemes such as ERA are deterministic and exactly dupli-
cate the first 2n samples of a system with a nth order system. While this may
be acceptable for small values of n, computationally, it becomes weak as n be-
comes large. Additionally, the desired error bounds become less significant as
the number of modes modeled increases due to the effects pf noise (See Sec-
tion on Infinite Dimensional Systems). This stochastic app;oach will use the
least-squares approach. [ Note: Attempts to use similar techniques, such as
instrumental variables, did not provide any improvement and were more likely

to produce erroneous overdetermined systems [1]].

4.6.1 Autoregressive Models

A linear dynamic discrete system can be modeled as process:
A(q)y(n) = B(g)u(n) + C(g)e(n)
where:
1. ¢ is the delay operator, identical to z~! in the z-transform.

2. u(n) is the system input and e(n) is unmeasurable noise input to the

system.

3. A(q) = [T+ A1g™ + A2 + -+ + Angg ™™
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4. B(q) = I+ Byt + Bog72 4 + Ban’”b]
5 C(¢)=T+Cig™t + Cog™2 4 - - + Cr.q~™]

6. (ng,ns,nc) are the orders of the dynamics of the different parts of the

model.

The transfer function of this system written in matrix fraction description is:

y(n) = A(q) " B(q)u(n) + A(9) 7' C(g)e(n)

For the LACE experiment, white noise is assumed. This causes C(q) to be
unity, and the system reduces to the standard ARX (autoregressive-exogenous
input) format. Also assuming the system is in free decay, u(n) = 0, the system

becomes an autoregressive model. The one step ahead predictor of y(n) is easily

calculated to be (Ref [20]):

§(nlf) = o7 (n)0

where 8 is the matrix of coefficients in A(q) and (k) is a column vector of

system samples:
‘P(k) = [—y(k), —'y(k - 1)a Tty _y(k - na)]T
f = [Ala A2, Tty Ana]T

The error associated with each estimate §(n) is then the innovation e(n) (Ref

(201):

e(n) = y(n) — " (n)0
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4.6.2 Autoregressive model performance

Letting Z¥ = {y(n)|n € {1,---,N}}, the autoregressive approach will injec-

tively map the data set ZN to the space of linear model of desired dimension.
ARE’

The goal of the parameter estimation will be to minimize the value of a given
cost. The cost function Vi associated with a system sampled N times is defined

to be:

Vn(8,27) = 21

Using the least squares criteria the function I(+) is:

Where A is the weighting function on the error components. The optimizing set

of coefficients is calculated by linear algebra as:

§~' E)A~ T (k 1N 4.6.1
ls—‘ ZSO ()

L=1

||M2

Note: That by letting A = I, the first matrix in equation ( 4.6.1) becomes
[ SN (k)T (k)] = Rn(0) the N sample correlation matrix.

The LACE experiment the cost function Vi (6, Z™) is'modified to account for
knowledge of the noise level. This is accomplished by using a weighting function

Bx. The cost function now becomes:

N
V\r 9 ZN = z—: e(k)



and the optimizing least squares estimate becomes:

b = \,Zﬁw )AT Zﬁw JAT y (k)] (4.6.2)

This identification algorithm is an optimization over a set of models of order
nge. The model 513 is then an element of the set of linear n, models ( theta;, €
D.,., C Ry, for SISO systems ). This optimization is guaranteed to converge to

the true model 8, as N — oo provided two assumptions hold.

1. e(n) is independent white noise.

2. 0, € D,, That is, the true model is indeed an element of the set of models

that the optimization is done over.

Assumption (1) is reasonable, given the nature of the experiments samples (See
chapter 1). Assumption (2) however is not guaranteed. The dynamics under
interest are generated from a sampled frequency limited infinite dimension sys-
tem. Thus, while a finite order model may model the true system relatively
closely, it cannot be assumed that 6, € D,, when n, is finite. Additionally,
considering the potential nonlinear contributions, the case form assumption (2)
becomes even wealker.

The approach chosen for this experiment is to use a sufficiently large value of
n, to model the sampled dynamics to within a desired error. Ljung [19] showed
that @\lswﬂl converge to the best possible solution in the model set D,, as the
number of samples gets large. This is equivalent to minimizing the [;[0, N] norm

of the errors. As the order gets large the two things occur.
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1. The matrix [ﬁ Py ,Bkgo(k)cpT(k)] will become poorly conditioned.

2. The highest orders of the system will primarily model the noise and non-

linear behavior.

Since the goal is parametric identification, the least detectable higher or-
der modes must be isolated from the strongly detectable modes. This is ac-
complished by converting the autoregressive model into a impulse response
model and utilizing the balanced order or optim;ﬂ Hankel no.r\'m order truncation

schemes. The procedure is as follows:
Step 1: Calculate 8,5 of an order such that VN(GAIS, ZN) is sufficiently small.

Step 2: Calculate transfer function G(g) = A(q)™*B(q) where B(q) is chosen

to create an impulse response model.

Step 3: Truncate system to dominant modes using balanced order reduction (

or Optimal-Hankel Norm reduction).

4.7 Sampling Rate consideration

Computationally, longer data sets will provide better identification results. How-
ever, oversampling data does not provide any advantages. This becomes clear
when analyzing the resulting parameter identification over the unit circle. An
algorithm can only guarantee parametric identification performance up to a dis-

tance ¢ from the true parameters. As the data ensemble becomes large, a good
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identification scheme’s parameter results will converge to the true values, or at

least sufficiently close. This is expressed as:

16, — 8] < e
lim e — 0
N—oo

Each parameter then is guaranteed to be close to its true value. Unfortunately,
as modes are oversampled, the pole placement on the unit disc converges near

the origin. When this occurs, there are two effects:

1. Modal frequency identification errors ferror become larger for a given €
and sampling rate w,. That is ferror = wse. While w, — Large, the

identification convergence ( €, — smaller) will not necessarily keep up.

2. Multiple modes are all converging to the origin, causing the ball B. of

radius € associated with each mode to overlap. ( See Figure 4.2).

4 Tt can then be concluded that a judicious sample rate selection will separate
the most observable modes from each other and decrease the error in estimated
frequency. If many modes are present, filtering and frequency selection can be
used to best isolate and identify the modes. In conclusion, the length of the

data ensemble is limited by period of observation and by sample rate selection.
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Figure 4.2: Convergence of modes on unit disc due to oversampling

4.8 Example of Identification Technique performance using LACE

PDE model response

An example of t.he.performance of the various techniques is now demonstrated,
in chapter 4 performance on actual data is discussed with all supporting rational.

The data used was generated from an impulse response of the linear PDE
model of chapter 2. An internal damping factor of .01 was used (Note: This is’
less than 1 percent damping at frequencies below 5 Hz.). An assumed observa-
tion window of approximately 3 minutes chosen with a sampling rate of 5 Hz.

The peak-to-peak excitation was set to approximately 10 mm/sec. White noise
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with a covariance of 1 mm/sec was added to the impulse response. Additionally,
bursts of noise with covariances of 2 mm/sec and 3 mm/sec respectively were
added. The noise covariance information is assumed to be known a priori in
the identification. Using this data, identification schemes were produced. The
true modal frequencies were solved with o = 0 as in chapter 2. In Figure 4.3
the Fourier transform shows that not all modes are detectable through the noise
floor. This is due to the high noise level and the relative displacement of the
boom tip for the modal frequencies (See chapter 2).

In Table 4.1 the results of the various identification schemes are compared.
The ERA approaches used only 30 samples in the construction, more conver-

gence could be expected by using more. Autoregressive technique used all the

data.

true | ERA ERA/MME AR model

freq truncation
0.0191 - - -
0.1298 | 0.1305 0.1305 0.1259
0.2581 - - -
0.3238 | 0.3275 0.3275 0.3174
0.7567 | 0.7679 0.7637 0.7642
0.8217 - - -
0.8639 | 0.8702 0.8669 0.8637
0.9428 - - -
1.7061 - - -
1.7223 - - -

Table 4.1: Modal Identification of noisy PDE impulse response

In Table 4.2 the Lo, error bounds for the ERA approach and the stochastic



ERA/MME approach are shown. In Figures 4.4 and 4.5 the convergence of
the singular values and the frequency responses of the approaches are shown.
It is clear that the MME step will generate a nuclear hankel operator. The
covariance chosen in the MME step was 2.3, which is approximately equal to

the true average noise covariance.

ERA | ERA/MME

440.5 40.3

Table 4.2: L., bound on model truncation

Note: This example exhibits the dependence on sampling rate. All tech-
niques performed adequately for identifying the higher modes. However the
lowest modes identification could be improved. A second iteration done with a

decreased sampling rate will provide better identification of these modes.
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CHAPTER
Five

Analysis of Experiment with LACE spacecraft

In early January 1990 the laser Doppler measurement experiment was per-
formed. The test data was collected at Lincoln Laboratories and the data was
then transferred back to the Naval Research Laboratories for analysis. The test
cobrdinated the deployment and retraction of the lead boom with the observable
window for laser illumination. Four observations were measured during the test
period. Of these tests, only two windows observed the Doppler returns while
the spacecraft experienced free-decay vibration. Currently, these two sample
periods are the sole periods used in the structural identification process.

The first observation period is shown in Fig 5.1. This observation win-
dow captures the dynamic motion of the lead boom while the boom is being
retracted and immediately following the end of retraction. The second half of
this observation will be used in analysis. The complete period is informative
in that is shows that the dynamic event$ can be detected reasonably well. At
approximately 90 seconds into the observation, the dynamic motion due to the
retraction of the boom ends. From that moment on, the detected motion of

the boom is due to only the rigid body and vibration modes. Later the rigid



body motion is removed by calculating the predicted motion and subtracting
this motion from the observed motion. . -

The second observation period is shown in Fig 5.2. This observation window
was taken approximately 10 seconds after the retraction was completed. Since
there is sofne delay in the measurement collection, the higher modes will have
decayed more in this window. Fortunately, this observation window is much
longer. The increased number of samples makes all the calculations more robust
to the presence of noise. Additioﬁally, the longer time period will allow a more
meaningful analysis can be done when decimating in time. As mentioned in
the previous chapter, decimating in time will help separate the lower frequency
modes within the unit disc.

Hopefully, in the future the opportunity for more experiments will occur.
As shown later in this chapter, the evaluation of these two limited observation

windows provide very promising results.



5.1

Dynamic Body compensation

In addition to the vibrational motion, there is the rigid body motion of the

spacecraft is due to the change in the ground observer’s aspect angle. This

angular change is shown in Figure 5.3. The apparent change has two effects on

the observed Doppler shifted laser return.

1.

o

The rigid body motion will be detected. Referring to Figure 2.6 of actual

. measured data, this mode roughly approximates a mode with a period

100 to 200 seconds or .01 Hz to .005 Hz. Thus the frequency separation
between this apparent rigid body motion and the lowest vibrational mode
of .019 Hz is very small. In order to detect the lowest mode, this apparent

motion must be eliminated.

The observed damping factors of the detected modes will be affected by
the position of the spacecraft in the sky. If the observation window is
before the spacecraft comes overhead, the calculated damping factors will
be smaller. If the modal frequency is small, the calculated damping factor
could indeed become negative. Likewise, if the observation window is after
the spacecraft goes overhead, the calculated damping factor will become
larger than the true value. Figure 5.3 demonstrates this effect by showing
the projected pitch velocity vectors onto the line-of-sight vector. In the
figure, the velocity vector is always in the pitch direction with respect to

the spacecraft and is kept at a constant level. Thus, the projection of the
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velocity vector onto the LOS vector increases before passing overhead and

decreases after passing overhead.

The effects of this apparent motion needs to be adjusted for. This is ac-
complished by calculating orbital position with respect to the observation site
and calculating the apparent motion. The calculated rigid body motion was
simply subtracted from the observed motion. Then the change in aspect angle
was corrected for by dividing by the cosine of the angle between the LOS vector

and the pitch plane.

5.2 Identification Analysis

The in-phase and quadrature data measured at Lincoln Laboratory was analyzed
‘1 order to calculate the relative motion of the spacecraft. The Fourier transform
of the data was filtered such that the relative difference between the return of
the lead retro-reflector and the bus retré-reﬁector would the track the dynamic
motion of the spacecraft.

The test data has Doppler shift measurements collected at a 62 Hz sample
rate. This rate is significantly higher than the modes of interest. To filter out
some of the noise present, groups of 5 samples are taken and the median value
of the population is selected. This technique reduces the sample rate to 12.4 Hz,
which is more than adequate for analysis. Reducing the sampling rate further
will be done with filtering and decimation in time. Using a larger population

and selecting the median will provide more noise rejeétion than averaging. This
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is due to the small population used in the analysis. Averaging populations of 5
or 10 samples, is susceptible to noise components, thus the median is the most
effective. Another technique is to choose the most likely Doppler shift. However,

the population size is still too small for this.

5.2.1 Identification Results

Using this data, an initial analysis was performed. All the data was initially
filtered to eliminate high noise components. The cutoff frequency was chosen to
be .75 Hz. This number allows for decimation in time and provides margin for the
higher modes. The data sets were then decimated in time into distinct data sets.
Each of these data sets were then analyzed and statistically compared. (Note:
The minimum model error results generated optimal data such the variance
between the actual and simulated data was approximately 2.4 mm/sec. This
corresponds to one bin in the discrete Fourier transform of the Doppler shifted
laser return.) Table 5.1 lists information about each observation windows.
Tables 5.2 through 5.5 details the results of this study. Figures 5.4 and 5.5
plot the detected frequencies and damping factors for all the data sets of both
observation windows.

The results of this analysis are quite impressive. Given such short observation
windows, the algorithms detected modes which correlate well with predictions.
Of the first four vibration modes, three were detected on day 91010. The lowest

mode is only defectable if the rigid body motion 1s removed from the data. One



of the eight data sets for day 91010 did not detect the lowest mode. Thus,
a asterisk is used in Tables 5.4 and 5.5 associated with the lowest mode to
designate that only 7 of the data sets was used in the statistics.

On day 91008, only two of the four were detected. The day 91008 observation
window was only 25 seconds long and this window was too short to collect enough
data on the lowest mode (modal period is & 50 seconds).

Note, there is one moderately damped mode ~ .52 Hz which is detected on
both days that the neither the PDE or FEM m‘odel predictéd. This mode is
probably not due to the boom elements because the damping is too high. Ad-
ditionally, this vibration does not correlate with any yaw or roll mode predicted
by analysis. While the explanation for this mode is yet unknown it is believed
to be due to either unmodeled behavior within the boom canisters or vibrations
that are due to the cantilevered retro-reflector plate. Since the retro-reflector
center of mass is offset from the boom a#is. A local vibration may exist at the
boom tip due solely to the retro-reflector plate. If this is the case, the vibration
would be due to a local elastic behavior in the boom. Such elastic behavior
would tend to be nonlinear and will have higher damping.

The nonlinear vibration assumption is supported by the size of the damping
factor for the .52 Hz mode. Its damping factor was between 5 and 11 percent.
This level is significantly higher than the other modes. This difference may
be attributed to the nonlinear behavior in either the boom canister or at the

cantilevered retro-reflector plate.
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The identified modes were within .005 to .01 Hz of the predicted modes
depending on the identification technique compared. While this 1s impressive,
the identification of the damping factors had a larger variance. Of the predicted
modes that were identified, Tables 5.3 and 5.5 show that two of the three
modes had damping of approximately one to two percent. This agrees well with
experiments done on the ground. The damping factor for the lowest mode of
.019 Hz, had a large variance associated with it. This variance is due to the
fact that the period of observation was very short in comparison to the period
of the mode. In the future, longer observation windows will provide enough
information to get better damping calculations.

Finally, it should be noted that the autoregressive identification scheme did
not perform as well as the ERA or ERA/MME techniques. This is because the
observation windows were too short. As the windows get shorter, the autore-
gressive technique becomes an approximation to the ERA approach with only a
modest amount.of averaging. In the future, as longer data sets are sampled the

autoregressive approach should perform better.

window | length | no. samples
sec.
Day91008 | 24.5 310
Day91010 | 49.0 616

Table 5.1: Length of Data samples for Observation window
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Model | ERA std. | ERA/MME std. | AR/model
Mode dev. dev. reduction
Hz. Hz. Hz. Hz. Hz. Hz.
0.1298 | 0.1225 | 0.0005 0.1226 0.0005 0.1226
0.3238 | 6.3245 | 0.0003 0.3248 0.0006 0.3243
0.5219 | 0.0025 0.5201 0.0030 0.5220

Table 5.2: Day9100S Identification Results: Modal Frequencies

Model | ERA std. | ERA/MME | std. AR/model
Mode dev. dev. | reduction
% % %
0.1208 | -0.1244 | 0.2489 -0.3518 0.3027 | -0.0470
0.3238 | 1.4477 0.0410 1.1137 0.0473 1.1583
4.8917 | 0.2984 4.5929 0.2631 4.2525

Table 5.3: Day91008 Identification Results: Damping Factors
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Model | ERA std. | ERA/MME | std. AR/model
Mode dev. dev. reduction
Hz. Hz. Hz. Hz. Hz. Hz.
0.0191 | 0.0208%4 0.0033* 0.0210 * | 0.0020%
0.1298 | 0.1244 | 0.0010 0.1245 0.0011 0.1226
0.3238 | 0.3312 | 0.0009 0.3320 0.0008 0.3243
0.5115 | 0.0061 0.5120 0.0064 0.5220

Table 5.4: Day91010 Identification Results: Modal Fréquencies

Model | ERA std. | ERA/MME | std. | AR/model
Mode dev. dev. reduction
% % %
0.0191 | 1.8385%| 1.8277* 1.3937% | 2.2607H
0.1298 | 2.3233 | 0.5182 2.1029 0.3007 | -0.0470
0.3238 | 2.1114 | 0.2312 2.0058 0.2971 1.1583
10.4537 | 1.2157 10.7973 1.0233 4.2525

Table 5.5: Day91010 Identification Results: Damping Factors
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5.2.2 The Linearity Assumption

The identification algorithms are based on a linear model assumption. While
it can be assumed the minimum model estimation optimal input compensates
for small nonlinear components, the extension to nonlinear cases is weak. Thus,
the assumption of “near” linear behavior is important. A qualitative study of
this is done by integrating the observed response, and then calculating the peak
displacement on the spacecraft body.

The detected motion was filtered to isolate.\each modal component. This
filtered signal was integrated to calculate peak boom tip displacement. The
peak tip displacement was then divided by the modal frequency displacement
ratios in Table 3.2. These approximate peak system displacements are shown
in Tables 5.6 and 5.7. This table shows that the peak system displacements
should be small and the linear assumption is valid. Additionally, considering
the forcing function used (the deployment and retraction of the boom), the
vibrations should be linear. (Note: No information on system displacement at

.52 Hz exists).

mode peak boom tip Displacement peak system
hz | Displacement (mm) Ratio Displacement (mm)
1298 0.9 0.0063 ~ 150
.3238 1.7 0.0565 ~ 31
.5200 0.9

Table 5.6: Peak System Vibration Displacements: Day91008
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mode peak boom tip Displacement peak system
hz | Displacement (mm) Ratio Displacement (mm)
.0190 9 0.0242 ~ 36
1298 1.0 0.0063 ~ 164
.3238 1.8 0.0565 ~ 32
.5200 .5

Table 5.7: Peak System Vibration Displacements: Day91010

5.3 Convergence of the Hankel operator

As mentioned in the previous chapter, the ide‘ntiﬁcation algorithm assume a
linear impulse response is provided. Given such a response and assuming nucle-
arity (see previous chapter), the Hankel operator constructed from the impulse
response will have a bounded nuclear norm, Hankel and Frobenius norms. How-
ever, the condition of added noise may nullify these conditions. Thus, a test of
these norms on the raw data for both tests was performed. A data sample rate
of 3.1 Hz was used for each filtered data set on day 91010 and a data sample
rate of 6.2 Hz was used for day 91008. Figures 5.6 through 5.17 plot the
analysis results for each data set. It is clear that these norms do not appear to
be converging. However, is must be noted that both Day91008 and Day91010

have limited sample periods and the conclusions drawn are based on limited

information.

1. Figures 5.6 and 5.12 show the nuclear norm for progressively larger Hankel

matrix operators.
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Figures 5.7 and 5.13 show the Cauchy sequence of nuclear norms for pro-

gressively larger Hankel matrix operators. The sequence equals ||Cn1llv—

[Tl

3. Figures 5.8 and 5.14 show the Frobenius norm for progressively larger

Hankel matrix operators.

4. Figures 5.9 and 5.15 show an upper bound on the Cauchy sequence of
Frobenius norms. The upper bound on the sequence is ||TnallF — [|Tnll7

(Triangle Inequality).

5. Figures 5.10 and 5.16 show the Hankel norm for progressively larger

Hanlkel matrix operators.

6. Figures 5.11 and 5.17 show an upper bound on the Cauchy sequence of
Hankel norms. The upper bound on the sequence is ||Trtilln — |ITalla

(Triangle Inequality).

These plots S.hOW that in spite of the noise elimination provided by taking the
mean value over time slots and filtering, the constructed Hankel operator is not
converging to a sufficiently small bound within the time period measured. This
could be due to either the continued presence of noise or nonlinear behavior
of the system. The latter of these two sources is more difficult to deal with,
however as discussed in the previous section the linear assumption should be

reasonable.
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In ﬁgures 5.18 through 5.29 the same analysis was done on the minimum
model error data (see previous chapter for MME description). As discussed in
the previous chapter, this data is constructed optimally from a linear model
such that the exogenous input is minimized. In this case the exogenous input
can be considered to be nonlinear components entering into the system. These
plots show that the nuclear and Frobenius norms are beginning to converge. By
allowing the target covariance used in the optimization to increase, the norms
will converge even faster. The target covariance used was 2.4 mm/sec as in the

previous section.
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Figure 5.17: Upper Bound of Cauchy Sequence for Hankel Norm of Truncated
Hankel Operator Day91010
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Figure 5.21: Upper Bound of Cauchy Sequence for Frobenius Norm of Truncated
MME Hankel Operator Day91008
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5.4 Conclusions

Considering the brevity of the observation windows, the experiment was ex-

tremely successful. The experiment accomplished the following goals:

1. Structural modes were verified independently using the actual spacecraft
in its true environment. Three of the first four modes were detected.
These results are impressive compared to previous experiments, specifi-
cally, the 1985 Solar Array Flight Experiment (SAFE)‘. The SAFE exper-
iment, which was a two day experiment dc;ne on board the space shuttle,
tested the modal properties of a deployed truss with an attached solar
panel. The SAFE experiment only detected three modes. Comparing the
overall experimental cost, this experiment done on the LACE spacecraft

was an exceptional success.

2. Algorithmic approaches were tested with an actual experiment. Algo-
rithms provided robust identification. The identified modes were tightly
grouped and agreed with predicted modes. A‘ variety of identification tech-
niques were compared on simulated data. The Hankel operator technique
performed better than any other approach, given the type of signal and

the short length of observation.

3. A new laser application was verified. This experiment showed that laser

tracking could be accomplished and provide data on which analysis could
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be performed. This approach offers alternative experimental approaches

to structural identification for low orbit satellites.

4. A system engineering approach was applied to a complex problem, whose
technological solution spanned many disciplines. A requirement analysis
review showed the need for large space systems. Given this requirement,
the structural identification is a necessary component of on-station health

monitoring and real time control algorithms.

| This last point is very important. The pro{)lem of spacecraft dynamics is
generated by increased demands from power considerations and the increased
size of space structures. This experiment was designed to show that low cost low-
complexity on-board hardware combined with algorithm analysis can satisfy the
identification process and aid in the progression toward real-time identification

and control.
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