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We consider the two dimensional Analytic Bezout Equation (ABE) and investi-
gate the properties of a particular solution, based on certain conditions imposed on
the convolution kernels. We use a family of suitably chosen sensors which besides
being strongly coprime also satisfies additional technical conditions. The results
permit the reconstruction of the original signal with arbitrarily good resolution,
i.e. achieving arbitrarily large bandwidths, depending solely upon computational
resources.

The theoretical foundations of this technique provide a rigorous mathemat-
ical framework, and simulation results have been promising. The feasibility of
constructing reasonably good discrete-time, finite-bandwidth approximations has
been established , and efficient Data Parallel Grid layouts that perform the re-
quired computation have been designed. A number of implementation problems

arising out of the need to approximate a basically infinite computation have been

addressed.
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CHAPTER

ONE

Introduction and Problem Setup

1.1 A brief overview

Signal deconvolution is a fundamental problem related to a variety of scientific
and engineering disciplines, notably communications and signal processing, con-
trol theory, remote sensing, pure and applied mathematics, and others. The
problem can be initially stated as follows: We are given data that consist of
local averages of a particular signal I(-) and wish to synthesize I(-) itself based
on these averages. As stated the problem is a very general one and does not
admit a unique solution, unless certain constraints are imposed on I(-) or, al-
ternatively, strong a priori assumptions are made. Clearly another fundamental
question has to be answered first: How much data is adequate? Equivalently,
what is the minimal dimensionality of the data set in order for the problem to
have a (unique) solution? These and other questions are addressed later. For
now let us turn to a more concrete and specific model that will prove instructive.

Let Ly(—o0,-+00) denote the space of square-integrable functions defined
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Figure 1.1: Block diagram of a LTI convolutional operator

over the real line. Consider the following Linear time-invariant map:

Ls: Ly(—00,400) — La(—00,+00) (1.1.1)

Given by

LAIO®E DW= [ 1) ft-mdr  (112)

i.e. L; performs convolution with kernel f(.) € Ly(—o0,+00). This operation
is schematically depicted in figure 1.1. Here, D(t) denotes the observed data.
In this setting the answer seems straightforward: if the inverse operator £7(-)
exists apply it to the observed data to obtain I(-). Then the problem reduces
to the question of existence of the inverse operator. The implications of this are

more profound in the frequency domain. We can write:

— o~ -~

D(w) = f(w)I(w) (1.1.3)
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Figure 1.2: Fourier transform of characteristic function over [-1,+1]

where A denotes Fourier Transform, as usual. Then naivelly:

I(w) = -?(i:’—)) (1.1.4)

which of course is not well-defined unless f| (w) is nonzero everywhere. Now
most physical systems of engineering interest are either band-limited or have a
countable infinity of zeros in the frequency domain. Thus }?1:)- is not well defined
(blows up) at a countable infinity of points. Therefore the inverse operator (-)
does not erist, i.e. the convolution operation is not invertible.

As an example let us consider: f(t) = x[-1,41)(t) : the characteristic function
of the closed interval [-1, +1]. Then f(w) = Z sinw. This is depicted in figure
1.2. Then it is obvious that we loose all information contained in frequencies

that are a multiple of #. We therefore conclude that the given problem is

ill-posed. A usual approach towards overcoming this ill-posedness has been



via regularization. For the above set-up efforts have focused on the following
techniques [14] :

(1) Restrict I(-) to be in the “observable” subspace of L£(-)s. (i.e. I(-) does
not contain frequency componénts located at the zeros of f(-)).

(2) Use a priori information about I(+). (i.e. Suppose we know that I(:)
contains impulses at odd multiples of = and is zero at even multiples of ).

(3) Use some other regularization scheme (e.g.: Maximum entropy method).

All these approaches have definite advantages and a common drawback: the
imposition of conditions on the input, i.e. the restriction of the input space.

A more natural strategy is to go back to the original problem statement
and ask “how much data is enough?” In general the linear model given above
is misleading because it assumes that we have data available from one linear
operator only (i.e. one sensor). This need not be the case though; suppose we
have a family of m sensors Ly, (), -+, Ly, (-) with the property that: Vw 3i,
1=1,---,m: ﬁ(w) # 0 Then, clearly, we have moved from an ill-posed problem
to a (possibly) overdetermined one. It is a well known fact that the above
condition is not enough for the construction of an explicit solution. We shall
introduce certain qualifications later. For the moment consider the system of
figure 1.3.

Now the natural question that comes up is: what is the minimum possible m
and what conditions should the f;’s satisfy so that we can uniquely determine

I(-) from the D;’s? An equivalent formulation is: We are looking for a family of
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Figure 1.3: Multiple convolutional operators operating on a single input

deconvolvers 7;,-(-), t=1,---,m such that:
Dihi+ -+ Dhm =1 (1.1.5)

i.e. since:
=I-f,i .m (1.1.6)

Equation 1.1.5 above is equivalent to:
fbi4 -4 fubm=1 (1.1.7)

The later equation is known as the Analytic Bezout Equation (ABE). It is a
well-known fact that the existence of a family of deconvolvers, {k1,- -+, hm} that
solves the Bezout Equation is completely equivalent to a coprimeness condition
on the part of the f;’s. Let us formalize by introducing some necessary notation

and presenting the very important Paley-Wiener Theorem.

Definition 1.1.1 Let £z. denote the space of all distributions of compact sup-
port defined over R™. For convenience we drop the indez R™ when the underlying

space is obvious from the contezt.



Let:

fw) & < fe> (1.1.8)
flo) = /_: F(t)etds (1.1.9)

Definition 1.1.2 Let: &g £ {F: f € Epn ).

Definition 1.1.3 Letw = (w1, *+,wn) € C*. Then: Imw = (Imwy, - - -, Imwy,),

and we define the function p(w) as follows:

p(w) £ [Imw| + log(1 + |w]) (1.1.10)

Definition 1.1.4 (Paley-Wiener Space). Let Exn denote the space of all func-
tions f which are analytic in C* and have the property that for some constants

A, B > 0 the following inequality holds:
|f(w)] < AePP) (1.1.11)

Theorem 1.1 (Paley - Wiener) [17, page 21]. The mapping Epn — Epn given
by equation 1.1.8 for all f € Exn, is 1-1 and onto the Paley-Wiener Space Enn-
For convenience we drop the index R™ at all instances where the underlying

space is clear from context.

Theorem 1.2 [16] A family of functions {h1,--+,hm} in E that solves the
Bezout Equation exists iff the family of entire functions {fl cee ,fm} in £ is
strongly coprime, i.e. iff: 3°7-, |F;(@)]? > ") Yw € C™, for some constant

¢. The function p(w) is the one in definition 1.1.3.



Thus the problem of existence of an inverse reduces to the problem of finding
suitable distributions {fi,:- -, fm } or, alternatively, entire functions { fiyeee, fAm}
in £ such that the coprimeness condition is satisfied for the smallest possible
m. The reason why we are interested in the smalle;t possible m is that these
distributions translate to actual devices, and it is usually desired to achieve
reconstruction using the minimum possible number of devices.

Remarks:

1. The Theorem 1.2 above guarantees ezistence; it does not provide a proce-

dure to construct suitable deconvolvers.

2. Uniqueness of the family {A:}™, (or {A:}™,) is not implied by 1.2. In fact
if a particular family {71,-}?_1_1 exists that solves the ABE then it is easy to

show that other families exist too.

Assuming that the f;’s are indeed strongly coprime one particular solution

of the ABE evidently manifests itself. Let:

R (1.1.12)
=1 !fi|2

then:
1

m = —m(ﬁffﬁ-'*‘fm’\;)

)

=
I

Pt oot Fo

m fifi
> ™zl fil?



_ ?;1 |fi|2 _

>N

Hence the ABE is satisfied.

Clearly the &}s are well defined everywhere (since the coprimeness condition
guarantees that 37, | fil? is bounded away from zero). These are known as
Wiener deconvolvers. They have been proven to be optimal with respect to
Signal to Noise performance [2]. One undesirable feature of these deconvolvers
is that they are not compactly supported. Thus in order to be realized (with
finite delay) they have to be truncated, resulting in ripple effects and loss of

resolution [30].

1.2 Theoretical Foundations

Another approach has been proposed by C. Berenstein and A. Yger in a series
of papers [9,2,3,6,7,8]. The core of their research restricted to our present scope
is summarized in a theorem that we will introduce shortly, but before that let

us give a number of definitions:

Definition 1.2.5 Let K be a compact subset of R™*. Define the supporting

function of K as follows:
Hg (&) émaa:{:z:-{la: € K} (1.2.1)

Where - denotes tnner product and £ € R™.



Now let T' = xx. Then for w = 5 + i£ we have that:

Tw) = /K e~ tdt (1.2.2)

- /K etéeitn (1.2.3)

Using the definition of a supporting function 1.2.5 we can obtain the follow-

ing bound:
IT(w)| < /A leHemit|dt (1.2.4)
— t.€ ;
- /K let¢|dt (1.2.5)
< HgA(€) 1.2.
< e |/Kdt (1.2.6)
= |eFxOm(K) (1.2.7)

where m(K) is the volume of the set K.

Definition 1.2.6 A family of n distributions {f1,..., fa} of compact support
in R™ is well behaved if there exist positive constants A,B,N,K,C and two
supporting functions H,, Hy, such that 0 < H, < H,, and such that the common
zero set, Z, of the functions {f1,--,f.} is almost real i.e. Yw € Z : [Imw| <
C log(2 + |w|), and the number of zeros in Z included in an open ball of radius
r grows like r* : n(Z,r) = O(r4). Furthermore, denoting:

]1/2

1F(2) & SRl (1.28)

the following inequality holds:

Bd(z, £)K eHellm?)

1f(2)] = R (1.2.9)




Where d(z, Z) is the Euclidean distance of the point z from the set Z.

Definition 1.2.7 A well-behaved family {f1,---, f,} is very well behaved if
there exist constants M,C, > O: V(€ Z we have that:
IO et 2201 2 ot + [e) (1210)
This last condition guarantees that the points in Z ( the set of common zeros
of the family { ]?1, SN ﬁ,}) are simple and “adequately spaced” i.e. they are not
accumulated in any neighborhood around any common zero. Now we give a
restricted version of a Theorem of C. Berenstein and A. Yger that is sufficient
for our purposes and is simpler in the sense that it does not involve cumbersome
notation, thus helping to keep things in perspective: Suppose n = 2 (i.e. we
have distributions defined over R?) and m = n+1 = 3 (i.e. we use 3 convolvers).

Then:

Theorem 1.3 [9] Let { f1, f2, fa} be a strongly coprime family of compactly sup-
ported distributions over R%. Suppose that the subfamily {fi, f2} is very well
behaved. Suppose f; is the"‘best” kernel in the sense that it has the small-
est support of all three. Let Ho, Hy be as in definition 1.2.6'Afor the subfamily

{flaf2}' Deﬁne

H,(8) = maz gjcamaz{z-§ :z € suppf;},f € R?

10



, where - denotes inner product, and suppose Hy < 2H;. Furthermore suppose

715> 0:7,|0| < 4H,(0) — 2H (0) — Hy(8) (these conditions control the support

of fs vs. the support of fi, fa). Then for any u € CP(R?) compactly supported

and with “small” support:

supp u C{z€ R" : |z| < 1o, one can write:
91(2,¢) 6i(z,¢) gi(2,()
u(z) = Z——f—t-(,c\—)-— (2,0 (20 ¢(z0) (1.2.11)
tezJ () f3(¢) S IR S

iz Rz R

where: z = (21,22), (= ((1,(2), both in C%, and:

gi(z, C) é fi(zl’ sz : .é;((l’ 42) (12.12)
Gi(z0) & fi(%zzz : 2(217(2) (1.2.13)

and: J({) = det(M(z))|.=¢, where the Jacobian matriz M(z) is defined as:

oh 2k
M) 4| % °= (1.2.14)
oL 9%
827 Oz
and:
Z ={zeC*: fi(z) = f2(z) = 0} (1.2.15)

Remarks: Obviously the result extends to higher-dimensional spaces, see

[9]. Now, clearly, equation 1.2.11 is an interpolation formula since it constructs

11



the entire function %(-) based on distinct point values of %(-) at a discrete set of
isolated points in the plane. Now equation 1.2.11 is obtained using a limiting
argument. This fact has implications that will be of profound interest later on.
For the moment let us show why equation 1.2.11 is a very important result,
since it may not be immediately apparent. Equation 1.2.11 can be rewritten in

the form:
(2) = hi(2)Fi(2) + ha(2) fa(2) + ha(2) Fa(z) (1.2.16)
And since u(z) is of sufficiently small support (we can certainly shrink the

support of u below r,) then %(z) = 1 and:

12 hi(2)fi(2) + ha(2) fa(2) + ha(2) a(2)

i.e. {hy(2),h2(z), h3} give an approximate solution to the ABE! In principle
we can set u = § thus getting 4(-) = 1 and obtain ezact deconvolvers. Notice that
i(+) is not compactly supported (because u is compactly supported). Observe
that since a realistic computation will truncate the sum over Z in 1.2.11 to make
it finite, it will force @(-) to be compactly supported (because setting %(¢) = 0
for ||¢|| > ¢o is equivalent to truncating the sum in equation 1.2.11. Therefore,
u will not be compactly supported, thus we will be violating the corresponding

assumption of therorem 1.3. We will discuss this point in detail later on. For

the moment let us turn to a specific example.



CHAPTER

TWO

Model Problem

2.1 Formulation and derived expressions

Let us consider the following family of convolution kernels:

fAltnt) = X vavax(-vava (i t2) (2.1.1)
fat,t2) = X[_ﬁ,ﬁ]x[_ﬁ,ﬁ](tl, t2) (2.1.2)
fa(ti,ts) = X—1axi-11)(t1,t2) (2.1.3)
with:
-~ 4 .
fi(z1,22) = P sin(\/gzl) sm(\/gn) (2.1.4)
122
~ 4 .
fa(z1,22) = . sin(v/22;) sin(v2z;) (2.1.5)
122
2 4 .
fa(z1,22) = ——sin(z1)sin(z2) (2.1.6)
2122

Then it is easy to verify that {fi, f2, fa} satisfy all conditions of theorem 1.3.

Here:

13



Jr krw

2-{(55) smsanJo{(B5) him s )

—-g—)'“ilél}/fc’ r1(¢1) —%—Mz\fﬁ 7.’2(C1)
J(¢) =

——-g——HSiIZ?fCI r1(¢2) _2___14sir2(2\é5(1 r2(C2)

with:

r1(z) 2 V32 cos(v/3z) — sin(V3z)

ra(z) 2 Vaz cos(V2z) — sin(v2z)

(2.1.7)

(2.1.8)

(2.1.9)

(2.1.10)

and after a series of transformations we can rewrite 1.2.11 in the form 1.2.16

and then read out the expressions for Ay, Rz, k3. These are given by the infinite

sums:

hi(z1,22) = I'Z(E) . Cilz,0)
hi(z1, 22) “E;J(C)fa(f) (21 = Gi)(22 — (2)

with:

Ci(2,¢) & Fal21,Go) [Faler, 22) = FolGr, )] -

-~

fa(z1,22) [J%(Zn (2) = f;(Cl, Cz)]

14

(2.1.11)

(2.1.12)



Cal2,0) £ film,20) [olen, ) = Fal1, )] —
iz, G2) []%(Ch G2) — fa(z, 22)] (2.1.13)
Cs(2,¢) 2 ]?1(31, Cz)fz(zl, z3) — fl(zly Z2)f:»(21, ¢2) (2.1.14)

Definition 2.1.8 The function F(:,) is L rotation-invariant ( & —ri ) iff:

.7'_(21,22) = f(ZQ,Zl), \7'21,22 € CZ.

Notice that fl, fa, 5 are all 5-ri. Nevertheless the C;’s are not; for example
Ci(2z1,22) # Ci(22,z1). Hence every finite approximation to Ry is bound to
exhibit asymmetry i.e. it will not be Z-ri. In the limiting case we expect this
asymmetry to die out because of cancellations. Similar remarks hold for ha, ha.
This fact will prove annoying for applications. A final remark is in place here:
The distributions h; = F.T.71{R;} i = 1,2, 3, where the Rls are those obtained
using theorem 1.3 , are compactly supported (in fact of support comparable to
that of the kernels f;) . Thus, once obtained, they are easily realized ezactly with
finite delay (exactly refers to the fact that there is no need for truncation of their
duration; sampling and finite word length Arithmetic errors can be controlled
to meet the design goals [30]. This property of these deconvolvers is their most
desirable feature when compared to Wiener deconvolvers.

The rest of this chapter is organized as follows: We first examine the one
dimensional case which highlights much of what is involved while keeping nota-

tional and computational burden with a minimum; it also helps to strengthen

15



intuition and pinpoint potential trouble spots. Next we consider the exploitation
of symmetries to help reduce the computational complexity of the problem and
improve error performance; then we discuss two alternative ways to compute
the deconvolution kernels (in the time domain or in the frequency domain). Fi-
nally, we investigate proper practical frequency windowing and energy spreading

techniques.

2.2 One-Dimensional Case

Here we have n = 1, m = n+ 1 = 2. (Everything defined over R, use 2

convolvers) and formula (1.2.3) of Theorem (1.2.1) reduces to:

_ a¢e) |90 420 ‘,
u(Z) = Z e ~ (2.2.1)
ez J(C)fZ(C) ]'Fl(z) fz(z)

with: Z = set of zeros of fi(z), and:

gi(z,0) & h) = h(Q) (2.2.2)
z=¢
#¥(z,0) & ﬁf}:—?gg (2.2.3)
So that:
=0 #=0| ﬁ(zz:gi«) ?2(2:?(()
AR R A(z) A(2)

z—¢

16



-~

Also observe that here J({) = df;zz so that we can expand u(z) as
z=(

follows:

i(z) = hi(2) - fil2) + ha(2) - Fal2) (2.2.5)

With &, hs given by:

A 7(0)
hi(z) = —_— 2.9.
@ = 2 756-0 (2.2)

_ A 0
cé D 70 (2:2.7)

Now let u = §,— 4({) = 1,V(. Then:

”;2(2)

N 1
hi(z) = Y ———x 2.2.
) ez J(O(E-0) (223)

Pln) — h(©) .
) = - L0 R (2:29)

Now notice that Z is the set of zeros of fl. Thus fl(g') =0, V( € Z and:

z=

J({) = f’ z ) # 0,V¢ € Z, since f; is very well behaved. Also: fz(() #
0,V(¢ € Z, by strong coprimeness of the family { fl, fg} Thus, given z, the only
term that possibly survives in equation 2.2.9 is the one for ( = z. Therefore
712(2) is identically equal to 0 everywhere, except possibly at points z € Z.

Consider the factor:

= = —J(2) (2.2.10)

17



Hence:

1
) ,forz€ Z

ha(2) = 3 (2.2.11)

0 ,elsewhere

And:
- 1
h(z) = — (2.2.12)
ez ) (2 -

Some remarks are in order: These results are compatible with one’s intuitive
feeling of how to attack the problem at hand: Use one of the two convolvers
“almost surely” (i.e. everywhere except at a countable set of points where its
F.T. vanishes) and resort to the other one for these very points where the F.T.
of the former one vanishes. By strong coprimeness, fg() will be nonzero at
all these points and we are done. Observe that the Fourier transform of the
second deconvolution kernel has a support set of measure zero, i.e. it is defined
to be nonzero only at a countable set of isolated points. Hence we will need
to approximate it with a kernel whose Fourier transform has a support set of
nonzero measure.

A somewhat suprizing fact is that the Fourier transform of the first decon-
volution kernel is not equal to the intuitively obvious choice ?% Therefore we

1{2

need to investigate how close and in what sense the Fourier transform given by

equation 2.2.12 approximates =—. Let us elaborate on this. Consider equa-

f1(z)

18



tion 2.2.12 . Under our assumptions the derivative d—?}d—iﬂ exists and it is nonzero
V¢ € Z , since fy is very well behaved ( for if this derivative were zero at some
point { € Z then about this point the first order contribution of infinitessimaly
small displacements in terms of w would be zero , thus the set Z would include
a subset of non-isolated points). Furthermore the derivative is a well behaved
function. Then, clearly, the contribution of the summation term corresponding
to { = p diminishes as the difference |z — p| goes to zero. Therefore, under some
more (quite general) technical assumptions on the rate of f1 the dominant term

in 2.2.12 is the one corresponding to the nullpoint ¢* that satisfies:

¢* = argmineezl||z — (|| (2.2.13)

where || - || denotes the Euclidean norm, i.e. absolute value for the one

dimensional case. Hence we can write:

- 1 1
hy(z) & — = (2.2.14)
Gl -y PO

Where D(z) is a first order Taylor series approximation to fl(z) about the
point (*. Therefore for points z sufficiently close to some nullpoint (*, El(z)
essentially approximates one over the Taylor series expansion of fi(z) about
the point (*, which in turn approximates }ﬁ;—)" assuming that the zeros form a

sufficiently dense grid. Then it becomes clear that a brute-force truncation of

the nullset Z will severely distort 711( z) at all points outside the truncated nullset
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grid. Hence the nullset grid must extend at least up to the desired bandwidth in

order to get an approximation that is good at least up to the first order.

In the general case formula 2.2.12 estimates ?t—) as follows: Every point

1(z
¢ € Z makes a linear estimate of fl(z) by using a Taylor series extrapolation of
the first order. Then this is inverted and an estimate of }lt—z) is formed. Finally
all estimates are summed up to produce h(z). If the nullset grid is dense enough
and regular (as is usually the case) then points { located away from z estimate
terms corresponding to higher order derivatives.

The above discussion gives the reader an intuitive feeling about how finite
approximations work and points out some interesting aspects of the solution
under consideration. A rigorous proof of the fact that this solution indeed
converges to -};1(—5 for points z not in Z will not be given here, as it is a direct
consequence of Theorem 1.3. The persistent reader is reffered to the original
paper [9], by C. Berenstein and A. Yger.

We close this section with a discussion of how we go along computing ex-
pressions for hy, h;. We have two options: either work in the frequency domain,
calculate approximations to 2.2.12 , test convergence (in the Cauchy sense) and
then use an IDFT algorithm to get approximations to the inverted spectrums
or we can try to invert 2.2.12 analytically. In the former case, care should be
exercised in sampling the spectra so that all points 2 € Z are in the sampling

grid, otherwise ]?1(2) is completely lost. A study of the errors involved in this

discretization and approximate inversion procedure can be found in [1].



In the later case we are faced with the problem of how to go about finding an
approximation of fl(z) that has a support set of nonzero measure; an obvious
choice is:
ho(z) = Ex0(z) (2.2.15)
with:

N o T (2.2.16)

J?Z(z) (ezZ

£z) &

~

where * denotes convolution, §(-) is the delta mass, and (=) is a frequency
domain mollifier of sufficiently compact support, smooth, nonnegative, and in-

tegrates to unity. Now let:

O % tz) (2.2.17)
and:
pz)2 Y 6(z=¢) (2.2.18)
(eZ
Then:
£(t) = (6 *p)(1) (2.2.19)

and one reasonable approximation to equation 2.2.11 that has support set

of nonzero measure in frequency is given by:
ha(t) = £(2) - 8(2) (2.2.20)
For hy(z) things are quite straightforward:

h(t) = FT7{hy(2)}
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Recall that:

_ p7-1 1
= {“Zz J(¢)(= - c)}

= ;%7(1?)”_1{;4}

where sgn(t) denotes the sign function,

Therefore:

hi(2)

e"ct-gz—-sgn(t)&z_l_g
(
1 ,t>0
sgn(t)=9 0 ,t=0
-1 ,t<0

J t) Z cos((t) + 7 sin((t)

=sgnl(t
2 ez J({)

(2.2.21)

cos((t)

__sgn(t) sin((t) ] sgn(t
2 CGZZ J(C) 2 Z

ez

70 (2.2.22)

Again this expression involves infinite sums and has to be approximated. The

advantage of this approach is that there is no need for approximate inversion,



thus a class of errors is eliminated. The problem is that the analytic inversion
of (2.2.7) is difficult in general, even if simple analytic expressions for the con-
volvers are available. For the 2-Dimensional case it becomes almost impossible
for any nontrivial set of convolvers. Recent developments in the field of sym-
bolic manipulation packages (such as MACSYMA and MATHEMATICA) may
provide a valuable helping hand but at the present time a lot of the work has
to be done by hand, mainly because even if expressions like the one above are
machine-deduced, numerical computation requires careful reshuffling of terms
and exploitation of symmetries to reduce the complexity as much as possible.
As an example consider the one-dimensional case and the following specific set

of convolvers:

fit) = X(-vava(t) L fiz) = % - sin(v/2z) (2.2.23)
£at) = xgca(t) &5 Fu(e) = = - sin(z)  (2228)

So frequency-domain computation requires real arithmetic, whereas time-
domain computation requires complez arithmetic. Therefore, in most cases,
frequency-domain computations are preferable, especially if filtering is going to
be performed in frequency. We now return to the 2-Dimensional case and our

model problem.
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2.3 Exploitation of symmetries in the frequency domain

We are interested in ways to exploit inherent problem symmetry in order to re-
duce the computational complexity and improve arithmetic error performance.
A lot of problems of practical engineering interest exhibit strong symmetries or
can be approximated as such. We shall show how one can accomplish such sav-
ings, using our model problem. Consider the result obtained in equation 2.1.11 ,

which we rewrite here making the number of frequency variables explicit:

Z a(ChSZ) . CI(ZI,Z%CI’CZ)
iez J(CLG) - f(6nG) (i —G) - (22— ()

Ry(z1,22) = (2.3.1)

Assume that @((;,(2) is an even function of both its arguments. We will
use the following notation to denote this: #((y,{2) ~ e((1,(2). Similarly odd
functions are denoted by ~ of-). We are interested in symmetries in terms of
((1,(;) of the summation term in equation 2.3.1 .

Define:

(G, G2) - Cl(’il,zz, (1,(2)
J(C17C2) : f3(<1,c2)

W(Zlaz21C1’C2) é 4 (232)

Next recall that:
Z={(i”— fﬁ) k,j=+1 i‘)---}u{(—jﬂ ﬁ) k,j =+l j;2---}
ﬁ’\/i b} b b b \/ﬁ’ﬁ b b b M

and observe that:

(n1,n2) € Z — (—ny,n2), (n1,—ng), (—n1,—n2) € Z



Now, for z fixed: Ci(z,22,(1,(2) ~ €((1, () and J((y,C2) ~ 0(¢1)o(Cz). Fur-

thermore: f;;({l, G2) ~ e((1)e(C2). Thus , for fixed z:

W (21, 22, C1y G2) ~ 0(G1)ol(a).

Therefore, for fixed z, the pointwise contribution of the four zeros:

("1,"2), ("'nl,n2), (nh_nZ), ("nl,-nz)

can be combined as follows:

1
W(Zl,zz,nl,nz) . [ 1 ]__

(21— 1) - (22 — na) - (21 4+ n1) - (22 — ny)

1 1
W(z1,22,m1,m9) - [(21 —m1)-(z2+n2) (z1+m)- (22'*‘"2)] B

4-n1-n2

(2 —ni) - (2§ — ni)

= W(zh z2, Ny, n2) y

Therefore we can combine the four individual contributions into a single
term. Furthermore, notice that since for fixed z, Ci(z1,22,(1,(2) ~ e(z1,22)
this implies that W (zq, 29, (1,{2) ~ e(z, 22), thus the combined term above is
~ e(z1,2;). Hence hy(z1,2;) ~ €(z1,22), as the sum of even functions of both
21 and z;. Therefore we only need to compute the upper right quadrant of the
Fourier transform plane. Notice that we have achieved combined savings ( in the
number of terms that need to be computed by any digital approximation scheme)

of 1/16 ! This can make an enormous difference in any practical computation.
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2.4 Actual Computation of Approximate Deconvolution Kernels

As we briefly mentioned before we basically have two ways to go about com-
puting discrete approximations to the deconvolution kernels: either perform a
frgquency-domain computation (which seems much more straightforward) and
then invert the resulting spectra using an IDFT procedure, or invert the for-
mulas analytically (symbolically) and directly compute the kernels in the time
domain.

It has been remarked that time domain computation can be overwhelming!
For simple problems, like the model we’re considering, it is within one’s limits,
although it requires a considerable number of manipulations. Basically one
is trying to invert the summation term in the expressions for the F.T. of the
deconvolvers. This has been done and the results are given in the next few
pages. It is assumed that 4((;,(z) = 1, but any other @ can be accommodated
by replacing the unit in the nominator of the summation term with %((1, (2)-
Also notice that only the formulas for (¢, t2) and hs(t1,t2) are given, since (due
to similarity) the expression for hy(t1,12) can be easily obtained by replacing V2
by v/3 everywhere the former appears in the formulas for hy(t1, ¢2). Notice that
we verify claims made earlier for the support of the deconvolution kernels (it is

bounded above independently of #). The results follow:

1
hi(ri,m2) = D . nél)(ﬁ,rz) (2.4.1)

&z IO 5(0)



with:

'—\/§<7‘2§—13 —1-V2<r £ —/2: ~Ry -5,
~V2<r <1-4/2: —R; - S5
1-V2<rm<v2-1: —R; - S,
V2-1<r <V2: —R; - Ss
V2<r <142 —R; - S

—1<r<0: =1-R<r<—V2: P;-Q;—R;-5,
—“V2<r<1-v2: Py -Q.— Ry - S5
1-vV2<r<vV2-1: Py -Qs—R; -5
V2-1<r <v2: Py -Qsi—R;-Ss
V2<r <1+v2: Py-Qsi—R;-Se

n(r,m) =4 O0<r<l: —1-vZ<m<—v3: P} -Qs—RF-S,

—V2<r<1-v2: P}-Qy—Rf-Ss

1-vV2<n<V2-1: Pf-Qs—R}f-S,

V2—-1<r <v2: Pf-Qsi—R}-Ss

V2<rm <1+42: P -Q4—RY-Se

1<ry<V2: ~1-v2<r <—V2: —R$ -5,
—V2<r<1-v2: —Rf .55
1-vV2<rm<V2-1: —R}- S,
V2-1<r <V2: —RY .S
VZ<r 142! —Rf - S

| elsewhere : 0
(2.4.2)
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With:

= { g lostatr s )= 1} + {2 it + )}

P ={ - looslatrr = 1) - 1+ { L st - )

Q = {2Si12(1\c/2§é'2) [COS(ﬂCl)SiCII(Cl(Tl +)) e 1'1]} +

{2s1n(f C2) cos(V2¢,

)
2)c eos(v2) = cos(a(ra+ )]}

0, - {4sin<ﬁ<2> [Sin(Cl)COS(x/'iCl)COS(Cm) |

€162 G

+ i {4 sin(\/2_(2) sin((1) cos(v/2¢1) sin((yry) }
! e

2sin(v3() [cos(v2¢:) (sin(¢iv/2) — sin(Gi(rs — 1))
Qs = G162 1

~ 1-VZ+4n)}+

L {2sin(\/§C2) cos(v2¢1)

oG : [COS(Cl(Tl —-1)) - COS(Cl\/i)]}



Ry = {ZI;COS(Cz(rz + \/5))} +7J {21; -sin((z(r2 + \/5))}

7 = { - cos(atrs - VA +3{ % st - Vo))

5 - {2(20 [sin«l(nzﬂm)_l_ ﬁ_]} N

. [ 2sin((?)
+ J {_Z?Zz_— [1 —cos((a(r + V2 + 1))]}

The third kernel is given by:

_ 1 . ®
ha(ri,ra) =Y AR (r1,72) (2.4.3)

ez
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with:

) (ry,m) = 9

with:

-V3<r<—v2: -VB-v2<n <
-V3+v2<n <
~VZ+V3<r <V3+V2:
-V3-v2<n <
-V3+v2<n <
—VZ+V3<r <V3+V2:
-V3-v2<n <
-V3+v2<n <
~V2+V3<r SV3+V2:
-V3-v2<n <
~-V3+V2<m <
—V2+V3<r <V3+V2:

—2<r<0:

0<r, <42

V2<r; <3¢

0, elsewhere.

Gi=A; By —C; - D,

G, = A;

. By —C; - Ds

Gzs=A; - Bs—C7 - Dy

30

-V3+v2:
—V2+V3:

-3+ V2:
-2+ V3:

—V3+V2:
-V2+/3:

—V3+V2:
-V2+V3:

—C3 - D,
-Cy;-D

—Cy + D4

"‘C:;- - Ds
—C';- N D3

—C} - Dy

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)



G4 - A-{ ‘ Bz - C; ° D2 (2.4.8)
Gs = A} - Bs—CF-Ds (2.4.9)

Ge = A} -By,—Cf - D, (2.4.10)

and:

A7 = {é— - cos(Ca(ra + \/5))} +j {2—2 - sin(¢y (ry + \/5))}

At = {21; - cos(Ca(r2 — \/5))} +j {2—2 -sin(G(r2 = ﬁ))}

B, = {2Sin((1%2\/§) . [COS(Cl\/g) Sifz_(lfl(ﬁ +v2) =3 — \/'3']} +

Py {2 Sin((z@);os«lﬁ) ) [cos(C1\/§) — cos((a(r1 + \/2.))]}

B, = {4sinc(lc<22\/3')_[cos(cn/i)sin(ccln/i)cos(clrl)_ ﬁ]} N

. {4COS(C1\/§) sin(¢1v/2) sin((2v/3) Sin(Clrl)}
tJ GG
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B, = {QSin(Cz\/g) ‘ [_COS(Cl\/g) sin(¢1(rs — v2)) =3 — \/g]}_{_

G162 G

+ {2°°S(C"/§) GV Teog(cyr - vE)) - cos(cl\/ﬁ)]}

G
5 = {5 -cosatra+ v} 4+ { sttt V)

F = -1—-cos Ty — ] -—1--sin (g —
Cy —-{Q (Ca(r2 \/g))}’*'J{C2 (Gi( \/37))}

D, - {%m((lc;\/i)_{cos(clﬁ)shz(lcl(rm\/??))_rl_\f_ ﬁ]} N

4 {2sin(C2\/?C‘;°5(Cl\/§) - [eos(G1v/2) — cos(Gu(r + ﬁ))]}

_4\/‘Zsin(@\/2_)
¢12

Dy =

Dy = {ﬁ%%\/_z-_)_[_COS(Clﬁ)Sifz(lfl(T‘l—\/g))+r1_\/—_\/§]}+

L {2sin(cz~/€2‘12)<<:os(clﬁ) [eos(Ga(r = V3)) - cos(clﬁ)]}



The reader should be convinced by now that this approach is costly. We
further remark that numerical evaluation of these formulas requires complex
arithmetic in contrast with the original frequency-domain formulas that can
be evaluated using real arithmetic. Therefore we focus on frequency domain
computation and more on the necessary windowing. (Windowing also applies to
time-domain computation; nevertheless, its effects are more readily visualized

in the frequency domain).

2.5 Windowing

Our goal is the pointwise evaluation of the F.T. of approximate deconvolution
kernels over a suitably chosen finite grid. For ease of reference we reproduce the

formula obtained earlier:

Ri(es, 23) = ﬁ((l,gz) . Ci(z1, 22, (1, (2) 9.5.
(22) «l,czz;ezJ(cl,cz)~f3(c1,cz) G- - O

Clearly this involves the pointwise (in z) computation of an infinite sum.
Therefore, one way or another, we will have to truncate this sum at some point.
This is equivalent to forcing %(¢) to be band-limited, thus forcing u(t) to be
non-compactly supported and therefore violating the corresponding condition of
Theorem 1. Hence, we must strike a balance between computational feasibility
and support of u(t) in order to obtain meaningful results. Notice that in principle
u(t) can by anything as long as it is sufficiently compactly supported. Also note

that u(t) is the impulse response of the overall system that we realize and thus

33



4(z) is the frequency response of the overall system. Clearly we would like u(t)
to be as close to §(t) as possible (in the sense of distributions) or, equivalently,
4(z) to be as close to unity as possible. This means that we would like to include
as many terms as possible in 2.5..1. On the other hand, noise considerations
dictate a smooth choice of u(t) which in turn implies a fast decay of #(z) at
infinity. Therefore we have to accommodate conflicting interests. In practice we
are not trying to achieve infinite Bandwidth but rather a large finite bandwidth.
This is due to practical limitations and noise considerations. More precisely
stated, we seek a compromise in the choice of u(z) that will account for the

following:

1. u(t) is sufficiently compactly supported (i.e. the condition of Theorem 1.3

is approximately satisfied).

2. 1(2) is close to the identity over some bounded region of interest (i.e.

bandwidth requirements are being met).

3. u(t) is sufficiently smooth (Noise averaging)

These requirements are clearly interrelated. Now it is not at all clear what is
a proper choice for #. The following have been considered, for different reasons,

and with different degrees of success:

(i) Use a Hamming-like window in place of %(z). This has been motivated by

(1), (2), (3) and the fact that it exhibits fairly good ripple characteristics

(30] .
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(ii) Use a Butterworth type filter in place of @(z). This is similar to the above.
In addition #(z) is "maximally flat” resulting in good noise performance

[30] .

(iii) Use the theory of Prolate Spheroidal functions. This is motivated by
the work of D. Slepian, H. Pollak who proved that these functions strike
an optimal balance between support in time and support in frequency

28,18,27] .

(iv) Use functions of the form:

a(z) = (f[ Si“(%z‘))N . P(2) (2.5.2)

1N

iz} N%i
with:
1, ]z;|_<__r,i=1,2
pr(2) = (2.5.3)
0, elsewhere

This approach comes from an attempt to control the residue in 2.5.1 due
to the non-compactness of the support of u(t). We shall consider (z) and (iv) in
some detail.

(?) - Hamming-like windowing [30] .

Let:
(e, ) 2 1_211 (0.5 + o.scos(f§)> pr(C5) (2.5.4)

with:
p(e)=1 = (2.5.5)

0, elsewhere
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A U(z1,z2)

N
—

Yy
A

2

Figure 2.1: Hamming-like window
This is depicted in figure 2.1 . The parameter r controls the size of the
nullset that we consider since any term due to a nullpoint outside the support
of @ will be forced to zero. Notice that now the sum in 2.5.1 is well-defined
and finite.

With this choice of % we have:

2 1 r?/2x
U(tl,tg) = sin(t;r) [ + . t,‘ (256)
E ort; w2 — rit?

This is depicted in figure 2.2.

The energy content of u is easily obtained as:

Bo= [ [ ) dads
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Figure 2.2: Inverse FT of Hamming-like window

_ (37‘)2
—\4
Whereas the volume under u(t1,t,), Vi, is given by:

oo] o0 .
Vu. = / / U(tl, t2)6_1(21t1+22t2)dt1dt2

z1=2,=0

= 4(0,0)=1

Thus by increasing r we put more energy into u, keep the volume under
u(t1,t2) fixed to 1, the peak of u(ty,1;) is pushed up, and its main lobe narrows.
This type of window is simple and it requires the choice of only one param-

eter, namely r. Furthermore 4 approaches the identity (i.e. u approaches 6) as

37



r — co. Hence we should be able to find a suitable r to fit our needs. Sim-
ulations have proven that only partially good results can be expected for any
reasonable choice of r. This is due to the fact that for any finite r, u(¢;,1;) is not
compactly supported and convergence is not achieved. We do get a much wider
bandwidth; but because of the asymmetry present (cf. our previous discussion
of w/2-rotation-invariance) we are doing much better along one frequency (z;)
than along the other, i.e. along z, convergence is much slower (and in fact we
never achieve bandwidth r for all reasonable values of r). Typical of this case is
that the solution is gradually converging radially about the origin. A final re-
mark for Hamming windowing: Assuming presence of AGWN the computation
of output noise psd is particularly easy, and output noise power can easily be
trimmed within specifications by picking r smaller if necessary.

Next we turn to the use of powers of 2-dimensional sinc-like functions, which
have proven to be more appropriate than anything else we have considered.

(?v) - Sinc-like Windowing.

We consider functions of the form:

2

s e N
(1, G2) = (H img—fﬁl) - pr(C1)pr (C2) (2.5.7)

=1 N*%i
where ¢ is a small parameter, N is a small positive integer, and r is a suffi-

ciently large parameter.

For a moment let us forget about the cut-off at r forced by the product

p-(¢1)pr(¢2) and concentrate on the first factor.
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Figure 2.3: Two Dimensional sinc-like function
Let N=1

6,5 = L)

= (41?) fug, () sin(eda)

(2.5.8)

This is a sinc-like function with peak amplitude one and zeros along both

frequency variables located at multiples of Z. It is depicted in figure 2.3.

Therefore we can infer that u(q,1;) is :4—27 times the characteristic function

over a square of side 2¢. The characteristic function over a square of side a is

depicted in figure 2.4.
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u(tt,t2)

A

-

a/2 ti

)/a/2

t2

Figure 2.4: Characteristic Function over square of side a

Let N=2

8 _ sin(%{l)sin(§(2)>2
(G G) = ( 2

= (@(G, ()" (2.5.9)

Observe that ; is a sync-like function with peak amplitude equal to one
and zeros along both frequency variables located at multiples of 2. Therefore
uy(t1,t2) equals }2 times the characteristic function over a square of side e.

Hence (1, (2) = (@1(¢1,¢2))? is a squared sinc-like function, nonnegative with

the same zeros as u;.
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p(t1,t2)
1/2a

t2

Figure 2.5: nyamid of diagonal 2a and peak 1/a?®
Therefore, since:
u(ty, ta) = (ug * u1)(t1,12)
the function u(t,t;) is a pyramid-shaped surface, of diagonal 2¢ and peak

% , depicted in figure 2.5 for € = a.

So by keeping ¢ fixed and increasing N:

- We keep the support of u(t;,t2) fixed
- The peak of u(ty,12) gets taller
- u(ty,t2) gets smoother

- The main lobe of @((3, () gets wider
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- The peak of 4((1, {2) remains fixed to 1
- The amplitude within the main lobe of #((;, {;) flattens out

On the other hand, if we keep N fixed and decrease e:

- The support of u(t;,ts) narrows
- The peak of u(t,,t2) gets taller

- u(t1,%2) does not get smoother ( we assume that N has been chosen large

enough so that u(ty,1;) is sufficiently smooth )
- The main lobe of @((;, ;) widens
- Its peak stays fixed to 1
- The main lobe amplitudes are pushed up towards unity

A reasonable choice of the parameters involved is: € = 0.1 (to achieve 1/10 of
the support of the best convolution kernel), N = 3 (to make u smooth enough).
With this choice of parameters we get:

2 sin($)

(1, G2) = ( T) 2 (e (G2) (25.10)

=1

where the parameter r (forced cutoff in rads/sec) is to be chosen sufficiently
large to include all main features of the first factor (the main lobe and the prin-

cipal sidelobes at least) , while keeping the size of the computation reasonable.



This particular choice has proven to be the best of all thus far. It helps
achieve wide bandwidth, while reducing the magnitude of the asymmetry present.
Furthermore it makes the convergence uniform in z; (i.e. convergence is not any
more achieved radially about the origin but is essentially independent of z5).
Simulation results are given at the end of this chapter . The main drawback
is that again we have a high degree of energy concentration along a ribbon-like
neighborhood of the z; axis, while amplitudes everywhere else are attenuated by
at least an order of magnitude. Thus it is quite natural to consider techniques
that can effectively spread out the energy content of the overall system response

and result in a relatively flat spectrum.

2.6 Energy Spreading via Directional Frequency Windowing and

Averaging

In this section we consider the use of a direction-selective asymmetric window
to compensate for energy concentration. Since sinc-like mollifiers have demon-

strated good behavior consider a modification of the form:

Sln—'g"'
(e = (1 _&)) 2 (C)pr (G2 (261)

=1

where ¢, # €,. Now since we achieve better bandwidth characteristics along
(; we choose €; smaller than €, by half an order of magnitude (observe that
the magnitude of the main lobe is ~ 1 ). This will compensate for the inherent

asymmetry by essentially spreading out the energy originally concentrated along
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the neighborhood of z,.

Simulation results are given at the end of this chapter for the following choice
of parameters: NV =3, ¢ = 0.1, €, = 0.5.

The preceeding discussion has made clear that the asymmetry resulting from
finite approximations of the proposed deconvolution kernels actually manifests
itself in a profound way and can severely distort the overall system spectium
even at frequencies in the vicinity of the origin. There exists no a priori reason
for the appearance of such asymmetries (for the particular model at hand is
completely symmetric) but rather the cause can be traced back to a somewhat
arbitrary choice between two distinct possibilities in writing down interpolation
formulas. Before we discuss this very important point let us give a partial “a
posteriori” solution: if the transforms of the convolver kernels are symmetric
and Z-rotation invariant then a simple solution would be the following:

Let: 71;,”(21, z3), © = 1, 2,3 denote the obtained approximations of the Fourier
Transforms of the deconvolution kernels, where n denotes the cardinality of the

nullset, Z, , over which we sum. Next for : = 1,2,3 define:

R (21, 22) 2 Bin(z2, ) (2.6.2)
and:
T ’i;‘t'n 5 +’};,Ln y %
e (o1, ) & il 22)2 G (2.6.3)

By definition k,,(:,-) is 7 rotation invariant since:

__A_ Bi,n(z27 21) + Tlén(zza 21)
- 2

Z;‘,n(z% zl)
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h{:n(zl’z2) i,n(zlaz2)

N
9

= E:n(zl, 22) (26.4)

Let ki, ¢ = 1,2,3 denote the Fourier transforms of the exact deconvolution

kernels. Then by theorem 1.3 we have that:

-~

him — hiy as n — o0, for i=1,2,3 (2.6.5)
Thus, by symmetry and 7 rotation invariance of the solution:

7L
hi,n

— il =h;, asn — o0, fori=1,2,3 (2.6.6)

Hence the same is true for their average, i.e. the family {7;;‘,,,; i =1,2,3}
constitutes a converging solution. Furthermore for all finite n the later family
behaves better because it acquires bandwidth in a radially increasing fashion.
Simulation results for this averaged solution are given at the end of this chapter.

We now turn to the general case where the set of convolvers is not symmetric.
In this case it is not necessarily true that E,L = k; and the remedy above fails. In
fact we ezpect the exact solutions to be asymmetric too. Nevertheless we have
to account for asymmetries introduced by the need to come up with a finite
computation because otherwise our results will be severely distorted. We now
investigate the cause of these asymmetries and proceed to propose a definitive

solution. Consider the determinant involved in the interpolation formula 1.2.11
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of Theorem 1.3 .
91(%,¢) 6i(z,¢) ¢3(2,0)
4= gi(z() 63(2,0) g}(z0) (2.6.7)

Az Rz R

where the g;i(z, (), i=1,2,3, j = 1,2 are holomorphic functions given by:

ﬁ'(zl, CZ) - fi(Clv C2)

21—C1

gi(z,0) = (2.6.8)

ﬁ(zl’ 22) - fi(zla (2)

22—C2

gi(z,¢) = (2.6.9)

Now consider the first column of d. The idea is to write [9] :
fl(zla z2) — J?l(Cl,Cz) = (21 G1) - 91(2,0) + (22 = (2) - 92(%,€) (2.6.10)

Quite clearly this can also be achieved via:

fl(zls 22) - fl(clv (2) = (21 - Cl) ' g%(za C) + (22 - C2) ' g%(‘z, C) (2611)

Where g} (z,¢) and gj(z, () are defined as follows:

_A_: ﬁ(zl, 22) - fl(Cl’ 22)

9:(z,¢) p—a (2.6.12)
HONE fi(G1s 22 : Z(Cu (2) (2.6.13)

There is no a priori reason for choosing any particular holomorphic form;
either will do. Nevertheless some choice has to be made. Although in the limit

this choice makes no difference, it is the hidden cause of spurious asymmetries
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for all finite n = #Z, because either expansion pair of holomorphic functions is

biased towards one of the two frequency variables. Therefore we can define:

3i(z,¢) §(z¢) gi(z¢)
33(z,¢) 3(z,¢) 33(20) (2.6.14)

h(z)  f(z) Al

ay
I

with g3, g2, g3, g5 defined as follows:

.)?2(217 22) - .fl’(Ch 22)

gi(2,¢) = s (2.6.15)

Rz, ¢) = Ll = 16 6) (2.6.16)
22— (2

ﬁf(Z,C) — fa(zl,zz) - fs(Cl, 22) (2.6.17)
21— (1

§§(z, C) — fa(Cl, 22) - fs(Cl, Cz) (2.6.18)

22— (2

Now we need to use equation 1.2.11 to obtain two sets of solutions: one
using the original d, and one using d in place of d. Again since both solutions
converge to the exact deconvolvers as n — oo the same is true for their average.
Furthermore, the bias is canceled out and does not appear in the overall system
spectrum. Observe that if .the transforms of the convolvers are symmetric and

Z rotation invariant this approach reduces to the much simpler a posteriori

remedy discussed earlier, which requires about half as much computation. In
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any case directional windowing is beneficial because we are generally interested
in a completely symmetrical frequency response of the overall system, i.e. a
system response that is ¢ - rotation invariant for arbitrary ¢ € [0, 2x].
Simulation results are presentgd in the sequence of figures that follows. A
nullset cardinality n = #Z = 3200 points, a frequency step of 0.1718 rads/sec
and a frequency resolution of 2562256 points is adopted throughout the whole se-
quence of simulations. The parameter t denotes threshold value. The magnitude
of the Fourier Transform of the convolution kernels for the model problem is plot-
ted in figures 2.6, 2.7, 2.8. The magnitude of the Fourier Transform of the overall
system using sinc like frequency windowing with parameters e = 0.1, N = 3
is plotted in figures 2.9, 2.10, 2.11 for various threshold levels. The following
three figures, 2.12, 2.13, 2.14 depict the magnitude of the Fourier Transform
of the overall system using directional frequency windowing with parameters
6 = 0.1, g = 0.5, N = 3. The last four figures, 2.15,2.16, 2.17, 2.18 depict
the magnitude of the Fourier transform of the overall system using frequency
averaging of the resulting deconvolution kernels depicted in figures 2.12 up to

2.14.
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Figure 2.6: Magnitude of FT of convolver 1, t=0.1
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Figure 2.7: Magnitude of FT of convolver 2, t=0.1
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Figure 2.8: Magnitude of FT of convolver 3 (best one), t=0.1
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Magnitude of FT of overall system, e =0.1, N

Figure 2.9
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Magnitude of FT of overall system, e =0.1, N =3, t =0.5
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Figure 2.11: Magnitude of FT of overall system, e =0.1, N =3, t =35.0
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Figure 2.12: Magnitude of FT of overall system, ¢, = 0.1, ¢ = 0.5, N =3,t =
0.1
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Figure 2.13: Magnitude of FT of overall system, ¢; = 0.1, e2=0.5, N =3,t =
0.5
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Figure 2.14: Magnitude of FT of overall system, ¢, = 0.1, e =0.5, N = 3,t=

5.0
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Figure 2.15
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Figure 2.16: Magnitude of FT of overall system, ¢ = 0.1, e = 0.5, N =
3, averaged, t = 0.1
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Figure 2.17: Magnitude of FT of overall system, ¢ = 0.1, 2 = 0.5, N =
3, averaged, t =0.5
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Figure 2.18: Magnitude of FT of overall system, ¢, = 0.1, €2 = 0.5, N =
3, averaged, t = 1.0

61



CHAPTER

THREE

Efficient Computation

3.1 Preliminary Discussion

A very important issue (at least from the point of view of applications) is how ef-
ficiently can "reasonably good” approximate deconvolution kernels be computed
from raw data such as samples of the frequency response of the convolvers, or,
ideally, analytic expressions for the convolution kernels or their Fourier trans-
forms. There are several complex issues involved here, including the basic ques-
tions of modeling, data availability, accuracy of measurements (resolution) and
others. We will not discuss these issues here but we will assume that a suffi-
ciently accurate model of the convolvers is available. Since we will work with
samples of the Fourier transforms of the convolution kernels the data set will
eventually be discrete. We remark however that the algorithm requires precise
knowledge of the common zeros of the very-well behaved subfamily (and is in
fact sensitive to errors in the location of these common zeros).

It is important that care is exercised in order to minimize the uncertainty

62



with regard to the location of zeros due to imperfect sampling or measurement
noise. Of course these problems are eliminated once analytic expressions are
known.

As soon as a sufficient model has been established the actual computation
seems quite straightforward; one basically needs to calculate pointwise appyoxi-
mations to an infinite sum, that is, approximate an infinite sum for every point
over a finite two-dimensional grid of frequencies. For reasonable resolution and
degree of approximation this computation can simply be overwhelming! A typ-
ical set-up for simulations throughout this work has been as follows: 256 x 256
individual frequencies and 3200 terms/point for each frequency. The computa-
tion of each term requires a relatively large number of floating point operations
by itself. Therefore the task becomes time-consuming for an ordinary sequential
machine.

One usually needs to apply a trial-and-error approach and modify the window
parameters (or the window itself) in order to optimize various system charac-
teristics such as S/N ratio vs. BW. This practice is an integral part of common
engineering trade. The possibility of having to re-run the whole computation
even for a few times is certainly alarming! Alas, it does not have to be; the prob-
lem at hand is inherently massively parallel and can be very efficiently solved
using a special machine architecture that already exists commercially. The key
observation is that the computation for each frequency point is independent

from the corresponding computation for every other point.
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3.2 The Data Parallel Architecture

The data parallel architecture is a combination of data parallel software and
hardware that supports parallel data-element-wise processing of large uniform
data structures, such as arrays or fields. It differs from conventional (sequential)
architectures in some fundamental aspects while it retains much of the familiar
underlying structure of a sequential computing machine, such as uniform address
space, centralized program control and layered protocol communications.
Simply put, Data Parallel computing associates one processor with each data
element. Upon instruction from the supervising central control unit, each pro-
cessor operates on its associated data element, i.e. all processors execute the
same sequence of operations each on its own data element in a synchronous
fashion. This computing style exploits the natural computational parallelism
inherent in many data-intensive problems. It can significantly decrease the ex-
ecution time of a problem and simplify the design of numerical algorithms. In
the best case (and our problem is in this class of problems) execution time can
be reduced in proportion to the number of data elements in the computation;
programming effort can be reduced in proportion to the complexity of express-
ing a naturally parallel problem in a sequential manner. The final program code
becomes extremely compact, natural and expressive. As an example, matrix
addition can be coded simply as: A = B + C. The execution of a statement of

this form is performed in one addition cycle; all index loops can be eliminated.
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Commercially available machines that support the data parallel model typ-
ically offer extensive inter-processor communication capabilities usually via an
elaborate interconnection network that is synchronized to various extends. While
this kind of service is critical for many applications it is not necessary for the
pfoblern under consideration. Global resource allocation and synchronization is
always a must for all data parallel applications and thus a mechanism that offers
such services is considered to be an integral part of the data parallel machine.

The particular machine used throughout this work has been the Thinking
Machines Corp. Connection Machine CM-2 system. Next we move on to a brief
overview of this particular machine. This will make our discussion concrete and

give the reader a flavor of the actual computation.

3.2.1 The Connection Machine System

Thinking Machines Corporation Connection Machine model CM-2 is an ad-
vanced, highly sophisticated machine that supports the Data Parallel Comput-
ing model. Data parallel operations are implemented directly in hardware. In
its full configuration the CM-2 system parallel processing unit contains 65,536
data processors, logica,llly subdivided into four clusters of 16,384 processors each.
Each data processor contains a separate Arithmetic and Logic Unit (ALU), 256
Kbits of bit-addressable local memory, an optional floating point accelerator, an
I/0 interface as well as a number of interprocessor communication interfaces.

Each cluster (or segment) of 16,384 data processors is attached to a sequencer
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that controls the segment. Up to four front-end computers can be attached to
the system, one front end computer to each individual sequencer. Alternatively
two or four sequencers can be assigned to a single front end machine. A 4
X 4 crossbar switch (front-end Nexus) reconfigures the front-end to sequencer
assignments.

Arbitrary point-to-point communications are permitted by means of special-
purpose hardware, called The Router. Message passing can occur in parallel; all
processors can simultaneously send and receive messages via mailboxes that re-
side in their local memories. A finer system called The NEWS Grid implements
a nearest-neighbor communication scheme that is much more efficient than the
general router mechanism. The NEWS Grid is realized in hardware too. The
Grid operates via a permutation circuit. This permutation circuit has another
mode of operation, known as Direct Hypercube Access that facilitates the de-
sign of rather complex but quite regular communication patterns. The overall
architecture of the Connection Machine can be seen in figure 3.1.

The data structure to be operated upon is uniformly spread over the data
processor grid of one, two or four clusters. Each data element of the structure
resides in the local memory of a data processor. If the data structure is bigger
than the actual number of processors available (which is the normal case), a
virtual processor mechanism becomes active. As a result each data processor is
timeshared between two or more tasks and its associated local memory is sliced

into a proportional number of equal-length segments. From the user point of
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Figure 3.1: Connection Machine model CM-2 Architecture
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view this process is transparent , except for the obvious system slowdown. The
net effect is that the user is always presented with enough data processors to
accommodate his application.

All program code resides in the memory of the front-end computer. Instruc-
tiéns pertaining to the CM-2 unit are broadcasted as needed, from the front-end
to the sequencer and onto the individual processors. All serial code is executed
by the front-end machine. Input-Output transactions between the processors
and special mass storage devices are handled by the interprocessor communica-
tion services and each cluster has its own I/O port and associated frame buffer.

Application programs are developed on the front-end machine using familiar
tools (editors, debuggers, etc.). The front end can either be a DEC VAX ma-
chine running UNIX or a LISP SYMBOLICS machine. Parallel extensions of
the popular programming languages C, Fortran and Lisp are supported, in ad-
dition to a low-level language known as PARIS (PARallel Instruction Set). The
actual language extensions are minimal, depending on context to distinguish
scalar from parallel operations. ”Loaded” versions of all familiar functions and
constructs are providéd. These enable the use of a rather abstract programming
style that does not require explicit identification of parallel operations.

The most critical part of any parallel algorithm is synchronization. The so-
lution of any non-trivial task synchronization problem constitutes a formidable
exercise in its own right. Typical approaches concentrate on the use of special

synchronization flags, called semaphors. This can place a considerable load on
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the part of the programmer and severely complicate programs that are otherwise
quite straightforward. It must be noted that even if interprocessor communica-
tions during runtime are not required, global data access and resource utilization
must be organized (consider for example what will happen if two or more pro-
cessors try to read/write data from global memory; the results can be totally
unpredictable).

Quite fortunately all synchronization is handled by the Connection Machine
itself and is transparent to the user. Furthermore the following rule of thumb
applies: portions of parallel code are executed in a “as-if-sertal” manner. That
is, although the actual operations are executed in parallel, the net results are
completely predictable, as if the operations were executed in a sequential (but
unknown) order. This is important when one executes a many-to-one operation.
For example, consider the following case: one needs to compute the sum of the
entries of an N-vector V. Suppose that the entries are spread across N data
processors. Then one could instruct each processor to read a predefined memory
location, add its associated entry to it and store the result back to the predefined
memory location. With no synchronization one could end up with anything
from the correct sum to just one element of V, with everything in between. The
concept of "as-if-serial” execution guarantees that one will get the correct sum.

The preceeding discussion should have made clear that this is a rather user-
friendly machine, especially when one considers its nature and complexity. The

Connection Machine virtually behaves as a very powerful extension of the front-
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end sequential machine, each executing these parts of the code that it is well
suited for.

The progra.mmian language used for this work has been C*, the parallel
extension of the standard C draft supported by the Connection Machine System.
This dialect of the language closely resembles a relafively unknown but quite
powerful earlier variation of standard C, known as C*+. C* itself is elegant and
noteworthy for its compactness and clarity of expression. We will very briefly
review only those elements of C* which are directly needed for the problem at
hand. The reader is referred to the Connection Machine literature for more

details [29] .

3.2.2 The C* Language

The C* model is an extension of the plain C model. C* extends C by having
many processors instead of one, all executing the same instruction stream. The
C* model may be summarized as follows: C* allows the programmer to use lots
of processors of an otherwise conventional nature, operating within a uniform
address space in a synchronous ezecution mode. Except for the fact that no code
is stored in the memory of a data processor, local memory layout of each data
processor is conventional.

Data processor memory layout can be informally described as a C struct.
At any given time the active set of processors within a particular cluster has

a uniform memory layout. In C* a structure type that describes the memory
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layout of a data processor is called a domain. The notion of a domain is an
outgrowth of the class structure of C**. We can declare functions as members
of a domain in much the same way we declare variables within the domain. In
C*, all code is divided into two kinds: serial and parallel. Code that belongs to
a domain is parallel and is executed by many data processors at once; all other
code is serial and is executed sequentially by the front-end machine. All data
is also divided into two kinds: scalar and parallel. These are described using
two new keywords: mono and poly respectively. Within a code segment that
pertains to a domain the default is poly; within serial code it is mono. A scalar
value is automatically replicated where necessary to form a parallel value.
Typically, a large number of processors within a cluster are configured with

the same memory layout. One simple example follows:

domain processor {
float x;
float y;

}; domain processor PROC[1000];

The above sequence configures a thousand processors according to the do-
main processor structure. Each processor PROC{i], ¢ = 1,---,1000, constitutes

an instance of the domain processor. Parallel computation can be initiated using

the selection statement:

[domain processor] - substatement
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The substatement appearing right of the dot is executed for all instances of the
domain processor (i.e. all 1000 processors) at once, i.e. a selection statement
activates all instances of the specified domain and then simultaneously executes

a substatement. If the substatement contains conditional constructs such as:

if (expression) statement else statement

or while (expression) statement

then the expression is treated as a poly value, so that each active domain
instance has its own value for the test. Instances that calculate the value zero
become inactive; instances that calculate a non-zero value execute the substate-
ment and then loop. The while loop completes if and when the set of active
instances becomes empty.

An example program follows: Suppose we want to compute the sample values
of the function f(z) = zsin(z) at 1000 points. This can be done very efficiently
by assigning each x value to an individual processor and then computing all y

values at once using a selection statement. The complete code follows and it is

self explanatory:

# include <math.hs>

domain processor {
float x,y;

¥
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domain processor PROC[1000];

void processor::f()

{ y=x*sin(x); }

void setupvalues()
{ int i; float t;
£=0.0;
for (i=0;i<=999;i++) {
t+=0.001;
PROC[i] .x=t;

}

main()
{ setupvalues();

[domain processor].{f();} /* init. parallel processing*/

The declaration: void processor::f(), specifies the function f to operate on
specific instances of the domain processor. Thus the variables x and y that
appear within the body of f() implicitly refer to the specific instance that f

operates upon (recall the as-if-sequential rule). After the program completes its
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execution the y values reside in the local memories of the processors and can be
accessed as members of an array of struct simply as: PROC[z].y.

The preceeding example serves a double purpose; it familiarizes the reader
with the fundamentals of C* programming and it basically provides the skeleton

of what is needed for the coding of our target computation.

3.3 Optimizing the computation of the deconvolution kernels -

Grid Layouts

With the Connection Machine Data Parallel Architecture in mind, the next
task is to optimize the target computation with respect to various efficiency
considerations. Next we stress the most important facts that need to be taken

into account, based on our model problem.

1. Symmetry of Deconvolution kernels in the transform domain. As a result
we only need compute the pointwise values of the corresponding Fourier

Transforms in the upper-right frequency quadrant.

2. For each frequency pair, (zi,z2), careful reshuffling of summation terms
(over the nullset Z) can result in a reduced number of required floating

point operations.

3. For each frequency pair, (21, z2), and each nullset point ({1,(z) the corre-
sponding terms for the Fourier Transforms of the three deconvolvers share

a common factor. Therefore this factor need only be computed once for
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all three uses. Recall that for 7 = 1,2,3 we have that:

~ (¢, 2 1 i
RPN e AR T e M
(3.3.1)

It is worth noting that this common factor carries out much of the com-
putation involved. Hence for a given point (21, 2;) the computations 711(2‘1, 22),
712(21, 22), 713(21, 2z,) are strongly related; this fact can be effectively used to our
advantage.

Fact (1) reduces the complexity by ;li. Fact (2) by a factor close to ;. Obser-
vation (3) can result in reductions of up to %, depending on the floating point
function library used. Hence the total gain is in the order of £ = L!

Returning to the specific computing model and assuming “enough” proces-
sors what would be the most efficient thing to do? One can employ parallelism
at various different levels. A very efficient way to attack the problem would be
as follows: For each pair of frequencies, (21,22), in the upper-right transform
quadrant assign one data processor to each nullpoint ((1,(;), and use the NEWS
GRID nearest neighbor communication facility to compute partial sums row-
wise along the grid. This scheme should be replicated for all three kernels and
for all frequency pairs (21, z2) in the upper right transform quadrant. The data
processor grid layout would be as in figure 3.2.

In figure 3.2 o denotes a data processor, and + denotes floating point addi-
tion. This grid configuration is not optimal in terms of time efficiency because

it does not make use of observation (3). It is nevertheless useful because it
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Figure 3.2: Layered grid configuration for distributed computation, Type I
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requires a smaller number of cells (data processors) than the one that follows.

Next we add a fourth computing layer that calculates the factor —wah)
J(Cl:(Z)f3((:li(2)

for each pair ({3, (z) of the nullpoint set and feeds the result to the appropriate
computing cells. This scheme makes partial use of observation (3). This time
we need to introduce vertical cell communications to enable this new type of
transaction to take place. This (type II) grid setup is depicted in figure 3.3.

In figure 3.3 o denotes a data processor, — denotes interprocessor commu-
nication, and + denotes floating point addition. The grid operates as follows:
While Layer O computes the factors —_36)  the cells of Layers 1-3 compute

J(¢1,¢2) f3(€1.€2)
the factors 2i{Z1224162).  \When both computations are completed a column-wise

(z21-C1)(22—¢2)"
parallel fetch transaction, takes place after which each Layer 1-3 cell multiplies
the fetched value with its result and then a row-wise + transaction takes place.
Results rest in right most column. Notice that this scheme actually hits the
bottom line in parallelism; We cannot generically reduce each computing cell
unless we move into single-instruction level parallelism.
Both these strategies are highly efficient but very much out of reach of cur-

rent technology and the Connection Machine capabilities in particular, at least

for reasonable resolution and accuracy of approximation. Assuming a resolution

256x%256
4

of 256 x 256 frequency points we need to compute 3 X point values (3
kernels, only need upper-right transform quadrant). A minimal nullset cardi-

nality is of the order of 200. Using fact (2) we can reduce this by 1/4 resulting

in 50 nullpoints. Then both grids require approximately 2.5 x 10® processors!
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Figure 3.3: Layered grid configuration for distributed computation, Type II
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While this level of parallelism may be reachable in the future, it is out of the
question now. Therefore one needs to relax the computing power requirements.
The proposed grid configurations, although impractical, have demonstrated the
massively parallel nature of the problem. We now turn to a more modest strat-
egy.

In its full configuration the Connection Machine model CM-2 employs 64K
processors.. With a frequency resolution of 512 x 512 points we can simply assign

each processor the task of computing one point value for all three kernels. This

: 512x512
requires 4

= 64K processors. This way no interprocessor communication
is needed and the size of the nullset is of little practical importance, because
it does not affect the number of processors required (only affects the execution
time). Thus quite large nullsets can be easily accommodated. Notice that since
each processor computes a specific point value for all three kernels, observation
(3) can easily be exploited.

The appendix lists the C* source code that implements this grid setup for the
model problem that we have considered (characteristic functions over squares),
a resolution of 256 x 256 frequency points, a frequency step of 0.171rads/sec,
and a nullset of 3200 points. For simplicity purposes the whole spectrum is
computed (i.e. all four frequency quadrants are independently computed - this
facilitates subsequent storage). A directional frequency window is used, of the
type discussed in pp. 28-29 with ¢ = 0.1, ez = 0.5 and N=3. In a fully config-

ured Connection Machine with 64K processors the run time (excluding I/0) is
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around four minutes (for the upper right hand quadrant only). Simulation re-
sults throughout this work have been produced using this program as a skeleton.
The code itself is fairly straightforward and the experienced C user will have no
problems understanding it. Finally note that this program does not average the

solutions, and this has to be done separately.

3.4 Contributions and Future Research

We have considered the problem of signal deconvolution, and the properties of a
specific solution to the two dimensional Analytic Bezout Equation in particular.
We have focused on discrete time, finite bandwidth approximations. The major
results are summarized here, and an outline for future research is given in what
follows.

The one-dimensional case has been studied and general analytic expressions
for the deconvolvers have been devised, both in the frequency domain and in
the space domain. This important case serves as a vehicle for understanding the
more involved two dimensional case and provides useful insight into much of the
trade-off involved.

A specific example for the two dimensional case serves as a model problem
upon which we build subsequent developments. We have chosen the case of char-
acteristic functions of three squares of suitably chosen size, over R2. This family
can be easily proven to satisfy the strong coprimeness and very-well behavior

conditions required by Theorem 1.3. Analytic expressions for the deconvolution
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kernels for this model problem have been devised, both in the frequency domain
and in the time domain. The properties of these solutions have been investi-
gated. Support claims have been verified. It has been pointed out that any
finite computation may cripple the performance due to spurious asymmetries
that die out very slowly. The cause of this (not immediately apparent) problem
has been traced back to the original interpolation formulas and ways to deal
with this problem have been proposed. The use of appropriate frequency win-
dowing has been proposed as a means of forcing the residue term to converge
faster while achieving other desirable properties such as noise robustness and
good ripple characteristics.

The computability of reasonably good approximate deconvolvers has been
demonstrated. Efficiency considerations have been addressed and a number of
different Data Parallel grid layouts have been devised that allow for interactive
design and trade-off in close to real time.

These ideas have an extremely wide range of applications. The ultimate goal
would be to connect this framework with image understanding and machine per-
ception ideas. It is interesting to note the fact that work in these two inherently
interacting fields has in fact followed parallel, and, in some sense, diverging
paths. The goal of low-level signal processing is to achieve wide bandwidth and
good quantitative end-user characteristics, whereas any image understanding
system (and pattern recognition scheme in particular) is usually rejecting much

of the high frequency information content of the input, and concentrates on
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particular image features, partly through the use of hearistic rules. Therefore
one wonders whether there exists any need to recover such information to start
with! Clearly a ”Contraction point” must be revealed, and this should be made
an essential design goal.

Towards this end, a promising approach would be to use the concepts and
principles of Minkowski set theory and Mathematical Morphology, which provide
a valuable link between low-level éignal processing and shape representation and
pattern classification ideas. The incorporation of such mathematical devices into
the present context of signal reconstruction ideas should constitute a major step
forward towards a unified approach to signal processing and understanding via
translation-invariant systems [19,20].

The flexibility of morphological operators has been established in a variety of
applications. Finally it has to be remarked that such operations are nonlinear
and thus are more suited to attack the general inverse problem rather than
the (linear) deconvolution problem. Hence a top-down approach will be most

appropriate [26,21].



APPENDIX

#include <stdio.hs>

#include <math.hs>

#define riza3d 1.732050808
#define riza2 1.414213562
#define pi 3.141592654

#define fstep 0.171805848;

domain point {
float z1, z2, hi, h2, h3;

};

domain point frame[256][256];

float point::f1()
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{ return((4/(z1*z2))*(sin(riza3*z1))*(sin(riza3*z2))); }

float point::£f2()

{ return((4/(z1*z2))*(sin(riza2*z1))*(sin(riza2+%z2))); }

float point::£3()

{ return((4/(z1*z2))*(sin(z1))*(sin(z2))); }

float point::jf3(si,s2)
poly float si1, s2;
{ poly float a, b1, b2, b3, b, ci, 2, c3, c, d, g;

a = 16/(s1*s1*s1*s2%52%s2) ;

bl = (sin(riza3#*s2))*(sin(riza2*si));
b2 = riza3*si*cos(riza3*sl) - sin(riza3*si);
b3 = riza2*s2*cos(riza2*s2) - sin(rizal2*s2);

b = bi*b2*b3;

cl = (sin(riza3+*s1))*(sin(riza2*s2));

c2 = riza3*s2*cos(riza3*s2) - sin(riza3#*s2);
c3 = riza2*sil*cos(riza2*s1) - sin(riza2#*s1);
c = cl*c2%c3;

d = a*(b-c);

g = d*(4/(s1*s2))*(sin(s1))*(sin(s2));
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return(g) ;

float point::ci(si,s2)
poly float si,s2;

{ poly float a, b, c, d;

a = (4/(z1*s2))*(sin(riza2+z1))*(sin(riza2+#s2));
b = £3() - (4/(s1%*s2))*(sin(s1))*(sin(s2));

c = £20);

d = (4/(z1%s2))*(sin(z1))*(sin(s2))

- (4/(s1*s2))*(sin(s1))*(sin(s2));

return(a*b-c*d);

float point::c2(s1,s2)
poly float si, s2;

{ poly float a, b, c, d;

a=f1(0);
b = (4/(z1*s2))*(sin(z1))*(sin(s2))
- (4/(s1*s2))*(sin(s1))*(sin(s2));
c = (4/(z1%s2))*(sin(riza3+*z1))*(sin(riza3+s2));
d = (4/(s1*s2))*(sin(s1))*(sin(s2)) - £30);
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return(a*b+c*d);

float point::c3(si,s2)
poly float si, s2;

{ poly float a, b, ¢, d;

a = (4/(z1*s2))*(sin(riza3#*z1))*(sin(riza3*s2));
b = £20);
c = £1();
d = (4/(z1%s2))*(sin(riza2*z1))*(sin(riza2+*s2));

return(axb-c*d) ;

float point::uhat(si,s2)
poly float si, s2;
{ poly float uh;

/* epsilonl = 0.1, epsilon2 = 0.5, N = 3 for this realization */

uh = (sin(s1/30.0))*(sin(s2/6.0))*(180.0/(s1*s2));
uh = uh*uh*uh;
return(uh);
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void point::h() /* Parallel pointwise computation */
{ poly float s1, s2, u, w;
poly int j,k;
hi = 0.0; h2 = 0.0; h3 = OiO;
for (j=1;3j<=20;j++) {
for (k=1;k<=20;k++) {

si

(j*pi)/riza3;

52

(k*pi)/riza2;

w = (1/j£3(s1,52))*(4*s1*52/ ((z1*z1-s1*s1) * (22%22-52%52))) ;
u = uhat(s1,s2);

hi+=w*c1(s1,s2)%*u;

h2+=wxc2(s1,s2)*u;

h3+=wy*c3(s1,s2)*u;

s1 = (j*pi)/riza2;

s2 = (k*pi)/riza3;

«
H

(1/j£3(s1,s52) ) *(4*s1*s2/((z1*z1-s1*s1)* (22%22-52%52)) ) ;

u = uhat(si,s2);

hi+=wkci(s1,s2)*u;
h2+=w*c2(s1,s2)*u;
h3+=w*c3(sl,s2)*u;

¥
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void set_up_frame()
{ int i, j;
float 11, 12;
11 = -21.81934273 - fstep;
12 = -21.81934273 - fstep;
for (i=0;i<=255;i++) {
11 = 11 + fstep;
for (j=0;j<=255;j++) {
12 = 12 + fstep;

frame[i] [j].z1

11;

frame[i] [j] .22

12;

¥

void store()
{ int i, j, dummy, ioerr;
FILE *fpl, *fp2, *fp3, *fopen();

fpl = fopen("h13200.dat","w");
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fp2

fopen("h23200.dat","w");

fp3

fopen("h33200.dat","w");
for (i=0;i<=255;i++) {
for (j=0;j<=255;j++) {
fprintf(£fp1,"%f\n",frame[i] [j].h1);
fprintf (£fp2,"%f\n",frame[i] [j].h2);
fprintf (£fp3,"%f\n",frame[i] [j].h3);
}

/* flush buffers */

do {
iocerr = fflush(fpl);
if (doerr) { for (dummy=0;dummy<10000;dummy++) {} }
}
while(ioerr);
do {
ioerr = fflush(fp2);
if (ioerr) { for (dummy=0;dummy<10000;dummy++) {} }
}

while(ioerr);
do {

ioerr = fflush(fp3);
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if (ioerr) { for (dummy=0;dummy<10000;dummy++) {} }
}

while(iocerr);

/* pad imag. part with zeros */

for (j=0;j<=255;j++) { fprintf(£fpi,"%f\n",0.0);
fprintf (£p2,"%f\n",0.0);

fprintf (£p3,"%£f\n",0.0);

/* flush buffers */

do {
iocerr = fflush(fpl);
if (ioerr) { for (dummy=0;dummy<10000;dummy++) {} }
}
while(ioerr);
do {
ioerr = fflush(fp2);

if (ioerr) { for (dummy=0;dummy<10000;dummy++) {} }
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while(ioerr);
do {
ioerr = fflush(fp3);
if (ioerr) { for (dummy=0;dummy<10000;dummy++) {} }
}
while(ioerr);
}

fclose(fpl); fclose(£fp2); fclose(fp3);

%
main() {
printf("set_up_frame...\n");
set_up_frame(); /* set up frequencies in frame */
printf("start parallel processing...\n");
[domain point].{ h(); } /* initiate parallel processing */
printf("...printing output files\n");
store();
printf(".Completed.\n");
}
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