APPLICATIONS OF THE MULTIGRID ALGORITHM
TO SOLVING THE ZAKAI EQUATION
OF NONLINEAR FILTERING

WITH VLSI IMPLEMENTATION

by
Kevin Holley

~

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in ﬁartial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1986

ABSTRACT

Title of Dissertation: Applications of the Multigrid Algorithm
To Solving the Zakai Equation of Nonlinear Filtering

With VLSI Implementation
Kevin Craig Holley, Doctor of Philosophy, 1986.

Dissertation directed by: Dr. John'Baras, Professor, Department of Electrical

Engineering and Applied Mathematics

The feasibility of designing nonlinear filtering algorithms for implementation via

special purpose VLSI systems is explored. The filtering equations are

dIg = I(Zg)dt + g(.’l:g)d‘lUg
dy: = h(z:)dt + du,,

where z; € R™ and dw; and dv, are white noise of appropriate dimension. Other
conditions are required and explained in this paper.

The filtering algorithms are to be executed in real-time and in parallel, while
the resulting filter can be used in various simultaneous estimation and detection
systems. g

We examine existence, uniqueness and asymptotic beixavior of the stochastic
partial differential equation governing the filter and show that it is amenable to
numerical analysis, using a technique known as the Multigrid method.

The stochastic PDE is called the Zakai equation and its solution is, when
normalized, the probability density of the state z; cohditioned on the observations
{vs : 0 < 8 < t}. Given this density, all statistical information regarding z is
obtainable.

Wkzon defined in n dimensions the Zakai equation is of the form:

dU; = [B};a:5(2z)Us,z, + Z:bi(z)Us; + e(z)U)dt + U < h(z),dy: >

where the coefficients are defined in the text. This equation can be shown to have
a stable, implicit finite difference scheme whose solution converges weakly to the
solution of the PDE. We examine some properties of this equation that a.1.'e relevant
to its numerical analysis, such as how it is sometimes possible to approximate
its so]?xtion, originally defined on R™, on a compact set so as to meet with finite
computational requirements.

The Multigrid method involves the use of nested grids in which an original,
rather complicated, linear system ca,n. be solved by approximating it on coarser grids,

and exploiting the resulting reduction in problem size. The error that is incurred
can be smoothed out using relaxation techniques. This method can be shown to be
very efficient as a parallel solver and can be extended without a dramatic increase
in computing time to relatively high dimensions. We give an indepth analysis of
this algorithm, demonstrating its performance and capabilities, together with an
identification of its pertinent aspects regarding our problem.

We also describe some techniques in VLSI architectural analysis that will also
~ prove useful in our work. These include design strategies for both systolic arrays,
which are synchronous array machines, and more general asynchronous systems.
These concepts are utilized in our own custom-made design for real-time processing
with the Zakai equation: ‘

An important question for us is: If the Zakai equation is defined in R", what is
the maximum dimension n we can expect to allow, for real-time signal processing?
We conduct an analysis of this question using the methods of R. W. Hockney for
estimating performance of general computing systems. We find that dimensions no
higher than about six or seven can be reasonably tre;t«ed in conventional real-time
signal procesging environments, which is usually on the ordexf of about one millisec,

a time bound suggested by research on signal proéessing for the one-dimensional

Zakai equation.

DEDICATION

To My Parents
without whose support and snfinite patience

this manuscript would not have been possible

TABLE OF CONTENTS

Introduction s e e e e e e e e e e e e e e e .. .

. Nature of Signal Processing « ¢« « ¢ . ¢ ¢ o o ¢ ¢« o . .

. Advanced Techniques in Estimation and Detection

v b N

4.

W N e

. Impact of VLSI on Signal Processing
. Plan of this Dissertation and Previewof Results

. General Remarks e e e e e e e e e e e e e e e e

Selected Topics in VLSITheory
Introduction 000 L0l od e s e e
.Systolic ATrays ¢ ¢ ¢ 4 4 b e e e e e e e e e e e e e
. Physical Basis of ComputationTime
. Shuffie Exchange Processor Arrays « « « ¢ « « ¢ « « &
. Synchronization of Large VLSI Processor Arrays
. The Wavefront Array Processor ¢ ¢ ¢ ¢ ¢ ¢ v ¢ o o o & &
. A VLSI Architecture for the Scalar Nonlinear Filter

L, ConcluSIoOn &+ . i e et e e e e e e e e e e e e e e e e e e e

. Some Qualitative Results on the Zakai Equation, Part I . . .
. Intrddt;ction [
. Transformations on the Zakai of Nonlinear Filtering
. Existence and Uniqueness Theorems for the Robust Zakai Equation
. Comments and FurtherResults

.Conclusion v 4 et e e e e e e e .. e e e e e e e

Some Qualitative Results on the Zakai Equation, Part II

CIntroduction Lk i e e e e e e e e e e e e e e e e e
. Scalar Filtering with Polynomial Coefficients
. Linear State in R? with Nonlinear Observations

. The n-dimensional Bilinear Filtering Problem

&

. 10
. 12
. 16

. 20
. 20
. 22
. 25
. 27
. 31
. 34
. 40
. 43

. 48
. 48
. 49
. 57
.72
.75

.77
. 77
. 78
. 86
. 91

5.Conclusion L L L. e e e e e e e . p. 95
5. Finite Diffecrence Schemes for the Zakai Equation p. 97
Llntroduction00, p. 97
2. Finite Difference Mcthods for PDEs and their Probabilistic Interpretation p.'98
3. Imblicit versus Explicit Schemes p. 103
4. Schemes for the Zakai Equation p. 106
5.Conclusion L. Lo e e e e e e e p. 116
6. Elements of Multigrid Theory p- 161
L Introduction p. 161
2. The Multigrid Perspective p- 162
3. Multigrid Algorithms p- 167
4. The Recursive Structureof Multigrid p. 177
5. Outline of Proof of Convergence for the Multigrid A]gorithi;l <+ .. p.178
6. The Fokker-Planck Equation as a Model Problem p. 188
7. Multigrid Applications to Time-Dependent Problems p. 209
8. General Remarks0 e e e .. p. 211
9. Conclusion L . . e e e e e e e e e e e e e e . p. 212
line7. The Complexity of the Multigrid Algorithm.. p. 215
L Introduction 0. p. 215
2. Multigrid Algorithms00 ..., p. 217
3. Design of the Computing Network p. 221
4. Efficiency, Speedup, Accuracy and Optimal Design p- 229
5. ConcurrentIteration p- 236
6. Conclusion e e e e e e e e e e e e e e e e . p- 240
8. Relaxation Schemes for the Multigrid Algorithm. p. 243
LIntroduction0 eueon.. p. 243
2. Six Basic Relaxation Schemes pP. 244

T O »n oA

- O

© 00 =3 O Lt b W W

. Measurement of Smoothing Factors

. On the Choice of Relaration Schemes

.Conclusion & v 4 4t e e e e e e

. Empirical Results

.Introduction

i

. Three Variations of Multigrid Al‘gorithms c e .
. Architectural Considerations
. On the CHiP Architecture
. Design of the Direct Solver
. Remarks on the Stability of the Multigrid Method
. The Effects of Dimension on Real-Time Processing
. Alternative Architectures

. Some Other Current Work in Multigrid Methods

10. Conclusion v ¢ v v v 6 o ¢ ¢ o o

iv

oooooooooo

. The Parallel Implementation of Relaxation Schemes

. The Asynchronous Implementation of Relaxation Schemes

.........

.........

oooooooooooooooooooooooooo

. 248
. 252
. 256
. 259
. 263

. 267
. 267
. 268
. 270
. 286
. 289
. 295
. 303
. 311
. 321
. 323

. 325
. 325
. 329

. 332

LIST OF TABLES

7.2.1 Algorithm BASICMG 0 v v v v v v oo ", p. 221
7.2.2 Algorithm FULLMG p. 222
6.6.1 Sample Valuesof u*(w) v o o0 0. p. 195
8.2.1 Q Values of Relaxation Methods p. 247
9.3.1 CommunicationCost Models p. 277
9.8.1 Sample Values of ro, and n,/; p. 317
9.8.2 Maximal Dimensions Possible forn =100,10 p. 318

LIST OF FIGURES

2.4.1 The Perfect Shuffle Connection p. 28
2.42 TheOmega Network00 p. 29
2.7.1 The Simultaneous Estimator-Detector with Zakai Solver p."42
6.3.1 Schematics of Multigrid Algorithms p. 175
7.3.1 The Multigrid Architectural Model p- 229
9.3.1 Three Multigrid Layout Schemes p. 272
~ 9.3.2 Shuffle Connection on Eight Nodes p. 273
9.33Mesh1System ¢ v ¢ v v v it it e e p.- 274
9.3.4 CHiP Processor Embedding p. 277
935DomainforCase3« ¢ ¢ ¢ ¢ i ettt e e . p- 283
9.6.1 Minimum Wordlength as Function of Dimension p. 302

vi

1. Introduction

1. Nature of Signal Processing

One of the basic activities of electrical engineering today is the processing of signals,
be they in the nature of speech, radar, imag;as, or of electromechanical or biological
origin. By “processing” we generally mean conversion of the signals into some more
acceptable format for analysis. Examples could be the reduction of noise content,
parameter estimation, bandpass ﬁlt:;ring, or the enhancement of contrast, as re-
quired for imaging systems. The signal theorist develops algorithms for performing
these functions by constructing mathematical models of signals and the operations
conducted on them. The result of this work over the last twenty years has been a
rather sophisticated theory, which utilizes advanced concepts from stochastic pro-
cesses, differential equations and algebraic system theory. For a survey of such work
the reader is referred to the Nato Advanced Study series [12],* where it. can be seen
that researchers have gone far beyond the classic work of Doob [8] and Wong [22].
Much of this theory is inaccessible to “mainstream” signal processing engineers, who
often deem such research impractical, due to its apparent analytical intractability,
algorithmic complexity, and difficult numerical implementation.

One of the reasons for the lack of impact of the more theoretical levels on
the field has been the failure to meet economic as well as real-time processing
constraints imposed by the problems engineers face. The electronic circuitry needed
to perform the kind of advanced algorithms required by theory must still be cost-
competitive with existing techniques before workers in the field will consider the
trade-off between paying more for what could be only a few percentage points in
improved accuracy. Even if a problem is shown to be more readily and accurately

sclved by methods, such as, say, Lie algebras or differential geometry, it usually

* For convenience, all references cited will be listed at the end of the chapter they

appear. A complete list of all citations can be found at the end of the dissertation.

1

turns out to be a highly specialized case. So limited demand often precludes the
introduction of expensive computational techniques. In general, engineers will settle
for cheap but suboptimal ad hoc methods of their own invention, rather tb-'an master
totally new concepts.

T_he other issue to be resolved for at least a wide class of signal processing
problems involves meeting the time constraints implicit in the design. Consider a
robot manipulator coupled with a vision system. If the robot is expected to grasp
an object moving through some comylicated visual field, it must be able to track the
object in “real-time” as it conunands the manipulator - all the while exploiting the
available feedback. Techniques more advanced than those of today’s will surely be
needed, as both visual and tactile data will have to be “combined” in some way as
well as incorporated into the control dynamics of the arm. The problem is that such
techniques will have much greater demands for their numerical analysis. As this
translates to mean a greater number of arithmetic operations per second, meeting
real-time processing conditions will be all the more difficult. And in addition to this,
the necessary electronic components must be kept small in size as well as durable
" and reliable.

This is indeed the trend throughout much of signal processing: a greater volume
of signals must be processed in a lesser amount of time, in addition to requifing
more sophisticated analysis and relatively inexpensive electronics packaged on a
small scale. To better understand these issues, we should examine in more detail

the nature of some of these advanced techniques of signal processing.
2. Advanced Techniques in Estimation and Detection

This dissertation will only concentrate on a selected class of problems, but our
work could be considered a case study of the issues mentioned above. Our interests
will center around a stochastic partial differential equation (PDE) known as the
Duncan-Mortensen-Zakai (DMZ) or Zakai equation.

There are many derivations of this equation, one of the most lucid can be found

2

in Davis and Marcus, [7]. A model of the signal process is first formulated a priori

by use of Itd stochastic differential equations,

dzy = f(z,)dt + g(z¢)dw,
(1.2.1)
dyg = h(z,) dt + &Ug, *

where, t € [0,T),z¢,€ R", y: € RP and z, has probability density po(z), while w, v
are independent Brownian motions. The above model corresponds to a number of
dynamical systems: the flight of aircraft, robot manipulators, electrical circuits, etc.

In the celebrated case of the Kalman filter,

J(ze) = Az,
9(3:) =B
h(.‘tg) = CZg,

where A, B,C are given constant matrices. We also know that the Kalman filter
gives us E[z:|Y.], which in words, is the expected value of the state z; given all
the information available to us from all the observations from time s =0to s =¢.
All of this observational information is contained in the sigma field of observations,
denoted by V;.

The approach offered by the Zakai equation is much more general and hence

more powerful. In this case we can solve the bilinear stochastic PDE
dU = L*Udt + h(z:)Udy, (1.2.2)

where,

£0=3 ¥ 26 @0 - ¥ @)

where a'¥(z) = Y., 9*/(z)g97!(z) and U(z,¢t) is the “unnormalized” probability .
density of z; conditioned on the observations Y¢. To normalize we simply find:

U(z,t)
[32U(z,t)de

p(z:|Y:) =

3

Now clearly if we had the function U(z,t) in our possession we could solve for
E[¢(z¢)|Ye] where ¢(-) is any smooth function; for example we could compute the
higher moments of z,. However, many applications are content with appr.oxima.tio.ns
to the first moment, which can be obtained from the extended Kalman filter for
probléms of type (1.2.1). The basic idea of this approach is to simply use piece-
wise linear approximations for f, g,k on subintervals [tkstx+1), the estimate at 79
then being the initial condition for the next subinterval. This technique has enjoyed
success in a number of cases, but ;;ra.ctical problems still remain, for the extended
Kalman filter is known to diverge under certain conditions. Such obstacles can be

circumvented by the Zakai equation.

The question still remains as to how to numerically solve the Zakai equation
in the context of signal processing. Consider first the attempt by Bucy and Senne,
(1978), to solve a related, and perhaps equally difficult problem: phase demodu-
lation in low dimensions, [5]. This reduces to a nonlinear filtering problem which,
for Bucy, involved solving the Stratonovich-Kushner equation, a nonlinear version
of the Zakai equation. The resulting mean-square error performance of their design
was a considerable improvem.ent over the classical phase-lock loop. However, in
order to implement their optimum filter, they employed in succession, a CDC 6600,
Dlliac IV, CDC-star, AP-120B, and a Cray 1, and admittc;d that only the most im-
portant problems could be given to such expensive tools. To the criticism that such
work was impractical because of the enormous number of megaflops needed, they
responded by pointing out the enormous progress in computer speed and design in

the last decade, thus underscoring the declining validity of such an argument.

Nonetheless, the problem with Bucy’s work from our point of view is that it
simply is aot practical in the context of signal processing, no matter how much
progress is made in the field of supercomputers. Consider our previous argument:
the need for low-cost electronic components to implement the necessary algorithms.

While there may still be a place for research such as Bucy’s, it would have limited

4

utility in a field that requires systems to be installed on robots and spacecraft.
We need to consider computing systems that are even more parallel tﬂhan those
mentioned above. In addition, they should also be custom-mﬁe for the problem:

We also saw from Bucy’s research that the demands for accuracy have a dirgct
impact on the time required for computation as well as the type of architecture
needed. This raises the question as to what the demands will be in our case, and
we can answer that by placing the numerical analysis of the Zakai equation into a
subsystem whose performance requfrements will be dictated by the overall system.
For our intention is not just to numerically implement a nonlinear filter but to do so
as part of a more general algorithm, such as the problem of simultaneous estimation
and detection algorithm. Indeed, the estimation and filtering problems mentioned
in these pages can be thought of as a case study of more general problems that
would be equally suited for real-time processing.

A typical example of a larger system will be briefly described. We must choose
between two hypotheses:

Under Hy : dz: = f(z:)dt + g(z¢)dw:
dy: = h(z:)dt + dv; (1.2..3)
Under Hp: dy; = dv,
where the same assumptions hold as in (1.2.1). At each time ¢ > 0, the system
either accepts one of the above hypotheses as true or continues to collect data. A
cost function, which includes the cost of the data collection and false alarms, must
also be minimized.

An admissible decision policy is therefore of the type u = (r,6) where 7 is a
stopping time, used to stop the data collection process, and § is a decision, where
6 = 0,1, corresponding to the hypothesis accepted as true.

Now if u is selected as a decision strategy the miss and false alarm probabilities

associated with v = (7, §) are,

a(u) = Pi(6=0), B(t) = Po(6=1), (1.2.4)

which, in words are the probabilities that H; is correct but Hyp is chosen to be true,

and Hp is true but H; was chosen. Set,
a = max a(u) f= max B(u), (1.2.5)

where U(a,) is the class of admissible decision strategies.

Define, X
he = E[h(z,)ly,]

¢ t
- 1 -~
A¢=exp [/ kT . dy, — —2-/ Al ds].
0 0

Then the policy u* is of the threshold type if it obeys, u* = (7°,6*) where,

(1.2.6)

7° =inf(t > 0|A, ¢ (4, B))

5 — 1, A,->B (1.2.7)
—lo, A.<A°
In the above,
i=_Pf p_1-8
l-a a

and it can be shown that a + 8 < 1. Also, u* is optimal in the sense that,

E(/0 115112 ds) < E,-([”;‘,,”z ds), i=0,1.

Assuming that a and § are giv'en, we clearly need ";.g, and we see that if U (z,t)

is the unnormalized density that solves the Zakai equation, then,

. JU(z,t)h(z) dz
¢ JU(z,t)dz °

(1.2.8)

where integration is over R". Thus a nonlinear filtering problem must be solved as
part of the overall scheme of estimation and detection.

More details on the above together with derivations can be found in LaVigna’s
thesis, (1986, [19]). We emphasize that this is but one example of how a numerically
efficient solver of the Zakai equation could be incorporated into an estimation—

detection system. The focus in this dissertation will be on the numerical analysis

6

of the Zakai equation with respect to real-time processing, and not on how such
“Zakai Solvers” could be placed into a larger framework.

The notion of “real-time” is admittedly rather vague ana it is probiem depen-
dent. In our studies, we might assume that a solution to the Zakaj equation is to
be prévided within the time frame of the sampling rate. As we will be deal with
bandlimited processes, this rate is in turn determined by the Nyquist criterion. We
believe a reason#f;le “benchmark” for such a rate is about 1 msec, and this number
will reappear throughout this dissertation when we make our performance estimates
of various algorithms and architectures.

Also, since our method of filtering is recursive, we need not worry about being
unable to meet this constraint as t gets large.

Thus we have the following

Research Question: Can an approximate solution to the n-dimensional

Zakai equation be found in real-time from on-line measurements from the

observation process, with a cost-competitive computing scheme?

Our answer will be that, at least in principle, this can be done, although in
practice we would have to restrict ourselves to low dimensions, of about six or
seven dimensions. We will describe in detail how such a computing scheme can
be performed. Together with a discussion of the various trade-offs with system ar-
chitectures, performance, speed, processor efficiency, limits on dimensional growth,
etc.

Since our primary consideration must be in meeting the necessary time con-
straints, we will focus on the design of high-speed algorithms that can be imple-
mented on parallel processors. By “parallel” we mean those algorithms whose work
can be so distributed throughout a computing network that many functions can be
performed simultaneously. Obviously, this will be much faster than sequential com-
putation, but the concept is actually more involved than this. The key to parallel

processing is thc avoidance of the von Neumann bottleneck. Roughly speaking, this

7

occurs as a result of programming in which intermediate steps require transfers to
and from the main memory to the site of computation. The solution is to presum-
ably design algorithms which can be partitioned within computing netwérks sc; that
communication between the design modules is as small as possible. Any memory
that ig needed could be stored locally within the module.

The parallel processing scheme we will emphasize in this paper is the Multigrid
method developed by Brandt, (1977, [3],see also, [4]), Hackbusch, (1978, [11]), and
Bank and Dupont, (1981, {1]). To understand the central features of Multigrid, first |
imagine the error between a computed solution and the true solution of a linear
system as having a Fourier expansion. Then the basic concept of this algorithm
is that all relaxation methods, such as successive-over-relaxation, or the Jacobi
method, are very effective at reducing the high frequency component of the error
between the computed solution on a given grid of points and the true solution. But
these same methods do not fare as well at reducing long wavelength components.
To compensate for this difficulty, transferring solutions to grids of different sizes
. corresponding to different wavelengths can reduce the error considerably.

We summarize this idea by a very simple version of the Multigrid algorithm,
adapted from Ortega and Voigt, [21].

1). Let G',¢ = 1,...,K be a sequence of nested grids covering the domain of
interest such that the grid spacing of va""1 is 2h; where A; is the grid spacing of G*.
Now GX is the finest grid on which the solution is desired and G! is the coarsest
grid.

2). An approximate solution, uX, to the discretized PDE LAU* = F* is
obtained by a few (about 4 or 5) iterations of a relaxation method on G¥. This is
designed to reduce most of the high frequency error on this grid.

8). For i = K, ...2,

a). The residual L*u® — F* = F* is injected into grid G*=2.

b). Using relaxation, u* is corrected on grid G*~2.

8

4). The solution on the grid G* is corrected using information interpolated
from the grid G*~! for ¢ = 2,..., K.

More details about the Multigrid method will be supplied in this ‘Apaper.‘ We
give an indication here as to why it has attracted our attention. For one, any
nume;ical algorithm we use must involve a convergence scheme that makes usc; of
global information regarding the behavior of the solution process, and which is then
used to decide when to stop the numerical analysis. No matter how cleverly this
is implemented, it could well take up all the time we have allotted to ourselves for
computation. Clearly what is needed is the ability to precompute the number of
iterations of the method necessary for convergence to an approximate solution of a
given tolerance. We propose to show that the Multigrid method lends itself very
well to such a requirement.

Another property of the method that must hold is that the computation time
needed for, say, an estimator-detector, to perform at a given efﬂéfency must be
within the real-time constraints imposed by the problem. We believe that the
computing speed provided by Multigrid algorithm is ideal for this purpose.

But this is not all. Since we have imposed a real-time processing constraint
upon our problem, a result of computing theory, if not of common sense, points
out that any physical system designed to compute such an algorithm must grow
in size as the problem dimension incréases. Thus the aﬁrmative answer to solving
in real-time the n-dimensional Zakai equation must be qualified by noting that
the arbitrary growth of n precludes the realistic implementation on a small-scale
electronic system. We will later provide an analysis of just how fast this system
growth is relative to dimension.

It is because we wish not just to solve the Zakai equation but to do so in
real-time that we must exploit the computational resources available from parallel
processing. To this end, we must also consider how such processing is to be elec-

tronically implemented, so as to guarantee its economic and technical feasibility.

3. Impact of VLSI on Signal Processing

The most fundamental observation we can make about the electronics of the 20tk
century would be its pace of miniaturization. We have still not yet arrived at t‘he
physical limits imposed by quantum mechanics on the size and design of elementary
switch-ing units, such as the transistor, but we can place millions of such devices
on a single chip. Now we might naively think that, as this technical progress
continues, only a reduction in size of all existing computer systems will result.
But this is completely false, for Véry Large Scale Integrated, or VLSI, systems
offer the opportunity of designing networks of processors capable of simultaneous
- operation and with only local data transfers. While such a design may have been
possible years ago, the size differential between what is possible today and what
was available before accounts, at least in part, for the computational speed-up, as
information travels over that much less a distance. But perhaps most importantly,
VLSI systems have already been shown to be affordable and cost-com.petitive with
existing designs. The processor arrays are simple in structure and usually repetitive
in design, making fabrication that much easier.

Furthermofe, the last few years have seen extensive growth in the design of
algorithms, along with the architectures to implement them, that have fulfilled
much of the promise of high speed, reliable and inexpensive computingg;;ower, all
in a single chip. One of the basic reasons for this in the case of signal processing,
is because the fundamental operations performed in this field are often reducible to
matrix and linear algebra. For this reason, bandpass filtering, matrix-matrix and
matrix-vector calculation, convolution, (as in the Fast Fourier Transform, or FFT),
can be shown to be readily computable on VLSI chips and have already made
their way from academic and corporate research laboratories to the commercial
marketplace. The algorithms can be theoretically shown to be faster than their

sequential counterparts, and the corresponding chip performance bears this out.

A good example of this technology, and one that we will devote a great deal

10

of attention, is the systolic array concept of Kung [14]-[19], first proposed in 1979.
Kung imagined an array of processors each capable of an identical set of elementary
functions. By partitioning the work of an algorithm to be performed by';he array
into concurrent operations, each processor would compute its assigned arithmetic
functions and pass the result onto a “nearest neighbor.” No access to global memo'ry
would be required and so the von Neumann bottleneck would be avoided. As infor-
mation exchange is purely local within the array, there is automatically a dramatic
speed-up. Attractive though it sounds, decomposing a given algorithm so as to be
executed in this way is far from easy. Kung and other researchers have concentrated
their efforts on certain classes of algorithms, mostly those which can be represented
as recurrent sequences. They have met with greai success with matrix algebra,
convolution, sorting and pattern matching.

And what has the VLSI community received in return from such investigations?
Their interaction with signal processing experts has delineated certain theoretical
issues, such as the complexity of linear algebraic operations, stimulated the design of
novel architectures, and established some of the first successes of VLSI electronics.

We therefore see that we have a firmly established empirical as well as economic
base of support in the engineering community for this new technology. It is because
of this that we feel comfortable in pushing these fé;hniques into the field of nonlinear
filtering. We now wish to design a VLSI system to implement the Zakai equation
in higher dimensions, in real-time with on-line measurements of the observation

process.

11

4. Plan of this Dissertation and Preview of Results

As already stated, we will be preoccupied with the question of whéther_real-
time VLSI signal processing is possible for a class of nonlinear filtering problerﬁs.
Our answer is in the affirmative, at least for dimensions no higher than about six or
seven, and we will describe an algorithm and architecture to carry out the necessary
operations. But more importantly, we wish that our work in nonlinear filtering be
viewed as a case study of a more general strategy that involves the application
of VLSI theory to general estimatiofi and detection problems. To this end, we will
provide a brief survey of the theory of VLSI algorithms in the hope of demonstrating
- its versatility and potential applicability to this class of problems.

There will be three main themes throughout this work. One will be the math-
ematical theory of nonlinear filtering, the second is the requisite numerical analysis
to perform the algorithm, and the third will be the relevant theory of VLSI architec-
tures. The three seemingly disparate approaches will be placed on a common footing
by reducing the process of finding a solution of the stochastic PDE of filtering to
an algorithm that can be embedded on a custom-made VLSI architecture.

The following steps is a list of Chapter outlines:

In chapter 2 we provide a brief survey of parallel computing concepts, VLSI
architectures and algorithmic theory will be given along with an emphasis on sys.'téli(;
arrays and other related designs and ideas. This will lay the foundations of our
work. These design concepts include a study of the physical basis of computation,
the shuffle-exchange network, the wavefront array processor, and more, all of which
will be taken up in later chapters. We will also uﬁne a proposed design of a scalar
estimator and detector, developed here by our research team at Maryland, ready
for VLSI implementation. We show that this work also has a precursor, namely
the Systolic Kalman Filter, which we briefly discuss. We are indeed fortunate to
already have well established prototypes to pave the way for our more advanced

investigations.

12

In chapters 3 and 4 we include A discussion of the Zakaj equation from a
purely mathematical viewpoint, namely, its existence, uniqu_eness, and asymptotic
behavior. Our basic result will be a procedure to reduce the infinite do.main upc;n
which‘the Zakai equation is defined to a compact set, the solution of our PDE being
less than a given tolerance on its complement. This is clearly the necessary prelude
to any numerical analysis. Our work involves refining and extending some earlier
results by Baras, et al, [2], which are worked out in detail for the scalar bilinear
filtering problem and some higher dimensional problems. Thus a wide range of
Zakai equations is available for numerical analysis, a point we were required to
- make as it would be pointless to discuss the use of numerical methods on a highly

restricted and unrealistic set of problems.

Chapter 5 provides an implicit numerical scheme for the Zakai equation, whose
solutions converge weakly to the true solution as At and Az — 0, independently
of each other. This is important from our point of view since our sampling rate At
will probably be set by the Nyquist criterion, while Az will be determined by our
demands for accuracy. Also, for explicit schemes, we would have to obey the rather
restrictive stability condition At/d(Az)?, where d is the dimension of the problem.
Implicit schemes avoid this at the expense of having to solve a linear system, (whi-ch’
is why we are led to the fast solvers of such systems.) We d;rive a number of
properties of the finite dimensional matrix of the system that will be useful when
our problem is incorporated into the Multigrid algorithm. These properties include
identification of its block tri-diagonal structure at higher dimensions, it sparsity
patterns and positive definiteness. These facts will play a role in determining the

appropriate relaxation scheme for our needs.

In chapter 6 we introduce a general algorithm capable of solving our PDE as
well as being an excellent candidate for VLSI implementation. This is the Multi-
grid (or MG) method developed largely by Brandt [4]. As mentioned before, MG

techniques reduce a problem on a given grid to a simpler grid, and interpolate back

13

to yield highly accurate solutions. The techniques can be shown to be very fast and
eminently practical for parallel processing. Our own results involve the introduc-
tion of the Fokker-Planck equation, (which is the non-stochastic porltion oi: the Zakai
equation,) as our model problem for the Multigrid algorithm. The standard model
problexﬁ, from which analytical results are usually obtained, is Poisson’s equation
on a rectangle. Our approach introduces some technical difficulties due to the loss
of symmetry in the finite difference equation, but we are still able to provide esti-
mates on the spectral radius of the Multigrid operator, which is primarily iterative
in nature, and so convergence rates are functions of this radius. Our main result
-is in showing the similarity in behavior of our model problem with that which is
usually found in mainstream Multigrid research. This leads us to expect similar
performance for our problem with that of Poisson’s equation on a rectangle. We
also argue that all the various parameters of the algorithm are precomputable, such
as the number of iterations needed to reach a given tolerance. We do not need a
convergence test as part of the routine, which would probably take up all of the
allotted time given to us anyway. We will close with a survey of available Multigrid

software packages.

In chapter 7 we continue with a complexity analysis of the Multigrid algorithm
based on work by Chan and Schrieber, [6]. We a.pbly their results to our own real-
time processing requirements and find that their estimates are somewhat lacking in
detail, as they do not properly reflect the effect of problem dimension on computing
time, or architectural constraints on data communications. A discussion of the is-
sues of efficiency and speed in the light of our own requirements is included. As the
MG algorithm requires an initial approximation in order to begin its computations,
we compare trade-offs between using the automatically generated initial approxi-
mations of the full Multigrid algorithm, or in using the solution at the previous
time-step. We finish with a critique of Concurrent Iteration, a concept proposed by
Gannon and Van Rosendale, [9).

14

In chapter 8, we examine the issue of relaxation schemes, which play a fun-
damental role in the MG algorithm, as they smooth out the highly oscillatory
components of the residual before transferring it to a coarser grid. By e:&ploifirig
the properties of the matrix of our implicit scheme, we argue that the ideal re-
laxation schéme is the successive-over-relaxation or SOR—method. We prove this
with a combination of theoretical and empirical evidence which shows that, due to
the similarity of our problem with that of mainstream Multigrid researches, we can
expect excellent smoothing capabilities from the SOR—method. We also show that
methods already exist that measure the smoothing rate of the scheme automatically,
thus we can optimize the choice of any parameters available to us.

In chapter 9 we include a discussion of some empirical results of Gannon and
Van Rosendale, [9], while they were at ICASE. These were problems like our own,
and executed on architectures similar to ones we propose. We comment on their
results iﬁ the light of our own requirements. In addition, we show that some of
these architectures can be implemented in an optimal layout scheme on an elec-
tronic VLSI chip, and even discuss a design methodology we feel is suitable for this
implementation, known as the Configurable Highly Parallel Design Project. It will
be both efficient and reliable.

We will introduce our own design for the direct solver to be incorporated into
the Multigrid Framework.

A discussion of our results on the stability aspects of the algorithm including
wordlength and round-off noise considerations.

We present our results on the effect of the dimension of the Zakai equation
(posed in R?) on the real-time computing speed of the Multigrid algorithm. We
believe that real-time performance can only be achieved for dimensions no higher
than about six or seven.

We.then ask the question whether the Multigrid algorithm could have better

performance on alternative architectures, and to this end we introduce a theory of

15

Hockney, [13], that characterizes all computing systems with two-parameters, and
from which performance estimates can be derived. We apply this theory for the
first time to the Multigrid algorithm and thus estimate how well we can achieve
our real-time computing constraints with other systems. Our conclusion is that
the custom-made system we propoSe is superior to that of more general-purpose

computers.

In brief, we lay down the relev:gnt foundations of VLSI theory,

demonstrate how compact sets can be formed as a prelude to numerical analysis
introduce an implicit finite difference scheme for such analysis,

describe an a]goritbm‘ that solves the linear system,

undertake a complexity analysis in the light of real-time processing needs,
present empirical evidence demonstrating the feasibility of the method, and an

architecture that implements it.

5. General Remarks

Information and control theory has frequently been criticized for being too theoret-
ical and hence too inaccessible to the mainstream engineering community. While a
counter-argument might be proposed,'namely that it is the nature of fundamental
research tt; progress from the seemingly impractical to the pragmatic, it must be
admitted that theoreticians have often not made an honest effort to bring their
own techniques to bear on real problems. One of the reasons for this is that the
language of theoreticians is rooted in some fairly difficult mathematics, and simi-
larly, the problems of ordinary engineering work often contain subtleties that elude
academics.

The answer is to presumably identify among the academic investigations the
more tractable problems and find some way to “package” the‘theoretical techniques
for solving them along with some relatively easy to use set of instructions. Consider

the analogy offered by numerical analysis over the past forty years. Sophisticated

16

algorithms are now available for the solution of, say, differential equations or com-
binatorial analysis, in the computer libraries of many commercial firms. The user
must know a few basics of the theory, and then a manual directs him in the de-
tails. And while expert consultation may sometimes be required, the engineer can
obtain the benefit of hands-on exper.ience with what could be a deep and otherwise
inaccessible mathematical theory. Because of this accessibility, very advanced tech-
niques, such as the Finite Element Method, have become part of the “furniture” of
conventional engineering.

Our intention is to follow along the same lines. Unless the theory of nonlinear
filtering is made more accessible and competitive with existing methods, (which
are often no more than ad hoc modifications of the Kalman Filter), it may never
escape the largely unread pages of the IEEE transactions and even more abstruse
mathematical journals. By considering questions such as processing speed and tech-
nically feasible electronic implementation, we hope to put our theoretical results on
a common footing with real-world problems. This will yield algorithms demonstra-
bly better than conventional estimation-detection techniques, as well as electronic
chips that are cost-competitive and readily integrated into present day systems. In

our opinion, this is how the gulf between theory and practice within the information

and control community can best be bridged.

17

References for Chapter 1

[1] Bank, R. and Dupont, T., “An Optimal Order Process for Solving Finite El-
ement Equations,” Mathematics of Computation, vol. 36, No. 153,. Jan.
1981.

[2] Baras, J., Blankenship, G. and Hopkins, A., “Existence, Uniqueness, and
Asymptotic Behavior of Solutions to a Class of Zakai Equations with Un-
bounded Coefficients”, IEEE Trans. Automatic Control, vol. AC-28, No.
2, Feb. 1983.

[3] Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problems,”

Mathematics of Computation, vol. 31, No. 138, 1977.

[4] » “Guide to Multigrid Development,” in Hackbusch and Trottenberg.

[5] Bucy, R. and Senne, K., “New Frontiers in Nonlinear Filtering,” Lincoln Lab.
Technical Note 1978-16, 1978.

[6] Chan, T. and Schreiber, R., “Parallel Networks for Multi-grid Algorithms:
Architecture and Complexity,” SIAM J. Sci. Stat. Comput., vol. 6, No. 3,
July, 1985.

[7] Davis, M. H. A. and Marcus, Steven, “An Introduction to Nonlinear Filtering,”
in Stochastic Systems: The Mathematics of Filtering and Identification, (NATO
Advanced Study Institute Series). Dordrecht, The Netherlands: Reidel, 1981,
pp. 53-75.

[8] Doob, J., Stochastic Processes, Wiley, 1953.

[9] Gannon, D. and Van Rosendale, J., “Highly Parallel Multigrid Solvers for El-
liptic PDEs: An Experimental Analysis,” ICASE Report No. 82-36, Nov.
1982.

[10] Hackbusch, W. and Trottenberg, U., eds., Multigrid Methods, Lecture Notes in
Mathematics, Springer-Verlag, No. 960, 1982. ' ‘
[11] Hackbusch, W., “Multigrid Convergence Theory,” in Hackbusch and Trotten-

berg.

18

[12] Hazelwinkle, M. and Willems, J. C., eds. “Stochastic Systems: The Mathemat-
ics of Filtering and Identification,” (NATO Advanced Study Series), Dordrecht,
The Netherlands: Reidel, 1981. | '

[13] Hockney, R. W. “Performance of Parallel Computers,” in Paddon, D., Super-
compulers and Parallel Compufation, Clarendon Pr., Oxford, 1984.

[14] Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Com-
puting, vol. 1, 1984.

[15] Kung, H. T., “Two-Level Pipelined Systolic Arrays for Matrix Multiplication,
Polynomial Evaluation and Discrete Fourier Transform,” Workshop on Dy-
namic Behavior of Automata, Luminy, France, 1983.

[16] ——,“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-
burgh, Penn. 1984.

[17]“ , “Why Systolic Architectures,” Computer, Jan. 1982.

[18] ——, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic
Pr. 1984.

[19] ——, “Special-Purpose Devices for Signal and Image Processing: An Oppor-

tunity in VLSL,” from the Proc. of the Soc. of Photo-Optical Instr. Engr.,
1980. .

[20] LaVigna, A., Real Time Sequential Detection for Diffusion Signals,” Master’s
Thesis, Dept. of Electrical Engineering, Unsv. of Maryland, 1986.

[21] Ortega, J. and Voigt, R. “Solution of Partial Differential Equations on Vector
and Parallel Computers,” SIAM Review, vol. 27, No. 2, June, 1985.

[22] Wong, E., Stochastic Processes in Engineering Systems, Springer-Verlag, 1985.

19

2. Selected Topics \in VLSI Systems

1. Introduction

This chapter is intended as a quick review to the concepts that will be reiterated
throughout this dissertation. The reader is encouraged to scan through this chapter
to orient himself for the kinds of arguments we will be using.

To believe that modern electronic circuit fabrication offers nothing more than
a reduction in scale of previously e;(isting integrated systems is to miss the point
of the revolutionary advance to computation offered by VLSI technology. For two
seemingly divergent mainstreams of thought are finding common ground; one in-
volves a theoretical approach to the structure of algorithms, the other represents
dramatic improvements in the manufacture of highly dense and reliable circuitry
on a chip. There are four concepts that bridge these two fields of inquiry.

One is the notion of concurrency, which simply means that a program is so de-
signed as to allow for a large number of calculations occurring at the same time. A
synonym might be parallelism, but some authors would disagree, Seitz, [15], for one,
as the second term has connotations of simultaneous operations being performed in
lockstep with other computing streams. This conflicts with the suggestion of sub-
~ system indeﬁendence implicit in oux: notion of concurrency. In either case, clearly
a reduction in overall computation time over the conventional sequential machine
is possible. Unfortunately, as attractive as the idea may seem, our minds con-
sciously work out problems sequentially, so we will have to rethink our approach to
computing.

Pipelining is the second concept. One can visualize this as being analogous to
an assembly line in a factory. Data enters a system and is successively transformed
in stages until the desired result is obtained. While this may sound like a sequential
program, each stage can perform its own work concurrently and the data can be

fed into the system in parallel.

20

The third notion is hierarchy. The control of operations within the system
must be distributed. This implies the use of modular designs with subsystems
having as much control over their own operations as possible. Otherwise, reque;ts
and commands will flow up and down the hierarchical structure, with global control

at the apex. This will be costly in computation time.

The fourth concept is related to the third. Designs based on the Principle
of Locality involve keeping control, memory, and other requisite data as close to
the computation site a.s.possible. The general rule is: computation is cheap, but
communication is expensive, and the expense is in the time needed to transmit
the data. It was only until a great many reliable processing components, the kind
and number needed for concurrency, could be placed very close to each other on
a chip, dramatically reducing the communication costs, that parallel computation

and VLSI technology could be brought together.

Even among VLSI designs there has been a proliferation of concepts such as
arrays of all types, cube connected cycles, perfect shuffles, trees, and sychronous
vs. asynchronous systems. It is not our intention to give a survey of all that is
available. We will instead concentrate on the systolic array paradigm by Kung et
al, [6]-[11]. While this design does not impart the full range of VLSI versa.tilit);, it
certainly serves as an excellent case study of the basic ideas of the field. And of
course, this is the design, along with its variations, which we have chosen to explore

in our own research.

We begin with a brief overview of the systolic array. Then a remark on the
physical basis of computation time, namely, the relevance of the O(1?) signal speed
model on our future design considerations. An introduction to shuffle-exchange
networks is given. These are precisely the class of networks that would be the most
adversely affected by the O(I2) signal speed model, due to their high wire density.
We cite arguments that suggest that these networks are still practical for high-speed

computations, as we intend to use them for just this purpose.

21

The problem of synchronization of large arrays is introduced, and as we intend
to use large arrays for our PDE computations, together with nearly nanosecond
clock timing, we conclude that asynchronous control will be needed. h

On that last note we introduce the Wavefront Array Processor (or WAP) which
we feel is suitable for use in the relaxation processes that are part of the Multigrid
algorithm.

Finally, to demonstrate that there exist precursors to our research, we cite

the work performed here at Maryland on one-dimensional nonlinear filters and the

systolic Kalman Filter.

2. Systolic Arrays

The design proposed by Kung appears to follow quite naturally from some basic
principles. First, we must divide the sequential processor up into a network of
smaller, simpler processors, each capable of carrying out their own independent
tasks such as short addition/multiplication operations. This network could be be
composed of several to hundreds of such processors, which are then arranged in
some regular geometrical format. In this way we can accomplish the distribution of
labor required by parallel processing.

Once a task is performed by a single processor, the resulting product, which is
but an intermediate step in a much larger computation, must be transferred on to
another processor, and it is desirable that this processor be as close by as possible;
a “nearest neighbor” would be the best choice. This solves the problem of time lost
to distance in the communication of data, and is an example of the Principle of
Locality at work. It also plays a role in determining the geometrical configuration
of the array. This will not be the last time that we will witness a subtle connection
between intcrprocessor communication and network topology.

Our final design feature is that the flow of data be regular, and hence the

movement of processor output to it nearest neighbor be spurred by a global clock

22

pulse. Thus at each regular interval, each processor transmits and receives data.
This last characteristic may not necessarily be a requirement for parallel processing,
but it is the most conspicuous feature of systolic arrays, next to their geometry. In
fact, the word “systolic” comes from the analogous flow of blood in the cardiovas-
cular é_ystem, for this flow is not uniform, but moves instead in rhythm with wi:at

physiologists call the systolic beat of the heart.

Despite the attractiveness of this array at first sight, a number of controversies
have surrounded it, some only now being settled. Some of the first disagreements
centered around circuit fabrication, for it was not clear that thé processor networks
could be reliably built to submicron dimensions. Actually this argument could be
lodged against all VLSI technology, for there are a multitude of problems faced by
micro-miniaturization. Most of the current work involves MOS technology, which
bhas the highest circuit density capability. But parasitic capacitance dominates the
circuit speeds and transistor driving performance. As an example, one minimum
size transistor can drive the gate of an adjacent identical transistor in about 0.1
nanoseconds. But add a few hundred microns of wiring, and the delay is increased
to several nanoseconds. The nonzero resistance of the wires, with their parasitic
capacitance, impose a delay that is becoming increasingly troublesome. Of course,
there are many other problems as well, such as ‘the macro t<; micro interface of
interchip wiring, package pins, etc.

From the above remark about signal speeds one can see why the Principle of
Locality has become so important, and it is clearly this principle, among others,
that systolic arrays exploit.

The other objection has centered around the design of parallel algorithms.
These must be custom-made for the array and until recently no general theory was
available to design them. Originally, ad hoc procedures were used, and so it was
not clear how powerful this approach really was. However, to this day, it appears

that algorithms that are reducible to recurrence relations are best, matrix analysis

23

being the best example. As much of signal processing is itself reducible to linear
algebraic operations displayed as recurrence relations, systolic arrays have perhaps
had their most celebrated success in this field. '

As stated before, systolic arrays are a combination of individual processors in
some geometrical arrangement, such as linear, orthogonal and hexogonal desiéns.
In the original Kung model, the unit element of the array is the snner product step
processor. It is designed in the following way. Let A, B,C be input data fed into
lines I4,Ip and Ic respectively. The following operations which are fed into the

output lines are done in a single time step:

Oc=Ic+14x1Ip
Op=1Ip (2.2.1)

Oc=14

Note that this simple processor has no memory and performs only a single arithmetic
operation and an in-and-out data transfer. Semi-systolic arrays would be, among
other things, variations on the above theme. However, the reader should not be
misled by the apparent simplicity of this fundamental “workhorse” of the systolic
concept, for many useful numerical results can be obtained from them.

More examples of systolic array applications and designs can be found in Mea.d
and Conway, [13], as well as the papers of Kung, [6]-[11]. Matrix operations are
discussed there as well. It is shown that a linear system with no need of pivoting

can be solved in O(n) time units.

24

3. Physical Basis of Computation Time

Throughout this investigation, we will be concerned with the speed with which
computation can be performed, for we want to conduct our computationsin a real-
time environment. Certain issues involving the physics of computation are worth
mentidning.

Mead and Conway, [13], give some excellent examples of how elementary physics
predetermined basic system parameters such as the duration of time-steps. For
example, taking fanout and stray capacitance into account, they calculate that the
time needed for one clock cycle, during which register to register data transfers are

“made, is about 1007, where 7 = 0.3 nanoseconds.

Computation is clearly a function of signal speed, and one would hope that
as we turned to VLSI designs, that signal speed would be the least of our worries.
For if signals were to travel at the speed of light, surely the time required to travel
down a wire would simply be proportional to the length of that wire. However, this
reasoning is simply not correct, as intuitive as it may appear.

A wire has a resistance and a capacitance, and (according to the fabrication
technique), both grow linearly with wire length. Thus the time constant of a tran-
sistor load grows proportionately to 2, where [is the length of the wire. However,
if this is the case, networks of substantially long wire lengths will be ruled out as
impractical. This would include the shuffle exchange, the cube-connected cycle or
the tree connected machine.

Unfortunately, it is networks analogous to shuffle-exchange design that we will
investigate in later chapters. Thus some attention to the problem of signal speed is
in order.

Bilardi, et al [1] conducted an investigation of the problem of signal speed
and found that signals governed by O(l) speeds were indeed possible even with
anticipated changes in circuit design, such as dramatic reductions in size.

Acknowledging the parasitic capacitance of the wire, which takes precedence

25

over its resistivity, Seitz, [15] derives a worst case value of O(logl) as the signal
speed which differs from the assertion of Bilardi. ‘ _

Adding the resistivity of the wire yields a signal speed = O(I?), and this is
already apparent in the silicon and polycrystalline silicon wires of today - which
disagrees with Bilardi’s optimistic account that such phenomenon is avoided alto-
gether. But Seitz also points out that adding active repeater amplifiers periodically
along a long communication path ret?uces this delay to O(l).

While it may be surprising that Such a controversy still exists in the electronics

community, we can still conclude that not only the current but all projected MOS-
| FET VLSI technologies are well within the O(!) signal speed. This says that as we
scale the electronics down in size we need not pay for it with poor signal speed.
While homogeneous systolic arrays will have the most attractive signal speed, (due
to close processor proximity), even networks like the perfect shuffle will still have
an attractive signal speed.

Finally, we might remark that we will exploit the results in this section in a

‘later chapter.

26

4. Shuffie-Exchange Processor Arrays

The effectiveness of parallel processing is heavily dependent on the topology of
interprocessor connections, as it impinges directly on the efﬁciencj of data-transfer
and perhaps indirectly on the duration of the clock cycle-due to the impact of w‘fre
length on signal transmission. Area layout of the circuit is also clearly affected. All
of these considerations require us to carefully choose the architecture needed for the
algorithm. The shuffle-ezchange networks, of which there are several variations, are
often among those choices, and their fnany advantages and disadvantages must be
carefully weighed. One immediate remark one can make is that these networks are
different in structure from those already examined. The previous section made a
distinction between pure and semi-systolic arrays. An example of the latter is the
Perfect Shuffle processor array, and as it will play a role in later developments in
our research, we discuss it here.

A shuffle of components of a vector is equivalent to viewing that vector as a
card deck, and shuffling those components so that after one shuffle the components
from the two halves of the vector alternate. While such a capability may not seem
especially useful, the perfect shuffle has been used successfully in a number of appli-
cations, such as the FFT, polynomial evaluation, sorting, and matrix transposition,

as described by Stone, [16), one of the network’s early expositors.

Consider fig. (2.4.1). On the left in the figure is a vector of operands with
indices running from 0 to N—1, where N = 2™ for some integer m. The components
of the vector on the left are transferred to cells as they are numbered on the right.
Examination of the indicial pattern yields the following relationship: indices on the
left are mapped onto indices on the right acc;)rding to the permutation P(-) such
that

P(s)=2¢ 0<i<N/2-1
(2.4.1)

=2—-1—-N N/2<i<N-1
Now return to the card deck analogy and divide the vector on the left in two pieces.

Now shuffle the two pieces by transferring components on the left to corﬂponents

27

The perfect shuffie of an A element vector,

Figure 2.4.1
The Perfect Shuffle Connection
on the right. The result is clearly similar to the shuffling of cards.
An equivalent formulation is related to the binary representation of the indicies
of a vector. More precisely, let the s** element ‘be shuffied to position ' whee '
is obtained by cyclically rotating the bits in the binary representation of + one bit

position to the left. For example, let 1; = {0,1} and let,
= 6m2™ + 12”7 L 122 44
Then s’ will be,

This is equivalent to pairing adjacent nodes in a Boolean m-cube.
The elementary idea expressed here has several variations. Let the above model

be called the 0 network. Then the snverse Omega network, denoted 173, is simply

28

the reverse of the original, i.e., data flows from right to left in fig. (2.4.2). Then we

would have log,(/N) unshuffles.

-, gy gr—

(XN

NN —
W&‘,

0 1)

Q) 0\ ‘.
e
"0 0’.‘”&"\' ’.\N’m !
\Q’owo‘:’n}‘;n“o‘g ;
" \‘ﬁtmﬁ‘ﬁm/“‘m v

e e s—

T et

- -~ -

-

A 16-input Omegs petwork.

Figure 2.4.2
The £}-Network

There are many other networks that are based on similar principles of the
1-network; indeed, many are isomorphic to it, both in the functional and topologic
sense, (see Parker, [14], for details.)

Any discussion of permutations invokes the theory of the Symmetric Groups
on N elements, denoted Sy. We could ask the following questions: What is the
smallest value of k such that

S C (On), (2.4.2)

i.e., how many passes through the Omega network are necessary to insure that any

given permutation in S)y can be generated? We would want to know this in order to

29

determine this so as to know how to realize a given processor-memory interaction,
or the transfer of a specific pattern of information from one network of processors
to another. More general forms of data transfers (i.e., those which tﬁay not be
bijection) can also be determined by extension of results on Sy.

'Unfortunately, k # 1 in (2.4.2) since the cardinality of Sy is

Nt ~ (V/2r)2(N+1/2)logs N-Nlog; ¢ (2.4.3)

-

and the cardinality of Iy = oN/2log; N By a sequence of technical lemmas, Parker

was able to show that,

Sy C (QN)min(a‘h" Ny, (2.4.4)

Such interprocessor networks become troublesome, however, in their area layout
requirements. These are high wire area designs-indeed, the lion’s share of the chip
area is taken by the interconnection rather than by the processors, and this area
grows rather fast with the number of processors. This is perhaps why Uliman,
(in whose book area layout analysis can be found, [18]), argues that such systems
are best suited for “supercomputers,” at least for when the number of processors
becomes large. He also discusses the result that the shuffle-exchange graph ha; an
optimal area layout capacity of A = f1(n2/log?n).

Thus we see that unless N is kept fairly small, these networks quickly be-
come impractical for small VLSI chips. This has relevance for our own design
considerations, since we will investigate the use of the f1—network as a means of

communication between interprocessor grids.

30

5. Synchronization of Large VLSI Processor Arrays

Returning now to our original systolic array model, we recall that one of its central
tenets is the global systolic clock pulse by which all processor operations are syn-
chronized. This is performed by signals emitted from one or more sources that.are
design'ed in such a way as to propagate throughout the network, initiating proces-
sor operations simultaneously throughout the array. Unfortunately, as the system
becomes large, clocking schemes car’be difficult to implement due to the inevitable
problem of clock skews and delays, due to non-uniform wire construction, chip de-
fects, etc, which tend to become large for VLSI systems as feature sizes shrink. The
reason is not hard to see. As we move from micro to nano-second timing, networks
become more sensitive to the slightest move out of synchrony. But as our computa-
tional requirements are so intensive, synchronization of processor arrays is an issue
we cannot ignore.

However, pessimism expressed over synchronization has apparently not always
been warranted (see and S. Y. Kung, [5]), as the circuit designer can often com-
pensate for some difficulties by adjusting RC constants of clock signal wires or
exploiting better fabrication materials. The electrical problem of passing a clgan
signal within a chip can be difficult, but sometimes long wires can be replaced
by strings of buffers, which can restore signal levels and prevent backward noise
propagation.

Clock skew is due to three factors. The RC of the global clock distribution
line is one important factor. A second is the sometimes unavoidably unequal clock
paths to processors in the array. These two factors are functions of the layout design.
Finally, a third factor is the variance of values of the gate threshold voltage of the
processors, which receives the global clock signal and transmits it throughout its
interior. It therefore serves as a buffer between the array’s global clocking scheme
and the processors own local synchronization. This last factor, as well as the first

two, are dependent on the fabrication process.

31

As pointed out in the previous section on the “Physical Basis of Computation
Time,” the behavior of signals along the “wires” in the chip are similar to what
one encounters in transmission lines, except that inductance is neglig%ble, while
capacitance plays a dominant role. Over long signal paths, the delay is sure to
cause synchronization problems. The line resistance will also plays a role.

The equation that governs clocking signals on the line is
V: = VDD_II - exp(-t/RC)]. (2.5.1)

Now clock skew is due to variations in V¢, R and C. As an example, V; may be

+20% of its nominal value. Thus clock skew obeys

At = clock skew
, (2.5.2)
= RC(maf) log(Vi(maz)] — RC(min)log[V¢(min))

where At is the pulse width..

One of the ways of transmitting the clock signal throughout the array is by
distributing the clock through an H-tree. This design is built as a recurrence process.
.Begin with the letter “H.” In the center of the wire connecting the two vertical is
the root, and the four “leaves” are the two top and two bottom points of those
verticals. From those four points, make four smaller H patterns, stretching .the
original design to accommodate. This can be continued indeﬁnitely. At each leaf
will be a processor, all of which will be equidistant from the root. For details on
H-trees, see Ullman, [18].

Fisher, [3], investigating clock skew phenomenon proved

Theorem 2.5.1: (Fisher, [3]) For the linear array, a clocking scheme exists with
clock skew bounded from above and below and a fixed clock period independent of

the size of the array.

Unfortunately, the theorem cannot be extended to the two-dimensional pro-

cessor array even with H-tree wiring. For if n? is the number of processors in the

32

n X n array, then the clock skew o cannot be bounded from above by a constant
independent of n. Fisher uses a graph argument to show that
o = I(n). (2.5.3)
An even more pessimistic analysis was performed by H. T. Kung and Ga]-Ez‘er
who found that clock skews grow as O(N®). They pointed out that the H-tree has
arms of equal length, and so the values of R and C representing the levels of the
H-tree structure are equal. But as the lengths of the H-tree arms double from one
H-level to the next, the values of both R and C at each H-level will be twice that
of their successor H-levels. Using this reasoning, the resistance of an H-tree signal
i path, used in the global clock scheme, will be of order O(N?), while its capacitance
will be of order O(1). Thus the time constant of the distribution network is, O(N3).
Conducting a SPICE analysis on the equivalent circuit of the distributed clock,
where each segment of the H-tree is a lumped RC branch, and using various appro-
priate values of resistivity and capacitance per unit length, the researchers found
clock skew on the order of 10? nanoseconds for N > 60 and even N > 40 for one
model. We are forced to conclude that as the mesh-array becomes larger, no syn-
chronization scheme can save us from worsening clock skew. We are therefore led
to consider strategies similar to that proposed by Seitz, [15], which combines local
synchtomzatlon and a globa.l asynchronous design. The basic idea is to let proces-
sors synchronize their communication locally with some variety of “handshaking”
protocol. Now any synchronized parallel system where processors operate in lock-
step can be converted into a corresponding asynchronous system—just by letting
each processor start computing as soon as its inputs become available from other
processors. But this form of system timing can be costly in terms of extra hard-
ware and delay in each processor. However, this timing scheme can be implemented
without regard to the size of the array.
We conclude that as we move to large mesh-arrays, (and we will later in our

study,) asynchronous systems may have to be considered.

33

6. The Wavefront Array Processor

As indicated in the last section, unless technical advances intervene, synchronous
control of large systolic arrays may prove to be so difficult as to reduce. the cost-
effectiveness of this architecture. A naive solution to the problem is to turn off the
global clock and allow each processor to send output on to the processors dependent
on it simply when it is ready, and not to wait for the clock signal. This is the basic
idea of the data-flow architecture. Being a language-based architecture, algorithms
can be mapped directly into the multiprocessor array in a way that achieves high
performance. It is designed as a general-purpose system, and therefore the data-
- flow machine often involves a great amount of data and resource management, and
needs a powerful supervisory system. Now one of the recurrent themes we have seen
in the theory of VLSI algorithms, is that special-purpose architectures, whenever
possible, are usually easier to program and have higher performance than those
architectures designed for a wider class of problems. Systolic arrays, despite their
possible synchronization problems, are good examples of special-purpose systems
that exploit the recurrence structure of the algorithms they implement, matrix
algebra beiné an example. As the the problems we wish to examine in our research
can be thought of as being in this special class of algorithms, it behooves us to
consider a variation on the systolic array that bypasses the synchronization issue.
An architecture that offers a compromise the systolic array and the general-purpose
data-flow machine is the wavefront array processor or WAP promoted by S. Y.
Kung, * et al, (1982), [5].
We are still dealing with a processor laid out in a repetitive geometrical pattern,
8o as to reduce fabrication costs. And we still have localized communication between
processors, so as to avoid the cost of global data exchanges; thus the Principle of

Locality still holds.

What is different is that instead of systolic clock, we have asynchronous dis-

* Not to be confused with H. T. Kung of the systolic array.

34

tributed control with localized data flow.

If the central paradigm of the systolic array is the rhythmically pulsed flow of
data, then the distinguishing feature of the WAP is the notion ofa con.zputats'onal
wavefront. This portrays the movement of data as the back and forth roll of a wave
throu ghout the array. This results directly from an exploitation of the recurrency of
the algorithm and the built-in protocols controlling data dependency and transfer.
A computational sequence starts with one element and propagates through the
arrays, in a manner resembling a physical wavefront. All algorithms that admit
locality and recursivity will exhibit this phenomenon. Thus it can be safely sa.id

~ that any algorithm suitable for a systolic array can be implemented on a WAP, but,
as we will see, without synchronization problems.

If we were to imagine ourselves looking down on the array and witnessing the
motion of the wavefronts, we would see that Huygen’s principle was in force. Thus
the wavefront never intersects. Problems with timing uncertainties, such as local
clocking, random delay in communications, and fluctuations of computing times,
are altogether avoided by what amounts to asynchronous waiting times between the
processors. According the S. Y. Kung, the WAP is the optimal trade-off between
the globally synchronized and dedicated systolic array, (that works on a similar set
of algorithms), and the general-purpose data-flow multiprocessors.

The concept of the computational wavefront can be made more clear in an
example. Consider the multiplication of two N x N matrices: C = A x B. Let
A; be the column vectors of A and B; be the row vectors of B. Then using “” to

denote matrix multiplication, we have,
C=A;-B,+A2-Bs+..+ AN - Bn. (2.6.1)
Using N recurrences we have,

ck®) =—clk-1) 4 A, .B;, k=1,2,..,N. (2.6.2)

85

We can map this problem in a natural way into a square N x N array, where
we label the processors by (#,s) and whose final output will correspond to C;;. The
registers are all initialized to zero, so Cg’) = 0. Entries of A and B are stored in
memory outside the array, but ready for pipelining, with A on the left of the array

and B on the top. Starting with processor (1,1) we obtain
cfY = 9 + a1y x bus. (2.6.3)

The computation then “propagates” to (1,2) and (2,1) to yield,
cfy = € +an x bz,
(2.6.4)
cy =Y + az x byy.
Moving on to processors (3,1), (2,2) and (1,3) we also obtain similar results. The
computational wavefront is analogous to the optical wave phenomenon that obeys
Huygen’s principle, in that each processor acts as a secondary source and is respon-
sible for propagation of the wavefront. This localized data-flow is implied by this
notion of wave propagation.
The first recursion is over when the first wavefront hits processors (N, N).
But we have already started the second recursion by propagating a second wave

beginning at (1,1) immediately after the first one. Thus (1,1) will execute,

Cﬁ) = C'ﬁ) +ay2 X ba1,

and so on. The (3, 5) processor will execute the k**¢ recursion as

C‘-(;) = Cg"‘) + @k X bij.

Note that the wavefronts never intersect, which again is analogous to Huygen’s
principle. Computational wavefront phenomenon such as indicated here stems from
locality, regularity, recursivity and concurrency.

S. Y. Kung has constructed a language specially adapted to the needs of ma-
trix algebra, called the matriz data-flow language (MDFL). This language allows

relatively easy programmability, simulation and verification.

36

A detailed description of the language with examples can be found in [, but
we state here that the structure of the language rests on:) .

1). Space Invariance: The tasks performed by a wavefront in a particul.ar
kind of processor must be identical in all wavefronts (as in the case of N x N
matrix multiplication when the first wave is at (1,1), the second at (2,1) and (1,2),
continuing to (N, N),2N — 1 fronts in all.)

2). Time Invariance: Recursions are identical.

MDFL makes it possible for the array programmer to program all processors in
a wavefront at the same time, thus the wavefront concept is a simple organizing priﬁ-
ciple. When written, the programs convey all of the intuitive notions inherent in the
problem statement, such as locality, regularity, recursivity and concurrency. Cen-
tralized control and globally shared memory is avoided by asynchrony and maximal
parallelism. S. Y. Kung offers MDFL as a prototype of future parallel processing
language.

The architecture of the WAP is similar to all data-flow machines except that all
processors must wait for a primary wavefront before performing their computations
and only then act as a secondary source of new wavefronts by transmitting their
outputs. To avoid overrunning of data wavefronts (in confq}rmity with Huygen’s
principle), thé processor hardware ensures that a processor cannot send new data
to the buffer unless the old data has been used by the neighbor. All of the above
is orchestrated by buffers and flags such as DATA READY/DATA USED signals.
Thus when data is ready the transmitting processor informs the recipient of this
fact. Once the data is used, the sender is similarly informed. This is referred to as
a simple handshaking protocol. (See S. Y. Kung et al, [5], for more details).

Hardware characteristics of the WAP are similar to the systolic array: it is
modular in structure, and laid out in a regular geometrical pattern for easier fabri-
cation.

Also, if we are dealing with matrices, we need not have an array size to match

37

our matrix dimension. If the WAP is an N x N array and A is an N’ x N’ matrix,
with N' = mN (m an integer), we can partition A into submatrices of size m x m
and allow each processor work sequentially with its submatrix. Thereforé, we have
system extendibility.

S.AY. Kung gives an number of applications of the WAP in his paper, [5).
Letting tg,t;m,tq be executions times of addition, multiplication and division re-
spectively for a single processor, and letting B be the interprocessor data transfer
time, (or their expected values, if these operations are inherently random), we find
that N x N matrix multiplication takes (3N — 2)(t. + ¢t,, + 8), an improvement
‘over the O(N?) time for systolic arrays.

Of special interest to us is the use of a relazation scheme to solve a partial
differential equation in time 3m(3t, + t4), where m is the number of iterations.
In this case, the scheme involves taking central differences. Consider Laplace’s
equation in two dimensions,

Au=0, (2.6.5)

with u(s, 5) corresponding to the value stored in processor (f,5). We set,
1
u(zy) = F[te-Ly) +ulz+ Ly +u(ny-D+u(ny+1)]. (266)

The boundary conditions are preloaded into the processor on the array’s perimeter.
Each recursion consists of only one wavefront, and we have m recursions the number
of which having been predetermined by numeﬁcal analysis, (so we are not using some
comparative scheme to decide when to halt the computations). Since each processor
requires four data transfers (two of which are done in parallel), three additions and

one division we have a processing time of
3m(3ts + tq). (2.6.7)

Note that the computing time is completely independent of n. Also, no conver-
gence criterion is included. This design will reappear in our discussion of Multigrid

algorithms, which make extensive use of relaxation methods.

38

Comparisons with other architectures are possible. The creators of the WAP ar-
gue that the systolic array lacks the programming flexibility offered by their MFDL.
More importantly, global synchronization is a major obstacle, especially for iarge
arrays, with S. Y. Kung pointing out that clock skew can grow as fast as O(N3)
for an.‘N x N array (see [3], or previous section on synchronization). Admittedly,
hardware complexity, extendibility, testability, etc, must also be considered, and
current technology has yet to reach a verdict on these issues.

As mentioned before, the WAP exhibits most of the advantages of data-flow
machines while still remaining a special-purpose devices, with all of the desirabie
features that this implies, such as programming ease, functional modularity and
reduction in design costs.

For another comparison, and one often cited as a typical example of an array
computer; the Illiac IV shares few of the features usually deemed compatible for
VLSI implementation, although a wider range of problems can be programmed
on it than either the systolic array or the WAP. Like NASA’s Massively Parallel
Processor and ICL’s Distributed Array Processor, this SIMD computer has both
a global memory and control unit with oversees all processor operations, which
also occur synchronously. While currently suitable for LSI, (clock skew is less of
a problem here), globa.lu communicatic;n costs would still make this architecture
inappropriate for high-speed processing even if fabricated in a high-density circuit.

Contrasting these features with the WAP we find that local communication,
local instruction storage and data-flow based control makes it much more attractive
for VLSIL

We conclude, the Wavefront array processor, or variations of its design, should

not leave our attention as we continue our researches into array processing.

39

7. A VLSI Architecture for the Scalar Nonlinear Filter

A procedure for calculating the solution of the Zakai equation when the state isa
scalar has been presented elsewhere, (see LaVigna April ‘86, [12]). The basic idea

is to use a certain implicit finite difference scheme represented as
(I+ AtA)V ! = p,vE (2.7.1)

which is equivalent to the one we will employ for higher dimensions. The derivations
and properties of this scheme will be presented in chap. 5, but suffice it to say fqr
~ the present that the matrix (I + AtA) is tridiagonal for the scalar case and strictly
diagonally dominant, which implies that no pivoting is required as a prelude to
finding the solution of (2.7.1).

The matrix D is diagonal, so the multiplication of D,V* is a purely parallel
operation, as V* is a vector in R corresponding to the n grid points on a compact
set of R.

We might remark that an explicit finite difference scheme is also available for
~ the Zakai equation, but we deemed it as less satisfying due to its constraints on At
and Az, (see chap. 5). However, this would only require a matrix-vector multipli-
cation and we already know that this can be efficiently done in O(n) steps for band
matrices (here the bandwidth is three.) This approach is especially unattractive
for higher dimensions though, since the constraints on Az and At are even more
confining.

If we want to solve the linear system (2.7.1) we can use LU decomposition, i.e.,
LU = (I + AtA),

where L is a unit lower triangular matrix and U is a upper triangular matrix. In
fact, both L and U are bidiagonal.
Thus we solve

Lz = DV, (2.7.2)

40

and then solve for

Uvitl =z ° . (2.1.3)

Both systems (2.7.2) and (2.7.3) can be solved by systolic arrays. For example, in

the case of Lz = b, where z is a vector, we have the following recursion,

¥ =0,

v =y 4 Lo, (2.7.4)

zi= (b — y) /L
A systolic array that can solve for z, given the data L and b, needs a special
" processor to compute (b—y)/a, but this slight modification leaves the system essen-
tially a linear processor array. Note that no synchronization problems arise because
of this.

Solving the upper triangular system Uz = b is basically the same.

Note that since (I + AtA) is a constant matrix for each ¢, the factorization is
precomputable and is done off-line.

A block diagram of the sequential detector alluded to in the introduction of
this dissertation that incorporates this Zakai solver is shown in fig. (2.7.1).

A future technical report of the Systems Research Center at the University of
Maryland (to appear probably in the summer of 1986, and to be authored by D.
Simmons, a student research assistant of the SRC,) will describe the actually design
and layout of the sequential detector.

A major question relating to the electronic implementation of the detector was
whether fixed or floating point arithmetic should be used. The trade-off here is
dynamic range vs. computing speed. As we would expect to have numerical values
ranging from 10~ to 10°, floating point computing power would appear to be in
order, so speed was sacrificed in exchange for using the IEEE standard floating
point. Optimal design considerations are awaiting the actual construction of this

processor.

41

y(t) [sample} yu 4, Solve

hold ‘_.. Lz = Dkvk
]
v Jdehyl

| el 4

Solve yhes a av+1] Threshold H,
Uvi+l = ¢ v Detector Hy

Figure 2.7.1

The Simultaneous Estimator-Detector with Zakai Solver

At this point we might mention the work of Travassos at Systolic Systems, Inc.,
(’83, [17]) involving the design of a real-time systolic Kalman filter. The predictor-
corrector equations are decoupled and reduced to matrix-vector multiplications,
using the design described in an earlier section of this chapter. Real-time imple-
mentation was shown to be possible, with stability, wordlength considerations and
round-off noise posing no problem.

Another design of the Kalman filter on a chip was reporfed in Electronic Design,

1984, [2].

42

8. Conclusion

After giving a brief overview of parallel computing concepts, we examined systolic
arrays: their basic unit, the inner-product step processor, array configuration, and
some examples that can be implemented on them, all involving matrix analysis.
Regu]aﬁty of design, recursivity of the algorithm, concurrency of operations and
synchronization of the processing were all identified as trademarks of this architec-
ture. 2

Moving more deeply beneath the architecture we found that various models of
signal speeds in VLSI are as yet still in competition-with the prevention of O(l’)
data transfer times, with [being the length of the wire, all but completely precluded.
This will become an important issue with some of the designs we will be examining
later in our research.

A discussion of the shuffle-exchange networks as examples of semi-systolic ar-
rays followed. These are often used as part of a data-transfer mechanism and are
very flexible as such. We will refer to them later when we wish to efficiently con-
vey data from one processor grid to another, as will be needed in the Multigrid
architecture. One drawback, however, is that they consume large quantities of the
chip’s area. Also, if the O(I?) hypothesis is assumed to hold, then these networks
will quickly become impractical for the kinds of high-speed computing we have in
mind.

Returning to systolic arrays, we pointed out that global synchronization of a
large array is problematic at best, with clock skew becoming difficult to control as
the size of the array gets large. S. Y. Kung argues that for an N x N array, clock
skew can grow as large as O(N3). Whether future circuit designers will find this
problem tractable remains to be seen, but we are forced to consider the alternative
of asynchronization.

The Wavefront Array Processor or WAP was offered as a compromise between

the systolic array and the data-flow machine, which is an asynchronous general-

43

purpose machine not totally suitable for VLSI implementation. The WAP will be
referred to later when the synchronization problem resurfaces in our designs.

We ended this chapter with a discussion of current research here at the SRC
involving the real-time implementation of a scalar nonlinear filter. An implicit finite
diﬂerénce scheme for the Zakai equation was cited, and a way of solving the lix;ear
system through LU decomposition via a linear systolic array was described. Such
research is a natural continuation of earlier work done on the real-time systolic

implementation of the Kalman filter;-which was also briefly described.

44

References for Chapter 2

[1] Bilardi, G., Pracchi, M. and Preparata, F., “A Critique of Network Speed in
VLSI Models of Computation,” IEEE Jour. of Solid State Circuits, vol. SC-17,
No. 4, Aug. 1982.

(2] D?wis, R. and Thomas, D., “Systolic Array Chip Matches the Pace of High-
Speed Processing,” Electronic Design vol. 32, no. 22, Oct. 1984.

[3] Fisher, A. and Kung, H. T., “Synchronizing Large VLSI Processing Arrays,”
IEEE Trans. on Co)nputers, voi. C-34, No. 8, Aug. 1985.

[4] Gray, J., ed., VLSI ’81, Academic Press, 1981.

[5] Kung, S. Y., Arun, K. S., Gal-Ezer, R. and Bhaskar, R., “Wavefront Array
Processor: Language, Architecture, and Applications,” IEEE Trans. on Com-
puters, vol. C-31, No. 11, Nov. 1982.

[6] Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Com-
puting, vol. 1, 1984.

[7] Kung, H. T., “Two-Level Pipelined Systolic Arrays for Matrix Multiplication,
Polynomial Evaluation and Discrete Fourier Transform,” Workshop on Dy-
namic Behavior of Automata, Luminy, France, 1983.

[8] ——,“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-
burgh, Penn. 1984.

[9] ——, “Why Systolic Architectures,” Computer, Jan. 1982.

[10]

, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic
Pr. 1984.

[11] » “Special-Purpose Devices for Signal and Image Processing: An Oppor-
tunity in VLSL,” fr;om the Proc. of the Soc. of Photo-Optical Instr. Engr.,
1980.

[12] LaVigna, A., "Real Time Sequential Detection for Diffusion Signals,” Dept. of

Electrical Eng., Univ. of Maryland, 1986.

45

References for Chapter 2

[1] Bilardi, G., Pracchi, M. and Preparata, F., “A Critique of Network Speed in
VLSI Models of Computation,” IEEE Jour. of Solid State Circuits, vol. SC-17,
No. 4, Aug. 1982.

[2] Davis, R. and Thomas, D., “Systolic Array Chip Matches the Pace of High-
Speed Processing,” Electronic Design vol. 32, no. 22, Oct. 1984.

[3] Fisher, A. and Kung, H. T., “Synchronizing Large VLSI Processing Arrays,”
IEEE Trans. on Computers, vol. C-34, No. 8, Aug. 1985.

[4] Gray, J., ed., VLSI 81, Academic Press, 1981.

[5] Kung, S. Y., Arun, K. S., Gal-Ezer, R. and Bhaskar, R., “Wavefront Array
Processor: Language, Architecture, and Applications,” IEEE Trans. on Com-
puters, vol. C-31, No. 11, Nov. 1982.

(6] Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Com-
puting, vol. 1, 1984.

[7] Kung, H. T., “Two-Level Pipelined Systolic Arrays for Matrix Multiplication,
Polynomiai Evaluation and Discrete Fourier Transform,® Workshop on Dy-
namic Behavior vi Automata, Luminy, France, 1983.

[8] —- —,“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-
burgh, Penn. 1984.

[9) ——, “Why Systolic Architectures,” Computer, Jan. 1982.

[10] ——, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic
Pr. 1984,

[11] ——, “Special-Purpose Devices for Signal and Image Processing: An Oppor-
tunity in VLSL” fr;>m the Proc. of the Soc. of Photo-Optical Instr. Engr.,
1980.

[12] LaVigna, A., "Real Time Sequential Detection for Diffusion Signals,” Dept. of
Electrical Eng., Univ. of Maryland, 1986.

45

[13] Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley,
1980. _

[14] Parker, D., “Notes on Shuffle Exchange-Type Switching Networks,” IEEE
Trans. on Computers, vol. C-29, No. 3, March, 1980. .

[15] Seitz, Charles, “Concurrent VLSI Architectures,” IEEFE Trans. on Computers,
vol. C-33, No. 12, Dec. 1984.

[16] Stone, H. “Parallel Processing with the Perfect Shuffle,” IEEE Trans. on Com-
puters, vol. C-20, No. 2, Feb. 1971.

[17] Travassos, R. H., Application of Systolic Array Technology ot Recursive Filter-
ing, Prentice Hall, 1983.

[18] Ullman, J., “Computational Aspects of VLSI,” Computer Science, Pr. 1984.

46

3. Some Qualitative Results on the Zakai Equation (Part 1)

1. Introduction

Equations defined on infinite domains clearly must be approximated to bounded
domains in order that numerical analysis can be done. This chapter describes some
methods of how this can be done for a class of fairly difficult problems. However,
we point out that in practice, one usually can obtain a finite domain by numerical
experimentation, and when it comes time to do our own numerical work, this is
probably what will have to be done, as theoretical estimates are often too conser-
vative.

In this chapter we apply and extend some results of Baras, et al, [1], to some
nonlinear filtering problems, and we will show that a refinement of their procedure
is in order. In particular, we show that some of their constraints on certain growth
functions, (which are standard tools in theorems relating to PDEs), and on the
functional coefficients, of the Zakai equation, are inherently inconsistent. As a
result, they implicitly required that all sample observational paths, (which can
viewed Brownian motions) are all bounded by the same constant.

Our model problem will be the bilinear filtering problem in one dimension.
Certain technical difficulties of the methods of Baras, et al will become especially
apparent. We also feel that this problem is both tractable enough and sufficiently
rich in mathematical insights that it is an excellent vehicle for the ideas we wish to
discuss. Extensions to higher dimensions will also be shown to be possible.

Our goal is to demonstrate that, for a sufficiently wide class of problems defined
on R™, a compact set can be constructed such that the solution of the Zakai equation
virtually vanishes on its complement. This is clearly a necessary prelude to any kind
of numerical analysis.

This chapter is part of a general strategic plan that reads:

1). Begin with an n-dimensional Zakai equation defined on [0,T] x R™.

48

2). Define compact set 1 where the solution U in 1), obeys 0 <V < ¢ on 01°.

3). Construct Finite Difference scheme that converges weakly to U in .

4). Describe Multigrid algorithm that rapidly (in real-time) the resulting Iinéa.r
system in 3).

5). Provide a VLSI implementation of the algorithm in 4).

6). Discuss limitations of the design of 5).

This chapter, together with chapter 4, deals with steps 1) and 2). We begin
with a one-dimensional equation as our model problem and then move on to some

problems in higher dimensions in the next chapter.

Main Results: refinement of techniques to provide existence, uniqueness and
asymptotic estimates of the solution of the Zakai equation. The model problem

of the bilinear filtering equation is completely worked out.

2. Transformations on the Zakai Equation of Nonlinear Filtering

Although we will concentrate on the bilinear filtering problem, we begin this section
with a quick review of the basic concepts. The general filtering problem in R can

be expressed as follows. Consider the state and observation equations,

dz{t) = f(a(t))dt + 9(=(¢))dw ()
dy(t) = h(z(t))dt + dv(t) (3.2.1)
z(0)=z0, y(0)=0, 0<t<T<o
Here w,v are Wiener processes in R, mutually independent, and independent of zg
which is a random variable with density éo(z). The functions f,g,h are smooth
(f € C(R),9,h € C?*(R)) and may grow rapidly as |z| — oo. They are all given
as part of the modeling assumptions. The filtering problem is to estimate the state
z(t) given the o algebra Y, = o{y(s),0 < s < t} created by all the observations
taken from 0 to t. The o algebra can be thought of as having all the available

observational information up to time £. It can be shown that the best wonlinear

49

estimate is E{z(t)|Yy], in the mean-square sense, which is also the first moment of
the conditional probability density. Hence, if we had this density in our possession
we could not only find the state estimate but other important statistical informatic;n
as well, such as higher moments. In fact, anything of the form E[¢(z(5))|Ye), where
¢ is smooth would be permissible. .

It turns out that the conditional density is related to a stochastic partial dif-
ferential equation. More accurately, the conditional density of z(t) given Y, is the

normalization of U(t,z) > 0 which satisfies the Duncan-Mortensen-Zakaj (DM2Z)

equation,
dU(t,z) =[a(z)U,.(t, z) + b(z)Ua(t, z) + c(z)U(t, z)] dt
+ h(z)U (¢, z)dy(t) (3.2.2)
U(0,z) =po(z), 0<t<T < oo
where

a(z) = 59%(a)
b(z) = 20(2)g. (=) - f(s) | (3.2.3)
(@) = 02(2) + 9(2)0x2(2) - £u(2) - 3h*(z)
The above has been written in the Fisk-Stratonovich form of the stochastic calculus.
Derivations of the above can be found in [3].

The key observation at this point is that the problem is posed on an infinite
domain R, and that the coefficients are unbounded and in fact may have greater
than polynomial growth. Existence and uniqueness of solutions of the DMZ for state
processes evolving on a bounded domain in R™ or when the domain is unbounded
but the coefficients are bounded and possibly degenerate, have been available form
some time. See, for example, Pardoux, (1979, [6]). The case when both domain and
coefficients are unbounded has also been studied and theorems were available only
in the presence of less than polynomial growth when Baras, et al [1) undertook their
investigations. (See, for example, the 1979 paper of Pardoux, [6]). The existence

and uniqueness theorems stated and proved here deal with the case of f, g,k being

50

equal to az,bz,cz respectively, the only restriction being that ¢ # 0. We also give
results on the tail behavior of the density which is essential for numeric;l analysis.
By working out in detail this model problem, certain technical shortcomings Qe
found in the methods of Baras, et al , will be brought to light, and corrected.
Specifically, our proofs require boundedness conditions on the observations, but this
is accomplished through a transformatiox’l, and does not reflect actual constraints
that must be imposed on the observations prior to, or in .t“he course of, filtering.

The DMZ can be transformed to a parabolic differential equation which, for
each path y(t) is a conventional, i.e., non-stochastic PDE. This leads us to consider
classical methods of proving existence, uniqueness, and as‘ymptotic behavior and
so we use the results of Besala [2], whose approach involves the use of a maximum
principle and weight functions.

The “robust” transformation can now be introduced. Define,
V(t,2) = expl-h(2)y(0)]U (1, 2) (3.24)

Now V satisfies an “ordinary” parabolic PDE, for any given path y(t),0<t<T,

Vi(t,z) = A(2)Vez(t, 2) + B(t, 2)V;(t, 2) + C(t, 2)V (t, 2)

(3.2.5)
V(0,2) =po(z), 0<t<T
where
A(z) = o(z),
B(t,2) = b(z) + 2a(z)ho(2)y(t) (3.2.6)

C(t,2) = ¢(z) + b(2)h2(2)y(t) + a(z)[haz(2)y(t) + A (2)y (1))
This will be the parabolic PDE upon which we will concentrate. It can be noted at
this point that the asymptotic results we seek will allow us to construct a bounded
domain D, such that we will know prior to solving the PDE, that V < € on the
complement of D, for some given positive e. This will prove essential in our numer-

ical analysis. In particular, we could assume € to be at or less than the machine

51

tolerance, (for we will ultimately use VLSI systems with limited bit size). We could
also further constrain the PDE with boundary conditions set equal to zero.
We apply the above ideas to the specialized case of the general bilinear ﬁltéring

problem as represented by the following system
dz(t) = az(t)dt + bz(t)dw(t)
dy(t) = cz(t)dt + dv(t) (3.2.7)
z(0) = 2o, y(0) =0, 0<t<T<o

with po(z) being the density of zg, and zp, w(t),v(t) are mutually independent. We
make no restrictions on a, b, ¢ except that ¢ # 0. We will also assume that b # 0 at
first and work out the special case when it is separately.
The Duncan-Mortensen-Zakai equation (DMZ) for (1.2.1) is
dU(t, 2) = [(1/2)(6%2%U),2 — (e2U), — (1/2)c?22U]dt + c2Udy(t)

(3.2.8)
U(0,z) = po(2), (t,2) € [0,T) x [0,00)

We can assume z is nonnegative by requiring that zo be so, that is, by taking
the absolute value of the initial condition. (Since the solution of (3.2.7) can be
represented by an exponential, namely z(t) = 2 exp[(a—b?/2)t+bwy], it will remain
positive, zero or negative depending on the value and sign of z). The reason for
this will become clear. We therefore take po(z) to be defined only on [0, 00) and to
be continuous and integrable there.

Our objective in this paper is to determine the existence and uniqueness of
solutions of the DMZ for this bilinear case. Two prominent difficulties are the
degenerate operator in (3.2.8), and the unboundedness of the coefficients in (3.2.7).
Our strategy as discussed before is to obtain, via a series of transformations, a
new equation known as the “robust” version of the DMZ. For every given path
3{t), we will be dealing with a conventional parabolic PDE. Thus we can apply
standard theorems, which in turn involve further transformations, and in particular

some results of Besala {2}, to determine not only existence and uniqueness, but also

52

the asymptotic growth of the solutions. Of course, as the transformations will be
invertible, there will be a one-to-one correspondence between our results and the
original Zakai equation. |
To deal with the problem of the operator in (3.2.8) not being uniformly elliptic,
we can do one of two things. First we can introduce a logarithmic change of coor-
dinants, z = log z, this being the reason why we wanted z > 0. Then the system,

(3.2.7) becomes, by the It6 calculus,

b2
dz = (a — —)dt + bdw
(2) (3.2.9)
dy = ce®dt + dv
Using this system we can construct the DMZ and then apply the robust transfor-
mation which is defined as V (t,z) = e~°*"¥()U (¢, e*). Using the formulas for the

coefficients for the DMZ we get,

a(z) = %2~
b(z) = —(a - %) (3.2.10)
e(z) = —%czc“

The coefficients for the robust transformation now become, by (1.6),

A(z) = g

2
B(z,) = —(a— 2) + Bee™y() (3.2.11)
2

C(z,t) = —%czc2= + ce®y(t) (- (a — b?) + -bz—cc’y(t))
The theorems we have in mind can then be applied to the result. Another way
is by simply changing coordinants in the original DMZ, using the rule, 38; = e"{;.

Letting W(t,z) = U(t,e*), we have,

b? 32
dW(t, z) = [(?)sz + [T

+ ce*Wdy(t) (3.2.12)

2
- a]W, +[2-a- %c“]W]dt

W (0,z) = po(e*)

53

Using the appropriate coefficients as before, we can convert this equation into

the robust DMZ. The coefficients of this new equation are:

A(z) = 62—2

B(z,t) = [E;-bz — a] + b2ce®y(t)
2 5 (3.2.13)
C(z,t) = [b* —a - —2—62’] + [Eb2 — a]ce®y(t)

B ey + *e=y2(0)]

The reader will note that the two transformations do not lead to the same

result, and we can express this difference by the following diagram:

Original system (3.2.7) = Change coordinants in system
= Derive DMZ = Robust Eqn.
Original system (3.2.7) = Derive DMZ

= Change Coordinants in DMZ = Robust Eqn.

We have different results because the two operations can be thought of as group
transformations that do not commute. In fact, (3.2.12) does not actually “solve”
the filtering problem posed by (3.2.9). In fact, (3.2.12) does not correspond to any
filtering problem of the form (3.2.1), but that does not matter as far as proving
existence, uniqueness and asymptotic behavior. The main thrust of our approach
is in providing an invertible transformation from the original problem to one that
is tractable by the methods of Besala [2].

Thus, although our theorems can be applied to both systems, we will concen-
trate on the second transformation.

We will now introduce the following transformations, which include a weight

function, ¢(z,t) soon to be determined.
V(t,z) = W(t,z) exp[—ce®y(t)]
u(t,z) = V (¢, z) exp[¢(z,t) — 1]

54

(3.2.14)

correspond to the transformed robust equation
ur = a(T)us. (2, z) + B2, z)u, (¢, z) + ¢(t, z)u(t, z) A
(t,z) € (0,T) x R (3.2.1»5)
©(0,2) = po(e*) exp[¢(z,0)]

This follows by using the robust DMZ in (3.2.5) and applying it to (3.2.14). We
obtain,
te —u(—q)e~ O =,
—C(z,t)ue=) = —C(z,8)V
(3.2.16)
—B(z,t)[u. - ui.Je=) = —B(z, 1)V,
—A(z)[uzz — 2u 9, + u(y;)? - ut/),,]c_(‘) = —A(z)Vsz

Obviously, exp —(.) = exp ~(¥(z,t) — 4t). Adding these terms up gives equation
(3.2.15).

At this point, we require only the following:

1).¢(z,t) = +oo as |z| — +o00 and is C?(R) for all t.

(3.2.17)
2).¥(z,t) is C*([0,T]) for each z.
We also have, from the foregoing calculation,
b2
a(z) = 03
2 3b2 2, .z
b(t,z) = by, — (a — —2—) + b%ce®y(t)
olty2) =5 [(5e)? = au] = g [Beey — (a—)]
2 2 (1.18)

+ b;[(cc"’y)2 + cc’y]

2
- cc’y[a - %]

(6% — a - c2e?*/2) — v + ¢y
The reader should note that (3.2.8) is 2 nondegenerate parabolic equation. We will
exploit the growth conditions so as to identify the dominant terms in the potential

¢(t,z) in (3.2.18) and in the potential of the adjoint of (3.2.15). Proper selection of

55

the weight functions in accordance with given constraints will permit us to guarantee
that these potentials are non-positive. This will in turn set the stage for using a
maximum principle. It should perhaps be noted that the use of weighﬁ functions
and maximum principles are standard techniques in the existence and uniqueness
theorems of parabolic equations. »

Our goal is to show that the robust equation (3.2.5) has a fundamental solution
under the conditions discussed. To quickly review, a fundamental solution of (3.2.5)
is a real valued function I'(t,z;s,2) defined for 0 St < T, z,z € R, which satisfies

the following conditions:

1). As a function of (t,2), T has continuous derivatives I'e,T;,T., and
satisfies (1.5) in (5,T) x R;

2). If p(z) is continuous and has compact support, then
o0
lim / I'(t,z;5,v)p(v) dv = p(2)
E—g ¥V —0O

Roughly speaking, a fundamental solution, I'(t, z; 5, z) when used as a kernel
within an integral, (which then forms a linear operator), takes initial data at time
s, and transforms it to a solution of equation (3.2.5), evaluated at time ¢ and
point z, which obeys the given initial conditions. Furthermore, properties of the
fundamental solution determine the character of any other solution. Therefore,
questions of boundedness and asymptotic behavior can be readily settled. We will

use this fact in the sequel.

56

3. Existence and Uniqueness Theorems for the Robust Zakai Eqn.

Our results will be stated and proved in a series of theorems based upo;x the fun-
damental solution of a parabolic partial differentia] equation. These follow Besala
[2]. The first forges a connection between the solutions of the transformed and the
original version of the robust equation. A central idea is that we must prove the
existence of the Zakai solution for each path of the observation and to this end it
is necessary that each path be normalized so as to remain within a certain bound.
Thus we can say that for any given path y(t), there exists an invertible transfor-
mation from it to a path which is contained within a certain bound. Thijs bound,
to be calculated below, will be the same for all paths, and we will say that the
paths have been normalized when transformed in this way. The reader should not
be confused with the fact that while each y(t) can be viewed as a Brownian motion
under an appropriate measure, and is therefore continuous on a closed interval and
hence bounded, the family of possible sample pathsis not uniformly bounded unless

normalized.

We can now state our

Theorem 1: For each Hélder continuous path {y(t), 0 < ¢t < co} of the observation
Process there exists a constant a > 0, dependent on the path, such that for each
t|y(t)]/e < 1/3]b], where b is the diffusion coefficient in (3:2.7), and an associated
fundamental solution I, z;s, z) of (3.2.15). Moreover,

I(t,z;8,u) = I'(t,z;8, u) explt)(u,t) — ¢(z, 8) + ~(t - &) (3.3.1)

is a fundamental solution of the robust DMZ equation (3-2.5) on o, T]. In addition,

I, z;8, u) satisfies the inequalities

0 < T(t,2;5,4) < K/(t - o)} (3.3.2)

57

for some constant K and Z,2€ R, t€(0,T] and

w -~
/ I'(t,z;5,u)du < 1 _
oo (3.3.3)
/ I'(t,z;5,u)dz < 1
- 00

Before proving this theorem, we first state a technical lemma found in Besala
[2].

Lemma : (Besala, [2]) Let aft, z),b(t,z),and ¢(t,z) be real-valued together with

@z,@zz,b; be locally Holder continuous in D = (to,t1) x R. Assume that,

a). a(t,z) > A >0, ¥(t,z) € D for some constant)\ .
b). ¢(t,z) <0 V(t,z) e D

c). (e—b,+ a;z)(t,z) <0 V(t,z) e D

Then for the Cauchy problem,

w(t, z) = a(t, 2)u.. + b(t, z)u, + c(t,z)u

(3.3.4)
u(0,z) = up(z) (t,z) e D
has a fundamental solution I'(t, z; 5,u) which satisfies
0<T(t,z;5u) < K/(t-s)} (3.3.5)
for some positive constant K and
o0
/ I(t,z;5u)du <1
g (3.3.6)
/ I'(t,z;5,u)dz <1
- Q0
Moreover, if u, (z) is continuous and bounded, then
o
u(t,z) = / I(t, z; to, w)uo(w) dw (3.3.7)
-0

is a bounded solution of (3.2.15). For a proof see Besala, [2]. It is worth noting
at this point that is uo(z) is non-negative, so is u(z,t), as T is also non-negative.

Boundedness of u(t, z) follows by similar reasoning.

58

Proof of Theorem 1:

According to the theorem by Besala we need to show conditions a), b),c) are
satisfied by the coefficients of the transformed robust PDE. Clearly, a) is satisfied
whenever b # 0. (As stated before, the special case of b — 0 will be investigag,ed
later). .

Now to condition b). We see that e2= appears to be a dominant term in c(t, z)
so that whatever ¢(z, t) is it must offset this growth to keep ¢(t,z) negative. Thus
it seems, upon inspection, worth trying ¢(z,t) = A(t)e*+ Bz. We see at once that
for this function to qualify under our restrictions in (3.2.17) we must have A(t) in

C'([0,T]) and B < 0. We also need A(t) > 0.

Plugging this term into c(t, :t:) we get

22(6% ,2 2 b2 5 2 o
e {‘2—}1 () — A(t)b%cy + -2-6 Yy - ?]

(@ W)A0) + @6 ~ ey + B -) + 4] (358)
5282 b2,
+T+B(a— T)+b —a—q=c(t,z)

Since A(t) and y(t) are assumed to be bounded, as z — —oo we have no problem if
the constant terms are non-positive. The key problem is that the coefficient of 2=
must be negative, so we have upon using the quadratic formula with A(t) as the
unknown, the requirement that A(2) lie between the roots of a concave up parabola,

these roots are,

bley+ \/(b’cy)2 - 4[?@?Iﬁ -F }
Alx) = 5 (3.3.9)
_ bley = [be|
=—F
and thus we have the condition,

c c
Awekﬂﬂ-bwwﬂﬂ) (3.3.10)
In fact we will also require for reasons that will become clear, the more stringent

conditions that

cy(t) < A(t) < ey(t) + || and A(5) > 0 (3.3.11)

59

Now supposc y(i) to have been normalized and for now we will express this by
saying |y(t)| < k/|b| where k > 0, and to be chosen below. Now we ask, can A(t) be
a constant and still satisfy the above inequality? If so, we must have, fof At) = A4,
a constant, ‘
Kpl<a< (1=K (3.3.12)
which can be expressed in words by saying, A must be greater than the greatest lower
bound, and less that the least upper bound formed by the inequality in (3.3.11).

We see that k = 1,1/2 are unacceptable, while k = 1/3 will work. Thus we set

a= max ly(t)|3]8] (3.3.13)

and we will assume henceforth that each y(t) has been normalized by its appropriate
.

We see at once that if y(t) has been normalized by a so that the magnitude
of the observations does not exceed 1 /3|b] then we can, for example, set A = ||
and equation (3.3.12) will be valid for all ¢ and we will also have A > 0. From
now on we will assume that A takes on only constant values in the interval formed
by (3.3.11), and we reflect this fact by setting ¢(z,t) = ¢(z) = Ae® + Bz. The
coefficient of e* may be positive or negative, for large values of positive z will always
be superceded by the e2* term. (Note that since A(t) is now a constant, A'(t) =0
which is fortunate as we would have had no control over this term). However, it will
be desirable to make a careful choice of B. To see this, maximize ¢(t, z) for each

fixed ¢ by differentiating with respect to z. We obtain an expression of the form:
2¢2*(coefficient) + e*(coefficient) = 0

Recalling that the coefficient of €2 was made strictly negative, if‘ the coefficient

of e* were also strictly negative or zero, the maximum of ¢(z, t) would occur at

z = —o0, which can be readily calculated. Now the coefficient of e* in ¢(t,z) is,

when made negative,
b’B[A — cy] - (20 - a)[A - cy] <0 (3.3.14)

60

and since A — cy > 0 we must have,
252 — .
B < min [0, LT?‘L)] - (3.3.15)

where we have also required B < 0 as part of condition 1) in. (3.3.17). Of course,
when :1: — —oo only the constant terms will remain so they must be negative as
well. Thus ¢(t,z) is a smooth function which asymptotically goes to 0 as z — +co.
Thus we can choose v to insure that ¢(t,z) < 0. These constant terms are, when

made non-positive,

b, 362 2
B —B[T—a]+(b —a)—~<0 (3.3.16)

From this, 4 can be chosen. Therefore, condition b) is satisfied.

Condition ¢) is automatically satisfied (at least asymptotically) since the sub-
traction of b, from ¢ changes only the coefficient of the e* term. (Note that a,, = 0).
However, we must choose a new value of B if we wish for the maximum of the term
in condition ¢) to occur at £ = —0o. The new coefficient of e, when made negative,

is

[6°B - (* - a)](A—cy) < 0 (3.3.17)

To maintain both this requirement and the one in (3.3.15), we demand that
. a
B < min [0, (1 - b_z')] (3.3.18)

Since we now know where the maximum of ¢(t,z) and c—b, occur we can easily

calculate it, and using v meet both conditions. We see that

2
v %Bz - JB(gbz —a) + (b* — a) (3.3.19)

where B obeys (3.3.18).
Thus all conditions for Besala’s theorem are satisfied. Q.E.D.

61

Our next theorem will show that the solution of the DMZ equation is unique
within a certain class of functions. _ _
Theorem 2: Assume y(t) has been normalized so that ly(t)| < 1/3[b]. And suppose

further that
: po(e®) exp(8,e* - 0:2) <M VzeR M<oo
. 2,¢ a (3-3-20)

for 6, >0,i=1,2 015§|3|, —0251—6—2

Then for all positive 8; < 0,4 = 1,2 there exists a unique solution to the DMZ

equation (3.2.8) within the class of functions

lim supU(t,e®) exp[élc’ - 0-2.1:] -0 (3.3.21)

|z| =400

Proof: Let ¢ be a constant with

0<e< ;lilgl (3.3.22)
and define, _
¥(2) = ¥(2) + e[e” - 2]

i(t,z) = u(t,z) exp [e(e® - z))

Then # also satisfies an equation of the form (3.2.15), whose coefficients are formed

(3.3.23)

by replacing ¢ (z) with ¥/(z) in the definitions of the coefficients in (3.2.18). Choose
A= Ifcl;' so that it satisfies the inequality

ey(t) < A < cy(t) + |§| (3.3.24)
Thus i(z,¢) will have a solution (by the Besala lemma) provided that
A+ee (cy(t) -]%I,cy(t) + I%I)
but this is gu.a.ranteed by our restrictions on A,y(t), and e since,

7 ¢

cy(t) < Ate= —|<
(22 i . (3.3.25)
<2l s e+

62

Therefore, u,% exist and are bounded, while U is given by (3.2.8). Since ¢ >
0, u(t,z) — 0 as |z| — oo, applying the maximum principle as in [5], [6], shows
that u is unique in the class of functions that tend to zero a |z] — oo. (acfually,
the method of Besala [2] only applies to this class). In the coordinants of (3.2.12)

this original class consists of those functions satisfying:
U(t,e®) exp|Ae® — ¢ — ce®y(t)] — Oas|z| — oo (3.3.26)

Note that the requirement that A > cy(t) implies U — 0 as |z| — oo. The chojce
of parameters (3.3.22), (3.3.24) satisfies all the conditions (3.3.20) and the result
follows. Q.E.D.

We are now in a position to state exactly where we corrected the methods of

Baras, et al, [1].

Claim: The methods of Baras, et al, [1] implicitly required that the family of all
possible sample paths of y(t) each be bounded by the same constant.
To understand why, we adopt the same notation as in thejr 1983 paper. They

defined a sequence of stopping times:

to=0,
. (3.3.27)
te+r = jnf {t: [y(t) - y(ts)| = ¢}
for
O<e< %lim sup 2|k, (2)|/(h? + 12/g?)1/2 (3.3.28)
|#l— o0

The reader will see at once that in our case, since f(z) = az, g(z) = bz, and
h(z) = cz, the limit on the right hand side is i1

Now on each subinterval (tkstr+1), we define,
V* = 041 (2) + B2 (2) + Ba[1 + 62 (2)] /2 (3.3.29)

where a, B, are to be defined and the set {BE} is dependent on y(tx).

63

also,

é1(z) = _/lz 1(8)/6% ds|ymez = —az

© (3.3.30)
$2(z) = h{e®) = ce*
Just as we did, Baras, et al required that
#(z) = +o0 as |z| - +oo (3.3.31)

This is clearly necessary as, once u* is shown to be bounded,
Vi z) ~ uk(t,z)e= " (=) |, g a5 |z] = o0
~which is what we desire. Thus, for this to happen, the definition of ¢*(z) implies

that
B2 > |B%]| (3.3.32)
as it is the e* that will become dominant for large z.
Using the same strategy as presented in these pages they found the c(t, z)
coefficient of the transformed robust equation, (which for them was denoted ck(t,z),

as it was defined on each subinterval (tkste+1), and after Besala, required that
¢(t,z) <0 VzeR
Working out the algebra, they found that they must have

|82 £ (87 - y())] < 1/2 (3-3.33)

on each (tg,tx41). With an eye on the above equation, they derived the natural

choice of parameters as
0<B2<1/4

Bt = y(te)
The condition that |y(t) —y(tx)] < € < 1/4 provides for the inequality (3.3.33). But

(3.3.34)

the constraint in (3.3.32) that

Bz > |BF| = y(tx)
64

implies that all samples y(t) are bounded in this way.

The only way out of this problem is to argue that for each sample path y(t)

there exists a linear map
y(t) - y(t)/e
such that the resulting sample paths are bounded appropriately.
We still argue that the basic strategy derived by Baras, et al is sound, as we
are obviously still following it despite some modifications. However, bounding each
y(t) by the same constant resolve the existence and uniqueness issue, but it dones

not conveniently allow us to calculate the asymptotic bounds on solutions of the

Zakai equation.

We conclude that while the concept of normalizing the observational paths is
a useful theoretical device for purposes of proving existence and uniqueness, we are
not advocating that all observational'path y(t) be bounded by the same constant
prior to filtering. This fact is espécia]ly pertinent in any kind of “real time” signal
processing, where we cannot see our observational paths in advance of computation.
Indeed, although each path is bounded, the family of all possible sample paths is
not uniformly bounded, so there is always the chance that some path will exceed
any given bound. 7

We now introduce a more natural method that solves these difficulties. It will
keep |y(t)| < 1/3]b], and will do so without scaling the sample path. This technique
shall be called resetting.

To understand the basic principle of resetting, consider first any path y(t) that
has been normalized, i.e. ly(¢)] < 1/3]8]. Let to = 0, and form {te}, k = 1,n, the
sequence of hitting times where |y(t;)| = € > 0. This creates a sequence of half-open
subintervals [ti,441), and on each such subinterval we reset y(t;) = 0, although
dy(t) remains the same as it would without resetting. Indeed, the path has simply
been translated by amount equal to € in magnitude so that its initjal va.]ue is zero

on [t;,tk41).The dynamics have remained unaltered.

65

Main Observation: The solution to the Zakaj equation is driven by the differential

dy(t), and is not dependent on the magnitude of y(t).

Under an appropriate change of measure y(t) is a Brownian motion, and hemée
the number of resetting times must be finite for the interval [0, T}, as y(t) will almost
surely ﬁot cross a level curve infinitely often in a bounded time interval.

Now we know that U(t, ¢*) has a unique solution on [0,2,), with U(0,e*) =
po(e®).Nowon [t;, t2), we consider the Zakai equation (3.2.8), but with the resetting
of y(¢t1) = 0 and the initial condition,

Ult,e?) = lim U(t,e®) = U(t, %) (3.3.35)
t—t)

t<e;

(The limit will make sense since continuity will be guaranteed by the Besala lemma).
This equation too will have a unique solution, due to our earlier results, and since
dy(t) is the same as what it was before, without resetting, the solution must be the
same as it was before on this interval. It can be said that since it is the dynamics
of y(t) that drive the Zakai equation, it does not notjce the translations of y(t) on
each subinterval. The technique is easily continued on the remaining subintervals.

What are the corresponding changes for the robust transformations? We have
vk = exp[—ce*y(t)]U(t,e*), (z,t) € R x [tkytits)
Ve = A(@VE + B(z,t)VF + Oz, t)vE
k _ U(t;,z), k>1
|4 (tk’ :c) = {po(ez) k=0 (3.3.36)
Thus on each subinterval U (t,e*) will be recoverable from VX(t, z). Using resetting
we can keep |y(t)| < 1/3|b|, without the need for re-scaling y(t).
We therefore have the

Claim: The solution U(t, z) is invariant under resetting.
We already know tliat we have a unique solution U (t,z) to the Zakai equation.
Thus while V(t,z) and e=*¢"¥(t) undergo the effects of translating y(t) on each

66

subinterval [tkytet1), the product,
V(t, z)ece™v(®) = Ul(t,z)

is invariant,.

We now have
Theorem 38: Suppose resetting to be used, with lv()] < 1/3[b] for all ¢ € [0,T).
Also assume po(e*) to be as in Theorem 2, with the same inequality as before
(3.3.20). Then for any T < oo, there exist positive constants M, K, which may

depend on the path {y(t)o0<t< T} such that the solution of the DMZ given by
- (3.2.8) satisfies:

U(t,e*) < M exp[- K (exp(z) — z)] V(t,z)e]o, T]xR (3.3.37)

Proof: The bound in (3.3.37) is a simple application of the well-known compari-
son theorem for parabolic partial differentjal equations. Suppose w, (t,z), w, (t,z)

satisfy
wy(r,z) < wa(r, z)

Twi(t,z) < Tw,t, z) (3.3.38)
(t,z) e(r,s) x R
where T = a% —L is a parabolic operator and that w;, w,, — 0 as |z] = o0 uniformly

fort € (r,s). Then,
wi(t,z) < wy(t, z), V(t,z) € (r,s) x R (3.3.39)

Let to = 0 and form a finite sequence of resetting times {tk} with ¢ < T,
Hence when y(¢) hits 1 /36] or some number very close to it, we reset y(tt) = 0 and
proceed as described before,

Now let the parameters A, be defined as in the proof of Theorem 1, and
let (r,8) be any one of the intervals (t,tx41),k > 0. Let L be the operator in

67

the transformed robust equation (3.2.15) and define, for each subinterval, using a

natural notation,
wi(t, z) = u*(t, z)

(3.3.40)
w2 (t, z) = exp[At — péz)]
for some positive constants A, 1 to be chosen and
¢(z) = exp(z) - z (3.3.41)

To put the problem in a familiar form, we set —T'w, < 0, which implies

3+ S [l - 1) - e

= #(e* ~1)[- (4e* + B)s® + (35/2 - a) + b2ce?y]
+ (e + B ~ %) - (a4) [85%/2 - @ + beye?] (3.3.42)

2
[62 —a - %ez’] + (36%/2 — a)ce®y

2
_b_z_[cczy_’_ c2e22y2] -4<0

Again the coefficient in front of 2 js the deciding factor, for it must be negative.
This coefficient, when made negative is,

2 b b2 2 2
s pb(A - cy) + ?(A —cy)® ~ -5 <0 (3.3.43)

Since the last term is already designed to be negative, we might be tempted to make
b2ulu/2 + (A-cy)) <o

but since 4 is positive, this is clearly impossible as A — ¢y > 0. Thus we wish for

to be between the roots of a concave up quadratic in . These roots are,

B4 en) & /(A cy)b 4 [E(a—qy)r_ 2

)= b2 (3.3.44)

=-(A-ey)£[g]

Given that A = , ;‘5,, Jey] < , oy l, the smallest positive root that (3.3.44) can have

is ,3‘-’5{, thus we can set

(3.3.45)

As we did before in Theorem 1, let us see if the coefficient of e in (3.3.42) is
negative so as to insure that the maximum occurs at z = —oo. From thxs we can

calculate A to make —T'w, < 0. This coefficient, when made negative, must satisfy,
b*Blu + (A - cy)] < 6?4 [u+ (A- cy))(26® - @) + pu(A - cy) (3.3.46)

or, equivalently,

u? 4 HA-cy)
[+ (A= cy)] ™ 82[u+ (A= cp)]

B<[z-]+ (3.3.47)

But we have already required that B < min[0,1 - %] so (3.3.47) is automatically
satisfied since its right hand side is 1 — a/b? + positive terms.

Since we have guaranteed that the maximum of —T'w, occurs at z = —-00, we
can now calculate the value of A to insure that this term is non-positive. We need
only the terms associated with i as the other constant terms are accounted for by

7. We must have

2 b2 2 3b2
S uBb* + n(-z— -a)< A (3.3.48)

We can now show that this value of A will be valid for all the subintervals,
which will in turn give us a uniform bound on V (¢, z). By the comparison theorem,

and the definitions of u,U and V, we have,
uO(t,z) < exp[At — pd(z)] for t € [0,¢,) (3.3.49)

At t =0, u® = po(e®) exp[Ae® + Bz] < exp|-ud(z)] since, using the notation of

Theorem 2,

=t Ilz”l =5l (3.3.50)
—03—B+p<—02 l—-l;—

Thus we see that conditions for uniqueness are satisfied, as long as B < —p. (This

additional restriction on B will be discussed later). We therefore have, by virtue of

the comparison theorem,
U(t,e®) < e +Nte=[n+(A—cy)le”~[B+u)= (3.3.51)

69

for t € [0,t;). Because of cbntinuity, as t — t;, the above inequality will still be
valid, although y(t) will be reset, with ¥(t1)) = 0. But A—cy > lg‘gl,.thus this
term can be replaced in (3.3.51) and the bound will be valid for all thé following
subintervals.

To get a tighter bound for negative z, we see at once that we should have
B < —p, and indeed, we saw this condition before in meeting the uniqueness rement.
One might suspect that since B can be any large negative number, that we should
increase the magnitude of B as much as possible. Unfortunately, there is a B2
term in the definition of ~, (see (3.3.16)). But we can minimize our bound by

differentiating the sum v+ A by B, to get

362

Bb? — (T ~a)—ub?>=0 (3.3.52)
or,
3 a
B=(:->)+u (3.3.53)
2 b
But we already have,
B <min[-p,1- 3] (3.3.54)

so we see that B should not be too large in magnitude. Thus we will set,
. a
B=min[- (p+1),1- 5 (3.3.55)

and this is our final definition of B.
We summarize our result by stating, in the original coordinants,
U(t,z) < Mz" exp(-K z) V(t,z)eo0,T] x (o, o) (3.3.56)
where,
M = exp [(u?b?/2 + b*uB(B/2 - 1) + (¢ — B)(36%/2 — a) + b2 ~ a)T]
c (3.3.57)
K=min[-—(B+u),lE|}

where B is (3.3.55) and u is (3.3.45).

70

To get a bound for V we simply multiply (3.3.51) by exp[—ce®y(t)], and get,
V(t,z) < Mexp [- K,(e* - z)] ' ' (3.3.58)
where M is the same as in (3.3.57) but,
. 7c
K; = min [— (B+p),|m|] (3.3.59)

and again this bound will be valid over all subintervals formed by resetting. Q.E.D.

In effect we have two ways to obtain the hecessary asymptotic bounds. One
is by scaling y(t), the other is by resetting. We believe that resetting is a more
natural approach as it emphasizes the fact that the Zakai equation .is dependent on
the dynamics of y(¢) (i.., dy(t)) and not on the magnitude of y(t), and resetting

preserves dy(t) while scaling does not, in that we would have the transformation
dy(t) — dy(t)/a

Finally, it should be clear that we a have an asymptotic bound for U (t,2) such

that
Ut,2) 2 0asz—0

Ut,z) »0as z - +00
where we have actually been able to compute the parameters of the asymptotic
bound. From this we could, given an € > 0, construct a domain 1 = (0, 2maz)

where

0<U(tz)<eforz> Zmaz

71

4. Comments and Further Results

Remark 1: One might wonder if the need for resetting can be avoided by the use
of scaling of the form z = k, log z + k,. This will only amplify the wxdth of the
interval formed by the roots A(%) in the coefficient of 2% in (3.3.9), as below, .

A = 0 0 £ 1) (3.4.1)

We still need |y(t)| < 1/3|b] if we want at least one of the roots to always be strictly
positive to make A(t) a positive constant.

Remark 2: 1t is perhaps worth mentioning that stability, or the lack of it,
in the state equation, does not play an important role in the effectiveness of our
. method, as far as determining the parameters A, B, pu,~ is concerned. This is true
for stability in the sense of Lyapunov, where a—b2 /2 <0, orin the sense of requiring
the variance of z, to tend to zero as t — +o00. The latter condition demands that
a < -b?/2.

Remark 8: It might be asked: why did we not use ¥(z) = cosh(z) as our weight
function? It certainly seems it would have yielded more symmetry in our bound for
+z. But we see that ¢, is proportional to e* — e~%, and when we calculate (¥2)?
in c(t,z) (see (3.2.18)), we get a term of e—2% with a positive coefficient. There is
no other term to compensate for this growth when z — —oo.

A related questlon is whether ¢(z) = Ae** + Bz with positive values of k,r#
1,A> 0,r = p/q,q odd and B chosen so that ¥(z) - +oo as |z| — oo, would
make a still better choice. We have ¥z = ake** + Brz™-1 and we again notice that
c(t,z) = %(¢=)2+other terms, where

(%s)? = {A"’k2 e?k2 4 o(e?*=) for large z > 0 (3.4.2)

B?r2z2(r=1) 4 o(22(r=1)) for large magnitudes of z < 0

We see that if £ > 1, and for any value of r, ¢(t,z) — +oo as |z] = 400, while if
k < 1, ¢(z) loses control on the growth of other terms as z —s +o00.

Finally, the most important complaint about the choice of this weight function

is that it makes placing a bound on y(t) necessary. Disregarding for the moment

72

that any computational system we use will do the same, it is worth asking if this
could be avoided in principle. Looking again at the equation of ¢(¢, z) in (3:2.18), we
see that the only control we can exert on this quantity in the effort to keep it ﬁoﬂ-
positive, and to do so independently of y(t), is by exploiting the term (¥2)? — ¢zz.

Suppose we could set

(¢'z)2 — Yz = -9(3) (3.4.3)

where ¢(z) > 0 and e?%,y,e* = o(q(z)) as z — +oo. (Negative z is really no
problem). If this were so, placing bounds on y(t) would be unnecessary. Now
(3.4.3) is a Ricatti equation in ¥z, S0 we can make use of a standard technique and

introduce a new function w(z), with,

1dw

¥z(z) = o (3.4.4)

to obtain,
%+ g(z)w=0 (3.5.5)
We have at once that ¢(z) = — log(w (), and, of course, these equations need

be valid only for large values of positive z. This means that, since ¢ € C2(R), there
exists an r such that, for all z > r,w(z) > 0 and since $(z) — +o00 as z — +00, we
need w(z) — 0 as z — +o00. But does such a function exist? Since ¢(z),w(z) >0,
we need ¥ < 0 in (3.4.5). Or, by the same token, if & changes sign, so does w. This
implies that we have, at least asymptotically, a positive function that tends to zero
monotonically but whose second derivative is negative. But no function has such
properties as the reader can easily verify by graphical experimentation.

These considerations suggest that ¥(z) = Ae*+ Bz is an optimum or nearly
optimum choice of a weight function.

Remark 4: The case of b = 0 in (3.2.7) is not readily incorporated into our
general scheme, but we include this case for the sake of completeness.

We simply use a variant of the Kalman filter to obtain 2(t) = E[2(t)|Y:) which

73

obeys,

di(t) = a2(t)dt + K (t)[dy(t) — c2(t)dt] _ - (348)

To derive the Kalman gain. K (t) we define P(t) = E[(2 — 2)?|Y:] and note tha-t,
d(2 - 2) = a(2 - 2)dt + K(t)[—c(2 — 2z)dt + dv] (3.4:7)

where we have used the definition of y(t) in (3.2.7). We also have,
d(2 - 2)* = (2 - 2)d(2 - 2) + (d(2 - 2))? (3.4.8)

which gives, upon taking expectation, and using E[(dv;)?] = r2dt,
P(t) = (a — cK (1)) P(t) + r*K2(¢) (3.4.9)

To minimize P(t) we differentiate (3.4.9) by K to get,

—cP(t) +2r*K(t) =0 (3.4.10)
k() =28 (3.4.11)

which yields,

o Cz

P(t) = (a — 5 P(t))P(t) (3.4.12)
P(0) = Var(2(0))

We see at once that if a > 0,P(t) — 35— ast — +oo while a < 0 makes

P(t) = 0.

74

5. Conclusion

We have shown that certain transformations can put the DMZ equation in the form
of a parabolic PDE and that therefore classical techniques can be applied to it jn
order to obtain existence and uniqueness theorems, and we based our work on that
of Baras, et al [1] in which certain technical problems were encountered and resolved
in this chapter.

Our model problem was the bilinear filtering problem in one dimension, for
which our methods were completely worked out in detail here for the first time.
Extensions to higher dimensions are also possible, as will be shown in the next
chapter.)

The modifications of the methods of Baras, et aldescribed here can be reapplied
to their original work. These results allow for unbounded coefficients (of polynomial
growth) on infinite domains. Asymptotic estimates were also obtained and will
prove a useful prerequisite to numerical analysis, in the form of a tight uniform
bound of our DMZ solution that tends to zero as |z| = oo. Combining this with
an implicit finite difference scheme to be described in chapter 5, we will be able to
numerically implement a linear systems solver (known as the Multigrid algorithm)
on a compact set. '

In effect, we have a general class of problems amenable to the numerical analysis

to be described in this dissertation.

75

(1]

(2]

(3]

(5]

(6]

References for Chapter 3
P. Besala, “Fundamental Solution and Cauchy Problem for a Parabolic System with
Unbounded Coefficients,” J. Diff. Egs. vol. 33, pp. 26-38, 1979. I.
Baras, Blankenship, and Hopkins, “Existence, Uniqueness, and Asymptotic Behavior of
Solutions to a Class of Zakai Equations with Unbounded Coefficients”, IEEE Ik'ans.‘ Au-
tomatic Control, vol. AC-28, No. 2, Feb. 1983.
Davis and Marcus, “An Introduction to Nonlinear Filtering” in Stochastic Systems: The
Mathematics of Filtering and Identification (NATO Advanced Study Institute Series).
Dordrecht, The Netherlands: Reidel, 1981, pp. 53-75.
E. Pardoux, "Stochastic Partial Differential Equations and Filtering of Diffusion Pro-
cesses,” Stochastics, vol. 3 pp. 127-167, 1979.
W. H. Fleming and S. K. Mitter, "Optimal Control and Pathwise Nonlinear Filtering
of Nondegenerate Diffusions,” presented at the 20th IEEE Conf. Decision Contr., San
Diego, CA, Dec. 1981.
Davis, M. H. A., A Pathwise Solution of the Equations of Zakai Filtering,” Unpublished

manuscript.

76

4. Some Qualitative Results on the Zakaj Equation (Part i)

1. Introduction

those in higher dimensions.

We remind the reader that our goal is to demonstrate the wide class of Zakaj
equations we believe are available for numerical analysis. Our results, combined
with filtering problems that are bounded or have less than polynomial growth,
provide a broad range of realistic problems. Surely thgre would be no point in
developing numerijcal methods for what could be a small (and probably unrealistic)
class of problems. We believe we can show that this is not the case.

The theorems of the preceding chapter can be readily adapted to the equations
described here but some minor modifications are needed. The asymptotic results
can therefore yield bounded domains to be used in numerical analysis.

The first example is the scalar filtering problem with polynomial coefficients,
This problem was also investigated by Hopkins in his dissertation, [3], and some
of his results are cited in the paper by Baras, et al, (1]. However, our approacﬂ is
similar to his, although he appears to be unaware of the subtle mistake found at the
heart of the Baras et af paper, (for he includes the uncorrected bilinear problem in
his dissertation.) Also, he was understandably content with “big O(-)” arguments,
while our numerical interests lead us to consider the computational requirements
involved in finding the various constants that appear in our bounds.

The second example is a two-dimensional problem with linear state but nonlin-
ear observations. This problem arose out of investigations conducted at the Naval
Research Laboratory on the radar scattering behavior off of ships.

The third example is the general n-dimensional bilinear filtering problem.

There exists a natural extension from the scalar case to the general formulas,

7

The reader should glean from this chapter the straightforward (albeit laborious)

means by which asymptotic bounds can sometimes be derived for a reasonable class

of problems.

Main Results: demonstration that methods of previous chapter can be extended

to realistic problems of higher dimensions.

2. Scalar Filtering Problem with Polynomial Coefficients

The filtering problem with polynomial coefficients in R can be stated as follows.

We have,
dz = P(z¢)dt + Q(z,)dw,
(4.2.1)
dy: = R(z,)dt + dv,
where 0 <t < T, =z, has probability density po (z), we, v are standard Brownian
motions. We also require that Q(z)>2A>0 (eg, Q(z)=1+2%4q even). Let the
degrees of P,Q, R be p,q,r respectively and set,
P(z) = X?_.a;z*
Q(z) = BI_ bz’ (4.2.2)
R(z) = =f_ye;z*
The DMZ of (4.2.1) is

dU(t,2) = [3Q7V.. + (20Q. - P)U,

+(@2+QQuz - P. - RY)U]at

(4.2.3)
+ R(z)Udy,
U(0,z) = po(z)
Again we convert to the robust version by defining,
V(t,z) = U(t, z) exp[- R(z)y(t)]
to obtain,
Ve(t,z) = A(z)V,. + B(t, 2)V. + C(t,z)V
(4.2.4)

V(0,2) =po(z), 0<t<T

78

where,

Alz) = Q*/2
B(ta :B) = 2QQz - P+ Qszyt
(4.2.5)
C(t,z) = (Q2 + QQ.,, — P, — R? /2) + (2QQ. — P)R,y,
2
%—[Ruyg + R2y3]

We proceed as before, and show existence, uniqueness, and asymptotic proper-

ties of solutions. Introducing the weight function, and transformed robust equation,

u(t, z) = V(t,z) exp[y(z) —]

where t(z) = Axz*, (the choice of which will be made clear. Also, certain changes

will be needed if k is odd), we obtain,
v = a(z)uzz + b(t,)us + ¢(t, z)u (4.2.6)
where, from (3.2.18), we have,
a(z) =A(z)
b(t,z) = — 2A(z)¢. + B(t, z) (4.2.7)

oft,z) =C(t,) ~ Blt,) + A()[(2)? — ou] - 7
As before, we must show that conditions of Besala are satisfied (cf. [2] and chap
(3)). Since Q(z) > A > 0, condition a) with a¢(z) > X > 0 is met. Next we make
¢(t,z) < 0. We concentrate only on the degrees of the polynomials, so we set the
degree of Q%(z) = (29),deg(PR.y:) = (p+r — 1) etc. The ¢(t,z) corresponds to a
sum of polynomials whose degrees are in parentheses:
deg(c(t,2)) = (29 — 2)+(2¢ ~ 2) - (p — 1) — (2r)
+(29+7r -1y~ (p+r - 1)y
+ (2¢ 4 r — 2)ye + (29 + 2r — 2)y?
(4.2.8)
- (29-2+k)+(p+k-1)
- (2¢+r-2+k)y,
+(2¢+2k-2) - (2q+'k -2)

79

We have included the y, factor for reference. The reader can check with (4.2.5) to
see which polynomials correspond to which in the above. From (4.2.8) .we can see
which terms will be dominant asymptotically. The reader can perhaps also éee' at
this point why ¥(z) must be a polynomial and, why for asymptotic purposes, only
its leaﬂing term is relevant. The possible candidates are: (2¢ + 2r — 2),(p+k -
1), (2¢ + 2k - 2), (29+r+k-2),(p+r- 1), and,of course, the determination of
which is the most dominant will depend on the relationship between p,q,r and k.
We break this up into cases:p{>, =, <}2¢+r-1.

Case 1: p> 2¢+r—1 In this case we let k =r,9(z) = A,z" Thus the dominate
term will be:

apr(—c,ye + A,)zPtr-1

For large positive z, we have,

ray(A, — cy:) <0 (4.2.9)
Thus if a, > 0 we have,
A,
0< A, <leye| or Ic—l < |ye| (4.2.10)
r

where y; is reset to never be zero and to be the same sign as ¢,. Similarly, if a, <0,
A

| =] > Iyl (4.2.11)
Cy

Remember that resetting is only a theoretical tool in our analysis, as we will
conduct our numerical work on the DMZ, which is driven by differences Ay(t) in
the observations. Thus it does not “see” resetting. We need it only as a formal tool
in the proof of existence and uniqueness and in the :ietermination of asymptotic
bounds.

Forz <0and p+r—1 not even, there seems to be no easy way to control the
sign unless r is also odd, in which case, we construct ¢(z) as follows,

Ar(+)z" A.(+)>0largez >0
¥(z) ={ A.(-)z" A, (-) <0 large |z],z < 0
polynomial of degree < r for |z] small

80

This construction is designed to insure ¥(z) is smooth. We can set A (+) = —-A.(-)
and in fact we can take the even reflection of ¢(z) from R+ to R~ The inequ;lity
signs are the reverse of what we have above for ap positive and negative respective]y.

To continue, we assume for purposes of illustration that e, >0andp+r—1

and r is even. Thus,
A,
RN0]
r

We have shown that c(t, z) < 0 as |z] — oo, s0 we must now calculate « so that
¢(t,z) < Oforall z € R. Let us assume, that we can make use of symbolic compu-
tation, which is now available, and easily applied to the analysis of polynomials. A

reasonable but probably not the most efficient way of doing this is as follows:

1). Choose a value of A,

2). Symbolically compute derivative of c(t, z) on computer
3). Evaluate zeroes of this polynomial

4). Find maximum of (¢, z)

5). Choose v to make c(t,z) <0

6). Continue experimentation to yield nearly “nearly” optimal choices of A;and

The determination of what is nearly optimal will become clear in the attempt
to obtain bounds of U(t, z) which are as tight as possible. Our last condition is that
c(t,z) - b.(t,2) - a,, (z) < 0. But this involves only the subtraction from c(t, z)
of polynomials whose leading terms are strictly less than those in ¢(t,z). Thus the
asymptotic behavior is the same as before, but a new choice of < is necessary to
ensure negativity. We proceed with symbolic computation as before to obtain a

new value of ~ that satisfies all conditions. Again we assume

po(z)explfz’] <M VzeR
(4.2.12)
M<oo 0<0<-[4, - cry(t)] Ve (o,T]

81

Choose j,, € > 0, such that,

A, + € < e, y(t)]

Thus A, and € can each be one-half of previously chosen A,. As we did in former
chapter, set
¥(z) =¢(z) + ez”
(4.2.13)
i(t, z) =u(t, z) explez”]

Then % also satisfies an equation of the form (4.2.6) whose coefficients are formed
by replacing 4 with 1 in the definitions of coefficients in (4.2.7). Thus @ will have
a solution by Besala and, since its initial condition is bounded, % will be bounded
as well. Also, since € > 0, u — 0 as |z| — 0. We therefore have uniqueness in the

class of functions,

U(t,z) exp[A,z" — 4t — R(z)y(t)] — 0 (4.2.14)

The most important consideration for computational purposes, is the compar-

ison theorem. Consider, as in Theorem 3 of chapter 3,

wi(t, z) = uk(e, z)

. (4.2.15)
w2 (t, z) = exp[At - ké(z)]
where uk(t, z) is u(t,z) a resetting interval, and ¢(z) = z". Set T = f—t — L where

L is the operator in the transformed robust equation. We must have ~Tw;, <0

Working out the necessary algebra gives, as dominant terms,
—P(z)rz" "y, —-P(z)R, (=z)y(t), P(z)¢2(z)
and we need as before,
apr[~p — c,y(t) + A,Jz*1 < 0 (4.2.16)
we already have,

<l

82

by resetting. Thus we need,
Ar Y
le-|

Thus set u = A,/2 > 0, and the inequality will be valid.

<ly()]

From this we can calculate the value of A needed to make the polynomial
—Twz <0, just as we did before with symbolic computation.

We have evaluated all of our parameters and we conclude that,
U(t,z) < exp[(A + 7)T] exp|(A, — p)z” - R(z)y(t)] (4.2.17)

Note that our choice of 7 depends in large part on our choice of A,, so we should
Ary to optimize this equation as much as possible.

Now we will require by resetting,

min |y(t)| = Al'c—lu +1 (4.2.18)
and we find,
max|(A, — u)z" — R(z)y(t))] ()
- . 4.2.19
o= -R(z) = -—(a{;gc;z' + |c,|:z:')
Thus,
U(t,z) < exp|(y + A)T] exp|-R(z)) (4.2.20)

Case 2: p=2g+r—1

We see that p+ k-1 = 29+ r+k—2for all k in this case, but if k£ > 7,
then Q2(1,)? will be dominant and c(t, z) will tend to +oo. Likewise if k <r, then
Q?R2y?(t) will be dominant and we have the same problem. So we must set k = r

to get as the dominant term,
Q? 2 2 Q2 2 2
_2—(¢z) - ¥:Q Rzy(t) + P(z)¢z + "2‘Rz!/ (t) (4°2'21)
and this yields for large z,
1 -
Er(b:ng — 24,b3c,ry(t) + 20,4, + bac2ry?(t))z?+r—1 (4.2.22)

83

Thus, we must choose A, to be between the roots,

—(ap — bZc,ry(t)) + \/ag = 2ap¢,7b2y(t)

2
bqr

A,(:!:)'z

(12.23)

For these roots to be real, we immediately see that we need as a resetting require-

ment,

215”7'1,3 > [v(t)] (4.2.24)

Recall that for z > 0 we must have A, > 0. Can we do this? If so, then the greatest
root in (4.2.23) must be of the form,

—(1'1 - 1’2) + \/7? —2rir2>0 (4.2.25)

where ry = a,,r; = bgc,ry(t) and the above must be true for all ¢ € [0,T], with the

help of resetting, of course. But (4.2.25) can be re-written as,

—(r1 —r2) + \/(rl -r3)2-r2>0 (4.2.26)

and we see that we cannot have r1 —r2 > 0 for this implies,

W= =) s - r2)?

—(72)2 >0

(4.2.27)

which is impossible. But @, > 0 implies ry(r; — 2r3) > Oor r; > r. Thus we
cannot have a, > 0. We continue exactly as we did in case 1 with the assumption
(4.2.12) and a, < 0. We calculate Ar,7y noting that the other condition, c(t,z) -
b2(2,z) — @22 (t,2) < 0 yields a new value for 7, (but no terms higher than zptr-1),
Uniqueness and the comparison theorem are proved similarly.

Case $: p<2¢+r—1

Again we need k = r to control the sign, for if k > r, Q%(¢¥2)? will dominate,
and if k < r, Q*RZy?(t) will dominate, and this will once more produce undesirable

asymptotic behavior. Thus set &k = r to get as the dominant term,

2 Qz
2 RO + 9% - Q*Ruvey(t) (4-2.28)

84

The leading term for large z is, when made negative,

b2r®(c,y(t) + A,)? <0 (4.2.29)

which is clearly impossible. We conclude that we cannot force ¢(t,z) <0, and that

our method is unworkable in this case.

85

3. Linear State in R? with Nonlinear Observations
We consider the equations,
d.’fg = Aigdt -+ Bdwg

(4.3.1)
dyt = Cl.’itldt + dv,

A= ("0"‘ _oa) | B= (%‘ [;’2) (4.3.2)

and where a > 0, 8, # B2, w;,vs € R, are independent and standard Brownian

where

motions, |Z| = v/} + 23, and cis real. The initial probability density of % is po(Z).
The above model is relevant in the analysis of ship radar tracking, as done at
the Naval Research Laboratory.
The DMZ associated with (3.1) s,
dU(t,z) = (L* - ¢*/2|z|*)Udt + c|z.|dy,
ﬂf oU ﬁ 02U
2 8z2 " 2 8z%
+ ¢|Z,|Udy,

0 2] C2 2 2
EE(QIIU) + 53_2(&:211) - ?(31 + 22)]dt

(4.3.3)
We have used the Stratonovich version of the DMZ where L£* is the adjoint

of the infinitesimal generator of (4.3.3). The robust transformation of (4.3.3) is as
follows, let V (¢,z) = exp[—c|Z|y(t)), then,
:H B3
"t 21V312| + 22 Vz,z;
+ roz:::l +ﬂzcﬂy(t)]V
oo F Ay]V,

[T2
+ @Z2 + B3 Cﬂy(t)] Vz, (4.3.4)

r
+ 2a+ala‘=ly(t)+c’y’(t) (zlzz

Bt =

+c 2 2 |ay(t)+°2 E |~,‘y(t)]V

Note that the above is in the form:

Ve = A1(Z)Ve, ., + A (Z)Vz,2, + By (t,Z)Vz, + Baqft, z)V., + C(t, 914

86

We have also made use of the fact that,
2 -
AN B
(]:T:I = p ‘7Y

From this we can construct the transformed robust equation with,

u(t,z) = V(t,z) exp[¥(z) — ~t]

where (z) = d12? + dyz2. Here, d; > 0,50 %(Z) = +00 as || » +00 We have,

it £

2 Uz 2z, + == 2 o Uzoz,
+u21[Bl(ta§) _ﬁf¢¢x]

+ Uz, [Bz (t’ i) - ﬂg‘b:z]

U =

(4.3.5)
+u[C(t, z) -4
2 2
+ %‘W’:, - '/’zxzx) + %w:, - ¢z:=z)
= ¢z1 B, (ta 5) - ¢=332(t, i)]
Again we notice that (4.3.5) has the form:
Ut = 01(Z)uz, 2, + a2(Z)us,,, + by (t, Z)uz, + bo(t, Z)u,, + c(t, z)u
We see that,
c(t,2) = 2a+alz|y(t) - —-(zlzz
z3 2 T3 2,2
+ B} Wy(t) +ch; l;_lgy(t) +¢7y%(t)
+ B (2d}z] — dy) + B3 (24323 — dz) (4.3.6)
- 2d;z, [azx + 8% B ly(t)]
—2dy24 [a:l:z + B, Hy(t)] -
The dominant term for large |%| is seen to be,
2d; (d18? — o« — c?/2)z3 + 24, (d282 —a - c?/2)z2 (4.3.7)

87

Thus to make this term tend to negative infinity we set,

d; (4.3.8)

=2 4=
26}’ 263

Note that @ > 0 so0 d; > 0 as required, and we are guaranteed that, ¢(t,z) - —oo

as |Z| — +oo. '

The Besala theorem [2] requires only that ¢(t,Z) be negative; smoothness con-
ditions are not necessary. However, the term];?; is unbounded as z; - Ofori #j.
(In fact, this term will also appear in bj,z;(t,Z) later on). For reasons which will
become clear, choose o > 0, and let our domain. be D = R?NB*(0,0) where B(0, o)
is the open disc of radius 0. The choice of o will be determined later.

Finding the maximum of ¢(t,Z) on D is not easily performed analytically. Thus
the following method, to be used on a computer, will suffice. Reset y(t) so that
sgn(y(t) = —sgn(c).* So if ¢ > 0, as we will assume from now on, we set —M? <
y(t) < —MZ. Now replace y(t) in (4.3.6) with —M, to get ¢(t,z). Thus é(t,z) >
¢(t,2). Using a computer and the values of dy,d; in (4.3.6), find the maximum of
¢(t,z) on D, and then choose ~ so that é(t,z) < 0,Vz € D. Note how our resetting
criterion is reflected in our determination of .

Now we see that if ¢ is small enough, and since the coefficient of ér’;- is negative,
by resetting, the choice of ~ is unaffected as o gets arbitrarily small. We sﬁall
comment on this fact in the sequel.

Now Besala’s Theorem in two dimensions [2] also proves that the existence of

a solution of (4.3.3) corresponds to showing that, in addition to the above,
c(t’ .1:) - bl.lx - 63-33 —@l,z,2, ~ G2,232, SO (4'3‘9)
We know that a;,;,.; =0, for § = 1,2, while,

2
bz, = a+ ﬂ,?cl%g(t) - 2p%d; (4.3.10)

1 z2>0
* The function sgn(z) = { 0 2=0
-1 2<0

88

where ¢ # j. We see that when we perform the addition in (4.3.6) the troublesome

2 .
terms involving]—:13- precisely cancel. Also note that due to our choice of d;, a—

282d; = 0. A new choice of v need not be selected as we are subtracting only

positive terms.

Finally note that /2 > 0 also meets Besala’s requirements.

To show uniqueness we choose €;, €2 > 0 such that,

[44
d;+€,‘<z§

We also assume that,

Po(Z) exp|01z} + 0222) < M < +00
o

Bt

for 0; <

Thus, as we did in chapter 3, we let,
t;(:E) = ¢(Z) + €123 + €223

i(t,z) = u(t,) exple; 22 + €273]

(4.3.11)

(4.3.12)

(4.3.13)

where (t, Z) is obtained by replacing ¥(z) by gl-z(i) in the definition of the coef-

ficients of the PDE of u(t,z). Thus @(t,Z) solves a new PDE and will also have

a solution due to Besala’s theorem, [2]. Because the initial condition is bounded,

i(t,z) is bounded. And because ¢ > 0,u(t,z) — 0 as |Z| — co. Application of

the maximum principle as in chapter 3 provides a unique solution in the class of

functions which obéy, for § < 0;,

u(t, z) exp|f1 22 + 0522 — c|2|y(t)] — 0

as |Z| — oo
Next comes the comparison theorem. Let
wy(t, 2) = u(t, %)
w(t, Z) = exp[At — pé(z))

89

(4.3.14)

where A, 1 > 0 are to chosen and #(2) = 2} + z2. Define T = S -Ltobea
parabolic operator where £ is the operator associated with u; = Lu in (4:3.5). We
need to show that —Tw, < 0. (Note that Tw, = 0; consult chapter 3 for moré

details about the comparison theorem). We must show that,
B2uat — 1)u + BZ[2uz? — 1)u

z
—2uz, [11351 + ﬂfcii—ljy(t) - 2ﬂ12d121]

(4.3.15)
z
= 2uz, [01-7—'2 + ﬂ%céy(t) - 2ﬂ2242-’52]
+¢(t,z)~A<0
The leading terms for |Z| = +o0 are, after algebraic simplification,
2 202 @%) ,

2,’___1 (2[! ﬂ,’ - 45‘2)$‘ (4.3.16)

where we have used, d; = a/24?. Thus we can set,
p= 1 in [d;] (4.3.17)
4 4=1,2

and be assured that the leading terms in (4.3.15) tend to —oo as |Z] = 0o0. From
this A can be chosen to make Tw; <0on D. Again, if o gets arbitrarily small, no
change in) is required due to negative coefficient, brought on by resetting, in front

£ 34
of Ei-,-

We can conclude that, with the resetting requirement, -M? <y(t) < M?
U(t,z) < Mexp|(A + ~)T) exp[(p — d1)z} + (u — dp)22 — lellz|M?] (4.3.18)

Note that since 4 — d; < 0, our bound tends to 0 as |Z2| = +o0 very fast.

The only problem we have is near the origin, but in the sort of problems this
model is designed for, the probability of finding the state Z, near the origin is very
small, so we can assume that p, (z) — 0 as |Z] — 0 and so our initjal density plays
the role of creating the disc B(0,0) for us, thus avoiding any numerical problems

in this region.

4. The n-Dimensional Bilinear Filtering Problem

By now our methods should seem fairly adaptive. We apply them now to the

n-dimensional bilinear filtering problem. We have

dft = Azdt + B:Edwt
(4.4.1)
dyg = Cftdt + dﬁg

where Z;,§; € R™ and dw, € R,dv; € R™ are independent. ‘A, B,C are all n#
matrices. Also, Zo ~ po(z) : R™ — R, and y(0) =0, with 0 < ¢ <T < oo.
The first requirement we make is that BT B is diagonal, for if this were not the

case, we could use the transformation z — Pz to obtain,

dz, = P~ APzdt + P~ BPdw,
(4.4.2)
dg; = CPzdt + do,

Thus, when we form the DMZ to yield
(P~'BP)T(P~'BP) = PTBTBpP

if we also assume that P~ = pT7, Thus, as BTB is symmetric, with det(B) # 0,
choose P so that 7

PTBTBP=D (4.4.3)
where D = [d.-;] is a diagonal matrix. Henceforth, we will assume that this trans-

formation has already been done.

Now the DMZ of (4.4.1) is
dU(t,2) =) " di; /222U,
+) P?[2d;iz? — > ez AU,
i i (4.4.9)
+ [; B?di; - zj:a,-jﬁ’] - %ETCTC%]U
+{Cz,§,)U

91

The expression (Cz,§(t)) is the scalar dot product. We observe that if n — 1, then
d11 = b2, and we get the same result as before. Now, to remove the degeneracy, we

introduce a change of coordinants,

¢() —z; L(')

—_— = 445
vz 9z (4.45)
which implies
W(t,z) =U(t,e™,e*,..., e™)
with
Uz, = e™*U,,
(4.4.6)

Uz.-z.- = _e—Zz;U:" + e_zz"Uz.-z.-
The reader should see that the new coordinants effectively remove the degeneracy.

Our new DMZ is thus

dW = Z dii[2[W,, ., — W..]
3
+ ’ledﬁ - ;aijlwn (4.4.7)
1
+ ;[dﬁ - ;%‘ = EGTCTCC]W(t’ z)

where

€= (e",e™,...,e™)

The robust trapsformation, which is of the form:
V(t,2) = W(t, 2) exp|—(Ce, g (t))] (4.4.8)
is then followed by the transformation:
u(t,2) = V(¢,2) exp[¢(2) — 1] (4.4.9)

where 9(2) is the weight function, and as yet to be determined. This yields,

> a(2)u,,., + D bilt, E)us, + c(t, 2)u (4.4.10)

92

We are now in a position of applying Besala’s Theorem, as described in the
last chapter. The coefficients of (4.4.10) are
a;(i) =d,','/2
._b.'(t, 2) = —dip,, — (; a;; — gdﬁ + dii(Ce, §(t))

C(t, 2) = Z dii/2ﬂ2[(¢=i)2 - ¢=iziﬂ2]

= 2 ¥uBldie/2(Ce9(0) - (3 as - 2,087

(4.4.11)
+ ;ﬂzl(cf,s?(t))’ +(Ce, 5(1)) 87
= (Co gt ass - S
+ Z(d.-.-/z -JZ a;;) — |Cel/2
As anticipated, we ;eed ’
¥(z) = Z Aie® + B;z,; (4.4.12)

The rest of the details follow through, largely due to the decoupling allowed for by -
BTB being diagonal. In the interests of brevity, for the results can be derived in a

straightforward but rather tedious manner, we simply state that
Ci: ci:
A;ep? Cg.-—,i-,, Cy(t .-+,L,ﬂ2 4.4.13
()~ | 7=} (cotm)er | S o (4.413)
The reader will recognize (4.4.13) as the natural generalization of
c c
A€ (ey=[Shey+) (44.14)
found in the previous chapter.
It follows that we must find €; > 0 such that
lvil < ¢

such that the coefficients in front of all the e** terms will be negative. Once again,

we note that dj(t) does not detect the resetting that must be done to keep y(t) to

93

with a certain magnitude, but which preserves the dynamics. Also, A; > 0 so that

¥(2) — +00 as |2| = 0o. Thus, we have

Cit

Vi

0< A< Zc,'jyj-i-,
J
This will imply that we should set

A= IZ& | (4.4.15)

Vi
Again, for the sake of brevity, we state our other results, which can be naturally,

albeit laboriously, derived. Existence and uniqueness offer no surprises. For the

various parameters, we have,

26— 3; aij]

B; < min [0,

di;
M *IC“I
12vds (4.4.16)
M = exp°() " (n3dii/2 + dispi B;(Bi/2 — 1)
+ (s — B;)(3ds;/2 - E ai;) +di — E a;;)TH?
J J
We also have,
K; = min ﬂz[—(B,' +), \I—;-t_;—'ﬂzl (4.4.17)
where K; < 0. All of which has a bound of
U(t,z) < MII, (zf(" exp[—K.-z,-])
(4.4.18)

v(t,z) € [0,T] x R}

94

5. Conclusion

This chapter was intended as a demonstration that the methods of chapter 3 could
be expanded to include a broader range of problems, some of them higher difneh-
sions. This is clearly in order as our interests are in the field of n-dimensional signal
processing.

We also argue that our methods extend an already wide class of problems that
are suitable for numerical analysis. These include the cases of bounded or sublinear
coefficient growth.

However, we might remark that in Practice, given such problems we might be
inclined to use numerical experimentation to determine the finite domain, than to
resort to theoretical bounds that may prove to be too difficult to obtain.

With this part of our project complete, throughout the remainder of this re-
search effort, we will employ the operating assumption that such finite domains

have been found with an acceptable degree of accuracy.

95

References for Chapter 4
(1] Baras, Blankenship, and Hopkins, “Existence, Uniqueness, and Asymptoti_e Behavior of
Solutions to a Class of Zakai Equations with Unbounded Coefficients”, IEEE Trans. Au-
tomatic Control, vol. AC-28, No. 2, Feb. 1983, ‘
[2] P. Besafa, “Fundamental Solution and Cauchy Problem for a Parabolic System with
Unbounded Coefficients,” J. Diff. Egs. vol. 33, pp. 26-38, 1979.
[3] Hopkins, W. E., Nonlinear Filters of Nondegenerate Diffusions with Unbounded Coeffi-

cients, Ph.D dissertation, Univ. of Maryland, 1982.

5. Finite Difference Schemes for the Zakaj Equation

1. Introduction

In thls chapter we discuss the notions of weak convergence and the development
of a ﬁmte difference scheme especially designed for PDE generated by stochastic
processes, which is indeed the case for the Zakaj equation.

The finite difference scheme we offer for the n-dimensional Zakai equation lends
itself very well to probabilistic interpretation. This is an implicit scheme that
provides stability for a greater range At and Az values than does the explicit
method. In fact, the discrete solution of the linear system converges weakly to the
true solution as Az, At — 0 independently of each other. It is also very stable.

We also show that the inherent probabilistic interpretation of the linear system
allows us to delineate the structure of the associated matrix, at least when the PDE
is discretized over a rectangular domain. This will prove useful in the numerical
analysis of the system and the making of our choice of relaxation schemes within

-the framework of the Multigrid algorithm.

Main Results: identification of an implicit finite difference scheme. Derivation
of properties of the associated matrix of the linear system relevant to its numerical

analysis.

97

2. Finite Difference Methods for PDE’s and their Probabilistic Interpretation

We provide a brief review of weak convergence. More details can be found in
Kushner, [1].

The basic idea is that when we discretize the Zakaj equation (as a prelude
to numerical analysis), the resulting linear system can be viewed as a transit:.ion
probability density for a Markov chain that corresponds to the discretized state
variable we are trying to conditionally estimate. Thus, the statistical properties
predicted by the finite systemn converge to the true statistical properties of our
continuous system.

Let us now show how the probabilistic interpretation of differential equations
can yield insights into the numerical analysis performed on them.

The following example is from Kushner (1]. Consider the equation,

a(z)Vzz () + f(z)Va(z) + k(z)=0
VO =a, V(1)=28 (5.2.1)
a(z) > €>0,a,feC? ((0,1)), k(z), bounded
We associate with the above equation the stochastic differential,
dX = f(z)dt + (2a(X))? dw
(5.2.2)
X(0)=1z
which has a unique solution as f and a are Lipschitz.

Let 7 = inf[t : X(t) ¢ (0,1)], which is the exit time of X (t) for (0,1). Because

a(z) > € > 0, it can be shown that E, (7) < oo, for all z € (0,1), where z is the

initial condition of (5.2.2), in much the same way as in section one.

Thus the solution of (5.2.1) is,
V(z) = B /o "k(X(s)) ds + a(P.(X(7) = 0))

+B(P(X(r)=1))], z€(0,1)
We will now provide a special finite difference approximation to (5.3.1) whose

(5.2.3)

solutions will tend to its true solution. Define 1 /h to be an integer and replace
Vez = [V(z+h) - 2V (z) — V(2 - h)]/A? (5.2.4)

98

V(iz+h)-V(z hif f(z) >0
Va(z) - { Hz)t I)/(z -(k%h if ffxg <0 (5.2.5)

The reader will note that we used forward and backward approximations o'f" V. when
f(z) is respectively positive and negative. This is normally not done but there js a
good reason for doing so. Now for each h, define,
Qu(z) = 2a(z) + h|/(2)|
Pt (z,z+ h) = [a(z) + hfi(z)]/Qh(z) (5.2.6)
» Ath(::) = hz/Qh(z), z=0,%h...
Let p*(z,y) = 0 when y # 2+ h, z being a multiple of k. Now put (5.2.4)-(5.2.5)
into (5.2.1), collect terms, divide by Qi (z) to get,
Vi) = Viz+ h)p*(z, z + h)+Vh(z - h)p*(z, z - h) + k(z) Ath(z)
z=h,.1~-h (5.2.7)
VA0)=a, V*1)=p
This equation has an interesting probabilistic interpretation. The p*(z,y) are
2 0, and sum over y to unity for each z. We conclude that ph(z, y) is a transition
probability function for Markov chain on the state space 0,%4h,... Let {¢h,n =
0,1,2...} be the random variables of this chain, and define N}, to be the exit time of
the chain from (0,1). Thus N}, = min{n : ¢} ¢ (0, 1)}. Using this, equation (5.2.3)

can be written,

Ny-1 ’
Vi(z) = E, | > k(chatt + b(ch.)] (5.2.8)
=0

where we use At} = Ath(¢k). We see at once the similarity between (5.2.3) and

(5.2.8). But what we need to know is under what conditions and in what sense does
V* tend to V, the solution of (5.2.1).

To answer this, we note that
Elg2ys — shleh = 2)f(z) Ath (2)
covleasy — ealsh = z] = 2a(z) Ath(z)
+ Ath(2) (k|1 ()] - 1*(z)Ath(z))
= 2a(z) At*(z) + o(At*(z))

(5.2.9)

99

These terms are the same as we would get for the conditional increments of the
solutions to (5.2.1) over an interval A. This suggests a cornection of g-"‘(~) to the
diffusion X(-). Thisisindeed the case and it is at this point that the concept of weak
convergence will play a dominant role. Now, since ¢*(.) is discrete, we interpofate

to make it a continuous process. We set,

th=0
n—1

th=> At (5.2.10)
=0

h A h 4k
$(t) =¢n on [th,tr)
which implies ¢*(-) is constant on random intervals,

Define p* = th., the escape time of ¢* (-) from (0,1). Thus (5.2.8) becomes,

Vh(z) = B, /o " k(cM(s) da + b(* (M) (5.2.11)

We still have E(p*) < 0o as before. Now (5-2.11) converges weakly or in distribution
to (5.2.3), and this limit is the same by virtue of the uniqueness of the solution of
the stochastic diﬁ'ereﬂtial of X,.

We can generalize the foregoing techniques to problems of the form which have
terms such as V; or 2‘-’,- aij (z)Vz, 2 ;- Again we associate with the PDE a diffusion

process governed by

X(@) =2+ / f(X(v),v) dv + / ' 0(X(0),9) dulv)

(5.2.12)
X(s)==z=
where f,o are Lipschitz.
We will require, for reasons that will become clear, that
ai(z,8) = Y laii(z,t)| 20 §i=1,..m (3.13)

$#3.9
80 3¢ to guarantee,
A
A (z,2) =1- wilk DMz) +2Y ai(s,t) - ; lasj(z,1)]] >0 (5.2.14)
$72,3

100

Also define Ma by MAA = T and for t=0,A..A(Mj - 1) define

(z z+eh) = i [a,. (z,¢) - Z las;(z, t) + hfi(:z:)]

$#£3,5

P (2,2 + eh — e;h) = p:"A(:z:,:z: —eh+e;h) = —a (1)

h2 i5
p:.A(z,z +e;h+ejh) = (::,:z: —e;h—e;h) = ﬁau (=, t)
pf'A =0 Vz,y not covered above

Again we see that p (:r, t) > 0 and sum over Yy to unity for each z. We conclude
that {p}2(.,)} is a one-step transition function for a Markov chain, whose random
variables we denote by {¢*4}. Thus Plch = ylcha = z] = ph8(g, y). We allow
for nonhomogeneity in the chain if a(--), f(-,-) depend on t.

We can substitute (5.2.4)-(5.2.5) into the equation,

3
(55 + L)V = —k(z,t) (5.2.15)
to obtain,

VAA(z,nA) = > ot (a, v)Vh4(y,nA + A) + k(z,nA)A, n< M, (5.2.16)
b

where
VAhA(2,T) = br(z), zeG,
(5.2.17)
VPA(2,8) = by(z,8) t< T, z¢G,
Multiplication of all terms in the finite difference equations by A? yjeld
0=-Qu=)VM2)+) p*(z,z+ e:h)Qu(z)VH(y) + h2k(a). (5.2.18)
v
The above can be written,
Vvha(g, nA) = E,.,,V"'A(g‘,’:fl,nA + A) + k(z,nA)A
(5.2.19)
n<Ma, zeG,
Where t = nA,ghé = 7 B «,n implies expectation given ¢ha = o,
Let
_ Imn{n A EGifn< M,
N(h,A) = { 00 if hA'E Ca¥ < M (5.2.20)

101

The latter condition is due to the fact that we have defined the chain only up to

time Ma. The unique solution to (5.2.19) is

(Ma I\N(h,A)—l)
Vh.A(z’ nA) = Ez,'u[Z k(fh'A

I
=0

1i8)A]

5.2.21
+ bT(s‘;(}'f)I {Ma <n(h,a)} ()

+b1(6n,ap Nk, A)A) (g, 2N(h,4))

It is shown in Kushner (1] that VA2 (z,4) o V as h,A — 0 independently of
each other.

We have again that

Epnlmy — shi2lch2 = o) = 1(y)A (5.2.22)

covz,n[g’,’;ﬁ —¢hBeha < y] =2a(y)A + hAf(y)

- A% f(y)f'(v) (5.2.23)
=Zi(y)A
and we can set
st = SRS+ f(AB)A+ RS m> g ¢he =2 (5.2.24)

where {ﬁ,’,‘;A} is an orthogonal sequence whose conditional covariance agrees with

(5.2.3).

From this we can interpolate

FhA(g) = Teciata<ef (sM2)A,

, (5.2.25)
BM&(5) = DeciatacBid
for s € [t,T). Thus, dropping the subscript n, we have,
¢MA(8) =z + FhA(g) 4 BMA(s) selt,T) (5.2.26)
It turns out, (see Kushner (1]), that,
E:9(2(-)) = E.(9(X), hA—=0O (5.2.27)

102

This says in words that 9((t)) converges weakly to g(X(t)).

We can draw a connection with the above by noting that in the classical heat
equation in n dimensions, where f () =0,a;; = Ag? /2, the non-negativify conditibn
(5.2.14) reduces to 1 — nAo?/h? > 0, or nA < h? /o2, which is otherwise known
as the von Neumann condition for stability of the finite difference approximation of
the heat equation.

We now have a thepry that tells us how to set up a finite difference scheme in
which we can be sure that the statistical properties of the finite, discrete Markov

chain closely approximate the true solution.

3. Implicit versus Explicit Schemes

So many numerical schemes exist for solving PDEs that it often seems difficult to
make a proper choice among them. We briefly present here a set of guidelines that
will play a role in our decision-making.

Our model problem will be the heat equation, the simplest of the parabolic

PDEs. We have
Ut =Uzz, >0,

| (5.3.1)
v(z,0) = f(z), —-oco<z< oo

We can discretize in a natural way to obtain,

U(z,t+ At) - U(z,t) _U(z+Az) - 2U(z,t) + U(z - Az,t) —0
At Az B (5.3.2)

U(z,0) = f(z)
Letting A = At/A2z we get

U(z,t+ At) = A\U(z + Az, t) +(1-20)U(z,t) + AU(z ~- Az, t).

Thus if A < 1/2 we will have m SU(@,t) S Mifm< f(z) < M.

The condition A < 1/2 insures numerical stability, otherwise there would be
positive and negative oscillation in U(z,t) for some initial conditions. For the
n-dimensional heat equation, we would have to have) < 1/(2n), which is a burden-

some restriction when n is large. Even for n = 1 we have the problem that At has

103

to very small, so that for large T, one would have to discretize the interval [0, T}
into a large number of subintervals, the result being a computationally intepsive
procedure. This could pose a problem for us with respect to the Zakai equation, f-or
we may need At smaller than the sampling rate, which would require the solution
of the PDE in a number of time-steps within the sampling rate interval. However,
it must be admitted that explicit schemes have the numerically attractive feature
of being reducible to matrix-vector calculations, at the expense of constraining our

freedom of choice for At and Ax. Indeed, in the one dimensional case, we have
Uiy1 = TU,, (5.3.3)
where T is a tridiagonal matrix with row entries
A, 1-2)),

centered at the diagonal.

Implicit methods have been developed to counteract the confining nature of the
stability criterion of explicit schemes. These methods have the advantage of being
stable for all values of A, which means that Az and At can be chosen independently.
However, the method suffers from greater numerical complexity.

In an implicit scheme we replace the approximation to u; in (5.3.1) by

U(z,t + At) - U(z,t) _ U(z+ Azt + At) — 2U(z,t+ At) + U(z — Az, t + At)
At - ’ Az
(5.3.4)

the result being
AU(z+Az,t+At) - (1 +2A)U(z,t+At) + AU (z— Az, t+ At) = —U(z,t), (5.3.5)
this yields a linear system of the form
AUpyy = BU, ' (5.3.6)

where A and B are known matrices, that is stable in all values of).

104

This approach is suitable only if the problem is defined on a compact set with
respect to the space variables, otherwise the matrix is infinite dlmensmnal But we
were given f(z) for z € R, and so in general this technique will not be applicable.
(This case is called the initial value problem.) However, if |f(z)| < € for [a, 8], then
we can. use the compact set [a, b] as the domain for the z variable. Generalizations
to higher dimensions are obvious. This is precisely what we will do for the Zakai

equation, where f(z) corresponds to an initial density that obeys,
f(2)20, max {f(z)on [z,400)} =0 (5.3.7)
|z| 400

This fact can be exploited by transforming the Zakaj equation to a parabolic PDE
and using the theorems appropriate to this class of problems that show that its
solution are bounded in a way that is directly related to its initial condition. See
chap. 3 for more details.

We conclude that an implicit scheme is appropriate for our purposes, as we
wish to choose Az and At independent of the other, the latter variable being given
to us in the form of a sampling rate. It is also stable for all choices of At and

Az, Az,,....

105

4. Schemes for the Zakaj Equation

We will use the methods of Legland, (’81, [2]) who advocates the implicit scheme
(I+ AtA)uk.H =W, u; (541)
where ¥, is a diagonal matrix where each diagonal entry is of the form:
At 2
(Pi)is = explh(z:) - (Aye)i - — 1B (=) 7] (5.4.2)

and A = —L*, the operator L* being associated the Zakai equation.
Equation (5.4.2) is based on a numerical resolution that stems from an approx-

imation the stochastic integral. First we have
dus — L*u = uh(z)dy,, (5.4.3)

which we write in discrete form as

thya
Ukl — Uk + Aupyg / uh(z)T - dy; (5.4.9)
t

k

where the left-hand side has Aujy; instead of Au; to insure an implicit scheme.

Now a standard approximation of the right-hand side to the stochastic integral is
tiyy h 2
/ uh(z)T . dy, ~ ur[h(z)T - Ay, + #(Azytk - At)). (5.4.5)
tx

combining terms u;; on one side and ¢k on the other yields (5.4.5).

The n-dimensional domain that Legland [2] constructed is as follows. Over
all of R™, and given € > 0, we form G,. Thus (z1,22,...,2,) if there exists a
K = (ky, ks, s kn) € Z™ such that z; = kie.

Legland’s approach was to define the domain over all of R™ so as to avoid issues
pertaining to boundary conditions. (Thesg can be treated separately.) However, in
order to ensure uniqueness and convergence as At,e — 0, he required the following

conditions:

106

For the eliiptic diffusion operator,

L= a,',-D,-,-(-) + 6;D;(-) - (5'.4.6)
where o
D;; =
d 0z;0z; (5.4.7)
D; = 9 .
T — T.’l:,

is derived from the state equation:
dz; = b(z;)dt + o(z¢)dw,

a;; = (UTU);',', b; = ¢tk component of b(z;)

We have
a;; € By(R™)
(5.4.7)
[6:(-)] < C(R + |z])
and for the observation equation:
dyg = h(z,)dt + dvg
(5.4.8)

k(z) eCy (R™)
(Here, Cy(r™) is the space of bounded functions on R™.
Remark: These conditions are stronger than those mentioned in the previous two

chapters, which allow for coefficients of polynomial growth.

To combine our results of weaker conditions on coefficients with those of Leg-

land,[2] we choose a function ¥(z) € C*(R™) where
Y¥(z)=10n 0

where {1 is the compact domain found by exploiting the asymptotic behavior of the

solution of the Zakai equation. In addition, ¢(z) has the asymptotic behavior such

that
¢2a;j €Cy (R")

[¥b:] < C(R + |2]) (5.4.9)
[¥h| < M, for some M on R"

107

This corresponds to perturbing the state equation by

dz: = b(z)Y(z)dt + oy (z)dw, (5.4.10)

(¥(z) could be a matrix if necessary.) For example, for the bilinear equation in one

dimension ¢(z) = O(1/z) will be suitable.

Remark: Using this transformation, the theorems of Legland will follow through,
and the finite difference scheme on Q will be what we would obtain had we not used
¥(z), (but without which the theorems of Legland would not be applicable). But as
existence and uniqueness have already been decided for us by other methods, we are
interested in weak convergence of the finite difference scheme only on the compact
set {1; the behavior of the PDE solution outside of this set is already known to us,

as it has been bounded by an appropriate tolerance.

Thus the use of ¢ is merely a technical contrivance to accommodate the results
of Legland. For example, by proving that the linear system provides solutions that
converge weakly to the true solution as ¢ — 0, Legland [2] showed that the statistical
properties of the discretized solution approaches that of the true solution. In effect,
the finite probability distribution converges in law to the unnormalized density of

the Zakai equation.

The matrix (I + AtA) can now be explored. The reader should note how
we make use of the probabilistic information inherent in the matrix to derive its
properties. Also, we should also remember that these properties are important from
the point of view of numerical analysis, in particular, with regard to the relaxations
methods we will ultimately advocate for use in the Multigrid schemes to be described

in subsequent chapters.

We first use the scheme by Kushner already described and construct, for fixed

108

Az, a sequence of unit vectors 75$,1 <t <min R™. Then we have,

Lv(z) =1 Z “v(z + Azr;) — 2Av£z) +v(z - Azr;)

l 1 4+ y(v(z+Azri + Azrj) - v(z + Azr;)
72 (32545 (@) Az

_v(z+Arj) - v(2) + v(z) ~ v(z — Azr))

: Az Az
_v(z-Azr)) —v(z— Azr; — Axr,-))
Az

_ 1 _.(z)(v(:r, + A:z:r.-) —v(z+ Azr; — Azr)) _ v(z) —v(z - Azr))

2Az Y Az

v(z + Azr;) - v(z) _v(z-Azr, + A:t:r_,) - v(z - A:r:r.))

Az
+ Z (5 (=)v(z+ Azr.) - v(z) b)v(z) - v(z A::r,))
We can now write
Liv(z) = Y La(z,y)v(y). (5.4.11)

VEG,

And this implies

Li(z,y) = ——Z(au(z) -3 }: la:j ()]) - —Zlb ()]

J.‘#J
Ea(mz+Aan) = prr(ene) = 3 lass(@)) + bt (2
$3#]
Lalez = 8ar) = g (ie) = T lag(a))+ b e)
In#s

1 . 4
Li(z,z+ Azr; + Azrj) = Li(z,z — Azr; — Azrj) = ZAzxa?j fori#j
) s 4
Ly(z,z+ Azr; ~ Azr;) = Li(z,z — Azr; + Azrj) = ma‘.’.(z) fors #
Li(z,y) =0 for z,y not in G
We note that L(z, y) > 0 provided that
ai(z) - 3 lass(a)] 2 0, (s.4.12)
Is#S
and that A(z,y) = —L(z,y)*, where L* is simply the transpose of L.

109

What does L(z, y) look like in matrix form? For the one dimensional case it
is tridiagonal with negative entries down the main diagonal and with non-negative

entries elsewhere as shown in eq. (5.4.13).

©+ |

+ 0
- +
+ - (5.4.13)

+ +o-
o

Now suppose the Markov process is at a point z;. The examining the y** row of
L gives three values centered at the diagonal. The absolute value of the diagonal
term, or Q(z), is the expected time for the Process to remain at z; starting from the
time of its arrival. The value L;;-1/Q(z) is the transitional probability of going to
the point z;_; given the Markov process was at z;. And the term L;;,,/Q(z) is
the transitional probability of going to Zi+1 given we are at z;. We also have the
property, as a result of this probabilistic interpretation,
> li—"I =1, (5.4.14)
Jii#s
implying L;; < |Ly|. 7
Note that if A = —LT then I + AtA has a sign convention negative to that
depicted in (5.4.13). Also the diagonal terms will all exceed unit magnitude.
Legland, [2], used the above scheme in an application to radio astronomy. His
problem was in one-dimension. We will extend his results to higher dimensions.
Now suppose we have a problem in two space variables and one time variable.
Then if our initial density was say, a Gaussian, we could construct a rectangular
domain in the space variables. Thus, at each time-step, we are dealing with a

rectangular domain in 2-space and attempting to solve the linear system,
(I+ AtA)uk.H = Vu;. (5.5.15)

Note that the matrix on the left is independent of time and the observations y;.

110

Now suppose we use a natura! ordering scheme for the grid points. This means
that we choose a point at the upper left corner of the grid and label the value of u

associated with it ug), Le., as the first component of the vector u,. As we move
left to right we also form u&z),us,s),... and so on. Such a numbering scheme mlay
not alWays be permissible or desirable for general domains, but it has an especially
attractive appeal here. Furthermore we have a probabilistic interpretation for the
matrix L(z,y).

We find that we have a block tridiagonal matrix where the diagonal blocks are

of the form as in (5.4.16), while the off-diagonal submatrices are also tridiagonal

but with non-negative entries.

Dy, D, 0, 0...,0
D, D, D3 0,..0
0, .-, 0 (5 4 16)
o..,0 Dk,k—l Dk,k Dk.k-f-l o,...,0 o
0,....0
0, ...O, 0 Dn’n—l Dn'n

This is the most general case as we are allowing for mixed second order partials.
If no mixed partials are present, there are only four nearest neighboring points to
choose from. In which case the two outer bands in (5.4.16) only unit bandwidth.
Now consider a grid point in the :** row of the domain. This corresponds to the
#** row-block of the matrix L(z,y). Now let the grid point be k points from the left.
Go to the ¢tk row diagonal block submatrix and examine its k** row. The diagonal
entry on the k** of this submatrix is negative, and the absolute value of this term
is the expected mean time for the Markov chain to remain at this point. Then the
entries to the left and right of this diagonal value value correspond, when divided by
the absolute value of the diagonal term, to the transition probabilities of the Markov
chain going to the left or right, given we were at the center point. Of course, the
Markov chain could also go to the top or bottom row of the domain, or to the

northwest, northeast or southwest, southeast points, there being the eight nearest

neighbors to choose from in the general case. Transition probabilities of going to

111

these points can be obtained by observing the submatrices of L(z,y) corresponding
to the (1,7 + 1) block and the (i, — 1) block. Here, on the k** row of each of these
submatrices, we find the three numbers centered at the diagenals. In the (f,i+1)
block, the three numbers when read from left to right, correspond to probability
of moving to the upper left hand corner, directly above, or the upper right hand
corner. Similarly, the three values centered at the kt* diagonal row of the (1,5 — 1)
block submatrix correspond, when read from left to right, to moving to the lower
left hand corner, directly below, and to the lower right hand corner.

We therefore have the

Claim: The matrix I + AtA identical in structure but has non-negative entries
opposite in sign to that depicted in (5.4.13).

Generalizations to higher dimensions are also possible, at least for the case of
rectangular domains with natural ordering. In three dimensions we would still have
a tridiagonal block structure, with the central diagonal band being a repeat of what
we had in two dimensions and the outer blocks being tridiagonals corresponding
to the points to which the Markov chain could jump, there being at most 27 such
points. We would still have positive diagonal entries with non-positive entries else-
where. Extensions to even higher dimensions still have the same structure: with fhe
preceding matrix being repeated as the central band and the outer block matrices
corresponding to the “new” points that the Markov chain can jump owing to our
being in a higher dimension. All such matrices are band-limited and very sparse.
We might remark at this point that, because of the sparsity of the matrix, storage
of the non-zero entries will not be too burdensome.

For simplicity of exposition, we will consider domains in R™ in the form of
hypersquares with uniform grid spacing. Generalizations to hyper-rectangular do-

mains will be clear.

Claim: Consider the sequence of kypercubes Gy with n? points, where d is the

dimension of the problem space and n is a fixed number (and equal to the width

112

of the cube.) Let Dy be the matrix of 0’s and +, — signs in the same pattern as
would be found in I + AtA corresponding to the Zakaj equation discretized on the
n? cube. Thus D; obeys the pattern found in (5.4.13) and D, obeys the pattern
found in (5.4.16).

Then if I+ AtAis an n? x n? matrix defined on G4, I + AtA defined on Gain

is a ndt1 x nd+1 of the form:

Dy T o,..0 0
T Dy T 0.0 o0
D4y = 0, o0,..,0 0,...0 (5.4.17)
o..,0 Dy T 0
0,..,0 T Dy

where T is a tridiagonal matrix of negative entries. There are also n blocks in Dy,,.

This result follows from our natural ordering scheme. We begin our labeling
with a d-dimensional hyperplane cutting through G4, near the boundary. The
numbering of this hyperplane yields a matrix pattern identical to what we had in
Dy. Now for any point, we have nearest neighbors that correspond to the points
in the d-dimensional hyperplane already accounted for, and also nearest neighbors
corresponding to the additional increase in dimension found in Ga+1. As we can go
in a plus or minus direction along this dimensional we have two possibilities, each
corresponding to the two submatrices T on both sides of Dy. Remember that T,
along with Dy, are matrices that have the same structure as we would actually have
upon deriving I + AtA. Hence, T is a tridiagonal matrix with negative entries.

Now L* is simply the transpose of L, hence it has the same structure. Thus
the matrix

(I- AtL*) = (I + Ata) (5.4.18)
has positive terms along the main diagonal. Now we define:
Defn: A matrix B = bi; of order n has strong diagona.l‘dominance if, for all ¢,
n
[basl > D bl (5.4.19)
Ien

113

Claim: For each dimension d, the matrix I + AtA has strong diagonal dominance.

For we have:

n
> At < Ata (5.4.20)
gt '
by (5.4.13). Thus

n
> AiAt < 1+ Atag (5.4.21)
y=1
I#

We make some further observations. If d is the dimension of the problem, and
if there are no mixed partials in the Zakai equation, we have at most 2d+ 1 nonzero
entries in each row vector of our matrix I + AtA. Allowing for mixed partials, we
have at most 3¢ nonzero entries in each row vector.

We form the,

Defn: Let the sparsity measure p of a matrix be defined as

number of nonzero entriesin I + AtA
total number of entries in I + AtA

Claim: For a problem in d dimensions in the discretized hypercube of n? points,

we have

2d+1 3.d
< < {- 4.
—— < u(I+At4) < (n) (5.4.22)

This follows as our matrix is of dimension n¢ x nd, thus, for the case of no mixed

partials:
d
n?(2d + 1)
——— = u(l + AtA
(n9)? n(I+)
Note that if n is kept constant, which is tantamount to having a sequence
of hypercubes with constant width but growing in points as n¢ and dimension

increases, the sparsity is bounded by an exponentially decreasing function (%)‘, if,

as is natural to assume, n > 8.

Claim: Consider the sequence of hypersquares whose total number of grid points

obey the relation n¢, where n is a constant. Then, for dimension d, the bandwidth

114

of I + AtA obeys
ba =bg_y +2(n + 1) ford>2 " (5.4.23)

We note that b, = 3.

This follows since the derivation of I+ AtA for a given dimension (> 2) showed
that, for the diagonal band of submatrices, each submatrix had the same structure
(same +,~ and 0 scheme) as was fond in the entire mafrix of I + AtA in the
preceding dimension. For example, in two dimensions we have a sequence of diagonal
blocks any one of which is formed exactly the same way as was done for the one
dimensional case. This same pattern is true in general. The n + 1 term occurs
because our labeling is such that we must move n + 1 points to reach the nearest

neighbor corresponding to the (d + 1)** dimension.

Question: Why don’t we find (I+ AtA)~! and simply execute the operation:
tni1 = (I + AtA) 1u,?

This is a multiplication and therefore simpler to perform than finding the solution
of the linear system. Also (I+AtA)—1is precomputable, which would seem to be

an added incentive.

But
_ ~ I+ AtA);;
#i
and since

I+ AtA),,
0> Z T+ AtA); AtA),,
:'#i

it follows that we could have a nearly vanishing quantity in the |-| term. This would
give || 4 AtA||~! >> 1, which will lead to instabilities.

Weak convergence of the discrete solutions to the true solutions of the Zakai
equation in a way that is independent of how At and Az to to zero was shown by

Legland, (’81, [2]), although restrictions were made on the Zakai equations requiring

115

k(z), o(z) to be bounded and a(z) to be at most linear. However, if the PDE
problem can be truncated to a bounded domain in a way described in chapter 3,

then the same results should hold.

5. Conclusion

We have presented a brief introduction to the theory of weak convergence for finite
difference schemes for PDEs. These schemes yield a natural probabilistic interpre-
tation to the underlying stochastic process, which in turn is very useful in describing
the structure of the matrix built by our implicit scheme. Also, the discrete solutions
to these schemes converge weakly to the true solution as Az and At tend to zero

independently of each other.

We have also used the following chain of reasoning in this chapter. First the
asymptotic estimates described in an earlier chapter lend themselves to the conve-
nient formation of a rectangular domain. This in turn led to a natural, left-right
ordering scheme. The determination of the structure of the resulting matrix in our
linear system was aided by its inherent probabilistic interpretation, stemming from
the special, implicit finite difference scheme. This revealed a block tridiagonal ma-
trix, denoted as (I + AtA), which has positive diagonal entries and is non-posxtxve

elsewhere.

Now when we turn to Multigrid techniques, which can be viewed as any other
linear system solvers, knowing the structure of (I+AtA) gives us useful information,
such as the fact that the strict diagonal dominance available in all n-dimensional
problems, implies that our matrix will require no pivoting. Also, a real, strictly
diagonally domain matrix has a non-zero determinant and is positive definite. (For
a proof, see Young, [3].)

We will also have to choose a relaxation scheme, which is an iterative process
designed to improve our first estimate of the solution. There is a multitude of such

schemes, (see Young, [3]), but our choice is determined by the structure of the linear

116

system. It turns out that we have all the information we need to make an intelligent

choice, which will be demonstrated in subsequent chapters.

117

References for Chapter 5

[1] Kushner, H. and Yu, C., “Probability Methods for the Convergence of Finite
Difference Approximations to Partial Differential Equations,” Jour. of Math.
Analysis and Appl., vol. 43, 1973. ‘

[2] Legland, F., Estimation de Parametres dans les Processes Stochastiques en
Observations Incomplete, Ph.D thesis, L’Université de Paris, IX-Dauphié, 1981.

[3] Young, D., Iterative Solution of Large Linear Systems, Academic Pr. 1971.

118

6. Elements of Multigrid Theory

1. Introduction

This chapter is intended in part only as an overview of the Multigrid theory. We
cannot possibly give a detailed survey of all of its technical fine points, nor would
this even be desirable, as much of the general theory would only vaguely be related
to our own, or future, research. Our own results, which are directly relevant to the
Zakai equation, will also be presented.

Although we will keep our account relatively straightforward, the reader should
be forewarned of the following facts. Multigrid theory is still in its infancy, having
essentially begun in the late 70’s; there are many elementary questions that have
yet to be answered. It is therefore more an art than a science, and m;ny of the
techniques are ad hoc and somewhat lacking in theoretical validity. This also means
widespread differences in notation and orientation among the various authors, (for
a bibliography of the Multigrid literature, see Brand, [2]). For example, the theory
has found perhaps its widest audience among researchers in fluid dynamics, and_so
the literature is often biased in their favor and their more specialized problems.

Another contention is that theoretical research, especially in the form of con-
vergence and complexity analysis, is viewed by the practitioners as being too pes-
simistic when providing bounds on performance. They prefer what is known as
model problem investigations, in which the numerical results of a typical problem
are treated as a benchmark for all similar cases. This, of course, lacks generality,
but bounds on performance inferred from such work are usually tighter than those
of the theoretical approach.

We will employ this same approach. The standard model problem that is
used throughout the Multigrid literature is Poisson’s equation on a two-dimensional
rectangle. While not discounting the usefulness of this work, we prefer more relevant

models, so we proceed with a Multigrid analysis of the heat equation and continue to

161

the more general Fokker-Planck equation. While the techniques we use are standard
tools of Multigrid theory, we believe the work presented here is original. -

The outline of this chapter is taken largely from Brandt, [3]-]4], Stiiben and
Trottenberg, [12], with convergence results from Hackbusch [8]-[9]. Our strategy is
as follows. We assume little or no familiarity with the Multigrid algorithm on the
part of the reader, who will soon find that the theory is not conceptually difficult,
just somewhat detailed. Therefore we will begin with simple examples and proceed
to add more and more éomplexity as we go, rather than start off with the full
abstract theory.

The reader is also encouraged to peruse the excellent Multigrid Methods pub-

lished by Springer-Verlag, [8].

Main Results: demonstration of the relevance of the Multigrid algorithm to rapid
numerical analysis of the Zakai equation, development of Fokker-Planck equations
as Model problems of the Multigrid method. Questions regarding convergence and

stability of methods with respect to parametric changes explored.

2. The Multigrid Perspective

The fundamental idea of Multigrid or MG theory is easy to understand, and es-
pecially transparent using only two grids and in two dimensions, but by no means
is the theory restricted to this special case. Suppose a PDE to be discretized on
the finer grid G}, which we assume for the sake of simplicity to have uniform grid
spacing k, and that an approximate solution u* to the discrete L*U* = I* is given.
(Like all numerical methods, the MG method requires an initial approximate solu-
tion. Usually, such approximations are obtained essentially for free; for example, a
solution from a “nearby” problem could be the supplier. For the time-dependent
problems which interest us, the logical candidate is the value of the solution at the
previous time-step). Here, the term h refers to the fineness of the grid, which has

been determined from an implicit finite difference approximation of the PDE and

162

its stability requirements. Now imagine that we had the true discrete solutjon Uk,

Then we could find the Fourier expansion of the difference on the ﬁnervgrid G,
- | :
ut —U* ~ 3 gpeins, (6.2.1)
k=0 '

Now conduct a relazation on the fine grid. This involves the use of an iterative
procedure such as Gauss-Seidel, Jacobi, factorization, or many others. While these
methods will be described in more detail later in this paper, suffice it to say at
present that, given a good initial approximation as a starting point for iteration, all
such methods are very effective at reducing high frequency error. Thus, after only
- a few relaxation sweeps or iterations, such as four or five or even less, the terms in

the Fourier series in (6.2.1) are transformed:

Z akciwk: = Zékcﬂuz,
where

ai ~ a; for k “small”,

" and

lax| >> |ai| for k “large.”

The value of the solution after smoothing can be measured by examining the defect

equation,
d* = fh — Lryh, (6.2.2)
which is derived by defining,
vh = U* — yb, (6.2.3)
implying that we solve,
dh = Lhyh, (6.2.4)

It is clearly in our interests to make d* as small in norm as possible, and since L is
assumed to be linear, continuous and to have full rank, this implies v* is also small
in norm as is desired.

163

Because of this newly obtained smoothness, the defect equation can be trans-
ferred to a coarser grid without the loss of too much information, since.the highly
oscillatory error components have died down. Then the correction denoted by y2h

which solves

L2hv2h = d2h

can be found, by directly solving this less computationally expensive equation. (We
will only briefly remark that in the multiple grid case, once transferred to the coarser
grid, the identical procedure can be repeated with a still coarser grid. This in effect,
repeats the whole process.) The correction is transferred back again to the finer grid
by interpolation, which yields v* and the sum u* + v* is then used as a starting
point for more smoothing. This is the basic idea of nested iteration: the use of
coarser grids to obtain good initjal approximations for relaxations on finer grids.

Three elements of the MG method can so far be identified:

1). error smoothing by relaxation

2). calculation of corrections on coarser grids and recursive application

3). combination with nested iteration.

We will go over the above ideas in more detail in this chapter.

At this point one might well ask: why use Multigrid methods at all? Why not
solve the linear system directly, or exclusively use iterative methods and allow them
to converge? The answer s that direct solvers have a computation time that grows
linearly with n, the width of the finest grid, while Multigrid methods can actually
do better than this. What is more, direct solvers take longer to solve problems in
higher dimensions than do the methods described here.

As for relaxation schemes, slow convergence is a typical problem, although they
are perfectly suited for parallel implementation, as they rely only on “local” infor-
mation when a sweep is performed. Thus, relaxation schemes have a computation
time that is independent of the size of the grid. In Multigrid theory, such schemes

are used only for smoothing the high-frequency error as a prelude to intergrid trans-

164

fers, which, we might note, can also be done in parallel.

The Multigrid algorithm is therefore an attempt to preserve the highly parallel
structure of relaxation algorithms, while overtaking their slow convergence rates by
reducing the original linear equations to systems of lower dimensions.

The only direct solving to be performed in the Multigrid algorithm is on the
coarsest grid which can be made as small as we like, at the cost of increased grid
levels. Because of its naturally parallel properties, it turns out that the Multigrid
method has a computation time that is essentially independent of the dimension of
the problem. Because we wish to compute in real-time, such a numerical method is

- a ideal candidate for investigation.

It is difficult to pinpoint when and how Multigrid methods originated. The
smoothing effects of relaxation techniques were known at least in the mid 1940’s
and the use of coarser grids for an efficient solution to a system on a finer grid
was {nvestigated in the 1850, but no smoothing was utilized. These came under
the heading of reduction methods. Also, Russian mathematicians employed the
concept of nested iteration in the early 60's. (See Stiiben and Trottenberg [12]for a
discussion of this early history).

Multigrid theory as we know it today is due largely to Brandt, who developed
it in the 70’s (see [3]-[4]). He introduced nonlinear techniques, adaptive grids, the
possibility of local refinement and the use of “local Fourier analysis” for studies in
convergence and optimization. These terms will be expounded upon later.

Research in Multigrid methods began in earnest after 1977, most of it centering
around Finite Element methods and numerical fluid mechanics. Problems such as
singular perturbation phenomena, transonic fow, shocks, the treatment of Euler
equations and the Navier-Stokes equations received special attention.

What has been the response to MG techniques over the last decade? Numerical
analysts who gave their loyalty to older, more established methods were frequently

resentful of the new theory, mainly for two reasons: the original theoretical analysis

165

gave rather pessimistic upper bounds on complexity, and attempts to duplicate the
algorithm often did not make use of the various “tricks” the MG experts had at
their disposal. Hence performance was less than expected. In the case of stan&aid
problems (simple elliptic 2-dimensional problems of second order), MG techniques
were first thought to fare worse than direct fast solvers and other methods. The
development of expertly designed programs have shown that MG methods are at
least competitive in these areas in addition to being more readily extended to higher
dimensions. In fact, their decisive advantage is that they can be applied easily to
problems which do not meet the requirements demanded by direct fast solvers and
capacitance matrix techniques. These latter techniques have had Pperhaps their best
success with Poisson’s equation.

Finally, we mention that there is still active research in Multigrid theory still
going on. Most of it centers around the following issues:

1). Multigrid methods for nonlinear PDEs.

2). Complicated domain problems, such as crack deformation studies or do-
mains with very sharp corners.

3). Adaptive techniques involving domain shut-down or extension, or structural
changes i’n the algorithm itself,

4). Integration of Multigrid techniques with Finjte Element methods and their
more difficult grid topologies.

5). Irregular boundary conditions.

Fortunately, as the problems listed above are far from resolved, we will avoid
these issues in our own research.

This section was designed only to provide a brief overview of Multigrid theory.

The next section will give a more detailed presentation.

166

8. Multigrid Algorithms

We now present here, in earnest, a brief explanation of the theory and practice of
multigrid algorithms. |
In its most general setting, multigrid problems are stated as the following: "
Find u € H such that a(u,v) = f(v), Yve€H,
where H is a Hilbert space, a(,')isa continuous symmetric bilinear form on H X
H,f:H—-Risa continuous linear functional. In general, for elliptic PDEs, we
also assume that a(-,*) is coercive, which implies , a(v,v) 2 collv]|®, Vv € H,
and which guarantees a unique solution. However, the parabolic case can also be
included and certain degeneracies allowed as long as uniqueness and stability of the
discretized linear system is guaranteed.

The above problem will, of course, correspond to a PDE of the form,
LU(z)=f(z) 2€OC RS, (6.3.1)

with suitable boundary conditions. We will also assume throughout this discussion
that L is linear. For purposes of illustration, it will be more useful to concentrate on
the formulation in (6.3.1). In performing our numerical analysis, we would begin by
discretizing it in a pre-assigned way on some bounded uniform grid Ga with mesh
size h, which would have n¢ points. Assume, for the sake of simplicity that the

domain is a rectangle. The resulting finite-difference equations would be
L*Ut(z*) =0 2" €Gh, U* = & on 8Ga (6.3.2)

Now assume our grid-points to be arranged on the rectangle in such a way that
UM (s,) corresponds to a value of U* at the point (3, §). Then we can map this

array of point values into a vector where
Uh(i’ J.) - U(s'-l)n-i':'

where n corresponds to the width of the rectangle. Hence the equation in (6.3.2)

can be viewed as representing this a linear system with unknown vector solution

167

U*. Generalizations for higher dimensions also exist. Of course, this is just a formal
representation. When we come to a discussion of how to implement the Multigrid
method on an actual system, different representations will be needed. -

Thus U*(Z) is a discrete approximation to U(z) and at various stages of the
solution process we will have on G an approximation to U* which we can denote
as uh.

The multigrid approach involves adding to G a sequence of coarser uniform
grids. Let Gan be such a grid, with its mesh size of 2h. Then one way of obtaining

the approximation u? to U* is first to obtain an approximate solution u2* which

corresponds to the problem,
L2k (z2h) = 2%, 2 € G, (6.3.3)

which is less expensive as it contains half as many unknowns. Then uP would be

obtained by interpolation,

o = I (),

where the symbol I2, () stands for the interpolation process from G2 to Ga. The
simplest interpolation scheme would be the linear case in one dimension defined by

2h(=h) if zh
hor ah(ahY) — LY (zh) ifz e G(h)
I3, (u** (2)= { _;.(u%(;;h -R)+ uh(zh + R)), otherwise,

where h = (h, h, ...h), d times. If the above is a first-order interpolation then higher-
order interpolations are also possible and can be performed as sequence of one-
dimensional interpolation. Sometimes the higher-order approach is necessary to
produce better approximations to u*. It can be shown that the optimal order
dependsina simple way on three numbers: a), the order of the differential equation,
b), the order of the discretization error, and c), the order of the derivatives we
seek to approximate. (The reader should also convince himself that obtaining an
approximate solution u2* could also be performed by solving an equation similar to

(6.3.2) on Gans ard then using interpolation. Hence a sequence of nested grids can

be readily constructed.)

168

jon schemes are available. In the case

Of course, other interpolation and inject

oints have been numbered in

of two dimensions, we assume we have grids where p

such a way that the coarser grid obeys,
Gan = {Z2n = oxh: k€ Z%).

erefore be zp € (—3h,2h) € G, while (—6h,4h) € Gap.-

Examples could th
let wi(z) bea function defined on G.

Now, as an example of injection, Define

V C Z? and a,. to be a sequence of real numbers corresponding to each k € V.

Then,
I,zl"w;.(z) = Z a,wi(z+ hx).

kEV

A typical choice of such an injection operator is to define V to contain a subset of

the set of elements of the form:
(£1,£1), (0,£1), (¥1,0), (0,0).

The injection operator would then have elements of the form:

a-1,-1 @o0,1 a1l
a—-1,0 p,0 a1.0 (6.3.4)
a_j1 @01 ©1,1)

of which a typical examplé would be the Full Weighting operator:

L[t 2
iz 42 (6.3.5)
1 21

otation discussed before, with U™™ vector, the injector can

Using the vector n
matrix whose row values correspond in a

natural

"be thought of as a nm/4 X nm
). The result will be 2 nm/4 vector.

way to appropriate values taken from (6.3.5
A to G can also be defined.

In a similar way an interpolation operator from G2
To do this we define, for each y € Gan,

wiy(2) = Bewan(y) forz=y+ hx with x €V
89(2) =0 for z=y+hrwith s ¢V

169

Thus we set

wi(z) = E wh,y(2)-

yEGar
As in the previous case, the collection of coefficients §;; can vary but the most

frequently used method is the bilinear interpolator represented by

L1 2}
-2 4 2 (6.3.6)
1 21

As in the remark above, 2 matrix interpretation is also possible for the interpolator,
namely as a nm X nm /4 matrix with row values corresponding to the expression in
(6.3.6).

It turns out that the full weight injection and bilinear interpolation operators
are adjoint to one another. Extensions to higher dimensions are also poss{ble.

The interpolation accuracy depends on the smoothness of U*. In fact, Uhis
often so smooth that if the orders of the interpolation and the coarse grid operator
are high enough so as to properly exploit that smoothness, then =1 ;‘h(u”‘) will
satisfy,

llu* - Ul| =o(llt* - UlD.
In words, we say that «h solves LAU*(&*) = f* “to the level of the truncation
error,” which is the best that any numerical procedure can reasonably hope-to
attain. However, in such cases, the fine grid would not really be needed at all, the
coarser grid already providing a solution of sufficient accuracy. Thus if the fine grid
G) is at all needed, the approximation u? will require considerable improvement.

Now that we have u®, we wish to compute a correction to it. What we need is
an approximation to v* = U A _ 4. Such an approximation #* to v* would yield

u® + o*, which would serve as our «correction.” We find that,
[P =db, v*=¢" ondGa (6.3.7)
which corresponds to
LMo = - db u* = &* — ¢* on AG, (6.3.8)

170

where we have assumed that L* is linear. Equations (6.3.7)-(6.3.8) are known as
the residual equations and it turns out that the right hand side, dh, will usu_ally
fluctuate rapidly on Gn with wavelength less that 4h. If we try to solve (6.3.7) oh
the coarser grid, as we tried before with (6.3.2), we will lose this high-frequency

information and obtain a very poor approximation to vk,

Presumably, what is needed is an error smoother, i.e., some operation on uh
so that the error ot = Uk —uht or d*, is no longer rapidly oscillating. An efficient
error smoother is obtained by relazation sweeps. For purposes of illustration, a
good example is the Gauss-Seidel relaxation sweep. (This is not the method we

-would propose in general, as it is not very suitable for parallel implementation, but
it, perhaps, best demonstrates the concept of relaxation). In this process, the old
value uh (i‘:") at each point is replaced by a new value which is computed so that
(6.3.8) is satisfied at that particular point z*. Each point zZ* is then scanned one
by one in a prescribed manner. After one sweep the system (6.3.8) is mot solved,
due to coupling of the equations, but the new approximation u® is hopefully better

than the old one.

In principle, with more sweeps, this technique can actually solve (6.3.8), but
not very efficiently, due to its slow convergence. However, the technique appears to
remove the high-frequency, components of the rapidly oscillating error very well in

just a few sweeps. (For a more indepth discussion of this behavior, see chapter 8.)

When relaxation sweeps tend to converge (successive differences between them
become small), they should be discontinued. Now we have a function, * = U* - ah
where LM o* = d* which can be successfully solved on G3j without loss of too much
accuracy, since the high frequency components of the error are now virtually gone.
Thus we would have LM (v?*) = I3*(f*) where I2* might simply be an injection
from G to Gzha. The role of relaxation methods in multigrid techniques is not
to reduce the error as much as to smooth it out so as to allow such coarse-grid

approximations. In fact, relaxation sweeps make up most of the multigrid work.

171

To recapitulate what we have done so far:

1). We went from a fine grid to a coarse grid to solve less expensive approxi-
mation.

2). New solution u* was obtained by interpolation from coarse to fine grid.’

3). Error in fine grid solution was smoothed out by relaxation.

4). Converted back to coarse grid for improved solution.

5). Now have solution of form uk + oh = U*. This can be further smoothed if
desired.

The process can be further generalized by noting that (6.3.8) can be treated as
above, namely, by obtaining an initial approximation from a still coarser grid G4k,
then relaxing in Gz, and then obtaining a coarse grid correction using G (» again.

A remark on the varieties of grid designs is in order. Throughout this chapter
we will be using the simplest grid design (G », G21), only because it is the most
accessible. But it would be a mistake to suggest that this is the only option open
to us. We therefore briefly describe some other standard grid designs, with the
understanding that still others are available.

Four possibilities of Gy, the coarser complement to G, are:

1). Standard coarsening: H = 2h

2). Semicoarsening: z,-coarsening, H = (2hz,, hz,) or zq-coarsening, H =
(hzys2hz,)-

3). Red-Black coarsening: There are many variations bere. For a simple ex-
ample, consider a square grid, h = hz, = hg,. Then Gg can be identified with a

stretched, rotated grid of mesh size H = V2h:
Gu={z=hx:x= (k1,%2) € 72 Kk, + K3 even}.

4). Quadrupling h: H=4h.
Each of these designs is especially suited to certain kinds of relaxation schemes,

which will be discussed in 2 chapter devoted to such methods. Other details and

172

variations of the Multigrid method exist as well and have been especially designed
for nonlinear problems. More information can be found in Stiiben and Trottenberg,
(12]. |

In the words of Brandt, [4]: “The multigrid methods are systematic methods
of mixing relaxation sweeps with approximate solutions of residual equations on
coarser grids. The residual equations are in turn also solved by combining relaxation
sweeps with corrections through still coarser grids, etc. The coarsest grid is coarse
enough to make the solution of its algebraic system inexpensive compared with, say,
one relaxation sweep over the finest grid.”

Our problem then is on a rectangle in R? with a regular nd point grid. The com-
plete Multigrid cycle can now be described. The number of grids used is typically
three or four, although in principle one can proceed from a fine grid of processors all
the way down toa single processor. The idea is still the same, smooth on finer grids,
using coarser grids to give approximations for the relaxations, and direct solve with
the coarsest grid.

Case 1: 2-level grid

One complete multigrid cycle would do the following:

1). Given an initial approximation, conduct a few relaxations sweeps on the
finest grid.

2). Inject the defect equation to coarse grid and direct solve. With half the
grid points, this will be half the computational expense of using the first grid.

3). Interpolate from the coarse to fine grid and using the approximation from

2), continue relaxation sweeps. The result should be within the truncation error.

Case 2: 8-level grid
For one cycle we proceed as before:
1). Smooth on finest grid with initial approximation
2). Inject defect equation to second grid and smooth, with gero as an initial -

solution

173

3). Inject to coarsest grid and direct solve

4). Interpolate to second grid and smooth

5). Interpolate to finest grid and smooth

For two inner cycles on three grids we have an inner loop that acts like the
2-level case: |

1). Smooth on finest grid with initial approximation

2). Inject to second grid and smooth

3). Inject to coarsef grid and direct solve

4). Interpolate to second grid

(Up to now it is the same as before. Now the inner loop begins. Compare with
Case 1.)

5). Smooth on second grid

6). Inject to coarsest grid and direct solve

7). Interpolate to second grid and smooth

The inner loop is now finished.

8). Interpolate to finest grid and smooth

The case of three cycles on a 3-level system contains two inner loops identical
to the 2-level method. Extension to the 4-level case is equally straightforwird.
By now the reader can easily follow the diagrams in fig. (6.3.1). Examination of
fig. (6.3.1) reveals why MG practitioners say that their programs exhibit a “V”
or “W” shape structure, which corresponds to one or more inner cycles of the MG
algorithm. Once again, the number of smoothing sweeps may vary on each grid,
and this number will be preselected.

The following questions come to mind:

1). For a given problem, bow many grids and cycles should one use?

2). What choice among the many available smoothing algorithms should be
made, and how is the aumber of sweeps to be performed on each grid to be selected?

One would hope that the Multigrid theory would be sufficiently advanced that,

174

Level

Coarse 1 ds ds
7\ 7 N\
2 m+j m\
Fine 3 j m

ds: Direct solves j, m: number of smoothing sweeps.

Level
Cosrse | ds ds ds ds
N/ N\ VAR 7 N\
2 J m J m+) m
N/ N\
Fine 3 J m

ds: Direct solves j m: number of smoothing sweeps.

Figure 6.3.1 Schematics of Multigrid Algorithms

given a problem, one could derive a recipe of grid levels, cycle and smoothing
sweep numbers from which to write an MG program that provides truncation error
accuracy in optimal time. Unfortunately, the MG theorists are unable to offer such
advice except in special cases, and even then their estimates turn out to be more
conservative than optimal. As Brandt, [4], points out the typical problem is that
the numerical analyst, new to the intricacies of the multigrid method, will construct
a program to solve & PDE, but finding that it will work,i will still wonder if this is
the best efficiency on could hope for. Because of this, the current strategy among
the practitioners is to exploit model problems that are representative of & class of
problems. While convergence can already be guargnteed by theory, any program
optimization can be performed on the model and shown to hold for all “related”

problems. Thus, it is mostly by pumerical experimentation, guided by theoretical

175

considerations, that lead to optimal designs.

For our purposes, we would use a Zakai equation with the dy: term-set equal
to zero. (This leaves the Fokker-Planck component.) Then we can fine-tune the
algorithm so as to work as fast as possible, and then show our design will still hold
when ébservations drive the equation. A discussion of convergence for the model
problem of this equation will be provided in a later section.

As for relaxation methods, the number of sweeps on each grid could also be
determined by model problem analysis, but the following considerations would have
to be made regarding the actual choice of the relaxation method:

1). The method must be suitable for the PDE being analyzed. Brandt [4] argues
that the choice of relaxation technique is the most problem-dependent aspect of the
MG method. The idea is to smooth out the high-frequency error components as
rapidly as possible.

2). The method must be suitable for high-speed parallel implementation. The
reader will see that such methods vary widely in this regard.

3). If desired, the method must be suitable for asynchronous operation with
the necessary architectural over-head being as low-cost as possible. Later we will
show why such a feature might be desirable.

One can imagine the class of relaxation methods being subjected to an approval
rating under each of the above criteria in turn. Under each category, an appropriate
subset is formed. Presumably, the intersection of the three sets would form the
choices we could make. In a subsequent chapter, we will do exactly this, and
show that such an intersection is non-empty. We will then provide the appropriate
relaxation method to be incorporated into the Multigrid algorithm to solve the

Zakai equation.

176

4. The Recursive Structure of Multigrid

The reader has probably already detected the built-in recursive nature of the MG
algorithm. This becomes especially lucid when a pidgin ALGOL language is used
to desgribe the program, as will be seen in a later chapter. For now we will rem:'«xin
content with a more detailed listing of a one-cycle full Multigrid program. Let there
be K point-grids which we will denote by G1,G2, ...,Gx with the finest being Gk
and the coarsest being G1.

The finest grid contains the problem:
LXUX = fX. (6.4.1)

Smoothing Part I:

Given an initial approximation to the problem in (6.4.1), smooth 7 times to

obtain u¥.

Coarse-grid correction:
Compute the residual d¥ = jK - L¥ uk,

Inject the residual into the coarser grid Gx-1,
dK-1 = [E-14K.
Compute the approximate solution %1 to the residual equation on Gx-1:
LXK =dF (6.4.2)

by performing ¢ > 1 iterations of the Multigrid method, but this time we will be
using the grids Gx-1,G k-2 ...,G1 applied to equation (6.4.2).
Interpolate the correction oK = IK_ 0%~

Compute the corrected approximation on GK,

oK 4+ 5%, (6.4.3)

177

Smoothing Part II:

Compute a new approximation to UX by applying relaxation sweeps to uK +

The reader will detect the recursive structure of the algorithm entering just
after eq. (6.4.2). Here the algorithrh simply repeats itself, so in the case ofc=1
we have initial smoothing, computation of residual equation, injection to coarser
grid, all until the coarsest grid is reached, where the equation is directly solved.
Then we have interpolation upward through the grids, offering each finer grid an
approximation for relaxation. This would be a “V-shape” structure as opposed to
a “W-shape structure as in fig. (6.3.1). Only if ¢ > 1, would we have a “W shape”
structure. '

In chapter 7, we will show how this recursive structure can be exploited to
provide a quantitative complexity analysis of the Multigrid algorithm. We will, in
turn, use these same results, to estimate performance times of the algorithm with

respect to our own signal processing needs.

5. Outline of Proof of Convergence for the Multigrid Algorithm

This section will review some standard theorems from Maultigrid convergence theory.
They will later be applied to our own Zakai equation.
The proof of convergence of MG techniques rests on the elementary properties

of iterative processes. We consider a problem of the form
Az=1b (6.5.1)

where z,b € R™ and AisannXn invertible matrix. Given an initial guess, zo of

the true solution z, we can find an iterative method of the form
Zny1 = (I - MA)zZa + Mb (6.5.2)

where M is ponsingular. Equation (6.5.2) obeys the structure of a consistent

method, in which the true solution, z, would be fixed point of the mapping in

178

(6.5.2), i.e.,
z = (I - MA)z + Mb - (6.5.3)

which is easily verified by inspection, using (6.5.2). Convergence to the true solution,
however, will depend on the spectral radius of I — MA, which in turn depend§ on
the choice of M and the given properties of A.

Also note that in the case of the equation,
LUt = f*, (6.5.4)

we can write the formula for obtaining a new approximation to the solution U?

from an old one as follows,
@t = (I - MLMu* + Mf™. (6.5.5)

Now we have from (6.5.2) that
zy = (I - MA)zi_1 + Mb
z, = (I - MA)z,_y + Mb

and so

2 — 2, = (I — MA)(Z—1 — Tp-1)- (6.5.6)

Letting k—p=~2>0fora moment, we have
zr—zp= (I - MA)?(z4 — Zo),
where we have used the iterative structure of the process. Then if we define:
p(I - MA) = max{|A[: Ais an eigenvalue of I — MA} (6.5.7)

then p(I — MA) < 1implies that, if -y is kept constant, but p (and hence k = 7+p)

is allowed to go to infinity, we have

llZp4+ — 39" —0.)

179

The arbitrariness of y implies that the Cauchy sequence converges.
Our goal is to use the same concept for the MG method. We clearly need an
operator formalism to do this, and so, to this end, we define Sy as the smoothing

operation on grid Gi. Thus the new approximation using the old one ©* for the

smoother will be

a* = Spuk = (I - ML*)u* + M/,

where we assume M is invertible and the smoother consistent. And we will therefore
say that S ," denotes the smoother that uses 7 relaxation sweeps, or is applied 7 times.

As examples of smoothers, define D to be the matrix whose diagonal entries
are equal to those of L*, and which is zero everywhere else. Then M=wD™1is
the modified Jacobi method. If T is the “upper triangular part” of L*, and zero
elsewhere, then we have the Gauss-Seidel method by setting M = T-1, In fact, M
is usually some approximation to the inverse of L*, which forces p(I-M L*) to be
close to zero.

We already have the interpolation (coarse to fine) and injection (fine to coarse)
operators: I f-x and I ,’: -1 respectively. We also define I; to be the identity operator
on grid Gi.

By constructing the “Multigrid operator” we will show that, like any other
iterative process, convergence is guaranteed under certain conditions.

Given u* as the old approximation, the new approximation @* will be
gk = Myet + 12, (L) RS

M;, will be the Multigrid operator on grid G we will concentrate on, for it is its
spectral radius.that determines whether iteration converges or not. By M§ we will
mean ¢ multiples of the MG operator applied on the k grids. The following recursion
will define this operator, which begins at grid level 2 and proceed up to k=K —1

where we have K grid levels in all:

180

M, = 5§ (I - I}(L") " 3L) S -
]) (6.5.8)
Miss = SPy (T — L (I = (LM IEL LTS
These equations can be easily shown by induction. First look at the definition of M2
and note that we have consistency since si(u?) =U%L*U 2 = f2 by assumption.
Equation (6.5.8) is also a slight modification of (6.5.2), but it still consistent since
Sa(-) is consistent. Note that the role of M is played by I 2(L')~11}, which is indeed
an Iapproximation to L2, in keeping with an earlier remark that this should keep
p(Mz) < 1. The initial approximation is acted on starting from the right, with 5

sweeps of the smoothing operator S3' to give #?. The term L2(-) is then applied.

However, before injection, write

L2i2 = f2 _ f2+L21.L2

6.5.9
s (659)
Now apply the linear operations to yield,
M,L%a® + If(Lz)'II.}f2 =
, (6.5.10)
Sy (@*+ If(Ll)"II;d2 - If(L‘)"I; A+ If(Ll)"Igfz.
Note that f2 = L2U?, and we assume
(LY LUt = U (6.5.11)

In other words, our theoretical approach assumes “pearly perfect” succession of
interpolation and injection operations with no round-off noise. Thus $3?(U?) =U?,
and this cancels with the outside term in (6.5.10). (Presumably, in practice, if
equation (6.5.11) were only approximate, the 42 relaxations would yield virtually
the same result.)

Of course,

If(L‘)"‘I}d2 =3,
by definition. The rest of the equations can be derived similarly.

181

Note that the coarsest grid G uses a direct solver (L!)~!, (althoughit need not
actually require this inverse. This is just operator notation.) Then it interpolates
the result via I? to the grid Ga2. The result is v2. The reader can see that we will

finally apply J2 smoothing sweeps to
i+ v?,

which agrees with eq. (6.5.8). Generalizations from this special 2-grid case are
straightforward. The reader should also note the self-referential structure in eq.
(6.5.8). Once again, note that we are only interested in that part of the formula in
(6.5.8) that determines convergence; in particular, we must show p(M;) < 1.
There is another way of writing the above that is useful in studying convergence

properties. For k=2,3,.,K—1and K grid levels, let
M = Sl — Ty (D) IS
AR = 5P Y Gl - G (6.5.12)
Ak, = (L")-‘I,EM(L"“)-‘s,{*+1 :Gis1 — Gk

Thus we can \yrite,

M1 = Mg+ APTMi AL,

a fact the reader can verify by inspection of eq. (6.5.8).
Now if ||M,':+1||,||A:+1|| and ||Ak,,|| for k < K —1are known, then we can
obtain an estimate of ||[Mk]||, where || - || represents any reasonable operator norm.

(Remark: we denote Stiben and Trottenberg as S & T.)

Theorem: (S & T, [12]) Let the following estimate be assumed known fork < K-1,
(MEall <o ARl £ (6.5.13)

Then,

M|l < vk, (6.5.14)

182

where vy is recursively defined by

V=0, Vi1 =0+ C(vi), k= 2,3,..K -1 3 (6.5.15)
(As stated before, this somewhat awkward notation is in keeping with our grid
labeling. As there is no M, there is likewise no v;.)
Proof: The result is straightforward. We first note that

M, = M},
and so
IIM.|| = |[M || < 0 = va.
Thus
IMiaall < IMEg Il + AT AL 42l M

Replacing ||Mi||¢ by (v4)° gives the result. Q.E.D.

To develop a feel for these bounds, consider first that
(IME-Y] < ISkl + e — TEoy (L)) T LA (6.5.16)

Now the smoothing operator is defined in such as way as to have a bounded norm,
in fact, usually p(Si) < 1. Clearly it is the other term in (6.5.16) that should
have a very small norm, depending on the smoothness of the coefficients of L, the
fineness of the grid, the ratio of the two grid sizes, and the accuracy of the injection
and interpolation operators.

As for AF*! and A}, we have

(A ALl < ISeaall 2 I IR IR I [} a1t

Clearly, the term ||(L*) || {|IL**!]| = 1. The rest is bounded uniformly.
Following Hackbusch, [9], we make some additional observations on the bounds

above. Using the Euclidean norm, we assume that

L% Sl < v (6.5.17)

183

for some positive a. For fixed 7,v(5) = v obeys
1< 0 < Vpnas(h)

with ¥pmaz(h) = 00 Of Upmaz(h) = 00 as b — 0. Also v(7) | 0as 5 — +oo.

These results are not hard to see. ||Sk|| = O(1) when L is sufficiently regular,
while ||[L¥]| = O(h~*), as in the case of L being a differential operator of order
2m, in which case @ = 2m. Note also that while the bound in (6.5.16) will decrease
if 5 — oo, this would not be desirable due to the computational expense of having
too many relaxation sweeps.

-We also say that we have a good approximation capability if
(L") ~ IE o (LX) Y| < cne, (6.5.18)

which seems reasonable as eq. (6.5.18) is bounded from above by,

NEE") =M+ MR | < cre

as long as L¥ is invertible on all grid levels, even allowing for injection and inter-
polation error. (A more careful analysis of such error along with round-off noise
will be conducted in a later chapter.) Note that if the operator L is a regular and
second-order, then a = 2. "
The reader can see that the above observations of Hackbusch are consistent

with the requirements of the previous theorem. Namely,

M7 < IISEIINES ™ = Thoy (Z*) T E | Eksi | < chen= = ¢,
(6.5.19)
as required by (6.5.13).
Hackbusch generalizes this line of investigation to general domains and finite
element systems. For details, see Hackbusch, [9].
We have not described how to obtain a value for c. We could simply set ¢ to

be a function of k, and this is often done. The first case is simply a constant,
c=2, fork=2,3,...,K -1, (6.5.20)

184

which yields the W cycle. The second case makes ¢ dependent on k,

en={] k odd

6.5.2
2 k even (6.5 1

which produces the MG algorithmic structure in fig (6.3.1)-
Theorem: (S & T, [12]) For eq. (6.5.20) we have the following estimatesif 4Co < 1:
Mgl <v=(1-VI- iCo)/2c <20, K22, (6.5.22)

and for eq. (6.5.21), if 4C*(1+C)o <1,

IMxll € (1 —4/1-4C*(1 + C)o) /2C% < 20(1+ C) (K even)
2 (1-2¢%0 - V14020 C)o)/2¢° < o(1+20)/C (X 0dd)
(6.5.23)

Proof: The derivation of these equations require algebraic manipulations more
complicated than insightful, so the reader is referred to Hackbusch, [9], for details.
However, the less tighter but often quite adequate bounds are fairly easy to obtain.

In the first case, with ¢ = 2, we have
M, <o < 20.
Then, assuming that ||[M;]| < 20 for 2 < ¢+ < k, we have
IMesall Lo+ C(20)%,

and if 4Co < 1,
1 2
< —_— = 20.
Minll <o+ (20)* =20
Note that 0 < ¢ < 1/2 implies the convergence of the K —level set-up.
The second case can be done in the same way. Again |IM:|| < o, and clearly,
o < 20(1+C),
and so,
|IMa}| < 20(1+C)

185

as expected.
Now assume the theorem is true up to k, and that k + 1 is even. Then, using

(6.5.23),
[[Mi11]] € 0+ C(a(1 +2C)/C)

- =20(14+C),
which agrees with (6.5.23).

Now assume k + 1 is odd. Then,
IMi11] < o + C(20(1 + C))?
=o(1+ [40C*(1 + C))(1+ C)/C)
and using 46C%(1+¢) <1,
IMxa|] € o(1+ (14 C)/C)
=o(1+2C)/C
which agrees with (6.5.23). Q.E.D.

Remark 1: If ¢ = 2 for all k, which implies that W-cycles are used, and if o is small
enough, then v = o for the bound in eq. (6.5.22). For example, if C = 1, then
(6.5.22) yields,

r<0.113ife <0.1

Typically, C > 1, but not very large. Hackbusch [9] treats an example of Poisson’s
equation using Jacobi sweeps for various values of ji,72. In the Euclidean norm
C = 1 and is independent of j; and j;. For the spectral norm || - || = v/p(AA*), we
obtain C < /2 for all 5;,3; but C | 1if 5; — oo.

Further insights along this line show that if a problem on a given 2-grid method
converges sufficiently well for small enough o, then the corresponding multigrid
method with ¢ = 2 will have similar convergence properties. Thus, MG practitioners
have found that for reasonable problems, one need only analyze the 2-grid method
and assume the results hold for the general multigrid case. Also, there appears no

need to work with ¢ > 2.

186

Remark 2: If we define ¢ as in (6.5.21), the bounds in |IMk|| do not fare as well as
in the case of c = 2. Asan example, let K be even. Then an upper bound of ||[M x|l
tends to o(1 + C) if o is small enough (instead of v = o in the previous case). The
trade-off is that there is less pumerical work to perform than for ¢ = 2.
Remark 8: One might be tempted to only use the V-cycle, i.e., to let ¢ = 1. But
our theorem yields no K-independent upper bound for |[Mkl|if C 2 1. One way
around this might be to set ¢ = 1for K>k>K—ko and ¢ = 2 otherwise. For
appropriate values of ko; only a small increase in computational work would ensue,
and our theorem could be adjusted to yield K -independent bounds of [IMx|l
Remark 4: A remark on norms is in order. There are many reasonable possibilities,
and different choices of norms will often lead to very diferent results. A general
observation is that the spectral radius p(-) is less sensitive with respect to algo-
rithmic changes than most of the other norms. As an example, norms can vary
considerably depending in 41 and j2, the number of iterations of the first and last
smoothing operators, (see (6.5.8),) whereas p() depends only on N+ -

The operator norm || ||s corresponding to the Euclidean inner product on Ga

is the spectral norm:
|Mlls = Vo(MM?*) (6.5.24)

where M is any linear operator on Gh.
For positive-definite, symmetric operators L*, the energy norm is mainly of

theoretical interest:

IMile = M2 MY ls = \/P(ZAM(LY)TIM?). (6.5.25)

Even using different injection operators can have dramatic effects with different
norms. If we convert from the Full Weighting (6.3.5) to the straight injection

operator, p(M;) will change very little, while,

IIMills = [[Mallg = 0 . (6.5.26)

187

(See Stiiben and Trottenberg [12] for an explanation of this.) The above behay-
ior is typical of straight injection within Multigrid processes. Thus for theoretical
purposes, when the above norms are most often used, straight injection is therefore
useless, whereas in Practice, it often performs better than Full Weighting operators.
This pérhaps demonstrates once again the somewhat inadequate estimates rendered
by theoreticians, and the need for numerical experimentation, as testified to by the

MG practitioners.

6. The Fokker-Planck Equation as a Model Problem

Virtually all Multigrid literature uses Poisson’s equation on a rectangle as a model
problem. The reason is due to jts simplicity. By using a rectangular domain and
reasonable data, the difficulties encountered in Poisson’s equations, such as singu-
larities in the spherical harmonics of gravitational and electrostatic phenomenon,
can be avoided. The key observation we can make about Poisson’s equation is that
the matrix formed by standard finite difference schemes is symmetric, for most of
the simplier relaxation methods. Because of this, an explicit calculation of the
smoothing factor, as well as the spectral norm, is possible. But in practice, such
symmetry will not be available. This will arise in our case because of the presence
of the first partial in our PDE.

We propose a custom-made model problem for our purposes. It is the Fokker-
Planck equation. We propose to study it by first examining a simpler case, and then
building up the complexity until we have the general Fokker-Planck component of
the Zakai equation. This approach will bring us into the heart of the Multigrid
algorithm, and will be very instructive, as well as providing methods to estimate
performance of the algorithm on a given problem.

Remark: While we will incorporate techniques used by all MG researchers, the inves-
tigation into this class of model problems is, to the best of the author’s knowledge,
origi_nal.

188

Our task then, is to calculate the smoothing factor and spectral norm of the
multigrid operator in the presence of symmetry, using techniques based on Stiiben
and Trottenberg, [12], and then to calculate the change in the norm if the symmetry
is “broken.” This will all be done first with constant coefficients. For the case with
variablé coefficients, which is what we would be dealing with in general, we will
use the techniques pioneered by Brandt, known as “local Fourier analysis.” This
approach is based on the observation that the Multigrid algorithm is “local” in the
sense that operations at a point are performed as functions of the nearest neighbors
at that point. This is clearly true for relaxation, injection and interpolation. Brandt
- argues that the way to find out how the Multigrid algorithm affects the value of
the PDE solution at a certain point, is to “freeze” the value of the coefficients at
that point and perform the kind of analysis described thus far for the simplified
Multigrid operator. Analyzing the resulting behavior over the space of all possible
points can provide information on the smoothing factor and the spectral radius of
the MG operator.

To begin, we will investigate the use of the Multigrid Algorithm on the simplest
version of the class of the Fokker-Planck equations, namely, the Heat equation:

-Z—t = Auin R? 4(0,z) = uo(z) (6.6.1)

We restrict our attention first to two dimensions for the sake of clarity, but exten-
sions to higher dimensions will be possible.

Although the problem is defined on R?, we assume for convenjence that uo(z)
is such that we can truncate the domain into the unit square, and that the solu-
tion u(¢,z) < € elsewhere. This information js provided by an application of the
comparison theorem.

The application of the finite difference scheme described in chapter 5 yields

Lu(z) =) et hird) '2;',5}’“”(”"‘"‘) (66.2)

=1

189

where r; = ¢ and r; = j, the standard unit normal vectors of R2. If we number
the points in the two-dimensional grid from left to right, there being N;- points to
a row, and N; points to a column, we have a matrix L;; corresponding to (662)

which has row vectors of the form:
2 2 _hi+h] 2 2
[0,..0,1/2k2,0,...,1/2h2, — ~pz 1 1/2k3,0,..,0,1/2k2,0,..0] (6.6.3)
172

There are n — 1 zero vectors between the 1/2h? on the right and the left of the
“— EE;%’;%” entry. Note that had we had mixed partials, we would have nonzero

172
entries adjacent to the now isolated “1/2h2.”

Now A = —L7, which yields a matrix with row vectors that are the negative
of what appears in (6.6.3). Thus our matrix (I + AtA) has row vectors of the form:

h? + h2

2 —_—
At[0,...,—1/2h3,0,...,—1/2h2,1/At + hZRZ ’

—1/2k3,0, ...,—1/2h2,0,...0]
(6.6.4)
Recall that we are given uo(z). This too is formed into a vector. We thus have the

sequence of vectors {u,} found by
(I + AtA)tL,H.l = ‘I’nun, (6.6.5)

aé was defined in the chapter on weak convergence. How will the Multigrid operator
act on this system?

First of all, the spectral radius of the MG operator is determined entirely by
the matrix I + AtA, along with the choice of relaxation scheme. For purposes of

illustration, we will employ the Jacobi relaxation scheme, defined as

hi+h3, _,
S;,(w) = I]. - w(l + Atm—)_ (Ih + AtA) (6.6.6)

Other relaxation schemes do not lend themselves so easily to analytical treatment.
It would be helpful to have the eigenfunctions of Si(w). Now suppose that
Si(w)v = Av,

190

then .
2

h 2
[(In - w%f"'(lh + AtA)lv = dv
172
or
h2 + h2 .
I+ AtA) = —1 /(w—;l%gz)(,\ ~1)o, (6.6.7)

thus the eigenfunctions of the two matrices are the same.

Claim: An examination of the matrix (I + AtA) reveals it to be symmetric, thus
if (z1,22) = (nlhl,nzhz) is a point on the grid G}, and if that point corresponds
to the number “;”, in our left-right numbering scheme, then the jth component of

the eigenvector of I + AtA is

ksin(%%zl) sin(%%a:g) (6.6.8)

Here 1 < ny < Ni,1< ny < N,, where 1/N; = h,, 1/N2 = hy. The coefficient “k”
can be chosen so as to normalize the eigenvectors.

The key to understanding why (6.6.8) is true is by exploiting the symmetry of
I+ AtA. This symmetry is a direct consequence of the fact that nearest neighbor
points corresponding to D,E and B,C surrounding the point A are pairwise iden-
tical. Thus when we multiply by a vector whose components agree with (6.6.8), we

have

Dsin(y(z1 — hy)) sin(B,z,)
+ Bsin(8,21) sin(Ba (25 — hy))
+ Asin(B,2,) sin(y23) (6.6.9)
+ Csin(By21) sin(Bs (=3 + hs))
+ Esin(8y (21 + k1)) sin(By22)

Here 8; = n;, 8, = n,r. Using trigonometric identities we obtain:
2D cos(nimhy) + 2B cos(namhy) + A (6.6.10)
Claim: We conclude from the preceding equation, that the eigenvalues of S),(w)

are:

Xn=1-w(l— aAt/h}cos(n,xh,;) — aAt/h? cos(nawh,)) (6.6.11)

191

where

h2+h2
a=(1+At-1_~2)-1
hihi

and n = (ny,n;) € 2% and |n| = max{ny,n,).

To get a feel of this term, suppose h; = hy, then

At/h?

2 __
aAt/h" = 1+ 2At/R?

which we verify to obey, after simple manipulation,

1
0< m < 1/2 (6.6.12)

Now we make use of a theorem cited in Young, [14].
Theorem: (Young, [14]) If the Jacobi method with w = 1 converges, then the
Jacobi over-relaxation method will work foro<cw<1.

We verify that, in our case, if w = 1, we have
Xn=1-(1-aAt/h}cos(ni7h,) - aAt/h3 cos(nyrh,)) (6.6.13)
It is clear that is &, = hy ~ 0 that we have
2aAt/h? < 1.

The same is clearly true in the more general case of h; # h,.

Now note that, because of (6.6.12), there exists no n; such that
aAt/h} cos(nymh;) = 1/2,

for if there were, we could use it to find the maximal eigenvalue x,, so that we would

have, upon using these values of ng,
Xn1l-w(l-1/2-1/2)=1.

But this does not happen. Optimizing (6.6.13) means we must take the gradient.

192

Claim: Taking the gradient of Xn With respect to n;,n,, we find that the smallest

values of these terms will supply the maximal eigenvalue. Thus,
p(Sh) =Ix1a]=1-w(1- aAt/h} cos(rh,) — aAt/h3 cos(rh,) (6.6.14)

We also find that the optimal value of w with respect to convergence rate is w = 1.

As an example, suppose that h; = hz, with w = 1. Then
X1,1 = 2&At/h2.

If h? ~ At, then x3,1 ~ 2/3, and if h ~ At, then x),1 &~ 2/(At +2) ~ 1. While
it is more likely that A% ~ At, we can see that the Jacobian method has poor
convergence.

The situation is quite different in regard to the smoothing properties of the
Jacobian operator. This in fact, is the more important aspect of the relaxation
method, as we never allow it to converge anyway.

The basic idea of smoothing in the context of the Multigrid method is to
decrease the amplitude of the highly oscillatory portion of the residual. In effect,
the relaxation method is used as a low pass filter prior to transferring the equation
to a coarser grid, where highly oscillatory functions would be poorly represented.
Furthermore, a better choice of w will improve this smoothing property immensely.

To explain more fully, we expand the errors before and after one relaxation
sweep, to yield

Up = Up — Wy, Up = up — Wy, (6.6.15)

into discrete eigenfunction series:
w= Y , o= > Xnndn (6.6.16)
In|SN-1 In]<N-1
The smoothing properties of Sh(w) are measured by distinguishing low and high
frequencies (with respect to the coarser grid G, used.) We define

low frequencies: ¢, with |n| < N/2
(6.6.17)
high frequencies: ¢, with n/2 < In]<N-1

193

Define the smoothing factor #(h,w) of Sp(w) (and its supremum u*(w) over
k) as the worst factor by which high frequency error components are reduced per

relaxation step. That is,

#(h,w) = max{|xn|: N/2< |n] < N — 1}

. (6.6.18
#° () = sup{u(h,w)})
Claim: Examining (6.6.18) we find that in our case
u(h,w) = max{[1 — w|,|1 - w(1+ aAt/h?cos(nh),
(6.6.19)

[1— w(1+ aAt/h? cos(mh)|}
The result is obtained by determining the greatest possible values of x, where
n/2 < |n| < N — 1. This will clearly occur at four possible values of n, namely

(NV/2,N/2)
N/2,n 1)
(N_ l,N/2)
(N-1,N- 1)

We see that for n = (N/2, N/2) we have
IXN/2,n72] = |1 = w)
and for n = (n/2, N — 1) we obtain
IXNj2,Nv-1]= |1 - w(1+ aAt/h? cos(mh))|
and for n = (N — 1, N — 1) we have
[XN-1,N-1] =1 —w(1+ 2a|dt/h? cos(rh)|
Also, by taking the supremum over small h, we have
b (w) = max{|1 — w],|1 - w(1+ alt/h?)|, 1 - w(1 + 22At/R*)|} (6.6.20)
We remark thaf if w,z > 0, then

11-w(1+2)] <1 -w(1+22)]

194

only when

1
l+§z

<w

as can be demonstrated by algebraic manipulation. Here z — alAt/h2,

Now we find 1" (w) for some sample values. As a demonstration, we assume
the h? ~ At, so that
At/h?

1+2aem ~ /3

Some sample values of p* (w) for different values of w is shown in Table (6.6.1).

w p(w)

0 1

1/4 3/4

1/2 1/2

3/4 1/4

1 20At/h? ~ 2/3

Table (6.6.1)
Sample Values of u*(w)
Now we ask: what will happen if we examine equation

ou
57 =¢’Au (6.6.21)

where 0 < € < a?? Note that we still have symmetry in our relaxation and difference

operators. We see that we have a change in the eigenvalues of Sh(w) as given by
Xn(a) =1-w(1- aa’At/h? cos(nymh;) — aaAt/h2 cos(namhy)) (6.6.22)

where we have a new value of

hi+h3 _
a(e) = (1+ Ata?(-‘Tzh—,’-)) 1 (6.6.23)
1°°2

195

The same results would hold as before except that we would have to recalculate
using a(ae) as At is replaced by a?At. Taking the derivative of 1_;;:3%‘5? with

respect to a? we obtain
At/h?
1+ 2a2At/R2

and conclude that the greatest changes occur when a? is small. For large a? we
have virtually no change in our earlier results. Thus if a2 = ¢ and 2¢At/h? << 1
then

aa®At/h? ~ eAt/h?

and our new smoothing factor has an optimal w at w = 1 and would now be
2eAt/h? = u*(1). Of course, if ¢ is too small the equation becomes ill-defined.

Now we examine the equation

Ou 2
50 —¢Auteu (6.6.24)

where 0 < € < a? and a,c are independent, arbitrary parameters. We now have

h? + h2
h}h3

a(a,c) = (1+ Ata® + Atc)™!?

and we make the

Claim: The eigenvalues of S;(w) are now,
Xn =1-w(l - a’a(a,c)At/h} cos(n,wh,) — a’a(a,c)At/h? cos(nymh,0 (6.6.25)

which follows from using the equations in (6.6.9).

Remark: We see at once that a(a,¢) could be infinite if, (letting ky = hy = h),
1+ At(a®/h*+¢)=0

which occurs if
—1/At - 20%/h? = ¢

196

However, in our case, ¢, which will later be thought of as a function of z, will
be bounded as we assume that we are working on a compact domain, derived by
asymptotic estimates of the solution of the Zakai equation. Thus At and A would
have to be chosen to avoid such singularities. In the rest of our analysis, we will
assume that such problems have been avoided by the careful choice of parameters.

Now we analyze what happens if we have

du 2 2
Frinke Au + Ebi"z; + cu (6.6.26)

=1

Here the b; are constants. In the finite difference scheme that we use for our problem,

we have 3
Adihs ":j) —*® 4,50
$ 1
_ (6.6.27)
|b..|"(‘”) - ",E“’ —hirs) bi <0

This gives row vector for I + AtA of the form

h? + h2
At[0,...,~a?/(2h2),... - a?/(2h2), 1/At + az;l—j;lz_z + ¢+ [ba|/hy + [ba|/Ba,
12
—a’/(2k3) — [b1]/R1,0, ..., —a®/(2h2) — |b,|/ha,0, ...0]
and if one or both b; < 0 we would have to switch the appropriate bi/h; to its
counter point position of the opposite side of the diagonal.

Now write

(I+ AtA) = (I = AtA),,. + B (6.6.28)

where B corresponds to the off-diagonal terms that are contributing to the break-
down of symmetry in the original matrix. Thus B is composed of terms of the
the form [b;|/h;, and has zeroes down its diagonal. The matrix (I + AtA) still has
|bs]/R; terms in its diagonal.

Therefore our relaxation operator is
where

hi + b3
hih3

a = (1+ At(a? + {b1|/R1 + [|b2|/h2 + €)) ! (6.6.30)

197

We see that we have a problem where we know the eigenvalues of one system:
Fv=)v

and want to know the change in eigenvalues induced by perturbing F by F + AF.

In our case, we know (or can find) the eigenvalues associated with
F = S} (w) + waB
which is symmetric. What we want to know is the change in x,, due to
AF = —waB (6.6.31)

We invoke a theorem of Faddeeva, [6], namely

Theorem: (Faddeeva, [6]) Let F be an n x n matrix with

Fv; = Ay; = 0, Hv.” =1
(6.6.32)
FTu; — piu; =0, (ui,v5) =1
Then
A); = u? AFy;
and hence
|AX] < ||IDF||eo
Claim: Now in our case F is symmetric so v; = u;. Furthermore,
[1AF]|oo = |lweB||oo
(6.6.33)

2
= wa2At Z 'b"l/h.‘

=1
Thus we see that as a worse possible case, that we might have |b;|/h; so large that
||AF||co & w, further restricting our choice of w to insure convergence and a good

smoothing factor. But in general, we would probably have

wa||B|leo << 1

198

and so will produce a negligible difference in the original norm or smoothing factor.
Thus we could find the smoothing factor as a function of w for the case where
B =0, (but with the b; terms included in the diagonal portion of (I + AtA). and

then conduct a worst case analysis of the form
¢ (w) + wa||Bl|e

Ezample

hi = 1071, At = 1073,b, = 100, b, = 10,a = 10,¢ = 10

the a||B||o =~ 1/4. Of course, this is a worst case analysis, and almost certainly
too conservative an estimate.
The Effect of Coarse-Grid Correction

Now we can begin to estimate the norm of the two grid Multigrid operator.

We introduce the coarse-grid correction operator:
Kt =1 — Ib, (L) -1 13h (6.6.34)
and note the
M; = 5% (w) KE*S (w).
We quickly review some results of Stiiben and Trottenberg, [12]. It turns out that

the (at most) four subspaces of G};:

Eh,n = SPan{¢n; N2 ¢N—n1 n—2y —¢N—n; N—ny, -¢n1 ,N—nz} (Inl < N/2)
(6.6.35)

are invariant under K 2k j.e.,
K} :Ey,— Ej n, [n] < N/2

Consequently, as {¢,},|n] < N - 1) forms an orthonormal basis of Gh, KPt is
equivalent to a block-diagonal matrix composed of most 4 x 4 submatrices. Stiiben

and Trottenberg provide a detailed description of these matrices.

199

Stiiben and Trottenberg (hereafter denoted S & T) derived their results by

working on the Poisson equation. By observing their work, we make our own

Observation: Equations of the form

7]
3_: =a*Au+cu on the rectangle (6.6.36)

where a? > €2 > 0 provide matrices K % of the same structure. The reason is
due once again to the symmetry provided by our natural ordering, and the fact
that ¢,(z) = ksin(nyrz;) sin(ny7z,) are still eigenfunctions of the matrix I+ AtA
formed \from (6.6.36). Indeed, we are mostly concerned with the “lower” frequency
eigenvalues, i.e.,({¢n}, |n| < N/2) and L* is designed do that these very functions
are also eigenfunctions of both L2* and L. This restricted class of functions enjoys
some special properties under K 5,

For example, we have after S & T, we define
On(z): ksin(nlw:rl)sin(ngrzz) (z € G, In] < N/2 - 1)

On G.h, the ®,.(z) and the basis functions of E},n coincide, i.e., the basis functions
of E}, , as written in (6.6.35) are all equal at the grid points and so we set them

equal to &,,.

I}, : span{®,} — Epn
By — span{®,},|n| < N/2 -1

It* gy = (ny = N/2 and/or ny = N/2)

For example, we have

If"'ﬁm ma = (l - '7)(1 - ‘)Qﬂuﬂz

200

for |n| < N/2, which precisely correspond to the lower frequency eigenfunctions.
Here, v = sin?(n,7/2N), and ¢ = sin®(ny7/2N).

Thus we

Claim: K?*4,, is the same for all operators L* where
1). {#n} are eigenfunctions of L*.
2). {¢n} In| < N/2 are eigenfunctions of both L* and L2k,

This follows since L"z\,,¢,1 and
I*¢n = (1- p)(1 - ¢)Andn
(L) 7M1= m)(1 =) Andbn = (1= p)(1 = ¢)én

for |n] < N/2 since, under these conditions, (L2*)~1Lkg, = ¢,..

These are precisely the properties of our own L*» = I + AtA in the absence of
b;.

S & T calculated K ;‘:" to be equivalent to a block diagonal matrix with laborious
but straightforward methods to compute its entries.

It follows that for L* with the aforementjoned properties, K?* can be calculated
completely. Thus, we need only determine the change in p(K ,“:") when we “break”

the symmetry by introducing the first partials. As before we write,

du 2
3 =% A+ ; biuz; + cu (6.6.37)

and this yields an L* of the form:

I+ AtA) = (I+ AtA).ym + I+ AtA),ff..d,‘” (6.6.38)

or

L*=1rk 4+

where, as before, L* has only the off-diagonal terms contributed by biu,,, (it has

zeroes down its main diagonal). The b; terms reappear in the Lfym diagonal entries.

201

Thus we have
Klzuh = Ih - I2h(L3:m L2h) lIzh(Lcym + L-h)
Now writing,

(Loym + L) ™4 = (L2, (1 + (L2h,)1 L74)) (6.6.39)

Claim: The above expression can be approximated,
(I (L'Ilm leh)(me)—l' (6.6.40)

“This follows since ”(Lf,’,‘m ~1L?*|| < 1 due to the fact that the matrix I+AtA
has strong diagonal dominance.
Claim: Replacing (6.6.40) into (6.6.39) we get
p(KlEh) < P(h ,aym
+ 1 (L3,) T LB (L28,) UM L2 4 D) (6.641)
+ ”12h (Lcym llfhfh“
An immediate observation we can make is that the term on the right hand side is
O(h).
To see this we give the worst case estimate of the middle term of (6.6.41):
IR IHIRMIICE) 112 E2M | (228, + L2M)) (6:6.42)
< IBAITRMIC1h*Co /hCs fR2
Now S & T give [[I,]||[I2*]| ~ 1 while h%- } . % = h and

L3 25w + L2
L2122

This follows from the fact that the b; are also in the diagonal portion of L3

~

sym*

Similarly, for the last term, we have

NI) M M) ~ 1

202

Thus

p(KR*) < p(KE%,..) + Ch © (6:6.43)

where C ~ 1, and this is a worst case estimate.
Application of Local Fourier Analysis

The analysis we have done thus far is applicable to Fokker-Planck equations of
constant coefficients. that will decidedly not be the case for the Zakaj equation, so
we should have a way of incorporating this fact into our model problem analysis.

Brandt [4] derived local Fourier analysis just for such purposes. The idea is
to be able to make estimates of u* and p* by by exploiting the factor that we can
do so for the constant coefficient case. Fourier analysis will be applicable since
we are concerned with effects of or operator on low and high frequencies of the
residual. And it is a local analysis in the the following sense: the effect of the
Multigrid operator on a certain point is largely a local process, in that relaxation,
interpolation, and injection are functions of nearest neighbor values. Brandt argues
that the way to determine the effect of the MG operator on a point is to “freeze”
‘the coefficient values at that point and then to perform an analysis similar to what
we have done thus far. Then we can maximize this estimate as a function of the
coefficient value which are in turn dependent on z. V

The formal way to use local Fourier analysis is by choosing a point z, € G,
and form L*, the operator corresponding to L*, but in which the coefficients of our

PDE have values taken at zy. Thus, if we have
du
F i a(z)Au+c(z)u, ze0 (6.6.44)

and form (I + AtA) from this, we would need (I+ AtA)|,, as the starting point in
our analysis.

The resulting operator L* is defined on the snfinite grid

Gr={z=x-h:x€ 2%

203

where k- h = (k1h;,K2h;). As the domain of £* we consider the (complex) linear

space &, spanned by the frequencies
$(6,z) =¢**/* (z€Gh)for0cR?,—n<b<nx (6.6.45)

Here, z/h = (z3/h1,22/h;).

Note that £}, is a space with a non-denumerable basis. This is the main formal
differ3nce compared with our previous model problem analysis. The introduction
of continuous @ allows for certain ‘technical simplifications. The use of an infinite
grid allow us to ignore boundary conditions, so as to treat them separately.

However, we still need symmetry in the L? or £* operator, so we still have to
estimate changes in the maximal eigenvalue due to the symmetry breaking caused
by the addition of first partials.

Under these circumstances it can be shown, (see Brandt, [4]) that once we have

frozen coefficients,

p(M:) on L* ~ p(M,) on L*

where the first estimate was taken by Fourier analysis and the second was found by
the methods of the preceding pages.

Thus, in the case of variable coefficients,

p(M2) < sup p((z,M;) (6.6.46)
z€EGx

where, for each given z € G}, we freeze coefficients and perform our usual analysis,
and then take the supremum over all possible z.

Obviously, such an optimization problem should be dong by computer pro-
grams, and fortunately, such software exists and is part of a larger package recom-
mended by Brandt, [4]. Such packages will be discussed later. Also, the optimization
need only be done for z € G, our compact domain constructed by asymptotic es-
timates of the solutions of the Zakai equation. Optimizing over all of R™ will give

results far less tight than desired.

204

The key result of this section is that “breaking the symmetry” of the finite
difference scheme by introducing first partials perturbed the spectral norm on]y
slightly. We therefore conclude that the behavior of the Zakai equation under
- the Multigrid operator is very similar to Poisson’ s equation with smooth data on
rectangular domains. Thus, in this general sense, we should be quite content with
Poisson’s equation as our first, approximate model problem.

We also remark on some observations made by Stiiben and Trottenberg, [12].
Specifically, that for small values of J, where 7 = j; + 7, and Sp(w)?* and Sh(w)?
are the first and last Jacobi sweeps of the Multigrid algorithm applied to Poisson’s
equation, they obtained (e*(w)) =~ p(Mz).. (Typically, 1 < 5 < 4.) When j gets
too large, (4*(w)) is no longer a good predictor of p(M;): the high smoothing effect
is not fully exploited las the reduction of low error frequencies by one coarse-grid
step is not good enough, or the smoothing effect is even partly destroyed by the

coarse-grid corrector, (which introduces new high frequencies by itself). Typically,
p(M;) = constant/s

But this does not imply that we should have J as large as possible, as it increases
the numerical time-complexity of the program.

The similarity with our problem and that of the behavior of Poisson’s equation
leads us to expect the same kind of results.

For example, S & T found that for a proper choice of w = 0.8 for Poisson’s

equation, that, for 5 = 8,
p(M3) = 0.216 = (u*(.8))*

and for j = 4,
p(M;) = 0.137 # (u*(.8))* =0.130

While we can expect different values of w and j, we can certainly expect to

reach p(M;) =~ 0.1.

205 .

Claim: Using the theorems of S & T in the last section, we can expect to have

0= p(M;) =0.1 and C ~ 1, and thus

[IMk|| <vk
where
Vo =0

Vi1 =0+ C(Vk)c, k=23,. . K-1

Here, ¢ = 1,2 and is the number of inner iterations of the Multigrid cycle, with
¢ = 1 giving the V-cycle and ¢ = 2 giving the W-cycle. Thus we can analyze the
behavior of the Multigrid algorithm on the Zakai equation with the two-grid case,
and extrapolate convergence behavior on more general grid configurations.

Entensions to higher dimensions are possible as symmetry is still being pre-
served, and this, after all, is what we are exploiting when we make our estimates,
However, the analysis becomes more cumbersome and less enlightening.

When it comes time to actually make estimates of the norms mentioned in this
chapter, we would actually have to do is either one of two possibilities:

1). Actually construct the M; operator in matrix form, and use programs to
find the maximal eigenvalue. This is costly but possible, but then one could use the
previous theorem if estimates of [IM4]| are needed.

2). Apply the MG program to problems with known solutions, obtained,
perhaps by another numerical procedure, and determine the number of iterations
needed to reach desired accuracy. For example, say we already have the solution
to a model problem. Then, beginning with an approximation, we could count the
number of total MG cycles needed to reach the desired accuracy. Now in the case
of time-dependent problems, our initial estimate is the value of the solution at the
previous time-step, denoted as ub(t — At). Then, in the case of the Zakai equation,
with Ay(t) =0,

lIu* (¢ — A2) — u*@)]] < (1LY [[e* (1)) A,

206

and we also know,
llep (8) — wh(2)]] < [IM2|”[lu* (£ - A¢) - u*())]. (66.47)

Of course, the left hand side of (6.6.47) is a known number, as u*(t) is known from
another source, and we also know the number of cycles, p. Now replace [lu*(8)]] by
maxo<e<r [|U(2, z)|| = [lUmaz|| which can be found by using maximum theorems
for parabolic PDEs similar to those discussed in chapters 3-4. We can now obtain

an estimate of [IM.]],

lluz (t) - w*(2)]])" P (6.6.48)

M~ (G e 2

Once again, the MG practitioner must be pPrepared to use numerical experi-
mentation, in addition to formal methods, to determine the design of the program.

It should be clear by now that the Zakaj equation is an excellent candidate for
Multigrid treatment. For despite subtle variations in the finite difference scheme,
due to weak convergence requirements, we still have an implicit, and hence stable
discretization of the PDE, This stability guarantees that we will have no problems
in transferring to coarser grids.

Boundary conditions are, at least for now, no problem either. For example, in
the case of n space variables, we have truncated the prior density, which is, say,

a n-dimensional Gaussian, and formed a rectangular domain with zero boundary

condition. Thus for each time-step, we must solve an equation of the form:
L*Uh = gr (6.6.49)

where f* is a function of the value of the value of U at the previous time-step.
Issues involving the choice of relaxation schemes, interpolation, injection, etc,
will be discussed in a later chapter. Suffice it to say for now that the structure of
the matrix formed by the implicit scheme lends itself naturally to a proper choice
among the available methods for relaxation, as well as the other operations we have

mentioned. This will be made clear in our chapter on relaxation methods.

207

We might also remark that since the linear system of our problem is of the
form

(I+AtA)um+? = BY, u", (6.6.50)

where the matrix (I - AtA) is a constant for each time-step, requires no set-up
time and can be stored ip the computing system in advance. The matrix BY,,, is
diagonal, (see chapter 5 for details), and hence the right hand side of (6.6.50) can
be calculated in parallel, in a time that s virtually trivial compared with the rest
of the computation.

In the performance analysis of the MG algorithm, we have already noticed that
having a model problem is very important, in order to make predictions concerning
' convergence rates, computing times and so on. As demonstrated in this chapter,
a natural model problem in our case is the Fokker-Planck component of the Zakaj

equation, obtained by setting dy; = 0. This yields,
Ut = a(2)U.. + b(z)U, + c(z)U. (6.6.51)

Note that the coefficients are not time-dependent, so at each time-step, the ma-
trix L* in (6.6.49) will be the same, albeit too complicated for formal analysis, as
compared with Poisson’s equation.

Numerical studies of this model problem could yield much of the s#me type of
information that js provided by examples found in Hackbusch and Trottenberg, [8].
This includes estimates of the Multigrid operator’s spectral norm, smoothing fac-
tors for a variety of relaxation schemes, computational intensity and perhaps other
features. Such estimates are best made with numerical simulations, and package
programs are available for just this purpose, as will be described in the sequel.

Finally, we note that as the matrix (I+ AtA) is a constant, the Multigrid op-
erator is unchanged by changes in y,. Only the quality of the initial approximations
determines the number of iterations. But (6.6.2) gives us just this estimate. Thus

& convergence test, which would have to be done globally and could well take up

208

all of our allotted time for computation, need not be performed. It follows that all

program paramelers are precomputable.

7. Multigrid Applications to Time-Dependent Problems

This section is a brief remark on some observations of Brandt, [4].

From our point of view, it is disappointing to find that Multigrid experimen-
tation with time evolution problems is rather sparse, but enough has been done
to draw some conclusions. Brandt offers an interesting twist to the use of MG
techniques for solving parabolic equations, and he calls it the frozen r method.

We define what amounts to a fine to coarse defect equation, i.e., a correction
to the coarse-grid equation designed to make its solution coincide with the fine-grid

solution. Thus on grid G5, we have
L*hy?h = g2k 4 2k (6.7.1)

where

Tah = L**IPhb _ 2Ry, (6.7.2)

We can now reverse our earlier viewpoint. Instead of regarding the coarse grid asa

device for calculating the correction

uzh — :huh,

to the fine grid solution, we can view the fine grid G, as a device for calculating the
correction 73* to the coarse-grid equation, and we call 7a* the fine to coarse cor-
rection function, making it a kind of defect correction. The important observation
here is that this particular defect correction depends essentially on high-frequency
components.

In the context of the “frozen r method,” the 72* plays an important role in '
solving time-dependent problems. For each new system generated by a time-step,

we use not only the solution at the previous time-step as our first approximation,

209

but we also employ the values of the previous fine to coarse correction functions, in
the following way. Even before we have begun our computations on G, we transfer

72* from the previous problem to G2h and use
Lhy?h = g2k 4 ;20 (6.7.3)

instead of

Lhy?h = f2h (6.7.4)

Then the error in u?* will not depend on the high-frequency components, (as it
would in solving (6.7.3)), but only in the changes in those components from their
values in the previous problem.

Now it turns out that 72* also represents the local truncation error on mesh

size 2h relative to mesh size h. More precisely, 72h &~ 72h _ 7k where
72 = [**U - LU. (6.7.5)

Thus when 732 is reasonably small, we can arrange the MG algorithm to stop
returning to the finer grid and simply concentrate more of the work on the coarser
grids, there being little to be gained otherwise. This is especially useful in time-
dependent problems where high-frequency error components begin to settle down
quickly, as in heat equations with stationary solutions, or possibly in our case, when
the conditional density is better able to track the state z, after a sufficiently large

o field of observations has been constructed.

210

8. General Remarks

Remark: Brandt [4] makes some rather critical observations of the rigorous analysis
usually performed by theoreticians. A cursory examination of such papers, (at
least up to 1982), show that MG methods can solve, for a large and practical class
of proBlems, the associated algebraic system of n equations, (n unknowns on the
finest grid), to the level of the truncation error in less than Cn computer operations.
Unfortunately, such statements are of little help to the practitioner since often no
attempt is made to discern the nature of “C,” or when such an attempt is made,
it is often unrealistic. In typical cases the theoretical bound is C =~ 108, while in
practice ti is closer to 102 and this is still very conservative, for in the next chapter
we will examine some improvements in the complexity analysis and discover a much
better bound. However, the very best bounds can be found only for the simplest
cases, (equations with constant coefficients on a rectangular domain), and then only
after a rather lengthly Fourier analysis.

Until more reliable theoretical techniques are available, MG practitioners will

have to rely on model problem experimentation.
Remark: A number of multigrid software packages have emerged, and we will discuss
some numerical experiments with them in a later chapter. These include MG00 px:o-
grams (7] that are restricted to rectangular domains with different types of boundary
conditions. There is a sample program listed in the Appendix of Stiiben and Trot-
tenberg, [8], designed for Poisson’s equation with Dirichlet boundary conditions in
the unit square-a very specialized version of MGO00.

The MGO1 programs [7] refer to second order equations with Dirichlet bound-
ary conditions on non-rectangular bounded domains. These programs were designed
with the intent of investigating the effect of changes in domain shape relative to
multigrid performance-rather than on optimizing efficiency.

A very robust and efficient multigrid program is described by Wesseling (18],
and denoted MGDI1. This program is perceived by the user as any other linear

211

systems solver, and requires no insight in the properties of the multigrid method.
It design features are very robust to even rather dramatic changes in 'operator
coefficients.

More remarks on software packages will be made in chapter 9.

9. Conclusion

This chapter has been only a brief introduction to the basic features of Multigrid
theory. Issues involving complexity and parallel implementation will be covered in
subsequent chapters. Original results on the use of the Fokker-Planck equation as
a model problem were also covered.

We began with a simple explanation of the MG algorithm and expanded it to
include the general case. Related concepts such as relaxation schemes for smoothing
error prior to intergrid transfer, the recursive structure of Multigrid grid, conver-
gence behavior, and the relevance to time-dependent problems were covered.

The Multigrid algorithm was found to be similar to any other linear systems
solver, where the system could be the implicit discretization of a linear PDE, either
elliptic or parabolic. The program will converge to the level of the truncation error,
i.e., if U is the true solution of the PDE, and U™ is the true solution to the discretized

system, then the MG program will converge to u* which obeys
llu* = UM|| ~ Ut — v

in some appropriate norm. The only requirements are stability, which is guaranteed
by the implicit scheme, and the existence of good smoothers, also guaranteed by
invertible discrete representations of the PDE. The algorithm is highly efficient and
will be shown to be imminently suitable for parallel implementation.

~ Deficiencies in the current Multigrid theory were touched upon, the that usually
conservative estimates on convergence rates are possible. Some of these estimates

were discussed. We concluded, along with the MG practitioners, that numerical ex-

212

perimentation will play a major role in the design and optimization of MG program
parameters.

Much of this experimentation is performed on model problems which are repre-
sentative of a class of problems. Any program designs can be made with the model
problem, and robustness of the design, especially with respect to convergence can be
demonstrated. This means that as the convergence rate of the Multigrid program
is stable under small changes in the problem statement, we can pre-determine the
number of program cycles needed for acceptable convergence and still be assured
that this design feature be robust. Poisson’s equation is the ﬁodel problem of choice
among the MG practitioners. The natural model problem for the Zakai equation
is found by setting dy; = 0 and analyzing only the Fokker-Planck component. We
recommend this for future numerical studies, possible with some of the Multigrid
package programs that were discussed. We also pointed out the strong similarities
of our model problem and that of Poisson’s equation. Convergence behavior with
respect to Ay(t) was shown to be robust, due to the constancy of the matrix in our
linear system . This implies that all program paramelers are pre-computable, and

will hold for all sample paths y,.

213

References for Chapter 6

[1] Bank, R. and Dupont, T., “An Optimal Order Process for Solving Finite El-
ement Equations,” Mathematics of Computation, vol. 36, No. 153, Jan.
1981. ‘

[2] Brand, K., “Multigrid Bibliography,” in Hackbusch and Trottenberg.

[3] Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problems,”
Mathematics of Computation, vol. 31, No. 138, 1977.

[4] ——, “Guide to Multigrid Development,” in Hackbusch and Trottenberg.

[5] Chan, T. and Schreiber, R., “Parallel Networks for Multi-grid Algorithms:
Architecture and Complexity,” SIAM J. Sci. Stat. Comput., vol. 6, No. 3,
July, 1985.

[6] Fadeeva, P. K., Computational Methods of Linear Algebra, Freeman Pubs., p.
288, 1983. |

[7] Foerster, H. and Witsch, K., “Multigrid Software for the Solution of Elliptic
Problems on Rectangular Domains: MG00,” in Hackbusch and Trottenberg.

[8] Hackbusch, W. and Trottenberg, U., eds., Multigrid Methods, Lecture Notes in
Mathematics, Springer-Verlag, No. 960, 1982. 7

[9] Hackbusch, W., “Multigrid Convergence Theory,” in Hackbusch and Trotten-
berg. '

[10] Novak, Z., “Use of Multigrid Method for Laplacian Problems in Three Dimen-
sions,” in Hackbusch and Trottenberg.

[11] Ortega, J. and Voigt, R. “Solution of Partial Differential Equations on Vector
and Parallel Computers,” SIAM Review, vol. 27, No. 2, June, 1985.

[12] Stiiben, K. and Trottenberg, U., “Multigrid Methods: Fundamental Algo-
rithms, Model Problem Analysis and Applications,” in Hackbusch and Trot-
tenberg.

[13] Wesseling, P., “A Robust and Efficient Multigrid Method,” in Hackbusch and
Trotten!oerg.

214

[14] Young, D., Iterative Solution of Large Linear Systems, Academic Pr. 1971.

215

7. The Complexity of the Multigrid Algorithm

1. Introduction

We saw at the end of chapter 2 how the one-dimensional Zakai equation, once
approximated as an implicit finite difference scheme, which yields a linear system,
can be solved directly in O(n) time by a systolic array, using O(n?) processors.
We also saw that if n changes, we can still keep the same architecture, although
the number of processors will increase. However, as we are aiming for real-time
Pprocessing, we need a computation speed for the calculation of the approximate
conditional density less than one or .1 msec. for each sample of observational data.
Now n is the width of the point-grid, so, for example, n? would be the number
of grid points for the two-dimensional case. We can certainly imagine situations
where the number n may grow fairly large, so even O(n) may be too slow, and what
will be even worse, systolic direct solvers have computation times that grow with
the dimension of the problem. It follows that we must consider other computing
strategies.

We have already been introduced to the Multigrid algorithm, and in this chap-
ter we will examine its complexity and computing time properties. We will show,
using methods of Chan and Schrieber, [3], that for a fully parallel multigrid algo-
rithm can solve the linear system associated with the PDE in at most O|(log n)]
time. This is derived by exploiting the recursive structure of the Multigrid algo-
rithm. In principle, this computing time is sndependent of dimension. The increase
in speed is achieved by a network similar to the systolic array in that it also enjoys
regularity, local communication, and repetition of a single, simple processing ele-
ment. The inevitable trade-off is in the form of a much greater tax on the available
bardware; the array configuration is actually several interlaced processor grids, one
on top of another, with somewhat more complicated inter-connections, so fabri-

cation may be a problem. The more complicated interconnections also impose a

215

burden on computing speed. Thus we can expect a limit on the dimensional growtb
our problem can have due to real-time processing constraints. Also, complexity per
unit processor must also increasg, as will the number of these proccssors.when the
fineness of the grid, which is a function of n, is improved. So already we are far
beyond the basic systolic array paradigm. We may also have to pay for the de-
sign with a loss of efficiency in that increases in the number of processors, (as may
be required in the interests of accuracy or domain changes,) will not yield corre-
sponding improvements in computation speed. Indeed, inefficiency, or perhaps more
accurately, processor unemployment, which implies that processors will remain idle
during much of the computation, is a chronic problem in Multigrid architectures.
However, a method of circumventing this will be discussed, known as Concurrent
Iteration, the trade-off being an increase in the complexity of the brogram, which
in turn will tax the processor design. At any rate, as speed is our most important

priority, this should not be too much of a problem.

Main Results: Application of complexity theory to our problem in the light of
real-time processing constraint. Trade-off analysis of using various initial conditions

to start the algorithm, an a critique of Concurrent Iteration.

216

2. Multigrid Algorithms

The reader is already assumed to have a familiarity of Multigrid theor&, at least
equivalent to that of the preceding chapter.

Our problem then, is the Zakaj equation defined on [0, 7] x 0 where N C R4,
We assume that 2is a rectangle. The PDE is implicitly discretized to yield a linear
system LKUK = J¥ defined on the Kt* finest grid.

The computing network will be a system of grids of identical processing ele-
ments. Therefore, we have two kinds of grids, one of points and one of processors,
and these will be layered one on top of another. For each 1 < k < K, processor grid
Py has (n;)7 elements, where « is a positive integer not greater than the problem
dimension d. Also, we have "k =n,and n; < n,, if s < j.

Similarly, in keeping with the above notation, there are, foreach 1<k< K a
corresponding point grid G, with (n)? points. (Note that the number of processors
per grid is never greater that the number of points). Again we have nx = n while
n < njif i <3 A key assumption, which is quite realistic, is that for each
step of the multigrid algorithm on point grid G}, the processing grid P; requires
O((n+)?=7) time to perform its computations,

As in the last chapter, we also have injection and interpolation operators, I f -1
and I,’:_l, respectively. We will also be needing the operator M, later in this
chapter.

An important consideration is the notion of speedup and efficiency. With any
given design, one would hope that the addition of Processors, which might be drafted
for the exploitation of parallelism, would lead to a decrease of computation time, or
speedup, of the algorithm. We therefore define efficiency to be the ratio of speedup
achieved to the number of processors employed. If this ratio remains bounded from
below as the width of point grids, n, tends to infinity, then the design is said to be
efficient. Recall that the number of processors is a function of n, since processor

grid Px has n7 elements. Chan and Schreiber (whom we refer to as C & S, (3])

217

showed that when v < d, some algorithms can be implemented efficiently. But when
7 = d, which is the most parallelism one can reasonably expect to use, no algorithm
can be implemented efficiently. However, there does exist a design for which the

efficiency falls off as O|(log n)~1].

How important is efficiency to our problem? In general, increases in point grid
size might be needed for enlargements of the domain or improvements in accuracy;
this latter case is especially true for solutions which are known in advance to be
highly oscillatory, or possess singularities or have irregular boundary conditions.
Hence increasing the size of the point grid provides improves accuracy at the expense
of poor speedup, not to mention increased hardware costs. Of course, most of the
solutions to our problems will tend to be better behaved and we have already agreed
that we can safely avoid irregular boundary conditions, at least for a large class of
problems. As for accuracy, it is probably less important to us than it normally
would be to a numerical analyst, as many estimator-detector problems would not
require more than perhaps a few spaces past the decimal point. However, it will
turn out that as our goal is to determine if a better, or at least equal speed can be
achieved over that of the systolic direct solver’s O(n) time, then we may have to
pay for it through a loss of efficiency. Fortunately, as indicated before, a speea of

O|(log n)] is possible and may be worth the trade-off.

To return to the multigrid algorithm itself, we define, after Chan and Schreiber
(3], BASICMG and FULLMG, where the former is a subroutine of the latter. The
two algorithms differ in that BASICMG starts its computation on the finest grid
and works its way down to the coarsest grid, while reducing error on a grid by a
constant factor in optimal time, whereas FULLMG begins on the coarsest grid and
works its way up to the finest grid, while reducing error to truncation error level in
optimal time. The fundamental difference is that BASICMG begins with a given
approximation, and then proceeds to smooth it and move the defect equation down

the grid levels. FULLMG will immediately inject downward to the coarsest grid,

218

direct solve, interpolate upwards, and use this result as the first approximation to
BASICMG. While FULLMG may certainly be useful in many applications, time-
dependent problems offer a natural first choice as an initial approximation, narﬁely
the value of the solution at the previous time-step. However, we include FULLMG

for the sake of completeness.

BASICMG is a recursive algorithm, although in practice it is usually imple-
mented in a nonrecursive manner. It is not adaptive, in that iterations are not
controlled by an examination of relative changes in the residuals, but instead are
predetermined by parameters (c,j,m). The major computational work is in the
smoothing sweeps (subroutine SMOOTH), which is usually composed of an imple-
mentation of successive-over-relaxation, Jacobi iteration, or the conjugate gradient
method. For our purposes, these are among the only choices as such algorithms must
be suitably “paralle]”. We will discuss how these architectures can be constructed

later in the sequel.

We provide algorithms BASICMG and FULLMG below in Tables 7.2.1 and
7.2.2 respectively, written in a pidgin ALGOL. To demonstrate the mechanisms of
BASICMG, consider the case of three grid levels and ¢ = 2 cycles of iteration. On
the third and finest grid we begin by smoothing the discretization error J timé;
here, y ~ 3,4. This replaces our initial guess of the solution, which for us would have
been the conditional density approximate at the immediately preceding time-step.
We convert to the second grid while computing coarse grid correction d? = L2,
where d? = f2 — L2u?. Here the initial approximation to v? will be zero. Now we
apply BASICMG but start on the second grid, using the defect equation as the
new system. After smoothing we reduce to the coarsest grid, and directly solve the
equation, and interpolate back to the second grid with a correction step. That is
one inner cycle. We smooth again m times for coarse to fine grid correction; whereas
we smooth j times for fine to coarse grid correction. Again we convert back to the

coarse grid and direct solve, and go back to the second grid and smooth m times.

219

Our two inner cycles are over. Now interpolate back to the finest grid, smooth m
times, and one total cycle of the algorithm is complete. This yields the W-cycle as
discussed in the previous chapter. |
The role of FULLMG is to interpolate approximate solutions on coarser grids as
initiaf'gucsses for the BASICMG algorithm. This overcomes the frequent inability of
BASICMG to reach truncation error accuracy in less than O(nk lognk) time, due
to the poor quality of a general initial guess to the solution. Using the convergence
results of BASICMG a.ﬁd the properties of the approximations of LX, fK, it will
be shown that FULLMG computes a solution v¥ with truncation error accuracy in
O(ng) time. We have thus an interesting question of whether FULLMG, with its
automatically generated initial approximation, could be better for some problems
than using the value of the time-dependent solution at the previous time-step.
The accuracy and the convergence of the BASICMG algorithm obviously de-
pends on three important factors: smoothing, coarse grid transfer, and fine grid
correction. We require that smoothing sweeps annihilate the high frequency com-
" ponents of the error efficiently, that the coarse grid correction d* be a good approxi-
mation to the fine grid error in the low frequency components, and the interpolation
operators (I ,’:_1) be accurate enough. These conditions can be verified for our prob-

lem.

220

Algorithm BASICMG (k,u, ¢, 5, m, Lk, f¥)
(Computes an approximation u; to Uk,
where LEU* = fk,
given an initial guess u*,
.'Returns the improved approximate solution in u*.
Reduces initial error in u* by a constant factor.)
If k=1 then
Solve the proBlem using a direct method. Return solution u*.
else
(Smoothing step (5 sweeps):)
u* — SMOOTH(j, u*, L¥, f*).
(Compute data d*~! for coarse grid correction equation:)
dk—1 = [*k-1 k-1 Ill:—lfk - I:-I(L"u")
(Solve coarse grid problem approximately by ¢ cycles of
BASICMG:)
vk—1 &< 0. (Initial Approximation)
Repeat ¢ times:
BASICMG (k — 1,v*~1, ¢, 5, m, L¥1,d;_,)
(Correction step:)
NS (UL
(Smoothing step (m sweeps):)
u* <= SMOOTH(m, u*, L%, f*).
End if
End BASICMG

Table 7.2.1.

3. Design of the Computing Network

We will now design a parallel machine capable of performing the multigrid algo-

221

Algorithm FULLMG (k, u*,r, ¢,5,m, Lk, f¥)
(Computes an approximation u* to U*
where LXU* = fk,
using r iterations of BASICMG,
;xsing initial guess u* from interpolating the approximate
solution obtainéd on the next coarser grid.
Solution obtained can be proven to have truncation error accuracy.)
If k=1 then
Solve the problem using a direct method to get ul.
else
(Obtain solution on next coarser grid:)
FULLMG (k — 1,u*"1,r,¢, 5, m, L“‘l,fg_l).
(Interpolate u*—1;)
k< IE yb1,
(Reduce the error by iterating BASICMG r times:)
Repeat r times:
BASICMG (k, u*, ¢, 5, m, L*, 7¥).
End if
End FULLMG

Table 7.2.2.

rithm. We assume our problem is in d dimensions over a rectangular domain using
a regular point grid of n? points, and that we have a system of point grids {Gk}£‘=,
where G has (n;)? grid points, mesh lengths h;j, 1 < 5 < d, where the finest grid

has nx = n and
nepi=ca(ni+1)-1, k=12.,K~1, (7.3.1)

for some integer a > 2.

We introduce a standard multi-index notation for grid points and processors.

222

Let 2}, be the set of s tuples of non-negative integers less than n, e.g., (i, 1,, s ty)y
where, 0 < §; < n and i; € Z. Define the projection operator x? o Ay - g}, for

r 2> s by,

72515250y 87)) = (1, 632, oy (7.3.2)

We also require i = (f1,82,..08,) € £}, to have the norm [i] =4 +43 +... +1,.
All gridpoints in Gy are labeled as points in z,'fhd in such as way that label i
has spatial coordinants ($1hi1,82hsa, ..., t4hrq). Similarly, processors in processor

grid P; have indices from gz

nx,y- Processors i and k are connected if i —k|=1.

The complexity per unit processor will be much greater in this design than in
the standard systolic array. For evidently, if each processor has O(nd"’) memory
cells, we can store the solution, f*, and O(1) temporary values belonging to the
whole of grid G} in the processors P. For example, the value at gridpoint i can be
stored in processor #](i) for i € g},

Even larger problems can be handled, at the expense of increasing processor
complexity. Suppose we have restricted ourselves to using only n7 processors, but we
have (m-n) grid points. Now assume that each processor can store all information
associated with the mnd—7 grid points. We wish to map all grid points in such a
way that neighboring grid points reside in the same or neighboring processors. Thls

will be a prerequisite for efficient smoothing. To this end, define
bm z,'fm — z"t', (7.3.3)

where
for all 4,5, £3.,,, |6m () — ¢m(5)| < J§ - 3l

Let j = gn + r where ¢ and r are integers and 0 < r < n — 1. Now let

r if g is even
fm(J)e{ “1-r ifgisodd (7.3.4)

A multidimensional structure can now be mapped onto a processor grid. Sup-

pose the point grid has m;n x man x - - - x mgn points. Then point i can be stored

223

in processorF4(my,my,...,mq,n;i) where

Fa1) = (fny (1)s fr (52), s s (i2))- (133)

If we have only n7 processors then we can map i into F] (i) where
F{ (i) = Fo (3 (i))-

Thus this mapping preserves the Principle of Locality that we clearly wish to
exploit in our design, as relaxation, injection and interpolation require only local
communication between neighboring processors. Consequently, our definition of
W (n) must be changed to

W (mn) = m®W (n). (7.3.6)

Thus we have a factor of m? fewer processors, the time needed for smoothing and
intergrid operations increases by the same factor of m¢, so there is no corresponding
loss in efficiency. As stated, it can be shown that this mapping preserves locality of
point grids {G+} and processor grids {P;}.

As a simple example, suppose we have m = 2,m = 2, and y=d=2,and a

processor grid of four processors labeled as

1 2
3 4 (7.3.7)
Then a processor grid assignment of a sixteen point grid will be as follows:
1 2 21
3 4 4 3
3 4 4 3 (7.3.8)
1 2 21

Note that each point has access to all other points by local interprocessor commu-

nication. Of course, another labeling scheme could be, “naive” design given below:

(7.3.9)

[)
€O €O i
Lo N O)
L S

224

So clearly there are many possibilities of grid point to processor assignments.
Smoothing sweeps of at least some type can be accomplished in O(n¢-7) time
with this given connectivity; (we will give more details on this in the next chapte;‘.)
Let t be the time taken by a single processor to perform the operations at a single
gridpéint that, done over the whole grid, constitute a smoothing sweep. Then,
setting S as the time needed to perform the smoothing sweep over the whole of grid

Gk on processor grid P;, we have,
S =tnf"", (7.3.10)

Obviously, it is to our advantage to conduct as few smoothing sweeps as necessary
and still assure sufficient accuracy. How could we determine in advance what this
number should i>e? By being able to measure the smoothing capabilities of the
relaxation scheme. A means of doing this will be described in the next chapter.

Now processor grid P, is connected to processor grid Pg43. Processori € P, is
connected to processor a(i+1)~1 € Pi4; where1 = (1,1,...,1). These connections
allow any intergrid operations, such as interpolation, to be performed in O(S) time.
Now define the system of processor grids {P1, P,,...,P;} as the machine M for
J = 1,2,...,K. Then the execution of BASICMG performed by M proceeds as
follows:

1. First, 5 smoothing sweeps on grid G are done by Pi; all other processor
grids idle.

2. The coarse grid equation is formed by P; and transferred to Py_;.

3. BASICMG is iterated ¢ times on grid G_, by Mi_;. P; is idle.

4. The solution v*~? is transferred to P; by interpolation: If_,v*-1,

5. The remaining m smoothing sweéps are done by P;.

Now we let W{n) be the time needed for steps 1,2,4,5 and find

W(n) = (j + m + 8)tn?"7, (7.3.11)

225

where & is the ratio of the time needed to perform steps 2 and 4 to the time needed
for one smoothing sweep. Note that s is independent of n,d and ~. _

We discuss now the time complexity of BASICMG. We will denote by T(n) ti)e
time complexity of BASICMG algorithm on a grid of n? points. It turns out that

T(n) solves the recurrence:
T(en) = cT(n) + W (an), (7.3.12)

where W(an) denotes the work needed to pre-process and post-process the (an)-
grid iterate before and after transfer to the coarser n-grid. In effect the term
W {an) includes the smoothing sweeps, the computation of the coarse grid correction
equation (i.e., the right-hand side d*~) and the interpolation back to the fine grid
(Tk_;v*~1). To derive formula (7.3.12), one must only see that in Table 7.3.1,
BASICMG makes use of self-reference, and this of course, corresponds to applying
the algorithm to the next coarsest grid. Now imagine two grids, one with (an)¢
points and the other with n? points. Now the time to perform step 1, 2, 4, 5, would
‘be W(an) and the time to perform step 3 would be ¢T'(n). The sum of these two
would be the time to perform BASICMG as it is represented in the five steps above.
This derives (7.3.12). '
The architecture used to implement these operators determine the actual time
needed; (more precisely, this means the dimensionality and the available number
of processors on an n-grid will be the major factors). A generalization of (7.3.11)

would be,
W(n) = (5 +m+s)tg(n), where g(n)=n?, p=d—1. (7.3.13)

We can now state the following theorem, which can be readily proved by the reader.

Theorem 7.8.1: (C & S, {3]). Let T,(-) be a particular solution of (7.3.12), i.e.,

T,(an) = cTp(n) + W(an). (7.3.14) _

226

Then the general solution of (7.3.12) is:
T(n) = an'°8.c 4 T,(n), (7.3.15)

where a is an arbitrary constant.
Now we can solve for this particular solution given the special case of W(n) =

Bn?, in which case:

T, (n) = {ﬂ(a"/(ap —¢))n? ifp+# log, c, (7.3.16)

BnPlog,n if p=log,ec.
Using this result we have the general solution to (7.3.12),

B(a?/(a? - ¢))n? ife < a?,
T(n) = { An®log, n+ O(n?) ifc=ar, (7.3.17)
O(nl°g€) if ¢ > gr,

Now as stated in (7.3.13), g(n) is proportional to the time needed to perform
smoothing steps on Gy, to set up the coarse-grid correction equation and inject it
to the next lower grid, and interpolate the correction from the lower grid to Gg.

We see that it would take a single processor O(n) steps to complete the above
mentioned tasks on one dimension, while n processors could do the same for a
two-dimensional problem in O(n) time.

We say that the Basic Multigrid algorithm is of optimal order if T'(n) = O(g(n)),
a possibility that is sometimes precluded by some choices of ¢,a,v and d, which in
turn influence T'(n). Examination of (7.8.17) demonstrates the relations between
the various parameters. As an example, in the one-processor case, with 4 = 0,
d = 2, we have g(n) = n2. We then have an optimal scheme if a = 2, ¢ < 4, for only
then is T'(n) = O(n?). But ¢ > 4 is non-optimal, with T'(n) = O(n2logn) for ¢ = 4.

In general, we have an optimal scheme ¢f and only if ¢ < a9.

Thus the larger a or d is, the larger ¢ can be and still keep the algorithm optimal.
The trade-off is that a large value of @ implies more relaxation sweeps are needed

and thus ¢ must be made larger so as to insure the previous level of accuracy. The

constant in the O(-) term does not vary much with ¢ or a so a reasonable strategy in

227

maintaining a balance between speed and accuracy is to choose ¢ as large as possible
so that the algorithm is still optimal, i.e., ¢ < a%. Example: if d = 2,a =2, we
should take ¢ = 2 or 3.

There also exists a natural way to build a VLSI system to implement our
algorithms. The v = 1 machine can be embedded in two dimensions as a system
of communicating rows of processors. The 4 = 2 machine can be embedded in
three dimensions as a system of communicating planes, and so on. Realizations
in three-space will be possible in a natural way for any value of 4. Consider the
case of d = 2, v = 2. In this case, we have a set of homogeneous planar systolic
arrays layered one on top of the other. If we let @ = 2, K = 3, and n; = l,né =
2(1+1)—1=3,n3 = 2(3+1)— 1 =1, (see equation (7.3.1)), we would have
a 7 x 7 array on top of a 3 x 3 array which is then on top of a single processor
corresponding to n;.

Unfortunately, this design differs from the classical systolic array concept of
Kung [8]-[11] in that there exists no layout in which wire lengths are all equal.
Also, each layer of the system is homogeneous while the entire machine is clearly
not of this class of structures.

We might also remark that it is not necessary that the layers converge down
to a single processor as in fig. (7.3.1). Instead, 3 or 4 levels of grids\ could be used
and the multigrid method would still be highly efficient.

228

A machine ford =2, y=2 and K =3.

Figure 7.3.1 The Multigrid Architectural Model
4. Efficiency, Speedup, Accuracy, and Optimal Design

Now the four parameters ¢, a,,d are to be chosen with any implementation
of BASICMG, and, of course, they are not unrelated to each other. Extending the
earlier notation, we call any one choice of the four a design and denote its corre-
sponding computing time by T'(c,a,7,d). We will now begin with an examination
of the trade-offs incurred by one choice over another. Following C & S [3], an

important issue is efficiency , E vs. speedup S in a particular design. We define,
S(C, a,”, d) = T(c’ a,0, d)/T(C, a,”, d)
E(c,a,v,d) = T(c,a,0,d)/(P(7)T (e, a, v,d))

Note that the speedup S corresponds to the gain in speed going from the one-

(7.4.1)

processor system to that of the multiprocessor. Whereas the efficiency E reflects
the trade-off between using more processors vs. time. It thus is a measure of how
efficiently a given architecture exploits any additional increase in the number of

processors in the hope of impioving speedup.

229

We say that a design T'(c,a,7,d) is asymptotically efficient if E tends to a

constant as n — +oo, and it will be asymptotically inefficientif E —. 0 asn — +oo.

Theorem 7.4.1: (C & S, [3]) Let v > 0.
1). If ¢ < a%~7 then E(c,a,v,d) = (@™ - 1)(a?=7 - ¢)/(a? - ¢).
2). If ¢ = a?~7 then E(c,q,7,d) = (a” — 1)a?=7/((a? - ¢) log, n).

3). If ¢ > a%~7 then

O(l/nlox.(c—d+—7)) if ¢ < ad
E(c,a,7,d) = { O((log, n)/n") if ¢ = a¢
O(1/n") if ¢ > a?

We have at once that

1). A design is asymptotically efficient if and only if ¢ < a®~7.

2). The fully parallel design ~ = d, is always asymptotically inefficient. This
is clear since c is a positive integer and we cannot have ¢ < 1 = q°.

3. “Halfway” between asymptotic efficiency and inefficiency is logarithmse
asymplotic efficiency, with E = O(logn), as n — +oco0. A fully parallel design
(v = d) if logarithmically asymptotically efficient iff ¢ =1. (See case 2) in Theorem
7.4.1).

4). If we start with a non-optimal design in the one processor case, then adding
more processors will not make the design asymptotically efficient, (see last two cases
in Case 3) of Theorem 7.4.1). This is because so many coarse grid corrections are
being performed that if more processors are added so as to lower the set-up time
when transferring to the coarser grids, we still would be losing too much time on
the coarser grids.

C & S are then led to the following design problem.

Optimal Design Problem

For a given problem (i.e., given d), find the design that minimizes
T(n) and/or maximizes the accuracy of the computed solution,

subject to the constraint that it is asymptotically efficient.

230

C & S go on the describe how the choice of any two of the parameters ¢,v,a
essentially predetermines the third according to the above design goal. We will also
examine what for us is the relevant aspects of this relationship, but, as oﬁr objeéti#e
is to find a computation time less than or equal to O(n), even for d > 2, we proceed,
for the sake of completeness, to an analysis of the time complexity of FULLMG,
and will return with this knowledge to the design question.

Since FULLMG calls BASICMG, the computation time of the former depends
heavily on that of the latter. Let F(n) denote the time needed for one call of
FULLMG. Inspection of the algorithm in Table (7.3.2) yields

F(an) = F(n) + rT(an) (7.4.2)

Now T'(n) takes on the values of O(n?), or O(n?logn), where p = 0,1,2 in the
latter case. (See eqns. (7.3.16)-(7.3.17) for more details). Hence given a particular

value of T(n), we should be able to solve the recurrence in (7.4.2).

Theorem 7.4.2: (C & S, [3]) Recall that @ > 2, p = d—~. The following statements

can be easily derived by using (7.4.2).

1). If T(n) = anP, then
Fp(n) = (a®/a® — 1))ran? + constant
2). If T(n) = an®log, n, with p > 0, then
F,(n) = (a?/a® — 1))ran®alog, n — (a®/(a® — 1)*)ran® + constant
3). If T'(n) = alog, n, then

F,(n) = (ra/2)(log? n + log, n) + constant

Now from this information we are lead to a specific set of designs. Recall that

if we are to at least equal the computing time of the systolic direct solver, we must

231

choose T(n) = an or T(n) = alog,n. Or, if we are to use the Full Multigrid
algorithm, we must have Fy(n) = O(n) or O(log®n). We will begin our discussion
with the O(log n) time of BASICMG first.

A glance at eqns. (7.3.16)-(7.3.17) shows that the only time when T'(n) =
O(log n) is when p = d —~ = 0. Thus « is chosen for us at the start. We see at once
that we must relax the constraint on the optimal design problem of C & S since
there is no way we can have the asymptotic efficiency requiring ¢ < a%=7, where
¢ is a positive integer. Now the next level of efficiency is logarithmic asymptotic
efficiency, and this can be achieved only by setting ¢ = 1, (see case 2) in Theorem
7.4.2). Now for a, the smaller it is, the more accurate the algorithm. Thus we set

a = 2. Then our design will be
T(1,2,d,d) = Blog, n + constant. (7.4.3)

The constant depends on the time needed for a “direct solve” on the coarsest grid
of a given multigrid design. The implication here is that if n were to increase, we
would need more grid levels, but the size of the coarsest grid will remain constant
and the computing time will grow only as in eq. (7.4.3).

If we were content with T(n) = O(n), which presumably would only hap;;en
if efficiency were deemed important enough, then, keeping a = 2, we must have

4=d-1and ¢=1. Thus
T(1,2,d - 1,d) = 28n + constant.

The above time correspond to the length of one total cycle of BASICMG, which
is not to be confused with the ¢ inner cycles. We need to iterate the total cycle a
number of times to reach convergence, and this number will depend on

1). the spectral radius of the Multigrid operator M,

2). and the quality of the initial approximation, which for the time-dependent

Zakai equation is the value of the solution at the previous time-step.

232

At any rate, the only way for T(n) = O(n) is for ¢ = 1.

It may turn out that in some problems ¢ = 1 is not enough, and that more
inner iterations may be needed. This is because we would be increasing the number
of numerical iterations and lowering the successive differences between the number
of poirﬁ.s of each point grid.

Another reason is that convergence theorems for the V-cycle (where ¢ = 1),
are either non-existent or not very promising, as they apply only to special cases
such as symmetric and pésitive definite L¥, (see Hackbusch, [7])- However, Stiiben
and Trottenberg, [12], show that if [[M2]| is small enough, (say, ||M2|| ~ .1,) so
that convergence is guaranteed for the general Multigrid case, then V-cycles may
usually be used without any problems, although their convergence rates may not

be as good as the ¢ = 2 case.

Remark: This leaves open the question as to whether we have something to gain by
using FULLMG instead of BASICMG. An increase in computing speed could not

be a consideration, since
Fy(n) = O(n) if and only if T(n) = O(n)

and the best it can do is O(log? n), which occurs when T(n) = O(logn). We
naturally assume that we would wish to keep such speeds if we were to switch to
FULLMG, but these occur only when ¢ = 1.

Thus, Fy(n) = O(n) only when T(n) = O(n) and only when ¢ = 1.

The only reason we would consider using FULLMG is in the hope that its
automatically generated initial solution estimates could be better than the ones we
would use for BASICMG, namely, the value of the solution at the previous time-
step. This would imply that the “poor” estimate for BASICMG would take rg
total cycles, and that this would be much worse than the single cycle necessary for
FULLMG and its r inner cycles of BASICMG.

From a purely theoretical point of view this may seem possible. To see why,

233

note that the FULLMG operator for the two-level case, when acting on the difference

of its initial approximation and the true discretized solution, is
My (B2 (L)1 - (L3))02 (¢ -). (7.4.4)

where U?(t — At) represents the solution at the previous time-step. In words, the
approximation that FULLMG generates, which is I2(L)~11}U? (t—At), with U2(t)
subtracted from it must be iterated to (nearly) zero by M, for convergence to occur.

The BASICMG operator on the other hand is
M, (I, — (L*)"H)U*(t - At). (7.4.5)

Now we recognize the term in parentheses in (7.4.4) as being related to the

“approximation property” discussed in the preceding chapter, where
IIZ(LY) 103 — (2%~ < ch2. (7.4.6)

Now how many inner cycles of BASICMG will FULLMG need? This number
is denoted by r, (see Table (7.2.2)), and we see that it must be large enough so that

error tolerance ~ ||M2”"||112(L1)‘112l - (Lz)—lll Umazl|,

where ||[Upqz|| = maxo<¢<T |[U(t, z)||, which is obtainable from estimates described
in chapters 3-4.

On the hand using equation (from previous chapter) we have for using BA-
SICMG alone,
error tolerance ~ |[M;||"® ||L?||At||Upmaz]],

where ||L?|| = O(h=2). Presumably, this term would be offset by At. At any rate,
these equations are unclear as to whether r5T'(n) >> F,(n), as we are using worst
case estimates. When we conduct a more straightforward analysis withy=d,e=1
we obtain,

T(n) = Bllog, n + constant),

234

and

Fo(n) = (rB8/2)[log? n + log, n + constant]

where we assume the constants are the same. Then if rgT(n) >> Fy(n), we would

have,
' T 1
.y > 2 log, n,
which seems very unlikely for large n. Converting to the T'(n) = O(n) will not
help as the convergence here is the same as the parallel case. The difference in the
architectures is only in efficiency (or work distribution among the processors.) The

Multigrid operator is the same in both cases and so convergence rates are the same.

Claim: We conclude that it is unlikely that FULLMG would be advantageously
used. Also, that BASICMG can run in O(n) efficiently and O(log n) with acceptable

efficiency.

Observation: We turn now to an estimate of the actual time needed to perform
BASICMG, in its most parallel form. The times given above are just the number
of operational counts.

Recall that if W(n) = gn, then,
B=(7+m+s)t,

where

J = the number of smoothing sweeps on G} prior to injection; (about 3 or 4).

m = number of smoothing sweeps on G} after correction; (about 3 or 4).

8 = ratio of time needed for injection and interpolation to the time needed for
one smoothing sweep; (about O(1)).

t = time needed to perform one smoothing sweep; (~ 20 operation counts
depending on the method).

Now if BASICMG takes

Blog, n + constant

235

for one cycle, it will take rg total cycles to reach convergence, which is probably
of O(1), according to the MG practitioners, (see Brandt, [2]). Since the constant is
the time needed for a direct solve on a small, coarse grid, we will ignore it. Thus,
T(n) ~ 0(102) log, n time units. Now the time units in VLSI are of the order of

10~2 psec., so this implies that, if we are to have T'(n) < 1 msec., then,
log, n < 103,
which for a = 2 should be quite reasonable for most applications.

5. Concurrent Iteration

Gannon and Van Rosendale have introduced an improvement on the original MG
algorithm, which is designed to overcome the problem of inefficiency, or processor
unemployment, [4).

Suppose that on the finest grid, one has the number of processors roughly
comparable to the number of grid points. Then during the relaxation scheme, or
during interpolation, the processor grids will be well employed. But as we move
to the coarser girds, processor utilization will be poor. To overcome this problem,
if indeed it is viewed as a problem, G & R proposed a way whereby iteration is
performed concurrently on the grids.

To understand the technique, one must take an appropriate view of the MG al-
gorithm. This begins by noting that all relaxation schemes are effective at reducing
Fourier error components having wavelengths comparable the mesh spacing, but do
poorly on error components having much longer wavelengths. This is compensated
for by performing iterations on the coarse grids, where the mesh spacing §s compa-
rable to the error’s longer wavelength. It is from this behavior that the multigrid
method derives much of its effectiveness.

One could therefore view the MG algorithm as using projection operators to
decompose residuals into their short and long Fourier wavelength components. A

sequence of projections could therefore decompose a given function defined on the

236

finest grid into components on every grid. This might be thought of as a Fourier
decomposition of a fine grid function, which G & R call an approzimqte spectral
decomposition. A
Suppose we are given u¥ corresponding to the finest finite element space Mg
corresponding to the grid Gx. There are K grids in all. We also let I;"'l be the
interpolation operator to the finer grid G j+1,and let J ::-1 be the projection operator
to the coarser grid G;_,. Define a sequence of functions p*,1 < § < n for each grid
to be constructed by the following program:
pX = oK
for ¢ := n downto 1 do begin
1 pl=1 5
2 pi=p -1 p?
end

The result will allow us to write,

with p! being the smoothest component of u¥ and pX the most oscillatory.
The concurrent iteration version of the MG method can now be described as
follows. Given the problem LKuK = fX, perform steps 1-3:
1). Form an approximate spectral decomposition of fX:
. K
J K= E g,
=1
where ¢* is located on the i** grid.

2). Approximately solve the problems,
L‘v‘:y‘, 1<i1<K,

by point iteration methods. Do so concurrently on each grid.

237

3). Sum the solutions on each grid to get,

K
ek = Zv'.
=1

The central idea of this algorithm is that the iteration in step 2 can be d(;ne
concurrently on all grid levels. One might suppose that interpolation in steps 1 and
3 must be done level by level, but this too can be avoided. The resulting program

can be designed to obey,
for ¢ := itmx do
begin
1. perform j smoothing inner iterations on each grid level
2. interpolate solutions and residuals between adjacent levels

end

The interpolation in step 2 can be done in parallel on all grid levels.

While an increase in speed is possible, the complexity of the program increases.
One first needs a procedure to shift the data in a family of functions {p"}f;l one
level, by performing a sequence of injections. Then a similar procedure would be
needed to perform projections between grid levels. G & R provide subroutiﬁw
capable of conducting these operations in their ICASE report, where other details
can be be found, [4). They point out that no convergence proofs have yet been
proven for their technique, but that its effectiveness is demonstrated by numerical
experimentation.

We mention their technique as a demonstration of the versatility of the MG
method, and also because it was included in the empirical results we will review.
However, we repeat that the trade-off for increased speed is in the increased com-
plexity of the programming, which in turn increases the complexity of the pro-
cessors. Also, not all of the most natural VLSI architectures can accommodate

concurrent iteration.

238

Finally we remark that the complexity analysis of Concurrent Iteration is very
difficult as expressed to this author during phone conversations with Dr. Gannon.
The reason is simple enough: the recursive structure of the classical MG ﬁlgorithm
is destroyed, so the elegant use of finite difference equations that we have seen in this
chaptef is not possible. However, Gannon and Van Rosendale have recently (March,
’86) published a article outlining the complexity of this method. Unfortunately, it
was not available to this author at the time of publication. In this report, they
apparently explain why the spectral norm of the MG operator can undergo changes
in size due to modifications of the domain. We will see examples of this in chapter
9.

In a private conversation, Gannon approximated the complexity of Concurrent
Iteration as being O(log (log(n))), but that the constant was apparently too difficult
to compute.

Our won conclusion is that this Program is still in its embryonic stages, and
while we should not lose sight of its progress, we cannot advocate its use without

reservation at this point in time.

239

6. Conclusion

The complexity of various Multigrid schemes were discussed, and we found that
the Basic Multigrid algorithm has a computation time that is dependent on the ar-
chitecture incorporating it. Improvements in computing speed are obtained at the
expense of increased area as well as an increased inefficiency, which is roughly mea-
sured as the number of processors likely to be idle at a given point in the computing
cycle. While trade-off between time and area is inevitable, inefficiency can be dealt
with by the use of a program design known as concurrent iteration, which makes
use of all processor grids simultaneously-unlike the prototype Multigrid model. Of
course, an increase in both program and Processor complexity must also be met.

The fundamental Multigrid Program parameters were identified. They are:

¢, the number of coarse grid iterations per fine grid iterations

a, the mesh refinement ratio

d, the dimension of the point grids

7, the dimension of the processor grids

A fully parallel design is possible with 7 = d, which implies that we would need
as many processor as points, obviously an area-intensive architecture. This can still
be circumvented by employing more complex processors that sequentially handle
more than one point.

However, the system with ¥ = d cannot be asymptotically efficient, in that
as the number of grid points n, increases, more and more processors are likely to
become idle at any given time. This can be quantitatively measured as the following
ratio:

T(c,a,0, d)/(P(”I)T(c, a,”,d))

where T'(-) is the time needed for computation with the given parameters and P(7)
is the number of processors given as a function of n7. If this ratio tends to a positive
constant, as n — oo, we have efficiency. If it tends to zero, we do not.

It turns out that a combination of algorithm and machine is asymptotically

240

efficient if and only if ¢ < a4, However, the fully parallel machine suffers only
from an inefficiency that tends to zero as 1/logn. We also have, since d = %
¢ = 1, which yields the V-shape MG cycle described in the last chapter. It basicaliy
means that we proceed straight from the fine to coarse grids, all the way down to
the coarsest grids, and interpolate directly back up to the finest grid. There are no
inner cycles, i.e., no intermediate stages with returns to fine grids and then back to
coarse grids again.

The fully parallel architecture has a computation time of at most O(log n),
and so it is very competitive with the systolic direct solver. More importantly, this
time is largely independent of dimension d, at least for small values of d. Of course,
increases in d will result in large increases in circuit layout area, due to an increase ,
in interconnections between grids, and thus a subsequent loss in computing speed.
A more detailed look at architectural effects on computing speeds will be given in
chapter 9. However, under reasonable conditions, such as small values of d, we also
showed that the computation time for our Multigrid algorithm is compatible with
the 1 msec time bound placed upon us by the real-time constraints of our problem.

We also introduced a variation of the MG algorithm, known as Concurrent
Iteration, that was developed by Gannon and Van Rosendale. While it appears to
have a promising structure, and even appears to be somewhat faster than the con-
ventional algorithm, it suffers from certain technical difficulties, such as an unstable
spectral norm, and so, too little is known about it at thjs writing, to recommend it
with confidence. A more detailed look at it will be given in chapter 9.

Also, in chapter 9, we will discuss some other designs and their architectural

complexity.

241

8. Relaxation Schemes for the Multigrid Method

1. Introduction

Throughout the preceding chapters the theory of relaxation or iterative schemes ilas
only been touched upon, even though they clearly play a major role in the Multigrid
algorithm. This chapter is a discussion of of such schemes, and the way they can
be incorporated into a parallel processing array designed for Multigrid operations
to be performed on our PDE.

We follow four main lines of development.

The first is a brief statement of the basic relaxation schemes and their abstract
representation. We follow the classic account by Young, [17].

The second is a discussion of the role of relaxation schemes within the Multigrid
framework. We will learn that while such methods can be used by themselves to
solve PDEs, the question of thejr convergence, although needed as a Prerequisite,
is not the most important issue for us. We wish only to smooth out high-fre«nency
error between the true solution and its approximation, prior to transferry] to a
coarser grid. For this purpose, we need good smoothing properties of the scheme
only for the highly oscillatory components, which by itself does not necessarily imply
good convergence behavior. It is therefore conceivable that a MG practitioner might
use a poorly conveiging scheme as a smoother. Methods for measuring smoothing
behavior will be discussed. The work of Brandt, [2]-[3], and Stiiben and Trottenberg,
[16], will be cited.

The parallel implementation of the relaxation scheme is the third topic, and
we will find that not all schemes are equally suitable for such computing systems,
but that dramatic increases in processing speed are possible when the execution is
in parallel. The most likely candidates for such processing will be identified. This
section follows Sameh, [15] as well as Brandt, [2]-[3].

Relaxations schemes turn out to be very suitable for asynchronous operation,

243

and the desirability for exploiting this feature will be addressed as our fourth topic.
The reasons are two-fold: whenever a numerical method lends itself natﬁrally toa
certain kind of implementation, then, in the interests of high-speed processing, it is
often to our advantage to design the system accordingly. The second reason is t'hat
global .synchronization of large arrays is a troublesome problem at best, especially
at VLSI signal speeds. Asynchronous data-flow s the reasonable alternative. We
will be influenced in our discussion by S. Y. Kung, (7], and others.

Main results: The identification of the relaxation method most compatible
with the properties of our matrix I + AtA; and an elucidation of an appropriate

architecture for parallel asynchronous implementation.

2. Six Basic Relaxation Schemes

For a survey of the theory of relaxation processes, we refer the reader to Young,
[17].

We present in this section the six most commonly used iterative methods. First

" we establish some notation. Starting with Az = b, with ay # 0, define the n x n

matrix B to have components,

bij = {E’aﬁi/ a:; i#£j (8.2.1)
and define vector ¢ in R™ to have components,
ci=bifa;; 1<i<n. (8.2.2)
It follows that Az = b is equivalent to
z=Bz+e. (8.2.3)

We could also write, D = the diagonal of A, e,

&i; = &ijai5, (8.2.4)

244

and

C=D- 4, - (8.2.5)
Thus,
B=D"c _
(8.2.6)
c=D"1

1). The Jacobsi method J method) is defined as,

ZTpnt+1 = Bz, +¢
8.2.
=(I-D7'A)-D" % (6.2)

Since I -B=1-D'C=D"Y(D-C) = D14, we have (I-B)A~'b =¢. Thus
the existence of A—! forces (I— B) to be invertible and so the method is completely
consistent, as per our earlier argument.

2). The simultaneous overrelazation method (JOR method) is formed by choos-

ing w € R and writing,
Znt1 = (wB + (1 - w)I)z, + we. (8.2.8)

If w # 0, the method is completely consistent, and if w = 1, we have the Jacobi
method.
Ifw>1,weareina sense, “overcorrecting,” since

Int1 =Ty + w(zn-l-l - Zn),

where z,,4, is obtained from the J method. And if w < 1, we are “undercorrect-
ing.” The choice of w can be optimized for a given problem for maximal rate of
convergence. See Young, [17], for details.

8). The Gauss-Seidel method (GS method) is obtained by forming,

B=L+U, (8.2.9)

where L and U are strictly lower and upper triangular matrices respectively, i.e.,
lii=u5;=0,fori=1,2, «esn. Thus

ZTpnyl = L$n+1 + Utn + ¢, (8.2.10)

245

where we use the t** component (Zn+1): when available. For example,
(Znt1)1 = b12(z,)2 + b13(zn)s + ¢;
(Za+1)2 = b21(Zns1)1 + b2s(zn)s + ¢z (8.2.11)
(Zn+1)s = b31(Znt1)1 + b32(Zn+1)2 + 3

Note that det(I — L) = 1. Therefore, with
=(I-L) 'y,
we can write,
Znt1 = Lzp + (I - L)c, (8.2.12)

which is in standard form. If 4—1 exists, the method is completely consistent.

4). The successive overrelazation method (SOR method) operates on the same

principle as the G'S method:
Znt1 = W(LZni1 + Uz +) + (1 — w)z,, (8.2.13)
which can be written,
Znt1 = LuZn + (I — wL) lwe, (8.2.14)

where,

Lo=({T-wL) Y (wU+ (1 -w)I).

And so, if A™? exists, the method is completely consistent. If w = 1, the SOR
method reduces to the GS method, with w > 1 implying overcorrecting, and w < 1
implying undercorrecting.

5). The atat:onary generalized Richardson’s method (GRF method) is designed

- for the case when the diagonal elements of A may vanish. We define,

Znt1 = zp + P(Az, —), (8.2.15)

246

where P is a nonsingular, diagonal matrix. We can write (8.2.15) as

Tn41 = sz,, - Pb, (8.2.16)
where,
| Rp =1+ PA.
If A~ exists, the method is completely consistent, since J — Rp = —PA and

(I - Rp)A~'6 = — Pb. Note that if P — —D~!, we have the J method.

6). The stationary Richardson method (RF method) is a special case of the
GRF method, for we simply set P = pI, where p is a nonzero real number. As
before, the method is also completely consistent if 41! exists.

For the equivalent notation of (6.5.3), with Q—! = s » we have the results of
Table (8.2.1), where A = D — CL — Cy. These terms are defined as, D = the
diagonal of A4, and CL and Cp are strictly lower and upper triangular matrices,

with zeroes in their diagonals.

Q Method
D J
w™lD JOR
D-C GS
w D~ L SOR
—p-1I RF
=P~ (P diagonal) GRF

Q Values of Relaxation Methods
Table 8.2.1

As we have already seen, if A~? exists, then an iterative method can be found
to solve Az = b. But much of the theory of these processes centers around other
special properties that A could have, and which could be more efficiently exploited.

Examples include, weak diagonal dominance, irreducibility, symmetry, and positive

247

definiteness, but all of these conditions still imply that A~? exists. A survey of all
such cases would not be suitable for our own, more narrow, interests. The r;ea.der
is directed to Young, [17], for more information.

Finally, we do not mean to imply that the above six methods are all that is
available. Far from it, as many techniques exist and are described in Young’s classic
work. But the other methods are mostly for special, and often difficult cases. For

now, they will not concern us.

3. Measurement of Smoothing Factors

Much of theliteratufe on iterative methods centers around their convergence prop-
erties, the value of one method over another for a given problem, and the means
of optimizing the convergence rate by manipulation of certain parameters, such as
those in examples 2 and 4 in section 8.2.

In Multigrid theory, this concern over convergence is of much less importance
since iterative methods are never allowed to converge anyway. They are only de-
signed to reduce the high-frequency error of the approximation relative to the true

discretized solution. Thus denoting U* as the true solution to
LhUh = jh’

and u* as a given approximation to U*, the difference U* — y» would have Fourier
components €*®'2/k, Then a relaxation scheme would multiply each Fourier com-
ponent by x(f), which is defined as the factor by which the amplitude of that
component is multiplied as the result of one relaxation sweep.

We remind the reader that what is being transferred to the coarser grid is the
defect f* — LAuh, which can be written as LMU* — u*). Since L* is linear and

bounded as O(h2?), then smoothing the superposition of terms,
U b "h = (Uh - "h)lowfrequenciu + (U h_ uh)highfrequenct’en

implies that the high frequency terms will remain damped. after transformation by
Lk,

248

grid theory in connection with Poisson’s equation. In fact, the only exampleé that
are analytically tractable are when L* hag non-variable components (ie., indepen-
dent of z ¢ G,) which is indeed the case when L* corresponds to a five or nine
point star discretization of the Laplacian.

The smoothing factor £ is defined as

Clearly, this is the worst factor with which to multiply the high-frequency compo-
nents. It follows that we wish Z to be as small as possible. As stated, this term is
not easy to calculate analytically in all but the simplest cases. Fortunately, there

exists a computer program to calculate it for uys known as SMORATE, [3], which is

as ||S1+33|| factors into the bound of |[M,||, (see the chapter on Multigrid theory.)
For example, suppose smoother § has better smoothing properties than smoother
S, but that S]] < ”.§” < 1. Because of better smoothing we have 7, < T2 < 2.
Thus

S| +5 < ”5“3’#}:.

algorithm, due to the increased number of smoothing sweeps., Of course, this can
be compensated for by fewer Multigrid cycles with smoother S. The jssye would
be settled by an investigation with estimates op Bs\B S]], 18], 5: and %

For the more general case, when LA is dependent on z € Gy, as it will be in
our investigations, one makes use of what Brandt calls locq) Fourier analysis, [3].

This is based on the principle that relaxation schemes operate locally, near or at, a

249

point. That is, all the information required for “improving” the approximation at
a point depends only on the local, or nearby, valyes. (This fact will be expouhded
upon later when we investigate the Parallel implementation of relaxation schemes.)
The idea is to examine a single point, z € G}, and evaluate L? at this point, i.e.,
all the éoefﬁcients contained in L* that were part of the PDE are evaluated at z,

Using this new matrix L*, one obtains A(z) just as before, only now we say

A= max i(z).

analysis, letvthedeigenvectors of (I, ~ M L*) be {#x(z)}, where the smoother is
(In - ML*)()) + My,
Now we assume that
Uk —uh = Za"¢" (z) ~ Z’IkC“" =/h (8.3.1)
s\;here the F;mrier expansion is obtained by,
$4(2) ~ 3B, (k)eoeerh, (832)

Now the new approximation given by the smoother is

@t = (I, - ML¥ 4 Myh, (8.3.3)
and, by consistency,
U* = (I - MLMUH 4 My, (8.3.4)
and so
UM ~ah = (1 - MLM (U - ©*) = Y ardii(a). (8.3.5)

With the help of eq. (8.3.1)-(8.3.2), we can write,

U —ah = Y p(01)ypeitessh, (8.3.6)

250

Now, in the especially transparent cases when L* has the same eigenvalues as (In -
M"), which was the case in Poisson’s equation, the defect, d¥ = fH _ [H H _
LHWUH — uH) will not amplify the higher frequency components. .
Brandt, [2]-[3], points out that Z is the first and simplest quantitative predictor
of the obtainable Multigrid efficiency. That is g9 +% is an approximation to the
asymptotic convergence factor obtainable per multigrid cycle, p(My.). This term is
often very accurate, especially when the grid equations do not change much with
a few mesh sizes for the finest grid, and it sets an ideal figure against which the
performance of the full algorithm can later be judged. However, the most important
aspect of i is that it separates the design and choice of the relaxation scheme from

all other algorithmic considerations.

As pointed out earlier, when we compare various relaxations schemes, the
smoothing factor should not be our only criterion of choice. One aim is to have the
best high-frequency convergence rate per operation, i.e., the largest wy! log(1/4),
where wp is the number of operations per gridpoint per sweep. This measure was
introduced by Brandt, [3], with the logarithm being used to detect small changes
in &. With two schemes of similar values of wy! log(iz), Brandt argues that the
simpler scheme corresponding to the smaller wo, should be used, because in prac-
tice, very small factors of g are essentially unattainable: the coarse-grid operator
is usually unable to sustain them. Troublesome interactions with boundaries are
another reason.

Another important consideration, is that the relaxation scheme be stable.
Of course, all the standard schemes already mentioned are already stable, but
smoothers being designed for nonelliptic and singular perturbation equations have
shown instabilities. Stability analysis for such schemes can usually be done in an
analogous fashion with von Neumann stability analysis for time-dependent prob-

lems, taking the main relaxation marching direction as the time-like direction.

It also appears that relaxation can a certain effect on the smooth or low-

251

frequency components as well. Usually, this effect is nil, with p(8) ~ 1 for small |6j.
But there are cases according to Brandt, [3], where we have an excellent j, while
for small |6], |u(6)] >> 1, which hﬁplies divergence for low frequencies. Apparently,
these cases have occurred mostly in hyperb‘olic equations. At any rate, such schemes
clearly must be discarded, and it is therefore in our interests to incorporate into the
program for calculating fi, a check on the stability of the scheme. For example, the
value maxgj<x |1{0)|, would certainly be worth examining. This is one of several

measures that are included on SMORATE.

4. On The Choice of Relaxation Schemes

One would hope that, out of all the available relaxation methods, only one need
be chosen and used for all conceivable problems. This, unfortunately, is out of the
question even for some restricted classes of problems. It certainly would not be
true in the case of the Zakai equation, owing to the variety of implicit schemes and
mesh designs we can choose from for the higher dimensions; (this is still an open
area of research.) The range in variability in the coefficients might also raise doubts
about the wisdom of using one and only one relaxation scheme for cases. It is here
that the MG practitioner must be prepared for a combination of theoretical and
experimental work.

In addition to the smoothing factor, another criterion is the structure and
nature of the matrix A which correspond to L*, the discretization operator of the
PDE.

We remind the reader that:

Defn: A matrix A = a;; of order N has weak diagonal dominance if

N
las] >) laij] §=1,2,..,N (8.4.1)
et
and for at least one ¢,
N
lass] >) lass] (8.4.2)
=

252

If (8.4.2) holds for all 1, then A is said to have strong diagonal dominance.
We already showed that the matrix I + AtA enjoys the property of strong
diagonal dominance.

A very important pair of theorems is now relevant to our needs:
Theorem8.4.1: (Young, [17]) If A has strong diagonal dominance, then det A # 0.

Theorem8.4.2: (Young, [17]) If A has real entries with nonnegative diagonal ele-
ments and is nonsingular, then A is positive definite.

Clearly, our own matrix has these properties.

In addition, with respect to our purposes, the most important class of matrices
we should consider is that of L-matrices.

Defn: A real matrix A of order N is an L-matrix if
a; >0, +=12,...N (8.4.3)

and

6;; <0 i#5 4,5=12,.,N (8.4.4)

Defn:A Stieltjes matrix is a positive definite L-matrix.

Claim: The matrix I + At is a Stieltjes matrix.
It is clearly an L-matrix, and the fact that it has strong diagonal donﬁnance
implies that it is positive definite.

We also have from Young,

Theorems8.4.3: (Young, [17]) If A is an L-matrix such that p(B) <1andif 0 <

w; Swy <1, then

P(sz) S P(ﬁw,) <1
It can also be shown that if all the eigenvalues of B are real eigenvalues, whose
absolute values are less than unity, then the optimal choice of w; is
wy =2/(1+ (1-p(B))/?) < 2. (8.4.5)

253

Note that all eigenvalues of B will be real if A is a Stieltjes matrix.
An important concept in connection with the SOR method is the rather tech-

nical notion of consistent ordering. First, we have

Defn: Given a matrix A = a;;, the integers 1, j are associated with respect to A if
a;; #0oraj; #0.

With the above we can say,

Defn: The matrix A of order N is consistently ordered if for some ¢t there ex-
ists disjoint, possibly empty subsets S;, S;,...,S; of W = {1,2,...,N} such that
Ui=1Sk = W and such that if 4,5 are associated, then § € Sk;; if § > ¢ and
J € Sk if j < ¢, where Sy is the subset containing 1.

Some matrices can, with the help of permutation matrices, be made consistently
ordered. A matrix A, for which this is possible is said to have Property A, in
which case P~1AP is consistently ordered. Young, [17], gives a description of
a computer program designed to test for this property in a given matrix. An

alternative definition is to say that A is similar to A’ where

p-1ap (D1 H
A'=PlAP= (% (8.4.6)

and where D; are square diagonal matrices.

Matrices that arise from five-point star finite difference schemes for elliptic
PDE’s frequently have Property A.

Yet another way of checking for consistent ordering is by a graphical exam-
ination of the labeling scheme used on the grid points. In our case we have a
rectangular (or hyper-rectangular) grid. Let §,5 be adjacent points on the grids,
and their numerical labels be ¢ and 5. If § < 5, draw an arrow emanating from § to
J- Do this for all adjacent points in the grid. Now if we follow any circuit in the
grid by passing through the grid points and arrows, and if the number of arrows
pointing in the opposite direction of our path is equal to the number of arrows

pointing in the same direction as our path, then the finite difference matrix formed

254

from such a grid will be consistently ordered. It can be shown that all naturally

ordered rectangular grids will form consistently ordered finite difference matrices.

Claim: The matrix I + AtA is consistently ordered, as it is formed form a natural
ordering on a rectangular grid.

We can now make the following conclusions. The relaxation method of choice
for the MG practitioners is the SOR method, for, when it is applicable, it is usually
superior in both smoothing and convergence to the other classic method. Indeed,
if we have that

1). A is consistently ordered and positive definite or

2). Ais positive definite and an L-matrix,

then the SOR method is an excellent choice. In fact, for case 2), the J method
will converge while the GS method will be at least as fast. And if B is the matrix
of the J method, we can have a substantial improvement over the GS method by

using L,,, where

ws = 2(1+ [1 - p(B)]V/?)"1. (8.4.7)

We add that if the matrix A only has the above properties, then the SOR
method is still the ideal method with respect to smoothing ability. In fact, Brandt,
[3], together with Grosch, [5], argue that this is the method to use for linear PDEs
with finite difference matrices having one or both of the properties above. Their
work is based on a combination of theoretical and experimental work, for we must
be content with the analytic intractability of the the variable coefficient case. How-
ever, the SOR-method appears to be superior both smoothing and computational
complexity. We therefore have the weight of numerical evidence of the mainstream
Multigrid community in our favor. This should not be dismissed too lightly, as
there is a considerable research effort going on to develop new relaxation methods

for more difficult PDE problems. We can avqid this entirely.

Claim: We can now effectively state that if the domain if a hyper-rectangle, in R™,

255

and if a natural ordering of points is used, then we will have a consistently ordered

matrix for our linear system, as the matrix is of the form,
(I+ AtA) (8.4.7)

where A was defined in chap. 5, with the absolute value of the its diagonals being
the expected value of the time the Markov chain to remain at that point, and all
other points being related to transitional densities. It was shown in chap. 5 that
(I+ AtA) had strong diagonal dominance, and we know from this section that such
matrices are positive definite. Thus this assures us that the SOR-method is the best
choice, with (8.4.7) being the optimal selection of w with respect to convergence.
However, numerical experimentation, in combination with the program SMORATE,

will be needed to choose the best choice of w with respect to good smoothing.

5. The Parallel Implementation of Relaxation Schemes

It is not hard to imagine how such schemes can be implemented on a processor
_array. Sameh, [15], was among the first to discuss how naturally these schemes lend
themselves to parallel implementation. We consider first only the two-dimensional
case for the sake of simplicity, but generalizations will be possible.

Now suppose we have an approximation u® to U?, the true solution to
LhUh — fh.

A processor array manages the computation to be done on the grid. For simplic-
ity, let this be the case of maximal parallelism: we have as many processors as
grid points. Generalizations to less parallel schemes will be clear. Thus, if the
approximation were fed into the array, we would have,

Uk—1,5-1 Uk-1,7 Uk-1,5+1
Ukj-1 %k kg4l (8.5.1)
Uk+1,5~1 Uk4l,5 Uk41,541

where the location of each u(.,.) corresponds to both a processor and a grid point,

as well as the approximation to U('f',). Note that in the mapping from the grid to

256

the matrix operations, in which the solution to the discretized PDE is a solution to
a linear system, we have, ,

Uk,j = U k—1)n+j (8.5.2)
where u, is in R™", with n denoting the largest width of the rectangular domain.
This is the vector we speak of when we write L*Puk where L* isann-m xn-m
matrix.

Now suppose we use the Jacobi method, which has an implementation that is

especially transparent. Here the iterative method is of the form:
i = (I - (diag(L*)) ' L*)(u) + (diag(L*))~1 s>, (8.5.3)
Note that f* is a function of the solution at the previous time-step, and we assume

that these functional values have been stored in the appropriate processors.

Then, denoting M = (diag(L*))"1,
nm
Uket)nts =) (6p,(k=1)n+j — M(k—1)n+5,pl(k—1)n+7,p¥
J pz::l J P PP (8.5.4)

+Mk—1ynstip Sy
Now L* is likely to be sparse, and this would not seem to bode well for parallel

implementation. But the sparsity is a distortion of the mapli)ing in (8.5.2). For
the updated version of u;,; in (8.5.1), we will need the north-south-east-west values
assuming a five-point star scheme. Thus only local sinterprocessor communication is
needed. This is what is meant by the “local” nature of relaxation operations.

Unfortunately, the smoothing properties of the Jacobi method are not always
adequate, and so we will probably have to turn to other techniques.

However, there is a very efficient way to implement the usually superior SOR
method that is no more difficult than the J method. This is the “red-black” or
“checkerboard” method. We consider a rectangular grid where all points have been
“labeled” as if each designated a red-black square on a checkerboard. In (8.5.1),

this corresponds to setting

(8.5.5)

._ Jredif i+ 3even
%7 = | black if §+5 odd

257

Now on all the red points, conduct a JOR sweep which is represented as
(I —wD™'L*)(:) + D1LA, | (8.5.6)

with D = diag(L*). Then, using the newly obtained values at these points, conduct
a JOR sweep at the black points. The reader should convince himself that this two-
part scheme can easily be done in parallel. Incidently, if w = 1 in the JOR method,
this red-black operation would yield the Gauss-Seidel method.

The red-black approach works very well for the five-point difference scheme, it
will fail for the more general case where mixed partials are present, (which requires a
nine-point difference scheme,) and for general finite element grid designs. Sometimes
the mixed partials can be removed by a linear transformation, but not always.
In this case, an extension of the foregoing ideas is available, and is known as a
multicolor ordering scheme. A four-color mapping seems to be appropriate for the
nine-point star implicit scheme; a generalization of this concept can be found in
Adams and 01"tega, [1).

The idea of multicolor ordering is similar to the red-black concept. We wish
to label (color) the grid points in such a way that there is local decoupling between
the unknowns, thus making the scheme more suitable for parallel implementation.
In general, p colors yields p Jacobi sweeps, with information coming from the eight
nearest neighbors of a grid point. The multicoloring scheme is usually straightfor-
ward for a rectangular domain with the discretization pattern being repeated at
each grid point, and in general, Adams and Ortega [1] argue that no more than six
colors will suffice for most problems. However, obtaining the minimum number of
colors for arbitrary discretizations and irregular regions is equivalent to the graph
coloring problem * which is known to be N. P—complete, (Ortega and Voight, 1985,
[13].)

* This graph problem involves the assignment of colors to the vertices of a graphs

in such a way that no two adjacent points have the same color. For planar graphs,

no more than four colors are needed, (this is the celebrated Four Color Map The-

258

6. The Asynchronous Implementation of Relaxation Schemes

As pointed out in the section “The Synchronization of Large Processor Arrays” in
chap. 2, the design of synchronous multiprocessor arrays is problematical at best,
if not impossible for the kinds of VLSI signal speeds we are aiming for, since the
clock ékew would be at or near the same order of magnitude as the pulse rate.
This implies that asynchronous operation may be at least desirable, if not actually
necessary. Fortunately, the structure of relaxation schemes offer themselves quite.
naturally to asynchronous implementation.

Experimentation has shown that such asynchronous methods are faster than
synchronized computations. To obtain an estimate as to how long it will take to
perform one SOR sweep, we note that, if done synchronously, the two parts of the
sweep, involving first red points and then black points, takes 10 time units. This
comes from the five points schemes and the multiplications that occur at each point.
We assume that all the multiplications are done simultaneously in one time-step,
then there are four additions, This does all the red points if all of them take their
data from the north, south, east and west processors in unison. Then the black
Processors do the same. Thus the sweep is done in 10 units,

Now if done asynchronously, we would have 5 as the expected time for all
the red points to complete their work, where o < At — one synchronous time-step.
Now a black point can begin its computations as soon as any of the four red points
surrounding it are available, Using standard state notation we see that a black
point can enter one of four states:

state (1,0,0,0), if the north point is first available,

state (0,1,0,0), if the east point is first available,

state (0,0,1,0), if the south point is first available,

and state (0,0,0,1), if the west point is first available.

orem,) but this is not the case for hyper-graphs to which the above problem is
mathematically equivalent.

259

Now when made available, the red points conduct the necessary multiplication
and transfers the result to the black point, which will not change its value until all
the necessary calculations are done. Assuming the entire process has been synchr‘o-
nized at time ¢ = 0, we see that a black point can be expected to be in one of the
four a.l‘aove states at time B5a, where # > 1. Now suppose it is in state (0,1,0,0),
then it can go to three other states, (1,1,0,0), (0,1,1,0), or (0,1,0,1). We assume this
is done with an expected time of 8- #5a. Continuing in this way, it arrives at its
final state with expected time f*5a. Now if 8 = (1+ 1/10) and & = 0.75At, the

expected time for completion for the first stage of the SOR sweep is,
asynchronous time=(1+ 1/10)*5(.75)time units

which roughly equals, using (1 + 1/10)* ~ (1 + 2/5) = 7/5, and the fact that
% X % & 1, about 5 time units, an increase of 50 percent.

This is perhaps the simplest analysis possible. An alternative is to use more
probabilistic methods, similar to those used in the work of Gelembe, et al, [|. This
implies that, upon entering the “black” stage, the red processing times are governed
by exponential distributions. This suggest that the black processor is waiting for
four random times ¢;,¢ = 1,2,8,4, governed by qyie~ %t ¢ = 1,2,3,4. Thus the
black processor would be ready at time ¢t = max{t;}. If we assume that the four
red processors have equal exponential parameters +, where 1/4 < At, then t has
density 4ve~47%. The expected time for the completion of the sweep is then .25/4+,
a considerable savings in time. All of this assumes that the processors have the
appropriate buffers to store the interim values, and that this “local analysis” can
give performance measures of the global process, which seems reasonable given the
nature of relaxation schemes.

Of course, we must also consider the actual design of the asynchronous controls.
This often involves a considerable cost in overhead, due to the nature of the protocols

needed to manage interprocessor communication.

260

In the context of this specific application and the special needs of VLSI sys-
tems, a natural candidate for the processor array that implements the red-black
SOR method is the Wavefront Array Processor, (or WAP,) that was described in
chap. 2 as well as in the paper by S. Y. Kung, [7). This machine has been offered
as a compromise between the more powerful (and hence more expensive) capabil-
ities of the general data-flow machine and the systolic array with its troublesome
synchronization problems. The WAP still enjoys,

locality, for efficient interprocessor communications,

regularity, for a more facilitated fabrication process,

recursivity, for ease in programming design,

concurrency, for maximum parallelism.

This compromise is deemed Dnecessary since a more general asynchronous ma-
chine architecture is simply not suitable for our size and complexity constraints, due
to its more sophisticated, and hence more expensive protocol designs. The reader
will agree that the four properties mentioned above are consistent with our VLSI
design guidelines.

The WAP system comes complete with its own programming language known
as the Matrix Data-Flow Language (MDFL). With this we can program the asyn-
chronous relaxation, injection and interpolation operations. The relaxation scheme
can be viewed as a sequence of computational wavefronts. Each sweep of the relax-
ation is actually in two parts, so one wavefront is over all the “red” processors first,
and second wavefront is generated for the “black”™ processor. The language MFDL
will allow us to program all the appropriate processors at once, by using commands
such as

CASE KIND=

(I,J) WHERE I +J EVEN

FETCH X, UP A

FETCH Y, DOWN, etc. More details can be found in H. T. Kung’s paper, [].

261

The use of this architecture for interpolation and injection is even more obvious,
as this involves nothing more than taking averages among the four or eight nearest
neighbors. This clearly can be done asynchronously.

Communication among the processors in the array is governed by a handshak-
ing protocol in which they must each wait for a primary wavefront of data, then
perform their computations and, finally act as a secondary source of new wavefronts.
The waiting is implemented by data transfer buffers. Thus a FETCHing of data,
involves an inherent WAITing for the buffer to be filled, and the DATA READY
flag to be raised by the adjacent data sourcing processor. Thus the processing will
not be initiated until the arrival of data wavefront, which is similar to the concept
of data flow machine. The complexity of the protocols is entirely consistent with
simple unit processor design.

The WAITS for wavefronts of data allow for globally asynchronous operation

of processors; thus the synchronous timing issue is conveniently avoided.

We therefore recommend the WAP architecture for the implementation of re-

laxation, interpolation and injection operations.

262

7. Conclusion

This chapter discussed the theory, operation and parallel implementation relaxation
schemes, and their role in Multigrid methods. The main results were a further in-
vestigation of the properties of our I+ AtA matrix, which led to our choice of ap-
propriate relaxation scheme, and a description of how the scheme could be executed
asynchronously, as synchronization of large arrays may prove to be insurmountable
problem.

We cited the standard relaxation schemes among which we would normally
choose. The method of choice was found to be the successive over-relaxation (SOR)
method, which is a combination of the Jacobij and Gauss-Seidel schemes. Most im-
portantly we identified our problem as having a matrix, formed by the implicit
scheme discussed in chap. 2, that is diagonally dominant, and hence positive def-
inite. Being in addition an L-matrix, the SOR-method is not only an excellent

choice, but the optimal parameter w for convergence is known to be
w=2(1+[1- p(B)/?)~1,

where B = (I — diag(L)~'L) and p(B) is the absolute value of the maximum
eigenvalue. However, for improved smoothing capabilities, a different choice of w
may be necessary, and will probably required numerical experimentation to obtain.
Of course, such work is precomputable as far as our signal processing is concerned.
The package program SMORATE, which measures the smoothing factor of of a
given scheme and system may prove helpful in this regard. Grosch [5] also discovered
the superiority of the SOR-method; see his excellent paper for a review of some
simulations that he performed.

The basic role of the schemes in Multigrid theory is identified as the fulfilling the
need for smoothing the error in the the defect: k- L*u*, where ut* is generated
by the relaxation scheme. This allows for a transfer of the defect to the coarser

grid, without the loss of too much information represented in the highly uscillatory

263

components of the error-as this would be invisible anyway on the coarse grids.
Means of measuring this error were discussed.

A discussion of how the relaxation schemes could be implemented on an array
computer was described, with the “local action” of the schemes being emphasizgd.
This means that, in addition to the data in a given processor, the data in the
processors to the north, south, east and west of it are all that is needed. We found
that the SOR method could be implemented by i:sing a “red-black” ordering. Here
the processors in the array are labeled as if laid out on a checkerboard. The “red”
processors conduct a modified Jacobi sweep, and the black processors conduct a
similar sweep but exploit the newly obtained values of the “red” processors.

While the above can easily be envisioned as being performed synchronously,
the problem of synchronization of large arrays may prove insurmountable, thus we
argued that asynchronous operation is preferable. An analysis of the speed up at-
tainable from asynchronous conversion was made. We also proposed the Wavefront
Array Processor architecture as a natural way to implement the asynchronous con-
trols. As far as we know, this is the first time the WAP has been proposed for such

a design.

264

References for Chapter 8

[1] Adams, L. and Ortega, J., “A Multi-Color SOR Method of Parallel Computa-
tion,” Dept. of Applied Math, Univ. of Virginia, 1982.

[2] Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problemé,”
Mathematics of Computation, vol. 31, No. 138, 1977.

3]

[4] Fisher, A. and Kung, H. T., “Synchronizing Large VLSI Processing Arrays,”

» “Guide to Multigrid Development,” in Hackbusch and Trottenberg.

IEEE Trans. on Computers, vol. C-34, No. 8, Aug. 1985.

[5] Grosch, C., “Performance Analysis of Poisson Solvers on Array Computers,”
Supercomputers: 2, Infotech International, Maidenhead, 1979.

[6] Heller, D., “A Survey of Parallel Algorithms in Numerical Linear Algebra,”
SIAM Review, vol. 20, No. 4, Oct. 1978.

(7] Kung, S. Y., Arun, K. S., Gal-Ezer, R. and Bhaskar, R., “Wavefront Array
Processor: Language, Architecture, and Applications,” IEEE Trans. on Com-
puters, vol. C-31, No. 11, Nov. 1982.

[8] Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Com-
puting, vol. 1, 1984. |

[9] Kung, H. T., “Two-Level Pipelined Systolic Arrays for Matrix Multiplication,
Polynomial Evaluation and Discrete Fourier Transform,” Workshop on Dy-

namic Behavior of Automata, Luminy, France, 1983.

[10] »“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-

burgh, Penn. 1984.

[11] y» “Why Systolic Architectures,” Computer, Jan. 1982.

[12] ——, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic
Pr. 1984.

[13] Ortega, J. and Voigt, R. “Solution of Partial Differential Equations on Vector

and Parallel Computers,” SIAM Review, vol. 27, No. 2, June, 1985.

265

[15] Sameh, A., “On Jacobi and Jacobi-Like Algorithms for a Parallel Computer,”
Mathematics of Computation, vol. 25, No. 115, July, 1971.

[16] Stiiben, K. and Trottenberg, U., “Multigrid Methods: Fundamental Algo-
rithms, Model Problem Ax.xalysis and Applications,” in Hackbusch and Trot-
tenberg, (see Bibliographic entry).

[17] Young, D., Iterative Solution of Large Linear Systems, Academic Pr. 1971.

266

9. Empirical Results

1. Introduction

Multigrid techniques have already been investigated by a number of researchers,
(see, fof example, the papers in Elliptical Problem Solvers I and II, [26]). The
numerical experimentations of Gannon and Van Rosendale at ICASE in 1982, [9]
is of great interest to us, and will be given special attention in this chapter, as it
demonstrates the sort of versatility we will demand from the Multigrid algorithm.
The work of some other authors will also be cited.

The reader should keep in mind the following thoughts as he reads through
these sections:

1). Does the theoretical computing speed predicted by Chan and Schreiber
(designated C & S, [4] and described in chap. 7) hold during the experiments, and
does it meet our expectations for real-time signal processing?

2). What is the relation between computing speed, circuit area or layout and
the dimension of the problem?

3). How complicated are the model problems used by the numerical experi-
menters relative to our own class of problems?

4). What kind of flexibility do we have in choosing the appropriate architecture
for the MG algorithm?

5). How easily can these architectures be implemented into VLSI, and what
are the various trade-offs between area and complexity?

Our own results will be in providing answers to the above questions. We will
integrate the work of Gannon and Van Rosendale with that of Chan and Schreiber,
[4), whose work was discussed in chapter 7, on the complexity of the Multigrid
method.

We will put forward arguments that the Configurable Highly Parallel design .

methodology is a natural, as well as accessible, technology from our point of view.

267

We will examine the effect of dimension of the Zakaj equation on computing
speed, thereby extending the complexity analysis of Chan and Schreiber, [4].

Alternative computing architectures will be explored, using the two-pararrietér
approximation of computing systems pioneered by Hockney, [15], and applying it
for the first time to the Multigrid algorithm.

Also, we describe our own stability results involving wordlength and round-off
noise considerations. And our own design for a direct solver, to be incorporated

into the Multigrid architecture, will be described.

Main Results: presentation of arguments demonstrating the viability of the Multj-
grid algorithm for the Zakai equation; analysis of the effect of problem dimension
on the Multigrid architecture, due to constraints imposed by intergrid connections;
analysis of alternative architectures; a stability analysis for wordlength effects and

round-off error propagation; and a design of a direct solver.

2. Three Variations of Multigrid Algorithms

‘Using a prototype model developed at ICASE, Gannon and Van Rosendale, [9], (now
to be referred to as G & R), experimented with several variations of the Multigrid
method. Beginning at the algorithmic level, they used a program essentially the
same as described in chapter 7. All such variations were distinguished by different
choices of parameters in FULLMG. Using the notation of Chan and Schreiber,
whose work was discussed in chapter 7, (and who hereafter will be denoted C & S),
three possibilities are, but were not limited to:

1).e=2,r=1

2. e=1r>2

8).c=1r=1
where, ¢ controls the number of recursive calls procedure BASICMG makes to itself
in order to solve the related coarse grid problems and r = m/j controls the relative

number of inner iterations performed in these recursive calls,

268

Thus when the smoothing sweeps are repeated m times, G & R are repeating
them r.j times. The idea is that it may be more desirable to have a greater number
of smoothing sweeps on the coarse grids. Since their approximating power is less
than that on a finer grid. Therefore, if either ¢ > 1, or r > 1, then more iterations
by BASICMG will be performed on the course grid. Choice number 1) is typical
of the type of multigrid algorithm considered in most of the theoretical literature.
Van Rosendale considered the second choice on his own in an earlier paper, [11],
while Brandt proposed the third example (among others) in [2].

While each of these three choices have about the same performance, i.e., the
cost of reducing the error by a fixed amount for each iteration is about the same,
their parallel implementation is quite different. On choice number 1), with ¢ =
2,r = 1, we would expect poor performance since the recursion involved amounts
to a binary tree traversal. The second choice, ¢ = 1,7 > 1, would be slightly better
and the third choice, ¢ = 1,r = 1 would be the fastest. Using reasoning less rigorous
than C & S, G & R derived much the same results for the complexity analysis. The

same is true for the subject of efficiency or processor unemployment.

269

8. Architectural Considerations

At the architectural level, we assume we are dealing with systems with relatively
simple processors, each having local memory large enough to hold its own shoft
program and the data associated with at least one node of the grid. Hence the
proceséing elements are somewhat more complex than the systolic units discussed
before. The basic distinction between the architectures discussed here in this chap-
ter will be in terms of the structure of the inter-processor communication networks,

For a two-dimensional elliptic PDE, the ideal parallel architecture for the multi-
grid algorithm would be a layered network of processor grids with the finest being
n X n where n = 2™+ 1 and the st? level is a square grid of width 2¢ + 1. Iteration,
interpolation and projection all involve local or nearest-neighbor communication.

If we consider PDE’s in two space variables, one possible grid architecture could
be that of fig. (7.3.1). We see that each grid is homogeneous while connected to
a finer and/or coarser grid. Of course, the layout of this network on a chip would
appear quite different, as we will see later. Also, other designs and layouts are
possible.

Four basic classes of architecture can be discussed. We let R; be the parallel
time required to make a Jacobi (or any other suitable) relaxation sweep on grid
J. Let I; and P; be the complexity of the injection and projection mapping ¥
and II on the 5** grid. In general, the quantity R; will be a sum of three terms:
the time required to complete the numerical computation at each processor, the
overhead time required by a processor to send and receive messages from each of
its neighbors, and the actual transit time required for message passing.

The primary difference between both I; and P; and R; is that the former
require intergrid data movements. As for R; itself, the relative time spent for arith-
metic versus communication will vary from system to system. For example, the
communication software in asynchronous MIMD systems usually involves complex

buffering and handshaking protocols, and may dominate the arithmetic computa-

270

tion. Such overhead is lower in synchronous VLSI systems (like the systolic array),
but intergrid data transmission lines are still long enough to make an appreciable
difference. -

The simplest model we can use is that all operations have the same complexity:
I, =P;=R; =R, J=1,..,K grid levels. (9.3.1)

This model will hold for the architecture in fig. (7.3.1), but it will not hold for
more flexible intergrid data switching networks to be discussed later. Call it the
constant cost model.

How are such multigrid to configured electronically? We can take our cue from
the Finite Element Machine (Storaasli, [28], Jordan, [17]), or the Ma.ssively Parallel
Processor (MPP)). These systems are configured as planar v by m nearest-neighbor
connected grids of processors. Three ways of doing this are shown in figs. (9.3.1a)-
(9.3.1c). Only figs. (9.3.1a)(9.3.1b) are suitable for concurrent iteration while fig.
(9.3.1c) represents the most efficient packing v = 3(m—-1)/2+2 versus v = 3m —1.
The most natural embedding, although not allowing for concurrent iteration, is
clearly fig. (9.3.1c).

All three layouts have similar problems with intergrid data transfers. To ex-
plain, consider a linear sequence of m processors, each capable of nearest-neigh-bor
read /write communication. Assume that processors 1 through m/2 each holds an
item of data and we wish processor 25 to obtain the data from processor § where
1 <1 < m/2. This problem is the one-dimensional analog to intergrid data transfer.
An ezpand operation is the sequence of steps needed to solve this problem. The
inverse operation of transferring data from all even numbered processors to those
labeled 1 to m/2 is called the compress operation. It is clear that the processors in
such a nearest-neighbor network can perform an expand or compress operation in
time m/2 by a set of parallel “bucket brigade” write/read steps.

A similar technique can be used for intergrid transfers. By applying the expand
along each row and then along each column in parallel the data item in position

271

0000000000000 0000
©0000000000080O®DO
0000000000000L000
V0090000000000 OSS
oooooooooFTTT?ooo
©000000000000D/000
coccoclhooojcecoojoee
eoocoo oo%oooooooo
P T s e

—

Figure (9.3.1) Three Multigrid Layout Schemes
(). v=3m-1(b). v=3(m-1)/2+2.(c). v=m

(¢,) is moved first to (2¢ — 1,5) and then to (26 — 1,25 — 1). When this technique
is applied to the embedding in fig. (9.3.1a), all subgrids are expanded in parallel
in 2m — 2 steps. For the embedding i1‘1 fig. (9.3.1c), the ¢** subgrid is expanded in
2° — 2 step. The embedding in fig. (9.3.1b) requires a more elaborate algorithrm,
but can be done in 3m /2 — 2 steps.

Since parallel relaxation is independent of the size of the grid, one has R; =R,
for y =1,..., K. Taking the remarks concerning communication above into account,

one obtains,
Ij=Pj=Ri+x2, R;j=R, for embeddingin fig. (9.3.1c), (9.3.2)

Ii=Pj=Ri+mn Rj=R, forfigs. (9.3.12)-(9.3.1b), (9.3.3)

where x; is a small constant that refers to the time required for a read/write op-

eration in R;. Call the model in eqn. (9.3.2) the linear cost model since it grows

272

essentially linearly with the grid size, (which equals 27 + 1). The second eqn. may
be called the nt* ssze cost model.
The expand and compress operation described above does not ‘seem partic;
ularly efficient. An alternative has been proposed by Grosch, {12], and Brandt,
“13], that involves the use of a shuffle-exchange network.! It turns out that the
shuffle-exchange provides the exact connections that are simulated by the expand
or compress operations. For the case of fig. (9.3.1a), the expansion operation can
be performed by the shuffle network as depicted in fig. (9.3.2), which is illustrated
for a row of processors. Note that processor § is directly connected to processor
2i -1 for ¢ < n/2. Hence, for the embedding in fig. (9.3.1a) and (9.3.1c), we will

have level 5 being mapped directly to 5 + 1.

Fig. 9.3.2 Shuffle Connection on Eight Nodes

Now the complexity of using the shuffle-exchange depends upon the effect of
signal propagation delay due to increased wire length. Inspection of figs. (9.3.1a)
and (9.3.1c) indicates that the longest wire between level § and level s + 1 will grow
as 2°, The linear cost model in (9.3.2) therefore applies. We are of course assuming

that propagation time grows as O(l), where is the length of the wire,? but we still

1 See the section on this network in chap. 2.
% This is a nontrivial assumption, since the possxbxhty of O(1?) delay cannot be

ruled out. See the section, “The Physical Basis of Computation Time,” in chap. 2.

273

might have a negligible contribution of signal delay, and cost model (9.3.2) could
still be applicable. We will discuss this possibility shortly.

An extension of the foregoing ideas can be found in the use of a general per-
mutatipn network for interprocessor communication. Such an approach is well-
developed in the Ultracomputer or the Texas Reconfigurable Array Computer or
TRAC system. The interconnection network for m processors will involve passing
data through log(m) stages. Such data can be rearranged in a number of ways,
although the full number of operations is a subset of the full permutation group
Sn. (See “Shuffle-Exchange Networks” in chap. 2). The 0~ !-network shown in
fig. (2.4.2) can perform uniform shifts and the compress operation described ear-
lier, while its inverse, the l-network, can execute uniform shifts and the expand

operation. The resulting electronic network could appear as in fig. (9.3.3).

2 Ketwvork

Mesh coeordfnated
Processor array/’

0°? Ketvork

Figure (9.3.3) Mesh 02 System

Now Gannon , [11], argues that the f)-network connections are not only prefer-
able in general but are especially suitable for problems in which local refinement
may be desired. These are cases when the solution of the PDEis expected to occupy
only small portions of the fine grid, thus making most of the computations on this
grid useless. One way to counteract this is to “track” the solution by first direct
solving on the coarse in order to get a fix on the location of the solution, and then,

by local refinement concentrate the finer grids only on that portion of the domain,

274

shutting down all the other processors. We might remark that Grosch, [12] arrived
at the same conclusions in his elegant numerical simulations.

However, in our opinion, the 0-network, as elegant and éfﬁcient as it is, may
not suitable for our purposes, as it is too area-intensive, and one of our goals is to
presumably limit the size of our computing system em. We would have to therefore
choose from among the less rapid but more economical designs described so far. We
should have known that eventually such a decision was inevitable, as the trade-off
between speed and area, would put us over the limit we have set for ourselves in
achieving a VLSI chip design. The N-network is simply not suitable for such a
technology.

This is not to denigrate the views of Gannon, however, since his design really
would be superior for the very large problems in structural mechanics and the other
areas he had in mind.

The appropriate model for both standard multigrid and concurrent iteration,

which was introduced in chapter 7, “The Complexity of Multigrid Methods,” is
P,=I1,=R; +klogn, R; = R,. (9.3.4)

We will call this the log-cost model.

A direct VLSI embedding into silicon is possible for all of the architectures
heretofore discussed. However, they each vary considerably in terms of cost due
essentially to area requirements. The shuffle-exchange graph discussed earlier needs
an area of order O(n?/log?(n)) for n nodes (see the section on shuffie-exchange
networks in chap. 2). Since the need for local refinement is meaningful only for
relatively large arrays, (or large n), the corresponding area needed to support the
permutation networks may grow beyond the bounds of conventional chip size fairly
quickly.

Oa the other hand, the mesh embedding in fig. (9.3.4) which does not make
use of permutation networks, requires area that grows O(n) with the nodes, but the

intergrid data-transfer algorithm is very complex.

275

As an example of a linear area embedding of the complete mult.igrid network
in fig. (9.3.1), consider the layout provided by Purdue University’s Configurable
Highly Parallel or CHIP (sic) architecture, (Snyder, [27]). This has the advantage
that all connections are completely implemented, which implies that the commu-
nication algorithm is simple. Howéver, the length of the data paths for the coa‘rse
grids grow exponentially with the maximum level of refinement. In other words,
inspection of fig. (9.3.4) shows that the coarsest grid has processors labeled as one’s,
and the finest grid has processors labeled with three’s. Note how the data paths
are longer in grid G; compared with Gg. Assuming the propagation delay is linear

over a data path, the appropriate cost model will be
Pi=IL=R;=R,+x(2"%-1), (9.3.5)

where x may again be small enough to be negligible. We will call this the linear-
VLSI model. Now how small can x be expected to be? An estimate comes from
the section “The Physical Basis Of Computation Time,” which puts k = O(107¢).
Certainly small enough to be ignored as far as VLSI systems are concerned. Of

course, for general systems, x may be large enough to make a difference.

Ideally one would hope that an embedding of fig. (9.3.4) into silicon could
have an area that grows as O(n) with n being the number of processors, but that
the length of the longest path between two processors would have an upper bound

independent of m. Unfortunately, this is not possible.

We come now to a description of the numerical experiments performed by G
& R. We provide a summary of the four models discussed so far in Table (9.3.1).
The n** size model was excluded from numerical experimentation due to its clumsy
intergrid data transfer mechanism. The shuffle-exchange approach was favored over
it. In most cases one would not expect that neither the algorithm nor the architec-

ture would obey only one of these four models, but rather would be a hybrid of all

276

™|
o)

(WD~
OO
2

l
|

3
&.
i

)
)
)
)]

&
&

O
2%
&5
-G

w‘ w)

W v)u
| 5 u”

!
|
|

W)

Figure (9.3.4) CHiP Processor Embedding

of them, yielding a relation of the form:
Pj=I; =R = Ry + 512" 4 x3logn + k32", (9.3.6)

for some constants K3,k and Kxg.

Model Relations

Constant FPj=1; = R; = R,; J=12,..,n
Log Pi=I;=R,+kn; R;=R,
Linear-VLSI P; = I = R;=R, + x2(n-3)

Table (9.8.1) Communication Cost Models

The constant x s hardware dependent.

G & R made no attempt to optimize the performance of the relaxation sweeps-

277

as they were only interested in a relative comparison between the models. All meth-
ods were tested using the same Jacobi inner iteration with the same suboptimal re-
laxation parameter. No consideration was given to whether Chebyshev acceleration
or red-black S.O.R. might be a better choice. Instead, they argued that any such
optinﬁiation was likely to improve the three methods in their study in about the
same order of magnitude.

In making their relative comparisons G & R simply surveyed the operational
counts each simulation program required, using the scale R; = 1 count and x = 1.
The latter choice, which is orders of magnitude larger than a realistic value of «,
- was made to reflect the differences one would expect to see on exceptionally large
problems where signal speed variations due to wire length would be sure to show
up.

Each PDE problem was solved on grids of maximal size n by n where n = 2™ 41
and m ranging from 3 to 6, i.e., n is of size 49, 225, 961, and 3969. In every case,
the number of Jacobi relaxations in the inner iterations was kept at y = 4.

The three methods tested are:

1). Concurrent iteration, denoted CI

2). The log(n) time per outer iteration (¢ = 1,r = 1) of Brandt denoted
LO-MG.

3). The root(n) time per outer iteration method (¢ = 1,r = 1.2) denoted
RO-MG.

The three PDE model problems are all in two dimensions, and were drawn from
an attempt to investigate three common chaxactéristics of the numerical analysis of
PDEs:

1). The rate of convergence to a point below the truncation error of the dis-
cretization.

2). The effect of domain shape.

8). And the effect of a non-self adjoint operator.

278

We provide only a qualitative description of the results of G & R, [9]. The
reader is referred to their Paper for more details. Comments on their work in the

light of our own requirements will also be given.

Case 1: Convergence to Truncation Error

Let u be the exact solution of a PDE and let u?, be the exact solution to the
associated discrete system on an n by n mesh. Now if uj is the approximation to
v, at the k** jteration of F ULLMG, then given a positive I' << 1, a reasonable

measure of performance of the MG algorithm is the smallest value of k such that
ek — v ll2 < Tffu — w2 |],. (9.3.7)

In words, one says that the error of the discrete solution has been dominated by
the truncation error.
As our model problem let O be the unit square in R? with one corner at (0,0)

and the opposite corner at (1,1). We wish to solve,

Au = —(21) sin (z) sin (), (9.3.8)

with boundary conditions ¥ = ¢ forz =0,0ry = 0, and a vanishing normal
derivative gj‘f =O0forz=1o0ry=1 This problem has a known exact solution

which is
¥ = sin (%z) sin (-;iy) (9.3.9)
Thus one could apply the convergence test in (9.3.7) to determine when to '
halt. (The computation time required to conduct the test was not included in the
results). The value of I was chosen arbitrarily to be 10-4,
G & R found that concurrent iteration, unlike the RO-MG and LO-MG algo-
rithms, does not possess the property that the spectral radius of the MG operator is
bounded independent of n. However, enough concurrency is allowed for in the Con-

stant and Log-Cost communication models, that the concurrent iteration method

279

does very well in terms of computing time, and was generally the faster of all the
models in this case study except of linear cost.

However, in the linear-cost model, fine grid interpolations exact a heavy bricé.
Both the concurrent iteration and the LO-MG scheme do one course grid interpo-
lation for each outer iteration. As the number of grid levels increases, the cost of
fine grid interpolations begins to dominate the cycle time of each outer iteration.
It follows that the method requiring fewer outer iterations, LO-MG, will be tl;e
fastest.

In the linear-VLSI model the burden is shifted to the course grid relaxations.
As the RO-MG algorithm makes the largest number of coarse grid iterations, it is
the slowest. In the linear-VLSI model, the cost of intergrid communication is trivial
and concurrent iterations, which makes better use of parallelism than the LO-MG

model, is moderately faster.

Remark: Concurrent iteration does very well but the sensitivity of the spectral
radius of the MG operator with respect to grid size changes does not bode well for
it. This phenomenon is apparently not well understood at present. See the section

on Concurrent Iteration in chapter 7.

280

Case 2: Domain Shape

Many fast PDE solvers are designed to work best only for problem defined on the
unit square. On more general domains, methods such as the fast Poisson Solver
fare poorly. The ideal alternative would be a general iterative method that, while
admittedly not as fast as the Poisson Solver, is nonetheless more adaptable to a
wider range of domain shape.

Consider the problem,

Au = 1.0, (9.3.10)

on the domain formed by a square with one quarter section removed. We require
that the normal derivative gﬁ = 0 on the boundary 30. The solution near the
re-entrant corner facing inward is constrained to vanish.

A different convergence scheme was used as the exact solution was unavailable.
The method was allowed to run until machine precision was reached and the re-
sulting solution uqos was recorded. The solution process was repeated until the L,

error satisfied,

llup — w2 ||z < 1078, (9.3.11)

where the constant 107° was chosen arbitrarily, See G & R [9] for detailed results.

All three methods had roughly the same basic performance profile with respect
to the four models. However, the spectral radius varied with grid size changes
for all methods. While the RO-MG method has a radius that remains bounded
(a property that can be proven to be the case), the LO-MG method reveals a
substantial degeneration in convergence rate.

The Linear-VLSI architecture provided good performance for all three methods.

Remark: Multigrid methods appear to have technical difficulties for unusual grids
and domains. We will hope to avoid such cases in our work as we will deal only
with rectangular or hyper-rectangular domains. However, it is unknown how the

Multigrid method will behave on a square of four or more dimensions. Work even

281

at three dimensions has been sparse, and will be discussed later.

Case 3: Non-Self Adjoint Operator

Time-dependent parabolic PDEs can also be solved by fast elliptic solvers. As an

example, consider,
du Ju

3 = a5 T ambu. (9.3.12)

Here, oy, is an artificial viscosity that was designed to obey the relation,
am = O(hm))

where A,, is the mesh-grid spacing for each of the experiments as m ranges from
3 to 6. It turns out that a well-known and standard method to avoid unstable

discretization of problems of the form

‘A(') =/,

when ¢ is small in comparison with the mesh width & is the addition of artificial

viscosity to e. This is usually of the form B = Ch yielding
€ — ¢+ Ch.

Similarly, on the coarser grid we would have
€+ €+ C2h,

and so on. Numerical experiments have shown this method to be very stable as well
as being quite suitable for Multigrid algorithms.

Now at each time-step, we must solve the elliptic PDE,

amAu + z—: =f, (9.3.13)

where f is some function of u on the previous time-step. Letting a,, = 2~™ and

J = 1.0 on the domain O n fig. (9.3.5), we set u = 0 on 30 as boundary conditions.

282

This experiment corresponds to advancing the time dependent problem solution
one step. The detailed results can be found in G & R [9]. The determination when
to halt the program was based on the Sup norm: as many iterations were used as

needed to reduce the error to obey,
[luf — v [l < 10712, (9.3.14)

As before, the constant 10~!2 was chosen arbitrarily.

L

Fig. (9.8.5) Domain for Case 3

This time, as self-adjointness was not available, the inner iterative relaxations
parameter was optimized to yield a reasonably good spectral radius when m = 3.
Once again the spectral radius of the concurrent iteration algorithm degenerates as
m increases, but the paralle]l time for the log and constant models continues to be

better than for the other schemes.

Remark: Despite what would be an unusual domain from our point of view, the
Multigrid algorithm fared rather well. Concurrent Iteration is seen to do well as
far as time complexity is concerned, but its spectral norm sensitivity to grid size
makes us hesitant in its use. It is an open question at present if similar phenomena
would occur at higher dimensions even for hyper-rectangles. To see why this might
be a problem, recall that our domain is largely a function of initial probability
density, which we certainly want to be able to change at will. Changes in spectral

283

norm mean differences in computing times that may prove undesirable. This could
be the ultimate trade-off for us with respect to Concurrent Iteration, speed vs.

unpredictable convergence behavior.

Other Remarks

Remark 1: We recall from chap. 7 that C & S found the multigrid technique to
take O(log? n) time units for computation for the fully parallel ¢ = 1 version with
as many processors as the number of grid points. How does this compare with the
results of G & S? The number of grid levels for a problem of size n by n is roughly
log;n (withe =2in C& S notation). If we consider the constant cost model,
the computation time grows linearly with the number of levels. An upper bound
of about 40log n for the computing time found by G & R multiplied by the time
to complete one grid relaxation R yields an upper estimate of 40Rlog, n. Now
the execution time for one relaxation R is about 20 time steps for arithmetic and
communication overhead: so this yields ~ 800 log, n time units. In this case the C
& S estimate was rather conservative. This is because C & S do not consider the
finer points of architectural differences and the advantages in speed that can come
from them. Only a worst case analysis was considered.

If we use the log cost model, and set one unit of communication equal to one
arithmetic operation, then asymptotically the time is quadratic in the number of
grid levels. Using the values in the table, a generous upper bound is 20 log§ n+
40log, n. The C & S bound is of the form

(ka/2)(log} n + log, n) (9.3.15)

- where k is the number of FULLMG iterations and o« corresponds to the smoothing
sweeps, the computation of the coarse grid correction and the interpolation back to
the fine grid, (see chap. 7). The factor in front of (9.3.15) is on the order of 102,

Again, C & S have provided the more conservative estimate.

284

The central contribution of Chan and Schreiber is in their observation of the
inherently self-referential quality of the MG algorithm, and the use of a recurrence

relation to establish worst case complexity bounds.

Remark 2: G & S also point out the efficiency of the MG method over the systolic
band solvers. In the latter case, computation times for problems of size n by n and
in 2 dimensions are in the order of 8n? time units, O(w?) processors, where the
bandwidth is denoted by w.

While the multigrid method is time-efficient, especially as n grows larger, it
certainly is not area-efficient, at least not in all the communication models while
an O(n) are growth rate is possible, as in the CHiP layout, shuffle-exchange graphs
needed for some intergrid data transfer networks grow in area as O(n?/log?n).
This is the trade-off that must be considered if local refinement is desired.

For three dimensional problems, the computation time for systolic band solvers
is of the order of O(n3) with n* processors based on the n by n by n cube. But
multigrid techniques have computation times relatively impervious to changes in
the dimension of the problem. Of course, wire length will be grow with dimension,
and this will slow down the computing speed somewhat. This is a consequence of
chip area growth. In fact, as we know that our computing time T is bounded frc;m
above, due to real-time processing constraints, we know from computation theory
that

T < constant => A= Q(f(d)), (9.3.16)

where A is the chip area and d is the dimension of the problem. Now what is the
design that yields the least area? Clearly it is the one in which the processor grids
are embedded into each other, see fig. (9.3.1c). Now if we were dealing with a
volume in R? that had n¢ points, this would be lajd out on a k x k grid, where
k? = n?, But then the least area that the Multigrid design could have would be
0(k?) = 0(n%). If we assume that the density of points remains constant, then n

would remain fixed, and thus the area of the layout grows as 0(e*9). Thus a chip

285

layout will only be possible for low dimensions.

4. On the CHiP Architecture

As already mentioned, the work at the Purdue University’s Configurable Highly
Parallel (CHiP) project, (Snyder, '82, [27],) is very appropriate for our needs. While
we do not advocate this approach as the only circuit design methodology we should
use, any prospective collection of techniques should at least have most if not all of
the same features as the “Blue CHiP” architecture.

The central thrust behind Purdue’s research effort is drive by the problem of
how to configure or compose highly specialized unit processors into a larger system
suitable for testing, layout and fabrication. In general, one could attach all the
processor to a bus, but any benefits assumed by the algorithmic structure would be
lost through wasteful interprocessor data movement. Alternatively, we could place
the processors within the framework of a perfect shuffle or general interconnection
networks, but this is highly wasteful of area. The CHiP approach allows the designer
to retain locality ad regularity while still providing flexibility.

The CHIP architectures are characterized by a switch lattice connecting con-
necting a collection of homogeneous processors (denoted as PE’s,) and in which
the switching system is in turn controlled by a sequential computer (known as the
controller.) The switch lattice is a regular structure formed from programmable
switches connected by data paths. As of 1981, the lattice structure examined at
Purdue could contain 2% to 2!® PEs, but large amplification in scale is expected,
with at most “wafer level” fabrication remaining a possibility.

Broadcast commands from the controller drive the switches which in turn im-
plement the configuration setting in the same location. With the entire lattice
configured, the PEs begin synchronously executing the instructions stored in their
local memory. The PEs do not keep track of the processors to which they are con-
nected. Commands such as READ EAST and WRITE NORTHWEST determine

286

their actions.

If a new phase of the algorithm is then introduced, a new interconnection
pattern is introduced. For our purposed, this would correspond to the phase',ds. of
relaxation and intergrid data transfer.

The varieties of interconnection patterns yield a rich family of CHiP architec-
tures. This diversity is further enhanced by the range of complexity allowed for
by the PEs. Snyder , [27], argues that memory capacity is more important than
functional capability, and hence argues that PE’s used in an n x n array should
have sufficient memory to store n data values.

The operation and design of the switches is very simple; they are circuit rather
than packet switches, and they occupy area that is only a small factor larger than
the minimum m?, where m is the numbér of wires of the path pairs. Chip process-
ing begins with the controller broadcasting to all switches to invoke a particular
configuration setting. The number ¢ of memory location for storing configuration
settings will be small (< 16) and the degree d, which is the umber of incident data
paths, will be either four or eight. The crossover number & varies between 1 (no
crossover) to d/2, and we will generally have s = 2.

The total numbers of bits required at a switch is thus dcs, one for each direction

for each crossover group for each configuration setting.

The design of the lattice is obviously important, and for the CHiP architecture,
an important variable is the corridor width, w, which is the number of switches that
intervene on the data paths between adjacent processors. Homogeneous arrays are
distinguished as having uniform corridor widths but it is also possible to have a
lattice with a variety of corridor widths.

To see the impact of a particular choice of corridor width in a design, we must
first examine how a lattice accommodates an interconnection pattern graph. Two
considerations come to mind, PE degree and edge density of complex interconnec-

tion paths. Snyder also points out that in the case of PE degree, if the pattern

287

graph vertices have degrees greater than 4 or 8 (the degree usually provided,) then
larger PEs can be “constructed” by coupling the regular PEs to yield one PE with
6 degrees, (like the hexogonal design of S. Y. Kung.) Whether e§en larger vertex
degrees can be accommodated is not clear from his system package description, (to

be discussed below.)

Graph edge density is a second consideration, for it turns out that in order to
host enough paths, some pf the processors may have to remain disconnected, (and
hence unused.) Increasing the corridor with obviously PE utilization. It also lowers
the PE density. Since the number of PEs is linear in the are of high edge density of
the lattice, this implies that PE utilization is inversely related to the are required
to embed the pattern graph in the plane. Graphs requiring a nonlinear area will
under-utilize PEs, since such layouts are composed mostly of wire-as in the case of

shuffle-exchange networks.

Snyder’s research team has concluded that up to constant multiplicative factors,
the CHIP lattice with constant corridor width used the silicon area as efficiently as
direct VLSI implementation for all pattern graphs; CHiP lattices with constant cor-
ridor width as well as such interconnection structures as shuffie-exchange networks
cannot use the silicon area any more efficiently as direct VLSI implementatic;n.

More examples of such embedding can be found in Snyder, 1982, [27].

The CHIiP architecture is also very fault tolerant. If a faulty PE, switch or
data path is detected, one can simply configure around it. Consider wafer level
fabrication. The wafer is viewed as an enormous chip, and it is accepted if, after
testing, a regular k x k sublattice is found to be functional. On board mapping
circuitry could map the addresses of the logical PEs and switches onto the functional
elements of the wafer. Snyder, (1982, {27],) describes a scheme in which many
processors are linked tugeiher to formed a redundant unit. The number of such
~ processors needed could be determined by the yield rate of a wafer fabrication
process, which is determined by what is known as the Price model. He found that

288

the area lost to redundancy is more than made up for by the increased recoverability
of the processor blocks.

Finally, we mention that package programs are available that can simulafe
CHiP configurations. The package is called POKER, and is available from the
Univ. of Washington, where Snyder now resides. It is an interactive graphics
program that allows the user to experiment with a variety of switching patterns.
Timing, fault tolerance and other issues can then be studied. The package is VAX
compatible and appears to be quite user-friendly.

We conclude that the CHiP approach to system design should be seriously

considered as a design tool for Multigrid computing systems.

5. Design of the Direct Solver

In much of Multigrid algorithmic design, the cost of direct solving on the coarsest
grid is almost trivial in comparison with the rest of the computations. This is clearly
true in the case of the classical design in which the coarse grid has been reduced to
a single point. Of coarse, in reality we would not wish to do this, but instead would
use three or four grids, so the coarsest grid would still be a sizeable grid of points,
albeit much smaller than the others. '

Now if we were to design a Multigrid program to be run on a regular main-
frame, the direct solver would just be some library routine for solving linear systems
directly, such as LU decomposition or Gaussian elimination. However, as we are
designing for processor arrays, certain constraints will be placed upon us. For ex-
ample, the cost of circuit fabrication can be reduced if we maintain regularity of the
layout. This behooves us to attempt to design a direct solver for a n$—dimensional
line;r system whose information has been stored in a certain format in .an a.rray-
of n] processors. (Here, n, refers to coarsest grid, just as a multigrid scheme of
K levels has n% points on its finest grid. We are using the notation of Chan and
Schreiber; see [4] or chap. 7.)

289

The approach we are taking is not the usual one in the design of custom-made
architectures. As can be seen in the work of Miranker, [24], one begins first with
an algorithm, which then leads to a communication graph, (which is an acyclic
digraph,) and from this to a processor array. Here we are given the processor array
in adfance, with the requisite information distributed throughout the array in a
predetermined format. This format and architectural structure is a consequence of
the coarse grid being merely a subsystem of a much larger design. Our desire to

maintain regularity has required us to remain in this framework.

In what way is this information distributed? If a point is associated with a
Processor, then that processor also has all other numbers that will be multiplying
the (temporary) value of the solution at that point. The processor also has all other

data corresponding to that point. Thus if we are solving the linear system,

Az =), (9.5.1)

where z is a vector associated with a grid of points, then the component z; of z
will be in processor P;, and the ** column vector of A along with &; will be in this

processor too. This is the case for all the grids, not just the coarsest grid.

We will now describe a simple direct solver that exploits the use of LU de-
composition. We saw this technique used before in the scalar Zakai solver. It
was especially appealing because our matrix is independent of time and hence the

decomposition can be done off-line, i.e., it is precomputable.

Te quickly review the technique, we have the system Az = b and we set A =

LU, where L is a lower unit triangular matrix, and U is a upper triangular matrix.

290

Methods of obtaining such decompositions are worthy of review. We have,

(k+l) - a(k) + Lk (~ux;)

01fz<k,
l,‘kz llfl—k,
Sk)”'kk ife>k.

0if k> j,
Yki = ag;-) ifk<j.

The first observation we make is that if a;; =0 for 1 # j, then l;; = u;; = 0, which
is verified by inspection of the above recurrence relations. This fact will prove useful
to us. (Also note that our discretization ensures that a;; # 0 for each 1.)

Now one solves the decomposed linear system in two steps. If we begin with

LUz =, (9.5.2)
we first find
Lv=b, (9.5.3)
and then solve for
Uz=v. (9.5.4)

The two systems are solved similarly, as they are both triangular systems. We
remark that we have already encountered this problem in the last section of chapter
2 for the scalar Zakai solver. There we were dealing with a tridiagonal system, and
an elegant design with a data stream pipelined into three processors was described
that could arrive at the solution. Here, for our problem the bandwidth will be much
larger, but the sparsity of the matrix will be used in our favor. Also, the pipelined
design will conflict with the array design already imposed upon us by the Multigrid
architecture. In the interests of preserving regularity, we will use an array method
for constructing the direct solver.

Now recall that the formula for solving

Lv=b , (9.5.5)

;291

¥? =0,
y) = oy 4 Lok, (0.5.6)
vi = (b — ")

To seé what is happening more clearly, we will consider the case of two dimensions,
but extensions to higher dimensions are possible. In this special case, we have a
planar array, and, for additional simplicity, assume we are dealing with the case
-- of one processor per point. Starting at the upper left hand corner of the array,
we number the points left to right, so v; corresponds to the st* point/processor

numbered in this way.

Now since L;x = 0 when (I + AtA)ix = O for ¢ < k, the non-zero entries of L
correspond to the north and west nearest neighbors. (If mixed partial are present
in our PDE, the Northwest point is included as well.) Therefore, for each s, the new
value of v; is calculated as above by only communicating with nearest neighbors.
Thus the Principle of Locality is preserved. Recall that (I + AtA) is an n? x nd

~matrix, but it is highly sparse, and of course, we will exploit this fact with respect
to memory storage. The non-zero entries of the column vectors of (I+AtA) of L
are precisely those values that correspond to the nearest neighbors of a given point.

For example, the ** component of u,,, in the equation,
(I + AtA)u,,.H = Fu,, (9.5.7)

is used in calculation with all the nearest neighbors at the $** labeled point. Now in
the case of no mixed partials in the PDE, there are at most 2d + 1 non-zero entries
in the column vectors of (I + AtA) or half that number in L. If mixed partials are
present, we have at most 8¢ non-zero entries. It is the non-zero entries associated
with the nearest neighbors of point ¢ that can be stored in processor t. And since
the matrix U will also be employed, we will need enough memory cells to store

these values. Once again we see that not having mixed partials leads to a linear

292

growth with respect to dimension for our memory cells. An exponential growth rate
is reqﬁired for the case of mixed partials.

With the non-zero entries of the matrix stored in the appropriate processors,
We are now in a position to solve (9.5.5). We state that a diagonal “wavefront of
computations” can be constructed, a term borrowed from Kung, and the Wavefront
Array Processor (or WAP) that he designed, (see the section on this topic in
Chapter 2.) To begin, the upper left hand corner point of the array v, is simply
given the value of b;. Its neighbors immediately to the right and below (East and

South), take on the values,
v2 < La1v; +vp
(9.5.8)
Unt1 € Lpyy,191 + Upqyy.

Thus, in general, we have the following situation, as seen in this cross section:

(9.5.9)

* % =
- %
N = %

Here, the “*” corresponds to points whose v; values have already been calculated.
The diagonal row of 1’s are points that will be next in line to be computed, having
received the computational wavefront of the * points. This in turn leads to the
pattern

* = 1

« 1 2 (9.5.10)
1 2 3

where the 1’s have been computed values, and the 2’s are ready for processing.
The diagonal wavefront continues until it reaches the opposite end of the array.
Then the system
Uz=v (9.5.11)

will be solved in an analogous way. Note that the v; values must change places in
the b; memory cells.
The diagonal wavefront for system (9.5.11) moves in the opposite direction as

the first, using nearest neighbor values from the south and east.

293

We might remark that when the second wavefront reaches the opposite end,
that will be the signal for the coarsest grid to interpolate its data on up to the next
finer grid. Hence a clock pulse will be needed to spur this action, but it need not
be absolutely precise, i.e., no clock skew among the processors. For the relaxations

are done asynchronously, so we can allow for some timing problems.

In fact, the term “computational wavefront” that was employed earlier suggests
that we should implement our direct solver asynchronously. This is not necessary at
least for low dimensions. .Suppose that d = 2, and that our finest array is composed
of 100 x 100 points. If we used four grid levels with half spacing we would have a
12 X 12 processor array for the coarsest grid. Kung’s SPICE analysis of clock skew .
[18], (see the section on “The Synchronization of Large Arrays” in chapter 2) yields
virtually zero timing delay with this array size. Therefore, if desired, we could use

a systolic array for the direct solver.

Of course, for larger dimensional problems equidistant nearest neighbor data
paths will not be possible, so asynchronous implementation will probably be desir-

able, and the WAP protocols and language may be ideal.

To time the algorithm, we see that for an n x n array, we need 2n time units
to calculate the first wave, (the factor of two comes from having to invoke data
transfers from the two north and west nearest neighbors. We would have a factor
of three if the northwest neighbor were included, as in the case of mixed partials.)
Once the first wave reaches the opposite end, the second wave for (7.5.11) begins,
which also takes 2n time units. Therefore, the total time for the direct solver of
n} points is 4n;, which is competitive with the pipelined one-dimensional array
discussed in chapter 2. And we know from the work of the complexity theorists
(e-., Miranker, {24]) that this is the minimal time we can have. Our trade-off here
isin choosing a design which is less processor intensive (only 2d+1 processors would
be needed in a pipelined version) and in preserving regularity, which is always the

better choice with respect to fabrication cost.

294

In higher dimensions, when we are dealing with hyper-rectangles of n¢ points,
we have a possibly non-homogeneous k x k processor array where k = n/2, (this is
the one processor per point design. Thus the direct solver works in O(nf/ 2) timé.
Here n; is small enough that the O(log nk) time needed for the overall Multigrid

algorithm is the predominant term.

6. Remarks on the Stability of the Multigrid Method

In our discussion of the robustness of MG techniques for this equation, we will
concentrate on the 2-grid level case, since convergence here is all but sufficient for
convergence in the general set-up.

We assume for the moment that we have found the maximal eigenvalues of S,
and hence p(h,w),u* have been found. Recall that the Multigrid operator of the
2-grid case is

M, = S5 () (I - I (L) 2 LM) 5 (w) (9.6.1)

An important issue for us is the question of how robust M; is relative to small
departures in L* from its true value. The following Lemma will be of help in

answering this question.

Lemma 9.6.1: Let A be an n X n matrix where we assume,

A
max ” v” - ”A”m‘:
v vl (9.6.2)
. |lAv]| _ , '
min ol = |l A]lmsin > 0

in some suitable norm. In particular assume p(A) is known. Also, let Bbeannxn
matrix.

Then if A is the maximal eigenvalue of A, with
Av = Qv
(9.6.3)
(A+6B)w = pw
for § € R, then |A — p| = O(6).

295

Proof: We have

wAv = A(w,v)
(9.64)
v(A+6B)w = p(w,v)
Thus
6(v, Bw) = (p — A)(w,v),
which can be written
[61llv]l 1wl | Bllmaz > |& — A]|(w,v)]
(9.6.5)
2 |o = Allw|llv]] Amin|A|
where we have used
wAv = A(w,v)
1Allminllwl]l {v]] < Al(w,v)]|
Thus
8|||B ma
161 11Bllmas > |u— Al (9.7.6)

Al Allmin =
This proves the lemma. Q.E.D.

The lemma merely says that small changes in A produces small changes in its
spectral radius, as expected. Hence, in the case of the Multigrid operator, if the
spectral radius is already small, then changes in the operator are also small, and
convergence behavior will be left unaffected. More specifically, the number of MG
cycles that were adequate for the model problem, will not have to be changed for
a small perturbation in the problem. For example, we might be dealing with equa-
tions that are dependent on some parameter. Choosing one value of the parameter
would give us a model problem for a class of equations. Or we choose choose the
average values of the coefficients of the PDE and examine the Multigrid behavior
for the resulting equation with these average, and constant coefficients. We could
then optimige the program for this one problem, and since the Multigrid method is
robust enough, small parametric changes should make little difference in our design.
This is of great importance to us since, in general, one would decide to halt a numer-

ical scheme when some global behavior is obtained, such as successive differences

296

reaching a certain tolerance level. But such a test would take up too much if not
most of the time we have allotted to ourselves for real-time computation. We must
therefore be able to pre-set the number of MG cycles needed for a pre-determined
convergence level, and still be assured of stability of our design with respect to small
changés in the model problem.

The same goes for other features in the program such as choice of grid-size,
injection and interpolation schemes. It should be clear that as long as the changes
are small, no problems will occur here, so we concentrate on the MG cycle number.

Now let us assume, that we already have good convergence behavior with our
program, which we assume to be of the two-grid level design, as this gives us a
good estimate for ||[M.||. In particular, we either know or can estimate the spectral
radius of M, and based on this have determined the maximum number of MG
cycles needed for convergence for each time-step of some parameterized Fokker-
Planck model problem. Now we will replace L* by L* + AB where B is the matrix
with the appropriate entries so that the resulting matrix is a parameterized, with
respect to A, version of the Fokker-Planck equation. equation.

Now we already know that
M| < |ISa |1+ || 1, — I2(L*) 11327 (9.6.7)

So we first concentrate on Sz, which we assume, for the sake of simplicity, to be
the Jacobi operator. Generalizations to other schemes will be obvious although
somewhat tedious.

Now recall that the spectral radius of the Jacobi method is determined by
(I —wD™1L3)(), (9.6.8)

where D;; = 6.-,-L.?,-, i.e., D is the “diagonal portion” of L?. The relaxation param-
eter w is in (0, 1).

This implies that the diagonal matrix D associated with Sj and utilized in the

297

formula, :
Sa () = (Iz - wD_le)(‘) + wD—lfz, (9.6.9)
will be replaced by a another matrix of the form:
D;; — Dy; + AB;;. (9.6.10)

Now we will concentrate only on that portion that determines the spectral radius,

namely,
L} + AB;;
=1l —w = %
(S2)ii =T — bra)
=1, - "’ _— 9.6.11
Iz ((1 + AB‘./D.,) (9.6.11)
+ AB;; /D,,)
14+ AB;;/Dg;
Using the geometric series, this can be written,
LY :
Sa(@)is = Ih ~ w2 [1- ABy /Dy +]
i (9.6.12)

- wADBi:j [l — AB;;/D; +]

" Assuming At is small enough, we can neglect all higher order terms other than the

first. Thus, the new relaxation sweep is
ISz (@)1 < ISR ()il + A [1X], (9.6.13)

where || K|| = O(||B||A%z), since the factor of 1/D;; = O(A2z). It follows that the
new spectral radius of S}¢¥(w) will differ from the old one by O(||Bl|AA?%z). Since
B represents the changes imposed on L*, we can clearly choose Az small enough
to offset to maintain stability.

Continuing in this way, we turn our attention to
I, - (L)'} L2 (9.6.14)

Replace L? by L? + AB? and L! by L' + AB!. Then
(Zh)' = () (L +aB'(LY))
(9.6.15)
s (L')~Y(IL - AB'(LY)™Y).

298

Note that ||B|| = O(1) and |j(L*)~}|| = O(h?). Using (9.6.14) and (9.6.15), and
working all the algebra out, we see that we still have O(A) changes in the spectral
radius.

We conclude that if k cycles of the full Multigrid are needed to solve the Zakai
equatic;n with A = 0, then k cycles are sufficient for small values of A.

We have therefore used a model problem in exactly the same way as MG prac-
titioners would do. By working out the number of cycles needed for this problem,
we could also design the program to be robust enough for small changes without
having to change the design parameters. Of course, this would be further verified
by numerical experimentation.

The resulting robust or stable behavior of Multigrid methods is well known
to the MG practitioners with problems involving even more dramatic changes than
those contemplated in this section. However, the faith in stability is based on a wide
range of numerical experiments, rather than on an exhaustive theoretical analysis.

The heuristic reason as to why such stability is to be expected is due to the
spectral properties of M; whose spectral norm is insensitive to small changes in
L* or even in the domain of the problem. Also the influence of a given relaxation
technique is nearly the same for neighboring problems. This is mainly due to the

“local” nature of relaxation processes in general.

299

Wordlength Considerations

When we store the matrix L* = (I + AtA), iato our processors, we will have to
truncate the entries in our matrix due to limitations on bit size imposed by our
processor design. What effect will this have on stability. Suppose the true matnx is
L» but because of wordlength truncation, we actually store L* into the processors,
where

AR+ AL® = Lk, (9.6.16)

We know from previous arguments that a change in L* of the order of AL* produces
a change in the Multigrid operator of the order of ALk,

This, of course, will incur a change in the spectral norm of the MG operator,
and the question for us is whether its norm can become greater than one. Thus,
suppose the true MG operator is M, and that because of wordlength limitations,

we really obtain My, where
M; + AM; = M,;. (9.6.17)
This induces a change in the spectral radius of the form,
Amaz + Adpmaz. (9.6.18)
Now, because of wordlength limitations,
(AML);; < /2 (9.6.19)

where ¢ is the quantization bound. In our case, ¢ = 2~%, where b is the number of
bits in a word.

Although the Multigrid operator can be written as a huge matrix on the order
of n¢ x nd, it is very sparse, and it is only the non-zero entries that will create any
problems with regard to wordlength limitations. Now each row vector of M; that

is dotted into the vector u; contains at most 3¢ non-zero entries corresponding to

300

the nearest neighbors of each component of %k, in the case where mixed partials

are present. (This is the case of having no mixed partials in our PDE.) Thus.
(3%),—s

Now We make use of a result from Faddeeva, [6]. If a matrix A is perturbed by A4,

then the corresponding change in the maximal eigenvalue of A can be estimated by
AX = vTAAAu, (9.6.21)

where u is the eigenvector of the matrix A, and
Au—-du=0, |u]|=1
(9.6.22)
ATy — v =0, (vyu)=1.

Using this, the change induced by AM; on the maximum eigenvalue \,,,. is
Amaz + Aoz = Amaz + UTAMk“ (9-6-23)

where « and v obey eq. (9.6.22).

It follows that for stability we must have
[Amez + vAMiu| < [Amez| + 0T AMu| < 1 (9.6.24)
and using equations (9.6.20) and (9.6.24) we have, upon taking logarithms,
b=—(1+1log;((1 - Amaz)/3%) > 0. (9.6.25)

This formula gives the minimum number of bits that are needed in a work so as
to ensure stability of the Multigrid operator as a functjon of dimension d. We see
in fig. (9.6.1) that even for large d say, d ~ 10, and rather large Apmqs, eight bits
should be sufficient to ensure stability. We see that despite the size of the matrix in
our algorithm, its sparsity allows for low wordlength. Of course, greater accuracy
* may require 16 bits, but recall that the one-dimensional Zakai solver, described in
the last section of Chapter 2, also needed 8 bits.

301

: b

Number of Bits

0 1 { i -
v.9 0.92 0.94 0.96 0.98 1.0

Maximum Eigenvalue > ¢ Mk: Amax

Figure (9.6.1) Minimum Wordlength as Function of Dimension
Preliminary Round-off Error Analysss

Because of the iterative nature of the Multigrid method, a preliminary analysis of
round-off error should be fairly straightforward. Using the fact that M is constant

while f* is recalculated for each time-step, (as it depends on Ay(t)), we have,
- k k—=1\=1rk—-1/7,k k
Up+1 + Atpir =Mi(up + Aup) + I (L) TUE 2 (f* + AFY. (9.6.27)

Here, the subscript p corresponds to the p*? iterate that has occurred within a single

time-step. The error, due to round-off noise is
Aupyy = MiAu, + If_ (L*-Y)-11k-1a 18, (9.6.28)-

- Now there are r cycles of the Multigrid algorithm for each time step, 8o if ug is our
initial guess at the start of a complete cycle, then, at the end of r cycles we would

302

have, :
r—1

Au, =MiAug+) ME(IE_ (L* 1)1k 2Afk, (9.6.29)

=0

(Remember that A f* remains a constant during the complete cycle as it depends

only on Ay(t), and is calculated only at the start of the cycle.

Taking norms of (9.6.29), we have

A < M Auo + (11%2—',") 2 ()Y At (0.6.30)

But ||M.||" = 0, thus the round-off noise is O(A f*) for each complete cycle. Fortu-
nateiy, the calculated of f* is trivial relative to all other calculations, and it is done
completely in parallel. If we assume that the noise incurred by a calculation to be
a random variable with a uniform distribution between (—a,a), then we find that
Afk = O(a) since each component of J* is calculated by a single multiplication

independently of all others, and therefore incurs very little error.

7. The Effect of Dimension on Real-Time Processing

One of our goals to to determine whether the MG algorithm is suitable for real-time
processing in higher dimensions, e.g., d > 3. We know from the results of Chan and
Schreiber (hereafter denoted C & S) that the complexity results of Multigrid are
affected by dimension in the choice of 4. This parameter in turn tells us how many
processors are to be used, which is proportional to n7. In addition, the work of
Gannon and Van Rosendale (or G & R) suggests that the actual implementation of
the architecture will have a possibly dramatic effect on the speed and performance
of the system, due to communication complexity and signal delays brought on by
somewhat extravagant wire length. Consequently, we will combine the work of
both research groups by demonstrating exactly where the results of G & R can be
incorporated into the C & S framework. Upon doing this, we can study the effect
upon computing time by an increase of dimension.

The most important observation we will make in this section is that processor

array technology is limited by the number of interprocessor connections that can be

303

feasibly designed for a chip or any other electronic structure. This is true both for
today as well as for the foreseeable future. The most reasonable maximal number of
interconnections is about eight, although an even higher number might be possible.
Eight interconnections correspond, in the notation of C & S, to v = 4, (the 1"ule
beingbthat each processor is connected to its 2y nearest neighbors.) If we restrict
ourselves to a particular processor array design, which means that « is fixed, then
we are automatically limited as to how high a dimension can be before real-time

processing becomes impossible.

For purposes of illustration, suppose we intend to have one processor per point.
Now in one dimension, a point has two nearest neighbors, in two dimensions a
point has a minimum of four such neighbors, and possibly eight with which it will
“communicate” or share data. Similarly, in three dimensions a point will have a
minimum of six neighbors. Clearly the rule is that there are 2d nearest neighbors

to a point in a d-dimensional space.

Now we can map a d-dimensional hyper-rectangle to a two-dimensional plane;
this will not be the problem. Rather, it is the interprocessor connections that will
limit the dimensional size of the problems we wish to consider if we want to keep
the one point per processor design. For if 7 = 4, we have 27 interconnections per
processors, i.e., each processor is connected to eight of its nearest neighbors. (This
rule follows from the work of C & S.) This implies that 4 > d, in this particular
design, and so we cannot go any higher than d = 4. This of course, is the most
parallel and therefore the fastest of all of the C & S designs. To choose another

design is to incur a slower computing time.

These facts are made especially transparent if we think of each point on the
grid as a vertex of a communication graph, which we know from our previous studies
is an acyclic digraph. Then 2+ corresponds to the degree of the vertex and implies
that each point must communicate only with each of its nearest neighbors during

relaxation, interpolation and injection.

304

We reiterate that it is unlikely that we will see processor arrays with more that
eight interconnections between processors. A greater number would probably imply
costly communication over much greater distances than those incurred by nea,rest
neighbors. Thus the principle of locality would be violated.

The solution to this is simply to use processors that accommodate more than
one point. This would occur precisely when d > 7. We could then have a processor
grid of n7 processors, in which each processor is still connected to its 2 nearest
neighbors. If we set n = ny, with the lower grids having n], we see that each
Processor on processor grid P, oversees n:_'; points. Now this means that a single
point in a given processor has direct access to all the other points it shares with its

host processor, plus those in the other processors. This yxelds a total of

nd=7_14 29n%~7 points.

We also know that this same point has 2d nearest neighbors in the problem space.
Suppose that v and n were held fixed, but d was allowed to grow in size. Would
our architecture still accommodate this growth and ensure that our original point
had direct access to all those points with which it will communicate? For this not

to be true we would have to have, for v < d,
ndI(2y+1) - 1< 2d. (9.7.1)

But this is impossible since

(21+1) (2d+1)
n7 nd

9’

there being equality only when d = 5.
We now make an attempt to incorporate the work of C & S into this discussion.

We know from their research that for BASICMG, the computing time obeys
B(a?/(a® - c))n®? + O(n!%e ¢ if ¢ < a?
T(n) = { BnPlog, n+ O(n?) if c = a” (9.7.2)
O(nlo%. " if ¢ > a?

305

where p = d — «. Let us make some estimates of these parameters. We begin first

with B, which we recall obeys relation (7.3.16),
B=(0+m+s)t,

where

J = m = 2 is the number of relaxation sweeps used at different points in the
BASICMG program, (consult chap. 7),

8 turns out to be the parameter that is really being explored by the work of
Gannon and Van Rosendale, as described in this chapter. It is the ratio of time
devoted to injection, interpolation, and intergrid data transfers to the time required
for one relaxation sweep.

Now the key to the work of G & R is that they relate the time required for
injection, interpolation and data transfer in terms of the time needed for relaxations.

For example, in the ideal case,
I =P;=R; = Rk for j=1,2,..., K. (9.7.3)

Here the subscript j refers to the grid level, and I;, P; and R; correspond to the
time for injection, projection and relaxation. The thrust of the research of G & R
was to show that when the MG algorithm was implemented on realistic designs,

this idealized case did not hold true. Instead we obtained equations of the form:
I;j=P;= R,' + f(J, n). (9.7.4)

The reader can refer back to the previous sections to see examples of f (5,n) such
as ¢2™J in the case of the VLSI implementation, or clogn in the case requiring
{}-network interconnections.

We note that for eq. (9.7.4) we have the ratio,

I; + P;
R;
306

8=

It follows that in the idealized case, s = 2 and in all realistic cases we have s > 2,

since

8=2(1+ f(5,n)/R;) > 2. (9.7.5)

While we could give a more explicit determination of this ratio, for our purposes
we merely note that s = O(10), and usually 2 < s <4.

Now the other term is t which corresponds to the time required by one point
in performing the necessary calculations for one relaxation sweep. Clearly this is
on the order of O(d) as this relates the number of nearest neighbor points that
must be “averaged in” during the sweep. In particular we will say that we have
2d multiplications and 2d additions for each point during the sweep. This requires
4d elementary operations on the part of the processor. The time required for an
elementary operation will obviously vary from one system (and one technology) to
another, but in the case of VLSI we can assume that ¢ s 4d1079 sec, or that one
nanosecond is required for such operations as addition or multiplication, (see the
section in chap. 2 entitled, “The Physical Basis of Computation.”)

This takes care of (d). Now we will make the following assumptions. Assume
n to be fixed. Recall that this is the width of a hyper-square, (it could easily be
a rectangle). Thus, in two dimensions, we would have a n x n square, in three
dimensions, a n X n x n cube, and so0 on. We also assume that « is fixed at v = 4,
which gives us 2v or eight interprocessor connections. Finally, we assume that
the time required for a direct solution on the coarsest grid is small enough to be
ignored relative to the overall computational effort. This is tantamount to ignoring
the constant terms in eq. (7.3.17) which gives the computing times for BASICMG.

We will also give ourselves a real-time constraint, Tyn,5, which we arbitrarily
set to 10~3 sec. This figure is chosen as being typical of the sort of computing
speed we will likely need. The reader will recall that the one-dimensional Zakai
solver described by LaVigna in his thesis also had this time bound.

The only parameter that we will allow to vary is the dimension d. We can then

307

ask: at what value d does the computing time for r sterations of BASICMG ezceed the
real-time constraint? First, we must choose an appropriate architecture. Since we.
will be looking at cases where v < d, we must choose the most optimal architecture,
(with respect to time), given this constraint on 4. A glance at (7.3.17) gives an

optima] time when ¢ < a7, which yields a computing time, for r iterations, of
rT(n) = rBa®/(a® — ¢)nP. (9.7.6)

When p = d — 7 is large, we can safely assume that a?/(a® — c) ~ 1. Setting Tnqz

greater than eq. (9.7.6) gives
rﬂ(d)nd"" < Traz,s (9.7.7)

or

d Trnaxn?
rf(d) ’

which can be written,

log —%
d<~y+ _l% (9.7.8)

Now we can ask some quantitative questions. We set
d = dimension, which will vary from 1,2,...
y=4
r = 10 iterations
Tonaz = 103 sec
n = 100
t =10"° gec
8 = 2 (see earlier discussion)

J = m = 2 relaxation sweeps
B=(2+2+2)4dt
We can use these values and find the maximal d for which equation {9.7.8)

holds. Using a computer program, we find that this mazimal dimension is five. Let

808

us change the above parameters slightly. If we let n = 10, keeping everything else
constant, we would get a mazimum dimensson of siz. It would seem that order of
magnitude changes will not alter our results very much because we are incurring
only logarithmic rates of change. |

Let us now assume that n = 10 as before but that our estimate of ¢ was too
conservative. So let ¢ = 1071 sec. Then we would have a mazimum dimension of
esght.

How might we correct for the 4 = 4 resiriction? Interconnection patterns do
exist that could tie the processors together whose “nearest neighbors” requirements
exceed the usual eight. For example, the Cube-Connected-Cycles interconnection,
the Hypercube and the Butterfly organizations can all be thought of as networks
that pass data from among the vertices of a k-dimensional cube. Each vertex can
pass or receive data from every other vertex. The amount of time it takes to do
so varies depending on the distance of one vertex to another, although the time is
usually no more than k counts of the clock. These are also high-wire, area-intensive
designs, and are more suitable for Supercomputers than for the special- purpose

design we have in mind.

Snyder [27] argues that the CHiP project can allow for interconnection pat-
terns of the kind that may be more useful to us. If the degree of the processor is
the number of interconnections emanating from it, then Snyder argues that larger
degrees are really not necessary as the same effect can be achieved either by mul-
tiplexing data paths or by logically coupling processor elements. For example, two
degree-four PE’s could be coupled together to form one degree-six PE. By the same
token, two degree-six PEs could be coupled to form one degree-10 PE, and so on.
However, the latter method will lead to a loss in processor utilization on the grid

or wafer we would be using.

This then, is a major question that we can ask ourselves, once we obtain the

software provided by the CHiP project: namely, how might the equivalent network of

309

processors with degrees > 8 be constructed, what is their time-area characteristics,
and how might they compare with the more general interconnection networks based
on the k-dimensional cube?

We can already identify some causes of time delay produced by using the CHiP
desigx;:

1). greater length of data paths.

2) a more complicated set of communication protocols—and hence a greater
amount of time to calculate decisions governed by them.

3). buffering delays.

Without benefit of simulation studies, we can make some educated guesses as
to the effect of using such a design for v > 4 (or degree > 8). It would be reasonable
to assume that an order of magnitude increase in time would be incurred at the
expense of using such a design, and that this would depend linearly on d, or if v is

allowed to increase with d, on 4. Thus we modify (9.7.8) to read:
B(d)10dn°® < Tpnqs (9.7.9)

where d = 4 and where 10d represents the cost in using the CHiP approach of
logically coupling processors. Using this, the maximum dimension we can have,
using the assumptions we first made in this section, is 9, for n = 100, and 13, for
n = 10. Certainly, an improvement, but not a very dramatic one. And besides, our
estimate that a cost of 10d is incurred for dimensions greater than 4 is probably
less than what it is likely to be.

The reader is encouraged to vary the parameters on his own, but we have
sufficiently demonstrated that a dimension of d > 10 is not likely, at least for most
of the real-time constraints that are encountered in practice.

In the next section we ask an even more general question. Are there other com-
puting structures, either real or hypothetical, that can outperform the computing

times discussed above?

310

8. Alternative Architectures

Despite the elegance of the designs of Gannon and Van Rosendale, we cannot help
but wonder whether other machines might do as well or even better. Especially now
that we know there is a limit to what can be done with respect to the dimension d

and keeping the real time computing bounds we have set for ourselves.

Hockney (15]-[16] has provided a two-parameter characterization of supercom-
puters, be they in the form of serial, pipelined or array-like architectures. The first
parameter ro, is the traditional maximum performance in megaflops (i.e., millions
of floating point operations per second) and the second parameter n/2, is a measure
of the apparent parallelism of the system. The theory is designed to compare two
different algorithms on the same or different systems. In [15], Hockney applies his
method to a comparison of the direct methods for solving Poisson’s equation known
as the FACR(!) algorithm, which involves the optimai combination of Fourier anal-
ysis in the z—direction and block cyclic reduction of lines in the y-direction. Here,
"1 is the number of stages of line cyclic reduction that is performed before Fourier
analysis takes place. Determination of optimal [is then possible, given a parallel
architecture.

Hockney is decidedly not suggesting that these two parameters characterize
all the features that one would wish to know about a computing system. Other
features might be cost and efficiency, to name only two. Rather, this two-parameter
description is only a first order approximation of the system to be used in a relative
comparison with other systems of entirely different structure, such as vector, or
more generally pipelined systems, as well as serial and multiprocessor architectures.
What we hope to do in this section is ask whether some existing machines can
do any better with respect to computing time than the architectural prototypes
described in this pages.

The two-parameter deacription of any computer is obtained by fitting the best

straight line to the measured time, ¢, to perform a single vector operation on vector

311

of varying length, n. For example, the operations A = B s C, where A, B and C are
vectors, or any other similar procedure will suffice. Hockney writes this best-fitting
straight line as

t=re(n+ny,). (9.8:1)

Again,

Teo = (maximum or asymptotic performance) or the maximum number of el-
ementary arithmetic operations per second. This occurs for infinite vector length
for the idealized computer.

ny/2 = (half-performance length) the vector length required to achieve half the
maximum performance.

Examples will make these terms clearer.

a). serial computer: The execution is simply proportional to
t=1tn, (9.8.2)
where ¢, is the time for one elementary operation. Comparing with (9.8.1) we have
T =1/t1, ny/,=0. (9.8.3)
b). pipelined computer: the execution time is expressed as
t=(s+1+n-1)r, (9.8.4)

where
7 = clock period
8 = set-up time in clock periods
! = number of segments in the arithmetic pipeline
Thus
To=1/1, nyp=08+l-1. : (9.8.5)

¢). processor array: Suppose we have a processor array of N processors which

simultaneously perform the same arithmetic operation on n elements of each vector.

312

Let t, be the time for one parallel arithmetic operation of all processors in the array.

Then,

t =t,[n/N], (9.8.6)
and we see that
' ‘100 = NJt,
(9.8.7)
ny1/2 = le.

Note that n;/, is simply the “average parallelism. Hockney argues that for the
CRAY-1, n;/; = 15, aﬂd that for the CYBER 205, n, /2 = 100. The ICL DAP
has n,;; ~ 2048. We also note that the “infinite array” often used by complexity
theorists has, appropriately enough, n,/; = co.

Going back to the pipelined case, we see that we have large n, /2 if lis large
(large hardware parallelism) or if s is large (large overhead). Thus Hockney argues
that in this case as well as in the others, n;/, is a measure of apparent parallelism.

The terms ro, and n;/; can be measured by a computer program, that is
easily run on any system. A shorthand version of it appears below. The function
etime(tarray) gives back a real number in the variable tarray, which is the user time

since the last call to etime. The first call gives a value of zero.

program time
real tarray
do 20 n=1,nmax
call etime(tarray)
do 10 i=1,n
10 a(i)=b(i)*c(i)
call etime(tarray)
20 continue

Finding the best straight line through the data obtained by successive runs

with different values of nmax gives a slope of ro, and an z-intercept of —n, /2

313

A variant of this program was run on the VAX here at the Univ. of Maryland.
I found ro, = 21240.1 operations per second and n, /2 = 9.44 x 10710 the latter
value being expected on a serial machine. The value of ro, was corroborated By
independent calculations by David Hsu of the computer staff here at Maryland,
(and I would like to thank him for his help during this time.)

Hockney gives a general formula for the computing time of an algorithm:

imaz
T=r;! E ai(pi +ny2) (9.8.8)
=1
where we define
imaz
9= @ (9.8.9)
=1

is the total number of vector operations, the parallel operations’ count, or the

number of unit timesteps.
imazx

8= ap, (9.8.10)
=1
the number of elementary operations, or the traditional serial (scalar) operations’

count.

P=s/q, (9.87.11)

is the average vector length, or average parallelism of the algorithm. Thus
T=r'q(p+ny2), (9.8.12)

or

T =r2'(s +ny20). (9.8.13)

We can also show that speedup is related to these quantities. We say that

Speedup = time of execution on uniprocessor
time of execution on multiprocessor
- number of elementary operations (9.8.14)
number of parallel operations

=p

Qe

314

The implicit assumption here is that the parallel and serial machines have the same
speed for elementary arithmetic operations. .
We now have a way of comparing the performance of algorithms on different

systems. Define,
. T(b,z) s(b) + ns“/’)zq(b) 'g)

= X
T (1) s(a)_,_ns)zq(a) 2

(9.8.15)

where a,b correspond to different algorithms and 1, 2 correspond to different sys-
tems. Of course, we can compare the same algorithm (a = b) on different systems.
In fact, if we divide (9.8.15) by ¢(®) = ¢(b) = g we get
_ 2
Pal) 10

X = .
e T

(9.8.16)

However, we might remark that we already have a satisfactory way of opti-
mizing the design of the Multigrid algorithm on the C & S architecture. As stated
above, the two-parameter method of Hockney will be used to compare performances
on other systems.

But in the case of the Multigrid algorithm we can still exploit our knowledge

of the speedup. This is simply

(a:i c) lo::n (9.8.17)

as seen by multiplying the efficiency E in Theorem 7.4.1 by P(~) (eq. (7.4.1)). This
comes from the definition of speedup in eq. (7.4.1) as described in chap. 7.
However, let us use Hockney’s notation and theory to if we arrive at the same
result. We will use nominal values of the parameters throughout, in particular, we
will let ¢ = 1, which corresponds to the V-cycle. The results are easily generalized.
Now for BASICMG, we begin on the finest grid and do our relaxations. This
involves (2d + 1) operations and there are 2d nearest neighbors to a point. This is

done to n¢/2 points. Thus we set.

@ =(2d+1), nk/2=p,. | (9.8.18)

315

Note that s = (2d + 1)n?/2 gives the number of serial operations that would have
to be performed for the relaxation sweeps.
Injection is next. We can assume this involves averages of nearest neighbor

points of n¢/2 of the total number of points. Thus
g2 =(2d+1), nk/2=p,. (9.8.19)

Interpolation can viewed as the “inverse” of injection. Values from a coarse
grid is transmitted to the finer grid and then points not directly receiving a value
take on the average of the nearest neighbor points that did receive values. This

takes the same amount of time as injection. Again,
¢ =(2d+1), n{/2=p; (9.8.20)

It turns out that the factors in front of the terms n§ are all alike. Thus when

we divide s by
qg= E g5y

where every g¢; is a constant, we will have cancellation. We also note that the sum
is from 1 to 2log, nx since we have log, n levels in the classical design, and so the

speedup is

d d

a n
a?—clog,n’

(9.8.21)

after having used eq. (7.4.1),

a‘ d
n
ad—¢c °’

P(d) =

which corresponds to the number of processors in a log, n level system of 4 = d.
We remark at this point that his speedup corresponds to our comparing the
performance of the Multigrid algorithm on a multiprocessor system with an un-
limited number of interconnections between processors and a processor for each
point. Such a machine is not meant to be practical but is a measure of the potential

speedup capable of the algorithm.

316

Thus the speedup predicted by Hockney agrees with that derived earlier by
Chan and Schreiber. We note that in both cases, this speedup corresponds to
systems, both serial and parallel, whose ro, remains constant.

Since we now know s, ¢, all we need to know regarding the performance of the
Multigfid algorithm on a given system is its T and ny/,. Some typical values of
these two parameters are available from Hockney and Jesshope [16] and shown in

Table (9.8.1).

Computer ny/2 Too in megaflops/sec
64’ CRAY-1 15 80

48’ BSP 90 50

2-pipe 64’ CDC CYBER 205 100 100

1-pipe 64’ TIASC 30 12

64’ CDC STAR 100 150 25

(64 x 64) ICL DAP 2048 16

HEP 820 1.7

Sample values of ro, and n, /2

Table (9.8.1)

We can also compare the performance of another computing system relative to
that of the VAX, whose r., and n1/2 Were given previously, simply by using (9.8.16)
and the r., and n, /2 for the new system.

Now if we ran r iterations of BASICMG on a given system, the computing time
would be of the order of

T=rrlq(p+ny) (9.8.22)

by eq. (9.8.12). We ask the question, given T,,,, = 1msec, what is the maximal
dimension of the Zakai equation we can numerically solve by our BASICMG pro-
gram and still be with this time constraint? Using the values from Table (9.8.1),

we obtain the maximal dimensions found in Table (9.8.2). These values follow from

317

Computer : dpmaz for n = 100 dpmez for n = 10
64’ CRAY-1 1 3
48’ BSP 1 3
2-pipe 64’ CDC CYBER 205 1 3
1-pipe 64’ TIASC 1 2
64’ CDC STAR 100 0 1
(64 x 64) ICL DAP 0 0
HEP 0 0

Table 9.8.2 Maximum dimensions for n = 100, 10

the dependence of ¢ and P on the dimension d.

The most startling observation we can make regarding Table (9.8.2) is that
the performance of our parallel algorithm actually fares worse on the more parallel
architectures, such as the DAP. How is this possible? We already know that a
multiprocessor architecture is ideal for our purposes, as demonstrated by an analysis
of the Gannon and Van Rosendale prototype. But this was a special purpose,
custom-made machine. Those systems listed in Tables (9.8.1-9.8.2) are for general
classes of algorithms. In fact, the more parallel machine will outperform their serial

counterparts only for fairly large highly parallel programs.

To see this, let us, following Hockney, [15], define the performance (or speed)
P, of an algorithm as the inverse of it time execution, i.e., T-1, which denotes
the number of executions of the algorithm that are possible per second. Then the

relative performance of a parallel and a serial machine is given by

5_T _ 9.8.23
P, T, gp Xt ()

where the subscripts s and p refer to the serial uniprocessor and parallel multipro-
cessor respectively, and ¢, and tp are respectively the time for a serial and parallel

318

operation. The above equation can be written as

P, t,

2%, 8% %

P, ¢ & (9.8.24)
= Speedup x algorithmic slowdown x hardware slowdown '

The ﬁfst factor is speédup, which is équal to f in eq. (9.8.14), but the second and
third factors are slowdown factors and will be less than one. Hence, having p > 1
will not be sufficient in order to have superior parallel performance.

Now algorithmic slowdown arises because the definition of speedup assumes
that the parallel algorithm is executed on the serial uniprocessor with an elementary
operations count of 5,. Now any algorithm chosen for a parallel computer will not
be the best on a serial computer, and the number of elementary operation in the
best serial algorithm s, will almost certainly be less than t,.

Hence the algorithmic slowdown factor is
:—; <1 (typically 1/5.) (9.8.25)
In effect, the elementary operations have increased in the parallel machine due to
the distribution of work that is possible in that architecture.

The third slowdown factor is due to hardware differences, namely that the
time needed to perform a serial opefation on the uniprocessor t,, will be much
less than the the time needed to perform a parallel operation on a multiprocessor,
' t,. Consider a2 machine of many thousands of processors. Each processor will be
slower than a uniprocessor. Hockney argues that hardware slowdown is usually very
small (= 1073 to 10~¢). An extreme example is provided by a comparison of the
CRAY-1 and the ICL DAP. In the first case, the CRAY has an n, /2 & 10 and can
produce an arithmetic result every 12.5 ns (=¢,). On the other had, the ICL DAP
is a parallel array of 4096 processors and performs a parallel op;:ration in about
250 ps (= ¢,). For this case, the hardware slowdown is about 1/20000. Thus we
would have to consider speedup § on the order 6f 100,000 or more before the DAP
can outperform the CRAY. Unfortunately, it is precisely these speedups that put

319

the DAP computing time way beyond the real-time processing bound we have set
for ourselves. This presumably may be a problem for ali multiprocessor systerhs,
including the Connection Machine, (see Hillis, [13]).

Therefore, once again we are led to believe that dimensions higher than six or
seven will not allow the Multigrid algorithm to be performed in real-time. Even the
Heterogeneous Processor or HEP Supercomputer, one of the latest MIMD systems
to recently come out, appears to have difficulty. (The ro, and n, /2 data for this
machine is found in [14].) We might also remark that all of the above models were
tested with ¥ = d, where d is the dimension. This corresponds to the performance
of a multiprocessor system which allows only 2y = 2d interprocessor connections,
(using the notation of Chan and Schreiber). Of course, for large d, such a multi-
Processor is either impossible or very difficult to build. What we are doing here
is assuming the use of a hypothetical parallel machine similar in concept to the
Paracomputer by Schwartz, [l. The exploitation such abstract devices in the inves-
tigation of parallelism is now a standard procedure. What is really being measured

in the speedup 7 is the sntrinsic parallelism of the algorithm.

However, the above results follow only surveying today’s commercially. avail-
able systems. What about systems that are possible sn principle? We can obtain
some estimates of the performance of such machines by using theoretical results con-
cerning the physical limits of computations. These results stem from investigations
on the extreme limits attainable by a given technology with respect to computing
times.

We assume a multi-processor network identical tothe G & R network with three
levels, the finest grid having n7 processors, the middle grid with n7/2 processors
and the third with n7/4 processors, which yields a total of In7 processors. Here,
as we are dealing with real systems, we will assume that 4 = 4 and that we have

» 27 = 8 interconnections between our processors.

According to Hockney, the parallelism is equal to half the total number of

320

processors, or in this case, ny/, = %n”’. The speedup p and ¢ would be the same as
before. Only ro, would change, relative to the technology.

Now suppose we had a system with &~ n7 processors and thusits n,/, = n7/2.
Now according to Hockney, roo = 2ny;,/t, where t is the time to perform one
parallel operation. If we set this time equal to that of performing one elementary
operation, which is somewhat unrealistic, then we could get an upper bound on the
dimensions we can expect to process in real-time. Using the silicon VLSI estimate
of t = 1079 sec, we get a mazimum dimension of 9.

Using superconducting technology, (which we are not likely to use in practice,)
we get ¢t = 10710 sec, and thus a mazimum dimension of 10.

Other technologies may yield ¢ = 10™!! sec and ¢t = 10~?2 sec, which respec-

tively give mazimum dimenssons of 10 and 11.

9. Some Other Current Work in Multigrid Methods

The reader should be prepared for the fact that the standard model problem of the
MG practitioners is Poisson’s equation. Of course, this should still be an excellent
benchmark for our own research. Thus the following survey of work, which makes
extensive use of this model problem, is still of great relevance.

The problem of optimizing the parametrically dependent SOR method led
Braess, ‘82, [}, to consider using the parameter-free Gauss-Seidel method for Pois-
son’s equation. His results show that, for rectangular domains, the GS method,
used with red-black ordering, works rather well. This implies that we should first
use the SOR method with w = 1, and then decide/if any further optimization is
really necessary.

We might remark at this point that any Multigrid analysis should be done
in comparison with other linear problem solvers. A survey of available software
packages up to 1982 can be found in Duff, [5], who offers this overview as a guide

to the strengths and weaknesses of currently used codes. He examines

S21

direct methods: such as those contained in LINPACK and SPARSPACK;

sterative methods: such as those in ITPACK, which include all of the stan-
dard techniques, sume of which are amplified by Chebyshev acceleration or by the
c;njugate gradient method; '
semi-direct methods: which are similar to to relaxation schemes but which
converge in a predetermined number of iterations.

Jast methods: which are specially designed for the very regular structure of the
Laplace, Poisson and Helmholtz equations.

A software package for Multigrid problems on rectangular domains is described
by Foerster and Witsch, [7], and is called MG00. This method easily meets the
benchmark provided by fast direct methods for solving standard problems. MG))
is also not a black-box program which returns a meaningful solution for each prob-
lem given to it, but it does issue warning messages to indicate to the user when
performance may be less than expected. MGOO is written in portable Fortran and
- is very user-oriented. It also includes a greater variety of relaxation methods than

those discussed in this dissertation.

322

10. Conclusion

We examined in this chapter various architectures that are suitable for Mult:igl;id
algorithms. They each had different trade-offs: some were incapable of concurrent
iteration, others were too area-intensive for our purposes. The latter case involved
the use of the f1-network, a generalization of the shuffle-exchange networks. We
found that this design was actually superior with respect to computation speed, but
the cost in area may make it unsuitable as far as VLSI chip-size implementation
is concerned. The need to accept a design with a suboptimal computing speed
was viewed as inevitable if we wanted to keep the area of the system from growing
beyond our constraints. However, a CHiP layout was possible for one design, and
this technology for multiprocessor network construction was briefly discussed.

Numerical results of Gannon’s and van Rosendale’s experiments, which formed
a major portion of this chapter, were discussed, and we noted that the model prob-
lems they used were very relevant to our own research. We found that the parame-
ters they identified as being crucial are likely to be negligible when the systems are
put in VLSI, thus only for a very large number of grid levels and grid sizes would
we expect to see a substantial difference in the déigns discussed here.

The problems associated with Concurrent Iteration (CI), a very promising vari-
ant of the MG algorithm, were discussed. Specifically, the performance of CI is very
good relative to other MG variations, but it is also very sensitive to changes in the
domain size. This may pose a problem in our work as the ability to design the size
of a domain would be an attractive feature in any Zakai Solver package.

We also discussed the area layout growth rate as a function of dimension,
and found that it grew exponentially, making VLSI implementation in small chips
impossible except for d < 3.

Then we examined our own design for a direct solver, which all MG designs
incorporate as the responsibility of the coarsest grid. In keeping with our VLSI
methodology, we designed a solver based on LU decomposition that we felt as con-

323

sistent with our overall design constraints.

Stability issues were also addressed which included woralength considerations
and round-off error propagation. We found that bit size requirements to be well
within our expected problem size and round-off error to be controllable due to t:he
structure of the MG algorithm.

The question of what dimensional range of oﬁr Zakai equation can be accom-
modated by our Multigrid design was explored by a careful integration of the work
of Gannon and Van Rosendale and Chan and Schreiber. We found that, depend-
ing on reasonable estimates of computing speeds, Zakai equations in dimensions no
higher than about six or seven can be solved in real-time, where the latter term is
defined as being on the order of 1 msec.

The question of whether other architectures could fare any better was also
addressed using the theories of Hockney. He provided a two-parameter characteri-
zation of all computing systems which we showed yields performance estimates of
various high-speed architectures with respect to our algorithm. We found that gen-
eral purpose systems fared worse than our custom-made model. Also, multiproces-
sor systems as a rule only begin to outperform their high-speed serial counterparts
at dimensions beyond which real-time processing is possible, i.e., they are faster but
still take too long with respect to reasonable real-time computing bounds.

Numerical work and software packages of other researchers was also surveyed.

324

References for Chapter 9

(1] Braess, D., “The Convergence Rate of a Multigrid Method with Gauss-Séidcl
Relaxation for the Poisson Equation,” in Hackbusch and Trottenberg. *

[2] Brandt, A., “Multi-Level Adaptive Solutions to Boundary-Value Problems,”
Mathematics of Computation, vol. 31, No. 138, 1977.

[3] » “Guide to Multigrid Development,” in Hackbusch and Trottenberg.*

[4] Chan, T. and Schfeiber, R., “Parallel Networks for Multi-grid Algorithms:
Architecture and Complexity,” SIAM J. Sci. Stat. Comput., vol. 6, No. 3,
July, 1985.

[5] Duff, I., “Sparse Matrix Software for Elliptic PDE’s,” in Hackbusch and Trot-
tenberg.*

[6] Fadeeva, P. K., Computational Methods of Linear Algebra, Freeman Pubs., p.
288, 1983.

[7] Foerster, H. and Witsch, K., “Multigrid Software for the Solution of Elliptic
Problems on Rectangular Domains: MGO00,” in Hackbusch and Trottenberg.*

[8] Gannon, D. and van Rosendale, J., “On the Impact of Communication Com-
plexity on the Design of Parallel Numerical Algorithms,” IEEE Trans. on

Computers, vol. C-33, No. 12, Dec. 1984.

[9]

» “Highly Parallel Multigrid Solvers for Elliptic PDEs: An Experimental
Analysis,” ICASE Report No. 82-36, Nov. 1982.

[10] » “On the Structure of Parallelism in a Highly Concurrent PDE Solver,”
Jour. of Parallel and Distributed Computing, vol. 3, 1986.

[11] Gannon, D. “On Mapping Non-uniform PDE Structures and Algorithxps onto
Uniform Array Architectures,” from IEEE Conf. on Parallel Processing, 1981.

[12] Grosch, C., “Performance Analysis of Poisson Solvers on Array Computers,”
SuperComputers: 2, Infotech International, Maidenhead, 1979.

(13] Hillis, D., The Connection Machine, MIT Pr., .1985.

* See bibliographic entry.

325

[14] Hockney, R. W. and Snelling, D. F., ”Characterizing MIMD Computers: e.g.
the Denelcor HEP,” Parallel Computing, ’83, North Holland.

(15] Hockney, R. W., “Performance of Parallel Computers,” in Paddon, D., ed.,
Supercomputers and Parallel Computation, Clarendon Pr., Oxford, 1984. |

(16] Hockney, R. W. and Jessope, C. R., Parallel Computers: Architecture, Pro-
gramming and Algorithms, Adam Hilger, Bristol, 1981.

[17] Jordan, H., “A Special Purpose Architecture for Finite Element Analysis,”
Proc. 1978 International Conf. on Parallel Processing, p. 263-66.

(18] Kung, S. Y., Arun, K. S., Gal-Ezer, R. and Bhaskar, R., “Wavefront Array
Processor: Language, Architecture, and Applications,” IEEE Trans. on Com-
puters, vol. C-31, No. 11, Nov. 1982.

[19] Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Com-
puting, vol. 1, 1984,

[20] Kung, H. T., “Two-Leve! Pipelined Systolic Arrays for Matrix Multiplication,
Polynomial Evaluation and Discrete Fourier Transform,” Workshop on Dy-
namic Behavior of Automata, Luminy, France, 1983.

[21]

»“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-
burgh, Penn. 1984.

[22] y “Why Systolic Architectures,” Computer, Jan. 1982.

[23] ——, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic
Pr. 1984,

[24] Miranker, W. and Winkler, A., “Spacetime Representation of Computational

- Structure,” Computing, vol. 32, 1984.

{25] Paddon, D., cd., Supercomputers and Parallel Computation, Clarendon Pr.
Oxford, 1984, |

[26] Schultz, A., Elliptic Probl.em Solvers, I, II, Academic Pr., vol L, 1981, vol. II,

1984.

3826

[27] Snyder, L, "Introduction to the Configurable Highly Parallel Computer, IEEE
Computer, Jan. 1982. '

[28] Storassli, O., Peebles, F., Crockette, T., Knott, J., and Addams, L., The F;-
nite Element Machine: An Ezperiment in Parallel Processing, NASA Techn‘ical

Memorandum, No., 84514,in Parallel Processing, NASA Technical Memoran-

dum, No., 84514, July 1982.

827

10. Conclusion

1. Review of Goals and Results

The immediate purpose of this research was to determine the high-speed signal
processing properties of the Multigrid algorithm with respect to the Zakai equa..tion.
The more general purpose was to explore some parallel processing concepts that may
eventually have an impact on the controls and systems area. In effect, the real-time
solution of the Zakai equation can be viewed as a case study of a rﬂuch larger set
of issues involving the role of computation in decision and control systems, and
we tried to delineate some of these issues throughout this dissertation. Also, the
inter-disciplinary nature of this research area required a greater effort in supplying
introductory material, as it is assumed that prospective readers may be coming
with different backgrounds and perspectives.

We made an a.ttembt to bridge three distinct fields of electrical engineering:

a). nonlinear filtering theory

b). numerical analysis

c). VLSI and parallel processing

Examples of where these bridges were laid include:

a review of the Zakai equation and means of obtaining estimates on how to
bound its values on a compact set, clearly a prerequisite for any numerical work on
this equation.

a study of the Multigrid algorithm and its appropriateness for the Zakai equa-
tion. | . ‘ , -

a demonstration of the suitabilitf of parallel processing for the MG algorithm,
especially when implemented m _VLSI.

To give more details, we studied selected topics in VLSI theory in chapter 2

which:

328

delineated the nature of parallel processing, which identified those issues that
would preoccupy us throughout this study.

introduced systolic arrays for matrix processing; these served as our prototype
architecture. |

discussed the physical basis of computation time-results which were useful in
later chapters on time estimates.

described a methodology for the optimal design of systolic arrays.

explored the variations of shuffle-exchange a permutation networks~the results
here were relevant in the analysis of communication cost models.

pointed out the difficulties in synchronizing large systolic arrays operating in
nanosec clock times. This included a graph theoretic arguments that showed that
clock skew must grow as 1(n) for a n x n array.

offered a compromise between the systolic array and the general data-flow ma-
chine in the form of the Wavefront Array Processor. (WAP) This architecture can
avoid the synchronization difficulties mentioned above. The WAP figured promi-
nently in our later design work.

reported on current work in progress at the Univ. of Maryland on the scalar
nonlinear filter and its systolic implementation. This serves as the path breaking
work for our own research.

The topics discussed above were incorporated into our research effort.

The study of the Zakai equation and methods of finding a compact set for
which the solution was less than an arbitrary € on its complement were discussed in
chapters 3 and 4. This included some technical extensions to the work of Baras et al
Even tighter bounds than those discussed here are probably possible by numerical
simulation.

Theories of weak convergence followed in chapter 5. This included a finite differ-
ence scheme that converges weakly to the true solution as At and Az, Az,,.., Az,

go to sero, and what is more, space and time finite differences can go to sero in-

329

dependently of each other. We found this to be essential to our purposes, as the
time step will be set by a sampling rate. This is in marked contrast to explicit
schemes which place a tighter restriction on the discretization, especially in higher
dimen_sions. Our scheme is implici¢ and yields a linear system whose matrix has an
elegant structure: it is diagonally dominant, real and hence positive definite. We
derived other properties of this matrix as well. We also remarked that this structure

will lend itself very well to the relaxation techniques we will be considering.

Chapters on the Multigrid algorithm properly began with chapter 6. We stud-
ied its convergence properties, noting that it was an iterative procedure, and ex-
amined its usefulness in connection with the Zakai equation. This included the
effect of using the value of the solution at the previous time step as an initial ap-
proximation, and an estimate for the number of iterates that will be needed for
convergence to occur. This is in contrast to generating a first approximation, which
can be done automatically by the Multigrid algorithm. We also discussed the use
of the Fokker-Planck equation as a model problem-arguing that a two-grid analysis
should be sufficient for empirically testing various designs. Using such arguments,
we found that all the parameters of the program to be precomputable, which is es-
sential as we do not wish to use a convergence test that would take up our entire
allotted computing time of about 1 msec. However, this could lead to the prob-
lem of using more iterations than would be necessary to reach convergence, such
as in those cases where the conditiqnal density stabilizes, produces fewer and fewer
changes with each new time-step. Studies of the heat equation using the Multigrid
- method have produced a technique that can compensate for this problem while
‘not relying too heavily on global computations, and their expensive communijcation

requirements.

Chapter 7 was a more detailed study of the complexity of the Multigrid algo-
rithm, and the effect 6f various parameters on the duration of the computing time,

accuracy and efficiency. We examined these trade-offs in the light of our problem.

330

The recursive structure of the Multigrid algorithm was elucidated, and this was
contrasted with concurrent iteration, which allows relaxations to be performed on
the grids simultaneously. The latter algorithm hés a number of technical diﬂiculfies,
and it also taxes the overall complexity of the program and hence the complexity of
the individual processors. However, it appears to be somewhat faster that conven-
tional Multigrid, according to numerical simulations, and certainly more efficient

with respect to processor utilization, and so trade-off comparisons were made.

A look at relaxation sweeps was in order in chapter 8. After surveying what
is available, we found that the successive over relaxation method to be best suited
for our purposes, and we did this by analyzing the structure of the linear system
we are solving, which we found to be a positive definite L-matrix, as explained
in the text. Ways of measuring the smoothing factor of the relaxation method,
as this determines the amount of error incurred by transferring to coarser grids,
was discussed as well. Asynchronous implementation of relaxation methods were
discussed, and we argued that Red-Black or, in general, multicolor, ordering was

needed and that the WAP, introduced in chapter 2, would be ideal for our purposes.

The chapter on empirical results (9) contained a critique of some numerical
simulations that were done by Gannon and Van Rosendale. We surveyed the per-
formance of a variety of architectures and their communication cost structure. We
found that optimal computing time was achieved by the most area intensive designs,
which is to be expected. However, our real-time computing bound does not give us
much maneuvering room for area-time trade-offs, but we did conclude that permu-
tation networks, such as those introduced in éhaptt.:r 2, would be needed for high
speed performance. However, a VLSI implementation of an elegant Multigrid archi-
tecture that does not possess such sophisticated interconnection networks is possible
by using a CHiP design. This is the Configurable Highly Parallel architecture, and
& package program for designing in it is available.

We also examined the numerical stability of the Multigrid algorithm, with

831

respect to word length and round-off effects. We also examined the complexity re-
quirements of the individual processors, using currently existing designs as a Bench-
mark.

Also, we designed a direct solver, which is incorporated into the Multigrid
framework, by requiring that the overall architecture dictate the design, as opposed
to letting the algorithm determine the best architecture for this subsystem. We did
this in the interests of preserving the regularity of the global multigrid design, as
this allows for ease of fabrication.

' Using the complexity bounds of chapter 7, and combining them with the work
of Gannon and Van Rosendale, we were able to show that optimal performance
within the real-time processing bound of 1 msec was not possible for problems with
dimensions higher than six or seven, depending on the arithmetic computing speed
obtainable. This followed from observations on the limits imposed by interprocessor
connections in a mesh configuration, as we assumed to have no higher that eight
interconnections to a processors nearest neighbors. According to claims the CHiP
project, a higher number of interconnections is possible but this is obtained by
much longer data paths. If we make the natural assumption that signal delays
are increased by an order of magnitude, this the maximal problem dimension is
increased to about 10.

We also discussed in this chapter the work of Hockney and his two-parameter
characterization of computing machines. We found that other more general purpose
systems could fare no better, and tixat general multiprocessor machines have supe-
rior performance over their serial counterparts onlyﬂon problems whose size is so
large as to already be beyond the computing time bound we have set for ourselves.
Examinations of scaled down versions of these machines was also discussed. The
special purpose system described in these pages appears to be the optimal machine,
despite its limitations in reaching the higher dimensions.

332

2. Final Remarks

The results described here is merely a first step in a larger research effort. For
example, more sophisticated filtering problems can be investigated that could lead
to more complicated domains and boundary conditions. Thisin turn will lead to new
matrix representations of the finite difference scheme which will probably require,
among other things, a reappraisal of the relaxation methods we have suggested.
Our survey of what is available in this area should be a good start in that direction.

Also, the various package programs that were mentioned throughout this pa-
per should be acquired. Using the model problem in the form of the Fokker-Planck
equation, we could obtain an expertise in finding the norms of the Multigrid oper-
ator, smoothing factors of relaxation techniques, and performance comparisons of
various Multigrid parametric designs.

Investigations into different communication designs for intergrid data transfers
in higher (;2) dimensions must be conducted. Unfortunately, judging from the lit-
erature, little appears to be known, except that hypercube architectures are likely
to dominate. This is almost certainly not suitable for our purposes, as they will
probably only be efficient for problem sizes that require computing times well be-
yond that which we have allotted for ourselves in a real-time environment. However,
the CHiP project does promise planar arrays with individual processors connected
to more than eight neighbors, so experimenting with the interactive CHiP graphics
design package, (available this July, ’86), would certainly be in order.

Another thought provoking area of investigation would be in determining the
use of comparing the information that is collected on each grid-a kind of multi-
resolution approach to the problem. This notion appears to be important in the
field of image processing. In fact a March 1986 article in the IEEE Transactions on
Pattern Analysis and Ma.cbfne Intelligence discussed the use of multigrid methodsin
analyzing images. By comparing results of each grid to that of its coarser and finer
counterparts, decisions could be made on the shape of objects in the visual field.

333

Can this multi-resolution approach be generalized to a broader class of problems?

A related notion is the use of coarse grid tracking and local refinement. Here
we are dealing with problems whose conditional densities are mostly ;conﬁnegl to
certain portions of the grid. The coarse grid can cheaply locate them and, by using
local refinement on the finer grids, zero into an efficient computation of the solution.
Determining the class of problems for which technique would be best suited would
be helpful.

Clearly, there are many directions in which we can go, for this is a very active
field of research, and as all research is open-ended by nature, more questions have

been raised than answered. But for now, our present research has ended.

334

Bibliography

Adams, L. and Ortega, J., “A Multi-Color SOR Method of Parallel Computation,”
Dept. of Applied Math, Univ. of Virginia, 1982.

Archetti, F. and Cugiani, M., eds., Numerical Techniques for Stochastic Systems,
North Holland, 1980.

Arnould, E., Kung, H. T., Menzilcioglu, O., and Sarocky, K., “A Systolic Array
Computer,” from Proc. of IEEE Conf. on Acoustics, Speech, and Signal Processing,
Mar. 1985.

Bank, R. and Dupont, T., “An Optimal Order Process for Solving Finite Element
Equations,” Mathematics of Computation, vol. 36, No. 153, Jan. 1981.

Baras, J., Blankenship, G. and Hopkins, A., “Existence, Uniqueness, and Asymp-
totic Behavior of Solutions to a Class of Zakai Equations with Unbounded Coeffi-
cients”, IEEE Trans. Automatic Control, vol. AC-28, No. 2, Feb. 1983.

Baudet, G., “Asynchronous Iterative Methods for Multiprocessors,” Journal of the
Association for Computing Machinery, vol. 25, No. 2, Apr. 1978.

Besala, P. “Fundamental Solution and Cauchy Problem for a Parabolic System with
Unbounded Coefficients,” J. Diff. Eqns, vol. 33, pp. 26-38, 1979.

Bilardi, G., Pracchi, M. and Preparata, F., “A Critique of Network Speed in VLSI
Models of Computation,” IEEE Jour. of Solid State Circuits, vol. SC-17, No. 4,
Aug. 1982.

- Braess, D., “The Convergence Rate of a Multigrid Method with Gauss-Seidel Re-
la.xa.tnon for the Poisson Equation,” in Hackbusch and Trottenberg.

Brand, K., “Multigrid Bibliography,” in Hackbusch and Trottenberg.

Brandt, A., *Multi-Level Adaptive Solutions to Boundary-Value Problems,” Math-
ematics of Computation, vol. 31, No. 138, 1977.

335

—, “Guide to Multigrid Development,” in Hackbusch and Trottenberg.

Bucy, R. and Senne, K., “New Frontiers in Nonlinear Filtering,” Lincoln Lab. Tech-

nical Note 1978-16, 1978.

Chan, T. and Schreiber, R., “Parallel Networks for Multi-grid Algorithms: Ar-
chitecture and Complexity,” SIAM J. Sci. Stat. Comput., vol. 6, No. 3, July,

1985.

Davis, M. H. A. and Marcus, Steven, “An Introduction to Nonlinear F iltering,”
in Stochastic Systems: The Mathematics of Filtering and Identification, (NATO
Advanced Study Institute Series). Dordrecht, The Netherlands: Reidel, 1981, pp.

53-75.

Davis, M. H. A., “A Pathwise Solution of the Equations of Zakai F iltering,” Un-

published manuscript.

Davis, R. and Thomas, D., “Systolic Array Chip Matches the Pace of High-Speed
Processing,” Electronic Design vol. 32, no. 22, Oct. 1984.

Doob, J., Stochastic Processes, Wiley, 1953.

Duff, 1., “Sparse Matrix Software for Elliptic PDE’s”, in Hackbusch and Trotten-

berg.

Fadeeva, P. K., Computational Methods of Linear Algebra, Freeman Pubs., p. 288,
19083.

Fisher, A. and Kung, H. T., “Synchronizing Large VLSI Processing Arrays,” IEEE
Trans. on Computers, vol. C-34, No. 8, Aug. 1985.

/.

Foerster, H. and Witsch, K., “Multigrid Software for the Solution of Elliptic Prob-

lems on Rectangular Domains: MG00,” in Hackbusch and Trottenberg.

Gannon, D. and van Rosendale, J., “On the Impact of Communication Complexity
on the Design of Parallel Numerical Algorithms,” IEEE Trans. on Computers, vol.
C-33, No. 12, Dec. 1984.

336

 —, “Highly Parallel Multigrid Solvers for Elliptic PDEs: An Experimental Anal-
ysis,” ICASE Report No. 82-36, Nov. 1982.

———, ”On the Structure of Parallelism in a Highly Concurrent PDE Solver,” Jour.

of Parallel and Distributed Computing, vol. 3, 1986.

Gannon, D. “On Mapping Non-uniform PDE Structures and Algorithms onto Uni-
form Array Architectures,” from IEEE Conf. on Parallel Processing, 1981.

Gelenbe, E. Lichnewsky, A., and Staphylopatis, A., “Experience with the Parallel
Solution of Partial Differential Equations on a Distributed Computing System,”

IEEE Trans. on Computers, vol. C-31, no. 12, 1982.
Gray, J., ed., VLSI ’81, Academic Press, 1981.

Grosch, C., “Performance Analysis of Poisson Solvers on Array Computers,” Super-

Computers: 2, Infotech International, Maidenhead, 1979.

Hackbusch, W. and Trottenberg, U., eds., Moultsgrid Methods, Lecture Notes in
Mathematics, Springer-Verlag, No. 960, 1982.

Hackbusch, W., “Multigrid Convergence Theory,” in Hackbusch and Trottenberg.

Hazelwinkle, M. and Willems, J. C., eds. “Stochastic Systems: The Mathematics
of Filtering and Identification,” (NATO Advanced Study Series), Dordrecht, The
Netherlands: Reidel, 1981.

Hedstrom, G. and Rodrique, G., “Adaptive-grid Methods for Time-dependent Par-
tial Differential Equations,” in Hackbusch and Trottenberg.

Heller, D., “A Survey of Parallel Algorithms in Nunferical Linear Algebra,” SIAM
Review, vol. 20, No. 4, Oct. 1978.

Hillis, D., The Connection Machine, MIT Pr., 1985.

Hockney, R. W. and Snelling, D. F., ®Characterizing MIMD Computers: e.g. the
- Denelcor HEP,” Parallel Comphting, '83, North Holland.

337

Hockney, R. W., “Performance of Parallel Computers,” in Paddon.

Hockney, R. W. and Jessope, C. R., Parallel Computers: Archstecture, Progra;rzming
and algorithms, Adam Hilger, Bristol, 1981.

Hopkins, W. E., Nonlinear Filters of Nondeggnerate Diffusions with Unbounded
Coefficients, Ph.D thesis, Univ. of Maryland, 1982.

Jordan, H., “A Special Purpose Architecture for Finite Element Analysis,” Proc.
1978 International Conf. on Parallel Processing, pp. 263-266.

Kung, S. Y., Arun, K. S., Gal-Ezer, R. and Bhaskar, R., “Wavefront Array Proces-

sor: Language, Architecture, and Applications,” IEEE Trans. on Computers, vol.

C-31, No. 11, Nov. 1982.

Kung, H. T. and Lam, M., “Wafer-Scale Integration and Two-Level Pipelined Im-
plementations of Systolic Arrays,” Journal of Paralle] and Distributed Computing,
vol. 1, 1984.

Kung, H. T., “Two-Level Pipelined Systolic Arrays for Matrix Multiplication, Poly-
nomial Evaluation and Discrete Fourier Transform,” Workshop on Dynamic Behav-

ior of Automata, Luminy, France, 1983.

,“Systolic Arrays,” Dept. of Computer Sci., Carnegie-Mellon Univ. Pitts-
burgh, Penn. 1984. '

—, “Why Systolic Architectures,” Computer, Jan. 1982.

—, “Systolic Algorithms,” in Large Scale Scientific Computation, Academic Pr.

1984.
/

y “Special-Purpose Devices for Signal and Imag.e Processing: An Opportunity
in VLSL? from the Proc. of the Soc. of Phdto-Optica.l Instr. Engr., 1980.

Kushner, H. and Yu, C., “ProBabi]ity Methods for the Convergence of Finite Dif-
ference Approximations to Partial Differential Equations,” Jour. of Math. Analysis
and Appl., vol. 43, 1973.

338

LaVigna, A., "Real Time Sequential Detection for Diffusion Signals,” Dept. of
Electrical Eng., Univ. of Maryland, 1986.

Lawrie, D., “Access and Alignment of Data in an Array Processor,” IEEE Trans.

on Computers, vol. C-24, No. 12, Dec. 1975.

Legland, F., Estimation de Parametres dans les Processes Stochastiques en Obser-

vations Incomplete, L’Université de Paris, IX-Dauphie, 1981.

Li, Guo-Jie, and Wah, B.,“The Design of Optimal Systolic Arrays,” IEEE Trans.
on Computers, vol. C-34, No. 1, Jan. 1985.

Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley, 1980.

Miranker, W. and Winkler, A., “Spacetime Representation of Computational Struc-

tures, ” Computing , vol. 32, 1984.

Novak, Z., “Use of Multigrid Method for Laplacian Problems in Three Dimensions,”

in Hackbusch and Trottenberg.

Ortega, J. and Voigt, R. “Solution of Partial Differential Equations on Vector and
Parallel Computers,” SIAM Review, vol. 27, No. 2, June, 1985. 7

Paddon, D., ed., Supercomputers and Parallel Computation, Clarendon Pr. Oxford,
1984.

Pardoux, E. “Stochastic Partial Differential Equations and Filtering of Diffusions
Processes,” Stochastics, vol. 3, pp. 127-167, 1979.

/
Parker, D., “Notes on Shuffie/Exchange-Type Switching Networks,” IEEE Trans.
on Computers, vol. C-29, No. 3, March, 1980. '

Piccioni, M., “Convergence of Implicit Discretization Schemes for Linear Differential
Equations with Applications to Filtering,” Dept. of Electrical Engineering, Univ.
of Maryland, 1985.

839

Sameh, A., “On Jacobi and J acobi-Like Algorithms for a Paralle] Computer,” Math-

ematics of Computation, vol. 25, No. 115, July, 1971.
Schultz, A., Elliptic Problem Solvers, I, II, Academic Pr., vol. 1, 1981, vol. I, 1984.

Seitz, Charles, “Concurrent VLS] Architectures,” IEEE Trans. on Computers, vol.
C-33, No. 12, Dec. 1984,

Snyder, L, "Introduction to the Configurable Highly Parallel Computer, IEEE Com-
puter, Jan. 1982,

Stone, H. “Parallel Processing with the Perfect Shuffle,” IEEE Trans. on Comput-
ers, vol. C-20, No. 2, Feb. 1971.

Storassli, O., Peebles, F., Crockette, T., Knott, J., and Addams, L., The Finite
Element Machine: An Ezperiment in Parallel Processing, NASA Technical Memo-
randum, No. 84514, July 1982,

Stiben, K. and Trottenberg, U., “Multigrid Methods: Fundamental Algorithms,
Model Problem Analysis and Applications,” in Hackbusch and Trottenberg.

Travassos, R. H., Application of Systolic Array Technology to Recursive Filtering,
Prentice Hall, 1983. A

Ullman, J., “Computational Aspects of VLSI,” Computer Science, Pr. 1984.

Wesseling, P., “A Robust and Efficient Multigrid Method,” in Hackbusch and Trot-
tenberg.
Wong, E., Stochastic Processes in Engineering Systems, Springer-Verlag, 1985.

/
Young, D., Iterative Solution of Large Linear Systems, Academic Pr. 1971.

340

