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ABSTRACT
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Dissertation Directed by : Dr. John S. Baras

Professor
Department of Electrical Engineering

We consider a problem of combined detection and estimation when signals
corresponding to M-ary hypotheses can be represented as outputs of M distinct
parameterized stochastic dynamical systems of the Ito type. For a general synthesis of
detector and estimator we take a jointly Bayesian approach to the combined detection
and estimation under a suitable class of joint cost functions that combine a cost of mis-
detection with a cost of estimation error, and then utilizing the nonlinear filtering theory

we derive subsequent jointly Bayesian receiver structures.

Secondly, based on the Chernoff bounds we analyze detection performances for
both full and partial observation of signals generated by several kinds of finite dimen-
sional nonlinear stochastic dynamical systems. Also performance evaluation in the

parameter estimation is treated from a detection point of view.
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1. Introduction

In the first part of the thesis we consider a problem of combined detection and
estimation when the signals corresponding to M different hypotheses can be modeled
as outputs of M distinct parameterized stochastic dynamical systems of the Ito type.
For a general synthesis of detector and estimator we take a jointly Bayesian
approach to the combined detection and estimation under a suitable class of joint
cost functions which combine cost of misdetection with a cost of estimation error 1]
2] .

The jointly Bayesian approach to the problem of combined detection and estimation
was apparently first suggested in the work of Nilsson [3] where radar range resolution
in a multi-target environment was treated. And its theoretical formulation in the
language of statistical decision theory has been developed by Middleton and Esposito
[1].  Although from the mathematical point of view estimation may be regarded as
a generalized detection problem, from an operational point of view the two pro-
cedures are different: one usually selects different cost functions for each and obtains
a different processors as a result. It is then correctly argued in (1] that it is practi-
cally appropriate to retain the usual distinction between detection and estimation.
They point out that both detection and estimation are being performed under each
other’s uncertainty, and therefore propose a jointly Bayesian approach leading to a
specific mutual coupling between the resulting detector and estimator. In (1] there
are various ways that the detector and estimator can be coupled, corresponding to a
hierarchy of complex processors. It is obvious that the selected shape of joint cost
functions will have a substantial effect on the structure of such a system. Neverthe-
less systems synthesized have some common features which are inherent of such mul-
tifunctional systems and which distinguishes them from the systems that relate the

operations of detection and estimation based on intuition or reasoning, for instance,



decision based on the maximum likelihood estimates.

In [1],[2] and [4] it is shown that under reasonable conditions the jointly optimal rule
of detection and estimation belongs also to the class of nonrandomized statistical
decisions and that joint optimization can be replaced by a sequential optimization,
where the jointly optimal rule is based on some preceding set of estimates. The fact
that jointly optimal rule can be based upon the set of some preceding estimates leads
to an interesting implication that for binary hypotheses problems decision is based
on the threshold, which partially depends on the observation through the proper a
posteriori loss related to an estimation error.

Several other authors have treated the combined detection and estimation problems.
Jaffer and Gupta[5] , and Sosulin[6] consider the recursive filtering of Gauss Markov
process and diffusion type signals, respectively , in the presence of hypotheses uncer-
tainty under a combined cost function (quadratic cost function for the estimation
part). Lainiotis[7] extended the results of [1] to the case of continuous observation
on a single interval and to the problem of system identification. In this reference the
problem of synthesis of jointly optimal detection, filtering, and identification is for-
mulated as the nonlinear problem of estimation of an augmented composite state
vector.

Also Birdsall and Gobien’s work is worthy of mentioning [10]. In [10] detectors are
the usual generalized likelihood ratio test for composite binary hypotheses. The
authors treat the case where the a priori probability densities of parameters under
both hypotheses belong to the reproducing classes with respect to the observation
models which allow the finite dimensional sufficient statistics for the parameter. In
this case the a posteriori densities of parameters, as a whole function, can be
identified by use of the recursively updated sufficient statistic, and also no integra-
tion of conditional likelihood ratios is necessary to obtain the usual generalized likeli-

hood ratio. However their result is applicable only to certain classes of a priori



densities and observation models. The important result of [10] shows that through a
Bayesian approach( i.e. here, by using the a posteriori densities of parameters) both
detection and estimation occur simultaneously, with the detector using the a pos-
teriori densities generated by two separate estimators, one for each hypothesis.

It is the objective of chapter 2 to consider the simultaneous detection and estimation
and the related previous results in a general perspective by employing a continuous
-time dynamical signal models, and thereby to incorporate a sequential nature into

the jointly optimal algorithm [9].

Major criticisms against the jointly Bayesian approach are the facts that complete
knowledge of a priori statistics and criterion for the choice of joint cost functions are
required , and also that the resulting receiver structures are complex.

It is known that for a class of cost functions and a class of a priori distributions on
parameters to be estimated, the risks associated with the Bayes and maximum likeli-
hood estimates of parameters become equal as the number of independent observa-
tions becomes large{11]. This fact may provide the motivation for an asymptotically
optifnum jointly Bayesian receiver. Whether such asymptotic properties can be
retained in our observation model or not is beyond the scope of proposed research.
Instead we will seek the possible suboptimal structures based on approximation of

the jointly Bayesian system.

The second research objective is performance evaluation of the jointly optimal
rule. However evaluation of a Bayes cost is not feasible to carry out due to complex-
ities of our observation model, and also due to a mutual coupling between a jointly
optimal detector and estimator. Moreover the jointly Bayesian system seems to pos-
sess more significance when the a posteriori accuracy becomes low, and to be asymp-

totically equivalent to other systems. This necessitates performance analysis for the



finite observation time or under low signal to noise ratios. Due to the above
difficulties we will instead focus on the performance bounds in simple binary
hypotheses detection, and also on the performance bounds in estimation under no
hypothesis uncertainty.

Evans[12] considers the case when the observations are sample continuous processes,
the signals are nongaussian diffusion or finite state Markov process ,and noises are
Brownian motions. Through the measure transformation(8] technique he developed
an expression for the exponent in the Chernoff bound under a new measure. Then by
introducing a quasi-transition function, he derives a Fokker-Planck type equation for
the time evolution of a quantity closely related to the Chernoff-bound exponent.
Hibey, Snyder and van Schuppen|[13] extended the quasi-transition function method
to a discontinuous observation that contains a rate process associated with a count-
ing process. Hibey points out in [14] that the usual conditions for the justification
of measure transformation are difficult to verify in some practical cases.

Performance bounds in parameter estimation problems will be treated from a detec-
tion point of view by discretizing the parameter space, and by adapting the result for
a binary hypotheses detection problem. Past work related to this approach includes
that of Liporace[15] who treated the case of parameterized independent and identi-
cal observations and also works of Hawkes and Moore[16] who extended the conver-
gence result of [15] to the case of dependent observations characterized by a

parametrized linear discrete gaussian systems.



2. Simultaneous detection and estimation for diffusion model

2.1) Description of observation model

In this section we present an observation model when signals of interest can be
represented by outputs of diffusion type processes. The statistics of y( - ) are not
completely known. More specifically they depend on some parameters and
hypotheses. We shall denote the ith hypothesis by H; for i = 0,... M. Under each

hypothesis H; , the received data can be represented as

dz'(t) = f*(2°(t),0')dt +g' (2 (¢),6°)dw’ (¢t) ' (0) = z§

dy(t) = h¥(t,2%(¢),6°)dt +Vr dv* (¢) 0<t<T, y(0)=0 (1)

1) Null hypothesis Hy is fixed by an observation model, dy(¢) = Vr dv%(t) . By sim-
ply adding a common diffusion model, we can consider also a common diffusion
interference present under all hypotheses. Formal time derivative of vi(t) is ,as
usual, a standard gaussian white noise. Time dependence of Ri(t,z°(¢),6°) is expli-
citly made to account for deterministic modulations frequently appearing in com-
munication literatures. For example A°(-) can be thought of as a return from a
point target whose fluctuating reflectivity causes a doppler-spread effect on the
transmitted signal with a certain modulation.

2) For clarity we specily ( Q ,F;,P’ ) associated with each hypothesis H;. We con-

struct a sample space (1 as follows.

Mo Mo . .
Q = (T 2)xQ = (H190]XQIJXQ2])XQ3

J=1 =
, where Qf, Q/ are RY and R™ respectively, = (CI0,T] ;RY ) and Ay is (y €

C0,T]; R%, y(0) =0). The element w=( 67, z§, w7y, j=1,,,M ) of ( satisfy

w :'(/)J‘(u),xg(w),w’-(t,w),y(t,w), 0<t<T, j =1,.,M) (2)



Let F(67) be a ¢/ associated Borel o -field on R/ with F(z§) defined similarly. Let

Fi(w’)=o0(wi(s),0 <s <t ) and Fy(y)=o(y(s), 0 <s <t ) for t € [ 0,T).
M

Let G/ = F(87)xXF(z§)XF;(w’) and F, = of .Hth")xF,(y) . The elements of each
i=

o -fields are subset of Qf , 27, Q1 , Q2 respectively. However one can regard them

also as a subset of (2 with the obvious identifications. For example A € F,(w*) can be

M M M
regarded with ] Q¢X [T Q/XAX [T 2/XQ; . Following the latter interpreta-
=1 j=1 iE i

tion we will treat each o -field as a sub o -field of Fy .

We have a probability measure P’ defined on Fy satisfying that

(a) 6° is a parameter random variable having a density p'(6) on R¥ . We denote its
parameter space by ©; to indicate a nature of vector space R .

(b) E¥ (2} )?*<oco where E* denotes an expectation under the probability measure P*.
For most cases of practical interests the density of z§ will be a stationary density
that a given diffusion model yields at each (¢ ,H;) .

(¢) w'(t) is a standard Wiener process taking values in R” under (

a(GfUF,(y) ), P! ) .
(d) v"(t)=1/\/;_{y(t)—j;)thi(s iz (s ),0")ds} 1s a standard Wiener process taking

values in R® under ( o(G/|JF,(v)), P® ), where z7(¢) is assumed to be an unique
strong solution to the stochastic differential equation of (1) at each 6°€6; . Thus we
treat »’(t) as an observation derived Wiener martingale.

(e) (6" 28 ),w'(-),v*(-) are independent.

(f) except the above conditions P¥ can be arbitrary on Fyr . Further details about an
assignment of P’ on Fr are irrelevant to both observation models and hypotheses

detection parameter estimation problem. For convenience we assume that restriction

Mo _ ‘ .
of P¥ to of J G#) are mutually absolutely continuous with respect to that of P7 for
=0



all i,j ( ; we have the identical set of coordinate functions specified by (2) under all
hypotheses. However ' ,as a random variable , under P and under P’ are different
random variables having different distributions as y(-) does. Which ¢° , as a random
variable , is meant by can be made clear by an associated probability measure or
hypothesis ) . When certain components of ¢ are of physically common nature with
some components of ¢/ | there are redundancies in our choice of coordinate functions
. We take the present choice to uniformly set the coordinate functions regardless of
their detailed natures.

3) ' ; R¥XRY RN | gi ; RNixRL RN xDi pi [0 T|xRM xRY _LRK are
jointly measurable functions. We assume that f°(-,6°),¢°(-,6') are such that an
unique  Markov  solution  exists for z°(¢t) at each 6  with
z'(t) being o(F(z§) U F:(w’) measurable and such that for all ¢t € [0,T],

EN(f (= ()0 ) |6) < oo ) Ef(llg* (=7 (¢),00)IF |6) < oo with
a(z",00)=g" (2" ,0')g (" 0')T > b1 for  some  positive b , and
(kY (t,2° ()0 |6) < oo

These set of assumptions provide sufficient conditions , based upon which z¥(t) is a
semimartingale ar each ¢ €0; , and nonlinear filtering theory can be used (17].

Also h*(t,z",0' ) is twice continuously differentiable in 2/ and once in ¢ at each ¢ .

4) Let P}’ be a restriction of probability measure P’ to Fy(y) , conditioned on ¢ .

The condition that E*(|A*(z'(¢),0°)® |6°) <oo for all t€[0,7] implies

T

JIhF(z7(¢),6)]?dt < oo almost surely at each ¢ , and the latter condition implies
0
equivalence between P{? and P#¥ where 6€0, ¢ €9; [8].

L

Since P'(B)= [, P{’(B)p(9)d0 for B€Fr(y) , restriction of P’ to Fyr(y) ,
denoted as Py |, is equivalent to that of P§ . And from our construction of

(0,Fr ,P') P’ and P’ are equivalent on Fr . Henceforth we assume that F, is

complete for all ¢ €{0,7].



Also we assume that there exists an unique conditional probability densities of
(z'(¢),8°) ,given F,(y) for all t € [0,T] under each H; .
5) We assume an existence of unique solution to Zakai equation associated with each

(¢ H) [18] [19] .

2.2) Simultaneous detection and estimation
2.2.1) Problem formulation

Now we formulate the problem of simultaneous detection and estimation.
Given an observation (y(s),0<s <t, t < T), we want to find a jointly optimal rule
minimizing an average risk of the form given in (3) at each time t. Thus we restrict
the class of admissible rules to a class of nonanticipative rules.

R=FE(C(u,0;u4,0,)) (3)
v 1s a hypothesis index random variable taking a value i with a probability p(¢) ,
and 6 a parameter random variable taking values on 8; with the previous density
p'(6) when u = ¢ . If all the ¢’ s are of physically same nature then one may use
one coordinate function ¢ instead of the set given by (8" ,,, #¥) ,and in this case one
only needs a joint distribution of (z , 8) to identify the random variable 4. In
our observation model # may have a different nature depending on ¢ ,and thus a
value space of # depends on v . We will explain a nature of parameter space O,
later. u; and 6, are random variables representing a detector and an estimator
respectively. For consistency an estimator random variable 4, takes values on ©;
when vy = ¢ . Value space for ¢, is same as that of § . We will later augment 4 by
the derived parameter random variables such as an envelope of signal process with
the corresponding change in 4, also.
In (3) C(u,0;u,,0,)1s a joint cost function assumed to be known , and represents a

combined cost of presenting #, with a classification of 4, € ©,, when ¢ actually

comes from 8, .



It is obvious that the selected shapes of the joint cost functions will have a substan-
tial effect on the jointly optimal decision and estimation systems. Nevertheless, sys-
tems synthesized for a different cost functions have a some common features which
are inherent of such multifunctional systems and which distinguish them from sys-
tems that realize the operations of detection and estimation based on intuition or
reasoning ,for instance, decision directed estimation or estimation directed deci-

sion.

Now we make precise the definition of (3). At present we will not make any prior
assumption on the detailed nature of joint cost assignment except that it is legiti-
mately defined. Since the value spaces of § and 6, depend on u and u, respectively,
it is not feasible to justify them as random variables in an usual way. Therefore
we temporarily restrict the jointly Bayesian approach to a set of parameters whose
nature can be defined independently of hypotheses. Later we will extrapolate the
resulting expression for the average risk R to our general case. Let
6; = 6x86;
The parameter space © is of same physical nature independently of hypotheses. ~9; S

are of different nature.

Accordingly
;= (7 .7)
Define 0 by
— M —
0 = 2 Te=i) X 6
i=0
where 1,_;) is an indicator function which is 1 when i = u , and otherwise 0.

Then the unconditional density of 9 is given by

Mo
IRHOFI0)
i=o

where p'(f) = f"e p'(0) 49" with p?(6) being defined in section 2.1 . The estimator



10
for the random variable ¢ will be denoted by 9, .

In the sequel we make some account on the common parameter space. When a null
hypothesis , dy(t) = vr dv%(t), is included in a test , only an energy or nonnuisance
type parameter can be a component of © . For other types of parameters can’t be
physically defined under the null hypothesis. As examples of energy type parameters
mean value of a stationary process , scale factor, or duration of a signal if uncertain
within an observation interval are usually considered [1,2]. Envelope of a signal pro-

cess can be considered as an energy type parameter by treating

M . . .
he(= 33 Lu—iyh'*(t,2°(t),6°)) as a parameter to estimate. And in this case of
i=0

envelope estimation under the uncertainty of compound hypotheses, we make a
decision, filtering, and estimation continuously, based on the observation up to
current time t [5, 6, 7 |. At this point we augment @ and 8, by
(" nT)7T, 8.7k, 71T respectively, where T denotes a transpose of a vector.
Henceforth we denote [67 , 47T and @F, k7 as Gand 9, respectively. Also 6
denotes either a value space of @ or a value space of the augmented parameter vector
0, depending on the context.

When a common interference occurs, a whole set of interference parameters can be
components of the common parameters. If no null hypothesis is present, more flexi-
bility in a choice of © can be given depending on a particular problem situation.
Parameter space under Hy is set by © and a random variable 6° has a density given
by 6(6) . This treatment is in agreement with a Neymann-Pearson type compound
binary hypotheses detection problem , where 0 value of a parameter characterizes a

probability distribution of an observation under H, .
M ‘ Mo .
Accordingly we modify [T €4 of section (2.1) by I1 ¢ with a corresponding change

j=1 7=0

in the definition of F, | where QO — 6 .
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Now we redefine (3) temporarily as

R=E(C(u,0;u4,8,)) (4)
Since 0 and 0, are defined by their characters, C( u,8: u,,0, ) gives a flexibility to a
resulting optimal estimate 6, in the sense that it will be an estimate taking into
account of hypotheses uncertainty. We define a probability space (h,}i‘T ,P) , associ-

ated with (4) as follows.  Let  be

Q) = UxQxSs (5)

,where U = {O,l,,,M} and S =U X 6.
The element w = (u,0°67 2§ ,w’ ,y ,uy, 0, ,5 = 1,,M) satisfy

W= (u (),0%W),0 [@),24 @), w? (¢ W),y (t @),us(@), 0. @), 0<t<T, j =1,,M)
We define a corresponding o -field F, as

F, = F(u)XF, XF(S)
As before we treat each o field as a sub o -field of Fy .
Probability measure P on Fy is stated in the sequel. Distribution of v and that of

#° are already specified . Given ¥ = ¢ , P on Fy coincides with the previous proba-

. M .
bility measure P' and thus the restriction of P to Fr(y) is given by ¥ p (¢ )XP}(B)

i =0
for BEFr(y) . Assignment of P is completed if we specify a distribution of random
variables u;,0, . wu, and 8, are, by their natures , conditionally independent of
other random variables or processes given F,(y), and thus specified by the joint
conditional probabilities , P(uy =i,9, <6 |B), defined for all B where
B € F,(y) and 7 €6. We note that uy and @, are a given pair of nonanticipative
random variables whose statistics depends on y* .  An average risk R depends on a
conditional statistics of { ug , 0, ), which represents a randomized decision and esti-

mation rule in general, and as such, will be denoted by R ( Pp Py ).
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2.2.2) Jointly Bayesian solution

A conditional statistics of a pair of random variable , (44,8, ) , is specified by a
following pair of conditional probabilities , [Pp(ug = 5 | ¥t), Pg; @, | y')] defined for
all y* , where 9, €8, and Pp(u, = j | y*) is the conditional probability of accepting
the hypothesis H; for a given observation y* , and Pg;(0, |y') the probability dis-
tribution function of estimator random variable 0, for the given observation y! on
the condition that the hypothesis H; has been accepted. For an arbitrary observa-

tion y* we must clearly satisfy
fsPei@e |3')=1 0 < Pg(@ |9)<1 j=0,M

ﬁjopo(“azk l¥')=1 0<Pp(us=k |y*)<1 (6)
Thus a given estimation rule , P; , consists of (Pgj }{=M . We denote , by a pair
(Pp,Pg) , a given decision and estimation rule satisfying (6)
Let E be the class of all randomized decision and estimation rules, (Pp,Pg)s. The

jointly optimal decision and estimation rule , (Pp,Pg) , if exists , is given by

Now we evaluate R ( Pp,Pg ) by a standard procedure.
R ( PD IPE )

_ EM) E(C(u,0;u4,8,) |u =i) p(i) (8)

§ =0
:EE(E(O(urg;udraz) |yt’u =1 y Ud =]‘,—0—c =0c ) ! v =1 )p(!)

— —

,where E( C(u’a;udy_éc) 'ytyu =1,y = 7,0,

|
(‘Q
N
7
o
@
=
=
Q
a.

to be

E( | D-{F,(y), F(u), F(ug), F(9, )} )|yt".’j'7‘:
Since u and # are conditionally independent of ug and 4, given Fy(y) , and thus
sample values of u; and 6, only play a role of fixing the corresponding arguments in

the cost functional and nothing more, it follows that
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E( 0(“,5) “&)Fe)[ y‘)“ = i;“l == ]‘)ie =Fe, )
—E(C(i,F ;58 )|v'u =i) 9
= [ CGF 0. ) p(tizt 6 )de’ do

with an obvious abuse of notation , where p (¢,i:2*,6°) is the a posteriori density of

(z°(¢),6°) given y* H;. Substituting (9) into (8) yields,

R(PD:PE)

M . . c 6 piN i g ai =
:ans{ OPD(u, =3 |y‘)fRL+K(fRL..+MC’(i,0' ;7.0 )p(t,i:x" 6 )dz® df )dPg; (6, ly‘)}
i j
~dP¥ p (i)

where  Pj  here stands for an induced probability = measure on

Clo,T] by y(-)givenu =i , and L +K is a dimension of the augmented parameter

vector 4 .
Now we consistently extrapolate the expression of R (Pp ,Pg) given above to our gen-
eral case.

R(PD7PE)

25

- dPy p (i)

7=0

& i . pd cf piNg i ;
E PD(ud == J lyt)fRLJ+K(fRLl+N,'O(i10‘ ;]roeJ)p(t:z 2z ,0 )dl‘ do )dPEj(oeJIyt)}

(10)
where ¢ — (0°,6'),0/=(9/,4" ) ,and thus ¢ €9, 0/ ¢ e; .

We now assume that (6) is accordingly redefined. Now we use the mutual absolute

continuity between P* and P of section 2.1 on Fr(y).

4 g b g NI g j i

fm{ 2 Pp(ug = j ly!)fRL;H(( fRL‘-(—MC('.»a' i7,08)p(t,i:2t 0 )dz' d 6 )dPE'j(acJ ’yt)} Y
i=0

(11)

M dP'
— { J NY O ... EO t dP Q
fﬂa{jgo } (4851 vt) ap
,where EY( 4P | Fi(y)) is a likelihood ratio random variable at time t between H;

dPd
and Hy , and equals to a Radon-Nikodym derivative between the restrictions of P°

and P° to F,(y) 120]. Let
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q’PE}-(II‘)
< ; 0, dP' t s AY N St Af [ ¢ ] t
= [ L L P ) ENT5 1 9°) [onran OO 5 500 p(2i:2" 0 )d” 46 L Py (07 4*)
(12)
Substituting (11) (12) into (10) gives
R(PD 1PE )
M
. 1
= fﬂ{ 2 Pp(ug = Iy‘)<1>pE,v(y‘)}dP»9 (13)
j=0

<I>PEl(y’) is a kind of the a posteriori loss incurred under an estimation rule P
given wug; = j. In section (2.3) we will evaluate the integrand of <I>PE)_(y‘) , at least
in theory, by use of the nonlinear filtering formula. Here we focus on characterizing
a jointly optimal decision and estimation rule. We extend the development in [4],
where a case of discrete sequence of observations is treated in a nonsequential set-
ting.

Due to the M-ary nature of hypotheses detection, there is always a nonrandomized
jointly optimal decision rule, which can be shown as follows. For any arbitrary fixed

estimation rule Pg , the optimum decision rule P, has the following form.

Pplug =k |y*)=1 , Pp(ug =7 |y')=0 for allj£k

iff  @p,(y°) < ®p, (v*) forallj 5k (14)
Therefore we can confine ourselves to the class of nonrandomized decision rules. Let
M
us now consider an arbitrary fixed disjoint subdivision, {FJ-} , of €13 character-
J=0
ized by

M
UFJ: Qg, FJka:¢fOrJ§£k

J=0
An optimal estimation rule Py under an arbitrary nonrandomized decision rule Pp
M

corresponding to some {I‘j } Af exists, satisfies
j=0
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R(PD)PE')

M
= Min ®p (yt)dPy
Pg ,go j;f PE’(y JiPy (15)

M
- £ o5

In (15) we implicitly assume that minimum exists in the class & . If exists in & , the

minimum should occur at an estimation rule , Py , satisfying that for y — 0, ,M

Pg; (07| y’):Arg(l},{;;n @p,(v')) v €Ty . (16)

We note from (16) that Pg,;(87]y*) is functionally independent of subdivision

M
{I‘,-} given y €T; ,and hence also of the given decision rule. Only the optimal
i=0

M
estimation rule, Pg , as a whole, depends on the subdivision {Fj }

=0
M
Now we further assume that for all ; E{O,,,M} there is {PEfJ} satisfying
Jj=0
Pg;(07|y*) = Arg (Min ®p_(3')), y €y (17)
P, 3

with probability 1.

Since we have only M +1 choices of decisions at each y* ( through the restriction to
the class of nonrandomized decision rules ), and also due to the independence of
Pg;(8/ | y*) on the form of subdivision( i.e. (16) ), the jointly optimal rule is specified
by

For an arbitrary observation y*,

select (k ,Pg(6F]y*)) if and only if
<I>PE.i(y‘) < (ng}(yt) for some kand all j : (18)

PEj(y') = Arg(Min @p, (s"))

All the rules satisfying (18) with probability 1 are equivalent. Let

4‘[ T
4,000 = 3% (i) E4E
J A L dPO

o) [ OO 5 700 p (i 0 )de” a0

=
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(19)

If A;(6/,y") is continuous and lower bounded in 0/ (eg C(:i,0 ;7,60)>0) at
each y* and for all j , then a nonrandomized estimation rule under the temporal

decision of H; exists, and is given by taking exclusively a 6/°¢ 6; satisfying

0/s*) = Arg (Min A;(075")) (20)

From (20) it follows that

A;(07°9') = Min ®p, (y*)
Py; ]

,and the jointly optimal rule is given by

Select (k,0F%) iff
Ak(ock‘ryt) S Aj(acj‘ryt) for all J%k : (21)
0ej.(yt) = Arg (Ag"' Aj(oejyy‘))
J
According to the structure of the jointly optimal rule (21), estimations of 0/(y")
under the temporary decision of H; for all j precede the jointly optimal detection
and estimation. Due to the assumptions made on A;(07,y"), joint optimization can
be replaced by the sequential optimization procedure, which simply exhausts all the
possible F,(y) measurable rules in an obvious way. The implications of the rule (21)

on detection and estimation operations will be shown in section (2.5).

2.3) Evaluation of the a posteriori loss

In this section we express A;(8/,y') based on the well known results in non-
linear filtering theory. Throughout this section we explicitly partition the augmented
vector 8 by [0° ,h]] , where the latter ¢ is the system parameter vector of (1).

In section (2.1), we have defined the probability measure P on the o -field Fp .
Define a new measure P} on the sub ¢ -field ,a(G}UFT(y)) ,of Fr by Girsanov

transformation given below [8}{20] .
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dP}
dP*
,where b/ = h*(t,z°(¢),6"), and kT denotes a transpose.

1.7 1.7
= exp( —7}; T dy(t) + ;,’; | dt ) (22)

Then P} has the following properties[20].

a) P is a probability measure on (,0(G# UFr(v))

b) Under P§, (y(t ),a(G,‘UF,(y ) is a Wiener process of quadratic variation r-¢.

c) Under P, the processes (v(t),0<t <T) and (27(¢t),w'(t),6,0<t< T) are
independent.

d) The restriction of P§ to Gf is the same as the corresponding restriction of P*.

e) P’ is absolutely continuous with respect to P}, and

dP?
dP},

= e( L[ h T ay()- L i an ) = 2
,and thus Z/ is a martingale under (o(GFUF: (v)),P}).

Under each hypothesis H; the following fundamental result ,known as Bayes formula

formula [20] in the nonlinear filtering theory, holds in the present formulation also.

B (o' (1)0) | Fy(y)) — %—%

,where o/(¢) = E§($(z"(t),0°) Zf | Fi(y) ), and (-, -) is a measurable function such

(23)

that E7|g(z*(¢),0°)] < oo, and E*,E} denote the expectation taken under P’ and P}
respectively.

By definition A;(8/,y") equals to

A; (079" Ep(')E"(

Iy ) B (O b3 7.00) 1) (24)

From (23) we can ldentlfy

E' (OG0 0 55.07)] Fily)) =
where ¢ (z¥(t),0°) = C(i 6" h; 5,07).

Also we note that
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dP*

olll)= E(Z|F(v)) = B 55 | Fe(v)) P§,P° as. (26)
Since
- &P} ,.
Es(Z | Fi(y)) = 7 IF ) Po as
dP4y
o dP* __ dPy .
EX 1P0 | Fr(y)) = Wh}(y) P as.

,and since P}y , the restriction of P} to Fr(y) , is identical to P, from Girsanov’s
theorem ( ; | denotes a restriction to a sub o -field ) .
From (25) and (26) we have

dP*

E"( C(i’o"rhti; j:oci) 'Ft(y)) Eo( dPO

) 1 Fe(y)) = E:J( (i :0‘,":{3 J‘,oej) Zt‘ | Fi(y)) as.
(27)
Define p(t,i;2°,6°) such that for an arbitrary measurable function ¢ satisfying
E|g(z* (£),07)] < oo,
ol(¢) = fR“ fRN' ¢(z",0")p(t ;20 0 )2t d o a.S. (28)
Then from (23) and from the arbitrariness of ¢(-, -), p(t,i;2° ,6°) can be identified
as the unnormalized a posteriori density satisfying
p(t i ,6")

fRLlfRNlp(t ’i;x'.}e‘)dx" dﬂ'

,where equality is understood in a proper sense.

= p(='()8 | v, H)

Let p(t,i;¢") = fRMp(t,i;z",G‘)dz‘ .

We can identify p(¢,i;6') through the following steps.

[0 plt i56°) d ¢
=E§(o(6')Z | ¥*) (29)
=Eo[¢(6)Es(Zi | Fe(w).F(8°)) | v* ]

We note that
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E(")(Zt‘ | F,(y),F(o"))
=E;(Zt | F.(y)F(6'))
dP'
= 2pi 7 (y)ur(r (30)
_ P (0) |
p'(9) dP' f0)

since ¢° and the process y are independent under Pi .

Substituting (30) into (29) yields,

fnu #(6') ot i ;6° )d ¢

= E}($(6') —— dP, lr) | 9°) (31)

= [ #(F ) dP' |,¢ pi(0)do
,due to the same reason following (30).

Since ¢( - ) is an arbitrary integrable function, (31) implies that

p(t,i;0")
Pyt

=7p (0) dP,‘ !yt

=P ( ) | t

—_ :'0 EO i t
p'(0) (TP" lv*)
=A(0") - p7(9)
Loetei s Lopty i H

— exp (2 [ B0V ay (o) - L [ R0 s ) 9 0)
,where A{(0°) = E*(hi | y*,6%).
In (32) A(6) is the conditional likelihood ratio between (¢° ,H;) and H, , and is
expressed by the causal representation [21] .
We now derive the evolution equation that p(¢,i;z*,6') satisfies.
Since z'(¢) is a 6’ conditionally Markov process, o//((z* (¢ ),6')) satisfies the stochastic

integral equation given below [20].

7l(6) = ofle) + [ oi Lo )ds + L i nT )iy (s) (33)
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;,where L , is the infinitesmal generator for a diffusion process z*(t) corresponding to

the parameter value ¢° under the hypothesis H;, and is given by

o a 1 5%
o i(gi gy 9 1 ioiTy 07
L'; jgofj(z ’ ) azj + D) g[ 99 ]J,k azj 39:,,

,where z; is a component of state vector z° .

In (33) ¢(-,6°) belongs to domain of the operator L, and is such that the stochas-
tic integration of (33) can be justified as a local martingale under P§.

From (28) and (33) ,and also by applying integration by parts in z‘ under certain
differentiability conditions, we formally obtain the following stochastic partial

differential equation that p(¢,i;z%,6°) satisfies.

dp(t iz’ ,0) = Ly otz #)dt + S hi(e,of 0)7 plt,isa 0) dy(t)
Tr

p(0,i52°,0°) = p*(0) p* (20 | 0)
, where L is the formal adjoint of L, ,and the initial condition is specified by

(34)

(23). (34) is a bilinear stochastic partial differential equation for the unnormalized
joint density p(t,i;z*,6'). The use of (34) as a way to provide an analytical approxi-
mation of p , jointly in (z*,6°), is beyond a scope of the present work.

A typical approach to avoid PDE formulation is the use of approximating finite
dimensional nonlinear filtering obtained by treating [z‘T,()"T]T as a joint state,
such as the jointly gaussian approximation of the a posteriori density of (z*(¢t),6).
However convergence properties of implemented conditional means of (z,6') are of
questionable merits and difficult to check. In a related work Ljung studied the
extended Kalman filter as a parameter estimator in the discrete parameterized linear
gaussian system. He treated [z7(¢t)7,6'T]T as an augmented state vector, and
modified the gain factor of extended Kalman filter algorithm properly so as to ensure
global convergence of parameter estimates [22] . A similar work may also be
expected for the parameterized diffusion cases. However such fundamental

knowledges as to identifiability of a given parameterized system should be
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prerequisites for a similar analysis [23] .

At each fixed ¢, (34) is Zakai equation associated with (¢ ,H;) ,and thus
p(t,i;2°,0°) of (34) at each fixed ¢ is equal to the solution to the Zakai equation
weighted by p?(d).  Approximating the parameter space by a finite set A; belong-
ing to ©;, we have a bank of the unnormalized a posteriori density calculators |,
each corresponding to 6° € A;. At each # one can directly implement Zakai equa-
tion numerically {19] [24], or may use the gaussian approximation of the a posteriori
density of z'(t) especially when signal to noise ratios are high or very rapid real
time implementations are required. When only the estimation of # is of interest, an
approximate realization of the causal conditional mean of the signal in the likelihood
ratio of (32) may also be used as a simple suboptimal structure, as suggested in [21],
with a due attention on the implementation of stochastic integral ( such as the Stra-
tonovich version of causal likelihood ratio [25] ).

In section (2.4) we adapt the Bucy-Senne’s numerical filtering algorithm [27] to the

present situation by treating (z‘,6°) partially jointly.

In theory the a posteriori loss A;(87,y* ) associated with a temporary decision and
y p y) p y

estimation ,( 7,0/), can be given by

AJ (aej’y‘ )

M . . .
= ¥ p ()il 4le* (0)6))

J

(35)

|

M=

p(7) fR“fRN‘ ¢(zi,0i)p(t,i;z‘,0")d;ri do
i =0

J
, where p satisfies (34) ;and ¢(z7(¢),0°) = C(4,6°,h; 7,67).

Ii

When directly implemented, (35) requires discretizations of the parameter and state
spaces.  The structure of simultaneously optimal receiver is drawn in Fig.1 from a

functional point of view,
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2.4) Numerical Approximation

In this section we treat a discrete version of model (1) . The resulting discrete time
observation model may be either a description of originally discrete Markov process
or a time discretized version of continuous observation model through the following

standard procedure. Let the continuous observation model be given by

dx(t) = fx(t)) dt + g(x(t)) dw(t)

dy(t)=h(t,x(¢))dt + V5 dv(t) (36)
Suppose the time axis is discretized by A. Then we obtain
(k+1)A (k+1)A
x((k+1)A)-x((kA) = [, fx(t))dt + [, g(x(t)) dw(t)
Assume that A is sufficiently small such that
(k+1)A
Lo Tx(£)) dt ~ fix(k &) A
(k+1)a (37)
Joa  8((t)) dw(t) ~ g(x(k A)) {W((k +1)A) - w(k A)}
Define z(k), f (z(k)) as
z (k) = x(k A)
S k) = 2 (k) + f= k) A (38)
,and w(k), g(z(k)) as
1
w(k)= T {w((k +1)A) - w(k A)} (39)
9(z (k) = VA g(z(k))
Then w(k) is a zero mean white gaussian vector with covariance
E(w(k)w(k) )=1I
Thus the discrete state equation becomes
g(k+1) = [ (z (k) + g(z(k)) w(k) (40)

Similarly for the measurement model,

dy(t)=h(t,x(t)) dt + Vr dv(t) ,

we obtaln
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Y(k+1) - y(k A) ~ h(kAx(kA)) A + V7 {v((k+1)A) - vik A)} (1)

Now define y(k) as

y(k) = % {y«k+1)A) - ¥k A)} (42)
,and v(k) as
v(k) = TIZ' {v((k +1)A) - v(k A)} (43)

Then the discrete measurement equation is

y(k)=h(k,z(k))+ /< v(k) (44)
, where v (k) is a zero mean white gaussian noise vector with covariance
E(w(k)v(k)T)=1
Equations (37) through (44) yields a discrete time Markov sequence. Quality of
approximations, (37) (41) , depends on a bandwidth of the given diffusion. In [20] a
bandwidth , B , is intuitively defined by

BZS,,p{ [fz)] ns(xnl?}

T+lz] 14|z ]

under the assumption that

Ifz) |+ lla(=)]] < kVi+]|z ]

It follows that A << —}é— for a good approximation.

In the linear system f (z(k)) can be exactly identified by

f(z(k)) = &(A) =z (k)
, where ®(¢,t;) is a state transition matrix for the given linear system. If consider-
ing the previous parametric uncertainty, we have the following observation model

under each hypothesis £,
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2 (t+1) = [ (2" (£),0°) + o' (2 ()0 ) wi(t)  2F(0) = 2
y(8)=h'(t,2°(t),0) + V7 vi(t) (45)
t =012,T

,where r' = \/AI when (45) is an approximation to (1). In connection with r’ ,
we mention that r' — oo as A — 0. Hence if going from (45) to the continuous
counter part , one should take care of order of limiting procedures. The advantage
of the present discretization lies in that one can use the floating grid method without

much complication to redefine the quantization of state space (27| adaptively , and

that the resulting numerical filtering algorithm is inherently stable.

S )9 (), and R¥(-,-,-)  are measurable vector-valued or matrix-valued
functions respectively, and also they are integrable when considered as random
processes at each 6.  As before the null hypothesis is given by y(t) = \/;r-vo(t).

Construction of (2,Fr,P*) is similar to that of section (2.1) . P yields a joint

density function,

U . . . T . T ..
P (8, 20, w',y ) =p"(0)p (z0 | 0) IT pou(w’ () T pealy(t) | 6 ,2h,0'(s), s < t-1)
£=0 t=0
, where p;; ,and p,, are jointly normal distributions with proper dimensions of iden-
tity covariance matrices respectively.

Define a probability measure P§ on the sub o -field of F o(GF{JFr(y)), by

o)

dP} 1 & i 1 .
— == eX - h} t)+ 7 A} 2 46
ITX p( ; tz=:0 eoy(t) or t=ol ¢ %) ( )

y(T) = % {y((T+1)A)-y(TA)} , if considered as the discrete sampling of continu-

ous observation. Then the new probability measure P}, yields the following proba-

bility density,

pol0 a5, w',y ) =p"(0)p*(20 | ) tli[() Pgl(w‘(t))tljﬂpqz(y(t)) (47)

Let



26

i 1&g 1 ¢ i
Z¢ = exp( oy Eh,Ty(a)—~2r, Elha Iz)
8 =0

=0

Then

Es(2t | o( GIUFi(¥))) = Z (48)

We state below a representation theorem ,due to Bucy [26]. For an arbitrary integr-
able function ¢(-,),
ES(Z¢(z'(t'), 6 ) | F, ,
o ( t¢£-’t ('. ), 0" ) | t(!/))’ ¢ o<t (49)
Ey(Z | Fi(y))

The proof appearing in [20] for Bayes formula can also be used here. We note that

E"(qﬁ(z'.(t’ ), 6 )| Fi(y))=

w'(+),0*(-) need not be gaussian processes for (49) and the subsequent result to
hold.

Let ¢t =¢ in (49) , and define p(t,i;z°,6°) as in section (2.3).

E§(Zig(2%(t), 0 ) | vt )= f,‘,ufnm $z,0° Vp(t,i;2" 0 )dz' 46 as. (50)
p(t,i;2",6°) is an unnormalized conditional density of (z°,6°) given y* .
From (50) p can be identified in the following way.
E§(Zio(x (0)0) | 4*)
=ffE6(Zt"¢(x'.(t),0" ) | y‘,:r"(t)zzi,O‘ )pf,( t, 2,6 | v )det do
=[JENZ (2 ()0 ) | v, 2", 0 ) p(t, 2%, 6 )dz® db |
due to (47) . Thus from (50) and arbitrariness of ¢ ,
plt,iet ) =E§(Z | y' 2", 0 )pi(e, 2", 0") (51)
, where equality is understood in a proper sense.
Now we derive the recursive equation that p(t,i;z¢,6") satisfies. From (51) we
have
plt+1,050" 0 ) =ES(Zi, | vt 2" (t+1) =2*, ¢ Ypi(t+1, 2% .60 ) | (52)
Let

Then z'(t) is Markov. Aund from (52),
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p(t+1,¢;u)
=B [ ZiHo(Z (t4+1),9 (¢ 41)) | 9 ¥, 2 (t4+1) = u | pP(¢+1,0 )
=Ho(w,y(t+))EY[EG(Z | y' ™2 (t+1) = u, 27 (1) =0 )
| 842 (t4+1) = u ]2 (t+1,u)
= H(u,9(t+1))EG[EG(Z | v',v) | o't u ] pf(t+1,u)

, since under P§ %‘(-) and y(-) are independent , y(’) a white gaussian process ,
and z°(-) a Markov process having the same distribution as under P°

From the above we obtain
p(t+1,45u )

=H,+1(u,y(t+1)){fga(zti | yt’v ) Pc+1|t(p’:(t|+"1,lp) (t,v )
=H¢+1(u,y(t+1))fp(¢’,';v )I’t"+1|t(u | v)do

Since

dv }'pi(t +1,u )

Pt‘+llt( v | v)= P:{+1lt( z‘(t+l)= z! I :c"(t)= z" ,0'-' ) & o' -0 )
the desired recursive equation is

p(t+1,i;t",0i ) = I1t+l( x‘yoiy y(t+1)) fRNi p(t yi;xi' ’ 0’) pt"+1|t( xi | 2".’ ’ 0" ) dl‘(,53)
with the initial condition ,
p(0,i;2% 6 )= E}§( Z} | y(0),z",6°)p (0; ¢ ,2* ).
The jointly optimal detection and estimation rule for the discrete observation model

(36) is obviously the same as before ,and ®p, v') under the temporal decision of

7 and an estimation rule Pg; is given by

i, = pupoe 5P (8 =) o COH 55,00 b ) ik 4 bars (o2 141
,where #° and 4} are defined as the previous augmented vectors of section (2.2).
Depending on assumptions , the jointly optimal rule is given by either eq (18) or
(21).

Now we consider an numerical algorithm to calculate p(¢t,i;2%, 6 ) .

We adapt the Bucy-Senne’s numerical filtering algorithm to the present observation

model where parameter uncertainties are present. The essence of Bucy- Senne’s
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algorithm lies on the use of floating grid, and construction of floating grid is based
upon the implemented a posteriori conditional error covariance and conditional mean
of signal. Thereby their algorithm incorporates the good feature of gaussian approx-
imation technique into the nonlinear filtering , while it does not involve any numeri-
cal instability in calculating the error covariance unlike the gaussian approximation ,
where a precautionary measure is necessary to make the conditional error covariance

positive definite.

Henceforth we neglect the hypothesis index i , assuming a some fixed value. We use
an usual point mass approximation of p(t;z?, 6 ) . Let
2M +1
q(t;z ,0) = "1"2§~ . q(t;0:(i1,i2,, iv)0)8(z - g (31,42,,in)) BE A (54)
, where & is the Dirac delta function , and 2M+1 a number of grid points in each

coordinate z; ,and A; a finite subset of ©; .

In (54) g, () is the floating grid map defined by

KN — RNV , K ={ 1,2, 2M +1 }

Define ¢(t,0) (€ R?M+1Y) as

g(t,0) =1[q(t;0(1,1,,1)0),, ¢(t;0(2M+1,,2M+1),0)}7 (55)
The straightforward extension of Bucy-Senne’s algorithm requires that the grid map
g. depends on each parameter values. Here we take the approach that the grid
map of the state space is independent of #, and is obtained by considering the a
posteriori uncertainty of parameter random variable. Calculation of ¢(t;z,0) is
based on the evolution eq (53) . The advantage of the present approach is that we
can reduce the computational burden and storage space , which are otherwise
required to determine the grid map at each 6.
The inherent drawback of this scheme is explained in the following. Suppose that a

true value of the parameter is f; under H; and that 8, € A; for simplicity. Consider
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q(t;z,0) under H; . Value range of the implemented version of a pseudo condi-
tional mean (=~ E*(z(t) | 8,5* ) ) has to be limited by the present grid map favor-
able for the implemented version of the conditional mean of the state (
~E'(z(t) | y*)), and therefore q(¢;z,0) should also be affected in the way that
the actual functional shape of p(t;z,0) is smoothed out in ¢(t;z,0). The degree
of the drawback will depend on the range of A; chosen , given a common floating
grid for the state space. If the a posteriori accuracy about 6 is low, the above will
not be a matter of concerns , since the grid map is not dominantly determined by
g(t;z,0) associated with a particular 6,. With the increased observation period
the adversary effect of present quantization scheme will begin to appear . Whether
this would be a matter of minor importance or not depends on a shape of ¢(t;z,0)
during the intermediate observation period , and accordingly we are not sure of con-
vergence properties of ¢(t;z,0) , in terms of the implemented conditional means,
with the present method of gridding for the state space.

Since we use the point mass approximation, and also from the evolution eq (53) , the
grid A; of the parameter space has to be fixed unless a proper interpolation of
g(t;z,0) is to be used .

With this approximation the state becomes a pair (¢(¢,6), g, (- ); 0€A; ) , the
first a (2M +1)Y vector at each 4 , and the second a (N) X @M +1)N¥  matrix, the
total collection of actual quantized points in R¥ .

Substituting (54) into the evolution equation (53) at each 6, we arrive at the state

update equation .

q (t +1;ilnuyil\l 10)

= }[t +l( gt+l(il 113 iN )r 0’ y(t +1) )
2M +1 ) ) ] ) ) ) (56)
X E T(gt+1(11:n N )7 gt(.’l)n IN )16)q(t7 J 1IN 19)

J.l s jN =1

, where
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T( 941, 9,0)
Ept+1|t(9t+1 | 9:,0)
=N [g-f(g,0) a(g:,0)]
with a(z,0)=yg(z,0)g(2z,6)" . In (2.1) we assume that a(z,0) is positive

definite for all = and 6.
(56) can be sequentially computed , once the gridding is determined. However we
must evaluate (2M-+1)*" elements of matrix 7 ,and (2M +1)Y elements of diago-
nal matrix H,,; , and perform multiplications at each € 4;. In order to select
the gridding most effectively under the present constraint on g, , we centers the
grid for [g¢(t+1,0):0€ A;] at the best estimate of =z(t+1) given y* ( ie.
g(t+1]t)(=FE(x(t+1) | y*) since the grid g, must be given before
g(t+1,0) is computed, and only ¢(¢,0) is known at time ¢ ) .
If the given model (36) is derived from the continuous model (1), #(t+1 | t) is
actually the filtered estimate of x((t+1)A) given (y**Y2 ) as can be seen from
the definition of y(¢) of (42).
Similarly the mesh size and directions are given in terms of eigenvalues and eigenvec-
tors of conditional error covariance Y,(t+1 | ¢t ) of z(¢t+1) given y*

T{t+1]¢t)

=E(f (=), 0)+glx(t) 0)w(t) | y")
=E([ () 0) | 9" )+ E[E(g(z(t), 0)w(t) | o(z(t),0),F(y)) | v*)

— [ 10 P00 | 4" ) ds do (57)
S i ) ) 0 e, 0)

— =TT g 2 ) ; t: 10 JN y
O(t) rnThen JelJ15 IN q J1 IN

, where C(¢) is the normalization constant for ¢ , and is an approximation to

dP’

EY
dpP°
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Y(e+r]¢e)

=E[(z(t+1)-2(¢+1 | £))(z(t+1)-2(t+1 | ¢))T | ¥*]

=E[z(t+1)z(t+1)T | y* | -2(t+1 | t)2(t+1 | ¢)T
=E[(f(z(t)0)+g(=(t),0)w(t))(f T(z()0)+ wTgT(2(t)8)) | v ]-% 2T
=E[f(z(t)0)fT(z(t)0) | ' |+ E[g(a(t)0)w(t)wT(¢)gT(=(t),0) | y*]-% &7
=E[f(2()0)fT(z(¢)0) | v' |+ E[g(2(t)8) g7 (z(t),0) | T )-2 2T

=ff{ f(:r,ﬂ)fT(z,ﬂ)+9(z,0)gT(z,o)}-P(z(:),o | y* )dz df -4 37

1

= O(t) [E( f(gt(jl;an )rg)fT(gt(jl:n jN ),0) (58)
+9(9( 71 in)0)eT(a(srnmin) b))
X q(t,d1nin, 0)] = &(t+1 | ) &(e+1 | )7
Let 2Ny, MYy, el e be the eigenvalues and the eigenvectors of

Si(t+1 ] t) . Define a new coordinate system

z(t+1)=[e}y -~ el | [2(e4+1)-2(t+1 | t)] (59)
Then

E(z(t+1)z(t+1)T | = D(X) (60)

, where D () is a diagonal matrix with d; = \/,, .

Define a grid on the new coordinate system by

Kk
K
| K |
Loy
,where K/, = n, (M) ( IM -1) ,4 €K and n, is a constant parameter
controlling the step size.
Update g,,, by
K%
gt+l( ‘l.l,','/' iAV):{etLl -‘.elzil } ’ +’i‘(t4_1 I t) (61)
K

(61) defines a desired update of the floating grid at each time. The above is only an
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outline of the numerical algorithm ,and further simplifying will be possible depend-

ing on the problems.
2.5) Implication on the operations of detection and estimation

In this section we first examine the implication of the jointly Bayesian
approach on the operations of detection and estimation. Also the unified formulation
of detection and estimation as a nonlinear estimation problem [7] is given for a com-
pound multiple hypotheses problem and treated as a special case of the jointly Baye-
sian approach . Extension to the multiple observation intervals of the jointly

optimal rule is also presented.
2.5.1) Effect of joint cost function on the coupling policy

Throughout this subsection we will assume the cost assignment given below as our
basis for the joint cost function.
C(i,00:5,00)=Cy(i,5)+ C.(i,6 :5,8)) forisfjori=j;=0
C(1,00:7,08)=Cali,i)+ Co(i,6 :i,0))+ C, (5,0 :4,8) for i 0

(62)
where ¥ €6,0/€6 ,0° €6,,and 8/ €9, .

In (62) C4(¢,5) is a cost due to misdetection and the remaining terms due to estima-
tion error. The present cost assignment emphasizes the operational difference
between the two decision processes of detection and estimation [1] . Since it is quite
likely that action corresponding to detection is different from the action correspond-
ing to estimation, it seems appropriate to anatomize the selection of cost functions as
indicated in (62). (62) is a generalized version of the cost function proposed for the
strong coupling by Middleton and Esposito [1] , and the difference is that (62) takes
into account of different natures of parameter spaces under each hypotheses whereas
Middleton restricts the parameters of interest to the common energy type parame-

ters. In [28] Levin used a joint cost function defined by dropping the consideration
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of common nature of parameters, and in this case ¢ = ¢° also 0/ = 0 .
We now examine the implications of the jointly Bayesian approach by taking a com-
pound binary hypotheses problem,
dz'(t) = fY(z'(t),6")dt + g(2'(¢),0")dwl(t)
P ldy(t) = hY(¢,2'(¢),8")dt + Vrdv'(t)

Hy: dy(t)= Vrdv't).

Suppose the common energy type parameter to estimate is the signal envelope.
Recall the definition of h, as 1,_; h(¢,z'(¢),0'). Thus the parameter of interest
under Hy is h, (=0) and the parameters under H, are h, and ¢'. The jointly

optimal rule (21) for the above problem is

Decide (Hy,0/") if Ay(0} 9" ) < A 02°9")
otherwise, decide ( H,,02")

. _ (63)
07" = Arg( Agz'n A;j(02,9'))
1

, where A;(0/,y* ) is defined by (19).

Specifying the meaning of (62) as it is applied to the present case,

a) C,(0,h,%; 1,h,') = C,(0,0;1,h,'): estimation error when H, is true and decision is
false.

b) C,(0,0;0,k.°) : estimation error when H, is true and decision is correct.

¢) C.(1,h';0,h°) : estimation error when H, is true and decision is false.

d) C.(1L,ht'; 1,8 + C,(1;6',0}): estimation error when H, is true and decision is
correct.

The above cost assignment can also be understood as a parametrization of classical
cost functions ( for detection only ), according to the signal envelope and its esti-
mate. That an estimate appears under the decision of H, reflects the consideration
that an estimate need not always be rejected by a decision of Hy ( ie. there is a
positive probability of error in detection ) . From the general cost functions given

we will go through special cases , which yield various levels of complexities and
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1
coupling policies in receiver implementation. Let A, =E( go | ¥*). From (19)

we obtain,
Ao h’y")
=p (0) [ Cq (070) + C, (O’O;O;heo) ]
+p (1) A [ Ce(1,0) + [ C. (LA ;0,00 P(t,1;24,6") dz' d 6"
A l( hcl:yt)
=p (0)[ Ca(0,1) + C.(0,0; 1,h,")]
+r(U)A [Co(L1) + [ C, (L1 L,h}) P(t,1;2,6") dz' d 0
+ [ C.(1,651,6)) P(t,1;6") d 6]
(64)
Then
h(y")
= Arg ( M}(n (p(0) C,(0,0,0,h,%) + p (1) A, f C.(1,h;0,h,°) P(t ;21 0Y) det d 9! ) )
R
h'y*)

= Arg (Min(p(0) C, (0,0;1,h,") + p (1) A, [ C. (Lh'1,h,") P (¢ ,1;21,6%) dz? d 6Y))
R

0 (y") = Arg( Min JC(1,051,8} ) P(t,1;6") do*)
1

(65)
The jointly optimal decision rule , written in an usual form , is
H,
> p (0) A (0)1) -A (070) (66)
C5op() ALY - ALY
0

i (A(1,0) -~ A(1,1)) > 0. Otherwise choice of H,,H, is reversed. In (66),
A(0,0) = C4(0,0) + C,(0,0;0,h,°%
A(0,1) = C4(0,1) + C, (0,0;1,h,1

A(1,0) = Cy(1,0) + [ C,(1,h,'0,h,°) P (t 1;21,6") dz' d 6"
, and
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A(L1) = Ci(1,1) + [ C.(1,h}51,h,1) P (¢ ,1;2,6") dz' d 6"
+ [ C.(1,6%1,01°) P(t,1;6") d 6"

That the denominator of right side of (66) can be negative depending on observations
does not imply any contradiction within the frame of the jointly Bayesian approach,
since (66) is a version of (63). However this suggests a possible defect in using the
joint cost function of the form (62) in general. From a practical point oriented to
detection the following inequalities are usually desired ,

A(0,1) > A(0,0) , A(1,0) > A(1,1).
But it is not guaranteed to retain the above relations a.s. in observations ,since now
A(¢,7) depends on estimates , and this implies that there can be a significant unbal-
ance between detection and estimation operations unless the joint cost functions are
properly weighted. We note that when H, is true, the estimation error associated
with a temporary decision u; =1 will decrease as the observation interval
increases, and thereby the second part of the above inequalities tends to be satisfied.
We indicated a pathological effect caused by a general coupling policy between detec-
tion and estimation. We heuristically examine the jointly optimal decision rule from
a detection point of view. Suppose the hypothesis H, is true. Then the a posteriori
estimation loss associated with a decision of H,; tends to be relatively larger , and
the threshold increases and consequently is favorable for a decision of H,. Suppose
H, 1s true. Then the a posteriori estimation error associated with a decision of H,
tends to be relatively smaller, and the threshold decreases and consequently is favor-
able for a selection of H, .
We now look at the nature of estimates (65) obtained under the jointly Bayesian

approach. For this purpose we use the following quadratic cost functions,
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C, (0,0,0,k.°) = Cq - (h,°)?

C. (0,0;1,h,") = Coy - (h.')?

< C. (lxhtl;oyheo) = Cy (h' - ) (67)
C. (LR = Cyy - (ke - B

C, (1,651,6}) = Cy 6* - 6} )?

Then,
0* __ ;1 p(0)
he Crohy he /] PYEY Co + CroAy ]
hCI‘: Oll At ’;:tl / [ %% OOI + 011 At ] (68)

0 =EY0" | y*)
,where k' = [ h(t,2',0") P(t,1;z',6") dz' d8* , conditional mean of the signal
envelope under the assumption that P( H,)= 1. The form of estimate , RZ", is due
to the fact that h, has an unconditional density given by
P (0) (k) + (1) p'(he)
, where p'(h,) is a conditional density of h, at t given H, .

When Cgy= Co = Cio= C;; =k (68) reduces to

0* 1+ L p(l)j&t ﬁtl
RO = h =R = L
p(0) + p (1) A

,which can also be put into a more revealing form

h'=P(H, | y*)k* (69)
The estimate (69) reflects the fact that 0 < P(H,) < 1, and is a convex combina-
tion of &' ,and 0 by the corresponding a posteriori probabilities.  The estimate
0" is simply a Bayes conditional conditional mean under the assumption that
P{H,;)=1. 'The jointly Bayesian approach does not exert any influence on 8}°
except that 4" contributes to the determination of threshold and then is validated
or invalidated depeading on the results of detection.
Though Levin (287 included parameters like 6! in the jointly Bavesian approach,
actnally their wse muy be controversial. Thus if we restrict the jointly Bavesian

approach to the connon energy type parameters only, the jointly optimal decision
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rule is given by (66) with A(1,1) being replaced by

A1) =Ci(1,1) + [ C.(1,h 11,8, ) P(t,1;21,0") dz' d 6" .
Under the cost functions (67) and the assumption on C;; , the jointly optimal esti-
mate is independent of the detection , and is given by (69). Decision rule under the
same condition is

> p (1) Cd (071) + k (hc.)2 B Od (0!0) -k (he')z

A 20 A(LO) - ALY

,where

A(L,0) = Cy(1,0) + [ k (k' - b P(t,1;2") da?
A(LL) = Cy(1,1) + [k (k' - bV P(t,1;2") dz?
And thus the jointly optimal decision rule is an usual optimal decision rule given by
p (1) Od (011) - Od (070)
p (1) Od (1:0) - Od (1)1)

According to (69) and (70), there is no coupling between the detection and estimation

Ay > (70)

operations , which is termed as no coupling policy in [1] . Generalizing the above, we

set
08 (O’O;O,hco) (O h 0)
C.(0,0;1,h,'
( x ) = C.(0,k.") (71)
Ce (lrht ;Orhc ) O (ht yhc )

Oc (lrktl;lyhe) O (ht y e )

Then we have the cost function of the form

O(' 7h¢‘; J 7hcj} = Cd (' :j) + Oe ( hti;hej )

, and

k"= Arg (Min [p(0) C, (0,h7) + p (1) A, f C, (h',h3) P(t JLet 6y det dot]).
Thus the estimates 4,!"and £,°" are independent of decisions and the detection is
given by the usual optimal detection rule (70). Schematics for the no coupling pol-

ey 1s depicted in Fig-2
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Detector — Hj
y(t) .
Estimator f—— he
Fig 2

If modifying C, (1,h';0,h°%) of (71) by

Ce (lrhll ;Otheo) = Cc( htl:hco) + f (ht 1) ’ (7{))
then,
AO( heoryt )
= p(0)[ C4(0,0) + C.(0,h,%) J
+p () A [Ca(10) + [ (Co(h'h%) + f (') P(t,1;2,6") da' d 0" ]
A 1( hcl;yt )
= (0)[ Ca(0,1) + C.(0,h.") ]
+ p(l) A, [ Cd(lrl) + f Cc( htlyhel ) P(t’l;zl’gl) dz' d ¢ ]
Obviously estimation is independent of decision and coincides with the one for (71).

The jointly optimal decision rule is given by

A > p (1) C4(0,1) - C4(0,0) -
< p(0) ¢ (1,0) + [ (RN P(t,1;2"6") dzt d 6" — Cy(1,1). (73)

, and the detector is independent of the estimator. The effective cost funcsions for

the decision rule (73) are C;(0,0), C4(0,1), C,{1,0) + f (h,), C;(1,1) . And the
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effective cost function for the estimation rule is C, (ke R ).
If we take a policy of decision rejection( i.e. invalidate the estimate when H, is
decided ), the coupling between the detector and estimator is termed as the weak
coupling [1] [6] .
Finally we consider the strong coupling policy , a version of general coupling where
no estimation operation is necessary when H, is decided [1] [2]. This is done by set-
ting

C(i 0 ;000 =C(i,00 ;0). (74)
Thus the conditional distribution of 2 under u; = 0 or its value are not matters of
concern.

A schematic for the strong coupling policy is depicted in Fig-3.

Detector Hj
N\
Off
y(t)
{ when j =20
Estimator ‘__4/ h;@

Fig.3
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we will take a different look at the observation model (1) , and accordingly !* will
also be modified properly.

We now consider two special cases of jointly optimal detection and estimation under
a strong coupling policy such that C(¢,6° ;0,67) = Cy(i ,0). Then from (19),

Ady') = 3 9() 0104/ +5(0) 00,0
vt

P
dP°

, where Af = E(

Throughout the remainder of this subsection © = RLY+X  where L is the number

of common energy type system parameters and K the dimension of the signal
envelope.

LC(,0° ;5,00)=Cy(i,5)+ (6 -0)T Dy; (6 -0)) foristj or i=j5—0

C(i 0 5i,00) = Ca(i i)+ @ ~T)T Dy (F -8))+ (& ~95)T Dy (¢ -0)) for i 50
,where D; and D, are positive definite matrices.

By letting the gradient ( with respect to 87 ) of A;(0/,y*)=0for j 40, we

obtaln
. M p(i)ASE'(R | y*)
Ry =3
ERIOESIOY
=1
1) — & POAE@ | )
e M
=t P(0)+kE p(k)Af
==1
0 () =EI(®" | y*)
Since
PUH |yt )= — A
PO+ 33 p(k) ¢

—
8" can be expressed as

—_— M - -
0 =3, E' (0 | y'YP(H | y').

=1

For the cost function at hand, the estimates 8/ and #/" are independent of 7|
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independent of decision except being validated ) due to the independence of D,; on
J , and are given by the convex combination of each conditional means obtained
under the assumption that P(H; ) =1. When a signal involved has a low signal
to noise ratio, this character will be a significant improving factor in the sense of the
ensemble risk associated with estimation, compared to the classical conditional mean
estimate validated by the decision of some H;, which is not really the conditional
mean of the parameter concerned in the presence of hypotheses uncertainty.

The jointly optimal decision and estimation is based on (21) and the estimates given
above.

2.C(i,00 ;7,07) = Cy(i,j)+ by (cy; —6(8° -87)) for is4j or i=j=0

)

C(i,8 ;4,0))=Ca(i,i)+ by (e — 60 ~0)))+ byi(co — 80 ~8f)) for i %0

, where 6() is a Dirac delta function ,and b, ¢;; are cost controlling factors . The
prototype of the above cost function was proposed in [1] [2] , and called as a simple
cost function. We obtain the following estimates.

—_— M . — .
0 = Arg ( Maz Y b; p(§) A/ P(t,i;07,h7))
RL+K|'=1
9] = Arg( Maz P(t,; ;~061') )
e .
J

, where P(t,i;-,-) is the a posteriori density of (¢ ,k/) obtained from

P(t,i ;0 ,2" ). The estimate 6/  can be interpreted as a generalized MAP estimate.

2.5.2) Nonlinear estimation approach

In this subsection we view the original observation models from a different perspec-

tive. For convenience we rewrite the model (1).

de'(t) = [ (z*(t),0°) dt + g (2°(¢),0°) dw'(t) ,z"(0) =z},

dy(6) =h'(t, 2 (¢),07) de + Vrdo'(t) ,y(0)=00<¢t <T (1)

We recall the remark (2-f) of section (2.1) following the observation model (1)
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where , under H; , all the coordinate functions are assumed to have arbitrary pro-
bability distribution functions except (¢°,z},w’,y ). The construction is based
on the point that (67,z§,w’) for j £ i are irrelevant to the observation model
defined under H;.

Now we specialize remark (2-f) on the observation model (1) by imposing the follow-
ing conditions under P* .

a) (67 ,zd,w’ ) are independent with each other.

b) (67,zf,w? )for § % ¢ are independent of y , and have the same distribution as
under P7.

This approach to the observation model leads to the following description.

_ o [ g'(z'(t),0") 0 - 0
d:rl'(t) fl(:rl.(t),ﬂl) . . . .
M(t) fM(xV(z),oM) 0 o gM(aM(e),0M)
101(t) 0 o0 du'(e)
: = : dt + . . . :
dﬂM(t) 0 0 .. 0 de(t)
dl(uzl)(t) 0 0 Y
| 4 1an(0) J ! 0 0 . 0

dy(t) = flj RE(t,2f(£),0°) 1uiy dt + V7 du(t) y(0)=0, 0<t < T (75)
§=1
;where 1(, ;) is an indicator random variable taking 1 when v =1 .
Lainiotis [7], Kadota [29] takes the above unified nonlinear estimation approach to
detection and estimation for a compound binary hypotheses problem , and (75) is a
straightforward extension to multiple hypotheses. According to the above formula-

tion (¢',w’,z*) for all i are defined uniquely and exist independently of hypotheses.

Define the augmented state vector by

()= ()T o7, iy 1 =1M]7
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Let Fy(2;)=o0(2,(5),0<s <t) ,and let F, = o(F, (z, )UF, (v)) for the formu-
lation (75). Probability measure P is defined in accordance with the explanation

t
so far given. And »(t)= 71_7{ y(t)- j; k, da} isa (F,,P) standard Wiener pro-

M - -
cess , where h, = Y7 1 iy h'(t,27(¢),6°).
i=1

Following [7] , the joint detection and estimation is now formulated as an unified
nonlinear estimation problem , where the following quadratic loss function is minim-
ized at each time ¢

E [(z(t)-a(t))" D (z(t)-d(t))]
where z,(¢)=[h, ,0'T v lw=i), + =1,,M]T . As usual D is a positive definite
matrix , and @(¢) is an estimator. Later we will treat the present nonlinear estima-
tion formulation as a special case of the previous jointly Bayesian approach under
the additional conditions (a) and (b) above. Before proceeding consider the qua-
dratic cost function of the form , E (1(,—;)—d(t))? ,where & is an arbitrary esti-
mator. We can identify the a posteriori mean of 1(y—~i) as MMSE estimate through
the following standard way.
J(Le=iy-a(v") PdP(1aziy | 9*)

= 213 (Lemi)—8(3") P P(Laciy | ¥*)

Yymy) =0 »
=3 (la—iy=Plu =14 | y* )+ P(u =i | y*)=a(y*"))2P(Ligmi) | ¥°)
=2 (L)~ Pl =i [ 9") PPy | 9")+ B (P =i ] y")-a(y*)PP(lums) | 9%)
23 (lu=iy=Pu =4 | y* )P P(1luzyy | v')
, with equality if and only if d(y*)=P(u =4 | y*).

Due to the conditions (a) and (b),

f
3
—_
5
S
.y
-
<,
<
-
(=3
I
-,
N’
" |
—_
~
—
S
LY
o
o I
—_
&
f
~
=2
-
—_

We may use Girsanov transformation of P on Fr and nonlinear filtering formula to

derive the evolution equation for p(2*(¢)6° | y',w =+ ). Here we only refer to
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(34) of section (2-3) that p(t,i;z*,6' ) satisfies.
We state directly the MMSE estimates below.

At'. p(f)

M
PO)+ X p(k) Al

E(lu—) | 9° )=

E(h | y")
=FE[E(h | F(u)Fi(y)) | y*]

M .
=Y E'(h | 9" )P(u=1i|y")

E(6 |y")

A{ . .
= goE’(ﬁ' [ v )P(u =3 | y*)

=E(0)P(uzi |y )+E(F |y )P(u=i]|y")
i=1,,M

(76)
,where E7(¢° | y*) is the conditional mean of ¢ given y' when u =5 with

similar interpretation for the h, part . Binary version of (76) was proposed in [7].
The estimate E(¢ | y') is actually a consequence of the mentioned view point on
the hypotheses detection and parameter estimation, and we think that it may be
interpreted as a conservative estimate ,in practice , given by the convex combination
of the a posteriori estimate with the a priori estimate.
We now look at (76) from the previous jointly Bayesian approach. If detection is
based on the MAP estimate, the estimates of (76) is the result of the following joint
cost function,

(L6865 )+ Cor(0,0, )+ Cool by ; 1,)
, where &; is a Kronecker delta , 6= [¢'7 - 6T |7 and ¢, (-, ) a quadratic
cost function. Obviously (6/°h/") is independent of ; |, and there is no coupling
between detector and estimator. Notice that we now have only common parameters

due to the conditions (a) and (b) , and also due to the estimation of all 7 s.
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2.5.3) Extension to multiple observations

The one shot receiver of Fig.1 has a straightforward extension to the case of multiple
observations , where each hypotheses of (1) are active during the intervals,
aT <t <aT +T (T" >T,n=0,1,2, ). Here T' is a repetition inter-
val of the active observations, and sequential decisions and estimations are made
during each active observation interval .

We take the following adaptive version of (21) . The set of the priors for Fig.1 for
each new period of observations are to be updated by using the results of previous
observations. Let the set of the priors at ¢ =nT" be denoted by
p(i;nT' ), p'(6;nT"), and p*(z,,» | ) respectively. The unnormalized density
p(t,i; 2,00 ) at ¢t €[ aT" ,nT' + T ] is evaluated by using (34) and an observation

y. .+ with the above set of the priors. A version of the jointly optimal rule is set

by (21) with y* being replaced by ' - Hence the extended rule for multiple

observations is partitioned into a fixed nonadaptive part and and an adaptive part.

The adaptive part updates the set of the priors in the following way.

p(0;(n+1) T )= _ r(0)
r(0)+ X p() [[ p(nT" +T,j;x% .67 ) de? d o
i T +T,ix" 0 )de® do
p(i;{n+1) T’)z P(M)ff a A : ) — . : (77)
p(0) + 2_: P(J')ffp(nT +T,5;27,07 Vdz? do’

(0 (n+) T ) — p(n"F +T,z;-c9 ) .
[ o(nT" +T,i;6° ) d ¢’

For pi( % (w) T’ | 0), we consider two possible cases. When the diffusions z*(¢)
exist for the entire observation interval and only the active observations are made
ntermittently, one can use the extrapolation equation given by Fokker- Plank equa-

tion,
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Ea-t—p'-(t,x Ia)=L; p“(t’z |0) , nTI+TStS(n+1)T,
i | 8) ot ,i5250) - [ plt,i;6°) d o

P zﬂ ’ - P N - . =n ’
n JIot iszi ) deidg - p(t,i;00) =T *T

In this case the present rule is truly a jointly optimal rule at each

t €[ nT" ,nT' +T ] forall n . The observation for the case is represented by ,
dy(t) = Le elar',ur’+Tl)h‘(t’zi:0i) dt +Vr dv'(t), n =0,1--

under each H; .

When a diffusion models (1) are valid only for the active observation intervals, we

choose to fix Pi(”(wn):r' | 6) by p'(zo| 6) for all n | provided that the

diffusions yield stationary densities.
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3. Performance evaluation

Evaluation of the joint Bayes cost for the simultaneously optimal rule is not
feasible to carry out, due to complexities of our observation model, and also due to
the coupling between the jointly optimal detector and estimator. As shown in the
previous chapter the jointly optimal Bayesian system seems to have a growing
significance when the a posteriori accuracy becomes low, and to be asymptotically
equivalent to other systems. This necessitates performance analysis for the finite
observation interval or under low signal to noise ratio, where the coupling between
the detector and estimator plays an important role and at the same time makes gen-
eral performance analysis difficult.

In this chapter we focus on performance bounds in simple binary hypotheses detec-
tion ,and also on performance bounds of parameter estimation under no hypothesis

uncertainty.
3.1) Performance bounds in binary nongaussian detection problems

Suppose we are given a some measurable space (,F) and two probability

measures, P%and P! | are defined on it . Also we are given a ( right-continuous )

increasing sub o -fields of F | {F,} , with respect to which all the processes

involved in a binary hypotheses detection problems are adapted. We assume that

F =o | JF. ) where time index ¢ may be either real or integer. As before let
>0

Fy(y) be the o -field generated by the observation up to a current time. For conveni-
ence we assume that P%and P' are mutually absolutely continuous on F, at each
t €[0,00) though we only need their restrictions to F,(y) are mutually absolutely
continuous. F is assumed to be complete under P° with the corresponding com-
pletion of Fyand Fy(y) , and thus F, ., F,(y) are cormplete under either probability

measures for all + € {0.00) due to the equivalence between P%and P! at each ¢ .
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The optimal test statistic for detection problem is the likelihood ratio defined by

dP!

A= B R = B,

,and for a threshold ~ likelihood ratio test is

>
At<’7

Henceforth we denote the restrictions of P’ to F,(y)and F(y) (= of (U Fi(y))
t30

by P{*tand P{ respectively .
Chernoff bound has been frequently used to bound the probabilities of errors , first
and second kind , in hypotheses detection problems [37]. When the likelihood ratio
test is used for a binary hypotheses problem the probability of false alarm is ,in gen-
eral, bounded by
Pr(t)
= Prob( accept H, | H,is true)|, (1)
< ,7—0 EO( At’)
, where the real variable s is such that E%A/) exists. For 0 <s <1, E%AS)

exists. Therefore the tightest bound on s €(0,1) is obtained by
Pr(t) < I ~ E%(Af
F(t) < Inf 7 EY(AS)
The Chernoff bound on the probability of miss, P, , is likewise given by

Py (t) = Prob( accept Hy | H, is true) |,
< Inf 4t E(AZ) ()
-1<e<0

Also we note the following frequently used relation

EYAS) = E°(AS). (3)
Hence if we can upperbound Pr by computing E°(A/*') ,then we know E A¢)
immediately.
When we use a suboptimal statistic 7, instead of A, , in the comparison with the
threshold ~, the relations (1) and (2) remain valid , however (3) is no longer valid.

Before proceeding with the evaluation of Chernoff bounds we examine the limit
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behavior of E%Af) as ¢t — oo .
Proposition 3.1

:Iim E%A’)=0 for 0<s<1 ifonlyif A,=0 P%as.
Proof:  First we note that A, defined by

Ag = lim A,

t =00

exists, since A, is a (F,(y),P°) ( right continuous ) nonnegative martingale and
also due to the corresponding supermartingale convergence theorem [8] . By Jensen’s

inequality on concave function we have

E%(AL) < [E°A,)]* ,for 0<s < 1.
Consider an arbitrary sequence of { t }, t; Tooas ¢ —oo. From the above inequal-
ity there is € > 0 at each s such that

S@;pEO(A,:)H‘§1 ,for 0<s < 1. (4)

(4) is a sufficient condition for the uniform integrability of A ( e.g. [31] , pp 188 ) .

$ =00

Since {A,:} is an uniformly integrable family and lim A =0 a.s. by hypothesis,
i>1
A — 0 in L' sense also ( e.g. [31] , pp 186 ) . Since the above is true for all the

sequences { t } such that ¢ 1 oo,

lim EA )=0 ,0<s <1
t —00
Thus A,/ is a potential for 0 < s < 1.

Converse is also true since then A is a potential for0 < s < 1.

And in the above case we have

Pr(c0) = tlgx; Pr(t) < Min v Jim E%Af)=0.

-0

Also for the probability of miss,
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t —o0
< ' A H 1 ¢
= 0y AT
= Min v lim E%A/*') =0
. t —o0
Proposition 3.1 simply means that the Chernoff bounds become sufficiently tight as
t socofor0<s <1 if A,=0.

Now we consider the use of suboptimal statistic 7, . Chernoff bound Pr(t) for the

suboptimal test becomes

Pp(t) < Inf v* EY(T!).
& >0
Suboptimal tests are justified , among other complicated aspects such as the asymp-
totic relative efficiency , in terms of asymptotical convergences to correct decisions.
In analogy with proposition 3.1 we directly set a general condition to ensure such
convergences .
Corollary 3.2

If (1 To = lim T} exists P%as.,and T, =0 (2) there is
t —00

s’ > 0 such that EY T,‘I ) < K uniformly in ¢t > 0 for some finite K then
EYT¢)—o0 for s €(0,s )and Pp(t)—>0ast — oo .

[
We note that Pr(t) — 0 does not imply Py (t)— 0 , since the relation (3) does not
hold for a suboptimal statistic { e.g. a rule deciding exclusively H, ), and thus we

need a similar condition to ensure Py (¢t)—0.

Since
H, Hy
T, Z 7: T, z 7!
H, H,

EXT!),-1<s <0 Z E[T]),0<s <1,

—

we directly state

Corollary 3.3
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If (1) Jim T, exists and is 0 P!as. (2) there is
—+00

s’ > 0 such that EY[ T ]" ) < K uniformly in ¢t > 0 for some finite K ,
then Py(t)—o0 .

[
Now we look at the sufficient condition to guarantee Ap,=0,P%as.. We quote
the following series of basic theorems from [30] [32] .
Theorem ( [30] )

Let Py << Py . Then

P << PP EfAo)=1_PHApn<o0)=1

(5)

Py LPP T ENAp) =0 P}Ay,=o00)—1
«— —

, where L denotes the singular relation between Py and Py on F(y).
In ref [30] the proof of this theorem is based on Lebesgue decomposition of Py with

respect to Py under the condition that P << Py, and also it is proved that A

exists under Py also ( [30] ,pp 493-495 ) .
Let t be integer ,and assume that we have a discrete sequence of observations.
Theorem ( Kabanov , Lipster , Shiryayev : [30] pp 496-498 )

Let Py << PPand let @, = A, A5t >1 withAy=1.

Then ( with Fy(y)= { é,0 } such as the case when y(0) =0 )

Py <<p,9:p,;{ 3 {1—E°<W!F¢_1(y))1<oo}=1

t=1
00

pyl_LP;’:Py*{ M*EO(\/E?IFz_l(y))]:OO}::l

-

,where
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We note that

PM(A =0)= [, A dP# =0
,and also PyY(A, =0) =0 due to the local mutual absolute continuity in our case.
The above theorem is called as the predictable criterion ,and leads to to the Kaku-
tani dichotomy for independent observations. The continuous counterpart of the
above theorem is now quoted from [32] for the case when y(¢) has a continuous tra-
jectory (i.e. no jumps are involved ) .
From the local mutual absolute continuity between P!and P°, there exists a con-

tinuous local martingale M, (€ M. ( Fi(y), P°)), My =0 such that

A = exp( M, - 5 < MM >, )
where <M ,M >, is the quadratic variation of M, . Or equivalently
dA.g =A¢ dM )
which is known as Doleans-Dade equation.
Theorem ( Kabanov , Lipster , Shiryayev : [32] )

Suppose Py << Py and let M, be defined as above. Then

PP << PP PH(<MM> <oo)=1

(7)

PPLPP TP} (<MM >, =c0)=1

[1

I

The conditions (5)-(7)  provide sufficient conditions to ensure that

Ay >0 P%as. as t —oo. Conditions for T, — 0 will depend on a specific
suboptimal statistic , and later we will treat one such example.

We have discussed the limit behavior of the Chernoff bound under the mentioned

condition. We now consider the convergence rate of the Chernoff exponents when

the underlying signal or state process is Markov. Evans proposed to use the so-
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called quasi-transition function method [12] that was originally developed by Kac to
evaluate the expectation of a multiplicative functional of Markov process. Zakai
also mentioned the quasi-transition function as his motivation in deriving the non-
linear filtering formula [33] . Evans considers signal-in-noise type observations when
the signals are nongaussian diffusions or finite state Markov process , and noises are
Brownian motions. Through the measure transformation technique he developed an
expression for the exponent in the Chernoff bound under a new measure. Then by
use of a quasi-transition function, he derives a Fokker-Planck type equations for the
time evolution of a quantity closely related to the Chernoff exponent. The method
of analysis is itself quite general. Hibey, Snyder , and van Schuppen [13] apply the
quasi-transition function method to a discontinuous observation that contains a rate
process associated with a counting observation. However Hibey points out in [14]
that the usual conditions for the justifications of measure transformation are difficult
to check in some practical cases such as a linear finite dimensional gaussian system.

Here we apply the quasi-transition function method to several kinds of Markov sig-

nals with some justification of the measure transformation technique.

3.1.1) Full observation of state

Throughout this subsection z(¢) stands for an observation.
A. Discrete Markov Chain

Let z%¢t),z'(t) be time-homogeneous Markov processes taking values in a finite
state space , § (= {1 J2, 0, M }), at discrete time instants. Let pd () ,pd () be

their arbitrary initial probability vectors.
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Hyg : transition probability p%i,j) = p%z(t+1)=1; | 2(t)=1)
H, : transition probability p!(¢,5)

Likelihood ratio between two hypotheses is given by

_ po (2(0) & Yz(n-1),z(n)) (8)
pd (z(0) sy Pz (n-1),z(n))
Suppose H, is true. The quantity of interest is E°(A,) .

t

EYAY) = B° [ EY(AS | 2(1))]
& 0, U N or (9)
= Y EA(A | 2(t)=1)p%) .
i=1
,where p,%(¢) is a probability that z(t) =1 .
Let r,(t,d) = E%AS | «(t)=1¢)p ). r,(t,i) is called as a quasi-transition func-
tion due to its evolution property. Once r,(t,i) is known for all i , we obtain E%AL)

simply by (9) . Below we derive the evolution equation that r, (¢,i) satisfies by use of

Markov property of z(t).
ro(t+1,7) = E(Ady | 2(t+1) = ) p% (5)

TV WA CI0Y) N RN
E°( A [p"(:c(t),j)] | z(¢+1)=7) pSa (7)

= E°[E%( A/ [z—;g%;:j—:; ] [ 2(t+1)=7,2(t)=7) | z(t+1) =3 ] p.51 (5)

8

_EO pl(i:j) EO A _ 1) = 4 0 :
=B | e (A | z(8)=7) | 2(t+1)=35)] nS: (5)
pv,5)
because ¢ is conditionally independent of z(t+1) given z(t) , due to Markov pro-

| perty of z(¢t), and so is A/} .

r,(t+1,7)
=é§1 [%;g::—:j:;' } EYAS | z(t)=1¢)p() p%i,5)
-3 {f{—j—;] n(60) 97 ,)

M
= 3 (M) (P, 5)) e (t,d)

f=1

Hence r, (¢t ,7) satisfies the recursion below.
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F(t4+1,5) = é (02(4,7))* (0%, 7)) 7y (t)

with r,(0,¢) = (pd (1)) (L (£) ) .
Define a matrix @ (s ) by

Qi =[p'(6,7) )" [p%,5) ]
Let r,(¢) =[r,(t,1), -, r,(¢,M)]T . Then we have

r(t+1) = QT (s)r,(t)
and,
M
EAS) = Y] r,(t,5)
i=o
Newmann and Stuck [34] also used the Chernoff bound for this problem and

(10)

identifies the matrix @(s) by directly evaluating E%A,). We can easily identify a
role played by the eigenvectors and eigenvalues of Q(s) in determining the asymp-
totic behavior of E%A). Typically Q(s) has an unique largest positive real eigen-
value Mo(s) (< 1), and E%A;) = O(No(s)' ) as ¢t —oo. For convenience, we quote

the result in [34] . The spectral radius of a matrix Q(s) with possibly complex

eigenvalues {k,- } is denoted by r(Q(s)) ;
r(@(s)) = Maz |, |

Lemma ( Stuck and Newmann [35] )

1) lz;msup —lz-ln E%AS) < Inr(Q(s))

e, E%AS) < O(r(Q(s))) as t — oo.

2) There is at least one eigenvector w of Q(s) with nonnegative entries and with

r(Qs)) e [(pd (1)) (pd (1)), (pd (M) ) (pd (M))™ ]¥ =0 then

lim 110 E%AS) = Inr (Q(s)) |

t—oo f
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B. Discrete Time Markov Signal

We consider an observation model given below,

Hy:z(t+1) = [ (2 (t) + Ve wi(t)
Ho:2(t4+1) = £ %= (t)) + Vg wt) (11)

For simplicity we consider only a scalar valued process ,and assume that ¢ is a con-
stant and w’(t) a white gaussian noise with N(0,1) , independent of z(0). We
assume that mutual absolute continuity holds at each ¢ . As before let
re(t,2) =E%A’ | 2(t)=2 )p%=z) , where pi(z) is a probability density of z(t)

under H; . By a similar procedure, we obtain

’a(t+1,1)=fk [Pelaje(z | w)]* [pSaye(z | v )] r(t,y)dy (12)
and E°Af) = [ r,(t,z)dz , where iz | y)=p'((t+1)=¢ | z(t)=y9) .

From (11) , we have

i 1 1 ;
Pt+1|t("’ 'y)=\/ﬁexp(—2g (I‘f (y))Q)
Rewriting (12), we have

r,(t+l,x)=fH(:c,y :s)ru(try) dy (13)

,where

1
2ng

H(z,y :s) = exp(—zig{s(z—f‘(y))2+(1-s>(z—f°(y))21>

, and the initial condition , r,(0,z) , is given by

7 (0,2) =(po (2)) (s (2))* .
(13) with the above initial condition yields a recursive solution to r,(t,z) for all
t > 0. We now rederive (13) , which is somewhat more revealing , based on a meas-

ure transformation technique. We express E% A) by
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EO( A,')
1 s dP
=FE (At 4Pt IF,(:) ) (14)
— BY( %—;- p(ltl s 217w - £ e b - L 2 1 (a0 - £ %zaF]) )
Let g, = L—l 21 ;1) = £ %zja) ) (z; - fY=;)) . We assume that
[fY %)~ f%%)]? <oo Plas. (15)
at each ¢ .

Define ¢(3,) as below.

€(B;) =exp (B, - % <pp>,) fort >1 (16)
, where <8,8>, is defined by

<Bp>, — 1—L 3 [ f ego) - 1 %) P

F=1

, and ¢(f) is defined to be 1. We define a new probability measure P2 on Fy (z) by

2
L —dbr), (17)

where T is such that ¢ €[0,7]. That ¢(8,) is a (F,(z),P") martingale will be shown
later as well as the validity of the measure transformation. The reason for the
above measure transformation is to get rid of z; of the cross product term appearing

n (14), and is motivated by [13] [14] . Then E%A¢) becomes

Eo(i\l’)
2/ s 6. dP° ) dP!
= E*(A, dP' 4p? (18)
2 PO(’IO) 1-s s?-s ¢ 1 0 2
= E*{ ()" exp (= Y U aa) - £ %=z) 1)
P (1'0) <9 =

Define a quasi-transition function r, (¢,z) by

Q
4 (IG) 1-g . 82‘8
e T

31 e = £ o) ) | 2 (0 = 2 o)

(19)

where we need to obtain the stochastic difference equation that z, satisfies under P? .
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For a moment we concentrate on the evolution equation that r, (¢,z) satisfies.

r,(t +1,2)
= B (D e (220 5 [ 20y = 1) ) | 2 (1) = 2)pet (2)
p (o) 2g j=1
82—

= [ exp ( 2g8 [£') = %) P) ez | w)r(ty)dy  (20)
by the Markov property of z(t) under P?, and also due to the smoothing property
of the conditional expectation.

Lemma 3.4

1) El(f(ﬂt ) =1

2) pdagele | v) = o explg (e = [0 £ 0) + (1=0) £ (@) | )

Proof ; we show (1) by an elementary calculation . Assume ¢ > 1.

El( f(ﬂt) ' Ft—l(z ) )
= exp (__21;(3 - 1)2 .‘21 [/ l(5":'—1) -/ 0(":‘-1) ]2 + %l 21 s 1(x.i—l) -/ 0(%'—1) (z; - f 1(’-‘;’-1) )

B exp [ (1 2) - @) (= 7 H))] | Feate))
But z, - f '(z,.;) is independent of F, ,(z), and a gaussian with N(0,¢) under P!,

and thus

E'(exp | L—gﬂ (f M) = £ %)) (2 — ¥ (2e))] | Foslz))

= exp ( ZLg (s=1{f Ymes) = £ %=y) ?)

,and is finite a.s. by assumption. Combining the above two yields

E'(e(B) | Fio(z)) = e(Bia)
Also  EYe(3) | to)=1 independently of =z, . Since  we  define

€(Bo) =1,¢(3,) isa (F,(z),P') martingale. We showed that E'¢(8,))=1 , and

a

d
thus we can set E—T = ¢(8r) .

Now it remains to derive the stochastic difference equation that z(t) satisfies under

P2, Let B € F,{r). Then we have
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EY(15(w))
= [, 2’ I ax;

= I, I g e 5 ey = ) P ) e 1T ey

i=1
where we make no distinction between B( € F,(z)) and its image on the observation
space for convenience. Also,
dpP!
dP? )
: (s-1) (/1 0 1
= [, II exp (__9— [/ X5 = £ Xz54) N2y = f Mzj)]

Jj=1

E*(1p(w)

+ gy 60 ) = 1 i) ) o) 11

Let p2(z*) = (

=)' exp (a(a*) p¥eo)
Since B is arbitrary, we must have

¢

ge')=- E :,17 [-’fj - {f l(-"j—l) +(s-1)(f l(IJ'—l)_ f 0(’;‘-1) )} ]2

i=1=

, and p'(zo) = p*z,) . The above implies that

=-{ s Yzi) - (5-1)f %z ) } + Vg w¥(j-1)

,where w*t) is a white gaussian process with N (0,1 ) under P2. Thus,

2 _ 1 1. 1 0 2
Phae | 0) = g oxp (g (s =[5 SH0) + (100) S°)]P) (21)
[
(21) is a sort of a discrete counter part of Girsanov’s theorem in the present case.

Combining (20) and (21), we have

re(t+1,z) = [ H(z,y:s)r,(t,y) dy (22)

, Where

Hir,yis) = —e 1(%( S+ (s ) TP+ =2 ) - £ ) )

Vilmy 2g

which is identical to (13). Since we want to obtain some analytical result, we assume



that the kernel H(z,y:s) can be expressed as

H(z,y:s)= i N6 (2)ei (L), N\ eR
i=0 7 g

60

(23)

, where { é;(z) } are assumed to be a complete orthonormal set for L? space , and

dependence of the right side side of(23) on the parameter s is implicitly assumed.

Motivation for the representation (23) comes from [35] , where series expansions of

nongaussian densities are used.  If vy =o, (23) is an usual expansion known as the

Mercer’s expansion. Clearly a necessary condition for (23) to hold in the mean

square sense is that H(z,y:s) satisfy

o0
ffH(z,y:s)gdz dy =07 ), \} < o

j=0

Let r, (¢t,z) = i ¢i(t) ¢i(z) . From (22) and (23) we have

i=0

L) = [ 155 6,5 652 new)

Also we note the following relations,

?; (% )= i—.jo di; ¢i(y)

00

¢:'(%)= Y s dely).

k=0

Substituting the above two into r,(t+1,z) and arranging the terms out , we have

() = i":{ S e, dy ] c.~(t)}¢k(x)-

k=0{ i=0 ;=0

Hence we obtain

o0

cp (t+1) = i_o] (D] ey Njdij ) ei(t)

=0 ;=0

, Or

c(t)=(EXDT) ¢(0)

(24)

where ¢ (t)==1colt}e,(t),-- -]T , X is a diagonal matrix with Nij =& N
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Ey; = ey; ,and D;; = d;; defined earlier . Also

EYA )= [ r,(t,2) dr = f}o e (1)
The asymptotic behavior of ¢(t) as t — oo depends on a dominant eigenvalue of
EXDT .
Proposition 3.5

If the matrix E -X\-DT of (24) has an unique dominant eigenvalue satisfying

XNo| < 1, then E°A;) decreases with a rate 0 [\ |! ) as t — oo .
0

At present we were not able to characterize eigenvalues { ~)\,~ } of EADT .

If Kabanov’s condition (6) holds in a given observation model then EAN) =0

which in turn implies that spectrum of E A DT is less than 1 whenever the represen-

tation (23) holds.

Example 3.1
We treat here a simple scalar gaussian case given by
Hy  z(t+1)=z(t)+ w'(t),z,=0

Hy  z(t)=w%t),z,=0

The present method can be readily extended to a general stationary vector case also.

From (22) and the above observation model,

82—8 2 1
ra(t+1)x) Ifexp( o ) ) m exp (_

-

£ | =

(z - y)g)ra(t,y)dy (25)

7, (0,2) = §(z)

For this case we find a general solution after direct manipulations with (25),

Lo L e alt)
e L < R AT e (26)

where a(t) 1s positive for all ¢ > 1 . We have a recursive equation for a(t) eiven
) I = i g

re(t,x) =

by



62

a(t) 82—
t+1) = - ,t>1 ,0 1
a( ) 2a(t)+82 2 = <s < (27)
, and
1 1

K(t) - 2a(t) + 82
(27) yields an unique positive solution a(¢) for all s € (0,1) , and also supports a sta-

tionary solution e, . Hence r,(¢,2) becomes asymptotically separated in ¢ and z and

E°(A{) — 0 with an exponential rate given by (

)‘.Fors=-1—,
2

1
Ve

0o = 3 1 __ . /55
3’ /K. 37

We note that the recursive equation for a(¢) will be replaced by matrix Ricatti equa-

tion for a general vector case, and when an unique stationary solution exists an
exponential ( asymptotically ) convergence rate can be obtained and explicitly calcu-
lated.

Example 3-2

Consider the example 3-1. The kernel H(z,y:s) was

2

— 8
v?)

-~

1 1
H(z,y:s)= Nor: exp(——2—(a: —sy P+ 2

For s = —‘1)— , 1t turns out that H(z ,y :%) can be expanded as follows.
H(z,y:s) = Y V2€12¢ ¢;(2),(L)
i=0 v g
where
(7"“‘81/4 ,,Y=2l/4 £=_L
’ ’ \/5
Ty __ 27 J! -1/2
¢3(;)_(20 p ) ]V(O,d) H}(*)
Hi(Z) = (o) N(0,0)® 2 N (00
J a b dz) )

We note that H;(z) is the Hermite polynomial satisfying
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[ Hi(z)H;(z)exp (-22) dz = n/227 j} 8y

Then a dominant coefficient of the matrix X appearing in (22) is
M =V2 < 1
Example 3-3
We now examine a suboptimal statistic 7, for the observation model (11) .
Throughout the example f%)=0 will be assumed. Also  let
S z)=1/(z) and g =1. Suppose the suboptimal statistic is given by a direct
approximation of A, .
: . 1 &,

T, = exp( jgl z; [ (z54) - ) j{:l fi@a)P) . 21 (28)
where f “(z) is a function that simplifies f (z) , due to either its complexity or lack
of its sufficient knowledge. T, is defined to be 1 for simplicity. We first consider
E°A¢) and prove the conditions of corollary 3.2 for this particular problem.

1) To=0,P%as.

¢
Let M(t)= Y z; f"(x;4),and My =0.Let EY f *(%))* < oo ateacht. M, isa

J=1

(F,(z),P° square integrable martingale Also let

t
<M ,M >, denote its quadratic variation given by ¥ f *(z;,)?.

i=1
Hence T, = exp (M, - % <M ,M>, ). We quote the following theorem known as a

strong law of square integrable martingales in [30] .

Theorem ([30] pp 487 )

If <M,M>, is the quadratic variation of the square integrable martingale
M, and <M M >, = oo a.s., then with probability 1

M,

——— 0 as. ast — 0. ]
<MM>, o0 J

Suppose [ “(z) is such that E%f "(z))* < oo . Then according to the theorem ,
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li M, 0
M, s, 0 A

Let N be a subset of Q such that <M ,M >, — oo for all w€ O-N . Then the set N

is obviously a P° null set under our null hypothesis assumptions. Given

€ > 0 there is ¢o(w) at each w € Q-N such that —<—M’A}—>t < eforallt > tow).
Lete<l.Then(—Aﬁ—-—l)<—a < O0forallt > ty(w), and
2 <M,M>t 2 - !

M,
<M M>, '2")

o

Ig'msup T, = limsup exp ( <M ,M >, (

<limexp(-a <M ,M>,)=0
at each w€ Q-N . Thus T, =0 P a.s.

2) lim ETf) = Ofors €(0,1).
Notice that T, can be regarded as a likelihood ratio for the following hypotheses
detection problem.

Hy; z(t)=f"(z(t-1) + wl(t-1)

Ho;  z(t)=wt)

Pl(“’o) = I’o(l‘o)
By proposition 3.1 and since T; — 0 ,we have lim E%( T;) = 0 for s € (0,1) .

We can use (22) to find a converging rate. Here we use an elementary method to
obtain a rate of convergence. To proceed with a specific calculation and for simpli-

city let

) 1for f(z)>0
S (Z)=8§n(f(z)):{_1forf(:r)<0
Then
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E°( 1Y)
= Eexp(e 3 [agn(/ ()2 - £1))

— Eexp(s 3 [oon(f (510)) 2 - S exp(s 33 [--- 1))

J=odd J=cven

S [BUexp(20 33 (a9 (7 (ay) oy - 1)) 12 [ EY exp(2e ---)) ]2

by Cauchy -Schwarz inequality that will be validated later. Consider a factor of the

right side of the above.

t
1
E%exp(28 3} [agn(f (270)) 2 - L1))
J=odd 2
t
= JI E°(exp[2s sgn(f (z;4))2; ~5])
j=odd
3
= J] exp(2s%-3s),
J=odd
due to the independence of {z,-_l,xj } under P°. Thus Cauchy-Schwarz bound
j=odd

becomes

EYT;) < (exp(2s®-s) )/

This Cauchy-Schwarz bound is valid at each ¢ for all s but ensures a converging rate

only for s €(0 1). For s =%,Pp(t)§exp(~—1%t ).

Y

-

We now consider EY(T/) .
1) T,7' -0, Plas.
From the definition of a suboptimal statistic (28) and the observation model H, we

have

T, = exp( - i Sz (5-1) wi(5-1) - Etj [ (e (G-1) 2 (1)~ (] (= (i-1) 21)

9

=t J=1 -

Suppose f “(z) = sgn(f (z)) for simplicity . Then 7, simplifies to

t |3

Tt = exp(=3] sgn ([ (z(5-1)) ) w'(5-1) = 33 [| f (= (i-1) | -

=1 F=1

lO|>——

1)
Suppose

(1) z(t) is ergodic under P* (2) EY(| [ (£ (t))}) >

7

10|
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Then T, — 0 P'as. can be shown by use of the strong law of square integrable
martingale. We note that we assume a too much stringent condition that z(t) is
ergodic.

2) there is s such that EX(T,”) < K fort >0

We were unable to verify the above uniform integrability condition by some effective
means.

As an alternative we directly use (22). We assume that f (z) lies on the first and
third quadrants and f (0) = 0 for convenience. From (28) we have

El(Tt")=E'lexp(—aé sgn(z(5-1)) z(s5) + %t)

i=1
We try a previous type of measure transformation on Fy(z) specified by

- ‘*"p"s,é. son (2 (1) (£ ()~ £ (2 (G-1)) - 3 82 T)

Thus E'(T,™) becomes
ENT,™)

=E(expla 3 1/ ((G-0) |+ 3 (6% + 5 ) 1))

(29)

As before we obtain the difference equation that «(t¢) satisfies under P?2. Let

B € F,(z).
E¥(15(w))
= [, »¥=") _l;[od’ff
= fs [—\/—}2_7;)‘ exp(q(z*)) p*(z0) -Iilodzj
Whereas,
1 P2 ’ t _ . . L o Yoty T
EY{ 15(w) T )=/, e,\p(—s‘z}1 sgn(z (-1} (z(5) -/ (=(j-1))) - 5 8t Jpi(=") I:Iodzi

where p'(z') is given from the observation model. Proceeding as before we can

identify ¢(z*) ,and obtain the following difference equation.
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2(j) =/ (2(5-1)) - s sgn (2(;-1)) + w¥(j-1) (30)
;where w%(j) is a white gaussian process. By use of (29) and (30) we obtain a recur-

sive equation given below. Let

re(t,z) = E* exp(- Z |/ (=(G-1))1) | 2(t)==2 ) p*z). Then

ro(t+1,2) = [exp(-s| f (¥) ) pduje(z | v) ra(t,y) dy
The above combined with (29) gives E(T,*) at each ¢t . It seems that there is no

simple way to obtain an analytical estimate but to compute numerically the given
recursive equation.

For a somewhat trivial case we can show that the Chernoff exponent decreases to 0
faster than a certain exponential convergence rate. Suppose f (z) is monotonically
nondecreasing with f (z) =-f(-z), f (0) = 0. Then

t+1

B (ep(+ 3 | £ (2(i-0) )

=

— B BX exp(—sé |7 =(G-1) 1) expls | £ (s(0))]) | = )
= B exp(co 33 17 (=(-0) ) EXexploo | £ (=) 1) | (1))

t
< E¥(exp(- Elf(w(f “D)1)) - E¥(exp(=s| f (z(t))]))
, due to the present assumptlon on f(z). EY() denotes that the expectation is
taken with the density of w(¢)? (ie. N(0,1) here ). The above implies that

t

*(exp(~ Eif(rf D))< IT EV(exp(-s| f (z(5)])

Jj=1 j=1

Thus

Below we show that there is s’ such that the ratio appearing in the above is less

than 1 for s € (0,5" ) for a certain / satisfying the present assumption. .
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E*(exp(-s| [ (z)]))
= 5= [ exp(-s | £ (2)]) exp-y #7) d

= exp(-¢(s))
,where ¢g(s) > 0, ¢(0) =0 , and monotonically decreasing and differentiable in s .

We want to show that for s €(0,s")

q(a)sé-(a2+a )-g(s) <O

Notice that ¢(0) = 0. For the derivative of ¢(s) at s = 0 to be negative ,

0 0= <= [ 17 (e) | exp(-5) de > L
,where ¢’ (s) is a derivative of g(s). For any f (z) satisfying the above under the
previously given assumption , there is s’ such that for all s € (0,s" ) our upperbound
on the Chernoff exponent decreases exponentially in ¢ . This fact can also be used to
prove the P! almost sure convergence of T, to zero by use of the following version
of Borel- Cantelli lemma with Markov inequality.
Theorem ( [30] )
Let (¢, ). >1 be a sequence of positive numbers such thate, |0, n - co. If

f)P{lf,.—sIZe..}< o0

n=1

then &, — £ as.

C. Diffusion
Observations under each hypotheses are given by
Hy ; de(t)= fYz(t))dt + Vg dw'(t) , z(0)=0

Hy ; de(t)y= f%z(t))dt + Vg du’t) , 2(0)=0 (31)

For simplicity z(t)€ R, w'(t) a real valued standard Wiener process with respect
to (Fy(z),P'), ¢ a constant > 0. z(0) is assumed to be 0 for convenience, since oth-

erwise one has to take into account of the system response due to an initial data.
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Under either hypotheses we assume an existence of unique strong and Markov solu-

tion, and that

T
P'.(w:{lf"(z(t,w)) Pdt <oo)=1

T | (32)
P'.(w:_!)'|f"(w"(t,w)) [Pdt < c0)=1

As a result restrictions of P* s to Fr(z) are equivalent to each other. Also proba-
bility measures on C'[0,T] induced by z(t) under either hypotheses are equivalent to
a Wiener measure on C[0,T] , that is induced by vy w'(¢t) ( Th. 7.3.2, [8] ). By
applying Girsanov’s theorem to (31) the likelihood ratio between H, and H, is given
by

A = expl( L1766 - 1% o)z () = 5 &1 (@ (6)P - £ (o )P ] do )

Let 8(t) — (’;/;_‘) [ (/=(s)- 1% () dw'(s) . Then A(t) is a continuous local

martingale ( M. ) with respect to (Fy(z),P'). Define ¢(3(t)) as

1
(A1) = exp(A(t) - 5 <BB>. ) ,
where <8,8>, is the quadratic variation of f(t). If E'¢(8(T)) =1, then we can

define a new probability measure P2 on (Q,F(z)) by
dP?
dP!
where P* is assumed to be restricted to Fr(z). In [14] where partial observations

= €¢(8(T)) (33)

models are treated, Hibey mentioned that conditions to ensure a validity of the
above measure transformation are usually difficult to verify unless f*(z) is
bounded. In this connection we state Novikov condition (8] for the present case.

Theorem | Novikov | If

1 (s-1° T | 0 12 ,
E'fexp( *= Lo UG- fY2(s) Fds )) < o0 (34)

then E'e(3(T)) == L at each finite T .




70

By using a quasi-transition function again we present a way to prove (34) .

Let b (t) = exp( (L;—gl—ﬁj;[f z(s)) - f%z(s))]?ds ). Then

(8-—1)2 : 1 0 2
b(6) =1+ Lok [ h(6) £ Y (o)) - 1 e (o) e

Taking the conditional expectation on both sides of the above

E'(b(t) |2(t)=2)

_ (s-1)* -, tb 1 _¢0 2 _

1+, B[ b()[f (=(s) = f%(s))Pds | z(t) == )
2 Lt

=1+ LD B 6D - 1@ P | o) = 2)is

, where change of order of integrations are valid from the Fubini’s theorem on a

nonnegative jointly measurable function in (¢,w) under a o -finite measure [31]. And

the above becomes

1+ Ll B 0) - W PR ) |2 =5 ) | ()= ) s
,since b(s) = b(z*) by definition , and z(-) is Markov.

Let u(t,z)=FE'b(t) | z(t)==2)p,(z). Then we have

u(w)ZP:’(rv)Jri%;)iJ;f[f’(y)—f°(z/)]22t(s,y)pc‘|,(x ly)dy ds

Differentiating both sides of the above with respect to ¢t yields

0
au(t,z)
:Ll’ptl(z)+(32;;)([1(1:)_[0(2:))2”“/1)
+ (32:91)2 L;j;)‘f(f l(y)~fo(y))QU(S,y)ch],(x ly)dy ds

where L is an adjoint of the infinitesmal operator for z(t) under the hypothesis
H, .
From the above two equations we obtain

p

g;u(t,;r)=l,;u(t,z)+ ~(s—2_—£—;—)—2—if o)~ f%2) Pu(t,z) (35)

u({0,r) = §z)
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(35) is an unstable partial differential equation that u (¢,z) satisfies. We assume an
existence of unique solution to (35) on any finite interval [0,T]. If

u(t,z)€ L'(R") at each ¢ , then

Juteryin = Eexp(CL 117G 0) - 1o 6) P ) < oo
,and Novikov condition (34) is satisfied at each finite interval [0,T]. We state the
above as a proposition
Proposition 3.6
Consider the diffusion model (31). Let ¢(5(t)) be defined by (33). If the partial

differential equation

_1)2
Sutr) =Liu(ee)+ L fie) - p o) e )

g
yields an unique solution on any finite interval [0,7] such that u(t,z) € LY(RY) at
each ¢ , then

EYe(A(T))) =1 [

It remains to obtain a sufficient condition from a PDE theory to ensure an existence
of locally unique solution to (35) within L'(R') space. At this point we present an
another way to validate the measure transformation (33).
Proposition 3.7
Let f(z)=sf"(z)+ (1-s)f%=z). Suppose f‘(z) is a continuous function of z ,

and that

T T
of 1 . 1 24t ) —
B* exp( 5 [, (2(0) de(0) - o [ ] (s(0)F di ) =1
where z(-) € C'[0,7] and p is a Wiener measure on C'[0,7] with respect to which the

coordinate process z (t) is a Wiener process having a quadratic variation ¢ - ¢ .

Then E'e(A(T)) =1.

Proof ; (32) implies that
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T
P [ (£} @)~ £%(2) Pt < o0)=1.
Following a standard stopping time technique ( [8] , [38] ), define the stopping times

Inf (¢ <T;[[fYa(e))-fz(s))]?ds > n)

Op (1‘) =T . if the upper set is empty .

Let 7, (w) = 0, (2 (w)) , where z(w) is the observation. Consider the measure transfor-
mation on (Q,Fr(z)) given below.

dP,’
dP!

€, (W) =
T
= eXP(%;i)— LU @)= 1% () Mo,y ((t) dw'(t)
T
- L—Lt; i LU @) - fA2(t) P I, (t) dt )

(36)
(F Yz ()= f%=(t))) I, (t) is Fy(z) measurable and satisfies the Novikov condition.

Thus EYe,) =1. And from the Girsanov theorem

t
-1
wi(t) = w'(t) = L2 117 6) - 7% (61) ] T, (o) ds (37)
9 o
is a (F,(z),P,Y) Wiener martingale. Substituting (37) into the argument of the

exponent of (36) yields

(s -1)°
29

- N

T
(S\/_g—l) U ) = 7 %= ()] Lo, () dug(e) + [ (0)) = £ X () ) Lo, (¢) dt

To show the uniform integrability of (e, ), >, consider

S oy dP'=PXe, > N) .
Then
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P en > N)
= P,%(loge, > logN )

< PX (;}’f[ S e () = £ % (e)) ] Tgn (1) duX(2)

- 5—2—"2_; - { [f Y2 (€)= 1% (t) P Tpo,\(2) dt > .;_ng )

[U @) - 1@ @) P lo () dt 2 ZlogN ) (39)

The first term on the right side of (38) is bounded by \/217 independently of n from

the well-known supermartingale inequality ( [8] , ch.2 ). We need an uniform con-

vergence of the second term to0 as N — oo . Let

¢
z®(t) = [ f (s oy, (8) ds + Vg w'(t)
0
where z(t) is a solution to the stochastic differential equation under H,. z"(t)

under P,? is given by

z"(¢) =£ s [z (w)) + (1-8) [ Ax(u))] Tjgs, (u) du + Vg wt)
Since z"(t) = z(t) for ¢ € [0,7,] and I (t) = I[O,r; l(t) where 7, (w) = 0, ( z" (w)),

one may write down

2 (1) = [ o 1M () % (10) S % (0) ] L g () du + V7 we)

Thus z” (t) satisfies the stochastic differential equation given below.

dz(t)=1[s [(z(t)) + (1=8)f Az () | oo, o)(t) dt + Vg dw,(t),2(0)=0.

Consider the following stochastic differential equation.

f

d &(t

)=1[s SNEE) + (1-s) fOULt))] dt + Vg dw(t) , &0)=0. (39)
Let f(z)=1s f'(z)+ (1~

s)f% ). We assume
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T
u(z € C0,T]: f S(z(t)Pdt <oo)=1 (40-1)
E*exp( — ff(x(t)) dx(t)———ff(z t)*dt )=1 (40-2)
Then by the theorem (7.4.1) of (8], (39) has a weak solution whose induced measure

1s equivalent to a Wiener measure under which &(t) is a Wiener process having a qua-

dratic variation ¢ - ¢
We assume that f (z) is continuous in z . Then

T
[ 7(2z(t)dt < oo forevery z € C[0,T]
0

And thus (40-1) is trivially satisfied. Then (40-2) is a necessary and sufficient condi-
tion for the existence of a weak solution, and furthermore the weak solution is
unique ( corollary 7.4.1 , [8] ) .

Consider a stochastic differential equation given below.

dE (t) =L FYE @)+ (1-0) JUE (N L g, ¢)(t) &t + VT du' (1), € (0) = 0(a1)
It can be shown that (41) has also an unique weak solution by the following. Assume
(40). Let
y(t) =exp(— ff(x(s dz (s )*J—g{'f(z(ﬂ)?d‘*)
Then
T
E* exp( ff ) Tooya)(8) d2 () = 5 [ 1 (0 Tiog,(0) dt )
= E* (ffn)
=E*[E*(y(T) | Fo (2))]
=E*y(T)) =1

due to Doob’s optional sampling theorem on a supermartingale [8].

Now define £ (¢) as follows.

f(s S ) = (1) £ oUEu)) ] Too, (gp(n) du + Ve w(t) (42)

where &(¢) is a solution to (39).
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Then &"(t) = &(t) for ¢t €[0,0, (¢)]. Thus Too g)(t) = IIO,a,.(e")](t) .

Hence ¢"(t) is also a solution to (41), and by the uniqueness of weak solution to (41)
1t characterizes the probability measure induced by ¢ . Finally the second term on

the right side of (38) is

P2(w: 1) }[f‘( () = 1% () ]2 I, ((t) dt > Llogn
(W J z z {o,r,] = 5 108 )

(19" ) = 1% D P g,z () dt > 10y )

T
=Pi(¢d ec :l"—;‘ﬁ{u'(é(t»—/"(é (N T, ¢ () dt > 2 log N )

T
—Pigec LW [UIHE )~ 1€ O) P g, o) dt > L iogn )
2 T
SPf(eeo:‘i‘gi{[f*(s(s))—f"(s(tnﬁdt > Zlog N )

(43)
Notice that the last line of (43) is independent of n , and goes to 0 since f‘(z) is

continuous in z . Hence (€, ),>, is P! uniformly integrable sequences of random

variables. Furthermore

e — A(T))
T o T
= exp( 22 [ 11 Y(0)- 1% ()] dw‘(t)—l%{[f Y (£) - £ %z (1)) 2 dt )

P!as. Therefore E'(e,) = E' ¢(3(T)) and E'¢(8(T)) = 1.

|
In the above we have proved the uniform integrability of (€x )a>1 , provided that
J(z) is a continuous function of z and the condition (40-2) holds , which in the
present situation is equivalent to an existence of unique weak solution to (39).
Therefore the measure transformation (33) can be post-validated if eq.(46) below has
an unique weak solution.

The Chernoff exponent E%A/) can be given by



76

E%Ay)
dP° 4p?
= BAf = &£
(A dP' dp?

— B exp( ‘—-2;—’ [1£ )~ 7 Y (o) i ) )

)
(44)

2_
= BB exp( L) [ 4113 ) - e @) Pan ) | 2(0) =2 )
Hence it is necessary to obtain a stochastic differential equation that z(¢) satisfies

under P?.
f(,‘——\/lg=(da: (s)- f'(=(s)) ds ) is a standard Wiener process under (F, (z )P') . From

the Girsanov’s theorem

t (g
wi(t) = wi(t)- [ %[;I(z(u))_fO(x(u))]du (45)
is a standard Wiener process under (F,(z),P2). Rewriting (45) we obtain a stochas-
tic differential equation that z(t) satisfies under P2 .
dz(t)=[s fYa(s))+ (1-s) S %z(t)) ] dt + Vg dw¥(t) (46)
with z(0) = 0. We assume that z(¢) is Markov under P2 . A sufficient condition
for this assumption to hold is the Lipshitz continuity of the drift coefficient of (46)
with a sublinear growth condition ( Th. 5.4.1, [8] ).
Let r, (t,z) be defined by

=2,(82—3)t1 _¢0 2, : 2
ro(t,2) = E*[ exp( 5 J, 7 @) - 1% () Pdu ) | 2(t) =2 | p%(z)
Repeating the similar steps leading to (35) , we obtain
2

§7-§

ad .
Doty =13 r(te)+ -

ot
1y (0,0) = §(z)

where Ly is an adjoint operator for z(¢) under P?, which is assumed to be well

PAORNAOIATED )

defined. We state the result as a proposition below.
Proposition 3.8
Consider the hiypotheses detection problem (31). Let

) (IPO
ry (t0) = E>(\, E

| #{t)=12) , where P® is defined by (33). Then r(t r)

\
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satisfies the partial differential equation given below.

2
rrela) =Lin(ea) + L2t (1) - o) P e )
r(0,2) = &)
where L, is the adjoint operator for a Markov process z (¢) given by
de(t)=[sf (z(t)) + (1-8)f Az (t)) ] dt + Vg dw¥(t) . (
Separation of variable technique is typical for the PDE of (47).  Attempting a solu-

tion of the form r,(¢t,z) = G(t) H(z) leads to

d
EG(:):)\G(t)

(L;+ﬁ%§luwn—f%uP)Hu)=xHu)

The final solution then becomes

lte) = 5 o explit) Hile)

where X\; and H; are the eigenvalues and eigenfunctions of the operator

L5+E%§lw%n—f%nP.

If the Kabanov’s condition (7)

t
P lim [ [f Y2 () = f Yz (s))]Pds — 00) =1
holds , and PDE of (47) can be solved by a separation of variable technique , then
Xo(s) < 0 at each s €(0,1), where X, is a dominant eigenvalue of the operator. We

note that the Kabanov’s condition for the present case is not really a restriction . A

heuristic argument for this is as follows :

Fix w. Consider an arbitrary sequence {t,~} such that ¢ 7100, Let
g(t;) = j;)' UNz(s) - /%x(s)]*ds . Then ¢() is monotonically increasing in 1 .
Hence

lim g(t)=o0 or k(w)
=0

Suppose k{w) is true. This implies that
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lim [ (1 e (s)) - 1 % (s) P ds =0
which can only be true on a null set under P! , considering our diffusion model
unless fY(z) = f%z).
We note that one can use the backward version of (47) . In partial observation prob-
lems Hibey , Snyder ,and Van Schuppen [13] [14] used a quasi-transition function ,

q(to,z), of the form

1(toa) = BV (exp(-f, V(z(s)) ds) | 2(te) =z )

where V(z) >0 for all z , and also a backward partial differential equation that
q(to,z) satisfies. In [14] mathematical justification for the backward evolution equa-
tion is quoted from Dynkin and others’ works. Major advantage of the backward
partial differential equation is that it remains valid when there does not exist transi-
tion probability density for a given Markov process. Since all these aspects are
matters of rigorous justification, we simply accept (47) , a forward equation , here
for a full observation problem. Later in the partial observation we use the back-
ward version due to difficulties arising when signals are present under both

hypotheses. ~We can also call the backward equation as Feynman-Kac formula {19).

3.1.2) Partial Observation

A. Discrete Time Markov Signal
We consider a binary hypotheses detection. Under each hypothesis H; the observa-
tion is given by

eHt+l) = (2 (8) + VT wi(t) , 2h(0) = 2}

S . (48)
y(t) = k(2" () + v'(t)
where all the processes involved are scalar for the sake of simplicity, and

w'(t), v'{t) are as before. The optimal likelihood ratio statistic for the present

observation model is usually not feasible to implement in practice except a few cases
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, where a finite dimensional sufficient statistic exists. We start our analysis based on

the following type of suboptimal statistic T, .

(-1 3 [3(7)- ') )
T, = 1=

(g 3 [90) - w15) ) (19)
= B 33 (3'6)- %)) 5 (7) - 5 3 [5G - w'i )
,where u*(5) is an one step ahead suboptimal prediction of hf(z(;)) given yi-!. We
want to evaluate E%T/) , and thus assume that the hypothesis H, is true. We
further restrict the nature of u* as below.

wi(t) =wi(d'(¢)),

where 2°(¢t) is given by

B (e+1) = F (2 (0) + VE(ENw () - u' (1))

Since y(t) = h%z%t)) + v%t), the above becomes

@ ()%) + VETE) 0°t)

£
z°%(¢),%¢),2'(t)]7 . Then a stochastic difference equation for 2, (t) is

={]‘(i‘(t))+\/k.-(tih"(x"(t))—\/k;(tju"(f‘(t))}Jr F () v%¢)
F
[

Let z,(t)={2°
given by
2%t +1) £ %=%¢) Vo0 "
w9t
#%t+1) | = | Foe%t),2%) |+ | o ko(t o) (50)
v(¢
Al 1¢..0 fi’l
z(t+1) Flz®(t),z°(¢)) 0 e J

with the initial condition

2%0) = 2 , #°(0) = E*(«7(0)) .

The augmented state z,(¢t) is Markov. Since the matrix of (50) is not a nonmsingular

square matrix, we can not use a forward evolution equation of quasi-transition func-
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tion as in the case of full observation of state. Thus we instead consider a backward

version. Let

Q(tot) = E{(u'(f)— 8%5)) (R%=()) + %)) - —[u P -5 }

to

Define

L (tO’z ) = Eo(exp( 8 Q(tO!t)) | “a(to) =z )
$1(tg) = 24)T . Then

, where z — [zo(to) =1z, io(to) =72,

Ts (tO—lrz) = EO( exp(” Q(to_lrt) ) | Za (tﬂ_l) =z )
= E°(E%exp(s Q(to,t))exp[s (u'(to-1) - utg-1)) (h%z (£o-1)) + v%(te-1))

5 (1wt 1) | () =y, wltet) =2 ) | 2,(tel) = 2)
(51)

Notice that we have the following from (50)

v(t) = \/—7—(2 (t+1) - FA&%t),2%¢)) ).

Also from the Markov property of z,(t), the last line of (51) becomes
Eo({ exp(s f(z,y)) E%exp(s Q(tot)) | z.(to) =y )} | zo(to-1) = z)

, where

1 0 0 1 0
/ (:r,y) = (u (1'3) - u (xz) ) (h (Il) + _—ko(to—l) [yz* F (12,1‘1” ) :
Therefore

r(to-1,2) = f exp(sf(z,y)) r.(toy) Pe g to-l(y | z)dy (52)

with the boundary condition given by

re(t,z) = E%exp(sQ(t,t)) | z,(t)=z)
= E®exp( s [u'(t) - u®t)] (A%(t)) + vo(f))—g{ul(t)gauo(t)gl) | za(t) =2 )

= exp( s [ul{zy) - v %x5) |2z

and finally
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E(T!)=E%r,(0z))=[r,(02)p(z,(0) = z) dz

An usual defect associated with a backward equation is that one has to repeat the

whole procedure as t varies.

B. Diffusion

In this section the observation models are given by

dz'(t) = [ (2" (1))dt + g (2" (¢))dw'(t) 2% (0) = =}
dy(t) = h'(z*(t))dt + Vrdv'(t) ,¥(0)=0
For simplicity all the processes involved are real-valued. Assumptions similar to

(54)

those of section (2-1) are assumed . Likelihood ratio at each ¢ for the above detection

problem is

T t
A = expl L [ (6'(u) = B%) )y (w) = 5 JIRHOP - 5% du

where £7(t) = E*(h(z*(t)) | F.(y)).
Assume that Hg is true. As before we use a measure transformation technique to

characterize E%A/) . We define §(t) as follows.

o) = L2 [ (i) - o) )

, and is a (F, (y),P') Wiener martingale. Thus

R

t
ey L} i
where V!(t) = \/?{y(t) ‘!)'h (u) du
B(t) € M. (Fi(y),P'). Define a new probability measure on (Q,Fr(y)) by
G = AT = explA(T) - <8851 ) (55)

, provided that Ee(4(7)) = 1. In (55) P? is assumed to be restricted to Fyp(y) .

As we have said earlier, usual conditions to verify the measure transformation (55) is
difficult to use in some practical cases. When A'(z%) is bounded, then, of course,
Novikov condition holds and (55) is valid. When a finite dimensional optimal filter-

ing is avatlable minor modifications of Proposition 3.6 can be used to check the
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Novikov condition. Here we take the approach given in Proposition 3.7 for a general

treatment:
T

Assume PY( [ (A'(t)- h%t))?dt < o0)=1. Under H, the observation y(¢) can be
0

represented by

t
y(t)= [h'(u)du + V7 V\(¢)
0
Since A°(t) is F,(y) measurable there exists a causal functional 4 :[0,T|x ¢ - R

which is B([0,T])xB(C[0,T]) measurable and such that for a.e. ¢ (Th.2.7.2,[8])

’

Y (t,)=hk'(¢t),P'as.
Then y(¢) under P! may be written as

y(t)= f’yl(u,y)du +Vr vi(t) (56)

Define the stopping times

Inf (¢t <T:f(Mu,z)-"u,z) P du >n)

on(z) = T :1if the upper set is empty .

Let 7, (w) = o, (y (w)) under H, . Consider the measure transformation on (Q,Fr(y)).

dP,?

‘F(W) = €, (w)

T
= esp({2L 110 3 @) - 0 @] Lo (x) i (57)

0

(s-1)® ¢
- D) = A @) P T, ) du )

(1t w) = At w)) Tor (wy(t) is Fy(y) measurable and satisfies the Novikov condition

and thus E'¢(3(T)) = 1. And from the Girsanov theorem,

o

vt w) = V(¢

Y (@) = u,y (@) Tjpr u) du (58)

[=]

s a (Fy(y),P,%) Wiener martmgale.

Substituting (58) into the argument of exponent of (57) yields
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T
(s-1

L ) - P ) W ) 42 )

s T
+ *";: ! [P @) = (w9 (@) 1, ) d

To show the uniform integrability of (e, ) >1 under P!, consider the following

J. 5 nen dP' =PXe,(w) > N)

(9 (@) = 2,9 (@) ] Tjor, @ye) dv(u w)

(59)

(9 @) ~ w3 @) F Tior, () du > T log V)

+ P ( f[’r'(“,y(w)) Py (W) P Tor y(u) du > %1051\’ )

The first term on the right-hand side of (59) is bounded by \/21\7 independently of n

by the supermartingale inequality ( [8] ch.2 ). We need an uniform convergence of

the second term to 0 as N — oo . As before define

(t,w) = f Mu,y(w D Lo @) du + Vr Vl(t w)
Notice that y”(t,w)=y(t,w)on (w:0<t <7,(w)). y"(tw) under P2 is an Ito
process with respect to (v2(t),F, (y),P,?) satisfying

t

_!; s ‘71(1‘ ry ) + (1 —$ )’7 ( u,y (w))] I[O,r"(w)](u ) du + \/71/"2(t rw)

(60)

399" @)+ (-8) (0™ (@) g 1 (0) du + VT (2 )

=

, where 7, (w) =o0,(y"(w)). The last line of (60) follows from the fact that
v*(tw)=y(tw)on(w:0<t <r,(w) ), and thus 7, (w) = 7, (w) .
Consider the following stochastic differential equation.

E(t) = (s7(1.,8) + (L8 )Pt ,€))dt + V7 duw(t) .&0) =0 (61)
Let ~{t.z) = s~'(t,0) + (1-s) 4%t ,z) . We assume that ~(¢,r) can be chosen such

that
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T

[(t,z)dt < oo, foreveryz € C[0,T] (62-1)
0

17 17 (62)
E¥exp(—[ At,z)dz(t) - 5—[ At,2)?dt ) =1 (62-2) ,
ry 2ry
where 4 is a Wiener measure on C[0,T] under which the coordinate process z(t)isa
Wiener process having a quadratic variation » - ¢ . Then by the theorem (7.4.1) and

corollary (7.4.1) of [8] (61) has an unique weak solution. Consider a stochastic

differential equation given below.

d€ (t) = [s4'(t,8) + (1-s n(¢,9) I[O,a”(él H(t) dt + Vrdw (t) , € (0)=0. (63)
By use of Doob’s optional sampling theorem one can show that (63) has also an
unique weak solution.

Now define ¢"(t) as follows.

t
€ (t) = [ls7'(,8) + (1= W°(u ,€) Mjo, (g1 ) du + Vg w(t)
0
, where £(¢) is a solution to (61), and by the uniqueness of weak solution £ (t)
characterizes the probability measure induced by ¢ since €"(t) is also a solution to

(63) by definition. Finally the second term on the right-hand side of (59) is bounded

o (s-1)° ¢ 1 0 2 1 ’
Pn( f('v(u,y)—v(U,y)) I[O,r"(w)}(u)du 2 FIOgA )
0 2

(s-1)°

Ot N

= P (™ @) = (9" @) P L,z (n) du > S log N)

2 T
= Pne,(él eC IE-—;—}—)—{(P}"(?‘ tél )_'70(" :5, ) )2 I[O,a"(f’ )I(u) du 2> %IOgN ) (64)

s T
— Picec L2 JOA(w €)= 2w 8) Py, enyfu) du > L log N )

r 0

]

<pieec )
< —

(7,8 = 2w, P du > 2 log N )
Notice that the last line of (64) is independent of » , and goes to 0 due to the

assumption (62-1) . Hence (¢,),>, is P! uniformly integrable sequences of random
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variables. Furthermore

& — €(A(T))
T o T

= exp( 272 [0 5(@)) = Pluw @) d0(0) - L2 [l g (@) - u,p (@) 2 du )
0 0

P'as. Therefore E'e, — E'¢(f(T)) and E'¢(4(T)) =1 .

[

In the above we have proved the uniform integrability of (€a)n>1 , provided that
(62-1) and (62-2) hold.

T
If fq‘(u ) du < oo for every y € C (65)
0

then (62-1) holds. We were unable to verify (65) for a general situation , and is
thinking of the possibility of using the robust version to Ef(h'(z°(t)) | F(y)) if
such a robust version holds for an unbounded hf(z*) also. For a gaussian system
one can directly identify a causal functional 4* as a linear functional of y* . In this
case (61) has an unique strong solution since the causal functional (¢ ,z ) is Lipschitz
continuous and satisfies the sublinear growth conditions ( [8] ch.5 ) .

Henceforth we assume that E}(#(T)) = 1. Then

B = [AN) 4P = [age) B0 AP s
(52 s) £ ) (66)
= Bexp( Lp2b () - i) P o )

(66) is a result given by Evans [13] [14] under the assumption that El(4(T)) =1 .
To evaluate (66) we need to characterize A*(¢) under P2 .

From the nonlinear filtering results ( e.g. [17] ) the conditional means
E'(h*(z(t)) | Fi(y))and E*(z°(t) | F,(y)) satisfy the following stochastic

differential equation .
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dhi(t)= B (t)dt + —;TE,‘(h‘,h") dvi(t)
4 (6) = 1(0) + =N ) di (1) 7)
ﬁ(:):%{t dy(u) - ki (u) du

, where

FUO=E(fi(= @) | Fey)) , B () =E (LK (2 (t)) | Fi(y))
Lt h) =B [(27(t)-2°(e)) (b (e) - K () | Fi(v))
LA ATy =EF[(R*(£) - R7(¢) ) | Fi(y)]

here L* is an infinitesmal generator for a diffusion z'(t). To obtain the stochastic
differential equation that () satisfies we need to characterize the observation y(t)

under P?. From (55) and Girsanov’s theorem

At w) = v

— k% w)] du

or equivalently (68)
t
y(t)= f (sl;l(u) + (1-s )I;O(u ))du + Vr A(t)
0
,where 1%(t) is a (F} (y),P?) Wiener martingale.

Substituting (68) into (67) yields the desired equation that A*(t), £'(¢) satisfy under

p?,
5 A%) + 2 SO0 R () - A%t ] 7= NAH°)

1 = (1-0) dt + dA(t)
dhi(t ot 1-s 1pt p 17 P 1 REESIIREE
N KOS R OBV B E S O
a0 ] 7o)+ 2 DAOROE ) - At = N0)

= dt + dv¥t)
LT o+ e - i) Lyt

(69)

Since £'(t)or h*(t) may or may not be Markov processes , we restrict our attention
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to the cases where a finite dimensional optimal filtering is available or a finite dimen-
sional suboptimal filtering is used to define a suboptimal test statistic.

As a tool to evaluate (66) or its version for a suboptimal statistic T, we state a
Feynman-Kac formula , but in a heuristic way.

Theorem ( Feynman - Kac formula)

Let a be a measurable function defined on R” , and consider the backward PDE.

%v(s,:r)+Lv(s,z)+a(z)v(8,z)=0 s <t ,u(ta)=b(z) (70)
where b € Co(R") and L is an infinitesmal generator of a diffusion process z(t)
uniquely satisfying

de(t) = f (6,2 (t))dt + g(t,2(t)) duw ()

Suppose an unique solution exists for (70). Then

v(s, ) =E(b(z(t))exp( [ afz(u))du ) | z(s)=1=z) (

Proof : the proof will be heuristic and can be found elsewhere.

o
Let () = v (0,z(0) ) exp( [ a(z(u)) du ) where v(s,z) is a solution to (70).  Sup-
pose f (t,z) and ¢(¢t,z) are sufficiently smooth in both variables. Then v(6,z(0)) is
regular enough to apply the Ito’s rule to ¥(8) .

[

d W(0) = dv (0,2 (0)) exp( [ afz(u)) du )+ v(8,2(6)) d (exp( ofz(u)) du )

o t— =

9
= {[gb—v + Lo |(6,2(0) ) d 6 + v (8,2(0))T g(6,2(8)) dw (6) } exp( f ofz(u)) du )

9
+ v (0,2(8) ) exp( [ a(z(u)) du ) a(z(6)) d

s

,or in the integral form
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t ’
Y(t) = ¥(s)+ f[aa—av +Lv +av|6,2(0))exp( [ a(z(u))du )db

, ' ' (71)
+ [ wv(0,z(6))T ¢(8,2(6) ) exp( [ oz (u)) du ) dw(6)
Suppose the above Ito integral with s = 0 is a martingale . Then taking the condi-
tional expectation on both sides of the above
E(¥(t) | z(s)=2)=E(¥(s) | z(s)=1z)
, or equivalently from the definition of ¥(¢)

v(e,2) =E(b(z(t))exp( [ a(z(u))du) | z(s) =2z )

[

Let  ¢(t,w) = wo(t,z(t,w)) g(t,z(t,w))exp( [ oz (v w)) du ). A well-known

sufficient condition for the stochastic integral of (71) to be a martingale is that

1. ¢(¢t,w) is jointly measurable in (¢ w)
t (72)

2. E([]|¢(vw)Pdu ) < oo

0

A general and detailed conditions for the validity of Feynman-Kac formula and (72)

is beyond the scope of this work. We will simply assume that Feynman-Kac formula

is valid for the problems of our interests. We note the work of Hibey, Snyder and

Van Schuppen [13] , where they cited the works of Dynkin and Rosenblatt to justify

equations of the type (70). Their basic assumption is that there |is

¢ > 0such that a{z) < ¢ forall z .

B-1) When a finite dimensional optimal filtering is available

Rewriting (66)

EOAAS) = EZ(E®[exp( [alh(u))du ) | ho]) (73)

where s €(0,1), A(u) = [A%u),Au)]T and a(z) = 2T (ry -xa (<0). We
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evaluate the above in a manner similar to the section 3.1 , assuming that a finite
dimensional optimal filtering yielding a Markov solution is available. We specialize
to the following examples.
Example 3.4
Consider the following hypotheses detection problem

dz'(t)=A'z'(t)dt + C'dw'(t) ,z'(0) =2}

dy(¢) =H'z'(t)dt + Vrdv'(t) ,y(0)=0
, where ¢ = 0,1 . Filtering equations for the problem are given by

dt*(t)=A'&°(t)dt + Y H rYdy(¢)- H 2 (¢)dt )
2'(0)=E‘(z*(0)) =0
, where Y}/ is the error covariance of #°(t) , satisfying the well-known Ricatti equa-

tion.

Suppose H is true. From (73) we have

J(H'E () - H%u) P du ) | #])

OfA s 2 2 s%-s
E°(A ) = E* (B% exp(
0

2
The filtering equations under P? is given by (69),

di%(t) A%%(t) + o SPH T (H'2'(¢) - HO2%(t) ) YPH Y2
— dt + dA(t)
di'(t) AENe) + (1-8)Y H r Y (HO2%(e) - H'3'(t)) S H Y
9 t
Let r, (u,z) = E¥ exp( sq;s J[H'#6) - H°:°(8)12d9) | #(u) = z). Recognizing the

Feynman-Kac formula, r, (u,2) is a solution to the backward equation given by

2_
——éi—ir,(u,x)=L,r,(u,r)+ s 9

(lel"Hol'O )2

=T

ra(t,x)=1

, where L, is the infinitesmal generator of the vector Markov process £(t) under
(Ft(y )JPQ) :

If dy(¢)=Vrdv®t) under Hy , one prefers to use a forward evolution equation
rather than its backward version . The forward version, derived through the same

procedure used in Prop. 3.8 | is given by
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8

2 A A
;8 [H'z' - HB%°)%, (t ,2)

I3 .
—a—t-r,(t,z)—l,, r,(t,z) + 3

L (0’1) = 6(2)

t

» where now r,(¢t,z) = E*exp( [ [H'3'(u) - H%%u)]*du ) | 2(t) = z)p¥t,z), and
0

L," is an adjoint operator for #'(t) satisfying

di'(t) = (A" - (1-8)Y ) H'r ' H )2 (t) dt + r 250 HY d0(t)
£'0) =0
Example 3.5 : Finite-State Markov Process

Let z(¢) be a finite state Markov process taking values in § = {xl,- x ,a:N} ,where

% €R . Let p‘(t) be the probability that z(t)=12; , and assume that

p(t)=1[p'(t), - ,pN(t)]7 satisfies

d
—— t e
7 Pt)=A40p(t)
, where A is called an intensity matrix.

The observation model is given by

Hy @ dy(t)=h(z(t))dt + dv'(t)
Hy @ dy(t) = dv"t)
Let ' (¢) = p(z(t) =17 | Fy(y)), and let

b = [h(z,), - »h(l'N)]T

B = dzag (h (271),' T ;h (IN) )
Then n(t) = [a'(t), - -, 7" (¢)]7 satisfies the following N-dimensional stochastic

differential equation .
dn(t) = A #(t)dt + [B - bTm(¢)[ | n(t) dvi(t)

(0) = p (0)
An unique F(y) measurable solution of (74) exists , and is Markov with respect to

(74)

(Fe(y),P") ([17] : ch.9 , Theorem 9.2 ) . We note that Novikov condition is satisfied

since A {z(t)) is uniformly bounded. Under P2
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t
At) = Vi(t) - (s—l)fl:l(u) du
0
is a (F,(y)P? Wiener martingale. Substituting the above into (74) with

k'(t) = b7 a(t) yields the equation that n(t) satisfies.

drr(t)={A ~(s-1) T (t)[B - b n(t)I ] }n(t)dt + (B -bTa(t)] )m )(75)
m(0) = »(0)

We assume that an unique F,(y) measurable solution exists and the solution is Mar-

kov. Now

E°(AS) = E? ( E? [ exp(~——= f[bT”(“ [Pdu) | n(t)])
Let r, (¢t,m) = E*( exp( E?2——81]'[&Tﬂ'(u)]Q du ) | n(t)=m)p*t,m), where p(¢t,n)is

a probability density of n{t) under P?. Then r,(¢,r) is a solution to the forward

equation.

0 . 82— s 2
TR (¢,m)=L"r,(t,m)+ 2 (6T x(t)]?r, (t,m)
75 (0,m) = & - p(0))

, where L is the infinitesmal generator for (75).

B-2 Suboptimal Case

Observation models are given by (54). Let the suboptimal statistic be defined by

T, =exp(%{ (h* Yz " (u)) - b %z "%u)) )dy (v) jr{ UaMu) )P - b 0w )] du )

,where  A"(z%(u)),z%(v) are respectively  suboptimal estimates of
hi(z*(t)) and 2*(¢t) given y* under H; . We replace the filtering equations for the
optimal state estimate , (69) , with the following finite dimensional equations.

de " (1) = f ) de () (dy () - AT (2 (e) ) dt ) (76)
We assume that f " | L" , k" are such that the solutions to (76) are well defined

and F,(y) adapted. Also we assume that h"(z) are chosen to be a bounded
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function of 2z for a validity of measure transformation technique. Let

R¥(z%(t))=h"(¢t). Define

A) = 7=  (7H(s) - h"w)) do'(v) € Mz (F, PO)

(A1) = exp(B(t) - 5 <BB > )
, where we use the fact that v%(t) is a (F; ,P%) Wiener martingale . Actually B(t) is a
martingale since h %(-) is bounded by assumption. As before we shall see that this
definition of A(¢) will lead to a functional that does not depend explicitly on the
observations. Since & * (") is assumed to be bounded, E° ¢(8(t)) = 1 at each finite ¢ .

Define P2 on F, by

Representing E%(T}') as before

0
EYT!)= [ T} = dP?

dP
aP
¢ 2
= B (E* (expl [ (£ (h"(w) ~ h () W) + 2= (h"Hu) = h %) (77)
0
— (AT R @)) ) du | | 2o))
4
;where we use the fact that v°(t) = y(¢)- [A%u)du and zo= [z ,20° , 24" |7
0
denotes the initial state. We note that the right-hand side does not explicitly
depend on the observation processes.
Continuing as before we describe the stochastic differential equation that the joint

state z (t) (= [«%(t),2 "%t ),z "}(t)]T ) satisfies under P2 . From Girsanov’s theorem,

Or equivalently,
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t

v(t>=f{"°‘“)+s [A*(u) = h"%u)] }"“ VT ()

0
Substituting the above into (54) and (76) yields

dz%(t)

dz *9(¢)

dz *(¢t)
A=)

= 77 R ) NBA) - ) )+ L B ) b ) h )] |

£ ) + 5 B ONBU) - hTE)) + L8 ) WO - R )

[ 4%(=%(t)) 0
+ 0 r_1/2 E ‘0(1‘ ‘O(t )) dwo(t)
t i Q(t) (78)
0 Y Na ) |

We assume that (78) has an unique strong solution and the solution is Markov.

Define r, (u,z) as follows.

ruu,2) = B2 (exp([ £(5"10) - h"°(0) JW°(=0)) + = (5 "1(0) - b *%(0)

8

L4 * 2 —
— 57 (RO - RTU0) ]d0) | z(u) =1z )
where z (u) is the previously defined augmented state. Recognizing the Feynman-

Kac formula, r,(u,z) is a solution to the backward equation.

——8(2—~r,(u,x)=l,r,(u,z)+a(z)r,(u,a:) , u <t
u

re(t,g) =1

afz) = i;(h ™) - h"%2"%)) A%z + —;—;(}z R EAR Oz 0 )2 _"ir_ (h Yz 1) -k Uz "0y

-

, and L is the infinitesmal generator of the Markov process (78). r,(0,z) is given as a

special case of r, {x,z) by letting « = 0 . and
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ENT!)=E*r,(0,2) = [r,(0,2) p¥(z{) dz
, where p*(z¢ ) = p%(z{ ) is an initial density of z¢ .
Example 3.6
We here treat a particular suboptimal test statistic arising from an approximation of
diffusion by a finite state Markov process. Observation model of interest is given by
Hy: de(t)= f(z(t))dt + g(z(t))dw(t) , z(0) = z,
dy(t) = h(z(t))dt + dv'(t) ,y(0)=0
Ho: dy(t)=dv(t) ,y(0)=0

Our suboptimal test statistic of interest is given by

T, =exp(£6r1r(tt)dy(u)—%{ (b7 m(u))? du )

where n(¢) satisfies the optimal filtering equation for example 3.5

dn(t)=A n{t)dt + (B - bTn(t)] )n(t) (dy(t) - bTn(t)dt)

7(0) = mp .

(79)
,where A is some intensity matrix approximating the given diffusion z(t). We

assume that an unique F}(y) measurable solution exists under either hypotheses. Let
t

Blt)=sfbTm{u)dv®u).B(t)is a (F,(y),P° martingale. Define a measure transfor-
0

mation on F,(y) by

Then

B T7) = B exp( 52 (67 n(u) )

2

The equation that n(t) satisfies under P? is

dn(t) = {A () - (1-s (B - bTa(t) I)n(t)d Tﬁ(l)}dt + (B -bTx(t) Ir(t) dv'“’(t(go)
=(0) = m

where v*(t) is a (Fi{y).P% Wiener martingale defined by Girsanov’s

theorem. We assume that an unique Markov F,{y) measurable solution exists
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2 t
under P%. Letting r,(u,r) = E? exp(< 2_ af (6Tm(0)2do) | n{u)=n], r,(u,r) is a

solution to

823

—aa—ur,(u,n)=Lr,(u,7r)+ bT1rr,(u,7r) , u <t

r.(t,m)=1

where L is the infinitesmal generator of (80).

Next we consider EY(T/) . Define 4(t) as follows.

,B(t)=a.£bT7r(u)a'vl(u) , 8 <0
B) = explaf b7 n(x) do'(u) - f}{(b Tn(u) ) du )
Define P2on F, by

dP?
dP!

= (A(t))

Characterizing E'(7}) as before,

82-—8

E‘(Tt’)=E’2(eXp({[ 56T m(u) P + 56 T(u) h'(z'(u)) ] du ))

Under P? |

t
y(t) = f(fl(x(u)) + sbTm{u))du + v¥(t)
(1]
where v*(t) is a (F,,P? Wiener martingale defined by Girsanov’s theorem. Substi-

tuting the above into the filtering equation (79) , we have

dn{t) ={A + [h(z(t)) - (1-s)6 T n(t) (B —bTrr(t)I)}rr(t)dt + (B = b T n(t ) )m(t)dv?(t)
7{0) = m,
(81)

We assume that (81) with the given diffusion equation

de(t) = f(z(t)) dt + g(z(t)) dw(t)

forms a jointly Markov process under (F, ,P?) .
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Let z,(t)=[n(¢t)7 ,z(¢t)]T and let a(z.)=822_8(6T1r)2+sbr7rh(z). Letting

¢t

r, (v ,2,) = E*( exp( [ o(z,(0)d0) | z,(v) = z,) , r,(u,z,) satisfies

—aa—ur,(u,z,):-—Lr,(u,z)-f- a(u,z,)r,(u,z,) ,u <t
r(t,z) =1

where L is the infinitesmal generator for z, (t) under P2 .

3.2) Performance bounds in parameter estimation
Observation model of interest is given by

dz(t) = f(z(t)0) dt + g(z(t)0) dw(t) , z(0) = z,
dy(t) =h(z(t),0)dt + Vrdv(t) ,y(0)=0.
We assume the conditions stated in remarks of Section 2.1. We assume that 4 also

(82)

contains parameters that parameterizes initial densities of zy If necessary. The a
posteriori density p(¢ | y*) is given by normalizing ( 2-32).
p(9) A (6)

Lr@A(0)do

where A,(6) is the conditional likelihood ratio between an observation model

p(0] ' )=

(83)

corresponding to 0 and dy(t) = Vr dv(t).

An implemented version of (83) is set by

p(9;)A:(6;)
N
2 p(6:) A,(G‘.)

§ =0

PO 1yt )=

, 6, €A
’ (84)

where P“(6; | y*) is the implemented version of a posteriori density and

j=N
A = {{)J- } , 0; €0 . The approximate Bayes conditional mean is defined by
j=0

() =30 p"(6: | y*) (85)

Performance bounds of the estimator (85) is of interest in this section. Problems of
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this type was studied previously by Liporace [15] and Hawkes and Moore (16].
Liporace treated a parameter estimation for an i.i.d. sequence of observation random
variables , and proves an exponential convergence rate of E(p(8; | ¥*) | 6) to o for
6’ #£40, , where 6, is the closest element ( assuming an uniqueness ) in A to 4 (a
true parameter value ) under the Kullback information function. Hawkes and Moore
studied the convergence rate of the estimator in a case of dependent observations
characterized by a finite dimensional linear discrete gaussian system with unknown
parameters, and prove the asymptotically exponential convergence rate of
E(p(6; | ¥') | 0) to 0 for 6; ¢ by invoking the asymptotic per sample Kullback
information function [16] [36].

Here we first treat a case when a true parameter value belongs to a finite set A
chosen. Hence the parameter estimation problem is degenerated into a M -ary
hypotheses detection , and the method of previous section is readily applied. We
note that we fail to treat the case when 6 lies outside of the set A , due to the
difficulties that will be mentioned later.

Suppose §€ A and 6 = 6,. Denote a conditional mean square error between
6°(t) and 6, by o¥(t).

o¥(t) =E"||6°(t) - 0, ||? (86)
T

where ||z =27z . Then

.0, o
E07(t) -6 |I?

LA T b9 * t * t (87)
= 2 20, -0)T(6: ~0)E°[p"(6; | ¥ ) (6 | ¥')]
J=1i=1
Since p“(#; | y') <1, we have
N G I A T R A B B R (N A I A (7 IR L
where 0 < s < 1. Let R = Maz||9; - 6y|| . Thus the right-hand of (87) is
J

bounded by
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b 11 as
E®|6°(t)-6 [P

< N2ZR? T t e
_NRJgggE(p(”,Iy))

< N?R? Maz{[ ?(6;) g E‘oAf.(ai) }

(88)

70 ? (60) A{(60)
by deleting in the denominator of the right-hand side of (84) all the terms except the
one indexed by 4, .

At (01' )
A (0o)

We note that is the likelihood ratio between observation models correspond-

ing to 6; and 6. By proposition (3.1), for s € (0,1)

E™AX0;,8) — 0 iff A,(0;,0) =0 P"as.
And according to the Kabanov’s criterion , the above is true if and only if

P'i( Jim f (ha(80) = B (0;) ) du = 00) = 1 (89)
Unfortunately we don’t know the implications of (89) on the parameterized nonlinear
system (82) .
If (89) holds for any ¢ and 4, (€6 ) then

E*]16°(t) - 6| — 0

for any choice of A and §,. We note that (88) holds for an approximate implemen-
tation of A, (0,-)' s. That is, if we use T,(6;)for j €(0,--,N) in (84) and (85) ,
then (88) holds with A, (6;) being replaced by T, (6;) . The upper bound of (88) as a
function of ¢ can , in theory , be evaluated by the method of previous section by
identifying the observations corresponding to 6, and f; as the ones wunder
Hy, H, respectively.
Suppose that the upperbound of (88) goes to 0 for any ¢, , ; belonging to © . Then
obviously,

A té( 00)

for a sufficiently large ¢ . Consider the Schwarz inequality.
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A(45)
A, (6)

where (—\/lfy(t),Po) is a Wiener martingale , and the equality holds iff
r

E"| V2 < [ A(0;)2A ()2 dP° < 1 (90)

Ac(6;) = A (b)) P°as. Based on (90) one can conclude that if the upper bound of
(88) goes to 0 for all 4, , 8; (€ ©), then for a sufficiently large ¢

Ai(0;) = A (6) P°as. iff 0; =4, ,forall ¢;,0,€6 (91)
(91) alone is a necessary and sufficient condition to ensure a convergence of the upper
bound of (88) to 0 in the case of i.i.d. sequence of observations , and is known as an
identifiability condition [15]. Of course (91) reduces to a condition on a family of
parameterized densities of an observable in the i.i.d. case. In our case we replace the
density for i.i.d. observable by a Radon - Nikodym derivative , A.(0;) . Hence (91) is
, at least , a necessary condition for (89) to hold, however we still do not know the

implications of (91) on a nonlinear observation system (82) .

Now we consider a case when # lies outside of A chosen. Notice that 0y is not a true

value of parameter. Suppose we can implement likelihood ratios exactly. A modified

form of (88) can be easily given, provided that
AS(6; '
E’! i( i) is bounded for s €(0,s" ) at each ¢
At (gm )
;) AS(9;)
E'||6°(t)-0, | < N*R?M. P0) 1o po ! 92
16°(¢) = bm |I* < J,;:{ S TE A0 (92)

where 6,, € A . For the inequality (92) to be meaningful in the present case, the
Chernofl bound factor should go to 0 for all j 4 m . Thus 6,, should be such that
Py AS8;)

At’(gm )
To characterize 6,, in a different way, suppose (93) is true in a given pair of (A ,0).

— 0 for any j % m (93)

Then for a sufficiently large ¢
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Af(8;) .
E' IZ < 1 forallj #4m
Af(6.,) 7
Thus
AS(8; AS(0;
E'ln(#) < 1nE'(—-‘,(—’)) <0
At (0m ) At (0m )
for a sufficiently large ¢t . And hence for a sufficiently large ¢ |

E'ln(A(9;)) < E’'In(A;(0,))
Defining J(#; : t) = E’In(A,(8;)) the above is

JO; :t) < J(0, :t) (94)
J(0; : t) is an analogous expression of Kullback information function for an i.i.d.
observation [15] . That J(6; : t) is a proper measure of similarity is endorsed by the

fact that the function is maximized at §; = 6 . A simple proof is :

J (8, :t)—J(&:t)=E"ln(ixt(£L0j)))
5E’(%%—1)=0

with equality iff A,(6;) =A,(f) P°as. In the above , we use the fact that
Inz < z-1. Once(91)is true, J(6; : ¢) has an unique maximum at 8, — ¢ for a
sufficiently large ¢ .

Thus if (93) is true, then 0, is necessarily an unique point that maximizes

J(0; : t), for a sufficiently large ¢ ,in A . Or more strongly 6, maximizes J(0;)

defined by

7(0;) = lim Ly 1) (95)
, provided that limit exists for all 6; (€ A). J(6;) can be called as an asymptotic
Kullback information function. (94) or (95) is useful only when one can establish
inequalities between J(6; : t) s for a sufficiently large ¢ or J(8;Ys. For the iid.

observation case or the case considered in [16] , (95) can be examined .  Actually

the existence of Kullback information function with the identifiability coundition
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ensures that (93) is true for an arbitrary pair (A ,0) for an i.i.d. observation case
under some mild condition. Returning to our problem, if one can find a mean to
establish inequalities between J(6; Ys, an uniquely maximizing element 6, can be
served as a candidate to examine (93). However we were not able to find such
means.

For an approximate implementation of A, (6;) the situation becomes more difficult to
analyze since one can no longer invoke the Kullback information function to identify

b -
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4. Conclusion

We have presented a general synthesis of the operations of detection and esti-
mation for diffusion type signal models along the way to implement a sequential
receiver. The approach we follow is jointly Bayesian in the sense of Middleton and
Esposito. At first we have not made any prior assumption on the detailed nature
of joint cost assignment except that it can be legitimately defined. For the dynami-
cal signal model of section 2.1 we show that the simultaneously optimal receiver has
the following inherent features:

- Jointly optimal rule exists within a class of nonrandomized rules under mild condi-
tions on cost functions and on the observation model.

- The synthesized system is partitioned into two parts: one for solving the Zakai
equation (2-34) recursively, the other being a two mutually coupled subsystems for
detection and estimation respectively.

- Estimation operations precede the signal discrimination operation ,and the nature
of estimates are Bayes estimates which take into account of hypotheses uncertainties.
- Jointly optimal decision rule obtained incorporates the results of estimates under
temporary decisions.

Taking the particular cost assignment of the form (2-62) for which costs of
misclassification and incorrect estimation are separate and additive, we show that
several coupling structures that are operationally appealing can be derived and
justified through a jointly Bayesian approach. The present cost assignment is taken
to consider different natures of parameters in each signal models. However it seems
controversial to naturally justify the application of jointly Bayesian approach ,with
the present type of cost function, to a set of nuisance type parameters , since the
resulting estimates of such parameters are usual Bayes estimates that are not

affected by uncertainties of hypotheses.  The nonlinear estimation approach of
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Lainiotis deals with a general situation where parameter vector of concern are not
restricted to be of same nature. However his approach essentially is a matter of the
attitude on the observation model, and accepting the same viewpoint on the observa-
tion model we treat the result of Lainiotis as a particular case that can be derived
by using a cost function (2-62).

As the second topic we have considered the performance analysis in binary
hypotheses tests when signals of interest can be assumed to be generated by several
kinds of finite dimensional nonlinear stochastic dynamical systems. Before proceed-
ing with the evaluation of Chernoff bound, we show that Chernoff bound becomes, in
general, sufficiently tight for a sufficiently long observation interval if the two meas-
ures associated with binary hypotheses become singular in the limit. Though several
authors, notably Evans, addressed the use of evolution equation for the quantity
closely related to Chernoff exponent, the essential core of this method involving
measure transformation of Girsanov remained to be justified for a wide class of prac-
tical observation models. We first treat a discrimination of two fully observed
diffusions and prove the validity of measure transformation for a sufficiently wide
class of observation models by invoking a sufficient condition for the existence of
unique weak solution, (3-40) to a stochastic differential equation. Thus, while the
fully observed diffusion may be regarded as a somewhat degenerate case of partially
observed one, we can obtain a relatively complete result. Our method of analysis is
different from the one in [34] in that we take the evolution approach to evaluate the
Chernofl exponent. We carry out the same approach to justify measure transforma-
tion for a partial observation of diffusion, assuming that an optimal likelihood ratio
test is used. Here the stochastic differential equation of concern, (3-61 ), contains a
drift term given by a causal functional, and we are only able to validate the measure
transformation for linear systems. Also we present an alternative way to validate by

using an evolution equation for an evaluation of the functional appearing in the
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Novikov condition. ~When applied to a hypotheses test involving partial observa-
tion where H, is a null hypothesis, this method seems to be applicable to the case
where a finite dimensional suboptimal filtering is used to implement a suboptimal
test statistic having an unbounded & *!(z) of (3-76).

We have also treated performance analysis for hypotheses tests involving two fully or
partially observed discrete time Markov signals. In the full observation case we
show the asymptotically exponential convergence rate of Chernoff exponent, provided
that the function H(z,y:s) of (3-22) allows a series expansion of (3-23). Here we use
the measure transformation , though not required, to obtain an evolution equation
(3-22) in a way analogous to that for a diffusion. In the partial observation case we
derive the backward evolution equation of the quantity governing the performances,
assuming a particular suboptimal statistic.

Several examples are given, illustrating the use of Chernoff bound for a discrete time
or continuous time observation, and for an optimal or suboptimal test statistic.
Performance analysis in parameter estimation, under no hypothesis uncertainty, is
treated from a detection point of view by discretizing a parameter space. We
straightforwardly extend the previous work of Liporace for identical and independent
observation to the case of a partial observation of diffusion, and bound the quadratic
losses by (3-88) or (3-92) respectively, depending on whether a true value of parame-
ter belongs to a .given grid discretizing a parameter space. However our present
treatment is incomplete due to difficult issues such as the identifiability condition,

compared to earlier works by Liporace, Hawkes and Moore.
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