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ABSTRACT
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Empirical Data
Allen Jay Goldberg, Doctor of Philosophy, 1986
Dissertation directed by: John S. Baras, Professor of Electrical Engineering, College of

Engineering, University of Maryland

Wiener series is revisited as an approach to developing approximate models for
arbitrary, scalar stochastic processes with continuous time parameter. The usual bar-
rier to applying Wiener series to this problem is the difficulty of resolving the Wiener
kernels from statistics of the given data. There are, however, known methods for
determining Wiener kernels for Wiener series expansions of a white noise functional
when one has access to both the functional output and the white noise excitation.
One part of this paper is a unified discussion of Wiener series, Wiener series kernel
identification procedures, and methods for approximating causal Wiener series by

finite-dimensional causal bilinear systems driven by white Gaussian noise.

Attention is then directed toward using a construction due to Wiener and Nisio,
built upon a typical path of the process data, which could serve as a starting candidate
white noise functional. The given scalar process must be stationary, ergodic, and con-
tinuous in probability. The sequence of Wiener-Nisio functionals, when driven by the
flow of the white noise excitation, gives rise to output processes which converge in
finite-order distributions to the given process. The functional admits a causal Wiener
series expansion which, when truncated, is realizable as a finite-order causal bilinear
dynamical system driven by white noise excitation which also approximates the given

process in finite distributions.



The paper then concludes with an analysis of this approach for two important
classes of processes known to admit finite-order Wiener series expansions: Gaussian

processes and Rayleigh power processes.
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"The causes of events are even more interesting than the events themselves.”
...Cicero

1. Introduction

This paper is directed toward the development of theory and techniques for con-
structing dynamic stochastic models for general (non-Gaussian) scalar continuous-time
stochastic processes directly from empirical data. The goal is to develop a realization
algorithm for building a noise generator consisting of finite-order non-linear systems
driven by white Gaussian noise. Whenever such a generator is exercised, it generates

sample paths whose ensemble statistics (probability law) match that of the given data.

The role of such models is a means for synthesizing paths on demand which are
not likely the same as given data, but which are statistically indistinguishabler from
given data. The mechanism for generating these paths need not reflect the true
underlying physical mechanism of evolution of the given data. Nevertheless, it must
be physically realizable and must produce statistically faithful sample paths. The reali-
zation procedure and the model framework should be capable of handling general
processes in wide-ranging applications. In particular, the underlying process need not
be Gaussian\, and the application may require match-up of higher order moments than
simply the mean or autocorrelation (or power spectrum). The model does not neces-
sarily have to be of minimal order or dimension‘. However, a rigorous framework
must be established to determine the benefit (or lack of benefit) of increased model

order and complexity.

The approach taken is largely due to Wiener: that Wiener series, or the Homo-
geneous Chaos, serves as the fundamental approximation framework for the represen-

tative models. There are two principal thrusts to the paper: to clarify important inter-



relationships among various representations of Wiener series, their realization and
identification, and to propose a candidate white noise functional, the Wiener-Nisio
functional, which could serve as a basis from which a Wiener series could be built and

then realized.

The organization of this paper is as follows. Sections 2 and 3 discuss the pair
relationship of Wiener increments processes and white noise. Both excitations are
defined carefully in conjunction with integrals and without resort to singularity func-
tions, and this approach applies throughout the paper. Section 3 also introduces the
concept of a functional of white noise which generates processes by allowing the white

noise to flow. This is a useful setting for introducing Wiener series.

The next sections deal with various forms of Wiener series and their inter-
relationships. Section 5 reviews the properties of Fourier-Hermite Expansions. The
Cameron-Martin theorem is described, particularly as it applies to finite mean-square
functionals of white noise defined on the entire real line. The concept of a lossy pro-
cess is introduced and discussed. Section 6 discusses multiple Wiener-Ito integrals.
The material adopts Ito’s approach and clarifies several details. The concept of avoid-
ing the diagonal is emphasized both here and in other sections as being fundamental
to the orthogonality properties of the Wiener series expansion. Section 7 discusses
one form of white noise realization of Wiener-Ito integrals, the Wiener G-functionals.
The discussion shows that, despite casual appearances, the G-functionals, like the Ito
functionals, are homogeneous. Section 8 shows how the G-functionals can be realized
as a telescoping series of Volterra operators driven by white noise and as stochastic
differential equations. It further shows how G-functionals can be obtained from the

lead Volterra operator directly without the need of additional states associated with the



derived Volterra operators. Section 9 discusses two well-known methods of identify-

ing Wiener kernels by input-output cross-correlation.

Section 10 explores the feasibility of using a sequence of Wiener-Nisio function-
als as a candidates for building Wiener series models. The processes to be modelled
_must be stationary, ergodic, and continuous in probability. The Wiener-Nisio func-
tionals are computed using a typical path of the data as the raw statistic. They are
shown to converge in finite distributions to the given process, and this property is

passed on to Wiener series realizations of the functional.

Section 11 then summarizes all that precedes in the form of an algorithm that
might be used to realize general stochastic processes. Section 12 and 13 critically study
the behavior of the resulting models for tWo important classes of processes, Gaussian
and Rayleigh, respectively. In both of these examples, where simple finite series
expressions are known to exist, the models resulting from this algorithm are shown to

be problematical. A concluding section raises issues for further research.



"Things are always at their best in the beginning." ..... Pascal

2. Normal Random Measure and First-Order Wiener Integrals

The purpose of this section is to define the first-order Wiener integral

[r®aw@) 2.0.1)

of a sure or deterministic finite mean-square function f(¢:) € L,(T) with respect to
Wiener increments dW (t) using the concept of Wiener random measure Bw. These
integrals are fundamental to process representations; for example, they are the basis
for the spectral representation of all stationary finite mean-square Gaussian processes
[DOO, WON]. These integrals are also fundamental to all the nonlinear white noise
functionals comprising the bulk of this paper. The development‘here of the Wiener

integral follows the approach by Ito in [ITO1].
2.1 Wiener Random Measure and Wiener Increments Process

A Gaussian process {X,,t €T} is a collection of random variables
X, = X,(0) = X(w,t) = X(¢) such that every finite collection X(¢}),...,X(z,),
t,...,t, €T, is multivariate Gaussian. In this paper, Gaussian processes always are
assumed to have zero mean: E{X(r)} = 0. Given any real-valued function Ry (z,s)

<oo; t, s€T, satisfying:

Rx(t,S) = Rx(S,t), and (212)
26T R, 1) 20 forany ¢y, ..., t, €T and any (2.1.3)
complex numbers ¢y, ..., ¢,,

we can establish a sequence of finite-order Gaussian probability distributions for

{(X@),.... X))}, n=1,2,..., with Ry (5,4,), i,j=1,...,n as the autocovariance



matrix for each n, the finite-order distributions obeying a consistency condition as
lower order distributions are obtained from higher order distributions by "integrating
out” the excess arguments. These distributions, in turn, by Kolmogoroff's existence
theorem [BIL1], uniquely determine a probability measure P(w) for the process X,

defined on the space of continuous functions (sample paths) on RT. The function

Ry (1,9) =E (X, X} = [ X, () X, @) d P) (2.1.4)

is then, of course, the autocorrelation function for the process X,.

Let (T,B,m) be a measure space, and let B' = {E: £ € B, m(E) < «}. A
Gaussian process B(E,w) (defined on sets E as opposed to point values ¢) is called a

normal random measure on (T ,B,m) if
E {B(E) B(E)} = m(ENE) for any E,E'€ B". (2.1.5)
Since m(ENE) = m(ENE), and L c; ;m(E; N E;) = fl: ¢ x; (1> m(dt) > 0,

x;(t) being the indicator of set E;, the process 8 is well defined, with a uniquely

defined probability measure, for any measure space (7 ,B,m).

Let B(E) be a normal random measure on (T,B,m).. If E|,E,,... are disjoint,
then B(E,), B(E,),... are independent. Furthermore, if E=E, + E;+ ... € B,

then
B(E) = T B (E,), (2.1.6)

converging in the mean-square sense. Since 8(E,), B(E,),... are independent, this
then implies almost sure convergence by Levy’s theorem [CHU, p. 120]. This result

illustrates how @ may be regarded as a random measure.



With primary interest on continuous-parameters process models and stochastic
differential equations, we further restrict our interest to measures m which have the
following continuity property: For any £ €B" and € > 0, there exists a decomposition

of E:

,. 2.1.7)

such that
m(E) <e, i=1,...,n (2.1.8)

We now specialize this for Wiener processes. Several references [WIE2, SHU,
MCK3] describe, in varying degrees of detail and sophistication, the construction and
properties of W,, the Wiener process, a zero mean Gaussian process with (almost
surely) continuous sample paths usually defined on [0,0) and with autocorrelation
function Ry (t,s) = min (¢,s). The definition of Wiener process can be extended to
(— o0, o) [WON] by piecing together two Wiener processes W, , and W, _, using the

modified autocorrelation
Ry (t,5) = (/) (tl+]s| = |=s)). (2.1.9)

The adoption of the origin as the reference time t= 0 is purely arbitrary; our ultimate
interest is in the increments process dW,, which does not depend on any particular
choice of reference time. For example, while the Wiener process W, is not stationary,
with autocorrelation function (2.1.9) depending on the choice of reference time, the
increments process dW, is stationary (see (2.1.11) and (2.1.5)), and its statistics do not

depend on the choice of reference time at all.

The associated probability measure on the space of continuous functions is the

Wiener probability measure. We construct the Wiener random measure By from the



Wiener process W,, first for intervals: B8y ([r,s+dt]) = W,_, — W, then, by exten-
sion in the mean-square sense (and almost surely), to measurable sets on (-c0,0), as
described above. What results is a normal random measure corresponding to measure
m = the Lebesgue measure on T = (—o0,0). We can then associate the customary

notion of the Wiener process with:
W, = W(t) = B ([0,:]), (2.1.10)
and the customary notion of the Wiener increments process with:
dW, = dW (t) = By ([t,t+dr]). (2.1.11)

The Wiener probability measure, which underlies the Wiener process W,, also under-
lies both By and dW,, and frequently, the distinction between them may be over-

looked.

2.2 First-order Wiener Integral
We now define the first-order Wiener integral of a sure finite mean-square function

f(t) € L,'T) as follows. If f(¢) = xz(¢), an indicator function, then

L) = Lixg) = [x£(@) dW (D) = By (E). (2.1.12)

We also note that

E(7,xg) I,(xp)} = m(E N F), (2.2.13)
so that I;(xg), I)(xf), being Gaussian, are independent if £ and F are non-
overlapping. (This is more relaxed than requiring them to be disjoint. They can, for

example, share a common end point.)
If £(t) is an elementary function:

FO= % ax, (2.2.14)

i=1

7



X ; the indicator of set E;, where we always choose the sets E, to be disjoint, then

L= 3 a L. (2.2.15)

i=1
Finally, for f(z) € L,(T), let f;(t) be a sequence of elementary functions (2.214)

converging in the mean-square sense to f(¢). Then

L) = lim ¥ L(), (2.2.16)

L P |

where the convergence is in the mean-square sense, and therefore, by virtue of the

independence of the I,(f;), is also almost sure.



"Energy is eternal delight." .... W. Blake

3. White Noise

We now proceed to define Gaussian white noise, which we will call simply white
noise, and to show its relationship to the Wiener process. White noise is a conceptual
model for random thermal excitation, such as the force that buffets particles about in
Brownian Motion (for which the Wiener process is a model). It represents an idealiza-
tion of such an excitation in that the amount of constant thermal energy per unit
bandwidth available is limited only by the bandwidth of the physical system experienc-
ing its effects. It is what we conclude must be the excitation at a linear dynamical
system’s input to give rise to Gaussian stochastic process outputs with spectrum
matching the power gain per unit bandwidth of the system. For any one physical sys-
tem with finite bandwidth, there is an equivalence class of distinct signal processes
which are indistinguishable from one another that can be regarded as the white noise,
which have smooth sample paths; white noise is the limiting case that applies for virtu-

ally all finite-bandwidth systems simultaneously.

Mathematically, white noise belongs to a class of generalized functions which,
like the Dirac delta function, only takes on meaning in conjunction with integrals and
the integral properties. Like the delta function, white noise may be envisioned as a
limit of a sequence (in this case, of Gaussian processes) of ever-widening flat power

spectrum.

White noise bears a close relationship to the Wiener increments process which

permits interchange of first-order white noise integrals with first-order Wiener



integrals. This interchange is a useful technique for studying non-linear finite mean-
square functionals of white noise, and the behavior of associated nonlinear systems to

white noise excitation, from several important points of view.

We begin by defining the integral

fT £ X0 dt (3.0.1)

of the product of an L ,(T) sure function f(¢) with a second-order (Gaussian) process

X (¢) as a prelude to defining the white noise integral

fT £ n(e) a. (3.0.2)

This contrasts with the Wiener integral

fT £ dW () (3.0.3)

developed in the previous section.
3.1 Definition: Quadratic-Mean (Q.M.) Stochastic Integral [WON]

Let X(¢) be a second-order stochatic process defined on T = [a,5], Ry(z,s) =

E{X (:)X (s)}, and let f(¢) be a real-valued function defined on 7. Let m, be a parti-

tion of T
mo=la=t0< 1< ...<t,,=0b] (3.1.1)
5, = o max (ty; = ty.i=1) (3.1.2)

such that
8, —0asn— oo, (3.1.3)

Then the g.m. integral

imm]

[0 X@ dimtimam S £(5,0 XG6p) (o= 4.0, (.14

where

i S S0 S by, (3.1.5)



The integral is well defined provided that the g.m. limit exists and is independent of

the choice of partitions {,} and for each =, the choice of {s, ).

If T = (—oco,) the ¢q.m. integral is defined as:

_L: () X(¢) dt = lim q.m.j;

a— —oo a,b]
b= oo

f() X() at (3.1.6)

Remark:

The integral exists if and only if foT S(&) £(s) Ry (¢t,5)dt ds exists as a

Riemann integral. We could also choose to define frf (t)X(¢)dt as a Lebesque
integral of a sample function X (¢,w); existence of such an integral is ensured if the
process is measurable and if fTIf (DIEIX(£)]dt < oo. (See discussion of normal ran-

dom measure.)
3.2 Definition: (Gaussian) White Noise. [WON]

A sequence of quadratic mena-square continuous Gaussian processes

X,(t),t € T, is said to converge to white noise n(¢), denoted X, (¢) — n(2), if

a)for each f € L,(T), the sequence of ¢.m. integrals

0, = [ £ X,(0) dt — Q(f) (3.2.1)

is g¢.m. convergent, and

b)there exists a positive constant S such that, for every f,g € L,(T),

lim E (Q,(f) Q@) = Sy [ (1) g(0at (3.2.2)

11



Remark:

An alternate (and popular!) method for expressing (3.2.1) and (3.2.2) is:

E(Q() 0@)= [ [ Eln®) n©} £ () g(s) dr ds

= Jp Ji S080=9) £ (0 g(s) at as
= So fT () g(t) a (3.2.3)

The use of delta functions in the analysis of non-linear systems must be tem-
pered. In certain applications, such as computing high-order moments of Gaussian
processes, delta functions can be used effectively to simplify bookkeeping. On the
other hand, I strongly discourage the exclusive use of (3.2.3) to define white noise. It
is too incomplete a description to shed light on important properties of white noise
non-linear functionals, many of which are discussed at length in this paper. On the
strength of the delta function approach alone, it is virtually impossible to understand
in what sense the Wiener G-functionals of white noise behave like homogenous
operators, why the Lee-Schetzen identification method fails to identify G-functional
kernels on the diagonals, and why Ito stochastic differential equations need the

Wong-Zakai correction to produce accurate results.

The next theorem ties together first-order white noise and first-order Wiener

integrals.
3.3 Theorem: Altenate Representation of First-Order White Noise Integral. [WON]

Let X, (¢t) — n(¢), let f(t) € L,(T), and let

QU = [ fOn(@) dr=limgm [ f(0) X,(0) a (3.3.1)
Then,

1
0(f) =5, 7 fT £ dW (@), (3.3.2)

12



a Wiener integral, with { W(z),: € T} the Wiener process determined by

-1 t
W) =S 7 lim gm. [ X,(s) ds (3.3.3)

Proof:

Define W (z) by (3.3.3), and let x,, be the indicator of [a,5]. Then

_1
W) — W) =Sy Z limgm Q, (xz) (3.3.4)
From (3.2.2),

E{W®) - W@) W@ - W= [ x40 xea®dr, (335

hence, W (¢) has orthogonal increments dW (¢) and

E {daW () daW (s)} = 5, , dt. (3.3.6)

Since X, (¢) are Gaussian, W (¢) is aiso Gaussian, and is therefore the Wiener process.

Let frf(t)dW(t) be defined as a Wiener integral for f(¢) € L,(T). If f is a step

1
function, then easily by (3.3.4), Q(f) = S§ frf(t)dW(t). If f is not a step, let f,

be a sequence of step functions f, — f in the L, sense. Then,

1
QW =) +0U=1£) =S¢ [ £,() aW (D) + Q(~1,)
1 1
—~S§ [ r@aw) +0©@ =5 [ r@aw. (3.3.7)
QE.D.

Remark:

This theorem provides the fundamental means for interchanging linear function-
als of white noise with linear functionals of Wiener process increments. The relation-
ship |

1
J£@ n@) ar= s¢ Joroaw (3.3.8)

13



is frequently expressed as

1
n(t) dt=S§ daw (1), (3.3.9)

which suggests white noise is somehow the derivative of the Wiener process. Caution
is advised in this interpretation, since the sample paths of the Wiener process (almost
surely) are continuous everywhere, but nowhere differentiable! Equation (3.3.9) sym-
bolically describes the equivalence of time averages of white noise to Wiener incre-
ments over distinct, smoothing intervals. Here again is the notion of an integral. Equa-
tion (3.3.9) is an elementary form of stochastic differential equation, a symbolic equa-

tion that actually stands for an integral equation, here (3.3.8).

For multiple integrals, interchange between white noise and Wiener increments
integrals is more complex than (3.3.9), and in particular, depends on the adopted

definition for the integral. This will be amplified in later sections.
3.4 Stationarity, Ergodicity and the Translation Group

In the development of the Fourier-Hermite series, the multiple Wiener integral
and the Wiener-Nisio functional is the sections that follow, the time evolution of
response of a system to white noise excitation is modeled in a particular way. First,
the response of the system, Y (r), is evaluated at‘ a particular time, say ¢ = 0. This
value is a functional F of the entire white noise path n(-). In the case of Wiener
expansions, for example, the functional is the infinite sum of muiltiple Wiener
integrals. The response process Y () is then obtained, either by letting the excitation
n(-) shift or flow, or by altering the functional (for example, by changing the integral

kernels), as follows:

14



If

Y(0) = F(n(-),0),

then
Y(¢) = F(n(-+1),0) = F(n(-),s). (3.4.1)
The flow of the white noise n(¢) can be regarded as the action of a translation
group operator T, on outcomes in the probability space on which n () is built. (See
[DOO] or [WON].) The sttionarity of n(t) is inhereted from the metric transitivity or

invariance of the probability measure of the outcomes under T,.

An outcome that is almost surely preserved under translation is called an invari-
ant random variable. If every invariant random variable associated with a stationary
process is almost surely a constant, then the process is called ergodic. If X, is a separ-
able measurable stationary ergodic process, and f is any Borel function such that

E{lf(Xy| < oo, then

lim (1/2a) [ f(X) di=E(f(Xp) as (3.42)

a—co
The processes of interest here, modeled by the flow of the white noise acting on a
functional, such as the integral functionals in (3.3.8), inheret the stationary, ergodic

properties of the white noise itself.

An explicit example of the translation operatbr T, can be found in the spectral
representation [DOO, WONI] of a stationary Gaussian process X, via the Wiener

integral:
X, = f_ _ ey, (3.4.3)

where the (generalized) Wiener process W, defined on frequency parameter A has

independent increments satisfying:

15



E{daWl) = do()), (3.4.4)

where o (A) is the (cumulative) power spectral distribution of the process. The trans-
lation operator 7, for X, presents itself in the form of the familiar linear frequency-

dependent phase shift /2! associated with each time r.

16



"Adde parvum parvo magnus acervus erit’
[Add little to little and there will be a great heap]
....0vid

5. Fourier-Hermite Expansions

The celebrated Cameron-Martin Theorem serves an essential role in this paper.
The Cameron-Martin theorem proves that every finite mean-square functional of a
Wiener increments process on a compact interval can be approximated in the mean-
square sense by an orthogonal expansion of products of Hermite polynomials acting
upon orthogonal linear functionals of the Wiener process increments. The resulting
Grad-Barrett-Hermite expansion of a finite mean-square functional [CAM, BAR 1-2],
and provides a conceptual block diagram for all such functionals. It leads immediately
to Fourier-Hermite expansions in terms of products of Hermite polynomials acting
upon orthogonal linear functionals of white noise, where the white noise is always
smoothed by linear filtering prior to undertaking nonlinear transformations. The
Cameron-Martin theorem is also crucial in proving the compieteness of the multiple

Ito integrals and the Wiener G-functionals.

This section begins with some reference formulas for moments of Gaussian ran-
dom variables and properties of Hermite polynomials expressed in several, popular
forms. The Cameron-Martin Theorem is then proven, followed by some discussion of
the nature of the expansion when the functional to be approximated is causal. Some
remarks are then made on adapting the Fourier-Hermite expansions to represent
causal functionals defined on T = [0,%) using the orthonomal Laguerre functions as
the kernels of the linear filters. The resulting expansion describes a "nonexplosive [fin-

ite mean-square under white-noise excitation] time-invariant nonlinear system with

17



noninfinite memory." [SHEI, also WIE2, RUG1] This mirrors the observation by
McKean [MCKI1} that, if a finite mean-square process defined on the real line admits

a Wiener expansion representation, it must satisfy a mixing property [BIL1].
5.1 Theorem: Averages of Products of Gaussian Random Variables [SHE1, ROO]

Let X; ..., X, be jointly Gaussian, E{X;} = 0. E{X} =1, i=1,..., n (nor-
malized). Then
E(X,...X)=0,  n=2N+1(odd)), 5.1.1)

= LMIR;, n = 2N (even), (5.1.2)
where LII denotes the sum of N-products of moments R, = E{X; Xj} which

represent the distinct ways of partitioning the indices 1,...,2N into N pairs. The

number of terms in X1 is:

(2N)!

SR (5.1.3)
Example (n = 4,N = 2):
E{Xl X2X3X4}=R12R34+R13R24+R14Rz3. (514)
Proof: Let
Ty(a,..,a,)=E (@t Fah)) (5.1.5)

be the moment generating function associated with X,... ,X,. First, we expand I'

by Taylor series:

FX (a’_, ,an) == Ckl k all . a:" (51.6)
Iq-O k,,-O
where
ST MO I
Chp ok = PEERTE T v I, (ay,....a,) (5.1.7)
aal an ay = =g, =0
- L e xh), (5.1.8)



Thus,

(5.1.9)

o oo . ky (. k,
T oo 3 Elxh . gty Ya) o Ua)

Ty (ay,..,a,) =
ki =0 k, =0 k! ... k,!

Now, the only term containing E{X;... X,} is associated with k; = ... = k, = I:
a ... a,,(/')" E{X] e X,,] (5110)

We set this aside momentarily, and expand I'y another way. Since X;... X,

have zero mean, unit variance, and are jointly Gaussian,

—% (_2" Zﬂ a; a;R;)
I'X (al,... a,,) = ¢ i=lj=l (5111)

is Gaussian and is expressed as shown. Using

oo xk
=3 X (5.1.12)
K=o k!
= 1 [_1)[a 2 ‘
Ty (ay,....a,) = el Y ¥ a4 R (5.1.13)
k=0 % im] j=1 )
1 n n
=] 4 "7 kzlkzl akl akz Rklkz
1= 2™
1 1 2 n n n n
+ 7 —-2— z 2 Z Z akl akZ ak3 ak4 Rkl kz Rk3 k4 (5.1.14)
° k1-1k2-1k3-1k4-1
+ .

Each set of terms in (5.1.14) has an even number of factors of the a@;’s. Therefore,

we will find a non-zero match for (5.1.10) only if n is even. Thus,

E(X,...X,) =0, n=2N+1 (odd.) (5.1.15)
as hypothesized.

We now consider the case n = 2N (even). The only terms that can contain pro-

ducts of the form a, .... a; are those for which k = n:
1 N IV
—N—,T —7 . | e . Z | Rk1k2 e RkZN—lkZN akl N akZN- (51.16)
1= WN =
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Since, in (5.1.10), the product a,a, ... a, has all unique subscript values, the match-
ing terms from (5.1.16) must have unique subscript values as well:

N
1 1
N [—7 @y @y Lyrs R, o Riyy | kg (5.1.17)

Since R, k, = Ry i, and there as N pairs of factors, so there are 2V terms of the sum

which are identical by virtue of commutation symmetry. In addition, we note that
Ry, Rk, = Ry, Rik,, There are N! terms (permutations) that are equivalent by

virtue of this symmetry. Thus, (5.1.17) reduces to:
(—I)N (0102 ce aZN) = I RU (5118)

as described under (5.1.2). The result (5.1.2) follows by equating (5.1.10) and

(5.1.18)
Q.E.D.

5.2 Hermite Polynomials and Hermite Functions

The Hermite polynomials are a complete orthogonal set with respect to Gaussian
measure. Table 5.2.1 summarizes the properties of the Hermite polynomials as: they
appears in random forms in several important papers and books pertaining to non-

linear Wiener functionals.
Beyond this, the Hermite funcrions

k,(x) = H,(x) o 2% (5.2.2)

qn

are complete orthornormal (C.O.N.) set on L, (—o,00). [DYM] This means that the

integrals

I ) = [ by () et (5.2.3)
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Table 5.2.1a — Properties of Hermite Polynomials [ABR, pp. 771-802]

Symbolic Representation:  H, (ax)

Weighting function:

Orthogonality and

normalization:

Recursion:

Polynomial Expansion:

First Few Polynomials:

n=0
nm=1
n=2

n==3

p(x) = e~ %

b

L: H,(ax) H,(ax) p(x)dx =

Hn+l (x) = 2XH,,(X) - 2n H,,..[ (x)

n

2

H,, (x) = E ('—1)"1'

n—2i
2201 &)

H,(x) =1
2x
4x: -2
8 x° - 12x
16 x* — 48 x2 + 12
32 x° - 160 x> + 120x
64 x5 — 480 x* + 720 x2 - 120
128 x7 — 1344 x° + 3360 x> — 1680x
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Table 5.2.1b — Properties of Hermite Polynomials [IT01]

Symbolic Representation: H,,[-\-;—‘_z—] (see 5.2.1a)

-
Weighting function: p(x) = \/%_ e ?
™
Orthogonally and
. oo 0, m#=n
normalization: f_m H, [% H, [%2 p(x)dx = [q -2yl n=n
n *

. . 1
Symbolic Representation:  H(x) = H,(x)
V2"n!

. . 1 -2
Weighting function: (x)=——c¢
g g p s
Orthogonality and
- . ® c c 0’ m # n
normalization: f_“ H(x) Hy (x)p(x)dx = g, =1, m=n

Table 5.2.1d — Properties of Hermite Polynomials

(Section 5.3, modified version of [CAM])

. . 1 X
Symbolic Representation: H | Xl = H
4 P "1V2 V21 V2
. . 1 e""2
Weighting function: p(x) = I
™
Orthogonality and
_ o 0, m=n
normalization: f H;, [—j_z—]H,f -\/i_ p(x)dx = {q -1 me=n
—00 X n = 1 -
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Table 5.2.1e — Properties of Hermite Polynomials [SHE1, pp. 405-411]

Symbolic Representation:  H,(x) = (/S,/2)" H, [ =1

Weighting function:

Orthogonality and

normalization:

Recursion:

Polynomial Expansion:

First Few Polynomials:
n=20
n=1
n=72
n=3
n=4
n=235
n==6

n=7

/25,
-x
1 28,

p(x) =

0,

q, = Syn!,

—

 Hp(0) B,() p()d =[

oy (x) = x H,(x)—- S, H,(x)
o1 (x) = x H,(x) = S, H,_;(x)

e ()
H(x) =Y (=1)'n! [—S—O] xn2

H,(x) = 1

x
x:-S,
x3-38,x

x*—6S5, x2+ 352

x3=10 S, x> + 1552x

x%— 158, x* + 4582x? - 155}

xT =218, x> + 1055 2x> — 10552x
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form a C.O.N. span of the non-causal linear finite near-square functionals of white
noise n(r). Section 5.4 discusses the Laguerre functions, a C.O.N. set on L,(0,)
which in turn lead to a C.O.N. span of the causal linear finite mean square functionals

of white noise.

A further property of Hermite functions sheds valuable light on the geometry of

L, (-o0,00) and the Fourier integral. The scaled Hermite functions

K,(x) = K, N2mx) (5.2.4)

are eigenfunctions of the Fourier transform of f € L,(—o0,0):

FO) &) = [ F0) e (5.2.5)
with corresponding eigenvalues (—;)":
F(K,) () =(=N"K,(y). (5.2.6)
Letting
<f R>= [ fe K,Gax (5.2.7)
we can therefore write the Fourier transform

FNG) = 3 <f, K> K, () (5.2.8)

n=0

as a countable series expansion. [DYM] .

This property (countable series expansion of the Fourier integral) may seem
surprising if one views the Fourier transform as the extension of Fourier series, with
countable sinusoids, to the case of uncountable sinusoids. The rapidly-decreasing
character of every f € L, (—o0,) renders uncertain the precise identities of the
sinusoids. These individual identities could only be resolved by perfectly coherent
filtering. Just as one cannot resolve the reals from the rationals without "waiting for-
ever," so the continuum of exponentials cannot be resolved beyond countability by

test functions f € L,(—o0,00).
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5.3 Theorem: Cameron-Martin [CAMI

Let F[W(-)] denote a real or complex valued functional defined on the standard
Wiener process W (), t € T = [a,b] (an interval), and let F[W(.)] be finite mean-

square with respect to Wiener measure:
E(IFIWI2| )= [ | FIW(,)]1%Py ) < o (5.3.1)
Let HM(u) = H,,C(%z) denote the particular, normalized version of n-th order Her-

mite polynominal described in table 5.2.1c-d, and let {a, (1)}, p=1,2,... be any com-

plete orthonormal (C.0O.N.) set of real functions belonging to L, (T).

Let
© (W) = HY[ [ a,0dW () ], m=0,1.2,...; (5.3.2)
p=12...,
and let
Yo m (W) = @ (W) .. ®,, (W) (5.3.3)

be the so-called Fourier-Hermite set. (Note that since HS’EI, we can freely append

additional zero subscripts to W thatis, ¥, mo.. ol W) =¥, .. (W#))

Then,
N _
EIFW) - T Ap m¥my m(W) 1P} —0 (5.3.4)
my,...my=0
as N—oo
where
Am,..my=EFIW]I ¥, 4, (W)} (5.3.5)

is the Fourier-Hermite coefficient associated with ¥, ..
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Remark: In [CAMI, the expansion is developed for functionals with respect to non-

standard Wiener Process X (¢) which is related to W (¢) by

dX (1) = %awm (5.3.6)

This makes all the associated linear functionals in the original proof have variance =

% rather than 1, and requires a particular form of Hermite polynominal (H<(u)) and

weight p(u) to achieve the required normalizations. In this proof, normalization has
been achieved with respect to the standard Wiener process W (¢), and so it differs

slightly from the proof in [CAM].

5.3a Step 1: The Fourier-Hermite set is orthonormal.

The set {V,}:
Vo= [ a,(0aw (0 (5.3.7)

of Gaussian random variables is independent, identically distributed, zero mean, unit
variance. Therefore

2

- uf 2

...u’

~£ o0
E(G(V,, V,)} = 2n) ? f_ fm Guy,u)e 2 e ? duy...du, (53.8)

.
00

holds for every function G which is Lesbegue integrable with respect to Gaussian

measure (r.h.s. of 5.38). Thus,

E¥n . m (¥ ., (W)

-2 oo oo —"12
-em [ ... _H D) HjY () £
—u2
H,ﬁi (u,) Hjiv (u,) _ez_ duy ...du,. (5.3.9

By virtue of the orthonormality of H¥(u):

—?

HY W HNMu)e ? du =5

" (5.3.10)

o
7 -
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we get
E(‘l’mlmn(W)q,hh(W)} ‘6,,. (5.311)
5.3b Step 2: Best Approximation and Bessel Inequality

The mean-square error:

N
E(| Flw] — 3 Bui o m ¥m m [WIH

my, .o m,,—O

=E(FIW]|}.=2Re. T 4B + 3| B|?
=E{|FIWI} -3/1412+ 3 ]14-B|? (5.3.12)

follows from (5.3.3), (5.3.5) and (5.3.11) and Lemma 5.3a. The error is minimized by
setting B, , = A4, ., (best approximation), and since the Lh.s. of (5.3.12) is

non-negative, we also obtain the Bessel inequality:

Y ldm. o P<EFIWIY n=0,1,2,... (5.3.13)

3.3c Step 3: Proof of Theorem for special F(W) = f(V|, ..., V,):

Consider functionals F of the form:

FIWl=f(v,, ..., v, (5.3.14)
where

J o fuy ) ST gy Gy, < e (5.3.15)

First, we note that

Ap . m = E(FIWI ¥, . . (W)
~u}

=m 2 Fuy e u) | TTHY e ? du|,p2n (53.16)
Jj=1

by virtue of (5.3.8). We need to consider two cases: p = n and p > n with m, = 0.
(Since the m;’s can be zero, we can always arrange to have at least n factors in the

product, and so the two cases cover all cases.)
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If p > nand m, #= 0, then the factor

—_yl
uP

[ HY w)e? au, (5.3.17)

comes out, but is zero because of (5.3.10) with HY (u,) = 1. Thus,

0, p > nand m, # 0,
Amom=lf  pmn (5.3.18)
where f,, ... , is the Hermite coefficient of f(uy, ..., u,) gt /s,
-2 e *® 2 2
Sy, om, = Q2m) 2 f_w ‘[_mf(ul,..., u,) e it ru/d
i
x 1 [H,,’: (u)e * duj}. (5.3.19)
=l
Therefore,
N
E{ FiWl= ¥  Ap...m V. .m (W) 2}
my, - . my=0
_.l oo oo N 2
=em 2 o o u)- X mom HY (uy) ... HY (u,)
-
x e Ui gy du du, (5.3.20)

Because the Hermite functions are a C.O.N. set of L,(—<0,), the r.h.s. of (5.3.20)

approaches zero as N — . But since 4, ..., as defined in (5.3.18) is zero when

p > n and m, > 0, we see we can increase the number of subscripts on ¥ and 4 in
(5.3.20) beyond n without changing the sum. We can, therefore, take N subscripts,
instead of n, and then (5.3.4) holds for any F defined by (5.3.14). This proves the

theorem for the special form of f in (5.3.14).
5.3d Step 4: The special F's are dense in L,(W|a, b}).

As discussed in section 2, P, is a probability measure on Cla, b], the continu-

ous paths defined on any bounded set {a, b]. Denote as L,(C) all finite mean-square
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functionals of continuous functions on [a, ] governed by Py . Any functional of
L,(C) can be approximated by step functionals which, in turn, are finite linear combi-
nations of indicator functionals of W-measurable sets. Because the Wiener process is
separable, each indicator functional of a W-measurable set can be approximated by a
finite linear combination of indicator functionals of windows as described below. [See
WIE 2] It therefore only remains to show that the indicator functional of a window

can be approximated by the functionals described in step 3.

Let Q denote a window. [See Figure 5.3.1]

OQ={WIL < WE)<u; j=1,....n; a<t,<...<t, < b}.(5321)
Let € > 0 and let p; («) be a continuous trapezoidal function which is zero outside

(l; — €, u; + €), is unity on [/;, u;], and is linear on the remaining intervals [see Fig-

ure 5.3.2].
Let
x (W) = T] o, [W(1))] (5.3.22)
j=1
and let
1, WeQ
x (W) = (5.3.23)

0 otherwise

so that x (W) is the indicator of Q. Now,
1im0 Xe(x) = x(x) (5.3.24)
for each x in C, and by bounded convergence,

li_r‘n0 q.m. x (W) = x(W). (5.3.25)

We next want to approximate W(tj), j=1,...n, using first-order stochastic

integrals with {a,(¢)} as kernels. Recall W(a) = 0. Let
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Fig. 5.3.1 — Illustration of a window, Q
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Fig. 5.3.2 — Illustration of trapezoid function, p e

31



ast

tj<t

t
b

~

(5.3.26)

N N

1
and let a; , be the coefficients of the orthogonal development of h; in terms of

{a,(D):

b
a; ;= L hi(u) a;(u) du . (5.3.27)
Let
Hig() = T a;; a,() (5.3.28)
k=1
so that
Lim. H; ,(t) = hi(t) ona<:t<b. (5.3.29)

Using (2.1.5), (3.3.2) and (3.2.2), we get

b 2 b
Bl 0 - ) aw 0| = [ 1,0 - 0P a (5330
—0 asm— oo, (5.3.31)
Thus,

b b
J. Hom@ aw(® = [ 10 aw( (5.3.32)

in the L,(C) sense on C as m — oo, and hence there exists a subsequence

my, m,, ...such that

b
lim J. (0 = B01 aw () = 0 (5.3.33)
for almost all W in C. We can choose the subsequence such that it holds for all

j=1,...,n.
Next, define

n -]
Xeo W) = T oy | [, om0 aW ()] (5.3.34)

Jj=1
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For almost all W in C,

n b
Hm x ., (W) =TI p;. [f h;(t) dW (1)
p—oe =1 a

- [T o, LW

Jj=1
= x (W) (5.3.35)

But since |p; | < 1, we have, by bounded convergence,

lim q.m. x, ,(W) = x (W) on C. (5.3.36)

p—>

Therefore, x(W) can be approximated in the L,(C) sense by functionals of type

Xe.p (W). If we choose

n mp
Sl ) = T ose | 3 arem ] (5.3.37
k=1

J=1

f, which is of the special type in step 3, is therefore shown to be dense in L,(C).
5.3e Step 5: Completion of Proof

Let F[W] € Ly(C) and let 4, ..., be its Fourier-Hermite coefficients as in

(5.3.5). Given € > 0, and by step 4, there is an F*[W] satisfying the hypotheses of

step 3 such that

E{| FIw]l - F*{w] |3 < (5.3.38)

€
e
If A",,,1 ... m, are the Fourier-Hermite coefficients of F*[ W], we can choose N large

enough so that

N
E{P W= 3 A% g V¥p.om MPL<S, (5339
my, - my=0 ’ 4
so by the Minkowski inequality,
N
E{F[W]—— T A% o Y omy (W) 2l<e. (5.3.40)
my, - omy
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But, the best approximation theorem in Step 2, (5.3.40) must also hold when 4* are

replaced by 4.

Q.E.D.

5.4 Extensions to the Cameron-Martin Theorem

Point 1: The C-M theorem applies not only to functionals of Wiener processes W, but

also to functionals of Wiener increments dW on any closed interval. To see this,

W) = [ I, dBw (5.4.1)
- j; Caw (s) (5.4.2)
= j;l n(s) ds, . (5.4.3)

any Wiener process functional on [a,b] can be expressed as a functional with respect
to Wiener measure, Wiener increments, or white noise, respectively, on [a, 5]. To
show the converse, note that the crucial step 4 of the C-M theorem relies on approxi-
mating W-window indicators (x). These can be approximated (or replaced!) by indi-

cators for increments A W of the form
a; S W(ti+1) - W(tl) s bi' (5.4.4)
For example, consider the partition of [/}, u;] in (5.3.21) as follows:

11=x1 <...< xn.h.1= ul (545)
such that

n
8, = max |x;41— x| = 0asn—oo. (5.4.6)
ju-

The set Q corresponding to two windows [/}, u{] at t;, [/5, u;] at 1, can be written as

follows:
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OQ={w: 1, < W) S upy I, < Wits) € uy)

n
=N U {w:x < W) < xeqq;

n k=1
ly=x, < (W(t) = W) < uy— x) . (5.4.7)
This can be extended to any finite partition {z} of [a,b]. By the same argument as in

(CAM], it then is only necessary to approximate functionals of the form:

n
qX[a, S AW() <€ bl» (5.4.8)
I
where AW (1) = W(t), AW(t) = W(ty) — W(t;), etc, by a Fourier-Hermite
expansion. This is done by using gate function of intervals [z, #,;) instead of h; in

(5.3.26). The rest goes through as before.

The notation F(dW) will be used to emphasize a functional of an increment pro-

cess in what follows.

Point 2: We may choose {a, ()} as a C.O.N. set on L,(—o, ), rather than L,[a, b].
Recall the purpose of this set is to reconstruct Wiener increments A W using first-

order stochastic integrals:

AW (1) = AW (2. (5.4.9)

b m
L T ae®

k=1
We merely need to approximate gate functions on [, ,,;) within the interval [a, 5]
using a series of the a’s, and this can be done using a C.O.N. set defined on

L2(‘°°, °°)

Point 3: If the functional is causal, causal a’s suffice. Suppose that a < 0, b > 0,
and F(dW) only depends on increments from a < ¢ < 0. Then, correspondingly, we
only need windows on A W(tj)’s for t; < 0, and the A W (¢)’s are only dependent on

dW(t) for t £ 0. Therefore, we may then choose

a (D=0, >0. (5.4.10)
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A suitable choice of C.O.N. set on the half-line would be the Laguerre functions

(see section 5.5).

Point 4. To permit T = (—~oo, ), the functional F must be restricted. The role of
interval {a, 5] in the C-M theorem is tied to the ability to approximate the functional
F with indicators of finitely many windows of the continuous Wiener paths on a
bounded interval. This approximation only holds for functionals on (—o0,) if the

dependence of F on the tails of W(¢) (or dW (r) ) can be bounded.
Let g, (¢) be sequence of widening trapezoid functions:

0 [t] > n+e
g, (1) = {1 lel < n (5.4.11)
linear otherwise

and suppose
F(dW (1)) = lim F(g,(z) dW(1). (5.4.12)

Then such a functional admits a Fourier-Hermite expansion. To see this, note that, |
for some n, F is mean-square approximated by a functional defined on a bounded
interval. By choosing windows within this interval, and a C.O.N. set {a,,(t)} on
(—oo0, 00) as described in Point 2, the argument of the C-M theorem proceeds as

before.

I call functionals of obeying (5.4.12) lossy functionals because they lose track of
distant portions of dW(¢). Any functional defined on an interval [a, b] is automati-

cally lossy.

Point 5: A finite mean-square process Y (z) generated by a stationary lossy L, func-

tional F driven by the flow of Wiener increments:

Y(1) = F@w( + 1) (5.4.13)
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is swationary. This follows directly from the stationarity of the Wiener increments dW.

(See 3.4).

Point 6: The adoption of lossy functionals for the sake of modelling processes is not
merely desirable for simplifying the representation — it is apparently necessary as well.
As McKean points out [MCK1], for an L, process Y to admit a Wiener expansion, it

must be mixing:

lim P(4 N B,)=P(4) P(B) (5.4.14)

T~ 00
where 4 and B are events "Y belongs to 4 or to B" and B,, denotes "Y (- + 1)
belongs to B". If the mixing process Y is to be approximated by as a functional F
driven by the flow of white noise, F must become independent of remote properties

of the white noise, and thus, it must be lossy. -
5.5 Laguerre Functions

The Laguerre functions /,(x) are a C.O.N. set on (0, =):

J 00 L) dx =5, (5.5.1)
They are discussed at considerable length in [SHE1]. They are related to the Laguerre

polynominals L, (x) as follows:

L(x)e?™ x>0
L6 =1, e (552
L) =vip ¥ —CD -k (553)

k=0 k! [(Il"k) !]2

The Laguerre functions are perhaps most readily identified via their Laplace

transform representation:

A,(s) = 2p L= S|n.  s=g+ju,0>-p (5.5.4)
p+s pts
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where it is seen the underlying realization is a simple first-order low pass followed by a
cascade of all-pass 180° phase shifters. (See Figure 5.5.1). It is also seen that pre-
cisely n integrators are needed to synthesize all of the first n orthonormal causal func-

tionals of white noise n (¢), that is,

[ he=-9nrds, i=1,2,...n. (5.5.5)
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Fig. 5.5.1 — Cascade synthesis of Laguerre linear functionals
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"You cannot make a cheap palace.” ..... Emerson

"What immortal hand or eye / could frame thy fearful symmetry?" ..... W. Blake

6. Multiple Ito Integrals

The multiple Ito integral, is a crucial part of the process realization theory. It
bears an important relationship to both the Fourier-Hermite Expansions and to Vol-
terra Series driven by white noise. A p-th order multiple Ito integral at once realizes
the p-th term in Wiener’s Homogeneous Chaos [WIE1-2], the expansion of lossy fin-
ite mean-square functionals of Wiener processes in terms of orthogonal homogeneous
integral operators. The orthogonality is achieved immediately by a construction I call
"avoiding diagonals." Although multiple Ito integrals need not be causal functionals,
when they are indeed causal, the multiple Ito integrals can be evaluated iteratively as
the solution to a nested set of Ito stochastic nonlinear differential equations. The
close link to specifically Ito stochastic differential equations is traceable to diagonal
avoidance. The p-th order multiple Ito integral is directly equivalent to the p-th order
Wiener G functional, which is obtained by orthogonalizing stochastic Volterra series.
This connection permits a rigorous discussion of the Lee-Schetzen method for identi-
fying Wiener kernels from input-output cross correlation, and clarifies many mysteries

surrounding this identification scheme.

The description of the multiple Ito integral and its properties that follows is based
heavily on Ito’s own work [ITO1]l. The frequent remarks separating the sections tie

important properties of these integrals to other topics in this paper.
6.1 Special functions

Let L,(T”) denote the collection of square-integrable complex-valued functions

on product measure space (T, B, m)”?. The function f (¢, ...,t,) is special if
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S(t, ..., 1) =0 ondiagonals ¢ = ¢, for some i = ;. (6.1.1)

J

The collection of special functions is denoted S,.
6.2 Theorem: S, is a linear manifold dense in L,(77).

Proof We first show the indicator function xg(, ..., ,) of the set
E=FE x. . x E,, E € B* (see section 2) can be approximated in the L,-norm by
a special elementary function. Then, we will have shown it for all L, functions on T?

by virtue of the denseness of the indicator functions on sets of finite measure.

By the continuity property of Lebesgue measure m (2.6), (2.7), there exists a

collection {F,, ... F,} € B* such that

FNOF=90, i#=j, 6.2.1)
m(F) < e = < : (6.2.2)
D
Cr—
and {
Ei-UFul’ i=1,...,p. (6.2.3)
Jj
Thus,
XE(tl’ I § ) = 2 € ... iy X[:’_l(tl -+ XF, (Ip), (624)
»
where
€, ---ip=00rt. (6.2.5)

We now separate the sum (6.2.4) into two parts

Y.+ where the indices (i, ..., i,} are all different, and (6.2.6)
2" : the remainder.
Let

f(tl, ey tp) = E, Eil""'ip Xl'-,-l(tl) ---XF (tp) . (62.7)
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Then f € §, and

lxe = 712 o f e ) = £l ) mldey) .. m(a,)
=S ey ., mE)..m(F) 6.2.8)

Now, €; ., =0or I, and 3" contains terms with pairs of identical indices. Each

pair (F;, F;) occurs (at least) gl times. Thus,

NS mEN T mE)..mF, ) (629

Jis jp—l

where the last sum in (6.2.9) is simply equal to

xg = rI2<

(2 @) (6.2.10)
Moreover, m(F;) < €, so
lxe - £12< |5 T em(F) (T mE)) (6.2.1D)
- 12’] €1 [z_ m(F,-)] - (6.2.12)
- (6.2.13)

Q.E.D.

Figure (6.2.1.) illustrates this construction for the case of p = 2, using intervals
for the sets F;. The blackened rectangles represent pairs F; X F; belonging to the sum

3". Rectangles F; X F; corresponding to €; ;, = 0 are not shown. (They are outside

E.) Note how the special functions avoid the diagonal ¢, = ¢,.

While special functions are indeed dense in L2(7?), this does not mean that the
sum Y over the diagonals, the discarded sum, has little value or consequence! The
discarded Y " is precisely what distinguishes the multiple Ito integral from a Volterra
integral driven by white noise, and what gives rise to the multiple Ito integral’s ortho-

gonality property. In essence, by throwing Y " away, the construction of the multiple
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Ito integral bypasses exactly those p-th order product terms that collapse onto lower

order term subspaces by virtue of the property

dWr=dr, (6.2.14)

which manifests itself only along diagonals.

Since the special functions avoid diagonals entirely, the multiple Ito integral does
not depend on values of its kernel f along diagonals. The values of the kernel f
along diagonals may be assigned arbitrarily without affecting the integral or its statisti-
cal properties. This, in turn, means that no scheme can identify the kernel along diag-
onals from statistical or input-output properties of the multiple Ito integral. Further-
more, for the purpose of constructing process representations, it is not necessary to

identify the diagonal values of the kernel at all!

6.3 Multiple Ito Integrals, f/ = Special Elementary Function

Let
a, (t,...5) €T, x...xT,
f(tl, ey tp) - 0 elseWhere, (6.3.1)
where T, ..., T, are disjoint, m(T}) < o, i=1,..., n, and g; ...i, = 0 if any two

of iy, ... i, are equal. Then

L = [ [ s, t) W) ...aw(,)
A X a ..., B(T)...B(T), . (6.3.2)

’1'.."ip

where B is the Wiener random measure associated with measure m = Lebesque

measure.

6.4 Theorem: Linearity

I,(af + bg) = al,(f) + bl,(g), f,g elementary. (6.4.1)



6.5 Theorem: Symmetrization

Let F(ty, ooy ) = = 5 £Ctny s ty) (6.5.1)
P! () g
where (7) = (7, ..., w,) running over all permutations of (1, 2, ..., p). Thatis, f

is the symmetrization of f. Then

L) =1,(). (6.5.2)
Proof Let (j) ~ (i) mean (jy, ..., j,) is a permutation of (i}, ..., i,). Now, in the
sum (6.3.2) we identify all terms with the identical product B(T;) ...B(T,). Since the

order of these factors does not matter, we see that these products occur along with

aj, ..., Jp in every possible (j) ~ (i). Thus, by re-grouping terms,

I,(f) = Y [ T a .. .jp] B(T,-l)...B(T,-’) (6.5.3)
<< iy VG ~ (D)
- ¥ |+ z Q,.,...,,] B(T,)...B(T,). (6.5.4)
<< | PP ()~ ()

The inner term, viewed as a function of the i’s, does not depend on the specific order
of the i’s in the outer sum. Thus, we may now re-introduce an un-ordered outer

sum, being mindful that a;, = 0 if any two i’s are equal, and that an un-ordered

.....

sum itself gives rise to p! occurrences of each combination of the i’s:

Ip(f)af 2, ﬁu)gm G| BT BT

= L,(7). | ' (6.5.5)

Q.E.D.

This theorem and theorem 6.13 show that the Ito kernels can only be dis-
tinguished from the statistics of the Ito integral modulo the symmetrization. This
leads to the important conclusion that the Lee-Schetzen identifies the symmetric form

of the kernel. In system realization, this creates a frustration in two ways. The first is
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that it makes it difficult to recognize possibly simpler, though non-symmetric, forms
of the kernel which correspond to lower order systems. The second is that symmetri-
zation is a neccessary step to realizing stationary, causal Ito integrals by stationary bil-
inear systems, a step that greatly enlarges the required state space dimension. This is

discussed further in section 8.

In the next three theorems, multiple Ito integrals of varying order are shown to
be orthogonal to one another, and an isomorphic relationship with symmetric func-
tions f € L,(T?) is established. This is a principal benefit of the multiple Ito integral.
In contrast, multiple Volterra functionals with L,(T?) kernels driven by white noise
are not orthogonal and do not adhere to the isomorphism as in Theorem 6.8. In Sec-
tion 7, it will be shown that the multiple Ito integrals of p-th order are equivalent to a
p-th order Volterra functional series obtained by Gram-Schmidt orthogonalization of

the leading p-th order Volterra functional operator.

6.6 Theorem: Inner Product of Multiple Ito Integrals of Equal Order

E,(D L @V =p! [ ... [Flt, ) 8ty ) mdT) .. mdT,) . (6.6.1)

Proof Recall that

m(T) =
E{8(T) B(T)} = |, P (6.6.2)
Therefore,
E(1,(f) 1*p(g)}=E[ £ (,E 4.4 BT ...B(T,-,)J.
W< <ip W~
[ [ b . ,,] B(T,) ... B(Tk,)]-} . (6.6.3)
ki< .. <k, (W)~ (k)

We can always refine the sets 7, so that the same sets apply to both S and g. Then by

(6.6.2),
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E{L,(f) I(g)) =

Q...

i< ... <i l(j)~(i)
bkl...k]m(Ti‘)...m(T,,), (6.6.4)
k) ~ () ’

that is, all cross terms vanish. Using the same trick as in (6.5), we now replace the

ordered outer sum with a un-ordered sum:

E(L,() (@) = - LI G mT) . m@) 669

-t p, : H—- ] m(T,) ... m(T,) (6.6.6)

-p.f...ff(tl,...,tp

g (ty, ..., t,) m(ar) ... — m(dr,) (6.6.7)

Q.E.D.

6.7 Theorem: Inner product of Multiple Ito Integrals of Different Order
E{Ip(f) I"'q(g)} =0, pEq. 6.7.1)

Proof. Assume p > g. Then, in writing the formula in an expansion of the form
(6.6.3), each term is seen to contain B(T;) factors from I, that are always unpaired
with other factors B(Tj) and B(T,) from both I, and [, respectively. The conclusion
then follows immediately from the fact that distinct 8’s are independent, and that
E{g(T)} = 0.

Q.E.D.

6.8 Theorem: Variance of Multiple Ito Integral

E(I, ()17 =-p'f N T CH )Izm(dtl) .. m(ds,) (6.8.1)
<p! [ fIfGn . g2 mn) .. mar,). (6.8.2)

Proof: (6.8.1) follows immediately from (6.6.1) with g = f, while (6.8.2) holds by vir-

tue of Schwarz’s inequality.

Q.E.D.
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6.9 Definition: Multiple Ito Integral, / € L,(T”)

Theorems 6.4 through 6.8 show that I, may be regarded as a bounded linear
operator from §, into L,(w). By extension via a sequence of integrals of special ele-

mentary functions converging to f,

L) A lim qm. L,(f,) (6.9.1)

where || f — f,Il — 0, it becomes an operator from the closure of S,, which by

Theorem 6.2 is L,(7?), into L,(w) also satisfying Theorems 6.4 through 6.8.

By letting L& denote the complex members and /4(c) A ¢, then Theorems 6.4

through 6.8 also hold for p, ¢ = Qaswellas 1,2, .....

6.10 Recursion Relation

This important theorem is the basis for proving Theorem 6.11 (connection
between elementary multiple Ito integrals and Fourier-Hermite functionals). It clari-
fies how, in the mean square sense, dW,2 = dt along diagonals, and lays a foundation
to show how the avoidance (or masking) of the diagonals inherent in the multiple Ito
integral can be represented by a telescoping series of Volterra multiple integrals driven

- by white noise. This will be the topic of section 7.
6.10a Lemma

Ifp(t), ..., t,) € L)(T?) and ¢(t) € L,(T), then
ot ot o 1) 86| @)V m(aty) ... m(dy_)) m(dbeyy) ... mdsy)
< llall? - 1lpl? < oo (6.10.1)
Proof:

[ oG, st s 1) 60| mUdg)]? <
Jle@ 2 ma) oty ..., b, )P midn) ae.  (6.10.2)
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by virtue of the Canchy-Schwartz inequality applied to ¢ and to p viewed as a function

of # only.
6.10b. Lemma

The function
P ():) ¢(t1, cee s bty g1y o0 s tpr) = fp(tl, R (N tp) ¢ (tk) m(dtk)

is a square-integrable function of ¢y, ..., fi_y, fspr --- » t,, and

< : .
Ilp(§)¢|l llpll - el

Proof:

Follows immediately from 6.10a, since

2=
e x &ll

[ U el ooy 1)1 (1) mar)1?-
m(dt)) ... m(dy_y) m(dey) ... m(dt).

Q.E.D.
6.10c Theorem: Recursion Relation

If p(ty,..., 1) € Ly(T?) and ¢(t) € L,(T), then

14
Lne®) = L,Ee) = T 110 x ).

k=1

Proof:
First, let p and ¢ be special elementary functions:

.5 (o ) €T, X ..xT,

plty, ..., ) =
0 otherwise ’
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b, te€T,

80 =1, (6.10.8)

otherwise °’

where T,..., Ty are disjoint, M(T)) < ;i=1,...,N, and a; _;, = 0 if any two

i

of iy, ..., iy are equal.

Let S=T,+ ...+ Ty, A = max lg;|, B = max |b]. Then m(S) < o,
i i

A < o, B < o, In addition, by continuity on Lebesgue measure m, we may sub-

divide the T;’s if necessary so that, for any € > 0,
m(T,) <e, i=1,...,N. (6.10.9)

Note that S, 4 and B do not change under this subdivision.

We now introduce a new special elementary function:

a biy (tyy..esty,t) € Ty .. X T X T i # iy,...,ip

iy..dp

Xe(tns - by, 1) = 0 otherwise (6.10.10)
Then, we have o

L) - @)= ¥ a,. ,B(T).. .B(T) L bB(T) (6.10.11)

fyeney ip

= ) ai,...i,biﬁ(n,)---B(Tip) B(T)

+5 % a., b BT ... BT, ) BTYB(T, ) ...8(T,) (6.10.12)

) ) U231
k=1 iy, ...

p
= p+1(Xe)+ T X ...

k’l il ..... ’

b, B(T,)...B(T,

k-1

) m(T,) B(T, ) ...8(T,)

U231

+ i z ail"‘ip bik B(Tll) "'B(Tik—l) [B(T'it)z— m(le)] .

k=1 il""p

B(T,,)...B(T,) ] (6.10.13)
= L (xJ) + T L x ¢)+ TR, (6.10.14)
k=1 ) k

where R, denotes the term inside brackets in (6.10.13).
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We now show that, as € — 0,

m.s.
1p+l(Xe) - 1p+1(p¢)

and

m.s.

Rk — 0.
By theorem 6.6,

H +1(X¢ p+l(p¢)”2=p! HXs_p ’ ¢H2

Now,
iy Bi ety 1, 0) € T XL L.X T, X
Xe= P ®=|g otherwise ,
)
p! lixe—p-ol12 < p! 2 )2 ai,z,..i bif )
k=1 iy, -0y ’
m(T,)...m(T,_) m(T,-k)z...m(T,-p)
< p! 4%B? /E' m(T;)...m(T,_) m(T, )2.. .m(T;)
14
=p! 4’B* 3 3 m(T)?-
k=1 i
| . 2 ' m(T,) ... m(T,_) m(T, ) m(T,)
PR SRR [P TR I

< p! A%B? [Zm(]'i)]p-l P [2 m(T,~)]2
< p! A°B? [Z m(Ti)]P pe

< pp! A*B* m(S)? e

(6.10.15)

(6.10.16)

(6.10.17)

"x 7-'1.’x 7‘}*

(6.10.18)

(6.10.19)

(6.10.20)

(6.10.21)
(6.10.22)
(6.10.23)

(6.10.24)

Since reducing e (by partitioning the 7T’s into smaller pieces) does not affect

m(S), A, or B, then

lIxe popll?—0
and therefore

1,0 (xd = L Gep)|[2— 0.
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Now, to bound ||R,||? we note that:

B(T,) is independent of B(T)), j = k.

B*(T,) — m(T,) is zero mean and aiso independent of B(T)), j # k.

B(T,) is Gaussian, zero mean, variance m(T}).

(T,) 2
E {[Bz(Tk) - m(Tk)IZ] = m(T,)? E[ im\/_YLTT)_ - 1] ] (6.10.27)

B(T,)//m(T,) is normal Gaussian, zero mean.

« E {[Bz(Tk) - m(Tk)]2] - m(T)? - fw (I-D%e 2 & (6.10.28)
2 oo
= m(T,)*C < . (6.10.29)
Thus,
HRAP=C Zal , b2 m(T)m(T,_) m(T)*...m(T,) (6.10.30)
< CA%B? e m(5)”. (6.10.31)

By making finer partitions of the T’s, ¢ — 0, which means

IR 12— 0. (6.10.32)

This proves the theorem for special elementary functions.

Next, let p and ¢ be any functions in L2(7?) and L*(T) respectively. By
theorem 6.2, we can find sequences of special elementary functions pn € L*(T?) and

#, € L*T) such that

llo, = oIl — 0 (6.10.33)
and

o, — oll — 0. (6.10.34)
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By the above, we have
p
1p+l(pn¢n) = Ip(pn) 11(¢n) - 2 Y —l(pn &:) ¢n) .
k=1

By using (6.10.1), (6.10.4), and (6.8.2), we get:

HEpr1(ondn) = L)L, = 111,4100,8, — oI,

< Hhs1(p e, = p) |

< Vo+D! llp,é, — poll

S Vo+D! llp, (¢, = DI +Vo+DI I, - p) & ||
=V+D! llp,ll-He, — o1l + v+ llp, — pll-1ell

—0asn— o,

Also,

11, I, = L,6) L, < 1,6, L, - &),
+ LG, —p) LIl
< LI -, = DI + LG, — oI - 1)
< Vp!llp,ll-llg, — oIl + Vol llo, = pll - 18]l

—Qasn— oo,
And finally,

HIp—-l(pn (f) ¢n) - Ip—-l(p (>;) d’)HLl
< _ -

”Ip l(pn (7‘) b,—p é) ¢)H
S VE-D'llp, x ¢, —p x o¢ll

(k) (k)

< V-D!lip, - p) X b, +~V=-D!llp X (6, — &I
S VE=-D!llp, = pll-llg, Il + V=D |lpll-1l¢, — ol

—Qasn— .

Q.E.D.
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6.11 Theorem: Relationship Between Multiple Ito Integrals and Fourier-Hermite

Expansions

Let p(2), po(8), ... p,(¢) be an orthonormal set of real-valued functions in
L,(T) and let H,(x) be the type of p-th degree Hermite polynomial defined in table
5.2.1b. Then,

p) terms P, terms D, terms
f. o fpl(tl) b 'pl(tpl) pZ(tpﬁ-l) M 'p2(tp1+p2)' . ‘pn (tpl+...+p,,_l+l) . 'pn (tpl+ . +p,,)
dw (1) ...dW (s, 4,)

H, [% [ e dW(t)]

=11

I T (6.11.1)

~ Proof:

(By induction with respect to the sum pi+...+p,). By convention, let

Iy(1) = 1. The proof is true trivially for both p;+.. .+p, = 0and p;+...+p, = 1.

Let us now assume that (6.11.1) is true for pit+...+p, = p—1, p. Without loss
of generality, let p; > 1. In preparation of using theorem 6.10, let

p1—1terms pyterms
Jo] (tla cen ,tp) =p1(t1) .. 'pl(tpl—l) pz(tpl) .. ‘p2(tp1+p2—i)

P, terms
Pty o+ P ), (6 + =) (6.11.2)
() =p1(0). (6.11.3)

From theorem 6.10,

oot t) o1 dW () ... aW (1) daW (1)
= [ Sot ) awa) . aw) [0 aw (o)

~s [ e X prdW (i) dW (1)) AW () dW (). (61140)
k=1
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By the orthonormality of {p;, ..., py},

p X P fp(tl,...,tp) pi(t) m(dy)
pl(tl) .. .pl(tk..l)pl(tk+1) .. -pl(tpl—l) :
- pZ(tpl) "'pn(tp1+...+p,,—l)’ 1<k
We may now evaluate the r.h.s. terms in (6.11.4), using the assumption of (6.11.1) for

p,p—1 (instead of p+ 1, which we seek to prove). Note order p; +

.+p,—1l=p,andpy -2+ p,+...p,=p— L.

f...fp(tl,...,tp) dw(t)...dw(z,)

p1—1 terms D terms
= f fpl(tl) _1) pz(tpl) ...pz(tplﬂ,z_l)'”
D, terms

W) ...
. -pn(tpﬁ.“_.‘.p"_l) . 'p”(tl’1+---+p,,—l) d (tl) dW(tp)

HPk l% fp,- dW(t)] H(pl—l) [715- fpl(l) dW(t)]

- T (6.11.6)
Il W2)" w271
I X b dW (). dW () dW (1) ... dW (s,) 6.11.7)
f fpl(tl)...pl(tk_l)pl(tkH)...pl(tpl_l)pz(tpl)... . ' (6.11.8)
=Pty ap ) AW (1) AW () dW (44) ... dW (1), 1< k < py—1,
0 k 2 p,
1 | 1
] Hp,lﬁ fo:10 dW(t)] Hm*[f e dW(t)]
{4 WD 5
= 1 < k < pl'_l’
Oa k >p1 .

We can now evaluate (6.11.4); the Lh.s. of (6.11.4) is the Lh.s. of (6.11.1) for the

case p + 1, which we are trying to find, and the r.h.s. of (6.11.4) is:
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H, [—\/% [ dW(t)]
II

=2 ~2)*?
1 1
(\/i)p1 [ﬁflp‘—l l-:/'—-z— fpl(t)dW(t)] . fpl(t)dW(t)
~ 2D Ay VI‘EfPI(‘)dW(’)”- (6.11.9)

The factor (py— 1) arises from the sum ¥ in (6.11.4) and the fact that (6.11.8)
%

depends on k only through the given inequalities.

Now, since the Hermite polynomials satisfy a recursion relation:

, (6.11.10)

H, [%2] =VixH,_, [%l - 2(p=1) Hp‘_Z[%

(see table 5.2.1b), we see that the quantity within the right pair of brackets in (6.11.9)

is simply

H,, [—\/% [ o1 dW(t)] .
Q.E.D.
6.12 Theorem: Completeﬁess of Multiple Ito Integrals

Let F [dW] be a lossy finite mean square functional of Wiener increments dW

(see 5.5). Then, F [dW] admits a multiple Ito integral expansion

Flawl= Y 1,(f,= Y 1,,), (6.12.1)

the series converging in the mean-square sense.

Proof: By the Cameron-Martin theorem (interpreted on (—co, ) as discussed in sec-

tion 5.5),
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Flawl=3 ¥ 5 a0

P pt.tpy=p <. <u,

4, (s Jay Waw), (6.12.2)
=1

where {a, (1)} is a C.O.N. set, {H;} are the Hermite polynomials described in table

5.2.1b, and the a’s are Fourier-Hermite coefficients related to the A’s in (5.3.5) as fol-

lows. H, (x) is related to HY (x) by:

@rp)~ V2 g l-%] - H¢ [7"_2—1 = HY (x), (6.12.3)
therefore the product terms is simply a rescaled element of the Fourier-Hermite set
{¥} as in (5.3.3). The indexing on the summations is arranged in such a way that
each unique product of terms appears only once. Therefore, the a’s in (6.12.2) are
vrelated to the A’s in (5.3.5) simply by the substitution of the Hermite polynomial is in

(6.12.3), and proper bookkeeping of the indices:

4. u n _
Bl = A g , I @%p,1)~12, (6.12.4)
where p, appears as a subscript of 4 in the u;-th position, p, appears as a subscript of

A in the u,-th position, and all the other subscripts are zero.
Let
ul .

R~
flt ) =22 3 T a,ra, ) .a, (5).
pyt.tp, u<..<u,

au" (tP1+--~+Pn-l+1) eee aun (tpl+"'+pn). (6.12.5)
Then, by (6.11.1), (6.4.1), and (6.5.1), we obtain (6.12.1).

Q.E.D.
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Remarks:

The assignment (6.12.5) yields a uniquely divided kernel S, for each functional
F. This is by virtue of the careful ordering of the subscripts, the symmetry of group-
ings of a’s with the same subscript, the uniqueness of the A’s in (5.3.5), and the
corresponding uniqueness of the a’s in (6.12.4). Thus, we have one proof that the
symmetrized kernels fp in (6.12.1) are uniquely defined. In the next section, a more

direct proof is given of this same result.

6.13 Theorem: Uniqueness of Symmetrized Kernels

E=3 L) =3 1,(5)=> f, =3, ae. (6.13.1)

Proof:

Let L,(T7) be the totality of symmetric functions in L,(T?). L,(T?) is a closed

subspace in L,(7?). Let

F, (k) = ﬁ E{el ()Y, k€ L), 6.13.2)
Since
F,(ah, + b%,) = aF,(k,) + bF,(3,) (6.13.3)
and
IF, (5] < pi el - 112, G = Tl - 1l 6.13.4)

F, is a bounded linear functional on L,(7?). By Riesz-Fischer Theorem in Hilbert

space, there exists §, € L,(T?) such that

F,(h) = <5,, h,> . (6.13.5)
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By theorem 6.12,
- 1 -~ . (5 - -
F,(h,) = o7 E{L,(f,) I")(h)} = < f,, h,> . (6.13.6)
Thus,

<5, B> = <f,, h,> forall h, € L,(T7). (6.13.7)

This means that §, = ]”p a.e.

QE.D.
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"Lo! thy dread empire Chaos! is restor’d” ... Alexander Pope
7. Volterra and Wiener G-Functionals of White Noise

In this section, the multiple Ito integral is realized as a finite, telescoping series of
homogeneous Volterra functionals driven by white noise. This series is called the
Wiener G-functional. The G-functionals are an orthonormal set of functionals which,
despite their appearance of being non-homogeneous, in fact are homogeneous over
white noise excitations. they realize, in a subtractive manner, the masking of the diag-
onals inherent in the multiple Ito integral. The diagonal values of the G-functional
kernels cannot be identified by the statistics of the G-functional, and may be assigned
arbitrarily. Like the multiple Ito integrals, the G-functionals fully span the finite
mean-square functionals of white noise, and can represent both non-casual and casual

functionals of the white noise in series form.

Wiener G-functionals are part of the lore of non-linear systems analysis. Wiener
G-functionals and Volterra series form the heart of the so-called Wiener-Volterra
approach to identifying non-linear systems through the use of white noise excitation
[RUG1, SHEI1-2] which we will in fact use as part of our model realization procedure.
This concept, attributable to Wiener [WIE2], is regrettably plagued with serious diffi-
culties in general circumstances. Notk every nonlinear system admits a Wiener G-

functional series representation. The system
y(@®) = (u())? (7.1.1)

cannot be represented by Volterra series without resort to singularity function kernels,
and it is pathologic under white noise excitation. (What is the square of a white noise,

anyway?) Even when a non-linear system posesses a well-behaved Wiener series
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expansion under white noise excitation, the corresponding Volterra series description

of the system may be disappointing. For example, the system,
y() = x(1)-Q+x())7! (7.1.2)

where x(t) is a stable linear functional of the input u(t), can be seen to admit virtually
any practical input, including white noise. Unfortunately, the Volterra series resulting

from Wiener series identification procedures is the Taylor expansion:
y(&) = x(t) = x (@) +x(t)—. ..., (7.1.3)

which is only valid for inputs defined by the bound |x(z)|<1. Polynomial series
approximation is simply not a good choice for describing the response of a compres-

sive system, such as this example, to all inputs.

In contrast to all of this, the Wiener-Volterra systems approach actually works
very well for our purposes. The only systems we will identify are finite mean-square
functionals of white noise which are known to admit a Wiener expansion. The Vol-
terra systems of interest (actually, G functionals) will be finite order and will only be
excited with standard white noise for the exclusive purpose of modelling general finite
mean-square processes. Thus, while the Wiener-Voiterra approach may deserve legiti-
mate criticism ([PAL] for example) for being troublesome in general circumstances, it

is truly in its element in our application.
7.2 Definition: Homogeneous Volterra Functional

Let f,(¢;,...,1,) € Lo(T?). Then f, admits an orthonormal expansion in the L,

sense as follows:

N
fp(tl,-”’tp) = 131_1.‘; 2 aal...ap(ba‘(tl)"'(bap(tp)a

ahy, l!p
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where {¢_ ] isa C.O.N.seton T. Let

@,

N
f‘{v([l,...,tp)- 2 aal...ap¢al(t1)"'¢a,(tp)‘ (7.2.2)

Ao ,a,

Then
|| fp—fp¥ || —0 as N—eo . (7.2.3)

Let u(t) € L3(T) be a deterministic input function. Then, the p-th order homogene-

ous Volterra functional of u (with kernel f ;’) is:

thw= .. foN(tl,...,tp)u(tl)...u(tp)dtl...dtp (7.2.4)
N
Y za aal‘_.apiI_II Jobe,@ut)ay, (7.2.5)
and
H, (fp,u)—l\}im H,(fMu). (7.2.6)

All of this is well defined because £, £ € L,(7?) and u(t)eL,(T).

Let X, (t)—n(s) be a sequence of mean-square continous Gaussian processes
converging to white noise on T (see 3.2). Then the p-th order homogeneous Volterra

functional of white noise n, Kernel f7, is:

(f}’,n)-ﬂ,...fT/}’(t,,...,t,,)n(tl)...n(tp)dtl...dt,, (7.2.7)
N P
= X aa,...a,iI_Tlhm :1_{&]; bq, (1) X, () dy; (7.2.8)
[2 & FRIRY ap-l
N P
- > G a1l j;_zbal(ti)n(ti)dti (7.2.9)
yo v ,ap
1 N P
7
=SS L sl [ b 1) dW (). (7.2.10)

It should be noted that no attempt is made to directly define n(t;) ...n(t,) as

the limit of X, (r})...X,(¢,). The definition uses only the sense of X, (r)—n(s) as
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given in section 3.2 (the linear sense). H, }’,n) is defined as a continous polynomic
function (finite sum of finite products) of p finite mean-square Gaussian linear func-

tionals

[6a,(0X,d— f8, (On(Dar (7.2.11)

of Gaussian processes X, (£)—n(z).

7.3 Theorem: Linearity of H,
H, (uf, + vg,,n) = ut,(f,,n) + vH,(g,,n). (7.3.1)
7.4 Theorem: Symmetrization |
H,(f,)) = H,(f,). (7.4.1)

Proof : Let (ky, ..., k,) be a permutation of (ay, ..., a,), signified by (k) ~ (a),

and let
Vo= [ 6, On0)at (7.4.2)
Then
)4 14
V=11V &~ @), (7.4.3)
i=] jm] .
SO
4
H(fm) = 3 a4 . I]l: Va, (7.4.4)
ay -
D .
= ¥ .17 (7.4.5)
al’ P ap l-l
1 )y )y ﬁ 4 (7.4.6)
- —— a a, 4.
p! k)~{a) ay, * * - a, ok joa ]
1 ?
= X = Y ..V (1.4.7)
a, e, P~ i1 '
=H, (f,..). (7.4.8)
Q.E.D.
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7.5 Theorem: Mean of Hp

E(H, (f,,) =

0, p odd,
, (7.5.1)
| -
sf —2‘—£ f ffp(tl,tl, cooy tpstp)dty. .. dt,, p even.
[ﬂ !22 2 2 2 -
2
Proof :
E{(H,(f,,n)} = E(H,(f,,n)}
P
- 3 Qw%qqﬂl. (1.5.2)
L ITRRRR: 1 -

Using (5.11), we see the r.h.s. of (7.5.2) is zero for p odd. Using (5.12), for p even,

the r.h.s of (7.5.2) is

Y ee, 5§ Ellben, (153)
Apy. ..,
There are ’
_ﬂi (7.5.4)
%m2

terms in ) [], each one selecting a particular pairing of indices a;,a;. but since g is

symmetric, we get

(7.5.5)

uuy..

(g)!22 uy,...u ‘

.ulul‘
2 2 2
2

Using (7.2.2) and the orthonomality of {¢,}, we evaluate the sum in (7.5.5) as an

equivalent integral along diagonals:

505l —sz ...ff(tl,tl,... ty.tp)dty.. dt,. (7.5.6)
(£)12? 22 2

2
Q.E.D.

64



7.6 Theorem: Mean Square of H is Finite
EIH,(f,.n)]? < oo. (7.6.1)
Proof : Let f,(ty, ..., 1,0 € L,(T?) be elementary. Let

- ,n). (7.6.2)
Then y = H,(fy.n)

|y|? = f ff,,(tl, s B3ty oy )0 (ey) o n(typ)de L dty, (7.6.3)

= HZp (gzp,n), (764)
where
g2ty ooy ) = £ty o ) (s ey 1), (7.6.5)
Since

[ [ gyl = [f flfplzdtl’]2< e, (7.6.6)

we see that g5, € L,(T?). It is also elementary, so indeed (7.6.4) is well defined.
p

By Theorem 7.5,

E{ly|} = E(H,,(g;,,n)} 76.7)
(2p)! -

< p'zp f flg(tl’tb ey tp,tp)|dt1 dtp (768)

<. (1.6.9)

Q.E.D.

7 .7 Definition: H,(f,,n) for general f.

Theorems 7.6 and 7.3 prove that Hp is a bounded, linear functional on the ele-
mentary Kernels f}’. Therefore H, can be extended to all f € L,(7?) as follows: Let

fY¥— f,. Then

H,(f,,n) A lim g.m. (f),n).
n—o0

With this definition, Theorems 7.3-7.6 also extend to H,(f,,n).
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7.8 Definition: Wiener G-Functional

Let H, denote the p-th order homogeneous Volterra functional operator on

white noise n(¢):

Hyhpo) = [ [ by @)nt) - naty ... dyy, (181

and adopt the convention
Ho(ho,n) == ho. (782)

Let n(¢) have spectral density S, and let Ep denote line symmetrization of p-th order

kernel h, € L,(T7).
The p-th order Wiener G-functional G, is:

, |
G,(k,,n) A ¥ H,(ki(,),n) (7.8.3)
i=0

where the derived kernels k;(,) (derived from k,) are defined as follows:

kp(p)(tl’ yeee s tp) = Ep (tl, cees tp), (7.8.4)

kp—2m(p)(tt1’ ceey tp—Zm)

“DmpISE -
= (p — zm)|(m)'2m f fkp(xl,xl, con s X sXpps Ity oo s tp—Zm)&l e dx,,,,
m=1,..., [% , (7.8.5)
kipy=0, i#=p—2mforsomem=0,...", [%l . (7.8.6)

Remarks: The G-functional G, is frequently called a non-homogeneous p-th order
Volterra functional because it appears as a telescoping series of homogeneous Volterra
functionals of decreasing order with kernels of similarly decreasing order. It should be
noted, however, that S, is actually a functional of n(¢) (albeit a constant). If this func-

tional dependence of Sy on n(¢) is respected, the G-functional is indeed a homogeneous
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Sfunctional of white noise inputs n(¢). This will be demonstrated by showing the relation-
ship of G, to I,, the homogenous multiple Ito integral. In essence, the auxulliary,
derived integrals of order p-2m are precisely the components thrown away in summa-
tion ¥'” in the development of the multiple Ito integral. Along the diagonals in ¥,
the square increments SodW? act (in the m.s. sense) like Sodr. With S; a sure func-
tional of n(t), we can then, in effect, precompute the integral of S,dW? along diago-

nals as sure inner product integrals with respect to Sydt along those same diagonals.

It is trivial to show that the G-functional is linear with respect to its kernels:

G, (uf, + vg,,n) = uG,(f,,n) + vG,(g,,n) (7.8.7)
and that

G,(f,,n) = G,,'(/'*,,,n). (7.8.8)

In [SHE,; and [RUG,], the G-functionals are introduced as a potential means for
identifying a deterministic Volterra system. In these accounts, the G-functionals are

defined by requiring the orthogonality condition:
E{H, (h,,n)G,(k,,n)} =0, m<p (7.8.9)

for any m-th order homogeneous Volterra functional H,. ‘The Kkernels (7.8.4)
through (7.8.6) are the ones that achieve this condition. Thus, in these works, (7.8.9)

is used to define the G functionals, and (7.8.4) through (7.8.6) are the derived results.

In this paper the selected role for the G-functionals is a white noise driven Vol-
terra realization of the multiple Ito integral /,. In this context, the approach in [SHE,]
and [RUG,] is somewhat more indirect, even though it is perfectly sound. I simply
choose td show how the Volterra Series follows from the multiple Ito series rather

than the other way around. With so much machinery already in place in Sections $5
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and 6, the development here of the G-functional properties from the adopted defini-

tion 7.2 and 7.8 and the recursion theorem 7.9 is very direct and rapid.

7.9 Theorem: Recursion Relation

Let {¢,(¢)} be an orthonormal set of real-valued functions on L,(T). Let
d’(ll, ceny tp) - ¢f1(t1) cen ¢i,(tp)‘ (79.1)

Then the G functionals of white noise n(z), spectral density S, satisfy the recursion

relation:

G,,+1[<I>¢,.M] - G,,(d))Gl[qsiM] - S, él Gp_1[¢(>;)¢,.p“] (1.9.2)

where
d>(>:) ¢,~p+l[t1, e tp__ll = fcp(:,, v em s By - ) () dt. (7.9.3)

Proof: All three terms in (7.9.2) comprise integrals that are well-defined. The
theorem will be proven by showing a direct relation between each functional and ker-
nel on the Lh.s. of (7.9.2) of order p+1—2m and the functionals and kernels in the
r.h.s. of (7.9.2) of the same order. This will be done by splitting each (p +1—2m)-th
order term on the Lh.s. into two groups\which contribute the respective parts to the

same order terms on the r.h.s.

Let _

kp+1(t1, ey tp+1) = ¢il(t1) "'¢ip+l(tp+1) (7.9.4)

and let Ep-\"l denote its symmetrization. Then we write the derived kernels of k, | as:

Kpr1—2mGp+ D1 oo s bhs1—2m) =
(= D7S§ ) f fcb-(x Yo, (x) .. o, (xp)é; (x,)
(p+1—=2m)!1(m)12™ =i AVXVUR R\ 0y X)), X

. "¢j2m+l(tl) - .d)_,-ﬁl(tp.,_l_z,,,)dxl ‘e dx,,,, (795)
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where the sum is over all permutations (jy, ..., Jp+1) of (i, ..., iy. (), and where

2+l

-1, ...,
m=1, 5

Many of the (p +1)! terms in the sum are identical, since:
* ¢,(x)¢,(x) = ¢, (x)¢,(x) (2™ repeats),

® commuting pairs of functions ¢ within the integral does not change the

integral (m! repeats),

® and permutations of the p+1—2m functions ¢ outside the integral does

not change the product ( (p +1—2m)! repeats).

We now break the sum in (7.9.5) into two groups:

..."21...+22..., (796)
G~

corresponding to Groups 1 and 2:

® Group 1: ¢,-p” does not occur within the integral, ie., it is free,

(p+1—2m)p! terms, and

® Group2: ¢ at is inside the integral, is integrated out, 2 mp! terms.

In Group 1, permulations of ¢i,+1 with the other free ¢’s has no effect on the multiple

white noise integral, and this is exploited by merely noting the number of permuta-

tions and by factoring out a first-order functional with kernel db,-w1 from the

remainder. In Group 2, the terms can be ordered according the the subscript of the ¢

that combines with ¢ - in the integral. By making this ordering explicit, we obtain

1

the Group 2 terms in a desirable form.
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We first consider the case when p is even. The lead kernel (m = 0) is written as

follows:

1
kp+1(p+ 1)[!1, ey tp+1] ‘GT)' 2 ¢j,(tl) ¢J'p+1(tp+1)' (7.9.7)

All occurrences of ¢,-M in the sum are free, so we put all these terms in Group 1, and

nothing in Group 2. Moreover,

Hp+1( +l(p+l)’") H, .

( T 1)'¢,’+1(tp+1) 2 ¢J'(t1) ¢j’(tp),” (7.9.8)

= Hp(kp(p)’ n)Gl(¢i’+|7 n) s (7.99)
where
Ky =— % &[4, ..., ,,] (7.9.10)
(l)~(1)
= lEp R (7.9.11)
and
ky(ty, ooy 1) = ®(ey, ..oy 1), (1.9.12)

Now, for m=1, ..., g, and working with I, first,

T )
Hos1-2m| T +1(:12),:f{m!2m wH1=2m,, (ps1-2m) -
(/)g(«) f f¢/,(x1)¢,z(x1) L dx,,, n] (7.9.13)
= Hy—3m Ky —2m(p)» ")Gl[qbim, n], (7.9.14)
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where

kp_zm(p)(t], ceey Ip_z,,,)
(-nmsr
(p=2m)!m12™ (=)

¢j2m—l(x’")¢j2m(xm)¢12.+1(tl) .. '¢j’(tp—2m)¢l cee ﬂm'

2 f"'f¢j,(x1)¢j2(xl)

(7.9.15)

This is the formula for k,_,(,) as derived from k, = ®, and is the result we seek.

Next, we work with Z,:
p

.=2m Y T [ fe,Gpe,G0...

k=1 (j)~(i) = k

¢,-k(xk)¢,~’+l(xk) . .d)I-m(x,,,)dxl . .dxm¢j2m+l . -¢j,(tp+l—2m)-

(7.9.16)

The notation ()~ (i) # k denotes the (p — 1)!, permutations of all subscripts except

k and p+1. The sum Z, has been expressed as two nested sums, the outer one

freezing the ¢, with which ¢ et is paired. The factor 2m accounts for the invariance

of the integrals to interchange of ¢; with b, and the m possible permutations of the

pair (¢, ¢ j+ 1) with the other ¢ pairs within the integral.

We may rewrite (7.9.16) as:

P
Z,.=2m% ¥ @, x ¢,
P I GRS

and therefore,

(-Dmsy
(p +1-2m)tmn2™ 5
=DmSg2m P
d X .
(p + 1-2m)'m!i2™ k-l(,-)g(,-) ? (k) d"”“
()" isp-!

p
=-573

»
k
= -5 21 Ky 1=2(m=1).(p—=1) t1, -+ oslym1=2(m—1))>
k-
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b, x ¢,
=1 (p—1=-2(m—-)!(m—-1)12m"1 (,)i‘:'(i, Py P

(7.9.17)

(7.9.18)

(7.9.19)

(7.9.20)



where kX(..) is recognized as the kernel derived from (b”()/:) b for the case

m—l-O,...,[ﬂ-zll—]. This is the desired result for ,, and proves the theorem for p

even. Note that, for m = 1, .. .%, there are terms appearing in both Z£; and X,, owing

to p+1 being odd. That is, over all (p+1)! permutations, ¢, , appears both free and

within integrals for every m=1, .. .,%.

Now, for p odd. The difference between this case and p even is tied to the
allowed ranges for m in each of the sums Z; and Z,. Asin (7.9.7), when m=0 on the

Lhss. of (7.9.2), all terms have ¢, , free, and therefore all terms are accounted for in
-1 )
Z,. The cases m=-1,...,*';—2 also follows the previous development for p even,

since, for these values of m , there is always a mix of free occurrences of ¢ iyt and

occurrences within the integrals.

For m = 2%1, there are no free occurrences of ¢ - This is the case that gives

rise to the constant term in the G-functional series. The formulas given for £, in

(7.9.13) though (7.9.15) understandably do not make sense for this value of m. How-

ever, all required terms in X, are already accounted for by m=0, .. L_zi The formu-

las for £, in (7.9.17) through (7.9.20) are valid for m—1 = [L;}- . Thus, the con-

stant terms associated with the (p—1)-th order G,_, functionals are properly defined
and accounted for, and their sum (over index k) equals the constant term associated

with the (p+1)-th order functional G,,;.
Q.E.D.
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7.10 Theorem: Relationship between G-Functional and

Fourier-Hermite Expansions.

Let {¢,(#)) be a C.O.N. set of real-valued functions in L,(T), let n(¢) be white
noise, spectral density Sg, and let 1?, (x) be the version of p-th order Hermite polyno-
mial in table 5.2.1e. Then, with p = p; + ... + p,,

Gp (¢1(tl) o ¢l(tp1) ¢2(tp1 + 1) v ¢2(Ip‘ + pz) . -¢n(tpl + P T 1) .- -¢n(tp),n)

p, term

- &, [ ¢ Onwa). (7.10.1)
=l

Proof Follows the same proof by induction as in Theorem 6.11. Some conversion of

Hermite polynomials is necessary; for example:

| |

. H,,[-J—E- [ s.aw

=1 W2)”

- II A, [f ¢, (Dn(t)at |. (7.10.2)
i=1

7.11 Definition: G functional, f € L,(T?).

If f,.fY € Ly(T?) and

Y= f£,1| =0 as N —oo, ‘ (7.11.1)
Then

G,(f,,n) = lirg} q.m Gp(f,,N,n). (7.11.2)

7.12 Theorem: Relationship between G-Functional and

Multiple Ito Integral

Let k, eL,(T?), real-valued, and let n(t) be white noise, spectral density Sy, and

W (¢) the standard Wiener process corresponding to n(t). Then
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G, (kyom) = S 1 (), W), (1.11.D)

Proof Let {¢;(1)} be a C.O.N set on L,(T). By Theorems 6.11 and 7.10, the resuit

has aiready been proven for kernels of the form:

b (t) ... 0, (). (7.11.2)
Approximate k, by
N
k.ot = % ay g 9,(0) L0, (1), (7.11.3)
ity .. dp
so that
Hk, — kM| —0as N —eo. (7.11.4)
Then
=i N oY o1 £ N
G,(k, n) llrg g.m. G,(k,',n) lll‘{ll q.m. S¢ I, (k), W)
- s L, w). (7.11.5)
Q.E.D.
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"] am as strong as a bull moose and you can use me to the limit." ... Theodore Roosevelt.
8. Dynamical Realizations for Stationary, Causal Wiener Series

The purpose of this section is to show methods by which Wiener Series can be
realized by finite-dimensional dynamical systems driven by white noise. The hope is
that, by finding at least one finite-dimensional realization with the desired properties,
one can achieve reduced-order models using minimal-order realization concepts bor-

rowed from state-space methods in control theory.

In section 10, I will give a causal, stationary functional of white noise with the
desired approximation characteristics, and in section 9, I will show how the
corresponding causal, stationary Wiener Series can be identified. In this section, there-
fore, I assume I am given a functional Y of white noise which has one of the following

forms:

Fourier-Hermite expansion:

YW= % Apomy TTHN|f 1 =0 W), (8.0.1)

multiple Ito integral expansion:

Y=3 o h =y t—1) dW ). dW (), (8.02)

¥

or Wiener G-functional expansion:

Y =SS [ [ b =iyt =) G n(e) drycdr, |, (8.0.3)

n i=(
where either the A’s in (8.0.1) or the 4,’s in (8.02) and (8.03) are given. A particular
goal is to show is how Y may be computed via a bilinear stationary stochastic differen-
tial equation:

dX, = AX, dt + NX, dW, + BdW, (8.0.4)
dY, = CdX,,
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and, how this, in turn, can be realized by a bilinear stationary differential equation

driven by white noise:

j‘? X (1) = A X(1) + NX() n(e) + Bn(t) + D', (8.0.5)
Y(t) = CX(T)

8.1 Truncating The Wiener Series

Recall from section 5 that Y (¢) can be approximated in the mean-square sense by
a finite sum of the form (8.0.1). This series is finite in two ways: there is 2 maximum
finite order of Hermite polynomials, and there is a finite number of basis functions L,
such as the Laguerre functions (5.5.2). There is, therefore, a justification for truncat-
ing the Wiener Series, the result being a finite series with kernels which are finite sums
of finite products:

N
hll (tl‘ .oy tn) - 2 a;

il...in

iy 1,"(11) I,-.(t,,) (811)

1--

8.2 Definition: A kernel A, is separable if it can be written as a finite sum of pro-

ducts:
N
hy (ty, ..., 1) = p2 Vi, (r) ... v,-"(t,,). (8.2.1)
iy iy

The kernel A, is said to be differentially sgparable if each of the v’s above is differenti-

able.

By truncating the Wiener Series, and adopting the Laguerre functions I, for the
v’s, we obtain a finite order series each of which is readily identified and has kernels

which are differentably separable.
8.3 Theorem: [BRO1, RUB] A finite Volterra Series

. N i t
Y()=3% f_w f_“ At =1, oot =) ule) ...u(g)dty .. .dy (8.3.1)

1=Q

76



where u is continuous on (—oo, ¢), is realizable via a finite-dimensional bi-linear dif-

ferential equation of the form:

4

pr X() = AXG) + NOX(Du(e) + B(Hu(s) (8.3.2)

Y(t) = C()X(2)
if and only if the kernels &, i = 0, ..., N are separable. The bilinear realization can be

made stationary (time-invariant) if and only if the kernels are differentiably separable.

The details of this proof may be found in the references. The proofs show how
separability allows each kernel 4, to be written in the triangular form:

N
he =ty ont=t)= 3 v =) v, (=1 ... v (o — 1) (83.3)

it ia

Note that the Volterra integrals can be evaluated over triangular regions:

f_; f‘; (=t oo t=t)u(y) ...u(e) dry .. .dy
i R G- im0 ue) ) dry dh, (8.3.4)

where h# denotes the symmetrization of 2. If (8.3.3) holds, then (8.3.4) can be
evaluated by iterated integrals. Each iteration integrates in a linear fashion the instan-
taneous product of input u(z) with the previous integration result. When the kernels
are differentiably separable, these successive integrations can be done by time-
invariant systems. If one writes each step or iteration, the model (8.0.4) becomes
quickly apparent. Associated with each integration is a block, and the matrix N
describes how the output of a given block is multiplied by the input and fed to the

next block.

An example should help illustrate this procedure. Note that the Laguerre func-

tions can be written as sums of functions of the form ¢ ¢**. Consider realizing

t t - —
J o a= 2 = )2 2T ) u ) dnan, (8.3.5)
as a stationary, bilinear system. Note that
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M=) At~ 1y) Ny + A (0= 15)  Aqtly=14)
g T QRITI TR TR At Tl (8.3.6)

and that

(t— )Mt = 1))2= (1= t)He =ty + 1, = 1)?
= (r= 1)+ 20t = 1)t = 1) + (2 = 1)y — 1) (8.3.7)

Then, (8.3.5) can be evaluated as the sum of two groups of integrals, one being:

t g +a) (= h (ty—19)
f_n (t = 1% M0 [f..» P u(tz)dtzl dt,
d I +A )~ 4 (¢~
+f_°°(t— t1)3 e 1772 =) ll(tl) [f_w (tl"‘lz) e)‘2 n- U(tz) dtz] dt,

e 0 ) [ [ = 2 P wdy | an (8.3.8)

The other has the indices 1 and 2 interchanged and takes into account the symmetriza-
tion. By taking the bracketted integral first, then the outer integral second, it should

become clear that (8.3.7) can be realized by a stationary, bilinear system.

Note that the only condition imposed on « here is that it be continuous. Nor-
mally, in matters of Volterra series, it is necessary to further stipulate bounds on u to
assure convergence. What is making the difference here is that the truncated series is
of finite order. So, truncation not only leads to finite realizations, but also realizations

which exhibit broad tolerances to various excitations.

Note in the example above that, to achieve the bilinear realization, it was neces-
sary to symmetrize the kernel. This is a necessary step that greatly increases the
dimension of the required state space, perhaps even beyond that for an equivalent
Fourier-Hermite expansion. This is an eﬁ(ample of a bilinear system requiring greater

state dimension than a /inear-analytic one (see [BRO1]).
8.4 Theorem

A truncated causal stationary Wiener G-functional series can be realized as a fin-

ite order, stationary bilinear system driven by white noise.
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Proof: Recall a white noise is a sequence of almost surely conrinuous Gaussian
processes X, (t) — n(z). The lead Volterra operators are realizable as bilinear systems
for each path of X,(:). Each of the derived operators is also a Volterra operator with
differentially separable kernels (products of the Laguerre functions integrate out nicely
into lower-order products of Laguerre functions) and so is realizable as a bilinear sys-

tem.

For every continuous path of X,(:), both the original G-functional of X, (+) and
the bilinear realization of the G-functional of X,(:) yield identical solutions. The
response of both the G-functional and its bilinear realization precisely match as
X, (t)— n(s), and so by the definition of the G-functional of white noise, the theorem

is proved.

Note that additional states would be required in order to realize the derived ker-
nels. We will now show how the G-functionals can be realized using only those states

needed to realize the lead operator.
8.5 Definition: Ito Stochastic Integral [WON]

Let W,,a < ¢t < b, be a Wiener process. Correspondingly, there is an increasing
family of sub-o algebras of 4 on which W, is defined, such that for each s,
{w, - w,,t > s} is independent of 4, and W, is 4, measurable for each .

Let f(w, t) be a function jointly measurable in (w, ) such that, for each ¢,

f. = f(, t) is measurabie with respect to 4,, and (8.5.1)
b
S Elnld <. (8.5.2)

If fis an (, ¢) step function:

flo,)=filw), <1< 4, (8.5.3)
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wherea= < /< - < t,=band k=0, ---, n— 1, then the Ito Stochastic integral

of £ with respect to increments dW is given by:

n—1
Sl 0 aWe, 0 =" £ [ W, 5. - W, 1. (8.5.4)
k=0

If f is not necessarily a step function, but still satisfies (8.5.1) and (8.5.2), there exists

a sequence of (w, ) step functions f, (w, ¢) satisfying (8.5.1) and (8.2.2) such that

=g lE= L E17C 0 = £uC, Dl de =0
as n — o, (8.5.5)

The Ito stochastic integral of f with respect to dW is given by

b b
[ @0 aWe, 0= tim am [ f,, 0 dW(w, 0. (8.5.6)

8.6 Theorem

Let f(t}, ..., 1) eL,(T?), T = la, t]. Then the multiple Wiener-Ito integral

1,(f,) from section 6 can be evaluated as iterated stochastic integrals:

L) = p!Jth,{,..Ltg[L'z](tl,,_,, t,)dW,

aw,,---|dW,_,

v,

------ aw, . (8.6.1)

Proof. Recall 1,(f,) = I, (7,,). By symmetrizing f, — fp, we create a p!-fold sym-

metry, of T? that is fully represented by the wedge:

L <t
t_ <

N N

a
a t

(8.6.2)
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Recall £ € L,(T”) can be approximated in the mean-square sense by special functions

which are dense in L,(T?). For each such function:

4
f=TIxr, T.NT, =2, (8.6.3)

iml

the multiple Wiener-Ito integral is simply

L) = 11 B(T). (8.6.4)

iwl
But this is precisely the same result we obtain using the iterated stochastic Ito integral

as in (8.5.4). So (8.6.1) holds for f, a special function.

m.s.
If f, is not a special function, let f » — Jp» Where f; , is a special function.
By (8.5.5) and (8.5.6), again the iterated Ito integral precisely agrees with the multiple

Wiener-Ito integral.
Remark. The result is easily extended to the case @ — —oo.

8.7 Theorem

Suppose the p-th order Volterra operator on continuous u:

t t
j; o f Rt t) w () L u )y dr (8.7.1)

is realizable as a stationary, finite dimensional bilinear system:

thxm = AX(") + NX(Du() + Bu(t) (8.7.2)
Y(t) = CX(2).

Then the multiple Wiener-Ito integral
t t
J L n ) aw, . aw, (8.7.3)

is realizable as a stationary, finite dimensional bilinear system:
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dX, = AX, + NX,dW, + BdW, (8.7.4)
dY, = CdX,,

where the integration in (8.7.4) is in the Ito sense.

Proof Recall that (8.7.1) is realizable as a stationary, finite dimensional bilinear sys-
tem if and only if h, is differentiably separable. Recall this implies (8.7.1) can be writ-

ten as:
¢ Ip 12
J;v,,(t—t,,) j; J; vilty— tPule)dry . ... at,. (8.7.9)
where
R (t—=ty, .. t—1) = v, (t=1) - v{t— 1) . (8.7.6)

By theorem 8.6, (8.7.3) can therefore be written as

t 4 12
J;vp(t-tp) J;'----j; vilty—t)adW, ----dW, . 8.7.7)

If (8.7.2) corresponds (block) row for row, with the evaluation of a nested integral,
the result (8.7.4) is immediate. If not, there exists rotation of states (see [RUB]) that

will result in this correspondence for both (8.7.2) and (8.7.4).

8.8 Theorem: [WONI| Wong Zakai Correction

Let
%x () =mX (), ) + o X, )& () (8.8.1)
be a given stoghastic differential equation such that m (X,1), o (X,8),
6—3’7 o X,t),i=1,..., n, mand g; o X,1) are continuous » on
-0 < X; < o,a <t < b Also, let m, o, and o-ai% satisfy a uniform Lipschitz
condition.:
s Xo-r¥nll<kllx-YIL (8.8.2)
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where f stands for m, o, and o-g—;— one at a time. Let || o || = K, > 0 and

;
llall < Ky 1l & |12 If € = n(1) a white noise with Sy = 1, and dW () is the Wiener
increments process associated with n(¢), then the solution X converges almost surely

ona < t £ b to the solution of:

1 ao'lcm
dX, = X, t)d + —
=m X,, 1) dt 212"' 3%

X,) o, X,0) + o X, 1) dW,. (8.8.3)

8.9 Theorem: Application to Stationary, Bilinear Equations

Let -;itx () =AX() +NX() e +B£ (1) +D. (8.9.1)

If ¢ = n(t), with Sy = 1, then X converges to the solution of:

1 1

dX,= (AX, + 3 NNX, + 3 NB + D) dr + NX, dW, + BaW,. (8.9.2)
8.10 Theorem:
The Ito differential equation
dX, = AX, dt + NX,dW, + BdW, (8.10.1)

Can be realized via the white-noise-driven differential equation:

7‘1’; =A'X,+NX,n() +Ba(t) + D (8.102)

where n(¢) is the-white noise associated with dW (¢), with Sy =1,

and
A=A — % NN, (8.10.3)
1
D=—-= NB.
2

The proof of 8.9 follows from 8.8 quickly by realizing that stationary bilinear dif-
ferential equations satisfy the conditions in 8.8. The proof of 8.10 follows from 8.8
and 8.9 by simply adopting (8.10.2) and showing (8.10.1) is the corresponding Tto

equation.
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Theorem 8.10 shows that, if you find a bilinear realization of the lead Volterra
operator of a G-functional you can realize the entire G-functional (or multiple Wiener
-Ito integral) without needing to separately realize the derived operators. You simply

make two corrections, one to the A matrix, the other a fixed bias.
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Chaos often breeds life . . .
Henry Brooks Adams

9. Identification of Wiener Series Kernels

In this section, I describe cross-correlation methods for determining the kernels
of the Wiener expansion of a given L, functional of white noise. These methods are
often referred to as Lee-Shetzen identification (after two of Wiener’s colleagues, Y.
W. Lee and Martin Shetzer, who popularized many of Wiener’s ideas). They are usu-
ally introduced within the context of non-linear system identification using white noise
as the excitation, the so-called Wiener-Voltarra approach to non-linear system analysis
[SHE1, RUGI1]. As discussed in section 7, there are problems with applying Lee-
" Shetzen methods indiscriminately. Fortunately, however, our application is well suited
to this identification procedure. The systems we will identify will always be L, func-
tionals of white noise. The Wiener S¢ries developed will be of finite order and will

always be excited by white noise for the purpose of realizing stochastic processes.

Two methods are described, both of which use cross-correlations or projection
techniques. The first, or direct, method, attempts to measure the p-th order kernels
directly by cross-correlation of the functional output which p-th order products of
delayed, filtered samples of the white noise input. In my description, I make a deli-
berate attempt to avoid taking products of white noise itseif or using delta functions.
(Compare with the accounts in [SHE1, SHE2, and RUG1].) This is done to clarify
the inherent limitation of the method in resolving the kernel along diagonals. It also
emphasizes that the kernels, which belong to L, (7?), can only be resoived in an
averaged, mean-square sense and not truly point-wise as delta function descriptions
might lead one to believe. The second, or Fourier-Hermite, method is based on the

material in Section 4.
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9.1 "Direct” Method

Let F(n (1)) be an L, functional of white noise n(t), and let its Wiener expan-

sion be given by

Fim) = ¥ G,(hy,n) 9.1.1)
i=0

where G, is given by (7.8.3), (7.8.4), (7.8.5). Construct the following smoothed func-

tional of n(z):
g, (1) = S0‘1/2 l_fr n(&)de. 9.1.2)
€ T — €

Choose 7y,...,7, such that the intervals [r; — €, ;] are all disjoint, and let

p
Qe t,)=TI 9.GD. : (9.1.3)
i=1

Then Qp,e is a Wiener G-functional of 2 (¢) of order p. (Note how diagonals are

avoided).
Let the estimated kernel 4, . be defined by:
1
hye (T, 7,) = or E {F(n) Qe (75.001,) (n)] (9.1.4)
By (7.11.5), (6.6.1) and (6.7.1),

hye (Tppe.,7y) = -;—'E{Gp (h,,n) Q, . (Tl,...,Tp) (n) }

l L] Tp
= — j; . j;,—e hy (ty,...,1,) dty...dp . 9.1.5)

e? Jnme

We resolve how h, . behaves as ¢ — 0 as follows.
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9.2 Theorem

Let h, € L,(T?) and h, , defined as above. Then, for any g, € L, (T?) ,
: 2
ell_r‘noE[ l G, (g,.n) [ G, (hye,n) = G, (hy,n) ” ]- 0. (9.2.1)

Proof: This follows from (6.8.2) if, for all g, € L,(T?),

[of

Now, if A7 is continuous, (9.2.1) is quickly obtained using step functions as the g’s. If

g, (hyo— hy) r di” —0ase—0. 9.2.2)

h, is not continuous, it can be approximated by a continuous function fx,,, such that

[

JoS o o= i) far +500, 9.2.3)

where h,  is estimated from 4, and & is made arbitrarily small.

g, (h, ¢ —h,) r a’ <

9.3 Remarks

Note that the 7; must be distinct for Q, . to be a p-th order Wiener functional.
As € — 0, the 7’s may be made arbitrarily close together, but no two r; may be made
equal. Recall that the [ro integrals [, and Wiener functionals G, do not depend on
the kernel diagonals. We may therefore assign diagonal values for\hp‘e arbitrarily, and

so this restriction on the 7’s is not a problem for us.

The behavior of Q, . for overiapping 7 can be interpreted as follows. Suppose

71 =T, Then

. 2 p
Qp,e = —1? 'g%— [ j:'x‘i n (f) d¢ H q. (T,—) 9.3.1)
€ 0 i=3
1 p
== JI 9.(r;) ase—0. (9.3.2)

€

i=3
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Thus, Q, . actually behaves like a functional of order less than p, and therefore fails

to identify useful information about kernel 4, in direction of G, (h,, n).

Theorem 9.2 shows that, while 4, , may not converge pointwise to 4, it is clearly
equivalent to A, as a substitute within a Wiener G-functional. (Of course, if 4, is

smooth, we do obtain pointwise convergence!)

Finally, it should be noted that the only critical property of filter ¢, in (9.1.2) is
that it have a band pass that converges to unity over the frequency spectrum support-
ing the functional F. This is because L,(T) approximations to g, result in L, (7?)
approximations to Q, .. The particular form of g, adopted in (9.1.2) simply assures
without fuss that, for each e, the corresponding functional Q,, is clearly a homo-

genous p-th order Wiener G-functional.
9.4 Fourier-Hermite Method

This method is simply the implementation in steps (5.3.2) through (5.3.5) in the
Cameron-Martin Theorem. This results in the determination of the Fourier-Hermite
coefficients of the Fourier-Hermite series expansion, in contrast to a Wiener Integral

expansion.
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"Sing unto him a new song;
Play skillfully with a loud noise.”

... Psalm 33

10. Wiener-Nisio Functional

Thus far, the only convergence idea introduced has been the mean-square con-
vergence of Wiener Series expansions of a given L, functional of white noise. We
now explore a broader concept: convergence (in a sense to be described) of the pro-
cess generated by Wiener Series under the flow of the white noise, specifically toward

given processes which are to be modelled.

Let {X(w™®,t), — o0 < t < o} be a given stochastic process, defined on some

probability space (Q *,B*,P*), having the following properties:

a. scalar, real-valued,

b. strictly stationary,
c. ergodic, (10.0.1)

d. continuous in probability.

Let X(-,0 ) denote a typical sample path of X. ‘(This is a representative sample of
data.) Using this path, we shall construct a sequence of causal finite mean-square
functionals of an arbitrarily selected white noise excitation. Under the flow of the
white noise, these functionals give rise to a sequence of processes that converge in
finite-order distribution to X. Each of these functionals can be approximated by

finite-order, finite-dimensional causal Wiener Series. By this means, we demonstrate
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constructively that may process satisfying (10.0.1) can be approximated in the sense of

finite distributions by a finite-order causal dynamical system driven by white noise.

The Wiener-Nisio functional involves a remarkable construct, a sampling time
determined by paths of a white noise or Wiener increments process. The idea of the
random sampling time is apparently due to Wiener [WIE1]. The concept was refined
and enlarged by Nisio [NIS1}], and was summarized by McKean [MCKI1]. Nisio
proves the approximation theorem both with and without the ergodic assumption
(10.0.1¢), but the latter is not pursued here—intentionally. The ergodic version
emphasizes how a typical sample path can serve as the sufficient statistic for modelling
purposes without the necessity of explicitly determining process moments or other sta-

tistical characterizations.

The original versions of the Wiener-Nisio functional described in [NIS1] and
[MCK1] are almost causal (from the point of view of building causal realizations). I
will demonstrate how a modification yields causal functionals. 1 will also discuss the
relationship of convergence in the sense of Nisio’s U-topology to that of weak conver-
gence in an effort to point out a fundamental limitation inherent in any realization
procedure based on actual data: the data may not support statistical match beyond cer-

tain limits, such as finite distributions.

10.1 Random Sampling Time

Let n(w,t) and W(w,t) be a standard white noise and a corresponding Wiener
increments process defined on —o < ¢t < oo. Let w; denote the shifted path of w by

s; that is' W(tw)= W(t+ s,w), so s > 0 implies a lead. We now define a

90



sequence of random sampling times derived from n (and W), denoted A, (w), as fol-

lows. Let
S ={t]Wit+ 1w -Wit-1Lo)l} > 1. (10.1.1)

S(w) is open by virtue of the continuity of paths W, and can therefore be written as a
countable disjoint union of open intervals /;(w). Let m denote Lebesque measure on
R, define

T,(w) = {I;(w): m(I;(w)) > n, (@) C (—n,=)}, (10.1.2)

and let

S, (@) = EJ I (). (10.1.3)

Thus, S, is the set of open intervals starting at ¢ = —n for which the Wiener incre-

ments in (10.1.1) exceed unity for the least n units of t. (See Figure 10.1.1).

We next show that S, (w) is not empty for every n 2> 1 and for almost all w. Let
f(w) be any measurable function of w with respect to the Borel field determined by
the increments { W(t,w)— W(s,w), —o < s < t < oo}. By the ergodicity of W (r,0)

and the stationarity of its increments, we have

1 a+T
im = [ fwhd=E (f@). (10.1.4)
T a

Specifically let

1, IWG+1) = Wi=1]>1,0< 1< n
fw) = and |W(=n +1) — W(=n-1)| £ 1, (10.1.5)
0 otherwise.

Since f(w,;") = 1 implies ¢ € S,(w), we have

lim inf = m(S, (@) N (—=n, —n + T))
T—ew T

-n+T
>im L [ fpa=E @) 10.16)
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Fig. 10.1.1 — Illustration of terms defining A , (w)
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=P{{W(i+1)-W(t-1)|>1,0< 1< n, (10.1.7)
and | W(=n+1) —W(-n-1DI< 1}

=P {|W(+1) - Wi-1D| > 1,0< t< n}) - (10.1.8)
PliW(=n+1) — W(=n-1|< 1)

for almost all w. The second probability is strictly >0 trivially, so it is enough to show

P{lwi+2-Ww0®>10<t<n}>0. (10.1.9)

But the w-set in (10.1.9) includes the intersection of the following w-sets:

{2k=2 < W() - W(0) < 2k + 1,k € t< k + 1}, (10.1.10)
k=0,1,...,n—1

(See figure 10.1.2). Note these sets adjoin along unit intervals, and so by the con-
struction of the Wiener process, they have positive probability. This proves that

(10.1.9) is true, and therefore that S, (w) is always non-empty.

Now we define a sequence of random times \, dependent on w through dW as
follows:
M) =n + inf (t:t € S,(w)), (10.1.11)

with A ,(w) = o if §,(w) = @. By the above, A,(w) is finite almost surely.

10.2 Theorem: A,(w) is almost Uniformly Distributed on [0,n].

That is, X,(w) has a probability density which is zero on (—0,0), is flat on [0,n],
and decreases on (n, ). (See Figure 10.2.1.)
Proof: A ,(w) = ¢ is equivalent to:

t—né€d Sw), (t—n,t) C Sw)if0<L ¢t < n,

and

t—nd S, t—-ntlCSw), ~nt—n NS, (wW=0ift>n
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Fig. 10.2.1 — Probability density of A,
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Note that if 0 € ¢ < n, then t — n € S(w) implies that (~n,t — n) N S,(w) =2

For t; + s< n, s > 0 and ¢t < 0 (see Figure 10.2.2a),

P(x, € (t + 5,0, + 5)}
=Plix € (t+ 5,0+ 5)|x-n € Sw), (x - n,x) C Sw)}
=P{Ix € (t,t)Ix—-n € Sw}), (x-nx] N S})
=P{3x € (t,t)lx — n € S(w), (x — n,x] C S(w))

by the stationarity of the increments of W. Thus,
P{r,€(t + 5,01+ 5)} = P{\, € (¢,1)} . (10.2.1)
Now,if t;y+s > n,s > 0and ¢t > 0,

P(A, € (t + 5,0, + 5)}
=P{Ix€ t+s,5;+s)lx—neSw), x—nxlC S,
(=n,x—=n) N §,w = o}
=P{ax € (t,1)Ix - n € S, (x - n,x] C S,
(~n=—sx—n)N S, =02}
SP{Ixe (eplx—neS)), x-nxlC Sk,
(=nx—=n)N S,l0}) =2}
=P{\, € (¢,2)} (10.2.2)

The result follows from (10.2.1) and (10.2.2).

Q.E.D.

10.3 Theorem: A (w) almost preserves shifts in dW(t).

That is, for any I > 0 and € > 0, there exists N{/,e) such that, if n > N,
PA,(w+) = A, (@—s, =1 < 5 < [}>1—¢. (10.3.1)

Proof: The proof relies on expressing A ,(w;) = \,(w) — s in a suitable form. First,

let s > 0. Then, by the construction of A ,(w),

9



} —+ l T t +
b tis © 1, trs "
b.)
= — t t +
c t tes n ‘t’ {;’1—3

Fig. 10.2.2 — Ordering of variables on time line
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AMlw+) =1
<==>t-5n1 4 Sw]), t—ntl C Slw,+), (~nt-—n)N S, (w}) =2
<==>t+s5—n€Sw), (t+s—n,t+s] C Sw),

(~n+sg+s—-n)N S,(w) =2. (10.3.2)
But
M) =t+ s
<==>t+s5s—n€ Sw),t+s-n,t+s) C S, (10.3.3)

(nt+s—n)n S,(0)=02.
This means that
M =2, —-siff (—n,—-n+s]n S, =2, (10.3.4)
which is also equivalent to
A(@) 2 s
Therefore, if s > s; > 0and if A ,(w]) = \,(w) — 5, then
Aalwd). =X, — s

Next, if s > 0, let r = — 5. Note that w = (w,) and ] = 0*,. Applying the

previous result to o, we find that
u

M) = Alwl)—r

is equivalent to
(=n,—n+r)n S (w)=@,0ortor, (@) = r

If s <s;<0andif \,(@]) =), —s, then \,(@; =\,@)~ s, and this is
because S,(@]) D S,;) which follows from (Sw)—s) N (=n,0) >

(S@) = s N (=n00).
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We now use these results to show the following:

P\, (o) =2, (@) =5, -1 < s < 1)
=Pr, (") = A, (@) = land A, (wT) = X, () + /)
1=P{x, () &= (@) =1} = P{A,(@*) = r, (@ + 1} . (10.3.6)

From theorem 10.2 and the stationarity of dW, we know that

P\, ] < 1) < —”1 (10.3.7)
and
P\, (%) < I} = P\, () < I} < —”l (10.3.8)
Therefore,
P{\, (@) = A, (@) —s,— 1 < sl 21— znl
Q.E.D.

10.4 Nisio’s U and V Topologies

Definition: U(Z,e) is the collection of all stochastic processes { Y (¢,0),—t < oo} such

that

[E /Ot i0E g g e (10.4.1)

whenever 1n,]9,| and || are all less than —El-

Definition: V(X ,e) is the collection of all stochastic processes y such that

P{Y()— X(t)| > e} < e (10.4.2)

whenever |t] < -61—
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Remark: Note that convergence in the V topology implies convergence in the U

topology. To show this, assume (10.4.2). Then

IE ejo,x(:,)+...+j9,,X(:,,) —~E eja, Y()+ - +j8, Y(:,,)‘

= |E ejlol(X(tl)—Y(q)]+ s +jle, (X (,)-Y ()} ll
n 0.¢€
< 2 + H4sin2—é— < 2 + 62, €
j=1

So, if 85, < n, by making € < ?1—5 we hold
n

2 n? 7
E ¢/ < + =
E e < 3n2  9nd4  9p?

which proves that

v, L) ¢ L.
3n? n

(10.4.3)

(10.4.4)

(10.4.5)

Also note that in both ¥ and U topologies, if Y belongs to the e, neighborhood of X,

and Z belongs to the e, neighborhood Y, then Z belongs to the (e; + €y)

neighborhood of X.

10.5 Development of the Wiener-Nisio Functional

Let w*€ O * and let (Q* B* P*) be the underlying probability space. Let

{X(t,w*) — o < t < o} be strictly stationary, continuous in probability, and ergodic.

Then, there is a process { Y (t,w*), —o0 < ¢t < oo} which is separable and measurable

with respect to both ¢ and » * such that
PHX() = Y()} = 1,—00 < t < oo,
Let {Yy(t,0*), = < t < o} be defined by
Y(tw*), Yo" <N,

Yyltw?) = 0 otherwise.
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Then Y, strictly stationarity, continuous in the mean and ergodic. Morever, Yy — Y
in the V-topology by the strict stationary of Y as N — oo. Note Yy is uniformly

bounded.

Next, let

+ 1
M
zw,(z,m*)-%f1 Yy(t + s,0%)ds. (10.5.3)

M

Zy n converges to Yy in the V-topology as M — oo, is also strictly stationary continu-

ous in the mean, and is ergodic. Furthermore, Z, y is uniformly continuous:

IZM,N (r + d,w *) — ZM,N(t,w")|

L+r+s Lo+
M M

<7 nwa- [ el
—7+t+8 -—M_+t

< MNs. (10.5.4)

We denote Z, y the bounded, smoothed version of X, simply as Z.

We now form the Wiener-Nisio functional from a typical path Z (-,wq) of Z as fol-

lows:
Fk(t,w) = Z(—}\k(w,*),wo‘). (1055)

Note that F; is rr{easurable with respect to (¢,w), where » corresponds to the space of
Wiener increments dW (¢). The various signs in (10.5.5) can be reconciled by noting
that, as ¢ increases, the Wiener increments proceés W moves "to the left" by ¢ units,
and thus A, (w;) decrements by ¢ units; negating A (w;") assures that the path Z

(,w*,) is scanned in the forward (increasing time) direction as ¢ increases. (See Fig-

ure (10.5.1).)
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Fig. 10.5.1 — Illustration of sign conventions for shifts +¢
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10.6 Convergence of F, and Wiener Series in the U-Topology.

To demonstrate convergence of F, in the U-topology, one computes the charac-

teristic function of [Fk (t,w),..., F, (t,,,w)]:

E [ej Lo, F (lpw)} =-E [ej}:e, Z(-xg (W;)),wo')]

- E [ejza, Z(-rg )+ '1)""0.)} + €, (1061)

the approximations justified by theorem 10.3. Using theorem 10.2, the uniform
boundedness and uniform continuity of Z, and the stationary, ergodic properties of Z,

one obtains the result that

Eej 29, F (4,0) - E ej 29, Z(4,0") <e. (10.6.2)

This holds provided that k is greater than both the time extent needed to approximate

the characteristic function of Z by time averages over Z (-,w(*) and to justify preser-
vation of shifts in theorem 10.3, and if #, |9, |, and ¢ < -el- (For details, see [NIS1]).

This then proves:
F, (t,w),—°°<t<°°]—’{2(t,w‘),-°°<t<°° (10.6.3)
in the sense of the U-topology as k — oo,

Next, we bring in Wiener Series. Note that F, (0,w) is an L, functional of
Wiener increments dW, and therefore admits a Wiener series expansion G, (0,w)

such that:

E{ le 0,0) - G, 0,0) {2} < ¢ for large m . (10.6.4)
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By the stationarity of dW (¢), and defining
Gem (1,0) = Gy, (0,0]), (10.6.5)

we see that

E[ Fe (t,0) = Gy, (t,m)IZ]

- E[ Fe 0.07) - Gy 0,07 ]2] <e (10.6.6)

Thus, [Gk,,,, (t,w)}—'{Fk (t,w)] in the V-topology, and therefore in the U-

topology.

We have thus proven that, if process X satisfies (10.0.1), then there exists a fam-
ily of finite-order Wiener Series which, when driven by the flow of white noise, gen-

erate processes which converge to X in the U-topology.
10.7 Relationship of Convergence in U-Topology to Weak Convergence

Since we are dealing with stochastic processes with continuous sample paths, it is
natural to investigate whether or note convergence in the U-topology implies conver-
" gence in the probability measure on the space of continuous sample paths with the sup
norm as the the metric, that is, convergence in the weak sense. As Billingsley [BIL1,
BIL2], Kusher [KUS1], and others explain, weak convergence of measures on C, the
space of continuous functions, requires more than convergence of the finite distribu-
tions. To assure no set mass escapes the scrutiny of finite distribution samplings,
something more about the process, such as the notion of tightness, must be esta-

blished.

We first note that convergence in the U-topology implies convergence of the fin-

ite order characteristic functions for each chosen set of parameters 8, i=1,...,n.
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By [BIL1, theorem 7.6], this is necessary and sufficient for convergence of the finite
distributions. We therefore have that convergence in the Nisio U-topology implies

convergence in finite-order distributions.

It should be noted that Nisio deliberately favors the stronger notion of the U-
topology rather than convergence of finite distributions because the U-topology con-
vergence is transitive (X —Y, Y — Z => X — Z, while the other (Helly’s sense) is

not. (See the introduction to [NIS1].)

Now, sufficient conditions for a process to be tight are:
® uniform boundedness

® uniform continuity

In constructing the Wiener-Nisio functionals, we relied on these properties of
Z =2y yin (10.5.3), the smoothed, bounded version of X. We therefore may con-
clude the following: If a sequence of Wiener-Nisio functionals, and corresponding
Wiener series, are developed whose output processes converge to Z in the U-
topology, these processes converge weakly to Z. While the output processes converge

to X in the U-topology, they do not necessarily converge weakly to X.

The crucial issue is how X behaves relative to Z, its smoothed, bounded version.
If we adopt a modeling framework where our only notion of X is based on a simple
path X (,w(*), and this observation path is both time and band-limited, then we are
simply incapable of truly determining, on the basis of real data, whether or not X is
tight. Simply put, in a practical situation, convergence of finite distributions is all that

can be, or need be, demonstrated.
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10.8 Causal Modification to the Wiener-Nisio Functional

I now demonstrate how, by slightly altering the construction of the Wiener-Nisio
functional, the kernels resulting from the identification procedures of Section 9 will all
be one-sided:

hy(ty, ..., ) =0fore; >0,...,
p=12,...

5, >0, (10.8.1)

To determine A, for a particular Wiener-Nisio functional we will do the following, as

summarized in Section 11:

® Pick an w.
® Generate dW (t,0). (10.8.2)
® Compute A, (w) from dW.
® Compute Fy (w) from A, and X (,w ).
® Compute Fy () - Q, (71, ..., 7,)(@)for this w.
® Accumulate over repetitions of wto approximate (9.1.4).
In the context of procedure (10.8.2), for each w, the present is always A, (w).

Therefore, the key to achieving causality in (10.8.1) by this procedure is to assume

that A , (w) (and therefore Fg (w)) depends only on {dW (s), s < A ,}.

Although the infimum in (10.1.11) might give the impression that A,(w) is
future-dependent, this is not so. For each w, A\, (w) is the first ime that condition T,
in (10.1.2) can be ascertained, and this, in turn, can be determined from

IWi+1)—-WwWt—-1Il, —n<t<\, Byusing

S ={t: W)= WwW(-2}>1 (10.8.3)
instead of (10.1.1), and extending the working range on X (-,w§) by l-unit, we then

achieve the desired goal.
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We are the boys/That fear no noise . . .
. .. Oliver Goldsmith

11. An Algorithm for Building Dynamical Stochastic Process Models from Data

I now draw together the preceding ideas into a prescription for building a
sequence of stochastic models whose outputs converge in finite distributions to a
given process X. The process X must satisfy:

a. X (t, w): R x Q — R is scalar and real-valued,

b. X is strictly stationary,

c. X is ergodic,

d. X is continuous in probability,

e. X is lossy (see Section 5.4).
The raw data driving the algorithm is a typical sample path of X, denoted X (-,® o'), of
arbitrarily great time extent. It is also assumed unlimited computational power is
available, and that the model synthesis can be performed off line (that is, the realiza-
tion procedure need not run in real time). The resulting models, however, are

intended to be finite-dimensional casual bilinear systems driven by white noise.

Step I: Process X (-, ) according to (10.5.2) and (10.5.3) to produce a bounded,
uniformly continuous path Z(-,.w.). In any practical situation involving time and
band limitation. X (-,w;) will automatically qualify as Z without any further filtering.
The bound N in (10.5.2) should be chosen to .preserve tail probabilities, while the
width of the smoothing window M in (10.5.3) should be governed by the projected

bandwidth of the application for which the process model is intended.

Step 2: (Synthesis of Wiener Noise functional for each w). Create a white noise
n(t, w) running from time ¢, to time ¢, + 2 + A, (w) as determined below. For each

n, generate a corresponding standard Wiener increments process according to
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t

W(tw) = fn (€ w)dE .
L

As a running function of time, observe
D(tw) = W) - W - 2)|

beginning at t = , + 2.

Choose n sufficiently large to satisfy Theorems 10.2 and 10.3 in the following
manner. Let / in (10.3.1) be chosen much larger than the memory extent of X (recall
X is lossy). Choose n large enough to guarantee (10.3.1) and also to insure A is uni-
formly distributed over many /-intervals of X sufficient to guarantee good approxima-
tion of first order statistics of X by uniform, random sampling over 0 < ¢ < n. The
former requirement on n, depending on /, can be relaxed somewhat by throwing out

all A, < / (see 10.3.5), naturally as a tradeoff of required w repetitions.

Arbitrarily establish a time reference for n(¢r) and W () such that 7, = —n.

(This is accomplished by a finite shift of time scale.)

Drive a timer initially set to zero as follows: Whenever D (t,w) > 1, run the
timer, while if D (t,w) < 1, reset the timer to zero. Note the first instance ¢ when the
timer exceeds n. Call this time A ,(w). Note that while noise n(z) and Wiener pro-
cess W (¢) can be generated a little ahead of the running time, and stopped as soon as

A, (@) is determined.
Set output Y (n,w) = X (=, (@),0,).

Step 3a: (Computation of Wiener Kernels). While driving the above apparatus,
drive n(:) into smoothing filters ¢q.(z;), i =1,...,p, where p is the order of the
Wiener expansion. (The order p should be increased until the derived p — nth or

kernels are extremely small). The window with e is again based on consideration of
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the bandwidth of the intended application for the model. For each w, accumulate
values of Y-Q, (ry,...,7,) for values of 7, that are spaced multiples of e¢ and such
that 7, < 7, < 0,/ < j. Finally, approximate h, ¢ by running Steps 2 and 3a over
many . Note that the "causal” properties of the Wiener-Nisio functional allows us to

set h,=0 for positive .
Step 3b: (Alternative - Fourier-Hermite Realization)

Choose a bank of Laguerre filters (see Section 5.5) with a taper appropriate to the
process memory, and drive the filters, from O initial condition, by n(¢t). Form
Fourier-Hermite functions (5.3.3), and compute the Fourier-Hermite coefficients
(5.3.5) by taking products and approximating the correlations by averaging over repeti-

tive .
Step 4. (Realize Wiener Series by Bilinear Stochastic system)

Regard each 4, as the kernel (symmetric ) of a Volterra system. Use a differen-
tially separable L, approximation for each hy, ( or use the Fourier-Hermite
equivalent.) For each p, realize this Volterra system as a deterministic bilinear system
(see Section 8.) Convert each p-th order system to a Wiener G-functional either by
computing the derived lower Volterra systems and realizing them as well, or use the
method described in Section 8 to uncorrect the Volterra system driven by white noise
to produce, as an output, the solution to the bilinear system viewed as an Ito differen-

tial equation.
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"They liked the book the better the more it made them cry." ... Oliver Goldsmith

12. On Realizing Gaussian Processes

This and the following section describe properties of Wiener Series process
models for two important classes of processes: Gaussian Processes, which traditionally
are viewed as first-order, linear functionals of white noise, and Rayleigh processes,
which have second-order or quadratic functional realizations. The point these sections

make is that there are significant weaknesses to the procedure outlined in Section 11.

While it is widely known that any stationary Gaussian process which has no trivial
past can be realized by a first order linear system driven by white noise, it is not so
well known that all white noise-driven causal Wiener Series realizations of Gaussian
processes need not be linear. McKean [MCK1] ailudes to this, and Nisio [NIS2] pro-
vides a detailed description of such series which is reviewed here. 1 will demonstrate
that the procedure in Section 11, based on Wiener-Nisio functionals, when applied to
Gaussian processes, will likely result in an infinite-order Wiener series realization.
This, I believe, is a serious weakness of the procedure if one hopes to converge
rapidly toward minimal order realizations particularly in cases where such solutions are

known to exist.
12.1 The Canonical Properties of Kernels for Causal Wiener Series Realizations

Let dW, = dW (t,0) be a Wiener process, and Let B,(dW) denotes the field gen-

erated by {W(u) — W), u, v <1}.
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For any set £ € By(dW), let

lonE

e (12.1.1)

XE (w) =

The indicator x in effect tags Wiener process paths much like the window indicators in
section 5.3. This provides a vehicle for identifying Wiener paths via the trajectories. x

is a functional of increments dW (¢), ¢t < 0, and admits a Wiener Series expansion:

] 0 0
xe@ =3 [ ppa(ty ., b)) dW, ... dW,, (12.1.2)

n=0

where {p¢ ,} are the kernels associated with x ().
Let F={pg, i=0,1, ... |E € By(dW)}. (12.1.3)

F, therefore, is the collection of all Wiener kernel images associated with the

indicators x  of Wiener increment process trajectories.

Letp,,i=0,1,..., € F, and let
dW = W(t,w) — W(s,w)

oo t s r
= faw |f [ enti=r.p=n)aw, .. aW, (12.1.4)
n=q

Theorem: W is a Wiener increment process.

Proof See [NIS2, pg. 132]. Note that in 12.1.4,

[...]=xz), (12.1.5)

so W is derived from W solely by altering the signs of the accumulated increments.
x g is therefore a vehicle for substituting one Wiener increments process for another

by means of change in sign of the increments.

We denote the relation

a=bop (12.1.6)
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to mean

oo 0 0
S e ) aw, . aw,

n=0

o 0 0
=3 f [t by dW, ... dW, 12.1.7)

n=0
that is, b is the kernel image of a Wiener series based on dW, when a is the kernel
image of a series based on dW, and dW and dW are related by (12.1.4), that is, the

paths are related modulo the signs of Wiener increments.

We call a Wiener series realization of process Y with kernels g properly canonical

if and only if the span of Y at time ¢ precisely matches the span of dW,, for all ¢.

Theorem: [NIS2, pg. 134]. All causal Wiener series realizations of Y have kernels of

the form

f=gop. (12.1.8)

Thus, the members of the equivalence class of causal realizations can be traced to the

choice of signs for the respective Wiener increments.

12.2 The Order of Wiener Series for Gaussian Processes

Let

N l )
Y(w) = [ g(t=s)aw, (12.2.1)
be a Gaussian process with the proper, canonical realization given in (12.2.1) (i.e., dW,

is the innovations of Y(z)).

Theorem: - [NIS2, pg. 141] The kernels of all the causal Wiener series realizations of Y

are of the form:
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Falty, oo u 1)
1 n
- 2 g(ti)x(—an‘[']""l (tl’ I A T 2 LI tn)x
i=1

pn_l(tl - tl', ceey t’_l - t", tl+l - t", aaay t" - ti)- (12.2.2)
Theorem: The degree of a causal Wiener Series representation of a Gaussian process is
either 1 or oo.

Proof [NIS2, pg. 141] From (12.2.2),

s, 112 = Llgl2e 12 (12.2.3)
n

It is therefore enough to show that if

PE™=™ {pE’O,pE,l, <> PEK> 0, 0.. } (1224)

for finite K, then K = 0. By the definition of pg,

k 2 0
xe@ =3 o bpalt ., )W, . W, (12.2.5)

n=0

Writing x ¢ via Fourier-Hermite series based on Gaussian functionals £, (w) of dW,:

0
£, = [ _a,(0dW, n=1,2, ..., (12.2.6)

we have

. K n ‘ .
xew =Y ¥ )> T a ., EHP'[ 7 ] (12.2.7)

p=0 n pyt - +p,~puy---u,

Expand xz(w) as a power series of ¢(w):

K .
xglw) = 3 ¢ (&, ... )¢ (). (12.2.8)
im0
It is a polynomial of £,(w) of degree K at most. But x is 1 or —1, so the degree of

this polynomial must be zero.

We repeat this, and by induction we reach the conclusion that x z(w) is a constant

when K is finite. By (12.2.5), this means K is zero, as we intended to show.
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12.3 Order of Realizations Obtained in Section 11 for Gaussian Processes

Theorem: The order = oo,

Proof. Note that the Wiener-Nisio functional depends on d# only through the magni-
tudes of increments | W(¢t) — W(t — 2)|. The corresponding Wiener Series must,
therefore, be even order. By the proceeding theorem, this means the order is

unbounded.

The significance of this finding is that, even in a situation where we know that a
finite-order Wiener expansion model exists for a process (and could perhaps be found
by other means), there is little assurance that the procedure in Section 11 will intrinsi-

cally converge toward finite-order Wiener expansions.

While truncation of the Wiener series is admissible within the approximation
framework, in this particular case one is likely to require an extraordinary number of
terms. Recall the Wiener-Nisio functional is even. We are, therefore, compelled to
approximate the usual linear functional of n(¢) by an ill-suited collection of even order

polynomials.

114



"People who make no noise are dangerous.”

Jean de la Fontaine

13. On Realizing Rayleigh Processes

In this section, I investigate further properties of Wiener Series, this time for
Rayleigh power processes (the square of Rayleigh processes). There are known
second-order Wiener series realizations for these processes. After describing some
results due to McKean, I will show that, even if we assume an algorithm like that in
Section 11 converges to a finite-order realization, there may be difficulty in resolving
critical parameters from data. The parameters are critical in the sense that they radi-
cally affect the stability of the realization procedure, but are indeterminate from just

analysis of given data.

In what follows, I present McKean’s theorem that the maximum order of finite
Wiener series can be determined from the tails of the first order density. This
theorem agrees with the Nisio theorem (12.2) in that it predicts finite order Gaussian
realizations must be linear, and asserts that second-order series give rise to first order
densities with exponential tails. I present a second theorem of McKean’s which
derives the characteristic function of a second-order Wiener series, and from this,
shows that second-order Wiener realizations of Raleigh power processes, driven by a
single white noise, must have a particular form. I then relate this to the Rayleigh pro-
cess associated with the sum of squares of two independent, identically distributed
Gaussian processes. Using this, I show a Wiener series can realize any such Rayleigh
process as the envelope of a bandpass Gaussian process. The center frequency of the
bandpass filter is shown to be free, and therefore cannot be determined from the
Rayleigh process statistics. This implies indeterminacy in the Wiener kernels obtained

by the algorithm in Section 11, even for finite series. This is yet another exampie of
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how the algorithm in Section 11 is likely to result in models of excessively high order

and complexity.
13.1 Theorem: Relation of Max Order to Tails [MCK1]

Let white noise functional Y admit a Wiener series expansion with finite max-

imum order n. Then
2 2
e hix" g P[ Y| > x} < e fx”, (13.1.1)

The proof uses the Chernoff bound [GAL] to establish the right hand inequality, and

extensions to the work of Eidlin and Linnik [LNN] for the left hand inequality.
13.2 The Characteristic Function of a Second-Order Wiener Series [MCK1].
Let Y be a second order functional of white noise n(z):

Y-[E{Y}+ [ rnwaw,+ [ [£,0,1) aw, aw,, (13.2.1)

where the integrals are /to integrals. Regard f, as the kernel of a quadratic operator
acting on paths, and expand via orthonormal eigenfunctions {e,} with corresponding

eigenvalues {y,}:

fa(t, 1) = 21 vae,(t)e,(t,) (13.2.2)
S1() = i Bne, (1) +e (1), (13.2.3)
ewlne-,,l, n=12.... (13.2.4)
Then, letting
tn= e, (0aw,, (13.2.5)
= b et B T, 1326

n=1 n =1
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where the last sum follows because the integrals in (13.2.1) are Ito integrals. Since the

{¢,} are independent and Gaussian, we may write the characteristic function of Y as

follows:
1
. , ik Byéa+ 57, 63— D]
E{ eJ"Y] = E { ejkg"'} I E { eJ 27 } (13.2.7)
n
Now,
. 1
E [ e.lk [8x + 37 (? —1)}} _
1 x?
® jklBx+=y(2-D] -=
——\/_;__—f_mej R e ? dx. (13.2.8)
w
But
E b Lhyx?+ jkBx = Ly =22 1= jky 2" + jkBx = 4 ky (13.7.9)
which is of the form
ax’+bx+c (13.2.10)
with
a=- [L:-ii’il] (13.2.11)
b=—jk§8 (13.2.12)
¢ = :Zi ky. (13.2.13)
By completion of squares, (13.2.10) is rewritten as
b P 82
[JZ x+ = -t (13.2.14)
a
so that (13.2.9) equals:
— . 2 2,2 .
| xa [y kB +—KB kY | (13215)
2 ) T — jky 2(1 = jky) 2
2
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Therefore, (13.2.8) equals:

1 k
ST | ke |
1 — jky
1 (13.2.16)
(1- jky)?
as obtained from the formula:
[
o = +C
a=Je ™ Ta-o (13.2.17)
mw
with
R — (13.2.18)
- V1= jky
This leads to the resuit:
- kia? _l[___..kzﬁ’e —ji‘;_n
E{e®} =¢ 2 PR S 2 N — (13.2.19)
II (l—jky,,)l/2
13.3 Theorem: Form of Rayleigh Power Finite Series. [MCK1]
If
e %, x =20,
P{Y > x} = 0 x <0 (13.3.1)

then the probability density is also one-sided exponential. The Fourier transform has

the form:

1
13.3.1
¢+ jo ( )

so that the characteristic function has the form:

1

— (13.3.2)
c—jw
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Examining (13.2.19), we see that there are precisely two orthogonal eigenfunctions e,

e; with identical eigenvalues y; = y ; #0; and that all 8's and « must be zero.
Further noting that E{ Y] = % we obtain the result that the second order series for

Rayleigh power processes must be of the form:

Y=1+ [[a().gpaw, aw, + [[n() n () aw, aw,, (1333)
where
gl h (13.3.4)
and
Hell = |lAll = 1. (13.3.5)

Equivalently, we may rewrite (13.3.3) in terms of which noise stochastic integrals:

2 2
v=[feonwa + [ fronwd’ (133.6)
where g and 2 must satisfy (13.3.4) and (13.3.5).
Remarks: First note that Y being of form (13.3.3) or (13.3.6) follows from the pre-

cise form (Raleigh) of (13.3.1). Specifically, this form does not follow merely from Y

having a density with exponential tail; note that the function

\/bL_ e~ 2 erf (Vb—a V) 13.3.7)
—a

has an exponential tail, but has a Laplace transform of the form:
1 .
(s + a)Vs+b

(see [ABR], pg. 1024), which would imply three distinct eigenfunctions and would not

(13.3.8)

correspond to the form of (13.3.3).

Second, (13.3.6) asserts that if is the sum of the squares of two Gaussian
processes which are independent and identically distributed at the same time. There is

no constraint on the processes to be independent at differing times:
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fg(tl — 7)n(r)dr and fh(t; - r)n(r)dr (13.3.9)
need not be independent when ¢, ¢, A particularly noteworthy example is the choice:

h =g, (13.3.10)
where the tilde denotes the Hilbert transform.

In contrast, in many problems, Y is the square envelope of a complex Gaussian

process:

v = [ w6 = om@ar] + [fre-nm@a| @z

where noises n, and n, are fully independent, identically distributed. A natural ques-
tion arises as to how flexible (13.3.3) is at representing any Rayleigh process represen-

tation of type (13.3.11). The next section deals with this issue.

13.4 Bandpass Filter Interpretation of Rayleigh Models

I will now review that models of the form (13.3.11) are fully representable as
models from class (13.3.10). This follows from analytic signal representations of
bandpass processes as complex envelope processes, also known as the Rice representa-

tion [HEL].

Recall any stationary Gaussian process can be realized via its spectral representa-
tion mapped through the Fourier transform. Using Fig. 13.4.1 as a guide, [ define two

complex Gaussian processes:

Zl(t) = Xl(t) + j:}’l(t) (13.4.1)
z5(2) = x,(8) + jy,(8) (13.4.2)

where
X;=ny*h (13.4.3)
yi=n *h (13.4.4)
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Fig. 13.4.1 — Rayleigh power process models
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X;=n*g (13.4.5)
ya=n"'g (13.4.6)
Since n,(¢) and n,(¢) are fully independent, any phase shift in A, the transform of A,
can be neglected due to the uniform phase distribution of the pair (n,n,). Therefore,
WOLOG, we may assume H(w) is purely real. Since 4 is L,, H(w) can be assumed
bandlimited within a controlled, mean-square error. Because x and y, are real, H{w)

has complex conjugate symmetry.

What I will show is that, if

Hw - wy) + H- 0 — 0y
2 b

Gw) = (13.4.7)

where wg is larger than the half-bandwidth of H, then z, has the same envelope as a

compiex process z, where z differs from z, only by a phase shift. Since

H(w — 0wy — H(—w — wy)
2

Glw) =—j (13.4.8)
and therefore

G + jG(w) = H(w — wy), (13.4.9)

then z, is a complex Gaussian process with single-sided spectrum | H (w — wg) |2,

We now form

z(t) = z, (D) e *, (13.4.9)

The frequency translation in (13.4.9) does not aiter the envelope of complex paths of

Z,, SO z has the same envelope as z,.

Processes x, and y, are real which imposes a complex conjugate symmetry con-
straint on their respective spectral representations relative to zero frequency. How-

ever, there is no constraint imposed on the upper versus the lower sidebands of z,,
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and therefore, of the sidebands of z. The process z in fact is a complex Gaussian pro-
cess with a symmetric spectral density, but with independent, identically distributed
upper and lower spectral sub-components. This, in turn, implies z can be written as a
complex process with independent, identically distributed Gaussian real and imaginary
components. Because of (13.4.9), this means that the real and imaginary components
of z, have the same statistics as those of z, and therefore z; and z, have the same

envelope statistics.

13.5 Impact on Realization Procedure

In what preceded, the choice of center frequency wg was arbitrary. The statistics
of the envelope of a bandpass process are not dependent on the center frequency of
that process. Viewed from a different perspective, the center frequency cannot be

determined from the statistics of the bandpass process envelope alone.

What this implies is that the procedure in Section 11 may exhibit erratic behavior
in detérmining second-order kernels even in cases where the adopted series order is
low. There is no inherent safeguard to prevent the adoption of an wq of arbitrarily
large value. This implies the corresponding second-order kernels could be extraordi-

narily complex and fine structured, corresponding to very high "Q" realizations.
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"He who sleeps in continual noise is wakened by silence.” ... William Dean Howells.
14. Concluding Remarks

A careful analysis of criticisms in the last two sections shows the principal weak-
ness to the algorithm of Section 11 is the Wiener-Nisio functional as the chosen candi-
date realization. Wiener series models per se are really not at fault. I would therefore
invite the reader to suggest other candidate functionals of white noise, or auxiliary
means to assist the Wiener-Nisio functional, with the goal being reduced model order

and complexity.

Recall that the Wiener-Nisio functional does not depend on the sign of the
Wiener increments. I believe that one could put more "energy” into lower order and
lower band width kernels by assigning a polarity to the functional based on a projec-
tion of each white noise path in a particularly chosen direction. For example, one
might use the sign of the p-th order integrator driven by n(¢) as an appropriate indica-
tor of sign for that particular w. This approach, I believe, would benefit further from
knowledge about the first or higher order densities of the process. For example, this
approach might work well for Gaussian processes, which are symmetric, but might
require modification for half-sided density processes, the modification being done on a

case-by-case basis.

Perhaps the reader will benefit from why I pursued the Wiener-Nisio functional
approach in the first place. The driving force wag to find some means to make Wiener
series work in the general stochastic modelling problem —after all, this appeared to be
the original concept and intent behind the Homogeneous Chaos. From considerable
ruminating on McKean’s article [MCK1], it became increasingly clear that the force

behind McKean’s approximation claims for Wiener series (that they approximate any

stationary process in law) was drawn from Nisio’s work [NIS1].
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In parallel with the Wiener-Nisio functional approach, a second approach was
being attempted, both by me and a colleague of mine, Robert Gover. John Baras
pointed out that the moments of finite Wiener series models obey bilinear differential
equations. This observation was based on work by Brockett [BRO1, BRO2]. Baras
suggested an approach might be to estimate the multivariate moments, determine the
differential equations they satisfy by bilinear system identification methods, and then
obtain a set of Wiener kernels from the system of the moment differential equations.
A first step was to determine the minimum number of moments needed to synthesize
a Wiener series of given order. This entire appraoch might have progressed further
had it not been for the discovery and comprehension of Grunbaum’s theorem [GRU]:
To reconstruct a Gaussian process from its square (representable as an elementary
homogeneous second order Wiener series), one would need al/l moments of the
square. This seemed to imply that moments of a process might not be the most effi-
cient statistic. At that point, the Wiener-Nisio functional approach, using a typical

path of the actual data in a direct manner, seemed more inviting.

I hope all of this conveys to the reader my conviction that there are many fruitful
ideas, some merely set aside, some yet undiscovered, that could be pursued with

benefit in non-Gaussian process modelling.
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