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In this thesis, optima.lity.results are presented for Bayesian problems of sequen-
tial hypothesis testing. Conditions are given which are sufficient to demonstrate the
existence and optimality of threshold policies and others are given which help charac-
terize these policies. The general results are applied to solve three specific problems
where the observations respectively arise from a time-homogeneous diffusion, a pro-
gressive process observed through white Guassian noise, and a time-homogeneous
Poisson process. It is shown that threshold policies are optimal in all three cases. An
exact formula for the Bayesian cost in the Poisson case will be presented for the first

time.
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Introduction

The principal goal of this thesis is to demonstrate the optimality of certain statis-
tical procedures, called threshold policies, as applied to problems of Bayesian sequen-
tial hypothesis testing. The importance of Bayesian sequential hypothesis testing is
due not only to its applicability to many practical signal detection problems, but also
because it provides a theoretical foundation with which to prove optimality results
for other sequential statistical procedures.

The mathematical theory available to formulate and obtain optimality results in
sequential analysis roughiy divides into two main categories, the first of which can be
called the ‘dynamic programming’ approach, and the second which might be called the
‘excessive function’ approach. Naturally, both approaches share many similarities but
are sufficiently different to permit this broad classification. The methodology adopted
in this thesis is best described as falling into the second category, but represents
a significant modification to the usual development [DYNKIN], [SHIRYAYEV 77|,
[THOMPSON].

Loosely speaking, the excessive function theory approach extends well-known
results for sequences of independent and identically distributed random variables to
continuous-time (see also [KEL’BERT]). In this thesis, a more direct development is
taken, one which yields a rich interplay between analytical and probabilistic ideas.
While it is true that that the excessive function theory is more general and hence more

powerful, it is also true that the approach contained herein requires considerably less
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specialized mathematical machinery. Thus one can argue that it renders important
optimality results more accessible to a wider audience. Moreover, although it is less
generally applicable, it is nonetheless powerful enough that with it one can obtain the
solutions to three important applications, one of which, to this author’s knowledge,
has never before appeared.

The organization of the thesis by chapter is from the general to the specific, and
is given as follows.

In Chapter Iis given a general, detailed treatment of certain types of semimartin-
gales, special cases of which will be needed later in the applications chapter. Also
given, is a proof of the existence and uniqueness of solutions to a functional differ-
ential equation. It was a tough decision to include this theorem in the first chapter,
but it was felt that this type of differential equation is so intrinsic to the problems
involving Poisson-type processes, that relegating the result to an unread appendix
would be cheating the reader out of valuable insight into the nature of these types
of problems, and their associated difficulties. An interesting historical note is that
one of the earliest (post-Euler) references to equations of this type is due to Poisson
himself [POISSON].

In Chapter II, the general Bayesian sequentail hypothesis testing problem is
discussed and formulated. A principal goal of the chapter is to show how one can

greatly reduce the complexity of the search for the optimal test.

In Chaptef III, the principal optimality result is given, the essence of which is con-
tained in Lemma 3.1.1. Also included are theorems whose importance is paramount
in the discovery of the unique test which is optimal in a particular application.

In Chapter IV, the results of the previous chapters are applied to solve
two Bayesian sequential detection problems, one involving a fully-observed time-
homogeneous diffusion, and the other involving a partially-observed progressively

measurable semimartingale process. Also, the Bayesian sequential hypothesis testing
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problem based on observations of a Poisson process is solved. Explicit formulae for
the risk and thresholds are presented.

After reading the thesis, one should be able to appreciate the difficulty in handling
non-diffusion type processes in sequential analysis, especially in view of the formulae
obtained for the Poisson case. It seems safe to say that future work in sequential
analysis will deal with ever more exotic processes as demanded by applications, and
that therefore the research in this area will of necessity focus more on approximate
and asymptotic methods. It appears that a good starting point for such research is

with the relatively recent functional central limit theory [HELLAND)].



Chapter I
Prerequisite Considerations

1.0 Introduction

This chapter will establish some important results which will be used later on.
Each theorem will be presented with slightly more generality than will be necessary

in the hope that the essence of each is more clearly understood.

Theorem 1.1.1 demonstrates that special types of semimartingales always escape
intervals in finite time. This result will be used to show that particular hypothesis
testing strategies—threshold policies based on these semimartingales—in effect bifur-
cate the sample space {1, in the sense that they terminate in finite time almost surely
under either hypothesis.

Theorem 1.1.2 establishes a weak form of the differential rule for functions of
locally finite variation semimartingales with piecewise monotone sample paths. The
usual generalized It6 differential rule is stated for twice continuously differentiable
functions of general semimartingales. This is sometimes specialized to semimartin-
gales driven by discontinuous martingale processes where the smoothness requirement
is weakened to ‘once continuously differentiable’. It will become necessary in later
chapters to consider stochastic differentials of functions even less smooth, specifically
functions which are piecewise right éontinuous and have piecewise right continuous

derivatives. In fact, functions of this type are intrinsic to the theory of discontinuous
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§1.0 Introduction 5

semimartingales. The reason is that the formal application of the usual differen-
tial rule to discontinuous semimartingales very often leads to functional differential
equations [e.g. HIBEY, SEGALL| of a type whose solutions are generically not con-
tinuously differentiable, and which do not, therefore, satisfy the assumptions which
led to them.

Theorem 1.2.1 establishes the existence and uniqueness of the solution to a cer-
tain functional advance differential equation. Its solution yields an important quan-
tity arising in tﬁe sequential Bayesian hypothesis testing problem involving time-

homogeneous Poisson processes.
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1.1 Semimartingale Prerequisites

Consider a probability triple (2, 7, P) equipped with a right-continuous filtra-

tion #;,t > 0. In this thesis, the following definition of semimartingale will be used.

Definition 1.1.1 A (P, #;)-semimartingale is a random process X which has the

decomposition,

Xt=X0+Mt+At tZ 0 P-a.s. (1.11)

where Xg is a (P, #)-r.v., | Xo| < oo P-a.s., M is corlol (P, #;)-local martingale,
with My = 0, and A is a right-continuous, #-adapted process, initially zero and
of locally integrable variation [ELLIOTT)|. The value set for X will be denoted
as E C R.

Without loss of generality (wlog) then, take the predictable version of A and
note that the random variable A, exists [ELLIOTT]. In most of this thesis, the full
generality of the definition will not be needed. However, as stated previously, the
results given in this chapter are somewhat more general than will be necessary in
later chapters but that this is done for clarity and because the general results were
no harder to obtain.

Since a principal theme of the thesis is to consider threshold policies and hence
first exit times of processes from intervals, one is naturally interested in the properties
that should be satisfied by a process upon which one intends to base a threshold
policy. One obvious requirement is that such a process should eventually exit the
threshold interval. The next theorem gives three conditions which are sufficient to
guarantee such behavior for a semimartingale. It is an adaptation and generalization

of Lemma 17.7 in [LIPTSER & SHIRYAYEV 78].

Theorem 1.1.1 Let X be a (P, #;)-semimartingale as in definition 1.1.1, and suppose

P{|Aw| = oo} = 1, while P{|A| = oo} = 0V0 < t < oo. Furthermore, suppose
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| E[A7]| > E||A5|] for any (P, #;)-stopping time 7. Then, X will escape any open
interval containing Xo in finite time, P-a.s.

Proof: Choose Xy = 0 P-a.s. wlog and choose a,b to satisfy —oco < a <0< b < o0,
a,b otherwise arbitrary. Define r = inf{t > 0 : X; & (a,b)} and o, = inf{t > 0 :
fg |dA,| > n},n > 0. Note that r and 0, are both (P, #;)-stopping times and thus so is
7 A o,. Moreover, since A is of locally integrable variation, 0, < 00 P-a.s. Vn >0,
and 0, < op41 [ 00 P-as.

Next, assume that for all n > 0 it is true that,
0 < Xrno, < b. (1.1.2)

Otherwise, there exists an n > 0 satisfying 1 Ao, = 7 < 0, < o0 P-a.s., and such
that X,np, = Xr & (a,b), from which the theorem follows. So assuming 1.1.2 holds
for all n > 0, the remainder of the proof will proceed by reductio ad absurdum. From

1.1.2 then, using the fact that M is a (P, #;)-local martingale one obtains,
a—-b<a<E[Arps,| <b<b-a, | (1.1.3)
since clearly a — b < a, and b < b — a. Rewriting 1.1.3 yields,
| E[Arpc,]| < b—a < oo, (1.1.4)

and since o, T o P-a.s., then A,;Ar,, — A, P-a.s, and invoking the bounded conver-
gence theorem yields |E[A,]| < b — a. From this it follows that E[|A,|] < b — a by
hypothesis, and hence,

E[|A;|] < oo. (1.1.5)

But then,
o > E[|A;]] = E[l{z=00}|Ar|] + E[l{r<co}|Ar]]
(1.1.6)
> E[l{r=0}|Ar]] = E[l{r=c0}| Acoll,

and since |As| = 0o P-a.s., it must be true that 7 < co P-a.s. That is to say, X will
exit (a,b) almost surely in finite time. Since a and b were arbitrary modulo Xo, the

result is shown. [ |
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Note that the result can be extended to a process whose compensator almost
surely takes on one of two not necessarily infinite values at infinity, as long as one
can exhibit a suitably regular, bijective function which maps those values into plus
and minus infinity. The theorem then holds for the semimartingale resulting from the
function acting on the original process, and hence for the original process by inversion.

Perhaps it should also be stressed that the theorem states only a sufficiency
result. For instance, it is clear that no martingale can satisfy its hypotheses, because
martingales lack (nontrivial) compensators. On the other hand, using the same notion
as in the preceding paragraph, a bijective function of a martingale might yield a
process with a nontrivial compensator which indeed satisfies the theorem. In fact,
in Chapter IV there will be a need to guarantee that the exit times of a certain
martingale (ana posteriori probability) are almost surely finite. The approach taken

to accomplish this has just been outlined and utilizes Theorem 1.1.1.

When a semimartingale as in definition 1.1.1 escapes an open interval, questions
naturally arise as to its whereabouts at the time of escape. The next definition

provides a handle with which to phrase such questions.

Definition 1.1.2 Let X be a real (P, #;)-semimartingale, taking values in E C R,
and let Xy € Iy, P-a.s., where Iy C E, is some nonempty open interval. Define the

sets,
Qo={we: Xo(w) € I},

floo = {w €N : Xoo(w) € I},

and suppose T is given as,
T = inf{t Z 0: Xt ¢ Io}
Then the X-boundary of I, is defined and denoted as,

8:10={z € E : z = X,(,)(w) for some w € Qo \ Qoo}-
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In addition, the X-closure of Iy is defined and denoted as,
[Io]z = Io U 8. 1o.

It will also be convenient to define the upper and lower X-boundary of Iy as 8} I
and 87 I, respectively, i.e., 8;Ip = 87 Io U 8} Io, and 2’ € 8} Iy implies z' > z for
all z € 3, Iy, and vice versa.

Note that 3,1 is P-a.s. nonempty if X satisfies the hypotheses of Theorem 1.1.1,
and often Iy C 8,1, for any such X, where @1, is the usual boundary of Iy consisting
of its endpoints. In fact, if X is a continuous semimartingale satisfying Theorem 1.1.1,
then 8y = 8,1y P-a.s. Also note that neither 8,1 nor [Io], are necessarily closed sets.
For instance, if X is a real right continuous semimartingale driven by a discontinuous
fnartingale whose jumps are positive, then 87 I, is generically a semi-open interval,
closed on the left and open on the right.

As it was just indicated, the notion of the boundary of an interval with respect
to a jump-type process is not trivial as it is for continuous process. The simplest
case is where the jumps of the process are always positive (negative) while the sample
paths are strictly nonincreasing (nondecreasing) in between the jumps. Fortunately,
this is the situation in the binary hypothesis testing of counting processes. It is also
fortunate because a weaker form of the generalized It6 can be given for a process
which has such sample paths, and because one soon discovers that the differential
rule, as it is usually stated, is inadequate to handle the types of functions which
arise in the hypothesis testing.of such processes. Specifically, the It6 rule for jump
processes is usually given for functions which are once continuously differentiable,
whereas functions which are less smooth need to be considered. The next definition

gives a general description of the type of functions which arise.

Definition 1.1.3 Let F : E — R, with E C R, and suppose that for all but a

countable set of real numbers, D C IR, F is n-times continuously differentiable, n > 0.
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Further, at each point zo € D assume that limg|,, F(")(x) exists for k = 0,1,...,m,
and define this limit to be the kth derivative of F at zo € D. Also suppose that
limg1., F(*)(z) exists and is finite for all zo € D, k = 0,1,...,n. Then, F is said to
be a C™*(E) function or one writes F' € C"* (E).

Loosely then, a C™*(E) function is a function which is n-times, piecewise right-
continuously differentiable, with left-hand limits, and only a countable set of points
that prevents it from being n-times continuously differentiable. This set of points is
called the set of breakpoints of the function.

The notion of monotonic sample paths introduced above is useful when consid-
ering C'T functions of jump semimartingales. For instance, if one applies a right-
discontinuous function, such as the greatest integer function, to a right-continuous
jump semimartingale with piecewise nondecreasing sample paths, then the result-
ing process will be right-continuous. However, applying the same function to right-
continuous semimartingale with piecewise nonincreasing sample paths yields a left-
continuous process.

The next result is an extension of the usual differential rule to include C'* func-
tions of locally finite variation semimartingales which have piecewise nondecreasing

sample paths.

‘Theorem 1.1.2 Let X be a (P, %;)-semimartingale of locally finite variation with
piecewise nondecreasing sample paths. Suppose a function F is given such that
F € C'*(E). Then F(X) is a semimartingale, and with equality denoting P-
indistinguishability [BREMAUD],
t
F(X.) = F(Xo)+ / Fl(X._)dXot Y {AF(X,)-F/(X,-)AX,}, ¢>0 (L17)
0 O<s<Lt

where AX; denotes Xy — X;_ for all t > 0, any process X.

Proof: First note that the right continuity and left-hand limits of F' are necessary

in order to yield a corlol process. To see this, consider an arbitrary w € (1. Let
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t > 0, then, because X is piecewise monotone increasing, there exist {t,}22.o ,tn | ¢
such that X; (w) | X¢(w). But then F(Xi, (w)) — F(Xt(w)) because F is right-
continuous, and hence F(X) is continuous on the right. For emphasis note that in

general,

lzlgfrgF(:c) = F(c—) # F(c) =lim F(z) = F(c+) (1.1.8)

zle
It is clear that F(X;) has limits on the left. Similarly, the right continuity of F' and
implied left-hand limits yield F'(X,_) locally bounded, and so the integral in 1.1.7
makes sense.

Let D be the set of disjoint, consecutive open intervals constructed from the
set of breakpoints of F, say {di}, so that D = {...,(d-1,d0), (do,d1), (d1,d2),...}.
Write D; € D for D; = (di,di+1). Without loss of generality, suppose Xo € D;,
for some D;, € D. Define 7o as the first time after ¢ = 0 that X escapes D;,
ie, 1o = inf{t > 0 : X; & (diy,dis+1)}. Now, as long as t € [0,79) , the usual
differential rule [SNYDER] for jump processes holds for F(X;) since F is assumed

strictly continuously differentiable on D;,. Hence for t € [0, 7o),

F(X:) = F(Xo) + f tF’(Xs_)dX,-Jf- Y {AF(X.) - F'(X,_)AX,}  (1.L9)

0<s<t

Since F(Xy) is corlol, then,

F(X,,-) = F(Xo)+ / F'(X,-)dX,s+ . {AF(X)-F'(X,-)AX,} (1.1.10)
0<s<r9—

Decomposing dX, as dX, = dX¢ + AX, [WONG| one obtains,

To — To ’
/ F'(X,-) dX, =/ Fl(X,-)dX:+ > F'(X (1.1.11)
0 0 0<3<1'0-—
Combining 1.1.10 and 1.1.11 yields,

F(X,,_) = F(Xo) + /F( jaxs+ Y AF(X (1.1.12)

0<s<79p—
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Now the possibilities as to whether X jumps a t = 19 and/or F has discontinuities
at X, _ and/or X, reduce to the cases AF(X,,) = 0 or AF(X,,) is nonzero but

bounded (implicitly F' is locally bounded). Either way, 1.1.12 yieids,

F(X5-) + AF(Xy,) =F(X0)+/T° F'(X,_)dX:+ Y, AF(X,)+AF(X,,)

0<s<ro—
(1.1.13)
and so,
T0
F(X.,) = F(Xo) + / F(X,)dX:+ Y AF(X,) (1.1.14)
Y 0<3$1‘0

Since X,, € D;, for some D;, € D one can define r; = inf{t > 70 : X; &€ D;, }.
Then, if t € [r0,71), Xt € D;,, and F is continuously differentiable there so, arguing

as before it follows that,

FXo)=F(X) + [ PX-)dxi+ Y {AF(X) - F(X,)AX)

1 71 <812 —
(1.1.15)
and from this,
m
F(X.,) = F(X,,) +/ F'(X,)dX:+ Y AF(X (1.1.16)
To 170<8<T]
By induction, for any n € N,
Tn
F(X,)=F(X,_,)+ Fl(X,-)dX:+ Y, AF(X,) (1.1.17)
Tn-1 Tpo1<8<7q

where 7, = inf{t > 7,—1 : X: &€ D;,}, and where D;, > X, _, . Performing the
recursion indicated in 1.1.17 one obtains,

F(X..) = F(Xo) + / TF(X.)dx:+ Y AF(X,) (1.1.18)

0<s<7t,

Note that 7, < 7,41, and that since X is of locally finite variation, X can only cross

0D a finite number of times in finite time, P-a.s.. So if 7 is any stopping time which
is P-a.s.-finite, there exists ng € IN such that 7 A 7,, = 7 P-a.s., and 1.1.18 yields,

F(X,) = F(Xo) + / "FX)dxs+ Y AF(X,) (1.1.19)

0<s<l7
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or,

F(X,) = F(Xo) + /0 " F(X,_) dX, + Y {AF(X,) - F'(X,-)AX,}  (1.1.20)

O<e<LT

Since 7 is any P-a.s.-finite stopping time, 1.1.7 follows from 1.1.20 a fortiors. [ |
Hence, the usual differential rule in the non-diffusion case holds under slightly
weaker conditions on the function F than are customarily imposed, if one is willing
to assume slightly stronger conditions on the sample paths of X. There are two
key ingredients to the proof.i The first is that F' must respect the sample path
properties of X such that F(X) is corlol. For example, if X has nondecreasing sample
paths, the F' must be at least piecewise right-continuous. The second ingredient is
that X must have locally finite variation. This yields a boundary behavior which is
sufficiently simple to permit -the argument to proceed as in the proof. Without this
| assumption, for instance in the diffusion case, this type of argument is confounded at
the discontinuities, where such a process can cross the boundary infinitely often in an
arbitrarily small time period.
This concludes the general semimartingale results which will be needed in the
applications chapter. In the next section, a result is presented which will be necessary

in the hypopthesis testing problem dealing with Poisson processes.
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1.2 A Functional Differential Equation
The next theorem plays a key role in Bayesian hypothesis testing problem in the

case of point process observations.

Theorem 1.2.1 Let a, b, ¢, and u be given such that 0 < a < b < 1, and both ¢ and
u are positive. Suppose a function E(z) is given which is continuous for all z € (0, 1).

Consider the following fuhctiona]-advance differential equation,
UR(z) =-c z€(0,b), (1.2.1)

where the linear operator U is defined via,

v+1
u+z

UR(z) = —a(1 - 2)R'(z) + (u + 2) | B( z) - R(3)],

where the boundary conditions are given by,

R(a) = E(a)
1.2.2
R(z) = E(a) We&%%?) (122)
and with the functional requirement,
R(z) is continuous at each z € (0,b). (1.2.3)

Then a unique solution exists for all z € (0,b).

Proof: Before getting into the details of the proof a short informal discussion will
be given, since problems of this type are somewhat peculiar (see [EL’SGOL’TS &

NORKIN]). Consider the fact that as long as z € [b — b—%_—:?bl, b) that,

u+1
U+

w+1
u+z

R( z) = E( z), (1.2.4)

and thus one may write,

R'(z) = F(=z, R(z)) z € J1[b), (1.2.5)
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where J1[b) is the stated semi-open interval and where,

u+z
F(.’E, R) = G(:B) - ;(-1—_—2:) ’ (126)
with G(x) a known continuous function given by,
c+ (u+z)B(2tly
G(z) = el C=) (1.2.7)

z(l — z)
Hence, if one can prove the existence and uniqueness of a continuous solution to
the ODE 1.2.5, with arbitrary initial condition, then the process may be repeated
inductively to the left, each induction step involving a proof of the existence and
uniqueness of an ODE with a different forcing function obtained from the previous
induction step. The induction process is continued until the ODE under consideration
lives on the interval containing z = a. On this interval, call it J,, the ODE solution
of interest is the one passing through (a, E(a)), which may or may not be an initial
condition for that interval. In either case, assuming a unique trajectory exists passing
through (a, E(a)), then this solution is extended to the right hand endpoint of J,,
yielding a value for R at this point. This value of R is then taken to be the initial
condition for the solution obtained on the previous induction step. Note that matching
the value at this endpoint is justified since the proof of the existence and uniqueness
on the previous step was specified with an arbitrary initial condition. The process
of matching endpoints is then continued to the right until the starting interval Jy[b)
is reached, at which time the matching procedure is terminated since one is not free
to choose the value of E(z) at z = b. However, after the induction step on J,, and
after the endpoint matching procedure, one will have proven the existence of a unique

continuous solution to the following problem,
UR(z)=-c z€[Ab)

R(z) = E(a) - (1.2.8)
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where A is the left hand endpoint of J,, and Jo[b) is the semi-open interval in 1.2.2.
The only difference between 1.2.8 and 1.2.1, is that the solution to 1.2.1 lives on all
of (0,5), whereas the solution to 1.2.8 does not. However, consider the problem,
UR(z) = —c z € (0, A)
R(z) = R(A™) (1.2.9)
R(z)=R(z) Vzeld,. =
If the existence and uniqueness of a continuous solution to 1.2.9 can be shown, then

by combining this and the result for 1.2.8, it follows that,
R(z) = R(z)1{z < A} + R(a)1{z > 4}, (1.2.10)

will solve the original problem.

The problem 1.2.8 will be handled first, dropping the tildes for notational con-
venience. To start, it is necessary to define the discretization intervals and towards
this end, consider the advance ¥ defined as,

uw+1

YW=z Dlz=
u+z

z, L"z = "1 (Zz). (1.2.11)

If one asks that £~! satisfy X! = £71% = £°, then this yields,

ur

E‘lzz———,
vu+1-—2z

(1.2.12)
and X! is called the one step retardation. For any z € (0, 1), it follows easily that,

0<X Mz<z<E"z<1 Vn2>1, (1.2.13)

and hence the significance of the terminology ‘advance’ and ‘retardation’. With these

notions, one can define,

Ja[b) = [£7"b,=7(""1b) n >0, (1.2.14)
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as the nth discretization interval; this agrees with the previous definition given for
Jo[b) given above. Note that there will be occasion to use the notation J,(z), with the
obvious interpretation. Observe that X"z (L"z) is monotone decreasing (increasing)
and bounded below (above). Hence, there exists n = n, such that £="} < a, and
such that this is the smallest such number satisfying the inequality. In the previous
notation then, J, = Jp [b), and A = X7"sb. Thus, the existence and uniqueness of a
soution to 1.2.18 will follow if one can prove this for solutions of

R! (z) = Fy(z, Rn(z)) z € J,[b)

(1.2.15)
R,.(X7™b) = R,,
for each 1 € n < n,, and in addition do the same for a solution of,
R:I.a (z) = Fna (x’ Rna (x)) z€E Jna (b)
(1.2.16)

Rna = E(a)’

where in 1.2.15, R, is an arbitrary constant a.nd',

Fa(e B) = Gale) = 0 R (17)
where, |
oo 2= () o
with,
Ro(z) = E(z)  z € Jolb). (1.2.19)

Let n=1, for the first induction step. Then it is a simple consequence of elementary

ODE theory that a unique solution to 1.2.15 exists passing through any point interior

to the set (J1[b),IR). To prove a unique solution exists starting from the boundary

point (£716,IR), one can choose €; > 0 such that that L~ lb—¢; >0, and then define

J1(5) = (27b — €1,b). Using these open intervals, consider the auxiliary ODE,
R'(z) = Fi(z,R(z)) =z Ji(b)

(1.2.20)
R(z71b) = Ry.
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Now apply ODE theory to 1.2.20. Specifically, Fi(z,R) is continuous for all
(z,R) in the open set (J1(b),IR). In view of 1.2.19, F} has a continuous first partial
derivative in R for all (z,R) € (J1(b),R). So, applying the standard results (see
HALE, Theorem 3.1), R satisfying 1.2.20 exists and is unique. Therefore, if one

defines the restriction,

R (z) = R(z) z € Ji[b), : (1.2.21)

then R,(z) uniquely exists satisfying 1.1.15 for n = 1. Notice from 1.2.15 that R;(z)
is continuously differentiable for all z € J,(b). Therefore, R;(z) and thence also
G2(z) is continuous there. The proof for any n < n, is the same as for n = 1 with
the following observations. First, realize that one can always find an €,, n > 1,
satisfying 2~"b — €, > 0, in view of 1.2.13. Thus for any n > 1, J,(b) is well-defined.
Second, from 1.2.17, it is clear that F,(z, R) has a continuous first partial in R for all
(z, R) € ((0,1),R), and hence this is true for all (z, R) € (Ja(b),R). Lastly, it should
be clear that F,(z, R) is continuous for all (z, R) € (Jn(b),R). It is clearly true for
n=1, has been shown to be true for n = 2, and is true by induction in general. In
summary, a unique solution to 1.2.15 with arbitrary initial condition has been shown
to exist for each n, 1 < n < n,. The proof of the existence of a unique solution
to 1.2.16 is the analogous. If @ = £~ "eb, then the proof is exactly the same. If
a > X "sb, then there is no need to consider the auxiliary problem since then ‘@’ is
interior to Jy,, [b), and the proof follows directly.

To begin the endpoint matching process, note that since F,, is so well be-
haved for all (z,R) € ((0,1),IR), then the solution on Jn,[b) can be extended nat-
urally to include the right-hand endpoint (see HALE, Lemma 2.1). Then define
R, _1(Z(me~1)p) = R, (X~ ("e~1)b). Continue this process of extension and match-
ing up to and including J2[b). The unique solution to 1.2.8, for a, b as given, has now
been demonstrated to exist.

To complete the proof, it is necessary to extend the solution continuously to the
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left, i.e., solve the problem given in 1.2.19. First observe that the solution to 1.2.8
can be extended naturally to the left-hand endpoint of J,, [b) ( again, see HALE,
Lemma 2.1 ). Thus solving 1.2.9 is equivalent to proving the existence and uniqueness

of a solution to (hats removed for notational politeness),

R} (z) = Fp(z, Rn(z)) z € Jp[b)
(1.2.22)
Ro((2=(*"95)7) = R,,

for all n > n,, with R, +1 = Rn, (X7 "b). The proof in this case is also by in-
duction on the analogous ‘overbarred’ problem (see 1.2.20), where now J,(b) =
(2=, T~ (*Vbte,), and again, €, > 0 can always be chosen so that 2~ ("~ Dpte, <
1. This time, at each step of the induction, the solution is extended naturally to the
left, providing an initial condition on the next induction step. Finally, since for any
z € (0,b), there exists a smallest n, such that ¥7" < z, the solution to 1.2.9 is

secured. Recalling 1.2.10, the theorem has been shown. [ |

Corollary If in addition, E(z) is n-times continuously differentiable on Jo[b), n > 1,

then the unique solution to the problem is also n-times continuously differentiable

except possibly for z € {£7%b : k=0,..n}. Also, if R(b™) = R(b) for b given, then

R(z) is n-times éontinuous]y differentiable for all n > 1, and z < b.

Proof: This fact follows directly from 1.2.1, by éolving for the derivative and using

induction. |
This concludes the current section and chapter. In the next chapter, the problem

of Bayesian sequential hypothesis testing is presented.
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Bayesian Sequential Hypothesis Tests

2.0 Introduction

In this chapter, the Bayesian sequential hyptothesis testing problem is presented.
The first section establishes the probabilistic framework which will be used throughout
the thesis. In addition, the class of possible soutions to the sequential hypothesis
testing problem is defined. Within this class of so called admzissible policies, is the class
of threshold policies wﬁich is also defined. The second section gives the particulars of
the general Bayesian problem, however, only the binary case will be presented.

In section 2.3, the first steps are taken in reducing the complexity of the mini-
mization problem posed by the Bayes risk. Theorem 2.3.1 shows that for any policy
u = (7, 5) € U, one can replace & with a certain F;-measurable random variable and
by so doing obtain a new policy whose risk is not larger. The immediate consequence
is that the infimum over all admissible policies is no smaller than the infimum over
their first component. Next, it is shown that threshold policies are unchanged by
the replacement procedure of Theorem 2.3.1 — an obvious property' to check before
attempting to prove that such policies are optimal. The section ends by showing that
without loss of generality, one can assume that the cost due to wrong decisions enjoys

a certain symmetry property.

20
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2.1 Preliminaries

In this section, the problem of testing two statistical hypotheses will be presented
using the Bayesian risk approach. The following probablistic framework forms the
starting point of the investigation.

On the measurable space ({2, 7), there are given two probability measures P; ,
i=0,1. In addition, there is given a filtration {O; : t € T'}, where T C [0,00) is the
time parameter set, either continuous or discrete. If T' = [0, 00), then O; is taken to
be right continuous. The O; filtration should be thought of as being the history of
some observable process. There is also given ©, the hypothesis parameter set. For
instance, in the simplest case of binary hypotheses, © = {fo,6:}.

The general hypothesis testing problem can be loosely described as discovering
a plan, or policy, which dictates when to stop and what to decide, based upon the
available information, and which also satisfies a given performance criterion. Any
policy then, ought to be a pair consisting of a stopping time and a deciding rule, and
an optimum policy is one which achieves a specified performance. In view of this, it is
clear that in seeking optimum policies, the search is naturally limited to a class of can-
didate policies whose membership in the class, or admissibility, is defined by practical
measurability requirements. That is to say, each component of an eligible policy pair
should at least, and at most, be measurable with respect to some o-algebra which
contains all the information that might possibly be observed. A natural definition of

admissible policy then, is given in terms of the observation filtration, O; .

Definition 2.1.1 An admissible policy, u, is a pair, v = (1, 6), where 7 is a (P, O)-
stopping time taking values in T, and § is a (P, O;)-random variable taking values in
©. The class of admissible policies will be denoted as U.

In the binary hypothesis testing problem, the choice of v € U prescribes a policy

which specifies, via 7, when the observation is to be terminated, and specifies via 8,
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which hypothesis is to be accepted. That is to say if § = ¢, then the hypothesis § = 0;
will be accepted, + =0, 1.
An important subclass of admissible policies are the threshold policies. This is

due both to their simple specification and remarkable optimality properties.

Definition 2.1.2 Let X be an O:-adapted process. A threshold policy u €U isa
pair, @ = (7, 6), where,
F=inf{t >0 : X; ¢ (a,b)}

and,
1 Xz>0b

o
it

0 X5<a
where a < b are the thresholds, and (a, b) is called the continuation interval. The
class of theshold policies will be denoted as U; note that, U C U.

Observe that for a given filtration, there are as many possible threshold policies
as there are ways to choose a triple (X, a,b) which satisfies the definition. For a given
O;-adapted process X however, the hope is that one can find a prior: a particular
threshold pair such that the threshold policy so defined is optimal in some sense.
For our purposes, X will be taken to be either a certain a posterior: probability
or likelihood ratio process, the important similarity being that they both satisfy
Theorem 1.1.1.

Consider an arbitrary admissible policy v € U. For each w € (1, the policy
u = (r,6) can be described very generally as incurring two kinds of losses, one due
to the cost of waiting to decide, and the other due to making a wrong decision. A
reasonably general characterization of the cost of the observation time, or running
cost, is given by fof cs ds, where {c;,t > 0} is some O;-adapted process which serves
as a suitable cost measure. For instance, ¢; = ¢ > 0, a positive constant, is often
chosen with the intention of using an apparently simple running cost to capture the

behavior: ‘the longer it takes to decide, the more it costs’. Of course, this is not
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the only cost process which captures this behavior, nor is it necessarily simple, for
the simplicity of a running cost is often best judged not by its specification, but by
how easily it yields to mathematical analysis. Indeed, a fundamental tradeoff in the
modeling of a sequential testing problem is choosing a running cost which can be
worked with mathematically, and still captures a desired behavior.

Next, consider that each admissible policy can make two types of incorrect deci-

sions, _
6=0 while =26,

6 =1 while 0=4,.
Naturally, it will be desirable, to minimize in some way the probabilities of these
errors.
This concludes the section. In the next, the discussion will focus on the details

of the Bayesian formulation.
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2.2 Bayesian Formulation

Let 6 be a {0, 0, }-valued, F-measurable random variable, § : 2 — ©. Fix an

arbitrary m € [0, 1] and define a probability measure P, on (2, 7) via,
Pr{w : 0(w)=0,} =7 , Pp{w:0w)=0}=1-m, (2.2.1)
such that for each set A € 7 there holds,
P{A} =P {A}+ (1 - n)Po{A}. (2.2.2)

In words, it is assumed that 8 is a binary random variable taking on the values 6 or 6,
with the a priori probabilities 1 — 7 and m, respectively. The a posteriori probability
of the & = 0, hypothesis is then defined as m; = P,{0 = 6,|0:}, t € T, and since
Oo = {0, 0}, it follows that Py{mo =7} = 1. '

Consider an arbitrary admissible policy v € U as defined abové. For each w € (1,
the policy v = (7,6) can be described as incurring two kinds of losses, one due to
the cost of waiting to decide, the other due to making wrong decisions. On average
therefore, a natural definition for the average running cost is given by Ey| fOT csds],
where {c¢,t > 0}, is some O;-adapted process which yields a desired cost behavior.
Later {c¢,t > 0} will be specialized to {c(m¢),t > 0}, where ¢(r),m € [0,1] serves as
a reasonable cost rate function.

To describe the cost of making wrong decisions, define

¢ if §=0,,6=0 >0
w(8,6) =< ' if 0=05,6=1 ¢'>0 (2.2.3)
0 if 6§=249,
yielding the average cost of incorrect decisions as E,[w(f,6)]. Observe that it is
without loss of generality that there is no cost levied for correct decisions in 2.2.3.

Now, one can easily show that

E [w(8,6)] = °Pi{6 =0} + ¢! Po{6 = 1}.
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Putting the pieces together yields,

“p(myu) = Ep [/OT csds + w(d, 5)] (2.2.4)

as the total P,-average Bayesian cost, or risk, of the policy v = (7, ).
The following definition serves to characterize the optimality of admissible poli-

cies for the Bayesian formulation.

Definition 2.2.1 Let I C [0,1]. The policy v* € U is said to be I-Bayesian if

p(m,u*) = uel% p(m,u) Vrel (2.2.5)

Ifu* € U is [0, 1}-Bayesian, it is said to be Bayesian.

Consider that any reasonable, admissible policy will be at least {0, 1}-Bayesian,
and so for convenience of notation, I will be understood to denote I U {0,1} unless
noted otherwise.

Given this definition, one of the principal goals of this thesis can be succinctly
stated as demonstrating that there exists a threshold policy, say with thresholds a,
b, which is at least (a,b)-Bayesian, and preferably Bayesian, for a given observation
filtration. It is this goal which motivates the use of the suggestive ‘I’ notation in the
definition.

This concludes the section. The next sections begins by showing how the infimum
over all admissible policies appearing in 2.2.5 can be replaced by a much simpler

minimization.
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2.3 Optimal Stopping

Having considered general aspects of Bayesian hypothesis testing in the previous
sections, the focus here is to reduce the complexity of the search for the optimal policy.
Towards this end it is first shown that finding a Bayesian policy can be reduced
to a problem of optimal stopping, i.e., one can restrict the search for the optimal
policy, an infimum operation over both policy components, to a search for an optimal
stopping policy, an infimum operation over the stopping time component alone. This
is accomplished by showing that any policy pair can be replaced by another pair whose
risk is no larger. The new pair is obtained from the original by replacing its decision
component with a new decision variable which has an explicit representation in terms
of the a postertor:i probability; the stopping time component is kept the same. The
immediate question arises as to the effect of this replacement procedure on threshold
policies, and it is shown that such policies remain unchanged—an obvious property to
check before one tries to prove that threshold policies are Bayesian! Next it is shown
that without loss of generality one can consider a certain symmetric and normalized
version of the Bayesian formulation.

The next theorem is a generalization of Lemma 4.1.1 in [SHIRYAYEV 77].

Theorem 2.3.1 Let @ = (7,8) € U be arbitrary, and define u = (r,8) € U via, 7 = 7

and,
1 Or >l (1-7)
6= (2.3.1)
0 Or, <cl(l-m,).

Then, for all = € [0, 1],

p(r,i) > p(m,u) = Ey [/c;f csds + e(m,)] (2.3.2)

where,

e(r) = min{c%r,¢' (1 — 7)}. (2.3.3)

and {c; : t > 0} is an O;-adapted, nonnegative process.
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Proof: If 7 = 0 or 1, then the assertions are easy to check, so suppose m & (0,1).

From definition 2.2.1, it is clear that since {5 =1} € O, for : = 0,1, there holds,

E.[1{6 = 0}1{6 = 1}] = E,[1{6 = 0} E[1{0 = 1}|0,]]

) (2.3.4)
= E.[1{6 = 0}m,].
and similarly,
E.[1{6 =1}1{0 = 0}] = E,[1{6 = 1}(1 — =,)]. (2.3.5)
So, combining 2.2.3, 2.2.4, 2.3.4, and 2.3.5 yields,
7
p(m ) = E.,,[/ csds +w(d,6)]
0
- ,[/ cods + O1{5 = 0}1{0 = 1} + ¢'1{5 = 1}1{0 = 0}]
o :
= E,,[/ csds + (1 — &)z + 16 (1 — m7)] (2-3.6)
o -
,
- ,[/ cods + (1 — §)m, + '6(1— )]
0
> E,..[/ ¢csds + e(m,)] = p(m,u),
0
and the theorem is shown. ' |

This theorem is a welcome simplification of the problem for it says that in the
search for Bayesian decision policies, one need only consider policies v = (r,6) with

6 given by 2.3.1 and with the risk given by,

p(r) = inf p(m,u) = inf p(m,7),

where,

p(m,7) = Ey [/OT csds + e(m,)], (2.3.7)

and where T denotes the class of (Py, O;)-stopping times. In fact, without loss of
generality it is sufficient to take T to be the subclass of Py-a.s. finite stopping times

if the following technical condition holds,

@) Bl edd =,
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Intuitively, the condition (T) is entirely natural since usually one does not impose a
running cost which fails to force decisions in finite time. As a result, 1t will be assumed
throughout the remainder of this thesis that condition (T) holds. As a sidenote, be
aware that the cost due to making wrong decisions is often called the ‘terminal cost’
in the Bayesian formulation. This usage is a direct consequence of the theorem, and
equation 2.3.1 in particular.

Observe that the theorem is very general. No assumptions were made regarding
the continuity of either the time parameter or state-space; one has only to interpret
the integrals in the usual way. The extension to multiple hypotheses is tedious but
straightforward. In addition, notice from definition 2.1.2 that a threshold policy
(7,6) € U is entirely specified by its first component (via the thresholds). That is
to say, once 7 is known, é is completely determined, a characteristic not shared by
admissible policies in general. The theorem above however shows that in minimizing
the risk, the infimum over all policies is no smaller than the infimum over all policies
which share this characteristic.

In light of the above theorem, a natural question to ask is what -policy results
when a threshold policy (7,8) is exchanged for the policy (7, 6),.with 6 as in 2.3.1.
If @ is a threshold policy based upon the a posteriori probability, the next theorem
shows that as long as the candidate threshold policy never prescribes stopping where
the terminal cost is at its maximum, then (7,8) and (7,§) are identical. Note that

. . . 1
the maximum value of the terminal cost is 5.

Theorem 2.3.2 Let Iy = (a,b), with0 < a < Zﬁ%f <b< 1, a#b, and consider the

threshold policy (7,8) based on Iy and {m; : t > 0} (see def. 2.1.2). Then,
b(w)=46w) VYwenq,

with 6 as in Theorem 2.3.1.
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Proof: Suppose w € Q1 is such that, 77(,)(w) > b. Then from 2.3.1,

TF > b )
1-7!';— 1-b

On the other hand, b > ¢!/(c® + ¢!), and so,

1

ol &

b
1-5 o

c
Thus 77 > b implies ¢%rz > ¢!(1 — 7). Now let w € (2 be such that,

TF(w) (w) > ﬂ
1—mrw)(w) = @’
so that upon rearranging one obtains,

1

c
0 120',
c’+c

7r'F(w)(w) >
where the second inequality follows by hypothesis. Hence for such an w € , it
follows that, w7 > b in view of the definition of 7. From this one concludes that

cOrz > ¢!(1 — m7) implies w7 > b and therefore,

Tr(w) (@) 2 b <= Omr(uy (W) 2 ¢ (1 - Ty (W) Yw e,
Similarly, one can show that,

Trw)(w) < a <= cow;(w)(w) < M1 = () (w)) Yw € .

Comparing definition 2.1.2 and equation 2.3.1 completes the argument. |

Another consequence of Theorem 2.3.1 is that if one considers (P, O;)-adapted
cost rates of the form c¢; = ci(m),t > 0, where ¢;(7) , 7 € [0, 1}, ¢t > 0 is some
suitable, nonnegative cost rate function, it follows that allowing different multipliers
on the terminal cost is a false generality. This is easily seen uéing the new form of

the risk given in Theorem 2.3.1. In fact, let

E=ct1-m)+fr=¢ (2.3.8)
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and take # = ¢%7/&° for any 7 € [0,1]. Set &;(r) = c¢(c°n/c?),and also
&(r) = min{é°r,&(1 — m)}.
Then notice,
E| /0 " a(ms)ds + e(r)] = /0 (70 ds + 6(72)]
= E;,[/OT &s(7s)ds + &(7r)],

where P; is defined via 2.2.1 and 2.2.2 with 7 € [0, 1] replaced by % € [0, -g-‘;] Thus,
the original Bayesian formulation based on thea posteriori probability process can be
replaced by an equivalent formulation based on {#; : ¢ > 0}. Of course, the process
{# : t > 0} may no longer have the interpretation as an a posterior: probability.
Analogously, the family {P; : 0 < 7 < g—;} is no longer strictly a family of probability
measures, but of course as is usually the case it is only necessary that it be a family
of finite measures to obtain the essence of the arguments contained herein. In view

of this equivalence, it is sufficient mathematically to consider the symmetric case

¢® = ¢!, in questions of optimality. In this case the risk is given by

p(m,7) = E,[/: cs(ms)ds + e(m,)],

where,

e(r) = min{cr, (1 — )} = ¢® min{m, 1 — 7}.

So, letting &; = ¢;/c° and & = e/c0, it is clear that minimizing p(r,7) is equivalent to

minimizing
,

plm7) = Bl | au(m)ds + ()

0

Hence, it is sufficient to consider the case of symmetric, normalized terminal cost.

For the remainder of this thesis, therefore, the risk may be assumed to be,

T

p(m,7) = E,r[/ c(ms)ds + e(m,)],

0
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where,
r r<1/2
e(r) = (2.3.9)
-7 m>1/2
Specific quantities in the general case can be obtained for the symmetric case and
transformed back by the relation 2.3.8. |
Having obtained the special form of the terminal cost in 2.3.9 with no loss of

generality, one might wonder what this symmetry implies about the risk. To motivate

the discussion, consider the set defined via,

Co = {m : p(m) < e(m)}.

The set Cj is called the natural continuation set for the obvious reason that one
intuitively expects to continue collecting data as long as the risk is less’than the

terminal cost. In addition to Cp, one can define the natural stopping set as,

So = {r : p(m) = e(m)}.

It is easy to see that the two sets are disjoint and that their union is the whole
interval, [0,1]. In general however, because the risk is not known a priori, it is
difficult to squeeze more useful information about the risk out of Cp or So. Indeed,
this is the essence of the problem since ciea.rly, the goal of proving threshold policies
are optimal is precisely equivalent to showing that Co is open and connected. That
is to say, one believes intuitively that the stopping interval for a threshold policy
should be identical to Cg, if the policy is Bayesian. One might also expect that the
risk arising from a symmetric terr;ﬁnal cost ought to be symmetric also. However,
this is not the case! What is true is that a symmetric terminal cost implies that
So and Cy are symmetric sets (about ™ = %) and that the risk is symmetric on Co,

in certain problems where the observations arise from diffusion-type semimartingales

(see section 4.1). It is also true that the risk is not symmetric on Co in the Poisson
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process case (see section 4.2). In addition, it appears that the sets Sp and Cy are not
symmetric in this case either, although the author was not able to show this.

This concludes the section and chapter. As a final note, be aware that the
main reason for demonstrating the symmetry property above is so that qualitative
understanding of the problem can be gained. Another reason is to simplfy some
arguments later chapters. However, in the chapter on applications, the results will be

stated for a non-symmetric terminal cost so as to facilitate quantitative analysis.



Chapter III
Sufficient and Necessary Conditions

3.0 Introduction

Having considered the general aspects of Bayesian hypothesis testing, the next
goal is to show under what conditions threshold policies based on the a posterior:
probability are Bayesian optimal. The purpose of this chapter is to identify such
conditions, and indicate how to use them in a particular application to demonstrate
optimality as well as compute the thresholds. The chapter is organized as follows.

Section 3.1 gives a set of three conditions which are sufficient to guarantee that
threshold policies are Bayesian. Two lemmas are given which help characterize the
risk and the continuation interval. The main theorem, which is based on these lemmas,
then demonstrates the sufficiency of the conditions mentioned. The section concludes
with a uniqueness result.

In section 3.2 the conditions laid out in section 3.1 are imposed and consequent
properties are derived which guide the search for the risk and continuation interval
in applications.

3.1 Sufficient Conditions

The purpose of this section is to spell out a set of three conditions which are
sufficient to prove that there exists a unique threshold policy which is Bayesian. In

addition, the conditions will show how to compute both the Bayesian risk and the

33
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optimal thresholds.

From the last chapter, it is clear that the process of fundamental interest is thea
posteriori probability process {m; : ¢t > 0}. In the remainder of this thesis, it will
be assumed that {m; : ¢ > 0} is in fact a time-homogeneous Markov process. In the
applications which follow, it will be shown how results for less restricted {m; : ¢t > 0}
processes can in fact be obtained from the results contained in this chapter.

Since the goal of this thesis is to demonstrate the optimality of threshold policies,
it is natural that the topic of first exit times of a process from an open interval should
arise. In turn then, it might be expected that the notion of characteristic operator
should appear. This is indeed the case, but it will be used in a sense less general than

usual. For instance, using the previous probabilistic set-up, define

Ur(r) = lim Ex[r(ns,) — r(mo)]

, € (0,1), 3.1.1
Il Exl7s] m€(0,1) (3-1.1)

where r € D(U), and D(U) is the domain of definition of U, i.e., the set of all functions
such that the limit exists. In addition, let 7; = {¢ > 0: m; ¢ J}, with J an interval
containing m, and let the limiting process consists of a series of intervals shrinking
down to the point {r} (see DYNKIN). Now given that {m; : ¢ > 0} is as above, and
supposing that r : (0,1) — R satisfies the hypotheses of a generalized It6 rule for a

particular {m; : t > 0}, one can write
,
r(m,) —r(mo) = / U™ r(ms)ds + M,, (3.1.2)
0

for all (Py, #;)-stopping times satisfying Er[r] < oo, where M is some Pr-local mar-
tingale. That is, because r(m,) has a stochastic integral representation, the limit in
3.1.1 exists. Clearly, 3.1.2 is a convenient and compact representation. If a function
r € D(U) admits a stochastic integral representation, it will be written as r € D(U).

Let U denote the characteristic operator for the a posteriors probability pro-

cess {m; : t > 0} and D(U) denote its domain of definition. Let I C E be some
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open interval and r : E — IR be some function in ﬁ(U) Consider the following set

of conditions:

(C1): Ur(r) = —¢(m) Vre E
(C2): r(m) = e(m) Vi € dxlo
(C3): r(m) < e(m) Vr & 9.1o

The three conditions as a whole will be referred to as the conditions, (C1-3), and
separately as (C1), (C2), etc.

The remainder of this section is devoted to proving that the conditons (C1-3)
are sufficient to guarantee that there exists a threshold policy which is Bayesian. The

first lemma goes a long way towards showing this.

Lemma 3.1.1 Suppose there exists a pair (r,Io) satisfying the conditions (C1-3).
Then,

p(x) = r(r) Vr € [Io)x, (3.1.3)

where p(-) is the Bayes risk.

Proof: First note that (C2) and (C3) together imply,
e(r) > r(m) Vr e E. (3.1.4)

Next, in view of (C1), one obtains,

p(r) = inf p(,7)

= ot Bul [ elm)ds + e(nr) (3.15)

=r(r)+ Tlélfl'_ E.le(r;) —r(m;)] Vw€E.

Hence, combining 3.1.4 and 3.1.5 yields,

p(r) > r(m) Vr e E. (3.1.6)
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On the other hand, if one defines the ( Py, O;)-stopping time 7 as,
T=inf{t >0 : m & Io}, (3.1.7)
then, from (C1) and (C2) it follows that,
p(m,7) = r(m) Vr € [Io]a. (3.1.8)
Thus, 3.1.6 and 3.1.7 together yield,
p(m) = r(m) Vr € [Io)n, (3.1.9)

and the lemma is shown. |
Because of 3.1.9 and (C3), it is convenient and suggestive to call r(-) the subrisk.
Likewise, it is appropriate to call Iy the continuation interval.

The next lemma indicates what the risk is on the remainder of E.

Lemma 3.1.2 Suppose there exists a pair (r,Io) such that the conditions (C1-3)

hold. Then,
p(r) = e(m) Vr & I (3.1.10)

Proof: Suppose that the a posteriori probability is Pr-a.s. initially outside of [Io]n.

Consider first the cases 7 = 0 and 7 = 1. First note that,
p(r) >0 T=0,1, (3.1.11)
but also p(m,0) = 0 and therefore p(w) = 0. But then,
p(r) = e(m) T=0,1, (3.1.12)

since e(7) = 0, for 7 = 0, 1.
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Next, consider the stopping time specifying the first time that {m; : ¢t > 0}
reenters [Io]n,

Ff=inf{t >0 : m € [lo]r}, (3.1.13)

where 7(w) = oo if it never reenters for w € (1.

Since e() is linear for all 7 ¢ Iy, it follows that,
TAT
/ U™e(my)ds=0 VreT, (3.1.14)
0

since it is an obvious fact that affine functions are annihilated by the characteristic

operator of a martingale. Using 3.1.14, one obtains for all ¢ I and 7 € T,
p(m,7) = By / " o(ms)ds + e(my)]
— e(r) + E, [/ J)ds +/ U™ e(r,)ds]
= e(r) + Ex| /0 e(ma)ds + 1{r > 7} / U™ e(r,)ds] (3.1.15)
= e(r) + Es| /0 o(mo)ds + 1{r > FYe(r,)] - Ealt{r > F}e(rs)]
> e(m) + Bel1{r > 7| elm)ds +e(m))] - Ba[1lr > (),

where the last line holds since the running cost is nonnegative. Concentrating on
the first expectation on the right-hand side of the preceding inequality, the lower

bounding procedure continues,

Er[1{r > 'F}(/c;f c(ms)ds + e(ms))]
= E.[1{r > ?}E,,[/: c(ms)ds + e(m) |7 > 7, Ti(u)(w) € O]
= E[1{r > 7F}p(ms,7)]

> Eq[1{r > 7}p(mz)] Vn¢l,T€T.
(3.1.16)

Combining 3.1.15 and 3.1.16 yields,

p(m,1) > e(m) + Ex[1{r > 7}(p(7z) — e(mz))] Vn & Lo, 7ET. (3.1.17)
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The idea now of course is to kill the expectation in 3.1.17 by claiming that 7 is in the
m-boundary of Ip, which is where it is known that the risk equals the terminal cost,
from Lemma 3.1.1. A subtlety has arisen here however, in the case where {m; : t > 0}

is a real right-continuous (Py, O¢)-martingale with jumps. Letting,

st={r¢[Lls}n{r > 3}, (1)

and,

S= = {r ¢ [To]} N {r < %}, (3.1.19)

then either 8; S+ C 8FIo, or 87 S~ C 8; Io, and respectively mz € 9;F Ip for mp € S,
or m; € 87 Io for mg € St, Py-a.s. If {m; : t > 0} has a continuous negative drift, and
the jump term is positive and assigned to the § = 1 hypothesis, then ;S C I
is guaranteed. This is the case of interest here, so the argument will proceed with
this assumption.

Now, from 3.1.13 and assuming 3, S+ C 8} Io, Pr-a.s., it follows that
7z € OrIp Pr-as., (3.1.20)
and therefore,
Ex[1{r > 7}(p(m;) — e(n3))] =0 Vo gL, 7€T, (3.1.21)
since condition (C2) and 3.1.9 require,
p(m) = r(m) = e(m) Vr € 3. Io. (3.1.22)
Thus upon substituting 3.1.21 into 3.1.17 there follows,

p(r) = igg_p(w, 7) >e(m) VreST. (3.1.23)
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On the other hand, in view of the fact that e(r) is concave, a consequence of Jensen’s

Inequality is,

p(m) = 1125_ E,,[/OT c(ms)ds + e(ms)]

< (5 [ elr.)ds-+ (Beln)

€T (3.1.24)
=1_1é1f1'_ E, A c(ms)ds + e(m)
= e(m) vr € [0, 1].
Hence, 3.1.23 and 3.1.24 yield,
p(r) = e(m) vre ST. (3.1.25)
By a similar argument one can show that,
p(m) = e(m) Vre ST, (3.1.26)
Combining 3.1.25 and 3.1.26 gives,
p(r) = e(m) Vr ¢ Io, (3.1.27)
which is the desired result. | |

The preceding lemmas are the main ingredients to the principal optimality result
proved next. A short recapitulation is in order. Lemma 3.1.1 showed that the three
conditions imply that the risk and the subrisk are identical on the m-closure of the
continuation interval. Hence, by itself the lemma suggests that threshold policies are

at least [Io].-Bayesian. Putting the two lemmas together yields the following.

Theorem 3.1.3 Suppose there exists a pair (r, Iy) satisfying the conditions (C1-3).

Then threshold policies are Bayesian.

Proof: Suppose (C1),(C2), and (C3) hold, and define 7* = 7 as in 3.1.7. Then 3.1.8

and 3.1.9 give,
p(m, ") = p(r). Vr € [Io)n, (3.1.28)
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i.e., 7* solves the optimal stopping problem for all = € [Io],. Since 7* is of threshold
type, it follows that the policy v* = (7*,6*) exists and is [Io|r-Bayesian, where 6* is

given by,

5 = 1 ifm,e >0
0 if e <a,

for Iy = (a,b).

It follows from Lemma 3.1.2 that,
p(r) = e(r) Vr ¢ Io. (3.1.29)
On the other hand, 7* = 0 Py-a.s. V7 ¢ I, and then,

p(m,7*) = E,,[/: c(ms)ds + e(ms-)]

= E,[0 + e(n)] (3.1.30)

= e(m).
Hence 7* solves the optimal stopping problem for all m ¢ I;. Combining this fact
with the above argument for m € [Io], shows that there exists a policy, in particular
u* = (r*,6*), 7* asin 3'.1.7 and 6* as above, such that u* is Bayesian. |
The final theorem is a uniqueness result showing that a pair (r,Ip) satisfying
conditions (C1-3) is unique on [Io|, whenever r is concave on Ip. This is called

essential uniqueness of the pair.

Theorem 3.1.4 Let (r, o) satisfy the conditions (C1-3). If in addition r is concave

on Iy, the pair is essentially unique.

Proof: Let (s,Jo) be another pair satisfying the conditions, with s concave on Jo.
The proof will proceed by contradiction; suppose Iy # Jo. From Theorem 2.3.2, one
may assume that Io N Jo # B. So either Iy or Jp is strictly contained in the other,
or they overlap. In the first situation, suppose wlog Iy C Jy, strictly. In this case,

81y C Jo and so letting 7w € 81y, it follows from Lemma 3.1.1 that,

p(r) =r(r) = e(m) VY € dl,. (3.1.31)
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On the other hand, it is also a consequence of Lemma 3.1.1 that,
p(r)=s(r) <e(r) VmeJyDal. (3.1.32)

As a result, neither strictly contains the other, and so they must overiap. Define the
nonempty interval I* = Iy N Jo. Choose m € dI* and notice either m € dIg N Jg or
7w € dJo N Iy. However, if either is true, then arguing as in 3.1.31 and 3.1.32 will lead
to a contradiction, thus indicating that the original supposition is false and thence
Iy = Jo.

It is now a simple application of Lemma 3.1.1 to the pairs (r, Ip), (s,Io) which
demonstrates,

r(r) =s(r) V€ [Ip]n. (3.1.33)

Thus the pair (r, Io) is essentially unique in the sense that Ip = Jo and 3.1.33 holds.

In particular,

r(n) =p(r) =s(r)  Vr € [lo]n, (3.1.34)

suggesting the terminology. o
The nonuniqueness of 7(m) off of [Io], is irrelevant to any questions concerning
the risk. This is fortunate because r is not in general unique there.
In the next section, the conditions (C1-3) are used to discover important prop-
erties that the pair must satisfy. Such necessary conditions guide the search for pair

in the applications chapter.
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3.2 Necessary Conditions

In the last section, the goal was to demonstrate the sufficiency of the conditions
(C1-3) in proving that threshold policies are Bayesian. The emphasis in this section is
in using these conditions to discover properties which the subrisk and the continuation
interval must satisy. Such necessary conditions have their primary importance in
applications, by providing characterizations that guide the search for the subrisk and
continuation interval pair which obeys (C1-3).

The next theorem is very important in applications in that it provides a way to
demonstrate the concavity of the subrisk based on its smoothness properties, quite a
bargain since a direct proof of concavity can be much more difficult than a verification
of smoothness. Note then the intimate connection between this theorem and the

condition (C3) in an applications setting.

Theorem 3.2.1 Let (r,Io) exist satisfying (C1), and suppose r(r) is continuous on

[Io]x. Then r(r) is concave on [Io], if and only if r € C2+([Io)x)-

Proof: If r(r) is concave on [Io|x, then r € C**([Io|r) a fortiori. Suppose then that
r € C¥t([Io]x). The proof will proceed by contradiction. Suppose r(r) is not concave

on [Io]x. Then it is convex on some subinterval J C [Io|r in view of the fact that

r € C°N C2+([Io]x). Define,
rp=inf{t >0: m & J}, (3.2.1)

and suppose T € J, Pr-a.s. Now,consider any stopping time ¢ € T, where 0 <

7, Py-a.s.. Since () is convex on J, one obtains,
Ex[r(ns)] 2 r(Ex[ns]) = r(m) T E J, (3.2.2)

where the inequality is an application of Jensen’s Inequality, and the equality follows

since {m; : t > 0} is a (Py, Oz)-martingale. On the other hand,

Ur(r) <0 = Eg[r(m,)] <r(r) Vre€T,r€E, (3.2.3)
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i.e., condition (C1) guarantees that {r(m;) : ¢ > 0} is bounded above by its initial
value. As a result, 3.2.1 is a clear contradiction, and therefore r(r) is concave on
(Io] - |
Corollary If (r, Iy) exists satisfying (C1) and r € C°NC**(E) for any set E C (0,1),
then r(m) is concave on E. ’

Proof: Replace [Io], in the theorem by E. | |

The next theorem is used in applications to obtain condition (C3) from (C1),

(C2), and Theorem 3.2.1.

Theorem 3.2.2 Let there exist a pair (r, Io) satisfying the conditions (C1) and (C2).

Suppose in addition that r(r) is concave on [Io|r. Then,
r(r) < e(m) Vr € I,

if,
(3.2.4)

where, Iy = (a,5),0 < a < % <b< 1
Proof: First note that since r(r) satisfies (C1), then it is not affine. Next note that
r(r) is continuous at 7 = @ and w = b. It is continuous at 7 = b because m = b is not
an endpoint of [Iy]r, and because concave functions are continuous except possibly
at their endpoints. It is continuous at 7 = a because r € D(U) implies that r(r) is at
least right-continuous, per convention.

Then it is clear from the fact that r(m) is concave that,
r(r) <lo(m) = Vmel, (3.2.5)

where,

lo(m) =r(a) +r'(a) (7 — a). | (3.2.6)
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Likewise, it follows that,

r(m) < lp(m) Vr e I, (3.2.7)

where,

Ly(m) = r(b) +r'(07) (7 — b). (3.2.8)

Since condition (C2) imposes: r(a) = e(a), 7(b) = e(b), then one observes that,

e(r) =l (m)1{r < %} + Iy (m){m >

N =

} vr € {0,1], (3.2.9)
taking 3.2.4 into account. The combination of 3.2.5, 3.2.7, and 3.2.9 gives,

r(m) < e(m) Vr € Io, (3.2.10)

»

the desired result. | |

This concludes the chapter. In the next, the results of this chapter and those of
the first will be used to solve three problems arising in applications. The first two
deal with the Bayesian problem when the observations come from a diffusion, and the

third when one is observing a time-homogeneous Poisson process.



Chapter IV
Applications in Sequential Testing

4.0 Introduction

In this chapter three problems in Bayesian sequential hypothesis testing will
be formulated and solved. Given the framework established in the second chapter,
formulation here means specifying the two hypothesized probability measures, and
the observation o-algebra. Two of the problems arise when one observes a diffusion
and seeks to minimize a given Bayes risk. In the first, it is assumed that one of two
constant drifts is responsible for the observations. Actually, the detection version of
the hypothesis testing problem is solved because it is mathematically equivalent while
notationally simpler. A constant, positive cost-rate is chosen for this problem which
is proportional to the the square of the nonzero drift. It is shown that a threshold
policy based on thea posteriori probability is optimal, and the risk and thresholds
are given.

The second problem considered is the case where a diffusion with a drift which is
assumed to be merely progressively measurable is the basis for the detection problem.
It is shown that, if one chooses a constant, positive cost-rate which is proportional to
the square of the stochastic drift, then again, a threshold policy is optimal. In fact, it

is shown that the risk and thresholds are identical to those in the homogeneous case.

The last problem considers the case where under each hypothesis, it is assumed

45
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that the observations are due to a constant rate Poisson process. Here the hypothesis
testing problem is presented because the detection problem—a constant rate versus a
rate of one—is no real notational bargain. A threshold policy is shown to be Bayesian,

and explicit formulas for the risk and thresholds are given.
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4.1 Diffusion Observations

This section will draw on the formulation and notation laid down in sections 2.1
and 2.2 on the Bayesian Formulation to the sequential hypothesis testing problem.
Following the briefest review, the problem will be specialized to the case where the
filtration history arises from observations of a continous semimartingale driven by a
standard Wiener process.

Let w € [0,1] be arbitrary throughout the remainder of the section, unless other-
wise noted. This will save the continual trouble of having to restate the obvious, and
this will not be done, except for emphasis in some of the numbered equations.

Recall that on the measurable space, ({2, ) there is given a family of probability
measures {P; : 0 < m < 1}, satisfying 2.2.2, and a {0, 0, }-valued random variable,
8, with the a prior: probability distribution given in 2.2.1. Based on the observation
filtration, O¢, one wants to choose a value for § which minimizes the risk, defined in
2.2.4. Values for 8 are chosen by a two-step procedure. First, the decision to terminate
the observation procedure is made according to a (Py, O¢)-stopping time, say 7, and
then the value for @ is chosen according to a (Py,O,)-binary random variable, say
6 (see definition 2.1.1). A particular application begins by specifying the nature of
{O¢ : t > 0}, the o-algebra generated by the observations.

It is assumed that the random variable # is unobservable, but that one can
observe a continuous random process {y; : ¢ > 0} whose statistics under each of
the hypotheses—8 = 8y, § = #;—are governed by the probability measures Py and
P,, respectively. To wit, for each w € {1, the observation process has the stochastic

differentials,
h(w)dt + dw(w), if 8(w) = bo;
dy(w) =
hl(w)dt + dw:(w), if 8(w) =01,
where, {w; : t > 0}is a (Py, %)-standard Wiener process which is Pr-independent

of 8, and where {h% : ¢t > 0} is an F;-progressive process satisfying, E; [fot |ht|ds] < oo,
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1 = 0,1. Now, from section 2.5, the above hypothesis testing problem was shown,
without loss of generality, to be equivalent to a detection problem, and so, letting

6o =0, and #; = 1, the problem can be recast in the detection format, in which case

{ys : t > 0} has the (Py, %)-stochastic differential

with the obvious requirements on {h; : t > 0}, and {w; : t > 0}.

From 4.1.1, one takes the observation filtration, Oy, to be the o-algebra generated
by the {y: : t > 0} process. Having done this, recall from section 2.2 that thea
posteriori probability is 7; = Pr{6 = 1|0;}, t > 0. This permits the total average
risk to be given as

p(n,7) = En| fo " o(ma)ds + e(m)], (4.1.2)

where ¢;(r) is a given cost-rate function, and e() is the terminal cost. Note that
4.1.2 is free of §, as achieved in section 2.3.

Having defined the observation filtration, the immediate goal is to compute a
stochastic differential for the {m; : ¢ > 0} process. From 4.1.1 it is clear that Py < P,

so take,

As(w) = g%(ot) (), (4.1.3)

to be the likelihood ratio for the problem, i.e., it is the Radon-Nikodym derivative of
the O;-restriction of the measure P; with respect to the O;-restriction of the measure
Py. If ¥ = 1, then P,{m; = 1} = 1 with P, probability one, for all ¢ > 0. Suppose

7 < 1; in Appendix I, it is shown in this case that (see A.1.11),

= Imt _ (4), (4.1.4)
and so, applying the Ité differentiation rule one obtains,

t _ t,_ 2 1-—
1rt—1r0:/ W—’(II—”—’)dA,—-/ me(L= 7o) grp, AL, (4.1.5)
o] s 0
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The likelihood ratio for this problem is well known and is given by,

t 1 [t
A= exp{/ hsdys — 5/ hids}, : (4.1.6)
0 0

where,

From 4.1.3 and 4.1.6, one can obtain,
t ~
Ar=1+ / hoA,dy,. (4.1.8)
0
Now, if one observes that (see A.1.7),
E,r [0ht|Ot] = Wti'l.t, : (419)

then a straightforward calculation shows that there exists a (Py, O¢)-standard Wiener

martingale, say {@; : t > 0}, such that {y: : ¢ > 0} has stochastic differential,
dy; = mihdt + duw,. ' (4.1.10)
Combining 4.1.5, 4.1.8, and 4.1.10 yields,

t t
Ty — Mo = / Ts(1 — me) hsdy, — / m2(1 - m,)hids
0 0
. A (4.1.11)
= / 7s(1 — ms)hsdiD, Yt > 0,
0
and so,

dry = my(1 — 74) hodib,. (4.1.12)

It is clear from 4.1.12 that since {w; : ¢t > 0} is a continuous martingale that
drIo = 8l = {a,b}, if Iy = (a,b) is some interval such that a < mg < b, Pr-a.s., and
0 < a < b < 1. It may not be clear that {m; : t > 0} can be guaranteed to satisfy
Theorem 1.1.1, i.e., can be guaranteed to escape any such interval. To see that this

is so, first note that 7, = ®(L;), where ® : R — [0, 1] is the bijective function given
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implicitly by 4.1.4 and the relation, L; = log A¢, i.e., ®(L) = ¢(log(L)); L is called

the log-likelihood ratio. Now, equations 4.1.6 and 4.1.10 show,
dLy = (m — %)ﬁfdt +haw,  t>0,
which yields the (Py, O¢)-compensator for L as,
Af = (m — E)hf t20.
Since P; <« P, 1 = 0,1, it follows that,

P{lAk| =} =1 <= P{AL|=}=1 i=0,1,

and therefore, as prerequisites to Theorem 1.1.1, it is assumed that,

(A1): P {AL|=}=1 Vvrelo,1];

(A2): P {|Af| =0} =0 Vre|0,1], ¢t < co.

(4.1.13)

(4.1.14)

(4.1.15)

These assumptions are necessary to ensure that {m; : ¢t > 0} will escape Iy in finite

time Pg-a.s., and thence guarantee that the threshold policy with continuation inter-

val Iy will eventually terminate. In view of 4.1.15, the equivalent assumptions, recast

in terms of the measures F;, : = 0,1 are,

[ o]
(41)’ : P.~{/0 hlds = o0} =1 i=0,1;

t
(A2) : Pi{f hids = 0} =0 ©=0,1, t < co.
0

The third condition of Theorem 1.1.1 can be shown directly as,
|Ex[AF]] = (1 — m) Eo[AF] + mE1 [AY]|

f1a f1a

= |(r - l)Eo[/ ~h2ds] +7rE1[/ ~h2ds]|
o 2 0 2

= |(r — 1) Eo| Af| + mEq| A7 |

= |Ex|A7| - mEr| A7 | + 7B | A7

= E,|A7|

(4.1.18)
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Hence, by Theorem 1.1.1, L is guaranteed to escape any open interval in finite time
P,r-a.s.; and since m; = ®(L;) where ® is bijective, then the same holds true for thea
postertors probability.

Next, it is desired to compute the characteristic operator for {m; : ¢t > 0} on

) (U). So, letting r € ﬁ(U ), an application of the Ité rule gives,

t

t
r(m2) — r(mo) = ] 72(1 = 1) Th2" () ds + / mo(1 = m)hor' (1) dis,  (4.1.19)
(o] 0

using 4.1.12. Two cases will be considered.

For the first case, suppose hy = h, t > 0, where h is some deterministic, nonzero
constant. Thus, (A1)’ and (A2) hold. In addition, suppose that the cost-rate function
is given as ¢(m) = ch?, with ¢ a positive deterministic constant; this choice of cost-
rate entails no loss of generality since ¢ > 0 is otherwise arbitrary. In addition, it
follows that condition (T) holds, thus E,[f," c,ds| = co. This is a classic Bayesian
set-up: a constant running cost risk with a homogeneous diffusion. From 4.1.19, the

characteristic operator is found to be,
Ur(r) = B®x*(1—n)%"(x)  Vr € (0,1). (4.1.20)

The application of the results in sections 3.2 and 3.3 begins by setting up the problem
specified by conditions (C1) and (C2), which is:
Ur(r) = —ch? Vr € (0,1);
r(m) = e(m) 7 € {a,b}.
Substituting 4.1.20 into the above and dividing by h? yields,
72 (1 — m)2%" (1) = —c Vr € (0,1);
(4.1.21)
r(r) = e(m) r € {a,b},
which is a family of ODE’s indexed by the boundary points {a,b}. Motivated by

Theorem 3.2.1, it is required that a solution to 4.1.21 at least satisfies,

r(w) is continuous Vr € [a, b]. (4.1.22)
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Clearly, the solution to 4.1.21-22 exists, is unique, and is easily obtained in closed

form as,

mw T™T—a

r(r) = 2= Te(a) + T2 [e(8) ~ d(b) + d(a)] + d(r) — d(a), (4.1.23)

where,

d(r) = ¢(1 — 2m) log ] z

Now it is clear that r(r) is concave for all m € (0, 1) directly from 4.1.21. However,
it is also true that 4.1.21 shows that r € C?+(F), with E = [a,}], and so invoking
Theorem 3.2.1, it follows that r(r) is concave for all w € [a,b]. Obviously, this weaker
concavity argument is trivial and unnecessary, but it is given for pedagogical reasons—
to show at which step Theorem 3.2.1 is applied. It will turn out that the concavity of
the subrisk is not a ‘free gift’ in the discontinuous martingale case considered in the
next section.

Since r(m) is concave for all # € (0,1), then condition (C3) is satisfied if one
imposes,

r'(a) = €'(a), r'(b) = €'(b). (4.1.24)

The solution {a*,b*} to 4.1.24 is easily shown to exist (see below). Its uniqueness
is also easily shown, but follows a fortior: in view of Theorem 3.2.2 simply from
its existence. Again, in the jump process case, this is a welcome device to proving
uniqueness because the existence proof will be difficult enough.

In summary, the three sufficient conditions, (C1-3), have been shown to be in

force. Thus, the following theorem has been demonstrated to be true.

Theorem 4.2.1 In the problem of sequential detection based on observations of the

homogeneous diffusion process,

ys = Oht 4+ w; h#0; t>0,



§4.1 Diffusion Observations 53

with running cost,

E.| / csds] = Er[ch®1],
0
there exists a Bayesian rule, u* = (r*,6*), which is a threshold policy given by,

¥ = inf{t Z 0: Tt ¢ (a,*,b*)}

so=1b if wpe > b*; (4.1.25)
— 10, ifm; <at.

The Bayes risk is given by,
e(") T ¢ (a*,b*);

ot e(a*) + £ [e(b*) ~ d(b*) + d(a*)] + d(7) — d(a*) otherwise,

a

p(m) =

where,

d(r) = ¢(1 — 2m) log I il

(4.1.26)

The constants a* and b* are uniquely determined from the system of transcendental

equations,
e’(a*) _ dl(a*) _ f(a*,b*);
(4.1.27)
el(b*) _ d'(b*) — f(a*,b*),
with,
f(a, b) = e(b) - e(a’) - (d(b) — d(a)) . (4.1.28)

b—a

Proof: Given largely in the preceding discussion. Note that the conditions (T), (A1),
and (A2) are satisfied trivially because h # 0 and because c(r) = ch?, with ¢ > 0.
Also note that 7* < oo, P, — a.s., in view of Theorem 1.1.1. The system to solve for
the optimal thresholds a*,b*, is obtained from 4.1.23 and 4.1.24. In order to show
that a*, b* exist satisfying 4.1.27, first observe that according to the results of section
2.3 one may assume e(m) to be symmetric and normalized without loss of generality

(see 2.3.9). Having made this assumption, it follows from 4.1.27 that

e'(e*) =1=—€'(b"). (4.1.29)
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Letting (7)) = d'(m), it is clear that ¢ : (0,1) — (—o0,0) is monotone decreasing

and antisymmetric about 7 = %, i.e,, p(m) = —p(1 — 7). Note also from 4.1.28 that,

f(mr,1—7) = f(m,1 —m)

_1-(1—m)— 7 (d(1 - ) — d(r))
= - (4.1.30)

=0.

Thus it is easy to verify that (a*,b*) solves 4.1.27 if one chooses b* = 1 — a* and a*

solves,

pla*) =1. (4.1.31)

In view of the comments about ¢ above, it follows that a solution to 4.1.31 exists
and is unique. In view of Theorem 3.1.4 the solution (a*,b*) so constructed is also
unique. This completes the proof. |

A particular choice of cost-rate constant for an instance of the above problem
is purely a design decision, modulo the positivity requirement. There is no choice
which is uniformly good for all problems. However, the given choice, c¢(r) = ch?,
is intuitively satisfying since it not only enjoys positivity, but moreover exhibits the
appealing property of penalizing the detector more, or less, depending upon whether
the magnitude of the drift is greater, or smaller, than one, and does so according to
the square of the magnitude. One might say that this choice of cost-rate is reasonable
in that it reflects a designer’s modest desire to expect better performance from the
detector (faster decisions on average) in ‘favorable’ problems (large drifts to detect),
and to allow worse performance (slower decisions on average) in ‘hard’ problems
(drifts close to zero). Apparently, such a designer believes ‘not all filtrations are
created equal’, to put it colloquially.

A by-product of this choice of cost is that the drift is factored out of the risk, and
therefore the risk is independent of any particular drift. This is a significant advantage

because it implies immediately that the results of Theorem 4.1.1 can be extended to
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a more general case. To see this, first consider that the proper generalization of the

cost choice discussed above is to take the running cost as,

E,,[/ ¢ ds| = E,,[/ chlds), (4.1.32)
0 0

in the case where the drift of {y; : ¢ > 0} is in general only known to be (P, %)-
progressive. For this choice of cost, it is clear that ¢; = c?zf, c>0,t>0,is a
(Pr, O¢)-progressive process. Having made this choice of running cost, one can prove

the following.

Theorem 4.1.2 Assume (A1) and (A2) hold. In the problem of sequential detection

based on observations of the process (see 4.1.1),
.
Y = 0/ hsds + w; t>0, (4.1.33)
0
with running cost,

T T
E,r[/ csds| = E,,[/ chlds] ¢>0,t>0, (4.1.34)
0 0

the threshold policy, u* = (v*,6*), given in the homogeneous case, is Bayesian. More-

over, the risk and thresholds are exactly the same.

Proof: First note that (T) follows from (Al).

The computation of the risk is given by,

p(m =1nf E,,[/ csds + e(m,)]
— inf By / cR2ds + e(m,)] (4.1.35)
€T 0
= inf E,r[-—»/ 72 (1 - ws)zﬁgr"(ws)ds + e(m,)],
€T 0

where the last line follows from 4.1.21. Now, from 4.1.19 and 4.1.23,

p(r) =r(m) + Tlél%‘_ Erle(ms) — r(m)], (4.1.36)



Chapter IV : Applications in Sequential Testing 56

but this is the same risk as in the homogeneous case, and so the result is showﬁ. |
A special case of the above result is given in [LaVIGNA], using an argument based
upon a theorem due to Shiryayev [LIPTSER & SHIRYAYEV 77| for the probelm of
Wald sequential detection [WALD]. The proof given here has one advantage in that
it makes it clear how to generalize the problem to include other cost-rates.
This concludes the section. In the next, the Bayesian problem is considered for

the homogeneous Poisson case, which is very similar to the homogeneous diffusion

case.
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4.2 Point Process Observations

This section will consider the sequential hypothesis testing problem from the
Bayesian viewpoint when the observations arise from a counting process. The notation
and basic set-up are given in sections 2.1 and 2.2.

Recall that on a measurable space ({1, ), there is given a family of probability
measures {P, : 0 < w < 1}, satisfying 2.2.2, and a binary valued random variable,
0, with the a priors probability distribution given in 2.2.1. Based on the observation
filtration, O, one wants to choose a value for § which minimizes the risk, defined in
2.2.4. The manner in which values for 8 are chosen has two parts. First, the decision to
terminate the observation procedure is made according to a (Py, O;)-stopping time,
say 7, and second, a value for @ is chosen according to a (Pr, O;)-binary random
variable, say 6 (see definition 2.1.1). A pa;ticular application begins by specifying
the nature of {O: : t > 0}, the o-algebra generated by the observations.

It is assumed that the random variable 6 is unobservable, but that one can observe
a counting process {n; : t > 0} whose statistics under each of the hypotheses—f = 0,

= 1—are governed by the probability measures P, and P, respectively. Specifically,
for each w € 1, the observation process is a counting process with semimartingale
representation,
fot A(w)ds + my(w), if O(w) =05
ni(w) =
JIA (w)ds + my(w), if O(w) =1,
where, {m; : t > 0} is a (Py, %;)-martingale, and where {)\} : t > 0}.is an 7-
predictable process satisfying E; f; |At|ds < o0, 1 = 0,1. Thus, it is assumed that the

observation process is a (Py, #;)-semimartingale with stochastic differential,
dny = (60X} + (1 - 0)A?)dt +dme 20, (4.2.1)

while the observation filtration is the o-algebra generated by the this process.
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The next step is to compute a (Py, O¢)-semimartingale representation for thea
posteriori probability, m: = Pr{f = 1|0:}, t > 0, as a precursor to minimizing the
total average risk given in 2.3.7. To begin, note that the likelihood ratio for the

problem is well known and is given by,

t
At—exp/ log == dns—-/ (/\1 /\O)ds] t>0, (4.2.2)
0

where,
A= Ei[Ai0,-]  t>0. (4.2.3)

From 4.2.2 it follows that,

~

AL — 30 .
dAy = Ay "t (dny — AQdt). (4.2.4)
t
Now, using 4.1.4, one obtains,
t
T — o =/ EL———ldAC + > Ad(A (4.2.5)
¢} As
O<s<lt
and from 4.2.4
dAS = —A,(A} — X9)ds. (4.2.6)
The computation for A¢(A;) is given as,
Ad(A) T AA
(Ae) = (1+ %A (1 + $55A:)
AA
= (1 = 7e) 57— :
b (4.2.7)
}‘1 )\0
= my (1 —m) = 0
_ 7l't_(1 —_ 7l't)
=
where the last line also serves to define {u; : ¢t > 0}. In addition, note that,
1
D S —
T IF A
= = (4.2.8)
1+ 75574+ 1I1r£ut‘,: o
_ (1 - 7rt_)'u,t

Up + Me—
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Combining 4.2.5, 4.2.6, 4.2.7, and 4.2.8 yields,

Ty — Mo = — /(/\1 /\0 )me(1— ms)ds + Z 7‘-3—1—_%2

0<s<t Us + Mo
(4.2.9)

¢ t _
= —/ (:\}, —:\S)ws(l—w,)ds-i—/ Zl'i_—g—-—)dns,
0

) Ug + Mg—
where the second line follows since {m: : ¢ > 0}, and therefore {n; : t > 0}, has

unity jumps. Now, if one observes that (see A.1.7),
EL [0} + (1 - 0)X|0;—] = Almee + AO(1 — ), (4.2.10)

then a straightforward calculation shows that there exists a (P, O;)-martingale, say

{m: : t > 0}, such that {n; : £ > 0} has the (P, O¢)-stochastic differential,
dne = (Ame— + A0(1 — ms))dt + dims, (4.2.11)

Substituting 4.2.11 into 4.2.9 gives,

t
_(1-m,-
e — Mo = / Moo (1= o) (4.2.12)
0

Ug + Tg—

Having computed 4.2.12, the next step is to investigate is under what conditions
a process as in 4.2.12 can be gﬁa.ranteed to escape an interval and hence serve as the
basis of a threshold policy.

Consider an interval Iy = (a,b) such that 0 < a < b < 1, and a < mo < b, Pr-ass.

From 4.2.2, 4.2.11, and the relation L; = log A¢, there holds,

dL: = [(Aime— + AJ(1 — m¢_)) log i — (AL = 29)]dt + log =& %o dmt, (4.2.13)

t t

yielding the (Pr, O¢)-compensator for L as,

1 A A
AF = (Almem +39(1 — m3_)) log :\\ — (A} = X9). (4.2.14)

t
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As in section 4.1, the assumptions (A1) and (A2) must hold in order to apply Theo-
rem 1.1.1 and thus ensure that L will escape I in finite time Pr-a.s. In view of 4.1.5,
the assumptions (A1) and (A2) can be recast in terms of the measures P;, : = 0,1,

equivalently as,

(A1)" : P{/ )\1"' z\‘ ds=o0}=1 1i=0,1l;

t .
(A2)" : P,-{/ (A1 X )ds =0} =0 i=0,1, t < co.
0

where,
1

A
e(AL, %) = Allog — o — (AT =2x9). (4.2.15)

Notice, for A%, A! >0,

Al
(A, A% = Allog — Yo - (A1 =29
" N (4.2.16)
> Allog/\—0+/\llog—x5=0,
and similarly,
AL
A% A1) = =A%log = — (A% — A!
p(A%,2%) g5~ ( ) (42.17)

> (A=) + (At =29 =0

The third condition of Theorem 1.1.1 is an easy consequence of 4.2.16 and 4.2.17 using
the same steps as in 4.1.18. Thus by Theorem 1.1.1, L is guaranteed to escape Ip in
finite time Py-a.s., and since m; = ®(L;), where ® is bijective, then the same holds
true for thea posteriori probability. A difficulty however, is that the m-boundary
of Iy is not simply its endpoints as in the diffusion case, and worse, it is stochastic
unless u; is deterministic for all ¢ > 0. Therefore, although conditions have been given
under which {m; : ¢ > 0} can be guaranteed to escape intervals, the 7-boundary of
the process is difficult to work with in the general case.

Avoiding this difficulty for the moment, it is desired to compute the characteristic

operator for {m; : t > 0} on ﬁ(U) So, assuming r € ﬁ(U), an application of the
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generalized Itd rule gives,

r(ms) —r(mo) =

(4.2.18)
using 4.2.11 and 4.2.12.

Now consider the case where Al = A1, A% = A0, ¢ > 0, are deterministic con-
stants. Assume that these constants satisfy A! > A° > 0, without loss of generality.
Thus (A1)"” and (A2)"” hold. Also suppose that the cost-rate function is given as
¢(r) = ¢(A! = X0), a positive deterministic constant; thus E, [f0°° ¢(ms)ds] = oo and
therefore condition (T) holds. The terminal cost is e(r), as usual. -

In view of 4.2.9 with

20

Ut = U = —————=

AL — )0’
it is clear that 3; Iy = {a}, i.e., {m; : t > 0} will exit Iy continuously on the right.
However, since {m; : ¢t > 0} will exit I on the left only by jumping, then it follows

that 9} Ip = [b, ﬂ%b). To see this, consider that whenever 7, € [b — ﬂul_k;bbl, b), it has

the potential of getting into 81 Iy because its jump size is ==3="t=) at that time.
” v+

Letting Xm;_ denote the new state arrived at by jumping from m;_, i.e.,

yields,
8rIo = {a,[b,5b)},

as the w-boundary of I, for Iy as defined above.

From 4.2.18, the characteristic operator of {m; : ¢ > 0} is found to be,

u+1
U+ T

Ur(r) = (A =A%) [~ (1=m)r'(x) + (w+7) [ r( m)—r(m)]] ¥ e (0,1). (42.19)
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The application of the results in sections 3.1 and 3.2 begins by setting up the problem
specified by conditions (C1) and (C2), which is:
Ur(r) - —c(A1 =29  Vre(0,1);
r(mr) = e(m) T € {a,[b,Xb)},
choosing a particular form for the cost rate constant without loss of generality (see
diffusion case in section 4.1). Substituting 4.2.19 into the above and dividing by
(A1 = X%) > 0 yields

u+1
u-+T

—m(1 = x)r' (7)) + (u+7) [r( T) — r(n)] - —¢ Vre(0,1)

(4.2.20)
r(r) =e(r) w & {a,[b,d)},

which is a family of functional advance differential equations, indexed by the boundary
points {a,b}. Motivated by Theorem 3.2.1, it is required that a solution to 4.2.20 be
continuous for all 7 € [a, Lb). Letting U~ represent the operator in the equivalent
problem, it was shown in Theorem 1.1.2 that for every 0 < a < b < 1, that there
exists a unique solution to,
U™R(r)=—-c Vme(0,b)
R(r) =e(r) Vme {a,[b,Xd)}
with R(r) continuous for all = € (0,b). Also, in the theorem to follow it is shown
that there exists a right-continuous function, d(r), satisfying,
Ud(r)=—-c Vre(0,1)
d(r)=0 Ve (b Zb)
d(r) <0 V> Xb,
for any b € (0,1). So, take D(r) = d(r) + e(r), 7 € [b,1), and construct,

(1) = R(7) 1z <ty + D(7) 1n 20
This gives a family of right—continuous functions, ® = {r(-;a,0) : 0 < a < b < 1}

satisfying,

~

Urr(r)=-c Vre(0,b)

r(r) =e(r) Ve {a,[bZd)},
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which are strictly continuous for all 7 < b, and all of which furnish the conditions
(C1) and (C2). In addition, by the corollary to Theorem 1.2.1, every r € R also
enjoys, r € C?*(E), with E = (0,b), and as a result, by the corollary to Theorem
3.2.2 it follows that every r € R is concave on E. Recall also from the corollary to
Theorem 1.2.1 that, 7'(n) is continuous for all = € (0,5), with the possible exception

of m = X ~1b. This implies,
() >r(x) w=X"'h VreR, (4.2.21)

since every r € R is concave. Solving for the derivative in 4.2.20,

+ (u+m)[r(Erm) — r(7)]
M) —
r'(r) = T ﬂ_) , (4.2.22)
and evaluating it at BT, with B = £~1b, yields,
gty _ ¢t (ut B)[r(6*) — r(B)]
r'(B*) = B(1-B) , (4.2.23)
with the immediate consequence,
r(7) > r(b), VreR (4.2.24)

in view of (4.2.21). Now if any r € R satisfies 4.2.24 with strict inequality, then
obviously such a member violates condition (C3). As a result, one is only interested
in the subfamily,

Ry={reR:r(d7;a,b) =e(d) }. (4.2.25)

Again, the corollary to Theorem 1.2.1 has something to say. If r € Ry, then r(7) is

u+1l

a) and therefore, in order to
uta

twice continuous differentiable at 7 = a (unless b=

satisfy condition (C3), it is necessary that r(r) satisfy,

r'(a) =e(a) reR. (4.2.26)
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Thus, if there exists r € R, = {r € R, : r'(a;a,b) = €'(a)}, then r satisfies the
conditions (C1), (C2), and (C3), and in addition, is concave on [(a,b)],. In this case,
r(m) is the subrisk being sought.

An interesting subtlety has arisen here however. Contrasted with the subrisk
problem in the diffusion case, it appears that the problem here is ‘overdetermined’.
Consider the diffusion case. There, the two free constants of the second order dif-
ferential equation were chosen to satisfy the boundary condition (C2). Then, the
boundary points ‘a’ and ‘b’ were chosen as the solution to a system of two equations
in two unknowns whose unique solution was guaranteed to match the derivations at
the boundary, and thence yield condition (C3). Here, the single free constant of the
first order differential equation is chosen to satisfy' the boundary condition at = = a,
and this leaves only ‘e’ and ‘b’ with which to satisfy both the boundary condition at
7 = b and the condition on both derivatives to obtain condition (C3). The pathway

out of this apparent difficulty is provided by the following lemma.

Lemma 4.2.1 Let '€ R. Then r'(67) > ¢'(b).

Proof:

From 4.2.22,
")~y g G iy )
bzﬂbl) - b&t:) r(67)
S E’le(_”)b) + bz‘lt:) le(b) — (b)) (4.2.27)

__ 1“(_”)6 + bat’;) (r(b) = r(57)]

= (0)+ g lr(®) = 7))

Since r € R, it is clear from the last line and 4.2.24, that

P) 2 gy ) > ¢ 0) (+2.28)

since ¢ > 0 is assumed. |
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Corollary: If r € R, then,

c

"(07) = 5=y

+¢'(b). (4.2.29)
Proof: Immediate from 4.2.27. ' | |

Hence, if there exists r € R2, then it indeed satisfies the conditions (C1-3). In
summary then, the problem to solve in the search for the subrisk is to prove the

existence of any pair a., b, satisfying,

r(b.;a.,b.) = e(b.)
(4.2.30)
r'(as; av,b.) = €'(a.)

where r € R. Recall that the uniqueness of the pair will follow from its existence in
view of Theorem 3.1.4. Be aware that 4.2.30 is a well-posed problem because it has
been shown that R is not empty, i.e., for any 0 < a < b < 1, there exists a solution
to 4.2.20. Finding an a., b, to satisfy 4.2.30 is somewhat involved, and so is given in

Appendix II. Based upon their existence, the following theorem has been shown.

Theorem 4.2.1

In the problem of sequential hypothesis testing, based on observations of the

homogeneous Poisson process,
ng=(0A'+1-0¢t+m: A1 > A0 t>0,

with running cost,
E‘,,{/ e(ma)ds] = By c(\! = 207,
0
there exists a Bayesian rule, u* = (r*,6*), which is a threshold policy given by,
™ =inf{t >0 : m & (a.,b.) }

5. — 1 ifmr, >0,
*Tl0 ifr, < a..

The Bayes risk is given by,
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and the subrisk, r.(r) = r(m;, a«,b.) is given by,

) _ | R(m;,a.,b.) w<b,
T(ﬂ', a*,b*) = {D(ﬂ'; b*) - Z b*
with,
D(m;b) = e(m) + d(m; b)
d(m;b) = C(AY(1 — 7) + A%x) (1 + Ny (r))
where,
' s . T Al — )0
z(m) = log[-l_—ﬂ_], z= log 3% s, C=c¢ o

and Ny(m) is the integer such that Z(b) — Z(r) — 1 < Ny(w) < Z(b) — Z(m). The
definition of the subrisk is completed by specifying,
R(m;a,b) = d(m;b) + M(m;b) + K (a,b) S(m; d);
M(m;b) = A1(1 — m) Mo(m;b) + AOm M (m; b);
S(m;b) = A1 (1 — 7) So(m; b) + Ao« Sy (73 b),

with M;, S;, + = 0,1 defined by,

| Nl | 1)
Si(m;b) = — ¢~ ViE(m) Z AL [(z(b) - E(x) — n)vie” ]
n=0
; ; Np(7)-1 n (—l)m
M;(m;b) = —CeiGRI=EM=1) 3" gmwin %= 2 —1_[(5(b) — &(r) — n — wi]™;
n=0 m=0
where,
Xilog 25 ,
v; = A—l:—AT; 1= O, 1.

The constant K(a,b) is defined via,

K(a,b) =

As a final note, be aware that the ‘empty sum equals zero’, and 0° = 1’ conventions

are used.
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Proof: Except for the explicit form given for the subrisk, the proof is contained in the
preceding discussion. As for the subrisk, in view of Theorem 1.2.1 it is only necessary
to show that it satisfies 4.2.20 and is continuous for all # < b. The semicolons are
dropped here for notational convenience. First note that r(a) = R(a) = e(a), due to

the definition of K(a,b). Next note that,

AL=2% 0y 1_ 0 vt
W)(A—(A ——A)’/r)(l—l)—O, Vﬂ'E[b,u+b

d(r) = O( b)

and so, D(m) = e(r) on this set. Hence, the boundary conditions of 4.2.20 have been
satisfied. Also observe that,

©v+1

- m)—d(r)]=—-¢c Vre (0., 1)

—m(1 —m)d'(r) + (u+ m)[d(

where the derivative is taken from the right, as usual. Next, one can show, albeit
tedious, that,

U'M=U"S=0. (4.2.31)

Thus far, have argued that the subrisk satisfies 4.2.20. It only remains to demon-
.strate the continuity on m < b. Clearly, R(m) is continuous for all 7 except possibly
at those m < b where,

Ny(7) = Ny(r~) = 1. < (4.2.32)
It is not too difficult to see that S;(r), 2 = 0,1, is continuous at these points. On the
other hand, d(r) is clearly discontinuous at these points. A simple calculation shows
that,
d(r) —d(r~) = =C(A(1 — 7) + X°m),
at a discontinuity. On the other hand at the same discontinuity it follows that,

Mi(r)— My(n~)=C  i=0,L.

From this it is easy to see that M (r) is also discontinuous, but of the same magnitude
and opposite sign as d(r). Therefore, the sum of the two is continuous. The theorem

has been shown. |
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Given the form of the risk in the theorem, it is not hard to see why explicit results
are few and far between in the sequential analysis of jump-type processes. Similar
results as above have been obtained for the well-known Wald problem in dealing with
Poisson processes  DVORETZKY &c¢].

Unlike the diffusion formulation in section 4.1, there is no easy extension of the
time-homogeneous result to the more general case. An obvious reason is that in the
diffusion case the drift factors out of d(m), whereas in the present case, the counting
rates ( nor even u) do not factor out. As a result, in general when the rates are
stochastic, the state space of the process must be enlarged to include the rate. This
therefore leads to a partial functional differential equation for the risk in the two
variables, w, and u (see 4.2.7). In addition, since the m-boundary is also stochastic in
t;,his case, one is forced to consider the (m, u)-boundary of the (m¢, u:) process. This has
the immediate consequence that in general, one muét extend the notion of threshold
policies from intervals to include open sets. The entire task is clea;ly nontrivial.

This concludes the section and chapter.
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APPENDIX 1

Suppose one is given a measurable space ({2, ¥) upon which two distinguished
probability measures P;, 7 = 0,1, are defined. Also suppose one is given a right-
continuous subfiltration {O; : ¢t > 0} for the natural filtration 7 7 7o = 7. Next

define the family of probability measures, {Py : 0 < m < 1}, via,
Pr{A} =nP{A} + (1 — m)Po{A} VAe 7, m€0,1].

Finally, suppose there is an F-measurable random variable § : @ — {0,1} such
that,
P{6=1}=7n , P{0=0}=1-m, (A.1.1)

i.e., # = 1 with prior probability = and vice versa.

Given the above set-up, consider first the problem of expressing Er[v]0¢ in
terms of P;-conditional expectations, z = 0, 1, where ~ is some F-measurable random
variable and 7 € [0,1]. Now if ¥ = 0, 1, the problem is trivial, so suppose 7 € (0, 1).
Noticing that P; < P, for 1 = 0,1, 7 € (0,1), it follows that one may define the

Radon-Nikodym derivatives,

Fw =W weni=o1re(01)
dP,
and then there holds,
i dP} i .
E.[L*|0¢] = TPt = Ly :=0,1, (A.1.2)

where P}, ¢ = 0,1, P! are the O;-restrictions of the respective measures. Given this

set-up, one can prove the following theorem.

Theorem A.1.1 Let m € [0,1]. Then,

E.[4]|0¢ = mL1E1[7|0¢] + (1 — m) LY Eo[~|0:]  Pr-a.s..
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Proof: Let A € 0; and compute,

/A E, |0, dP; = /A ~dP,

dP,
= | v dP, A13
|V ap, (A.1.3)

_/ mdPy + (1 - m)dP,
B A’7 der

dPﬂ"

using the Radon-Nikodym theorem. Continuing from the last line,

/E«[WIO:]dP,=1r/ ’7dP1+(1—1r)/fydPO |
A A A

4 (A.1.4)
= 1l'/ El['ﬂot] dP; + (1 - W)/ Eo[’ﬂot] dP;.
A A
Now for + = 0,1 compute,
t dPf
Ei[¥|0:|dPr = | Ei[|0¢]dP; = | E;[v|0:] TP dP;. (A.1.5)
A A A ks
Combining A.1.2-5 yields,
/ Ey[+|0:] dPy = 7 / Ey[|Os] L dP; + (1 — ) / Eoly| 04 L0 dP,,
A A A
a:nd hence,
/A Ex[+|0:] dP, = /A (rLLE;[1|0f] + (1 — 7)LOEo[| O]} dP;-
Since A € O; is arbitrary, it follows that,
Ex[0¢] = 7L E[v|O:] + (1 = m) LY Eo[| O¢), (A.1.8)
except on O, sets of P,-measure zero. [ |

Now suppose that one takes v = 6+', # the binary random variable defined in

the beginning, and ' any 7-measurable random variable. Then note,

/ E,;[a’y'lot] dP; = / 0'7' dP; 2/ "j’ dP; 1=0,1,
A A AN{6=1}
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and hence,

/AE"[W'Ot] aF: = { (}A VP i '
Thus, for this choice of ¥ A.1.6 becomes,
E.[6+'|0:] = nL{ E1[¥'|O4)- (A.1.7)
In the remainder of this appendix, A.1.7 will be used to connect the a posteriors
probability process to the likelihood ratio, where the a posteriori probability is defined
as,
7t = Pr{0 = 1|0} T € [0, 1], (A.1.8)

and the likelihood ratio is given by,

dP} dPp,
dPt( w) = Eo[—1|0t] Vwe Q, Py — a.s., (A.1.9)

assuming of course that P; < Py. Letting 4/ = 1 in A.1.7 one immediately obtains,

At(W)
dP}
dP}
Using the Radon-Nikodym Theorem successively and observing that P} <« Pf, one

e = P,,{o = 1|Ot} = E,r[

7€ (0,1). (A.1.10)

obtains the following sequence of steps,

P}
Mg =T il = Lo
e mdP{ + (1 —7)dP§ 1—-7r+7r§—§*:-
0
A.1.11
_ A (4.110)
1+ 754
= ¢(At),

where the last line serves to define the mapping ¢ : [0,00] — [0,1]. From A.1.11

one obtains,

Ae = ¢7(my) (A.1.12)

Finally, for 7 = 1 note that
T = EI[B]Ot] =T = 1,

while for T = 0,

= E,[0]0,] = 0- A, = 0.
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APPENDIX I

In this appendix, it is shown that there exists a unique solution (a.,b.) to the

system of equations,

r(b7; a,b) = e(b); (A.2.1.a)

r'(a;a,0) = €'(a), (A.2.1.5)

with (m; a,b) and e(r) as given in Theorem 4.2.1 (see also 4.2.30). First suppose that
a solution (@, b.) to A.3.1 exists, then from Theorem 1.2.1 and its corollary it follows
that r.(r) = r(m; a.,b.) € C%(0,5.). From this and the corollary to Theorem 3.2.1
it follows that r, is concave on (0,b.). This implies, in view of Theorem 3.2.2,
Lemma 4.2.1, and A.2.1 that the conditions (C1), (C2), and (C3) hold. Finally,
invoking Theorem 3.1.4 shows that the solution is unique. Thus, it is only necessary
to show that at least one solution to A.2.1 exists.

The approach to accomplish this is to show that for every a € [0, 1] there exists

a b1(a) € [0, 1] such that A.2.1.a becomes,

(b7 (a); a,b1(a)) = e(by(a)). (A.2.2)

In addition, it will be shown that the mapping a — b;(a) is continuous. Following
that it will be demonstrated using A.2.1.b that there exists a‘continuous mapping,
bz2(a), satisfying,

'(a;a,b2(a)) = €'(a), (A.2.3)

with 52(0) = 1, and such that the equation b2(a) = a has a solution. Consequently, the
two curves b;(a),b2(a) must cross, i.e., there exists an aq satisfying b (ao) = b2(ao).
Choosing b, = b1(ao), and a. = ag then yields a pair satisfying A.2.1.

To begin, from Theorem 4.2.1 there follows,

r(m;a,b) = d(m;b) + M(m; b) + K(a,b)S(m;b) Vr < b. (A.2.4)
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Letting 7 1 b and noting N3(b~) = 0, after some algebra one obtains,

1-5%

; )¥(1 =) (A% + A1), (A.2.5)

r(b7;a,b) = C(A1(1 - b) + A%) + K(a,b)(

where by definition K (a,b) is

e(a) — [d(a;8) + M(a; 5)]

K(a,b) = 5(a;0)

(A.2.6)

In the proof of Theorem 4.2.1, it was shown that S(m;b) and [d(7;b) + M(m;b)] are
continuous for all 1rb< b. Thus K (a,b) is at least continuous in its first argument and
therefore it follows Athat the mapping a — b defined implicitly by A.2.2 and A.2.5 is
continuous. Now, for any a € [0, 1], suppose b = b;(a) is chosen so that a € [£1b,5).

Then from A.2.6 there follows,

e(a) — C(A1(1 - a) + A\%) a \*
K@) =" g0e+ <1—a) '

(A.2.7)

After some simplification, using A.2.5-7 one obtains,

r(675a,6) = C(AY(1 = b) + A%) + [e(a) — C(\ (1 — @) + X%)] (; - z> (‘;fl_‘a;’bu.

(A.2.8)

From A.2.8 it is clear then that two solutions to A.2.2 are given by b;(0) = 0, and

b1(1) = 1. Thus, it has been shown that a continuous curve connects the points (0,0)
and (1,1) in the (b, a)-plane.

The second half of the argument deals with A.2.1.b. First, suppose that for any

a € [0,1], the inequality @ < £71b is respected by b = b3(a). Then from A.2.4, one

obtains the (right) derivative,
r'(m;a,b) = d'(m;8) + M'(m;b) + K (a,5)5'(m;8) = < T (A.2.9)

Recall from Theorem 4.2.1 that, UM (m;b) = US(m;5) =0, and so,

u+m

e [M():hr; b) — M (m;b) +.K(a, b)(3(zm36) - S(m; »)]-

(A.2.10)

r'(r;a,b) = d'(m;b) +
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Substituting 7 = @ into A.2.10 and the result into A.2.1.b yields,

Y B — KA - 5 B _ T __0'(1_”')/ 1oL
M(Za;b) — M(a;b) + K(a,b) <S()3a, b) — S(a; b)) = wia (e (a) — d'(a; b))
(A.2.11)
The last line can be simplified in two ways. First, a direct computation of the right

derivative d'(m;b) yields,
d'(m;6) = —C(A' — X%) (1 + Ny(m)). (A.2.12)

Also, from A.2.2 and A.2.5 there holds,

Ce(B) = C(A (- B)+2%) [ b \*
K(a,b) = =500 (1—6)'

(A.2.13)

Combining A.2.11-13 with a little algebra yields an equation whose left-hand side is,

(1— 0+ (D) - B ()] + L= CR D 2 0)

b* [S(Za;b) — S(a;0)] ,

AO + Py
(A.2.14)
and whose right-hand side is,
a(l—a) , Cpvurr, @1 @) 01 yovey L ayudl
—— e'(a)(1 —b) + — C(A"=A°)(1=0)"""(1+ Ni(a)). (A.2.15)

Now notice that (a,b) = (0, 1) solves both sides (recall £0 = 0). The only troublesome

term is in A.3.15, a(1 — b)“*1Ny(a), which goes to zero since,

0 < a(1—8)**'N;(a) < o1 - )““( (b) - ())

(A.2.16)
(1—a
1)1)
—a(1 -yt 28,

Thus far have shown 52(0) = 1, and from A.2.10 it is clear that a — b3(a) is contin-
uous, arguing as before. The last thing to show is that there exists an a¢ satisfying

b2(ao) = ao, i.e., that the curve by(a) intercepts the line b = a in the (b, a)-plane. For
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if this is shown, the two curves b;(a) and by(a) must cross, yielding a solution to the

probllem. To show b2(aq) = ao for some ap, consider A.2.4 for all b in the vicinity of

a. In fact, for any a € [0, 1], choose b = b3(a) to satisfy a € [£~15,5), then from A.2.4
r(m; a,b) = d(m; ) + K(a,b)S(m;b)

1—m (A.2.17)

=C’(/\1(1—7r)+)\°7r)+K(a,b)< >u(1—7r)(z\°+/\1),

and so,

e = - -0 - K@) (12T) (HET) o e, (aza9)

m m

Substituting for K(a,b) from A.2.13 under the condition a € [£~15,b) yields,

Pinsa,8) =~ = x0) — S COML =) +2%) <b(1 - ”)>u <“+ ’r) .

1-b% (1-b)r m
(A.2.19)
Thus, setting r’'(a; a,b) = €’(a) and using A.2.19 one gets,
—a(1-b0)C(A' = 2% — (u+a) [e(b) ~C(At{1-b) +,\°b)] (’Egl_—b;‘i) o a(1-b)e'(a).
(A.2.20)

Evaluating A.2.20 on the line b = a gives,
—a(1-a)C(A' =% — (v +a) [e(a) —-C(A'(1-a)+ /\Oa)] =a(1—a)e'(a). (A.2.21)

If one assumes that e(r) is symmetric and normalized, which can be done without
loss of generality according the results of section 2.3, then after some algebraic sim-

plification A.2.21 can be rewritten,
a(u+1)—c=0, (A.2.22)

ie, a= ﬂ%\—ﬂ So if ¢ < u + 1, then a solution to A.2.1.b exists on the line a = b.
In this case, there exists a solution (a.,b.) solving A.2.1, as argued previously. Notice
that the condition ¢ < u + 1 holds automatically for all ¢ < 1. On the other hand,
this condition can also always be obtained by the simple change of time scale t — ¢/c.

This completes the argument.
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