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ABSTRACT
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Electrical Engineering Department

This dissertation provides a new, frequency dependent, notion
of dynamic weak coupling between subsystems which is useful for
the design of decentralized control systems. An abstract
geornet—ric Nyquist criterion for multiloop systems is used to

evelop both a new measure of system stability margin and a new
measure of subsystem weak coupling. The measure of stability
margin developed has the advantage over standard measures of
exposing certain additional internal stability properties of a feed-
back system. The weak coupling measure is useful for estimating
stability properties (and therefore certain control system design
objectives) of a decentralized control system and ‘appears to be
more generally applicable than other available measures of weak
coupling.

The essential topological features of the abstract Nyquist cri-
terion employed in this dissertation involve near intersection
between a certain pair of linear subspaces (parameterized by the
complex frequency variable s ) of the direct sum of all the system
inputs and outputs. The measures employed are derived from the
idea of the gap between subspaces. 8omputational methods are

rovided based on the idea of principal angles between a pair of
inear subspaces. '

A review of some well known methods for design of decentral-
ized control systems using other notions of subsystem weak cou-
pling is provided. Some examples are included which serve to illus-
trate the ideas and compare with other well known techniques.
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1. Introduction

In this dissertation we focus on certain design issues for con-
trol of large composite systems which can be modeled as intercon-
nections of simpler dynamical systems. Our treatment is based on
the available utility of frequency response fnodels for linear, time-
invariant dynamic systems. Design methods yielding decentralized
control strategies for linear systems are considered which exploit

various notions of dynamic weak coupling between subsystems.

The efforts described in this dissertation were originally
motivated by a family of design methods for multivariable feedback
control (MIMO) called Inverse Nyquist Array (INA) methods which
were originally developed by Rosenbrock and his colleagues. Vari-
ous extensions of these methods have been developed and are dis-
cussed in chapter 3.

This line of research began with [BE2] in which the present
author extended the basic notion of weak coupling (diagonal domi-
nance of transfer functions) used in INA methods to a more general
setting appropriate for decentralized control. We sought in [BE1-2]
(and others have also sought [LI1-2],[NW4]) to provide a methodol-
ogy for design of decentralized control where certain partitions can
be considered 'matural” with respect to some notion of dynamic
weak coupling between certain dorﬁinant subsystems based on the
system frequency response. Such a methodology would allow the
design process itself to be decentralized in the sense that different
methods could be applied to design each local controller. This
approach borrows the loop-at-a-time strategy of INA methods
without employing the cumbersome requirement to modify system
weak coupling by compensation (thus realizing a true decentral-

ized control structure.) We focus on notions of dynamic weak
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coupling which are frequency dependent since we are interested in
feedback control of complex systems using simple control struc-

tures with guaranteed stability margin properties.

Our original motivation for this research was a particular
technical problem associated with extending INA type design
methods to decentralized design. A particularly useful aspect of
the INA method for design is its ability to provide local estimates
for the contribution to the system stability margin properties.
This allowed the designer to assess the sensitivity of the system
performance to changes in each individual (scalar) gain. This is
accomplished by recognizing certain inclusion regions for relevant
Nyquist loci are centered on the Nyquist loci for each individual
loop gain. To extend this to general decentralized feedback we
need to consider some appropriate notion of a MIMO Nyquist con-
tour.

Our approach is to exploit a certain analysis for-closed loop
systems suggested by algebraic geometry. Here we employ an
abstract Nyquist contour living on a complex manifold (known as
the Grassman manifold). Along the way, we develop a new
geometric stability margin for feedback systems which is shown to
have certain desirable advantages over the classical analysis even
for the SISO case. Moreover, the geometric viewpoint which is
based on the topology of the Grassman mani.fold permits the con-
struction of appropriate estimates for the decentralized control

problem.

We start by considering in chapter 2 the nature of feedback
control based on frequency response models for linear systems.
Certain limitations on the performance of feedback control are

shown to be evident from the frequency response. Central to
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frequency domain design methods is the Nyquist stability criterion.
We review the technical basis for this powerful result and several
extensions. We review the concept of system gain and phase mar-

gins which will play a central role in the sequel.

In chapter 3 we review several results in design of decentral-
ized control based on various notions of dynamic weak coupling
between subsystems. Since several of these methods originate
from the INA method of Rosenbrock we review this method. We
focus on several recent extensions of the INA method and highlight
their similarities and limitations. Finally, we conclude this chapter
with a discussion of the fundamental technical probléem which origi-

nally motivated this research.

In chapter 4 we discuss the development of a new geometric
notion of a system stability margin based on frequency response
data. We start with some background material on the geometric
system theory popularized by Hermahn, Martin, Brockett, Byrnes,
and others. We consider the topology of the Grassman manifold
(which is the natural setting for much of the geometric system
theory) based on the gap-metric. Using this metric we construct a
geometric stability margin for feedback control and consider its
utility by way of some examples.

In chapter 5 we employ again the gap-metric and the geometric
stability margin to develop a new notion of weak coupling between
subsystems based on frequency response data. This notion of weak
coupling involves the relative orientation of certain “curves” on the
Grassman manifold which are the abstract representations for cer-
tain system frequency responses. In this setting we provide "local”
estimates (at the subsystem level) for the contributions to the

overall system stability margin with decentralized control. For
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comparison we conclude with an example originally considered in

[BE2].
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2. Design Requirements for Feedback Compensation: The Concept
of Frequency Shaping

2.1. Feedback Compensation and Frequency Response Models

The concept of feedback compensation is fundamental in
several engineering disciplines. From very early work on governors
for rotating machinery to electronic circuit design the use of feed-
back for compensation has been essential [MA2]. Although recur-
sive structures are apparent in natural processes, the introduction
of such structures with the goal of altering dynamic behavior is a

i

fundamental engineering design problem.

2.1.1. Benefits from Feedback Compensation

A typical introduction to control system design involves a
demonstration of the benefits achievable with feedback compensa-
tion. In particular, sensitivity to errors in the dynamic models for
components of a dynamical system configured in closed loop will be

greatly reduced over a similar dynamical system configured as a
cascade of components.
We can state rather broadly thé various benefits from feedback
compensation as follows:
(i) regulation or disturbance rejection,
(ii) servo-following,
(iii) insensitivity to incremental model parametric changes,
(iv) robustness with respect to large model changes and nonlinear
effects.
Moreover, all these benefits can often be met to some extent simul-

taneously.
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Intuitively, such desirable behavior is achieved using feedback
only when the recursive dynamics are "stable”; i.e., signals conver-
gence to steady state values under the influence of constant exo-
genous influences. To allow precise quantitative analysis of this
behavior various theories have been developed; all of which - as
might be expected - characterize quantitatively the dynamic con-
vergence properties of feedback systems. The point is that the
cost of using feedback is that the resulting system can oscillate or
fail to converge due to improper design. This fundamental heuris-
tic observation has lead to the development of a large body of fre-
quency domain analysis for feedback systems with the primary
goal of characterizing and predicting dynamic convergence of feed-

back systems.

2.1.2. Frequency Domain Models and Feedback

Due to the inherent robustness properties of fe;edback control
practicing engineers can often employ simple linear models for
systerm dynamics. In this dissertation we deal with systems which
are linear, realizable {(causal), and time-invariant. Thus the output
time history y(¢) can be obtained from the input or forcing func-

tion u () via a convolution operation,
y(t) = fw(t —1)u(T)dT,
0

whose kernel, w(t), is the impulse response of the system which is
assumed initially (at £=0) at rest. For such systems the unilateral

Laplace transform of the impulse response,

h(s) = ﬁcw('r)e —STdr,

defines the frequency domain model or transfer function of the
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system. The assumption of causality implies that h(s) converges
for s in some half plane which includes Res>a, for some a and the
function hA(s) is analytic there. The Laplace transform exits when-

ever the closed contour C is contained in this half plane.

2.1.3. Limitations on Frequency Response of Causal Systems and
Feedback Performmance

For the class of systems we are considering, many fundamental
properties can be represented via path integrals in the complex
plane. The significance of this for engineering is that such path
integrals can be computed directly from experimental data on the
system. Certain practical assumptions which further restrict the
class of systems can be used to characterize some fundamental
limitations in the use of feedback directly in terms of such path
integrals.

The first example is how causality (a fundarnbentalz limitation on
the time response of a system) is reflected in the frequency

domain.

Theorem 2.1: (The Paley-Wiener. Criterion)

Let w(t) = O for £ <0; i.e. w(t) represents the impulse response

of a causal system. Given the Fourier transform (if it exists),
H(w) = fw(t)e 7otdt,
0

if H(jw) satisfies

-+ o0

SI1H(jo)|?dw < = (2.1)
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and H(jw) is analytic w€R then

TInlAGO)] |y ¢ o (2.2)

1+w

Conversely if (2.1) and (2.2) hold a phase response ¢(w) can be
found such that H(jw)= |H(jw)|e??®@ is the transform of a causal

system.

Proof: (cf. [ZA1, pp.423]).

This well known result places clear restrictions on the phase
response of a causal systems. The relationship between magnitude
and phase can be further clarified by considering a specific physi-

cally motivated class of transfer functions.

Definition : The class X of transfer functions T(s) satisfy:

(i) T(s) is analytic in Res > 0.

(ii) T(s) = T(5) for Res > 0.

(iii) 7(s) has finitely many singularities on the jw axis such that at

each singularity jwg

lim (s -—j’wo) T(s)=0
s~jwo

(i.e., they are simple poles),
(iv) As [s | -eo, —%EL»O uniformly in |args Is-g—
For transfer functions in the class X it is possible to character-

ize the imaginary part directly in terms of a path integral involving

the real part only.
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Theorem 2.2: If T(s) isin class X then for any w;

2w fRe T(jw)—ReT(j w,)

2.3
o (23

ImT(jw,) =
Proof : (ci. [ZA1, pp.430)).

The significance of this theorem follows by considering
T(s)=InH(s). Then one can state a definition for the notion of a
minimum phase transfer function directly in terms of a path
integral.

Definition : [ZAl, pp.435] If H(s) is in class X and satisfles Paley-
Wiener criterion then we say H(s) is minimum phasie if and only if
its phase response is .

Zwlflan(Jw)l -'lnIH(Jw:)l

2_012

(2.4)

argH(jwl) =

The well known élgebraic characterization of: this idea for
rational transfer functions is that the zeros of H(s) (the roots of
the numerator polynomial in a coprime representation of H(s)) are
contained in Re s<0. The above definition is clearly more general
and also potentially more practical given experimental
input/output data.

Finally, we will state a result whose practical significance will
be postponed until section 2.2. Consider a transfer function from
class X, H(s)=R(s) + jI(s) with R(s) and I(s) both real valued.

H(s) has a series expansion about s =«

I. Ry I
H(s) =Rm+s+sj+s§+-~ (2.5)
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Theorem 2.3: [HO2,pp.306] Given H(s) in class X and
H(s) = R(s) + jI(s), with R(s), I(s) both real, then,

Z[R(j ©)~R.)dw = 21 (2.6)

Proof: Because the integrand is holomorphic in the right half plane
we can apply Cauchy's theorem. Thus %[H(s) —H(x)]ds =
%[H(s)—Rm]ds = 0, where C is a closed contour consisting of a
portion of jw axis, —jR<jw<jF, and a semicircular contour in right
half plane of radius R centered at s=0 and R is allowed to grow

without bound. So the path integral consists of two parts,

R /2
—lim f(H(jw)~R.)jdw + lim [ (H(s)—R.)jd(Rei®) (2.7)
R—mo_R R—-)oo_,n/z

Since by assumption H(.) is in class X, R(éjzﬁ(—s)'and

I(s)=-I(—s) and we can write
I = jz{(R(jw)—Rm)dw

and
/2

Iz=1lim [ I.jd¥=jnl..
R—»oo__n/z

And the result follows directly.
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2.2. Broadband Objecclives in Feedback Design

2.2.1. Sensitivity Reduclion

d(s)
u(s)
r(s) G(s) y(s)
F(s) n(s)

Figure 2.1: Configuration For Feedback

A basic model for feedback compensation is shown in figure 2.1.
In the general case G{s) will be a pXm rational transfer function
matrix represénting the (linear) plant model and F(s) is an mXp
rational transfer function matrix representing the controller or
compensator. The m-vectors y(s), d(s) and n(s);ére respectively
the p-vectors 7(s) and u(s) are respectively the command inputs
and control signals.

For the purposes of the following discussion on feedback pro-
perties we will assume (temporarily) m =p and that F(s) and G(s)
are both invertible over the field of rational functions. The basic
issues of feedback design involve choosing F(s) to achieve some
desired system response, y¥{(s), to the commands, 7(s), subject to
considerations of the effect of disturbances d(s) and sensor noise,
n(s). Additionally restrictions on internal loop dynamics (e.g.,
u(s)) must be considered in any complete design rmethodology.

The following relations can be derived from fig. 2.1:
y =[G 1+ F] lr —[F 1G4+ ] \n + [T+ GF]7d (2.8)

w=[I+FG] \r —[G+F 1] 'n—-[G+ F 1] d (2.9)
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Where we recognize the sensitivity operators as follows:
S, A [r+GF]Y,
S, A[I+FG]L.
Additionally we have the relations
I-S,=[I+F1G™ 11 (2.10)
I-S,=[I+GF 1)1,
and
GSF=1-5y,
FS,G6=1-5,.

Thus the relation between the system output and the command

input, sensor noise, and load disturbance (2.3) can be written
y=SlG’r-—(I—Sl)n+Sld. (28')

Clearly S; and (/—S,) cannot both be small (in any suitable norm)
over identical frequency bands. Also the ability to “scale’ the sys-
tem response y to follow commands 7 is severely limited when 7
and d have the same spectral content. On consideration of inter-

nal loop dynamics we see from (2.4) that
u=Ssr+FS,n+FS;d (2.9")

Considering the relation (2.10) we see the potential for tradeoff in
feedback design based on the spectral content of r(s), n(s), and
d(s). Design flexibility is greatest when r(s), n(s), and d(s) are
each band limited and have spectral content which is "separated’.

In classical feedback design for single input single output (SISO)
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(i.e., p=m=1) these frequency shaping ideas form the basis for
standard engineering design (cf. [DO2]).

-Returning to the SISO closed loop configuration (p=m=1) we
refer to the sensitivity operator S=5;=5, With this viewpoint for
feedback compensation, it is clear that the design objectives can
be stated in terms of frequency dependent constraints on the sen-
sitivity operator representing desirable spectral content of the
endogenous signals u(t) given the spectral content of the exo-
genous signals (), n(t), and d(¢). This then is the concept of fre-
quency shaping objectives in feedback design.

i

2.2.2. Physical Considerations in Frequency Shaping Design

In addition to the considerations discussed in Section 2.2.1
there are more subtle constraints arising from considerations of
realizability and physical limitations on available components
which in practice characterize the limitations in feedback design.
As discussed in section 2.1.3 the assumption of causality impacts
the achievable gain and phase responses of real systems. In this

section we consider the impact of causality and some additional
physical assummptions on feedback performance.
From section 2.2.1 we are concerned with the achievable bal-
| ance between regions of the frequency axis where
(i) |S@w)l<1 or |1+fg(fw)|>1 (corresponding to sensitivity
reduction) and
(i) |S@w)|>1or|1l+fg(fw)|<1.
The following relevant conclusion is attributed to Horowitz
[HO2]. It is based on the observation that in practice any loop
transmission fg (s) is equivalent to a composite (series connection)

of at least two or more separate physical systems (say f(s) and
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g(s)) each of which have the property that |g(s)| (resp. |f(s)])
approaches zero as s-«; i.e., they are systems with finite available
power at the output. For instance if f(s) and g(s) are rational
transfer functions then they are strictly proper (have relative
degree of denominator strictly greater than numerator). Thus
Horowitz observes that ""almost every practical loop transmission

has at least two more poles than zeros” [HOZ, pp.306].

Corollary 2.4: For practical causal loop transmissions the following

balance on feedback sensitivity holds.
SInj1+ fg(jw)|dw = 0. -' (2.11)
o

Proof: Let H(s)=In[1+ fg(s)] and apply theorem 2.3. Horowitz's

observation allows that R,=7/.,=0. =

In [HO3] Horowitz and Shaked provide a dissertation on the
relative merits of design methods which appear to ignore this res-
triction and as a result claim excellent performance. In particular,
the case of state variable feedback is examined.

This equation appears to focus attention near the boundary
between the two regions described above (i.e., where
|1+ fg(jw)| =1) which is often referred to as "gain crossover".
Furthermore, the balance given suggests possible tradeoffs
between the "breadth” and "depth' of these regions. However, this
is complicated (again due to causality) based on the following

result due to Bode.
Corollary 2.5: [HOZ2, pp.313] For fg(s) a minimum phase transfer

function,

arg[fg(jwy)] = %-_} dln";%(j“)' {lncothlgi'—] do. (2.12)
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Clearly increased rate of decay in fg(s) is achieved only at the
expense of additional phase lag in fg(s). As we will see in the next

section this may be crucial in the region where |1+ fg(jw)|[<1.

2.3. Stability Margins and Their Role in Classical Frequency
Domain Design

The fundamental analysis which makes frequency domain
design for feedback practical employs a collection of tools which
permit the designer to predict the relative stability properties of
the closed loop system based on physically measurable quantities.
The historical evolution of technical contributions to the develop-
ment of these tools has been surveyed recently in [MA2]. In this
section, we provide the background necessary to understand the
contributions contained in chapter 4. We review the technical limi-
tations inherent in the natural extension of stability analysis for
SISO systems to the MIMO case by exploiting cer;tain algebraic
structures. In particular the use of a matrix return .diﬁerence will
be examined. The essential technical aspects of the Nyquist cri-
terion and its applicability to MIMO systems will next be examined.
Finally, the notions of gain and phase margin employed in SISO

design are examined along with various extensions to MIMO prob-

lems.

2.3.1. Limitations and Extensions of the Return Difference

We can consider two classes of feedback structures. Single-

input, single-output (SISO) feedback obeys the relations
y(s)=g(s)e(s) , e(s) =u(s)—f(s)y(s) (2.13)

where u(s), y(s), and e(s) are unilateral Laplace transforms of

signals representing the input, output, and error respectively.
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Multi-input, multi-output (MIMO) feedback obeys the relations:
y(s) = G(s)e(s) , e(s) =u(s)—F(s)y(s), (2.14)

where u(s),e(s)eR™(s)t and y(s)eR™(s). Thus f(s),g(s)eR(s)
are transfer functions of the feedback compensator and plant,
respectively. For MIMO F(s)eR™*P(s) and G(s)€RP*™(s) are the
obvious matrix extensions. The resulting closed-loop transfer func-

tions are

M) = 5w - B89

and

H(s) = G(s)[I, +F(s)G(s)] ! = (I +G(s YF(s)]™1 G(s) (MIMO)

Since the fundamental issues in feedback design with which we
are concerned center on the questiéns of stability we start by clari-
fying this point. We restrict the question initially to iumped (finite
dimensional) models moving rational transfer functions. For the
purposes of engineering we will be most concerned with exponen-

tial stability.

Definition : [DE1] A ﬁransfer function H(s)€ RP*™(s) is exponen-
tially stable if and only if (i) it is proper, and (ii) all its poles have
negative real parts.

Fact: If a transfer function, H(s), of a causal system is exponen-
tially stable, then given

+ We use R(s) to denote the field of rational functions in S with

coefficients in R while R[s] denotes the ring of polynomials over R. R™(s)
is the appropriate m-dimensional vector space extension over this field.
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a+jo

W(t) = 2710' S H(s)eds, (2.15)
a—j)o

the impulse response of the system, there exists constants £>0

and a>0 depending on H(s) such that,

1w (@)l < ket (2.18)

for all ¢ >0 [DE1].
At this point we make a further restriction which we will later
relax.
Assumption : F(s)=F is nondynamic constant f;aedback gain
matrix. This is clearly a simplification which in the light of
Horowitz criterion is a deviation from reality. Nevertheless it
serves to clarify the following technical points.
Without any assumption as to g(s) or G(s) being proper we can
state the following.
Theorem 2.6: [DE1, pp.60] Let g(s)€R(s) and G(s)effpxm (s). Then
with h.(s) and H(s) as above we can state:
(i) p.€Cufx=] is a pole of h(s) if and only if p, is a zero of
1+ fg(s).
(ii) If p,€Cufee} is a zero of det[/, + FG(s)] then p, is a pole of
H(s). |
(iii) If p,€Cuf=] is a pole of H(s) then either p, is a zero of
det[/],, + FG(s)] or p, is a pole of G(s).
(iv) If G(s) is exponentially stable, then H(s) is exponentially
stable if and only if det[/, + FG(s)] #0 for s> and the zeros
of det[[,, + FG(s)] all have negative real parts.

Proof : (cf. [DE1,pp.61]).
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Remark: We make implicit use of the fact that det[],, + FG(s)]
= det[L, + G(s)F] throughout. (cf. theorem 4.13 for further
details.)

The above theorem suggests some limitations in the extension
of SISO stability analysis to the MIMO case. The gap is however

closed in the following case.

Theorem 2.7: [DE1,pp.87] Let G(s)eRP™™(s) be proper and
FeR™™P constant. Given a factorization G(s)=N(s)D~(s) where
N(s)eRP*™[s] and D(s) € R™*™[s] with N(s) and D(s) coprime.
Assume det[/, + FG(<)]#0. Then H(s)=G(s)[/n '-I-F'G(s)]‘1 is
exponentially stable if and only if det[D(s)+ FN(s)]€R[s] has all
its zeros with negative real parts. Moreover, H(s) is proper and p,
is a pole of H(s) if and only if p, is a zero of det[D(s) + FN(s)].
Proof : (cf.[DE1]). :
As further clarification we state the following.

Corollary 2.8: With the assumptions of the above theorem,

det[ I, + FG(s)] = detG(s)

detH(s)
= det[/,, + FG(=)] ﬁ _(_S_:_I]_c_m_)_ (2.17)
{1=1 (S _pO‘L)
where {p,;, i=1, - ,m} (resp. {ps, 1=1,- - ,n}) are the open |

(resp. closed) loop poles of G(s) (resp. H(s)), and n is the McMillan
degree of G(s).

This clearly shows how cancellations in the factors of
det[/ + FG(s)] can cause problems. However under the assump-
tions of the theorem if G(s) is exponentially stable then H(s) is
exponentially stable if and only if all the zeros of det[], + FG(s)]
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have negative real parts.

We next consider the more realistic case by relaxing the
assumption that F(s)=F. By allowing F(s)€RP*™(s) we can intro-
duce further problems due to cancellations even for SISO feedback.
In this case we will be concerned with two classes of poles. We refer

to internal poles as the poles of the transfer function
Ho(s) = [fn + F(s)G(s)]™

where

e(s) = Hy(s)u(s) | (2.18)
and external poles as the poles of the closed-loop transfer function

Hy(s) = G(s)[Im + F(s)G(s)]™}

where

y(s) = Hy(s)uls). ? (2.19)

Exponential stability follows if both the internal and external poles
have negative real parts. Clearly the internal poles have been can-
celed in forming Hy(s). To see how consider SISO case. Let
g(s)=ny(s)/d,(s) and f(s)=n,(s)/ds(s). Where the pairs
(1 (s), dp(s)) and (np(s), ds (s )) are each relatively coprime. How-

ever with,
d, d
= -1 = o S
he = (L4 9)7 = 2 (2.20)
— g — o df 29
= = 21

it is clear that d,d; (resp. n,d;) and nyn, +dsd, are not neces-

sarily coprime due to possible cancellations between n,, d; and
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Ny, d,.

Now consider the MIMO case. Given right (resp. left) coprime
factors G=N,D;! (resp. F=D;'N,) with N,eRP*™[s],
N;eR™P[s], D,, Dy €R™*™[s] we can write the resulting transfer

functions of interest as,
HC = Do [Df DO +Nf No]—IDf (222)
Hy = No [Df Do +Nf No]—lDf . (223)

Remark : Without loss of generality the coprime factors (V,,0,)
and (N;,D;) can be chosen such that det D, #0 and det D #0. We
assume that det[]l, + F(<)G(=)]#0 which is consistent with
assuming, for instance, that G, F, H,, Hy are all proper. Under.
these conditions det[D,D, + Ny N,]# 0 since H, is bounded and
non-singular for |s | - .

The significance of det[D; D, + Ny N, ] is given by the following

theorem.

Theorem 2.9: Let {p, ;:i=1,...,n} (resp. {p, ;:i=1,...,ny }) denote the
set of poles, counting multiplicity, of the transfer function H,

(resp. Hy). Then the roots of det[D,D, + Ny N,] =0 form the set
{pe ii=1,...m, ] U fpy',;:i=1,...,n.y] .
Proof : Using the factorizations given we rcwrite (10) and (11) by

introducing auxiliary (internal) variables
Dyv=e, y=N,v,
w=N,y, Dpyu—Dpe =w.

This system of equations can be rewritten
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(NoNy + Dy D, )v = Dy w
Yy =Nyv
e =D,v
w=Ny=N,Nyv.

Clearly det(N; N, + D; D,) = 0 is the characteristic equation for the
feedback system. ' '

We close this section by discussing the 'physic!al interpretation
of the quantity 7, +F(s)G(s) (or I + G(s)F(s)) which are general-
izatibns in terms of matrices of the return difference. The role of
these terms in stability analysis is rcadily apparent from the
preceding discussion. Also, (and this will be impfortant later) the
potential for hidden modes (cancellations) in forming the return

difference is apparent even in the SISO case and further compli-
cated by MIMO feedback.
Definition : Consider the feedback system shown in figure 2.2 which

u(t) + e(t)r___ y,(t)

G(s) >
A
F(s) é-—-J ya(t)

Figure 2.2: The General Feedback Configuration

represents the feedback configuration of (2.14). Associated with

the point 1 we define the rcturn difference as

R(s) = I, + G(s)F(s). (2.24)
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The physical significance of this terminology follows by the follow-
ing experimental procedure for measuring the response FR(s).
First cut the feedback loop at point 1. Set u(¢)=0. Inject the sig-

nal y5(t) and measure the response y,(t). Then,
ya(t) —y(t) = ya(t) + G(s)F(s)yz(t)

= R(s)y(t). (2.25)

2.3.2. Stability Analysis and the Nyquist Criterion
The utility of the Nyquist criterion and associéted stability
tests of Bode and Nichols for engineering stems from two practical
observations:
1) the test is based on data which can be obtained directly from
measurements on the actual system in contrast to for instance
Routh-Hurwitz tests which are based on data wlflich must be

derived by interpolation from measurable quantitiés

2) The test provides additional information about the relative sta-
bility of the feedback system which has proven useful in design-

ing compensation.

The second observation is the subject of section 2.3.3. In this
section we review the technical basis for the Nyquist criterion. The
utility of the method has motivated various research in providing
extensions which enlarge the class of systems for which the test is
valid. We include some background on more relevant extensions
here for completeness.

The fundamental technical approach most commonly used to
prove the Nyquist criterion for SISO case involves the principle of

the argument from complex analysis. This well known result gives
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the difference between the number of zeros and poles of a rational
function contained in a given closed region in terms of a winding
number. The winding number is obtained by evaluating the function
(e.g., the return difference) along a closed contour which is the
boundary for the region. With respect to the usual concerns for
stability we construct a closed elementary contour, D, in the com-
plex plane consisting of a relatively large portion of the jw axis,
—j wg<jw<jwg, and a semi-circle centered at the origin of radius wy.
If poles or zeros of the open loop transfer function exist on the
imaginary axis the contour D is modified by indenting into the left
half plane around these points. The traditional (SISO) Nyquist
locus T is then the image of D under the map fg(s).

Theorem 2.10 (Nyquist Stability Criteri'on): Given g(s)eR(s) and
f(s)=f construct the appropriate contour D as above. Let
fg(s):D-I'. Let p,(resp. p.) be the number of opén—loop (resp.
closed loop) poles contained in the closed right half plane. Then the
closed loop system is exponentially stable if and only if

N({T;-1) = —p,.1 (2.26)

Remark: A natural assumption for physical systems which is impli-
cit in the use of Nyquist stability tests is that the loop transfer
function is a proper rational function. The technical requirement
 for this assumption become obvious as one considers the construc-
tion of the closed contour D. This contour is required to enclose a
finite area in the right half plane within which all closed loop poles

relating to stability must exist. Clearly, for nonproper transfer

1] N(C;z) denotes the number of clockwise encirclements of the closed
contour C about the point 2 in C.
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functions there will be some number of system poles at s = .

Proof : Note that I is a translated version of I' where 1+ fg (s ):.D-I"
so that N(-I';-1) = N(I";0). Then by principle of argument applied to
the return difference with eqn. (2.17).

N(P,;O) =DPc —Po -

Remark: Even at this fundamental level the Nyquist test may not
be conclusive for f (s) dynamic because as discussed above cancel-
lations can occur in forming 1+f(s)g(s). However such cancella-
tions can often be treated as special cases in various design
methods where an intimate knowledge of the pole/zero structure
of the plant and compensation is assumed available. Such methods
however work well only for low order systems (and those which can

be approximated by low order models).

It is important to recognize that the practical :signiﬁcancg of
Nyquist criterion has motivated a massive amount of research
focusing on extending the applicability to (1) systems with distri-
buted parameter effects, (2) systems with non-linear effects, and
(3) systems using MIMO feedback. Although much of this work has
been highly successful various technical limitations remain. We
hope to make some contribution to this general thrust in this
dissertation.

The reference [DE1] gives a comprehensive discussion of these
extensions. In considering stability of systems with nonlinearities a
different notion of stability is employed. In this case a system is
thought of as a mapping from a function space of input waveforms
to another function space of output waveforms. The system is

called bounded-input/bounded-output (BIBO) stable if for all
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bounded inputs only bounded outputs are produced. It is well
known that for linear, lumped-parameter, systems, BIBO stability is
equivalent to exponential stability and we will not discuss this

further.

Distributed parameter effects have been included in Nyquist
type tests by considering a class of systems whose impulse
responses are generalized functions in the sense that they can con-
tain a sequence of Dirac delta (impulse) functions , 6(¢), [DE1]. For

instance

o)+ S ws(t —t;), t=0
i=0

w(t) = 0, ‘ £ <0 (R.27)

with w,(t)eL(R,), w;eR, i | w; | <°°.is such a possible impulse
=1 .

response. Desoer and Vidyasagar [DE1] provide a Nyquist type sta-
bility test for such systems based on constructing a convolution
algebra of impulse response functions (where convolution is the
product operation). Their result, stated simply, provides necessary
and sufficient conditions for stability (in BIBO sense) of a feedback
loop with w(t) as above in terms of the condition

' ' . 2.28
Rérsliol”fg(s)l >0 (2.28)

where g(s) is the Laplace transform of w(¢) [DE1,pp.91]. This can
be checked from a Nyquist plot.

Of fundamental importance in this disserlation are the various
extensions of the Nyquist criterion for MIMO fcedback. Rosenbrock
was first to provide a complete statement of a Nyquist type cri-
terion generalized to cover MIMO feedback. His approach focused

on providing a rational function ¢(s) whose zcros (resp. poles) are
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the required closed loop poles (resp. open loop poles). One way to
do this (not exactly the approach used by Rosenbrock) is to first
obtain coprime factorizations for G(s)=Ng(s)Dg(s), the plant,

and F(s)=D7F!(s)Ng(s), the compensator. Then an appropriate

choice for ¢(s) is

01(s) = det[], + F(s)G(s)]det Dg(s) det Dp(s).  (2.29)

Then one can construct a Nyquist (ype stability test
(cf.[RO1,pp.140]) by constructing the contour I'y as ¢(s): DT
Then a necessary and sufficient condition for exponential stability
is that N(I'";;0) = 0. However this approach requires & more detailed
internal model of both the plant and compcnsator (removing some
of the practical benefits of Nyquist test being based on mcasurable
data). The alternative suggested by Rosenbrock is to oblain the
integer p, which is the number zeros of det Dg(s)det D(s) (which
are the open loop poles) contained in the closed r;i:ght half plane.
Then the Nyquist contour based on. Iy with
@a(s)=det[/, + F(s)G(s)], ¢a(s):D-T, can be used Lo provide

necessary and sufficient condition for stabilily as
N(T20) = =p, - | (2.30)

Assuming p, can.be detex:rr.lined the Nyquist Lcst.can be per-
formed based on measurable quantities. However the resulling
Nyquist contour provides very little insight as to how to modify the
compensator elements of F(s) to achieve (or cnhance) stability.
Here Rosenbrock proposed focusing on a specific class of trunsfer
functions which are diagonally dominant on the contour D. (We will
consider the téchnical aspects of this in more detail in chapter 3.)
For such transfer functions he showed that one could stabilize the

system with decentralized compensation (i.e., F(s) arc diagonal
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matrices). The focus was to provide insight for the design of the
required diagonal elements to enhance overall stability. The
approach allowed the designer to focus attention on those loops
which were most critical in achieving enhanced stability. For those
systems which were naturally diagonally dominant the approach
was quite successful. In order to extend the approach to the class
of MIMO transfer functions Rosenbrock proposed, as a first step,
designing series multiloop dynamic compensation to achieve diago-

nal dominance. This is however not always easy to do in practice.

A major concern in engineering design of feedback systems is
sensitivity of closed loop performance to variation in parameters.
In [PO3] Postlethwaite and MacFarlane develop a generalization of
the Nyquist test for MIMO feedback which focuses on sensitivity of
stabﬂity properties due to variation of a single parameter ke€C.
They choose to focus on a particular loop-breaking'configuration
which identifies an m)%m matrix return diﬁ'erenc;e I, +kG(s)
where G(s) is the loop transmission transfer function containing
dynamics of the plant and compensator as well as any sensors
and/or actuator dynamics. The physical significance of the “gain”
parameter k which appears equally in all m loops is not discussed
(cf. [PO3-4]). From a practical point of view this setup remains
somewhat less than general. However, this allows concentration on
the variation of a "critical point" depending on k& with respect to a

set of fixed Nyquist loci.

Theorem 2.11: Let G(s) € R™*™(s) be proper. Let N\(s) for
i=1,...,m be eigenvalues of the matrix G(s). Then define m
Nyquist contours T; via A;(s): D-T;. Let p, be the number of open
loop poles of G(s) in the closed right half plane. Then the closed

loop system is exponentially stable if and only if,
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ﬁN(—l/k:P¢)= ~Po - (2.31)

i=1

Proof : (cf.[PO3]).
The proof employed by Postlethwaite and MacFarlane centers

on the analysis of the function u(g,s) = det[gl,, —G(s)] (where

g= —Tl-) using algebraic function theory. Then u(g,s)=0 defines a

relation s{g) called the characteristic gain loci. In this setup the
Nyquist contours are the branches of s (g) and are constructed (via

analytic continuation) on a multi-sheeted Riemann surface.

Alternately Desocer and Wang [DERZ] provide a proof for this
same theorem based on techniques from analytic function theory.
This permits extension of the result to cover the class of distri-
buted parameter systems whose impulse response belongs to the

convolution algebra described above (cf.[DE1]).

Despite limitations due to practical interpretatioﬁ of the scalar
parameter k, the isolation of a critical point depending on k£ allows
the designer to portray graphically the set of stabilizing k. The
graphical appeal is also considered important for computer-aided
design since one could readily plot these eigen loci for rather com-
plex systems.

However, Doyle and Stein [DO3] point out that this test may be
misleading in practice since the eigen loci can be very sensitive to
more general perturbations than just changes in scalar £. By way
of rebuttal, Postlethwaite et al [PO4] show how singular value
analysis can be coupled with this approach to provide a certain
level of robustness.

A geometric viewpoint is taken in Brockett and Byrnes [BO1] in

describing a generalized Nyquist criterion. Here for the first time
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the general case of G(s) € RP*™(s) with p#m is treated, although
somewhat abstractly. Significantly, their approach avoids formula-
tion of the return difference matrix and as a result allows the
separate characterization of an abstract critical point (resulting
from F) and a Nyquist locus (resulting from G(j®)). This formula-
tion preserves most nearly the practical aspects of Nyquist cri-
terion exploited in SISO system design [BO1].

Briefly,the setup is as follows T. The feedback equations 2.14

are written in matrix form as

GIE:) ‘F{p]gg;] - 0. (2.14")

where it is clear that a complex scalar s is a closed loop pole if and

only if the ker[G(s), —I,] intersects ker[/l,, F] in some nontrivial

way. In the case that p<m we can construct an abstract Nyquist
locus I'; for the pxm transfer function matrix»G(s);by thinking of
I'c as the image of the imaginary axis under the map
G(s) =ker[G(s), =1, ]. For each s=jw the object
G(s)=ker[G(s),~I,] is a p-dimensional subspace of a p+m
dimensional complex space. Thus I'g can be thought of as a "curve”
in the complex Grassmanian (I'¢CGrass(p,m+p)) of p-dimensional
planes in m+p space. The question of whether
G(s) =ker[G(s), 1] intersects F=ker[],, F] can be ascertained
by utilizing the dual structure of the Grassmanian in the following
way. The Schubert hypersurface associated with F, an m-

dimensional subspace of C™*?, is defined as

o(F) A {MeGrass(p.m+p):dim (MnF) > 0§, - (2.32)

t The geometric theory of linear systems and feedback is reviewed in
some detail in section 4.1.
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a hypersurface in Grass(p,m+p) representing the point
FeGrass (m,m+p). Here Grass(m,p+m) is referred to as the dual
of the space Grass(p,p+m) [BR1]. Then F intersects G(s) if G(s)
intersects o(F) in Grass(p ,m +p).

Using this dual structure (cf. [BR1] and [BY1] for details) the

following theorem is provided.

Theorem 2. 12: (Generalized Nyquist Theorem)

Suppose G(s) is a proper rational pxm transfer function matrix
with no poles on Res=0. Suppose the abstract Nyquist locus I';
does not intersect the Schubert hypersurface o(FB )' defined by the
feedback matrix F. Let p, be the number of open loop poles of
G(s) in the closed right half plane (CRHP) and p, be the number of
closed loop poles in CRHP. Then

N(Tg o(F)) = p; =P, (2.33)

where N(s;) is the number of encirclements of the abstract Nyquist
locus I'; about the Schubert hypersurface o(F) taken in a positive
direction on the Grassman manifold.

Proof : (cf. [BR4])).

Clearly theorem 2.12 does not admit any readily obvious graph-
ical representation that would permit the determination of the
winding number N {except in trivial cases). However the theorem
does permit us to ascertain the stability of a MIMO feedback sys-
tem involving a plant G;(s) with feedback F’; by testing for homo-
topical equivalence with some other feedback system Gy(s) with Fp
(of appropriate dimensions) which is known to be stable. To show
such equivalence we will need a measure of how close a point

G(s)eGrass(p,m+p) is to some Schubert hypersurface
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o(F)eGrass(p,m+p).

2.3.3. Stability Margins From Return Differcnce

The primary benefit offered by frequency domain analysis and
especially the Nyquist criterion for engineering design of SISO feed-
back is its ability to display immediately not only whether (or not)
a feedback configuration is stable but how stable (or unstable) the
loop is. Moreover, the graphical display of the Nyquist contour
allows the designer to assess how certain critical design parame-

ters can be chosen to enhance the system stability margin.
The notion of stability margin can be Quantif'ied in several

(non-equivalent) ways. Take g(s)€R(s) to be the Laplace

transform of a causal system with impulse response w(t), where
_ 1 t

‘(the inverse Laplace transform) converges for C a closed contour in
the region of convergence for the transform (cf. section 2.1.2).
With a simple constant feedback f, the closed loop response has

transfer function
h(s) = ——ﬂil— (2.35)

Then 2 (t), the inverse Laplace transform of h(s), is of exponential
order if there exists a,MER with M>0 such that |z(#)]| < Me** for
t>0. Clearly z(t) is exponentially stable if and only if one can find
such a<0. Thus the abscissa of convergence , oy €R, which is the

infimum of all such «, is often referred to as a stability margin.

However this notion of stability margin may not be very useful

for practical feedback design since it offers no direct
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characterization of possible oscillatory responses. Indeed, the util-
ity of the Nyquist criterion is to establish directly a stability mar-
gin concept of this type. Furthermore, by including a physically
motivated design parameter (e.g. loop gain) direct insfght is
obtained from a Nyquist plot as to the choice of feedback gains to
enhance stability margin.

Consider again a causal transfer function, g (s), and a nominal
scalar gain, fo. For the purposes of design the feedback gain is
parametrized as f=kf ;. Assume the nominal feedback system is
exponentially stable. Then we ask whether there exists a finite loop
gain variation k €R for which the system supports a ndndecreasing
oscillation? This question is answered classically by computing the

system gain margin , i.e.

Im =A‘1:r>1f1 {keR|fg(s)=—1,for Res=0j. ’ (2.36)

The usual way to compute g,, is to find a frequency w; such that
$fg(jw;) =—nt. Then

_ 1
Im = TfgGaDl

Similarly the phase margin , is a real number ¥ , 2m=9=0 such that

nf . (9] fg (s“)=—e-"'", for Res=>0}, (2.37)

¥, & i
m 2>

which is computed by finding a frequency w; such that
|79 (Gwz)| =1, then

U = =g (wa). (2.38)

t The notation X is used to indicate the argument (phase) of a complex
number.
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In some cases it has been observed that a reduction in gain (i.e.,
k<1) may also lead to instability. This corresponds to case where
there is more than one frequency at which ""gain crossover’ occurs
(i.e., |1+ fg(jw)| =1). This case is classically referred to as condi-
tional stability.

Despite the popularity of these classical notions we will take
the viewpoint in this dissertation (following [HE1]) that a slightly

more conservative measure of stability margin is appropriate.

Definition : The combined gain-phase margin, g4, €R,, is given by

Gom 2 inf [1+fg(s)]. (2.39)
s=jw

Remark 1: Clearly gy, is just the euclidean distance between the
Nyquist locus resulting from some loop breaking configuration and
the “critical point” at -1.

Remark 2 : For g(s)eR(s) the Nyquist contour T is a closed con-
tour and therefore a compact set in C. We can therefore replace
infimum with minimum. Now conditional stability means that
|1+ fg(jw)| has several local minima so that the set of local

minimizers of the function
1+ fg(jw)l (2.40)

may not be a compact set in R.

Remark 3: As a measure of stability margin g, is more conserva-
tive than using g,, and ¥,, since it accounts for possible simultane-
ous gain and phase variations. This can be seen in figure 2.3 which
gives a Nichols plot (i.e. gain |fg(jw)| in dB vs. phase ¥fg (j)).
The combined g,, gives a rectangular region which includes the

contour, I However, g,,, defines a circle tangent to the contour,
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Figure 2.3: Phase and Gain Margin Specifications on a Nichols Plot

Remark 4 : The practical extension of these ideas to MIMO systems
is probably most meaningful by generalization of gy,,. This is at
least in part due to lack of general significance of any other notion
of multivariable phase which can take into account the individual

phase of each scalar transfer function g;;(s) appearing in G(s).

Some recent work on extending these notions of stability mar-
gins to MIMO feedback [DO3,LE1] has focused on the characteriza-
tion of specific classes of allowable (non-destabilizing) perturba-
tions in terms of a measure of stability employing the minimum
singular value of a matrix return difference (say 7, + FG(s))
depending on loop breaking location. That singular value analysis is

an appropriate tool in studying perturbations has been well known
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by numerical analysts (cf. [BJ1]). However for this analysis it leads

to the definition of at least four different measures of stability mar-

gin; e.g.,

gi 2 inf opin[lp + FG(s)], 1
s=jw

g, & inf Ominlp + G(s)F], (2.41)
=jw

i 2 inf opmin[ln + {FG(s))1],
s=jw

Go £ inf ominlp +{G(s)F) 7],

each of which may lead to‘diﬁ‘er‘ent characterization of allowable
perturbations since in general these measures all achieve different
values. These measures are however not completely independent .
as discussed by Safanov et al [SA1].

As an example of the type of perturbation résult'which one can
obtain using singular analysis consider perturbatién i\(s)eRm"m(s)

appearing as
FG(s) = (I, +A(s)) FG,(s) (2.42)

where FG(s) is the true mxm loop gain transfer function, FG,(s)
is the transfer function of the nominal model, and A(s) is some
unknown perturbation. Assume all transfer functions are strictly
proper.

Theorem 2.13: [DO3] If G, (s)[l, + FG,(s)]™! and A(s) are both
exponentially stable then G(s)[/, + FG(s)]™! is also exponentially
stable for all A(s) satisfying

t We use the notation 0,;,(A4) to denote the minimum singular value of
the matrix 4.



- 36 -

Tmex(A(s)) = [|A(s)]l2 = 1(w) (2.43)

Ominlfn + (FGr (G 0)) 7] > 1(w) (2.44)

for all weR.
Proof: (cf. [DO3]).

Results such as this give somewhat conservative characteriza-
tion of the robustness properties of MIMO feedback in that there
can exist many perturbations A(s) which violate the bound given
but do not cause instability. The problem is that the nature of the
perturbation is not physically motivated in contrast to the SISO
case where A(s) can be related to simple gain changes in the loop.
However, these results suggest guidelines for good MIMO feedback

design in terms of the stability margins given.
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3. Results in Design of Decentralized Control Systems Based on
Weak Dynamic Coupling |

For the purpose of control system design and analysis the term
"large scale system" is most often applied to a dynamical system
which can be modeled as an interconnection of low-order dynamic
systems. It is often desirable to build feedback control for such
systems based on constrained measurements. If the set of system
measurements (outputs) and the set of system commands (inputs)
are each partitioned into disjoint sets wifh a 'local" feedback con-
trol corresponding between each subset of inputs and outputs, the

i

control strategy is called decentralized.

Associated with the partitioning of the inputs and outputs one
can partition conformally a model for the dynamic system. This
identifies certain "local” dynamic systems and possibly dynamic
interactions. This is one way in which a system model can be
viewed as a large-scale system. For the class of :linear, lime-
invariant models considered in this dissertation, a natﬁral way to
describe such model partitions is in terms of partitions of a
transfer function matrix into submatrices. Those blocks appearing
on the diagonal will be called local subsystems, otherwise called

interaction dynamics.

An essential issue in develoﬁing design methods for decentral-
ized control was first considered by Wang and Davison [WA1]. They
focused on the question of when a linear system which is both com-
pletely observable and controllable can be stabilized by decentral-
ized control. Their analysis highlights conditions for the existence
of "fixed modes" with respect to decentralized feedback. An alge-
braic characterization of the existence of fixed modes was first

given by Anderson and Clements [AN2] and later by Vidyasagar and
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Viswanadham [VI1]. In [VI1] the authors exploit the algebraic char-
acterization of fixed modes to develop a method for pole relocation
using decentralized feedback. Their method does not explicitly

employ the partitioned model structure discussed above.

Several closely related analytical devices for determining sta-
bility of such partitioned models (often called interconnected
models) with decentralized feedback have appeared [AR1, CO1, LA1,
MI1], which are based on a sufficient condition which is loosely
interpreted as dynamic weak coupling. The idea of dynamic weak
coupling suggests that in some sense the local subsystem dynamics
dominate those of the interactions. An alternate technical
approach to describe dynamic weak coupling provides a frequency
dependent measure of weak coupling appropriate for design of
decentralized control [BE1-3, HU2, LI1, NW4]. These methods all
have in common that they are motivated (at least technically) as
generalizations of a well known design method for MIMO systems -
developed by Rosenbrock called Inverse Nyquist Arréy.(INA) [RO1-
2]. "

Since this dissertation provides yet another generalization of
INA methods which is focused on a particular practical aspect of
the design problem for decentralized control we dedicate this
chapter to a review of this line of research. We start by discussing
the INA method which is based on the notion of a diagonally dom-
inant transfer function matrix. This method was not initially sug-
gested as a design tool for decentralized control. Next we discuss a
procedure originally proposed by this author for decentralized con-
trol which employs the notion of a block diagonally dominant
transfer function matrix [BE1-2]. Efforts by Limebeer and Nwokah
to generalize the notion of diagonal dominance have also been

extended to the case of partitioned matrices [LI1, NW4]. These
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results will be reviewed. Finally, in this chapter we describe the
difficulty encountered in attempting to generalize a particularly
important practical aspect of INA design to the case of a general

(non-trivial) transfer matrix partition.

It is important to recognize that, for systems where dynamic
weak coupling is evident, the susceptibility (sometimes called
"integrity’') of a decentralized feedback to failures of local controll-
ers can be readily evaluated. This remark is in contrast with
design methods such as [VI1, LE2] which can potentially deal with a
much larger class of systems by avoiding the need for a weak cou-
pling assumption. As a result such general methods require that
feedback robustness properties be evaluated on a global basis
[LE1, chapt.V].

The weak coupling methéds discussed in this chapter are based
in an essential way on frequency domain models and the Nyquist
stability test. Such tests have practical utility since they are
based on frequency response data which can be obtained from
direct measurements on the system. In practice the availability of
such data is limited to finite frequency bands. We will find it con-
venient to restrict consideration to systems where the loop
transmission transfer functions are all strictly proper. This
assumption is used for instance by Rosenbrock [RO1,pp.153] to
provide sufficient conditions for a Nyquist stability test where diag-
onal dominance is required only on the finite portion of the contour
D along the jw axis (with possible small indentations around finite
singularities.) In [BE1,pp.42] the present author obtained similar
results for the case of general partitioned transfer functions which
are block diagonally dominant along the corresponding finite fre-
quency range. Further discussion of the ramifications of this

assumption will be postponed until chapter 5.
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3.1. The Inverse Nyquist Array Method
The INA method [RO1] seeks to determine sufficient conditions

for the choice of feedback compensators, based on a frequency
dependent measure of loop weak coupling, in an independent loop-
by-loop approach. The specific notion of weak coupling used is
based on the idea of diagonal dominance of the system transfer
function matrix for values of the Laplace variable s contained on a
closed elementary contour in the complex plane. The term, diago-
nal dominance, is borrowed from a result due to Gershgorin provid-
ing sufficient conditions for the invertibility (or regularity) of a

1

square matrix.

Definition : An mXxm matrix, Z(s), rational in s is said to be diago-
nally dominant on a closed contour D in the complex plane if for

all s on D one of the following conditions is satisfied:

|24(s)| > 3 |2gi(s)| =1, - - .m, ; (3.1)
7# ’

(row dominance) or

m
|25 (s)| > 2 lzu(s) i=1,---.m
i*

(column dominance).
This criterion can be easily evaluated graphically. Plot for each
s on D a circle centered at z;(s) with radius

mmf_ﬁilzij(s)l, in) | 2;:(s) ]}
j#i

J#t

then (3.1) is satisfied if and only if the envelope swept out by these
so called Gershgorin circles (often called the Gershgorin band),

avoids the origin for each of m plots, i=1,....m.
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The significance of these Gershgorin bands when applied to the
inverse of the system transfer function matrix over the usual
Nyquist contour is taken from another classic result in numerical
linear algebra due to Ostrowski [RO1]. This result provides a bound
on the distance between the inverse of the diagonal elements of a
complex-valued matrix which is diagonally dominant and the diago-
nal elements of the matrix inverse (which are, of course, usually
different). This involves some notation. Let z (s)=Z"Ys). The
inverse of the diagonal elements of Z (or z ) are 25! (resp. 2,;1

where in general 2z 1x2-1. Then the Ostrowski result states that if

1

Z is diagonally dominant then
25 -2yl <pidy <y (3.2)

m
for i=1,...,m where d; = ), |25 | is the radius of ith Gerschgorin cir-

i#
cle and
d;
—_ J
. = max 3.3
23 pow |zjj| (3.3)

is a "'shrinking factor' associated with the dominance of the other,
j#1, rows of Z. Notice that the ¢; for i=1,...,m are each ¢; <1if Z

is diagonally dominant.

For the design of multivariable feedback (cf. fig. 2.1). We have

the relations
y(s) = G(s) [T+ F(s)G(s)]™ 7 (s) (3.4)
and
r(s) = [F(s)+G(s)]y(s) (3.5)

which can be used to study equivalently the closed-loop system
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response.
Remark : The inverse system representation of equation (3.5) is
the relation favored by Rosenbrock in INA method. It is often sug-
gested that (3.5) is preferable because of its "simpler form”. How-
ever use of (3.5) is predicated on plants with square transfer func-
tion matrix; i.e., p=m and requires the explicit calculation of the
inverse matrix §(S)= G~Y(s) which can often be numerically ill-
conditioned in practice. The real utility of the inverse representa-
tion results from the application of a result due to Ostrowski.

Let Z(s)=F+ 6(3) in (3.2) with F, a diagonal' matrix, F =
diag{f 1. 2..--.fm}- We see that i

|hig(s) = (fs +Fu ()| < pi(s)&(s) < &(s), (3.6)

for i=1,...,m and where

&(s) = g 1555()1. ; (3.7)
J
pi(s) = max 5;(s) (3.8)

i | fi+ ()]

and hy(s) is the ith diagonal element of
H(s) = G(s)[I, + FG(s)]™L

Now consider what happens if the ith loop is opened; i.e., f;=0
while other f;,j #i are fixed. Then h;!(s), the inverse of the diago-
nal element of the transfer function matrix of the system with all
other loops closed, is contained in the Gershgorin band about
. (s). The shrinking factor, ¢;(s), remains unchanged so that the
effect of the other local feedbacks must be to strictly reduce the
width of the Gershgorin band about &;;(s) (so long as F + G is diago-

nally dominant). Since h;(s) is the actual inverse transfer
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function

relating the ith input-output pair (with f;=0) classical single-
input/single-output techniques can be applied to choose the scalar
compensator gain, f;. The shrinking factor ¢;(s) leads to esti-
mates for the local stability margins associated with the ith loop
resulting from the effect of the other loop compensators. Thus the
Gershgorin bands define a broad or fuzzy Nyquist locus for the ith
subsystem.

The major problem with the INA method for design of general
multivariable control systems is the case when 6(5) is not diago-
nally dominant. In this case, the method as developed by Rosen-
brock, requires the construction of pre- (or post-) series compen-
sators such that 6(s)=f(s)6(s )E’(s) can be made diagonally dom-
inant. Available techniques for the synthesis of K(s) and L(s)
which represent relatively low order, realizable, anﬁ stable mul-
tivariable plants are ad hoc at best. The search for techniques for
synthesizing these compensators has been the subject of much
research [RO1], [LE2]. Various algebraic results are now available
for certain classes of problems. Also several gradient search pro-
cedures have been developed and tested. However the collection of

results still presents a rather ad hoc approach.

We take the viewpoint in this research that synthesis of K(s)
and L(s) may not be of fundamental interest for two reasons. First,
there are other measures of diagonal dominance which may pro-
vide the necessary estimates when the plant is not diagonally dom-
inant in the usual sense [BE1-3,L11-2,NW1-4]. Second, for large scale
systems, we are interested in identifying the structﬁral aspects of
the plant which admit a decentralized control solution embodying

the partitioning of the information pattern imposed on the
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controller. Thus in this dissertation we will be interested in associ-
ating attractive partitions for the control problem with appropriate

measures of subsystem interaction.

3.2. Block Diagonal Dominance and Decentralized Feedback Con-
trol

In references [BR1-3,FE1,F11-2,J01-2,VA1-2] results are pro-
vided which generalize the Gershgorin theories to the case of parti-
tioned matrices in several ways. In [BE1-2] these ideas are applied
to the problem of decentralized feedback control by appropriately
generalizing the Nyquist array ideas of Rosenbrock. The result pro-
vides a framework for rationalizing the choice of local feedback
compensators for the subsystems of the partitioned plant model in
- terms of a measure of subsystem interaction. Complete freedom is
available as to the choice of the design method employed of each
for the subsystem compensators so long as certain bounds on the
compensator response can be guaranteed. These b;)unds can be
stated in terms of several different (not necessarily equivalent)
measures of subsystem interaction. Unlike in Rosenbrock’s INA
method, the individual subsystem designs require a multivariable
design method. In this section we will summarize the salient
aspects of these preliminary results. We will discuss ;che major lim-

itations and open quéstions of the method.

3.2.1. Preliminary Definitions and Notation

Following [FE1] let A be an nxn complex matrix partitioned

into mXxm submatrices, Aij'i,jzl,...,m, where Aij is Icixlcj; and

m

dik;=n. Let |+| denote a vector norm on the subspace X;, for
i=1

i=1,...,m of C* implied by the partition above. Then the usual
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induced or subordinate matrix norm is

141l = sup T IAu zl

z#0

and its infimum or reciprocal is

IAL]z'LI
ex‘ Ile

z#0

1450 =

Clearly if 4;; is nonsingular then
1l = Azt

Definition : Let A(s) be an nxn matrix of rational functions in s
which is partitioned into mxm submatrices, 4;(s). Let D be a
closed elementary contour in the complex plane. Then A(s) is said
to be block diagonally dominant (BDD) on D if: 5

(i) 4;(s) has no poleon D fori=1,...,m and

(ii) for all s on D either

1450 > Sha,ll i=1---.m, . 4 (3.9)

J#i

(block row dominance) or

0450 > Sllagll  i=1, - m,

i*i

(block column dominance).
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Then we can state the main result of [BE2].
Theorem 3.1: Let A(s) be block diagonally dominant on D, a closed
elementary contour in the complex plane. Let s trace once around
D clockwise. Let detAd(s):D-I'4. Let detA4;(s):D-T; for each
1=1,....m. Then

N(T4:0) = 3 N(T3:0). (3.10)

=1

Proof: (ci. [BE2]).

3.2.2. Stability Tests for Decentralized Control and the Return
Difference

To test for closed loop stability we choose a contour D as dis-
cussed in chapter 2. We take p, to be the number of open-loop
poles of F(s)G(s) in the closed right half plane (CRH); i.e.,
Po =Po.¢c +Po r Where p, s (resp. p, r) are the number of system
poles of G (resp. F) in CRH.

Remark: Several types of cancellations can occur in forming 7+GF
as discussed in chapter 2. In the sequel,when we discuss decentral-
ized control,we restrict F' to have a particular sparse structure
(i.e. block diagonal). In this case from [WA1] other types of fixed
modes can exist.

Now the fundamental utility of block diagonal dominance for
the case of decentralized feedback control can be seen from the

following result [BE2].

Theorem 3.2: Let D be the Nyquist contour as defined above. Take.
F=block diag{F;,i=1, - - - ,m} and partition G(s) conformally with



_47_

F.

Let det(F;"1+ G;(s)): D-T;. Assume that the compensator F'(s) is
open-loop asymptotically stable and non-minimum phase. If
F~1(s)+ G(s) is block diagonally dominant for s on D then the
closed-loop system is asymptotically stable if and only if:

m
- _ZlN(Fi;O) =DPo,¢G = Po - (3.11)
t=

Proof: (cf. [BER,thm.3-3,pp.38]). )
Remark: Several other results are available in [BE2] when other
forms of the return difference for the inverse system transfer func-

tion are block diagonally dominant.

In [BE1] the present author derives several conditions on the
choice of the local compcnsators, Fy(s) i=1,...,m, w}ﬁch if satisfied
guarantee that stability of each of the local subsystems with

interaction dynamics ignored; i.e.,
Hy(s) = [+ Gy(s) Fy(s)]71Gy(s) (3.12)

for 4=1,...,m, implies stability of the complete system. One such

condition is as follows (slightly restated from [BE1,pp.40]).

Corollary 3.3: If the local feedback compensators F;(s)i=1,....m

are each chosen so that:
Gy () + Fy(s)Gy(s)]™? (3.13)

are asymptotically stable and for all s on D

[Fy(s)]~" < max [na'ﬁ(s)u e

J#i
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1Ga()] = 3 1Gx ()N}, (3.14)
F#*

for i=1,...m. Then the composite closed-loop system,
G(s)[I+ F(s)G(s)]"}, is asymptotically stable whenever all inter-
connections are stable; i.e., all contributions to p, come from

open-loop poles in CRH found only in G;(s) fori=1,...,m.

3.3. Generalizations of Block Diagonal Dominance for Rational
Transfer Functions

Gerschgorin's theorem is but one (albeit well known) example
of a class of localization theorems available in classicl:al linear alge-
bra [FA1, chapt.3]. Such theorems, which provide various charae-
terizations for inclusion (or exclusion) regions for the spectrum of
a matrix, are often used in numerical analysis to provide perturba-
tion results for the spectrum of a matrix in terms of parameters.
A rather extensive literature exists on extensions of these results
to the case of partitioned matrices [BR1-3, FE1, FI1-2, JO1-2]. (A
survey of some of the more well known results for partitioned
matrices was included in [BEZ2]). In many applications these
results are used merely to provide regularity conditions for

matrices (e.g. the sufficiency argument used to provide the condi-

tion on encirclements of the Nyquist locus as N([';0) = 3 N(T;;0)is
i=1

i=
based on regularity results). In such cases, complex characteriza-
tion of inclusion region for the spectrum is entirely superficial
since we are more concerned with determining a maximal exclu-
sion region which contains the origin.

In 1980 Nwokah [NW4] developed a generalization of block diag-

onal dominance for transfer function matrices based on the notion

of a composite H-matrix. Subsequently in 1982, Limebeer [LI1]
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employed a similar generalization but focusing on graphical design
methods based on the eigenloci characterization of the generalized
Nyquist criterion. The differing goals lead to different viewpoints
but resulted in essentially the same generalization. To be specific
Nwokah was interested in employing regularity results while

Limebeer sought to characterize inclusion regions.

This dissertation focuses on characterizing an entirely new
notion of block dominance from an abstract geometric perspective.
We focus on determining inclusion regions for an abstract charac-
terization of the Nyquist locus itself. Thus in this section we pro-
vide a critical review of the salient aspects of the work on BDD gen-
eralizations of Nwokah and Limebeer. We will show their com-
monality and highlight the technical differences. Finally, we will
motivate the fundamental technical problem addressed in chapter

5 of this dissertation.

3.3.1. Generalized BDD by Using a Composite H-matrix Test
The generalized notion of BDD for rational transfer function
matrices developed by Nwokah [NW4] is based on a generalization

of Hadamard matrices (H-matrix) for partitioned matrices.

Definition: Given CeC™ ™ construct.two mXxm real matrices B

and W = diag {w;,...,w;,} such that for i,j=1,...,m,

0, fori=j

i = \[ey; | . for i#j (3.15)

b

and for i=1,....m with w; =|cy;|. Then we say C is an H-matrix
(Hadamard matrix) if #—B is on M-matrix [FI1]. (Some results on
M-matrices are summarized in appendix B.). The mXxm matrix

W—B is an M-matrix if and only if all its principal minors are
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positive.

This is generalized as follows.

Definition (composite H-matriz): Let Ze€C™™™ be partitioned into

. XMy . n
mXm submatrices Z=(Z,;j) where Z;; eC with ) n;=n. Con-
j=1

struct two mxm real matrices B and W = diag {wy,..., w,,} such

that for,7=1,...,.m,

. fori=j (316
¥ ”Z"'J” , fOI'?:?é] ' ’ )
and fori=1,....m

Then call Z a composite H-matrix with respect to this partitioning
if W—PF is an M-matrix. '

The significance of this definition is that regulariiy of Z follows.

Theorem 3.4: Let Z =(Z;;) be nxn composite H-matrix. Then Z is
non-singular and furthermore |detZ | =det(# —B)>0.
Proof: (cf.[NW4] also see Appendix B).

In applying this concept to develop a stability test Nwokah
makes a crucial observation that if G(s)eR**™(s) is a composite
H-matrix for s on D and if F(s)eR"*™(s) is block diagonal and non-
singular for s on D then both of the following matrices are also

composite H-matrices:
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(i) G(s)F(s)
(il) I, + G(s)F(s).
Thus Nwokah is lead to consider the special structure of G(s) a

square transfer function matrix representing the plant. In provid-

ing a stability test for decentralized feedback he employs the
eigenloci Nyquist test [DE2] "locally”; i.e., he considers the eigen-
loci of the diagonal blocks G;;(s)F;(s) for eachi=1,...,m.

Theorem 3.5: Let G(s)eR™"(s) be partitioned into m xm subma-

trices. Let the decentralized feedback be

N

F(s) = block diag{Fi(s), - - - .Fa(s)}. (3.18)

The family of sets Ay(s) = (A¥(s)....AL(s)} for i=1,..,m are the
eigenvalues for each s and for each block i of G;(s)F;(s). Let 7}'(3)
for j=1, - - ,r;=n; be an indexed family of circuitfs (loci) formed
from the set A;(s). If G(s) is a composite H-matrix for all s on D
then the closed loop system is asymptotically stable if:

(i) 7}(s) does not intersect the point -1 for j=1,..,r; and i=1,...,m

and

(ii)

,’Enll f:lN(?}(S) ;—1) = P, . (3.19)
i=15=

where p, is the number of open loop poles contained in closed

right half plane.

Proof: (cf. [NW4]). The usual homotopy argument is applied with
the regularity condition supplied by assumption that G(s)F(s) is a

composite H-matrix. (Note 7; is the number of closed circuits (loci)
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constructed from the eigenloci (cf.[DE2])).

The fact that composite H-matrix is a generalization of a block
diagonally dominant matrix is recognized by Nwokah [NW4] but
perhaps not fully exploited since he did seek to construct inclusion
regions for the eigenloci. As discussed in section 3.1 (cf. egn. (3.6))
the trivial partitioning employed by Rosenbrock leads to strong

engineering interpretation for the Gershgorin circles.

3.3.2. Generalized BDD and Inclusion Regions: A Graphical Test

In 1982, Limebeer reported the development of a generalized
notion of a BDD matrix test based on an optimally "scaled”
Gershgorin test. His method of proof (based on some recent work
of Mees [ME1]) employed Perron-Frobenius theory of non-negative
Iﬁatrices. His result is not fundamentally different from the com-
posite H-matrix test described above. The scaling approach, how-
ever, allows him to define generalizéd Gershgorin inclusion regions.

The scaling idea is as follows. Consider a transfer function
G(s)eR™™(s) partitioned into mXxm submatrices and a block
diagonal (decentralized) fe_,edback compensator  F=block
diag {F,...,F,,} where GijERmxn’(s) and F,eR™"™(s) . Let S be an

nXn diagonal scaling matrix
S = block diag {sIp. - - . . Spipn} (3.20)

with s;#0 for i=1,...,m. Then clearly stability of the loop pictured
in fig. 3.1a is unchanged by scaling as shown in fig. 3.1b. However
G = S7IGS can have drastically altered dominance properties.

Indeed if one considers a block triangular matrix
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>G(s) S Fsle(s k> 51
F(s ye F(s }e
(a) (b)

Figure 3.1: Scaling in Gershgorin Estimates
G = [Gll 0 . '
IGZI Gaz

which is not BDD it is clear that by appropriate choice of scaling s,

and sy,

can be made BDD.

Definition: A matrix ZeC**" is generalized block diagonally dom-
inant (GBDD) with respect to a given mXxm partitioning if there

exists an € R™, >0, such that either

B m .
1Zalz; > 3 N|Zglle;  fori=1,---,m, (3.21)
j#i
or
m -
[]Z‘iiﬂxi > E”Zﬁ”l’] fori=1, - - - ,m.

J#i



_54-

The significance of this more general definition lies in the fact that
inclusion regions for the eigenvalues of Z can be characterized as

follows.

Theorem 3.6: If Z is partitioned into mxm submatrices then for

any £>0, z€R™ any eigenvalue of Z is contained in one of the sets

{ AeC: [N —-2Z;] =< ﬁ ‘]xj |1 Z] } (3.22)
125 Ti
for i=1,....m.

Proof: Obvious extension of basic result {(e.g. [FE1])."

By employing the Perron-Frobenius theory. of non-negative
matrices Limebeer demonstrates conditions under which a scaiing
z exists which can optimally reduce the inclusion regions provided
above. This is accomplished by defining two non-negative test

matrices B, WeR™*™ such that the elements of B satisfy

I]Z'i.il]' for ?,:]
b = Nzyll, for i#; (3.23)
and
W =diag {|Zzll, i=1,-- - .m]. (3.24)

Very briefly, the Perron-Frobenius theory deals with nonnega-
tive (element wise) matrices. Such matrices are classified accord-
ing to the following notion of reducibility. We say that a nonnega-

tive matrix A4 is reducible if it can be put into the form

11 0
21 Az
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by permutation of its rows and columns. (Thus a nonnegative
matrix is irreducible if this cannot be done.) Associated with any

irreducible nonnegative matrix is (according to the theory) a

unique eigenvalue of A, App, of maximum modulus called the Per-
ron root for which one can find an eigenvector which is strictly
positive (element wise).

Then the result is stated as a theorem [LI1].

Theorem 3.7 Let ZeC™*™™ be partitioned into mxm submatrices

with the test matrices defined above. If B is irreducible then the
following are equivalent "

(a) W~1B has Perron-Frobenius eigenvalue

Apr(W™1B) < 2, ~ (3.25)

(b) Z is generalized row block diagonally dominant

(c) there exists a scaling matrix S>0 (cf. Fig. 3. 1)
S = dlag ixl‘[klllekz' e ’ImIkm; (326)

such that S™1ZS is BDD by rows
(d) Z is generalized column block diagonally dominant

(e) there exists a scaling matrix S>0 (cf. Fig. 3.1)
§ = dlag ifl‘[kl’lekg’ .. :fm[lcm; (327)

And furthermore if any of the above holds then Z is non-
singular.
Proof: (cf. [LI1]) It is sufficient to recognize that the Perron-
Frobenius theory applied to the non-negative irreducible matrix

W-1B gives
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”ZIm”
1 o [1Zul ||z 31
e 1 ) . °
[} ] [ e = APF :
| Zmall o 1 |iEm Ty

where 2>0. From each row i=1,...,m we get
m
2 NZllzy =250z App—1). = (3.28)
J#t

Then Limebeer provides a stability result for decentralized
feedback focusing (as does Nwokah) on the case of G(s)ER"*"(s) a

square transfer function matrix and non-dynamic feedback of the

form

F = diag{f 1Jep Sl 3 - . (3.29)

Theorem 3.8: With G(s), F as above partitioned conformally into
mXm partitions. Let F~1+ G(s) be GBDD for all s on the Nyquist
contour D. Let A;(s)={A¥s), - - - ,)\,’é‘(s)f 1=1,...,m be the eigenloci
(generalized Nyquist contour) for the 4™ diagonal block
Gy (s)eR™*(s) for i=1,....,m of image of D. Form circuits 7}(5) for
Jj=1,...,m;<k; which are continuous and analytic curves (loci) in C.
Then (stated somewhat differently from [LI1, Thm. 7]) the closed
loop system is asymptotically (exponentially) stable if and only if:

-1
S

() 7}(5) does not intersect the point for eachi,j=1,...,m
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(ii)

5 %N(vf}(S): )= —,. (3.30)

i=1j=1 fi

where as usual p, is number of open loop poles in closed right

half plane.

Proof: The proof differs from those above only in the technical
basis for the regularity of #~1+ G(s) on D - in this case being based
on GBDD.)

It is acknowledged in [LI1] that GBDD is "not fundamentally
different from’ the H-matrix test of Nwokah [NW4]. Indeed, these
definitions are equivalent as can be seen in [FI1, sect. 4] (cf. Appen-
dix B). Limebeer’s construction, however, focuses on the inclusion
regions which he seeks to characterize graphically. The goalv seems
to be to provide, more completely, a generalization of the graphical
design methods of INA to more general partitions by exploiting
Nyquist eigenloci plots with inclusion regions super imposed. How-
ever, this approach (it seems to me) is doomed to failure for a

number of technical reasons which we next discuss.

3.4. Problem of Estimating Local ''Stability Margins”
The strength of the INA method for MIMO design comes from its

graphical interpretation. As discussed in section 3.1 this follows
from the bounds (3.6) which provide a new interpretation to the
Gershgorin circles. Thus the envelope of the Gershgorin circles for
each input-output pair centered on the corfesponding Nyquist plot
of the SISO response between that pair can be interpreted as an

inclusion region for the true Nyquist locus for the pair with
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interaction dynamics included. Thus stability margins and

gain/phase margins for each individual loop can be estimated
directly from plots of the resulting brood or fuzzy Nyquist loci.

A natural extension of this idea to the more general case of
decentralized feedback with arbitrary partitions would suggest the
direct interpretation of inclusion regions for the eigenloci (via the
generalized block Gershgorin results previously discussed). Thus
the natural attempt would be to employ the generalized Nyquist
eigenloci concept for MIMO stability analysis. However in practice

this approach suffers from several deficiencies.

(1) Generally the inclusion regions

G = {NECIU)J"Zﬁﬂ < guzij”] (8.31)

J#i

) m
G'=neCIN —Z;] < Y lIZ;l
v j#
are not discs (except in the rather special case when Z is nor-
mal and the norm is "axis oriented’’). The more general shape

of G;, ;' may be difficult to determine.

(2) The sets G; and G;' (which of course coalesce in the case of
GBDD) may be covered by discs for the -purposes of graphical
presentation as is proposed by Limebeer [LI1] by exploiting the
eigenvectors of the diagonal blocks Z; i=1,...,m. However,
such bounds are not at all sharp and in fact can be totally use-

less when there are confluences in the eigenloci of the

Gy (s)(—:Rk‘Xk‘(s) as s varies over D.
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(3) Moreover, as discussed by Doyle and Stein [D04] and by
Postlethwaite and MacFarlane [P0O4] it is not possible to provide
a- useful notion of MIMO gain/phase margin directly from the
Nyquist-eigenloci plots without additional information. (Typi-
cally the minimum and maximum singular values are also
required.) Thus the robustness question must be evaluated

separately for MIMO systems.

There have been several attempts to apply the classical notions
of robustness in terms of stability margins for multivariable sys-
tems [CR1,D04,LE1,P04,SA1,SA4]. Essentially, these methods
express a measure of stability for a multivariable system in terms
of a degree of regularity applied to the matrix return-difference.
The degree of regularity frequently employed is subordinate to the
Euclidean vector norm 'and can be shown to be the minimum singu-
lar value of I+ FG(jw) over the effective system bandwidth. The

association of a bound
IF 1+ G w)a=t(w) >0 (3.32)

with a measure of robustness with respect to plant uncertainty fol-
lows by showing that (3.32) guarantees that det[F~!+ G(jw)] and
det[F71+ G(jw) +AG(jw)] are homotopically equivalent with

respect to the origin for s on D whenever
L{w) = [AG( o)l (3.33)

for we[—wq, wg] (recall from sect. 2.3.2 the construction of D).

Using the concept of block diagonally dominant (BDD) matrices
this notion of robust design is applied (cf.[BE1]) to the case of

decentralized feedback control as follows.
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Definition: Consider the nxn plant transfer function matrix G(s)

partitioned into mXm submatrices. The quantities

di(s) = 1Gal = 311Gy, (3.34)
7™

d;'(s) =[Gsll - f“%‘i”.
&

are called respectively the row margin of dominance, and column

margin of dominance.

Theorem 3. 9: (robust decentralized compensation): '

The regularity requirement (3.32) is guaranteed for F' = block
diag{F;i=1,...,m] whenever G(s) is BDD for s=jw for
we[—wp,wo] with dominance margin (see (3.34)) sufficiently large so

that compensators F; i=1,...,m can be chosen which satisfy:
(i)
1F17 < min [mex{dy(jo). dsGo)l]-t@)  (2.35)
for we[—wq,wg)] and
(it)
Gie;(s)[j +F; Gy (s)]™ (3.36)

is asymptotically stable. Overall plant stability is guaranteed
for all plant perturbations, AG(s), satisfying (3.33) whenever

m
Po = .Elpo i (3.37)
1=

where p, (resp. p, ;) is the total number of open-loop unstable

poles of G(s) (resp. Gy(s)).
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Subsequently, Limebeer and Hung [HU1] developed robustness
characterization for decentralized control exploiting GBDD and
given in terms of bounds on the minimum singular value of I + FG.
They study specific classes of perturbations significant for large-
scale interconnected systems. Rather than dwell on the technical
details of these arguments which employ the common tools of
homotopical equivalence of some Nyquist loci (typically eigenloci)
based on a regularity condition on I + F' G(s) for s on D we will pro-
vide a new result which we believe summarizes the thrust of this
line of reasoning.

Consider that from the discussion in chapter 2 it is apparent
that one realistic notion of stability margin for MIMO systems is
based on the following measure (called by Helton gain-phase mar-

gin [HE1]).

Definition: Gain-phase margin of the MIMO feedback configuration

of Fig. 2.1 is.

Opg = sig%‘fmm[["'FG(s)]- (3.38)

From the standpoint of decentralized control and in the light of the

utility of INA methods we wish to:

(i) provide estimates for 8,4 of the overall system in terms of
some measure of relative dominance of subsystem to interac-
tion dynamics,

(ii) identify dominant contributions to such estimates locally; i.e.
identify those local controllers where interactions are strong.

A result which contributes to this goal in the spirit of the
analysis used up to this point is based on the following block gen-

eralized Gershgorin result for singular values.
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Theorem 3.10: Let AeC™*™ be partitioned into lxk submatrices so
l k
that A,;,-EC””"X"4 with ), m;=m and ),n;=n. Assume that m;=n;

i=1 i=1

for eachi=1,...,m (i.e., 4; are square submatrices.) Let

d= 34yl (3.39)
F#*i '
di'= [l
Vi
s; = max(d;, d; ') | - (3.40)
a; = [14;]] | (3.41)
for eachi=1, - - - ,min(l,&).

Without loss of generality assume I <k and take

k+1si<l =1

s = max {'illAin]. | (3.42)

Then each singular value of A belongs to one of the closed intervals
[ max(a; —s;,0), a; +s;]

fori=1,...,m and [0,s].
Proof: Suppose ¢ is a singular:-value of A. Then there exists two
vectors z€C™ and y €C™, both non-zero, such that

or =A'y, oy =Azx. (3.43)

Take zT=(z],---,z{), yT=(y{, - yd), partitioned conformally
with 4. The vectors z and ¥ can be chosen such that for some sub-

vector and some vector norm

lwall = max{llz |l llzzll, - - . el lyall, - Tl
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and [ly;]l=1. (For simplicity assume ||.|| is the euclidean vector
norm.)
Consider two cases as follows:

(i) Take i such that k<i<l then write

oY; = ilAij zj . (3.44)
J:
Therefore,
k
Lol llysll = 35 041 Izl
i=1
=>

k
lo| = Y llA;ll<s,
j=1

where the matrix norm applied to 4; is induced by the

(euclidean) vector norm. Thus o€[0,s].

(ii) Consider i<k. Then we can write from (3.43) for some i<k

oz; — Ay Y = éA'ﬁ Y (3.45)
J#
and
. Lo
O'yi —Aﬁ Ii = ZA ji xj . (346)
i

From (3.45) and (3.46) we get

. L
| ollz:ll = 1A wll | = 2L llAp vl = &, (3.47)
i*i

and

| olall ~l4s zll | = Y14 251l = o (3.48)
b
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Clearly if o=a; then by employing the definition of [« and the

assumption ||z;||<1,
lo—a;| < | ollzll—04:0 | = | ollzll - ll4 vl |
On the other hand if o<a; then (since ||y;]|=1 by construction),
lo—a;| = | o—llAzzll | = | ollysll — 14zl |
Thus we conclude using (3.47) and (3.48) that
| o —14;l | = max(d;' d;) =s;.

(The above result appropriately generalizes the result in [QI1].)

The application of this to the above problem then follows

immediately.

Theorem 3.11: For the decentralized feedback systern of figure 3.1

which is assumed exponentially stable let

di(s) = 317 Gy ()l
¥

d;'(s) = i‘: |75 Gy ()l

j#L
ci(s) = max(d;(s).d; (s)).
Then

Opg = Inf  Iin max [Ufh + F; Gy (s)] —ci(s), 0] . (3.49)

Proof: Immediate by substitution of 4 =/, + FG(s) which is there-

fore nxn complex valued.
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In the remainder of this dissertation we will consider a new
viewpoint towards answering this basic question of estimating
locally the stability margins of a decentralized control system
based on a geometric Nyquist criterion for MIMO systems described
by Brockett and Byrnes [BO1]. The goal here is to develop a fresh
and more generally applicable measure of weak coupling (like BDD

or GBDD) which provides the required estimates.
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4. Generalized Stability Margins from a Geomelric Viewpoint

4.1. A Geometric View of MIMO Feedback

In this section we provide background on a particularly useful
geometric construction of an abstract Nyquist contour for MIMO
systems. We focus on some particularly salient properties of the
abstract Nyquist contour for MIMO systems as discussed in [BR4].
We consider the relationship to more standard notions of the
Nyquist contour and how this geometric notion can lead to a
natural decomposition of the inputs and outputs (in special cases)

i

relevant to the design of decentralized control.
We start with the general MIMO feedback equations with
ueU=Cm, yeY=CP

G(s)u(s) =y(s), u(s)=~-Fy(s) (&)

with G(s)eRP*™(s), F ER’"X"’ which we write suggestively as

G(g E | k) =o. (1.1)

The geometric.theory of linear systems and feedback centers on

the relative orientation of the two objects,

G(s) = ker{G(s), —[p] (4.2)

and

F= ker{]m : F] (4.3)

which for any s€C are a pair of subspaces in U®Y = CP*™. Follow-

ing Hermann and Martin [HEZ2] we can state the following.



- 67 -

Theorem 4.1: [HE2]. A complex number s; is a closed loop pole of

the feedback equations (4.1) if and only if
dim [G(so) N F] > 0. (4.4)

Proof: In the matrix form (4.1’) this result is obvious since for

rational functions the only singularities are poles.

More significantly Hermann and Martin [HE2] suggested the fol-

lowing definition of an abstract Nyquist locus.

Definition: The (abstract) Nyquist locus, I'g, of a pxm transfer

function G(s) is an algebraic "curve" given by the map
s> ker{G(s), —[p]

as the image of the closed contour D. I'; is containéd in the com-
plex Grassman space consisting of all m-dimensional subspaces in
CP*™_ We consider a curve in a more general sense as an analytic
map from a Riemann surface to a complex analytic manifold, viz.,
the complex Grassmanian. In this sense a curve has complex

dimension one or real dimension two.

The complex Grassmanian is the set of all p-dimensional com-
plex subspaces of C?, which we denote as Grass(p.,n). Grass(p,n)
admits the structure of an analytic manifold in this case of dimen-
sion np —p2 A fundamental property of Grass(p,n), which was
successfully exploited in [BR4] toward the construction of a gen-
eralized Nyquist test, is the duality between Grass(p,n) and
Grass(n—p,n). In particular, a canonical representation of a point
XeGrass(p,n) is as a hypersurface o(X) < Grass(n—p,n). This so
called Schubert hypersurface is given by
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o(X) = {Ye Grass(n —p,n): dim(XnY) = 1}; (4.5)

i.e., all Y € Grass(n—p,n) which intersect X € Grass(p,n) nontrivi-
ally.

. The most significant aspect of the abstract Nyquist locus, T'g,
as constructed above is that it is fixed with respect to choice of
feedback compensation, F, in contrast to methods which focus on

eigenloci or determinants of a matrix return difference.

However, the construction is quite general and allows connec-
tions with more standard analyses. For instance, by change of
basis in the space of inputs and outputs, U8Y, one can generate a

new ''rotated’” Nyquist contour, I';. In the particular case
[G(s) , ] [G(S) ] [o G(s)F +1, ] (4.6)

reveals a "rotated’” curve, I'g as
ker{O, G(S)F+]p]: D-Ty.

However, the transformation

Im F
G(s) -1

represents a valid change of basis in C°*™ only for s not a closed
loop pole. To say this another way I'; is a valid curve contained in
Grass(m ,p+m) whenever s is not a closed loop pole for s on D. (Of
course the standard construction of D does not guarantee this.)
Thus, from this geometric point of view one can see the advantage
of working in the "natural" basis (given by (4.1')) in defining a "legi-

timate” Nyquist contour.
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In the sequel we will need some background on certain natural
algebraic structures in the study of linear systems and their effect
on the abstract Nyquist locus. We will show, using these structures,
the existence of certain classes of transfer functions with special
properties (in terms of their Nyquist loci) of significance to decen-
tralized control. In Chapter 5 we will exploit these ideas further.

We first consider transfer functions G(s)eRP*™(s) (not neces-
sarily proper) and the action of constant (nondynamic) change of

basis in the composite space U®Y = CP*™ in the form

z=[7 &) é

with Z: CP*™ 5 CP*™ nonsingular.

Lemma 4.2: The set of transfer functions G(s)eRP*™(s) together
with the Z-action above provides the algebraic structure of a
group. (We will call this the Z-group). The action generates new

transfer functions in RP*™ (s ) as
G(s) F=> Ggls)
where
Ge(s) =(G(s)K + T)! (G(S)S —H) (4.7)
= (TG(s) + H) (KG(s) + S)™!

Proof: By construction Z is in the general linear group of transfor-
mations on CP*™ so it remains to show only that Gg(s)eRP™™(s).
Now (4.7) comes from observing the T-action on the subspace G(s)

as

{[7; ][G(s)] ITG Sg +IS{]
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and

| [G(s), —Ip] [g‘yﬂ = [G(s)s —H, ~(G(s)K + T)]. .

Clearly the I-action involves quadruples (S,T,K,H) which are
identified as follows:
(i) S: C™-C™, change of basis in U (space of inputs)
(ii) T: CP-C?, change of basis in Y (space of outputs)
(iii) K: CP->C™, withw ¥ wu — Ky as the feedback operation
(iv) H: C™*->CP, withy ¥ y + Hu as the feedforward operation.

Next we consider a subgroup of the Z-group on
RE™(s)cRP*™(s), the subset of strictly proper transfer functions
in RP*™ (s). This subgroup is commonly referred to as the feedback

group [BY1] and involves transformations I, of the f orm

_Is-
Zo=[o 7{(]
on UaY.

Corollary 4.3: The set of strictly proper transfer functions RP*™(s)
together with triples (S,K,T) form a group (called the feedback

group) with respect to the action
G(s) 5> Gas)
where
Gg,(s) = (G(s)K + T) 1 G(s)S (4.8)
= TG(s) (KG(s) + S)~1.

This is clearly a subgroup of the Z-group of rational transfer func-

tions over RE™(s).
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Proof: Let H=0 in Z-group above.

Remark: Clearly the ¥ group (resp. Zj-group) acts on the Nyquist
locus 'z to yield a new 'y C Grass(p,m+p) and equally on the
Schubert hypersurface o(F) representing the fixed (with respect to

s) point,
F=ker[L,,F],

in Grass(m ,p+m). For instance

I —
7 7=l 0]

We next consider a special class of transfer functions whose

. ]

Nyquist loci have special properties. This special class will play a

central rcle in this dissertation so we will elaborate on their pro-

perties.

Definition: A transfer function G(s)eRP*™(s) is said to be degen-
erate if and only if there exists some Schubert hypersurface
o(X)cGrass(m ,p+m) associated with some XeGrass(p,m +p) which

contains the abstract Nyquist locus, Tg.

Clearly the class of degenerate transfer functions is invariant
with respect to Z-group (resp. Ly-group) actions on Grass(m,p+m)
(and therefore, on the transfer functions).

Several alternate conditions are available [BR4] to describe
degeneracy. One alternate condition for degeneracy is that there

exists a mXx(p +m) matrix [K;, Kz] of rank min{m ,p) such that

det[G]((sl) ;K[; ] =0. (4.9)
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A third alternate condition is given by the following construction
(stated somewhat differently from [BR4]). A subspace X €
- Grass(p,m+p) can be represented as the kernel of a mx(p+m)
complex matrix X. Then I'z € o(X) in Grass(m ,p+m) if and only if

for any s on D there exists a nontrivial linear combination of the

columns of

[G,fj)] = 1) gn(®)]:

viz.,
m H
2 gi(s),
i=1
which lies in ker X; i.e.,
X [‘i% gi(s )] =0. . (410)
)
Let
z{
X=1oe
7,

Then (4.10) hold for a; i=1,...,m not all zero if and only if
det[<xj,gi(s)>]ij = 0. (4.11)

Alternately, if we consider X partitioned as X = [X;, X3] then the

condition (4.11) can be written as
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det[ [Xl, le [G[E:)] } (4.12)

= det [ch(s) + Xy =0,

To illustrate how degeneracy can occur, we consider two examples.

Ezample 4.1: Let G(s)eR®%(s) be

o= g oouke)

Clearly G(s) is rank deficient over R(s). Consider

X={12,F]
b3

Then by condition (4.12), in this case, since

e 117 -

is singular for all s, G(s) is said to be degenerate.

giu(s)+1 gp(s)+2
agq1(s)+2 ag(s)+4

Erample 4.2: In this case take
_ 1911(s) g12(s)
G(s) = F 0 922(5)]'

Choose X = kerX with

QO
QO
ad =

Then we get
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11(8) g12(s)

[owo] 0 gz(s)]  J5gaa(s)
00 =10 1

0 1

which is clearly singular for all s€C.

The significance of these two examples is now discussed. We

consider a partitioning of the class of degenerate transfer func-

tions into two mutually exclusive subclasses as follows:

(c1)

(c2)

Subclass 1 contains those degenerate transfer functions for

which I'¢cC Grass(m p+m) is contained in some Schubert

i

hypersurface
o(X) ¢ Grass(m ,p+m)

where XB can be represented as the kernel of a mx(p+m)

matrix of the form
X= [Im , F]

with F' a constant m Xp matrix.

Subclass 2 contains those degenerate transfer functions

where X cannot be represented as above.

Clearly example 1 is in subclass 1 and example 2 is in subclass 2.

The subclass 2 of degenerate transfer functions can be defined

by the following alternate condition:

(c?') For G(s) in subclass 2, T'; is contained in o(X) for some

XeGrass(p,m +p) for which

dim (Xn U) > 0. (4.13)
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We remark that such a subspace Ximplies a direct sum decomposi-

tion of the space UBY as
UsY=U;eY)a(U.aY,) (4.14)
according to constraints of the form
X, u(s) = ~Xp y(s) (4.15)

where X=ker[X,X;] with X;:C"->C™ singular; ie,
uy(s)eU,=kerX; (u, is underdetermined) and yp(s)€Y, satisfies
yYo(s)=0 from (4.15).

Next we consider the question as to whether this classification

of degenerate transfer functions is invariant under Z-group action.

Theorem 4.4: The classification of degenerate transfer functions
G(s) according to whether (or not) the Nyquist locus T ¢ o(X) for
some X=ker[[,, F] with F ﬁm’té (or not) is invariant under the
action of the feedback group (Xg-group). However, this

classification is not invariant under the more general action of thé
X-group.

Proof: Given I'; € o(X) in Grass(m,p+m) it is clear that the action
of T applied to Tz (resp. o(X)) yields T'E (resp. o(X¥)) such that

PE ¢ o(X%). So the question amounts to whether or not we can go

by X-group action from

X = ker []m, F]

to

X = ker [XI,X2]

with X,€C™*™ singular and vice versa. The general E-group action
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on X takes the form (with X = ker [[,,,, F]),

lrm . A1 5K =|s+rr. rr-x|.

Thus given FeCP*™ we seek an S€C™*™ nonsingular, and HeCP*™
such that for some z€C™

[S+FH]:::=O.

We give a constructive procedure. Assume 'm.>p' and choose
any S€C™ ™ nonsingular. For instance, let S = I,,. Now choose an
HeCP*™ such that there exists an H; where HjH = ,jm‘ Thus, it is
enough to choose H; €CP*™ such that for some we(C? '

W+dw=o

Then z = Hw satisfies above condition. This proves the second
claim.

The first claim is proved by considering that for the subgroup

action of £y we get
[ [s—-K] _ [ _
lfm.F]lo T —lS,FT K],

where S€C™*™ is a (nonsingular) change of basis in U. Similarly,

starting with X = ker[X;, X3] with X, singular we get

b, x| 5 4] = s xer-xux].

where X;S€C™ ™, is singular.

From the above theorem it is clear that the classification is

meaningful in this geometric setting only for strictly proper
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transfer functions. It is well known that strictly proper transfer

functions can be realized as
G(s) = C{s] —A]'IB

where AeR**®, BeR™™, and CeRP*™ with minimal dimension n
called the McMillan degree of G(s). From the above examples it is
clear that degenerate transfer functions are rather special. We

have the following results of Brockett and Byrnes.

Theorem 4.5: [BR4] Let G(s) be strictly proper with McMillan
degree n. If mp =n then nondegeneracy is generic in the space of
strictly proper transfer functions. If mp>n, then every G(s) is
degenerate {.
Proof: (cf. [BR4], Thm. 4.2).

The notion of stability margins as discussed in Chapter 2 for

SISO systems involves a measure of how close the Nyquist contour T'

approaches a "critical point", t in the complex plane. In this

f

geometric setting we will be concerned with how nearly I'; inter-
sects the appropriate fixed hypersurface o(F) for F = ker[/,.F]. In
chapter 5 we will exploit the decomposition of certain degenerate
transfer functions to design decentralized control systems. Con-
sidering the last theorem we will need to approximate nondegen-
erate transfer functions by degenerate ones. In preparation for
these results we discuss in the next section the topology of the

Grassman manifold.

1 In the context of this discussion, the statement that nondegeneracy is
generic means that the set of all degenerate transfer functions can be

deflned by algebraic equations.
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4.2. Angle Topology of the Grassman Space

4 2.1. Plicker Metric

As discussed above the Grassman space, Grass(p,n), is the
space of all p-dimensional subspaces of C™. Clearly for any
NeGrass(p,n) we can express p basis vectors for N in terms of
some coordinate systems by writing an mXp matrix say B;. In
terms of some other coordinate system we can write a new matrix
B,. In this case there exists a nonsingular p Xp matrix 4 such that

B, = ByA and conversely. Thus N=image (B,)=image (Bj).

Following Byrnes, et al [BY1] we state

Definition: The Plucker coordinates of a pXn matrix B is the E_’L]
dimensional vector of determinants of all p Xp submatrices of B.

It is easy to show that for any B 1 and By as above their respec-
tive Plucker coordinates will differ by a scalar rmiltiple of each
other; i.e., their Plicker coordinates are aligned. One way to pro-
vide a notion of distance on Grass(p,n) is then to think of any two

subspaces of dimension p say N,MeGrass(p,n) in terms of their

P
Plucker coordinates (say uy, v MGC[’J). Then the function

a(N, M) = L~ o) (4.16)

lenllz vl

is an "angle'" metric and obeys the property

~1<d(N,M)< 1.
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4.2.2. Gap Metric

Another sort of angle metric can be described by thinking of
points in Grass(p,n) in terms of the p-dimensional subspaces of C*
that they represent. Here we take an abstract "basis-free”
viewpoint in describing the subspaces.

Let M,NCC™ be subspaces. Let dim M = p and dim N =m. The
following function called the gap (or aperture) between M and N is

defined in Kato [KA1,pp.197].

Definition: The gap between M and N is

1

6(M,N) =max[ sup inf ||z —y||, sup inf |ly —z]||| (4.17)
[Ix zeM

I=1 yeN lly lI=1
I::ell y yEN

The gap function obeys the following properties which follow
'immediately from the definition. ‘

(P1) S6(M,N) =0 if and onlyif M=N.

(P2) &6(M,N) = 6(N,M).

(P3) 0=<46(MN)=<1.

Furthermore, the. gap function obeys the following property which
will be significant for us:

(P4) 6(M,N) < 1 if and only if dim(M) = dim(N) (cf. [KA1, pg. 200]).
In general, the gap, 6(M,N), is not a metric.t However, after modi-
fying the definition slightly by taking infimums over the appropri-
ate unit ball in each subspace, the resulting modified gap, 3(M,N),

obeys the triangle inequality and thus becomes a metric.

1 In the sequel we will consider the gap based on the euclidean vector
norm. In this case the gap is a metric.
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Property (P4) clearly indicates that using this modified "gap-
metric’ one can actually form a basis for a topology of the Grass-

man space via neighborhoods of the form

B, (M) = {NEGrass (p.n): 3(M,N) <& < 1}.

4.2.3. Orthogonal Projections in Unitary Space and the Gap Metric

In a unitary space, E™, we can employ the notion of an orthogo-
nal projector to represent a subspace MC E™; e.g., take E* =C"
and the natural inner product <z, y> =% Ty . If Py(resp. PN) is an

orthogonal projector whose range is the subspace MCE™ (1jesp.

NCE™) then using the natural Euclidean norm we can state the fol-

lowing:

Theorem 4.6:

6(M,N) = ||[Py — Pyl

Proaof: (cf. Kato [KA1]).
Property (P4) of the gap is then related to the following fact.

Theorem 4.7: Any two orthogonal projectors Py, Py which satisfy
|Py — Pyll < 1 are unitarily equivalent. That is, there exists a uni-
tary transformation U such that UPyU®=Py. (U is unitary if
u'u=1I).
Proof: (cf. Kato [KA1]).

Unitary transformations have an intuitive geometric appeal

because they represent orthogonal rotations of the given vector
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space coordinate system. Thus we see that with the structure of a
unitary space the gap-metric (here the gap function &(s) becomes
‘naturally a metric) takes on a particularly natural geometric
appeal. Indeed, in finite dimensional unitary spaces, for which we
have interest, the transformation U of theorem 4.7 can be
represented by an easily computable matrix. In Kato [KA1] these
results (and others) are used to study perturbations of linear
operations on infinite dimensional spaces. In Stewart [ST1] similar
ideas are applied to certain numerical problems in the computa-
tion of invariant subspaces for matrix (finite dimensional) opera-
tors. As we discuss in the subsequent sections our concern is

slightly different but will follow along the same line of reasoning.

4.2.4. Near Intersection Between Subspaces and the Minimum
Gap Function

From the statement of the generalized Nyquist ériterion above
it is clear that we will be interested in characterizing the '"near”
intersection between certain pairs of subspaces. On the
Grassmanian manifold this is characterized by near intersection
between a point MeGrass(p,n) and a Schubert hypersurface

o(N)cGrass(p,n) associated with the subspace NeGrass(n —p,n).

Towards this end we provide the following:

Definition: Let MCcC™ be a p-dimensional subspace and NCC" an
m-~dimensional subspace. Then the minimum gap (or min-gap )

between M and N in C" is given by,

M,N) = min] inf iInf ||z —y||, inf inf -z 4.18
7(M, N) unt, Inf Iz —yll nf, - inf ly —=zll| (4.18)
x€M YyEN

Obviously, the minimum gap satisfies the properties:
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(P1) 0=<y(M,N)=5(MN)
(P2) 7(M,N) = 0if and only if dim(MnN) > 0.

Based on (P2) it is clear that for the-abstract Nyquist criterion
described in section 2.3.2 that the min-gap can provide a measure
of distance between the abstract Nyquist contour I'z and the

abstract critical point o(F) as

Jmin_ 7(G(s), F), (4.19)

where G{s)eGrass(m,p+m) and FeGrass(p,n). In section 4.3 we
consider this further. '
Following the line of reasoning of section 3.3 we make the fol-

lowing claim.

Corollary 4.8: If Py and Py are both orthogonal projectors in C*
with image(Py) = M, image(Py) = N then '

y(M, N) = [Py - Pyllo } (4.20)

4.2.5. Canonical Angles Between Subspaces

There is a natural notion of angles between pairs of subspaces
in a unitary space. In'finite dimensional spaces these angles can be
computed from singular values of a particular matrix. If we let M,N
be a pair of subspaces of C* with dim M=p, dim N=m. Assume

m>p. Then we say the smallest angle between M and N (cf. [BJ1]),
8,(M,N) = 3,€[0, 12'—], is given by

1 Note that in finite dimensional unitary spaces that the right hand side
of (4.20) is just the minimum singular value of the matrix difference.



- 83 -

cos¥; = max max u ' v. (4.21)
ueM veN
flulle=1 [|l=1

Following Bjérck and Golub [BJ1] we define recursively the princi-

pal angles, ¥; , k=1,... p as follows.

Definition: The principal angles ¥ €[O,—72L] between M and N are

given recursively for k=1,2, - - - ,p by

cosV¥, = max max u v = w v (4.22)
ueM wveN _
flull=1 [lv]le=1

subject to the constraints

u;"u =0, v;°v =0 (4.23)
for j=1,---k—1. We call the | set of vectors
{uy, - U, vy, - - -, vy} the principal vectors for the pair of sub-

spaces.

In this section we review how the principal angles can be com-
puted for a pair of subspaces. The relation between certain princi-
pal angles and the gap will be clarified using orthogonal projectors.
The result will be a computational procedure for determining the
gap, 6(s,*), and the min-gap, ¥(+,*), between a pair of subspaces
M,N. Moreover using the principal vectors we can compute a basis
for the intersection, MNN. For the problem of multivariable feed-
back such a basis can be used to describe how certain modal

behavior of the system is reflected from an input-output view point.

The main computational result which we exploit requires that
we have a unitary basis for each of the subspaces M and N. Since
this can be obtained conceptually using a Gram-Schmidt procedure

(and in practice using Householder reflections) we assume that we
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have a pair of matrices QueC**™ QyeC™® with @y @y =/, and

Qu *Qu = I, such that image(Qy) =M and image(&y) =N.

Theorem 4.9: Given @y and &y such that image(@y) =M and
image(Qy) = N each a subspace of C*. Compute the singular value

decomposition (SVD) of

Qu Qv =YuCY¥y' (4.24)
where
Yu'Yu=YuYu =YY" Yw=10. (4.25)
C = cos® =diagjoy, . . - ,ap]
with singular values 0, = - - - = 0, and
0= diag[’dl, N ,19p].

Then ¥; < - - - < ¥, are the principal angles between M and N. The

columns of and U=Qy Yy, V=@y Yy are the principal vectors.

Proof: (cf. [BJ1,thm.1]).

Corollary 4.10: Let Py = QuQu~ be an orthogonal projector on M.
Then compute the SVD of

[In — PylQy =Wy S Yx' (4.26)

where S =sin®. Here Wy gives the principal vectors in the
orthogonal complement, MP®T, associated with the pair of sub-

spaces M,N.
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Theorem 4.11: As above, let Py and Py be orthogonal projectors on
M and N respectively. Then the nonzero eigenvalues of Py — Py are
tsind;fori=1, - - - ,p.
Proof: (cf. [ST1,thm.2.5]).

Finally we can state as a corollary to theorem 4.11:

t

Corollary 4. 12: With the above notation
6(M,N) = ”PM - PN”2 = sindy, . (4.27)

(M, N) = [Py — Pyllz = sinv;. (4.28)

Proof: See Theorem 4.6 and corollary 4.8.

4.2.6. Computational Procedures for Obtaining the Gap and Min-
Gap '

Following the procedure suggested by corollaries 4.12 and 4.10
we can provide a straightforwafd, numerically stable, procedure
for computing the gap or min-gap between a pair of finite dimen-
sional subspaces M,NeC" in terms of some matrix representations.
In this most general form, the procedure is computationally inten-
sive.

Let M,N be represented as M=image(#), N=image(N) where
MeCr>p NeC* ™, The following procedure can be coded directly

for computer solution using, for instance, LINPACK routines [DO1].
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Procedure for Computing the Gap or Min-Gap

M, N, a pair of nXp (resp. nxm) matrices

Obtain a unitary basis for M. Conceptually, this is done by

obtaining a QR factorization of M

M = [Qu. 2] [ﬁ;”]

where Ry is right triangular matrix and [Qy, Zy] is uni-
tary. Then @y is the required nxp matrix of unitary bases
for M. i

Obtain a unitary basis for N. Again, employ a QR factoriza-

tion as

N = oy, 2] {%”]

with Ey right triangular. Now, Z) is the nx(n —p) matrix
of bases for MPer,

To compute the gap, 6(M,N), (resp. min-gap, ¥(M,N))
obtain the maximum (resp. minimum) singular value of

the (n —p)xm matrix

Zn Qu -

Kemark: The QR factorization outlined here can be performed

using a numerically stable algorithm involving the use of House-

holder reflections to compute the transformations. This has been
implemented efficiently in LINPACK routine CQRDC [DO1].
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Remark: The product of unitary matrices can be obtained in a
numerically stable way. Then application of a standard algorithm
can- provide the required singular .value. The routine CSVDC is
available in LINPACK for computing these quantities [DO1].

Computations for examples in the later sections of this disser-
tation were completed using this procedure: codified in MATLAB
[MO1]. The MATLAB code is included in appendix C.

4.3. A Geometric Stability Margin Based on the Minimum Gap

In section 2.3.3 we discussed sbme background on classical
notions of stability margins for SISO feedback and extensions of
these ideas to the case of MIMO feedback. We suggested that a
combined gain-phase margin, gy, . given in (2.39) could be thought
of as the euclidean distance in the complex plane between the
Nyquist locus, Ty, where fg(s): DTy, and a critical point at
s=—1. Alternately, g4, can be thought of as the :euclidean dis-
tance between a translated form of I’y (which is the image of the
contour D under the map 1+ fg(s), the return difference) and a
critical point at the origin. This viewpoint has been appropriately
generalized in several ways (cf. eqn.(2.41)) for MIMO case by focus-
ing on a measure of regularity (typically the minimum singular
value) of a matrix return difference.

For the purposes of designing feedback compensation, it is usu-
ally more convenient to consider a slightly different stability mar-

gin; viz.,
g'om = inflf T+ g(s)],
seD

which is the euclidean distance between the Nyquist contour, [,
1

- dependin
7 p g

(fixed with respect to g(s)) and a critical point, s=—
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on the choice of feedback. Furthermore, insight can be gained for
the design of dynamic (lead/lag) feedback compensation in this
setup by considering a locus of critical points, I'y where
—f ~Ys): D-T, [RO1, pp. 56-59].

Clearly any generalization of g'y,, to the case of MIMO feedback
based on regularity of the matrix function F~1' + G(s) on D can be
meaningful only in special cases (e.g. p=m and F nonsingular).
However, the geometric Nyquist criterion discussed in section 2.3.2
suggests applying the topology of the Grassman space to construct
a measure of how nearly the subspaces G(s) = ker[G(s),—I,] and

F = ker[],,.F(s)] intersect in UY. '

4.3.1. Definition and Properties of a Geometric Stability Margin

In this dissertation we employ the minimum gap function,
¥(N,M), between a pair of subspace N and M of a unitary space to
measure the distance between the abstract Nyquist locus,
['cCGrass(m,p+m) and the Schubert hypersurface, ao(F),
representing the fixed critical point

F = ker[/,,, F]€Grass(p,m+p).

Definition (Geometric Stability Margin): Given G(s)eRP*™(s) and
FeR™*P the geometric stability margin, gen,, is a real number

0<gsm=1 given by,

Ism £ slrelf) 7(G(s), ). (4.29)

In this section we focus on some properties of the geometric

stability margin which clarify its relation to more traditional stabil-

ity margins.
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Theorem 4.13: A point s4€C is a closed loop pole of the feedback
- equations (4.1) if and only if either of the following holds

(i)

det[l, + G(so)F] = det[[, + FG(sg)] =0 (4.30)
(ii)
7[ker[G(so), —Ip], ker[[m,F]] =0 (4.31)
Proaof:
(i) From (2.17) we see that
det[L, + FG(s)] = det[/, + FG(=)]TT (8 ~Pat)
i=1 (S _pco)

where n is the McMillan degree of G(s) so that sg is a closed loop

pole if and only if it is a root of det[],, + FG(s)].

Now

3l

I, +FG(s) F
G(s) —1I,

In o]
0 -I, '

—-G(s) I

implies that

det] ] F] = —det[l, + FG(s)].

G(s) ~I,

Also,
lr, F Iy 0 7., F
[G(s) -Iy| T |G(s) L, + G(s)F [o ~I|
implies that

det F] = —det[l, + G(s)F].

Im
G(s) —1Ip
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(ii) From section 4.2 we see by definition of the minimum gap func-

tion that
7[G(so), F] =0.

if and only if

Next we would like to show that for,

(1)

¢1(s) = Omin[ Im + FG(s)],
(2)

02(s) = Omunllp + G(s)F],
(3)

pa(s) = 7(G(s), F),

which map the closed contour DcC into R, (resp. [0,1]€R for (3)),
that, if for some s;, ¢,(s;) achieves its minimum on D then ¢,(s,)
and ¢5(s,) also achieve their respective minimums at s;. To do this
we consider some further aspécts of the topology of Grassman

manifolds.

Lemma 4. 14: With Ye€Grass(p,m +p) the set
B,(Y) = {XeGrass(p,m+p): 6(XB, YB) < ¢{, (4.32)

is a convex, neighborhood of Grass(p,m +p) for e<1.
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Proof: We must show that the set B,(Y) is convex. Normally, a con-
vex set is one for which a straight line segment between any two
points in the set is itself contained in the set. Here the "straight
line segment” consists of a curve in Grass(p,p+m). We employ a
simple parametrization suggested by Stewart [ST1].

To make the argument concrete we represent points in
Grass(p,p+m) in terms of unitary matrices. Thus let

XeGrass(p,p +m ) be represented as
X = image X

where X,;cCP+m)>P satisfies X1X,=I; ie., X; has orthonormal
columns which span X Let X, C®*™)*™ have columns which form
an orthonormal basis for the perpendicular complement of X in
CP*™_ Thus [X;, Xp] is a unitary matrix. Also, given any other

YeGrass (p,p+m) there exists a unitary basis for Y of the form
Yy= (X, + XoT) (I, + T°T)"V/2

where Y,€CP*™)*P and TeC™*P and the square root denotes the
unique positive definite square root of the positive definite matrix
L+ T'T.

We parametrize a '"path” between X and Y confined to

Grass(p,p+m) in terms of matrices by parametrizing
To=aT

where a€R, O<a<1.
To show that this "path’ is confined to the set B,(Y) if XeB,(Y)
we focus on the relationship between the gap 6 and the maximum

principal angle ¥, given in (4.27).
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Let
Yo = (X + XoT,) (I + T, T V2.

To compute the principal angles between Y, and X we obtain (fol-

lowing theorem 4.11) the singular values of the p Xp matrix
Y "X, =(I + T, T~ V2.

Let 1; for =1, - - - ,min(p,m) be the singular values of T. Then we

see that the principal angles satisfy
cos¥; = (1 + 1;3)"V2,
Thus the singular values of T are
Ty = tanv;.

So the question of convexity is answered by recognfzing that as «

goesfromOto 1

1T ol = Tmax(a) < tan arcsine

since obviously

ITall = lla Tl = o T]].

Lemma 4.15: Let I'zCGrass(m ,p +m) be the abstract Nyquist cen-
tour associated with the G(s)eRP*™(s) and F=ker[/,,F]. For
any XeB, (F)cGrass(p,m+p)

N(Tg; o(F)) = N(T¢; o(X)). (4.33)

Proof:
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Assume, for simplicity, that g3(s) has a unique global minimum
occurring at s;€D. Then there exists.some X;€Grass(p,p+m) on

the boundary of By_ (F), so that 6(X,,F) =g, and
7(Tgi0(Xg)) = 0.

To show the result we must construct a homotopy of subspaces,
say X,=kerX,, relating F' to X; which does not leave the manifold.

~This is done (as in the proof of Lemma 4.14) in terms of matrices as
Xo=[Y1+ Y(aT)][, + («T) “(aT)]~V/2, (4.34)

for some TeC™® where for instance Xy=image(Y;) and
X,P°" =image(Ys). T is chosen so that F=image(X;). Now consider
that the condition

N(Tg;o(F)) # N(T'g: o(Xg))

holds on the manifold if and only if for some 0=a<1 the contour I'g
intersects the critical point o(X,). Thus we will be done if we show

that no such « exists under the assumptions given.

By the convexity of B, (F) and (4.29) we get
0(Xy. X) < inf ¥(G(s), F)
s€D

for O=a<1 which completes the proof.

Finally, to clarify the extent to which g, provides similar
information as g4,, with respect to gain variations in F' we provide
theorem 4.16. With respect to an appropriately constructed con-
tour D (which avoids poles of G(s) on jw axis) the values y(G(s), F)
on D form a proper subset of [0,1]CR which is both closed and
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bounded. Therefore, we can replace the definition (4.29) with

9sm = min 7(G(s), F). (4.29')

In the following theorem we will consider the case (which is

most typical in practice) when the set
arg min 7(G(s), F)
seD

consists of a single point s ‘€D. More generally, this set will consist

of a countable number of points on D.

Theorem 4. 16: (Main result of chapter 4) If

gsm = min ¥(G(s). F) >0, (4.35)
seD :
and
s* = arg min ¥(G(s), F), ; (4.36)
) seD

then there exits a "gain" K;€CP*® such that
min 7(G(s), X) = 7/(G(s "), X) = 0, (4.37)

for some X = ker[/,,,, FK,] if and only if there exits a K;€CP*? such
that

inf det[l, + G(s)FK,] = det[, + G(s")FK,] =0. (4.38)
seD
Moreover, K; and K, both satisfy

1
&l = T6GIF (4.39)

Proof: With conditions (4.35) and (4.36) assume we can find a K,
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such that (4.37) holds (the proof of the last theorem suggests a
constructive way to do this). Now (4.37) holds if and only if

det [GI(":.) f}f ] =0. (4.40)
By theorem 4.13, (4.40) holds if and only if
det[l, + G(s*)FK]=0.
This can be stated equivalently using the matrix infimum as
0, + G(s )FK] = 0.
By construction of D we have that G(s)F is nonsingular for s on D;

viz., at s *. Therefore, (4.40) holds if and only if

HG(s)F)" 1+ K[| =0.

Recall that for X nonsingular X[ = [|X~}|~%. ThEIjl by the trian-

gle inequality for matrix norms we get that
[m + G(s ) FK[ = [(G(s)F) '] — K]l
At s © this implies that any X for which (4.39) holds also satisfies
K> 1(G(s )~

And (4.39) follows immediately from the definition of the matrix
infimum.
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4.3.2. Application of the Geometric Stability Margin and Some
Examples

In this section we seek to demonstrate some salient features of
the geometric analysis of stability margins for feedback systems.
We indicate, by way of illustration, that the geometric stability
margin proposed in the previous section has some peculiar proper-
ties which can extend its application to more general settings than
the classical case. Indeed, even for SISO analysis, the geometric
analysis can provide additional useful information which can be lost
using the classical approach. This section can be considered a
sequel to section 2.3.1 (which should be reviewed at'this time) in

which some of the limitations of that analysis are relaxed.

As in the previous section, our discussion focuses on the pro-

perties of the maps
1(s) = Ominl Im + FG(s)].
2(s) = ominllp + G(s)F],
pa(s) = nG(s), F);
viz., their respective local minima on D,

gﬂmlz'}_% GPI(S)-
919m2=sir€1fp pa(s).

and

99m 3 =3121f) es3(s).

In the SISO (classical) case where p=m =1 we get

p1(s) = 1+ fg(s) = pa(s)
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regardless of where the single loop is broken (cf. Fig. 2.2). How-
“ever, gs(s) is fundamentally different from ¢;(s) = ¢a(s) even in

this case.

Corollary 4.17: In the SISO case where p =m =1 the geometric sta-

bility margin becomes,

sm = ;Ielfp 593(5') (4.41)
where
oa(s) = lg(s)f +1] ! (4.42)

V(t+ lg) AL+ 11D

Proof: We consider a constructive approach based on the computa-
tional procedure given in section 4.2.8. We can represent the two

subspaces alternately as,
G(s) = ker[g(s), —1] = image [q(ls)], |
and
F = ker[1, f] = image {‘{] .

Thus we obtain normalized basis vectors for the pair of 1-

dimensional subspaces as,

F = image [_if]
Vit|f|2

and for the orthogonal compliment,
=g (s)
1

®T = image :
Vit |g(s)I?

GP
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G(s)F + I, = R3(s)Q4(s) @R (4.43)

The relation (4.43) amounts to nothing more than an algebraic

statement of the computational procedure used.

Ezample 4.3: To illustrate these ideas we consider a simple SISO

example. For some loop breaking let the loop transmission be

_ 1
f9(s) = s(s +1)(8s +1)°

The resulting Nyquist contour for s = jw with »€[0.25,8.0] is
displayed in Figure 4.1. The relevant euclidean distance between
this curve and the critical point at s =—1 is given by ¢5(jw) which is

displayed in figure 4.2 giving gym = 0.7 occurring at w'= 1

rad/sec.
2— .........................................................................................
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Figure 4.1: The Nyquist plot for Example 4.3.



- 99 -
G(s)F + I, = R3(s)Qc(s)QrRr . (4.43)

The relation (4.43) amounts to nothing more than an algebraic
statement of the computational procedure used.

Ezample 4.3: To illustrate these ideas we consider a simple SISO

example. For some loop breaking let the loop transmission be

_ 1
f9(s)= s(s +1)(8s + 1)

The resulting Nyquist contour for s = jw with w€[0.258.0] is
displayed in Figure 4.1. The relevant euclidean distance between
this curve and the critical point at s =—1 is given by ¢(j ) which is

displayed in figure 4.2 giving gy, = 0.7 occurring at w'= 1

rad/sec.
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Figure 4.1: The Nyquist plot for Example 4.3.
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The curve g5(jw) is displayed in figure 4.3 giving gg, = 0.41 at w” =
1 rad./sec. The value gg, = 0.41 suggests a minimum principle

- angle between
ker [1 , 1]

and

1
ke"[s(s D@ + 1) ‘1]

for s=jw of ¥=24.2 degrees. The significance of the asymptotic
value ¢3(0) = 0.707 (or ¥ = 45 degrees) comes from the following
observation. With reference to (4.1') forg(s) =1/s(s + 1)(2s + 1)
we see that g(s) has a pole at the origin. (Of course D would be
appropriately indented to avoid this pole.) Thus g(jw)-= as w-0
which in the geometric picture of (4.1’) implies that

ker[g(Gw), —1] » Y

in terms of the angle (gap) metric. Thus 45 degrees is just the
angle between U = ker[1,0] and F = ker[1,1].

It is important to recognize that the geometric stability margin
analysis we are discussing appropriately generalizes, from classical
frequency domain analysis, thé notion of '"distance” between a
Nyquist contour and a fixed point without employing the return
difference. Motivated by a discussion of some physical considera-
tions in feedback design (cf. corollary 2.4) we considered in section
2.3.1 some limitations of the analysis of closed loop stability based
on the return difference. In particular, the Horowitz criterion
(2.11) is inferred from the observation that any physical feedback
control system will involve dynamic compensation with a dynamic

plant (ie, g(s),f(s)eR,(s)). The complication for stability
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analysis involves the possible existence of internal poles (cf. (2.18))
of the resulting closed loop transfer function. Such internal poles
exist due to possible cancellations in forming the loop transmission
F(s)G(s) when the McMillan degree of F(s)G(s) is strictly less
than the sum of the respective McMillan degrees of F'(s) and G(s).

In terms of the geometric picture of feedback,

7| bt -o. (.49

we see that we may have difficulty in estimating the regularity, [+,

for all s on D of !

as a map on UBY in terms of a transformed basis,

(s) [, + F(s)G(s) 0
G(s) —1 ] 0 I, + G(s)F(s)[**9)

[G(s) —I

The basis given by the right hand side of (4.45) suggests we can
estimate [E] in terms of the regularity of an operator on U or Y.

However, for s; in the neighborhood of an internal pole the

transformation

Im F(sq)
G(sy) I

will be poorly conditioned despite the fact that 7, + F(s;)G(s,) and
I, + G(s,)F(s,) may be relatively well conditioned. Moreover, this

observation holds despite the fact that,

r
—det [c](";) {‘,’;‘a)] = det[l, + F(s)G(s)] = det[I, + G(s)F(s)].
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We remark that |det (s)] (in contrast to the matrix infimum, [+]) is
not a measure of regularity which admits any useful perturbation
analysis [DA1,D03-4,HO1].

Before we consider the question of dynamic compensation
further we discuss some aspects of the geometric theory of linear
systems with respect to a characterization of open loop poles.

First, we recognize that the map
s ker[G(s), —1,]

is well defined on the domain Cu{e} - {p,;}, where {p,;} is the set of
n open loop poles of G(s)eRP*™(s). More generally, we can con-

sider the equation
y(s) = G(s)u(s)

for each s €Cuf«=} in terms of the set of all possible ordered pairs

in UxY;i.e.,
graph{G(s)} = {[u(s) G(s)u(s)]eUXY]’

So the geometric viewpoint focuses on identifying the equivalence
between graph{G(s)} and ker[G(s), —I,] for s € Cufe].

Next we remark that given a (left) coprime factorization
G(s) = D7Y(s) N(s)
then clearly
G(s) = ker[G(s), —L,] = ker[N(s), —D(s)]

has rank m over the field of rational functions. This means that
rank G(s) = m for s €Cu{e] - {py;} . Thus G(s) can be thought of as

an element of Grass{m,p+m) for s€Cufw] - {p,;]; but for some
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sequence s, - P,; the sequence G(s,) does not have a limit on
Grass(m ,p+m). Nevertheless, if we think in terms of graph(G(s))

it is clear that

Xoi = lim graph{G(s,)} ¢ UsY

is a subspace of U®Y such that

Thus we make the following observation based on the angle topol-

ogy of the gap.

Theorem 4.18: Let p, €{p,;} be an internal closed loop pole of
(4.44) (cf. (2.18)). Consider any sequence s, €C which approachs

Py 1. Then
lim 2G(s,), F(sp)) = 0.
Proof: As usual,
G(s) = ker[G(s), —1,]
and
F(s) = ker[I,,, F(s)]

are two subspaces of U®Y = CP*™_ Now p,, is and internal closed

loop pole of (4.44) if there exists some A(s )eRP*P(s) such that
G(s) = A(s) G'(s),
F'(s) = A(s) F(s),

and p, ; is a pole of A(s). Thus
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I, + F(s)G(s)=In + F'(s)G'(s).

Now as Sp = Po1
ker[A(s)G'(s). —L,] » Y

in the sense of the min-gap; i.e., there exists a sequence of unit

vectors,
vy, € ker[G(sg), —1p]
such that for some ueU

limv,u = 1.

However,
ker[l,, ., F'(s)A™Y(s)] %Y

also in the same sense (since g 1S therefore a zero'of A7Y(s)).

Finally, if s; cannot be described as above then it can be

described as a pole of some B(s YeR™*™(s) with
G'(s) = G(s) B(s)

F(s)= F'(s) B(s)

and the result follows similarly. .

Ezample 4.4: To illustrate the efficacy of the above theorem we
consider again example 4.3. Consider a new loop breaking strategy
which reveals a "hidden” mode. In Figure 4.4 we have redrawn the
closed loop configuration of Example 4.3 to illustrate the new loop

breaking where,

g(S‘)-—-gl(S)gz(S): S(S +1)1(2S + 1)
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1
(2s + 1)[(s + 0.25)2+ 0.1] '

gi(s) =

ga(s) = [(s +s()(§25321; 0.1]

—

-1 7€ —g2(s)<

example 4.3 example 4.4

Figure 4.4: The Loop Breaking Configuration for Example 4.4.

In figure 4.5 we plot ¢5(jw) for «€[0.1,8.]. The sigr;n';ﬁcance of the
curve in figure 4.5 in the region near w=0.1 can be explained from
figure 4.8 where we plot g,(jw) and —1/gz(jw). Clearly, ¢;(jw) is a
frequency dependent measure of the distance between ¢ (jw) and
—1/ g»(jw) in terms of the min-gap.

We remark that the same information can be obtained by exa-

mining a plot of | 1 g1(jw)|. The point here is merely that
ga2(jw)

¢3(jw) appropriately generalizes this kind of analysis to the gen-
eral MIMO (p #m ) case as we next demonstrate.

Ezample 4.5: Consider again example 4.3 where we rcveal still
another possible internal loop breaking configuration as illustrated

in figure 4.7. Here H(s) is the 2x1 transfer function

2s + 1 ]
H(s) =S [(s + .o.?s)?- +.01]

2s +1
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Figure 4.5: ¢3(jw) vs. w for example 4.4,

and

[(s +.025)% + .01]
s +1

F(s)= , —4].

Again, a hidden mode is revealed. We plot in figure 4.8 the curve
¥(H(s), F(s)) for s = jw with w€[0.1,8.].
Finally, we state a caveat. In the case that a hidden mode

. exists for some dynamic feedback configuration; e.g,

f(s)=r'(s)/a(s)and g(s) = a(s)g'(s), then the function,

sy 9@ =la)l | ( ) +9'(s)],

f(s

amounts to a scaling which can degrade the numerical conditioning

of the computational problem. Use of the min-gap function does
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15

imaginary part fg(jw)

' T T — T :
-25 ~20 -15 -10 -5 0 5
real part fg(jw)
Figure 4.6: A Nyquist Plot for example 4.4.

not mitigate this problem. Indeed,

[1/a(s)o] f (s)] la(s)o] lg(s f_(s)]

is again a scaling of the feedb'ack equalions which can degrade the
numerical conditioning of the problem of computing the principle

angles via singular value analysis in the neighborhood of a root of

a(s).
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g1(s )] —g2(s)
5g1(s) »—g2(s)

[PUSISEE——

-1

Figure 4.7: The Loop Breaking Configuration for Example 4.5.

!

©
w
!

min—gap — ¥(F,G)

T ST S B S B O] T T . T

0.01 T o 1
w — frequency(rad/sec)

Figure 4.8: ¢3(jw) vs. w for example 4.5.
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5. Dynamic Weak Coupling from a Geometric Viewpoint

In this section we develop a new notion of dynamic weak cou-
pling useful for the design of decentralized control. The method is
presented as an alternative to methods based on block diagonal_
dominance (BDD) (and its various extensions) as discussed in
chapter 3. Our approach is based on the viewpoint (obtained from
algebraic geometry) of an abstract Nyquist criterion for MIMO feed-
back [BR4] which was discussed in detail in sections 2.3.2 and 4.1.
This provides a more general setting for testing for weak coupling
than is provided by BDD methods by permitting more general par-

titions to be considered.

As discussed in chapter 3 and in the introduction to this disser-
tation this research was motivated as an extension of the well
known Inverse Nyquist Array (INA) methods for MIMO system design
popularized by Rosenbrock [RO1-2]. These methods (which were
not originally proposed as tools for design of decentralized control)
can result in a decentralized control structure when the open loop
plant has transfer function which is diagonally dominant. More-
over, in this case, the graphical procedure provides directly a
method for estimating the contribution of each local controller to
the overall stability properties (and thus performance) of the
decentralized scheme. In the second section of this chapter we
discuss the utility of the geometric stability margin and the
abstract Nyquist criterion for providing an approach to this prob-
lem for more general decentralized schemes (cf. section 3.4) which

are weakly coupled in a technical sense which we define in the

sequel.
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5.1. A Geometric Measure of Dynamic Weak Coupling

The interpretation of diagonal dominance as an indication of
weak coupling was first used implicitly by Rosenbrock and his
coworkers [RO1-2]. The notion of weak coupling here is mostly
intuitive since clearly a diagonally dominant transfer function
matrix is "close"” to a strictly diagonal (or decoupled) transfer
function.

Another notion of weak coupling (originally proposed by Aple-
vich [AP1]) was shown to have some weak connection with diagonal
dominance by Hutcheson [HU3]. A measure of dynamic system
interaction was constructed using a geometric argurr'lent applied to
a time domain system model. Essentially, the interaction index
[AP1] is the angle between the system impulse response, G(¢), and
an orthogonal projection of G(t) in the space of square matrix
valued functions with square integrable elements onto the sub-
space of completely decoupled systems; viz., GP(t), where,

[ g::(t), for i#j
2], = { 0, for i%j

It is shown in [HU3] that this angle can be computed as

- llgs ()12
n2g = LG = GPOIF _ R ,
IG(@)I? Sllgs; (£)IP
.2

where the norms are the natural L; norms of the impulse response
functions. Then Hutcheson shows that given G(t) is a stable system
with proper transfer function matrix which is diagonally dominant

for all s = jw with w€[0, =) then the interaction index will have an

angle U< g—



-112 -

For our purposes this result will not be very important for
several reasons. First, the connection with diagonal dominance
(the extension to BDD is straightforward) is rather weak since the
converse relation does not hold in general. The definition of the
interaction index is rather special requiring stable system
responses for all transfer functions. Most importantly, the interac-
tion index does not support any readily apparent analysis of the

relative stability properties of the system subject to compensation.

In section 4.1 we considered a generalized notion of a Nyquist
contour suggested by algebraic geometry as a curve on the Grass-
man manifold. We considered a special class of transfer functions
which are degenerate with respect to this picture in the sense that
there exists some abstract critical point (a Schubert hypersurface
in Grass{m,p+m)) which strictly contains the relevant Nyquist con-
tour. Furthermore, we demonstrated by example (cf.:Example 4.2)
that a subclass of transfer funétions with the propérty that the
Schubert hypersurface which contains I'g intersects. the space of
inputs, U, nontrivially, provides a natural decomposition of the
space of inputs and outputs as in (4.14). In this section the
significance of this (rather special) class of transfer functions for
decentralized control will be discussed. Then by employing the
topology of the gap metric we provide a mechanism for approxi-
mating a broader class of transfer functions by ones which have
this special property. We show how this can be interpreted as weak

coupling in the spirit of BDD methods.

Again, as discussed in the preamble to chapter 3 and section
2.3.2 it will be necessary for limitations of practical application
based on finite bandwidth data to limit ourselves to transfer func-
tions which are strictly proper. This guarantees that the weak cou-

pling criterion (formerly BDD) need be satisfied only on the closed
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interval of the jw axis, say w€[0, wg], rather than on all of the con-

tour D. Thus we start with the follewing assumption.

Assumption: Let G(s)eRE™(s); i.e., G(s) is strictly proper.
We consider initially, the special class of degenerate transfer

functions G(s) with the following property.

Property 5.1: G(s) is a degenerate transfer function with the pro-
perty that its abstract Nyquist contour I'; is contained in some
Schubert hypersurface o(X)€Grass(m ,p +'m) where
XeGrass(p,p+m) intersects the m dimensional subspace U non-

trivially; i.e.,
dim [Xn U] > 0.

We note from the discussion leading to theorem 4.4 that the
other class of degenerate transfer functions are rank deficient over
the field of rational functions. Such models are ill-posed and can
be reformulated (by dropping redundancy in the inputs and out-
puts) without consequence to the question of model decomposition

as we next consider.

Theorem 5.1: Let G(s)eRP*™(s) have property 5.1. Then there
exists a change of basis in the space of inputs U, © = Su, and in the
space of outputs, Y, ¥ = Ty, such that in the new basis for U®Y the
resulting transfer function G3(s) = TG(s)S ! has the form

GI(S) *

G =1 0 Gys)

(or the form
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l6.s) o

G(s) = % Ga(s) ), T

where G(s) and Gy(s) are both full rank over the field of rational
functions.

This implies a partitioning of the space
U@Y - (Ul @Yl) @ (Uz @Yz)

as suggested in (4.14).
Proof: By broperty 5.1 we see that the Nyquist contour ['; is con-
tained in a Schubert hypersurface o(X) in Grass(rr'l,p+m) which

means that foralls = jw
ker[G(s), ~I,] c o(X).

We represent X as ker[X;, X,] and by the discussion in section 4.1

the m xm matrix X, is rank deficient. Thus solutions to
Xyu(s) = —Xzy(s) (5.1)

are of interest. Corresponding to solutions u(s) in ker X; which is
of dimension say my<m we have solutions y(s) in ker X, which has

dimension say ps<p. Then choose a change of basis, S, in U such
2

0
0

2

that % = Su has the form

where

(3 kerX]_S »

t Here % stands for "don’t care”.
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and ¥ = Ty has the form

where

lgo] € ker XS5 .
2

Of course it is possible that GA(s), as constructed above, may
have a diagonal submatrix Gf (s) whose Nyquist con’éour (now con-
structed in a lower dimensional Grassman manifold,
Grass(m, m;+p;)) is also degenerate with property 5.1. In such a
case we can proceed to apply the theorem again to further decom-
pose UdY.

Next, we consider the significance of such a decomposition for
decentralized feedback. We start by assuming this procedure of
decomposition has already been carried out so that we start with
G(s) in a block upper (or lower) triangular form. We consider

decentralized feedback
F = block diag{Fy, ..., Fi}

where F is partitioned conformally with G(s) and k is consequently

the number of submatrices of G{s) appearing on the diagonal.

Theorem 5.2: With G(s) block upper (resp. lower) triangular and F
block diagonal as above we construct the abstract Nyquist contour
I'c for G(s) as usual and the critical point o(F) in Grass(m ,p +m).

Let G;€RP¥™(s) and F;€R™™®™ and construct for each i=1,...,k
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ker [Gﬁ(s), —Ipi]: D-T,

and

F, = ker[] ,F.;]

with appropriate Schubert hypersurface o(F;) on the manifold
Grass (m;,p; +m;). Then

NCgi o(F) = XN o(F) (5.2)

where the encirclements on the left hand side are counted on
Grass(m p+m) and those on the right hand side of (5.2) are
counted respectively on Grass(m;,p; +m;).

Proof: Assume, the Nyquist contour is not contained in a(F) on
Grass(m pp +m) so we can determine N(T'g; o(F)). For the purposes
of this probf we recognize that N(T'g; o(F)) on GraSs(m pt+m) is
the same as N(B(s); 0) in the complex plané where B(s) is the

rational function
I
B(s) = det [G("S‘) —Z] : (5.3)

Then the result follows by showing that under the conditions of the

theorem

[, F k N Im F
det IG(S) _Ip = igdet lGu,(s) —Ipi . (54)

We show this by applying a series of similarity transformations to

I
det [G(S‘) ___1};]
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involving permutations which essentially reorder the basis of U®Y

to the form

WU
Y )

\

where the pairs [;_'] are the inputs and outputs for the diagonal
k2 L

blocks of G(s).

Of course, transfer functions with property 5.1 are indeed spe-
cial. From theorem 4.5 we recall that degeneracy is;non-géneric in
the space of all proper transfer functions. Although such obvious
decompositions are rather special there are other, less restrictive,
conditions which are also sufficient for equation (5.2) to hold. For
example, if F =block diag{F},....,F}} is chosen such that
I, + FG(s) is BDD on D then (5.2) will hold.

Condition (5.2) is a weak .coupling condition in the spirit of
Rosenbrock’s INA methods which allows decentralization of the
design process. We next construct a new sufficient condition based
in an essential way on the topology of the Grassman manifold.
Here we exploit the gap metric and minimum gap function as dis-

cussed in section 4.2.

From the point of view of stability, represented by the abstract

Nyquist criterion, it is natural to consider a transfer function G(s)



-118-

as being well approximated by some G(s) which satisfies property

5.1 if their respective Nyquist contours are "close” in the sense of

the gap metric; i.e.,
6{l'g . Tea < £(w). (5.5)

With respect to decentralized control the required bound, £(w), for

the weak coupling condition (5.2) to hold is given by the following.

Theorem 5.3 (Main weak coupling result): Let G(s)eRE™(s) with
associated abstract Nyquist contour I';. Let the feedback F eR™*P

be a block diagonal matrix

F = block diag {F, . . ., F}}
k k '
where F,eR™®, Y m; =m, and }.p; =p. Let G¥(s) be the block
i=1 i=1 :

upper (resp. lower) triangular part of G(s) with résp{ect to a parti-
tioning which is conformal with F. For each i=1,..k define
abstract Nyquist contours for the diagonal blocks of G(s)

G,(s) = ker {Gﬁ(s), —lp‘]: DTy,

each living in its appropriate submanifold T';;CGrass(m,, p;+my;).
.And for each local feedback '(diagonal block of F) define an
appropriate abstract critical point on each submanifold as
o(F;)cGrass (m;, p; +m;) where F; = ker[], , F;]. Then if the con-
dition

min AGi(s), Fy) > 8(G(s), G(s) (5.6)

is satisfied for all s on D then,

1]

N@Toio(F) = XN ofF). (5.7
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Proof: First consider the following lemma.

Lemma 5.4: Let Ny, NocC® be subspaces of dimension p, and
N3cC™ be of dimension m. So that N;, N; € Grass(p,n), and N3 €

Grass(n—p,n). If
7(Ny, Ng) > 6(Ny, Np)
then
Nz n N3 = {0].

Proof of Lemma: From section 4.2 7(N,, N3) gives a measure of the
distance (in the gap metric) between N,&Grass(p,n) and the Schu-
bert hypersurface o(N3)CGrass(p,n). The result of the lemma is
then obvious by the gap-metric topology of Grass(p,n ).

Next define the matrix
Ge(s) = GX(s) + &[G(s) — G(s)]
for O<e<1. The associated subspaces
Gy(s) = ker[G.(s), =1, ]
will satisfy
6(G(s). GX(s)) > 8(G,(s), GX(s)) (5.8)

for 0O<e<1 by the gap-metric topology of Grass(p,m+p). Also note
that

where G(s) = ker[ G4(s), —I,]. Thus clearly (5.6) guarantees under
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the assumptions given that if G3(s)nF = {0} for s on D then G(s)nF
= {0} for all s on D.

Let
Ale,s) = [G;,(:) ‘“ﬁ{p]
and
Als) = [G}‘jj)—f*]
Thenlet |
o - e
i

map D into I'g, & closed curve in the complex plane. Now I'g does not
encircle the origin since otherwise there must exiét some s on D
and O<e<1 with B(g,s) = 0. However this means that Ge(s) inter-
sects F in some nontrivial way‘—- a situation which is precluded by
(5.6) using the lemma and (5.8). Finally application of the princi-

ple of the argument to B(e,s) gives the result.

We remark that theorem 5.3 provides a new notion of dynamic
weak coupling in the spirit of Rosenbrock’s INA method. The
method can effectively deal with more general partitions for
transfer functions than BDD methods obtained in [BE2]. Recall
trom the definition of BDD (cf. section 3.2.1) that no partitions for
which any diagonal block of G(s) is not a square matrix can satisfy

BDD. Of course, it is always possible to apply a BDD test to a matrix
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return difference, say [I,, + F'G, representing some loop breaking
at the inputs. Thus any partitioning of the input space U will lead
to a partitioning of I, + FG with square submatrices on the main
diagonal. This approach can, however, be disadvantageous for
design of the individual "local” feedback compensators. Indeed,
several researchers [NW1-4] have found the alternate form
F~1+ G(s) more convenient for design (Rosenbrock prefers the
inverse formulation, F + G~!(s)). For example, Nwokah [NW4]
shows that if G(s) is a composite H-matrix and F is any block diag-
onal (decentralized) feedback then F~! + G(s) is also a composite
H-matrix. Such formulation places an artificial technical limitation
on the number of inputs and outputs (p=m) which we avoid in the
formulation of theorem 5.3.

The condition for dynamic weak coupling (5.8) is clearly quite
different from any BDD condition. It does not séem possible to sug-
gest that weak coupling in the sense of (5.6) can imply or be
| implied by weak coupling in the sense of BDD. Considér the follow-

ing example:

Ezxample 5.1: We reconsider the design example of [BE2, chapter
4]. Here

15 =525 0 2.5

s —5 s +35 s +1

5.25 21 . 2.5 0

s+3 s-—6 s +1

G(s) = . . . . .
0 5] . 18 —4.5
s +2 s—86 s+3

S 0 . 7 17.5
s +2 s+4 s -5

was shown to be BDD for s =jw with w€[0,25 rad./sec.] with
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respect to the 2x2 partitioning shown above with each
G‘ij (S )ERZXZ(S )
To test for weak coupling in the sense of (5.6) we plot in figure

5.1 two curves as follows:.
(i) #G*w).Y)
(i) 7G2G w),Y) - 6(G(jw), GXjw)).

min—gap - v(B,G)

-0.2 — T T
1 10 100
w — frequency(rad/sec)

Figure 5.1: Illustrating weak coupling in Example 5.1

Here
Gii(s) o
A 11
GXs) = l 0 Gaas)
with
15 -5.25 |
s—5 s +35
Gii(s) = | 525 21
s+3 s -—6
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and
18 -4.5
s—6 s+3
Ga2(s) = | 7 175
s+4 s "'54

It is seen from Fig. 5.1 that G(s) is open-loop weakly coupled in the
interval 1=w=25. Note that to test for "open-loop” weak coupling

using (5.6) we have taken F' = 0 so that

ker[l,,0] = Y.

5.2. Local Stability Margin Analysis for Decentralized Systems
with Weak Coupling

The significant aspect of theorem 5.3 for our purposes is that it
general,izes (although somewhat abstractly) the notion of a “broad”
or "fuzzy'' Nyquist locus for the individual, local féedback loops
(obtained in [RO1] by using a result of Ostrowski) to the case of
partitioned G(s). This leads to a sequential design approach for the

local feedback compensators.

In particular, condition (5.6) can be tested (at least conceptu-
ally) by appending for each i=1,...,k and for each s on D, a neigh-
borhood of radius 6(G(s), G%(s)) about the corresponding point on
each abstract Nyquist contour, I; in its appropriate Grassman
space. These neighborhoods then sweep out a subset of each
Grassman manifold which contains the ;. Then if each subset
avoids its corresponding abstract critical point
o(F;) c Grass(m;, p; +m;) then (5.6) is satisfied and conversely. We
provide, by example, a simple illustration of how the local contribu-
tion to the system stability margin (in the sense of chapter 4) can

be estimated.
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Ezample 5.2: Consider the problem of example 5.1 again. In [BE2,
chapter 4] we showed that the 4x4 transfer function matrix is BDD
with respect to the given partition and has 2x2 diagonal blocks
which are each diagonally dominant. Thus we applied Nyquist array

methods to choose a decentralized compensator of the form
F = block diag{ 3,3,3,3 ]

which stabilizes the system. However, the procedure in [BE2] does

not suggest a method for estimating the stability margins.

Here we examine the local controller associated with the first

two inputs and outputs. In figure 5.2 we plot two curves as follows:

(i) YTy, o(Fy))
(ii) 7Ty, o(Fy)) — 6(G, G*)

0.8
™~

N

min—gap - ¥(R,G)

T R R R

. : . ooe o8 : : : :
0.3 T 7 T T T 77 T T 0 T

10 100
w — frequency(red/sec)

Figure 5.2: Nllustrating stability margin estimation for Example 5.2
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where T'; and G? are given in example 5.1 and F; =3/, From
(4.29) and Fig. 5.2 we get as an estimate of the geometric stability

margin for these loops g, = 0.33.
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6. CONCLUSIONS AND DIRECTIONS

In this dissertation we have considered the development of a
fresh line of analysis for the general problem of defining stability
margins for feedback control based on the frequency response of
the loop components. We have employed a viewpoint, suggested by
algebraic geornetfy, of an abstract Nyquist contour living on a com-
plex Grassman manifold. By exploiting the natural topology of this
manifold we have developed a way to compare relative stability
properties for various systems and subsystems in feedback

configuration which applies equally to SISO and MIMO loops.

Significantly, this approach avoids formulation c;f a (possibly
matrix-valued) return-difference for the feedback system. Instead,
we compute the distance between an abstract critical point and an
appropriate Nyquist contour directly in terms of a gap-metric. The
construction is completely general allowing for non-square transfer

functions for individual loop components.

The advantage of the gap-metric approach (in contrast to the
Pliicker metric) for this application is that it allows computation-
ally efficient algorithms to be developed. Such algorithms have
excellent numerical stability propérties and can be codified using
standard modules such as are available in LINPACK [DO1]. The
computational procedure is baséd on the principal angles between
a pair of subspaces of a finite dimensional vector space. Using
standard singular value analysis one can readily compute the prin-
ciple vectors. We believe that the use of this principle vector
analysis will play an important role in developing iterative design
methods based on the method of feasible directions. Such
methods are becoming increasingly feasible for practical engineer-

ing design with the development of powerful interactive software
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systems such as DELIGHT [NY1] and supported by fast minicomput-
ers and high quality graphic displays.
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APPENDIX A

Geometric Interpretation of the Singular Value Decomposition

In [BJ1] Bjérck and Golub describe a method for computing the
principal angles between a pair of subspaces of a linear, finite
dimensional vector space which exploits the properties of the
singular value decomposition (SVD) for matrices in an essential
way. In this appendix we discuss the geometric interpretation of
the SVD which is central to the computational results in [BJ1].
These results are used in section 4.2.6 to provide a computational
procedure (based on numerically stable algorithms for computing
the SVD [DO1]) for determining the geometric stability margin
based on the minimum gap as the sine of the minimum principal
angle. |

Consider a finite dimensional vector space X and two vectors
z,y€X We usually compute the angle, 9, between tiqese vectors in
terms of the natural {(euclidean) inner product as

cosy? = z,Yy>
Izl llyll

where the norms are

Izl = V<z .z>
and for X a unitary space

<z, y>=2"y

which is the natural extension of euclidean vector space over the
field of complex numbers.

We next generalize this idea to a pair of subspaces of X
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Consider a pair of subspaces of X and to make the ideas concrete
we take X= C*. Let FcC" have dimension p<n and GCC™ have
- dimension g<n. Following [BJ1] we define the principal angles

between a pair of subspaces.

Definition: The principal angles, ¥4 €[0, n/ 2] between F and G are

given recursively for k=1,2, . . . ,min(p,q) by

cos¥, = max max <ZT,Y> = Ty (A1)
zeF yeG
flzll=1 lyil==1
subject to the constraints

z/z =0 and y;y =0 (A.2)

forj=1,...,k—1.
Now let the columns of an nXp matrix, 4, form an orthonormal
(unitary) basis for the subspace F and the columns of an nXg

matrix B form a unitary basis for G. (Thus A"A =1, and
BB = 1)
Of course, this means that the subspace F can be character-

ized as the image (or range) of A taken as a linear map from CP to

C*; ie.,

F= [Af : for all feCP}.
And similarly,

G= [Bg : for all gECq}.

To compute the minimum principal angle, ¥;, we take from

(A.1)
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cos¥; = max max z'y (A.3)

zeF yeG
llzll==1 [lyllz=1

= maX{(Af)'(Bg)=f€O°- geC¥ llAf Il = 189l = 17.

But since the columns of A form a unitary basis
lAF IR = 7°A"Af =7°f =IIf IR

Therefore, (A.3) implies
cos®; = maX{j ‘A’Bg: feCP,geC? |Ifll=1lgll=1;.

Now the Rayleigh quotient characterization of the singular values

[STR, pp.321] is

w'Cz

O = max
lhwli=llzll=1

subject to the constraints

wj'w =0 and zj'z =0

forj=1, - - k.
Thus it follows that the principal angles, ¥, can be computed

from the singular values of the matrix A° B via
cosV, = O,

for each k=1, ..., min(p,q).
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APPENDIX B

Results on M-Matrices

This appendix includes a summary of the basic properties of
M-matrices. These properties were fully illuminated in the seminal
paper of Fiedler and Ptdk [FI1]. We include this material to clarify
some subtle technical aspects of some recent extensions of diago-
nal dominance and INA design methods as discussed in section 3.3
of this dissertation.

The theory of M-matrices is intimately related to the theory of
nonnegative matrices. An nXxn matrix 4 is nonnegative (resp. posi-
tive), denoted by A=0 (resp. A>0), if for every 1,j=1, . .. n a;;=0
(resp. @;;>0). This provides a partial ordering on the set of such

matrices in the sense that B=4 means B —-A=0.

The following results of Perron and Frobenius wﬂl be needed.

Definition: A matrix A=0 is said to be reducible if there exists a

permutation, P, such that

1 _ I[BoO

otherwise it is called irreducidble.

Theorem B. 1: Let A=0 be an nxn matrix. Then there exists an
eigenvalue of 4, Apr, called the Perron root of A with the proper-

ties:
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(i) Apr(4)=0

(if) Apr(4) = p(4)

where p(4) 2 max |\(4)] is the spectral radius of A. Moreover, if A
is irreducible then App(4) is distinct, strictly positive, and has a

corresponding eigenvector which is strictly positive.

The following useful property of diagonally dominant matrices

is related to the spectral properties of such matrices and will be

instructive to consider.

Property B.2: If A is an nXn matrix which is row diagonally dom-

inant then
p (I, —AD_IA) <1,

where Ap is the diagonal of A.
Proof: Choose AéeX(I — Ap'A). Then there exists a vector z#0 such
that |

Az =z —AjlAz.
Choose any index i such that

|J:.,,|-—m1ax| il >0.

a;
Az = 3, —’—]
jeil T

|y |
A |xi|s['z o T U] < il
j #1

Then

Therefore any A€A(l — Ap!A) satisfies |A| < 1.
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The condition which an nxn matrix 4 must satisfy to be an M-
matrix which is most often quoted involves the following two
requirements:

- (P1)A has off-diagonal elements which are non-positive
(PR)all principal minors of A are positive.

It will be sufficient for our discussion to consider only a few
equivalent requirements for property (P2). (Fiedler and Ptk [FI1]

discuss several additional alternate requirements and properties of

M-matrices.)

Theorem B.3: Let an nXn matrix A have off-diagonal elements
which are non-positive. Then we say A is an M-matrix if any of the
following equivalent conditions are met:

(C1)all principal min01.”s of A are positive

(C2)there exists a vector =0 ;such that Az > 0

(C3)there exists a diagonal matrix D with positive diagonal ele-

ments such that W = AD is row diagonally dominant.
Proof: (cf. [FI1]).

The significance of M-matrices for many problems involving
perturbations is that they can be ordered in a way which is much

stronger than for nonnegative matrices.

Theorem B.4: Let A and B both have off-diagonal elements which
are non-positive. Assume that 4 is an M-matrix and B=A4. Then B

is also an M-matrix and satisfies the following:
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(P1) 0= B~1< 41

(P2) detB =det4d >0

(P3) A"'B=Tand B714=>171

(P4) A”'B and B! 4 are also M-matrices
(P5) p(l — B 'A)<1andp(/ —A"'B)< 1
Proof: (cf. [FI1]).

Finally, we provide the following claim.

Claim B.5: Let Z be an nxn complex matrix. Then Z is generalized
block diagonally dominant (in the sense of Limebeer, cf. theorem
3.7 of section 3.3.2) if and only if Z is a composite H-matrix (in the

sense of Nwokah, cf. section 3.3.1) with respect to the same parti-
tion of Z.
Proof: Assume that Z is a composite H-matrix. From eqns. (3.16)

and (3.17) this means that the test matrix

12,1 =lZadll
W-—-B= ° . .
~NZnill 1214

is an M-matrix. From property (C3) of theorem B.3 we see that this
implies that there exists a diagonal matrix D>0 such that

(W — B)D is row diagonally dominant. Restating this as
d; 1250 > X ;112
j#i

for each index i of the partition we get the definition of generalized
block diagonal dominance eqn. (3.21).

The proof is completed by essentially reversing the argument.

Let Z be generalized block diagonally dominant. Then a diagonal
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scaling matrix D is obtained as in (3.286).
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APPENDIX C

MATLAB Code for Computation of the Gap and Min-gap Functions
The following MATLAB code was used to compute the examples

in chapters 4 and 5. The computational approach employed was

described in section 4.2.6 of this dissertation.

// MATLAB SOURCE - MGAP.SRC - Wrm. Bennett - 4/84

// PURPOSE: TO COMPUTE THE GEOMETRIC STABILITY MARGIN (PHI3(W))

// ASSOCIATED WITH A FEEDBACK PAIR (F,G)

// APPROACH: 1) COMPUTE THE PRINCIPAL ANGLES BETWEEN A PAIR OF SUBSPACES
2) MIN-GAP IS MINIMUM SIN(PRINCIPAL ANGLE) .

// ASSUMES: G IS PXM, F IS MXP, AND M>P

AA = <EYE(M):G>;

BB = <F;-EYE(P)>;

<QA;RA> = QR(AA);

<QB;RB> = QR(BB);

QA1 = QA(:, 1:M);

7B1 = QB(:, P+ 1:P+M); |

MGAP = SVD(ZBI"QAI) // RETURNS AN ORDERED VECTOR OF THE PRINCIPAL SINES

// MATLAB SOURCE - GAP.SRC - Wm. Bennett - 4/84

// PURPOSE: TO COMPUTE THE GAP-METRIC BETWEEN A PAIR OF ABSTRACT NYQUIST

// LOCI ASSOCIATED WITH A PAIR OF FREQUENCY RESPONSES FOR G AND GD

// APPROACH: 1) COMPUTE THE PRINCIPAL ANGLES BETWEEN A PAIR OF SUBSPACES
2) GAP IS MAXIMUM SIN(PRINCIPAL ANGLE)

// ASSUMES: G AND GD ARE BOTH PXM WITH M>P

GG = <EYE(M);G>;

GGD = <EYE(M);GD>;

<QG.RG> = QR(GG);

<QD.RD> = QR(GGD);

QG1 = QG(:, 1:M);

ZD1 = QD(:, M+1:P+M);

GAP = SVD(ZD1'*QG1);// RETURNS AN ORDERED VECTOR OF THE PRINCIPAL SINES



