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There are three basic classes of radar-target models: probabilistic, deterministic, and sto-
chastic. The primary application of the probabilistic models is the study of target detection. of

the deterministic model is the obtaining of precise scattering solutions for complex targets, and

of the stochastic models is the study of the stochastic properties of time-varying radar signals.

The purpose of this dissertation is to develop a stochastic model of distributed radar tar-
gets, especially ships, that directly incorporates target structure and motion. The model was
required to be useful as a tool in the stochastic simulation and analysis of tracking-radar signals
over time intervals that are short relative to the time constants of the target motion. The
model is based upon the observation that distributed targets often appear to radars as being
composed of several dominant scatterers. A concept (unit-scatterer) is introduced that
quantifies this observation and that leads to a useful model of distributed targets. Based on this
concept and assuming the presence of over-water multipath, analytical representations of radar
cross section and glint are developed and implications of the small time-interval requirement
are investigated. Using these representations, a simulation is developed and used to investigate
the stochastic properties of both radar cross section and glint for an example ship target. Simu-
lation outputs are presented and analyzed to illustrate the implications of the model given varia-

tions in the significant parameters.



The model was developed to incorporate the major strengths of the existing deterministic
and stochastic models: ability to account directly for target structure and motion, and ease of
obtaining target-signature time series, respectively. The deterministic models. though precise,
are extremely inefficient in generating these time series and require a great deal of information
about target structure and motion. The stochastic models do not directly account for target
structure and motion and rely heavily upon target measurements. The model presented here
efficiently generates target-signature time series given information about target structure and
motion. The existing deterministic and stochastic models can be viewed as limiting cases of

this new model.
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CHAPTER 1

INTRODUCTION

Scattering of electromagnetic (EM) energy has been a subject of interest to the scientific
community since the nineteenth century. The first and most extensively studied scattering
object has been the sphere. However, very few scattering problems have solutions that are
known and exact although many problems have asymptotic solutions {1]. The problems that
have been solved have been problems of scattering from simple geometric shapes [1,2]. The
modeling of complex targets is an extremely difficult, inexact task [3]: quoting from Ref. 4,

"An exact solution to the scattering problem for a complex target is out of the question...."

Most of the interest in EM scattering has come from the field of radar. Radars obtain
information about targets by illuminating the target and then measuring the EM field scattered
by the target and environment. Radars have been used for this purpose since World War 11.
Since then their performance capabilities have improved rapidly. Paralleling the improved radar
performance has been an increasing need for better understanding of target scattering proper-
ties. This need has directed most of the scattering research since World War II. Almost all tar-
gets of interest for military and civilian radars have physical dimensions much larger than the
radar wave length (scattering in the optical region); that is, they are distributed targets.
Clearly, any scattering model that is to be useful in rddar applications must be limited in its

ability to fully describe target scattering.

Although EM scattering is the phenomenon which makes radars possible, by producing
scattered fields for the radar to sense, it is well known that it is only necessary to understand
two projections of these fields to predict the performance of most radar systems. These projec-

tions are radar cross section (RCS) and glint. RCS represents the apparent size of the target

1



and glint represents the apparent location, in angle. of the target, as sensed by the radar.
Though generally analyzed as separate phenomena, it is well known that RCS and glint are
different manifestations of the same target induced effects. Most of the research on scattering
since the development of radar has been directed to understanding RCS and glint rather than

scattering per se.

Distributed targets are typically modeled as a finite number of individual, point-source
scatterers whose characteristics are determined by the target’s structure. (We refer to such
models as N-source models.) Both RCS and glint can be represented using such models. The
various N-source models that have arisen differ depending upon how the individual scatterers
are characterized. Generally, the scatterer characterizations that are made depend on the
intended application of the target model. Building upon these earlier N-source models, this

dissertation develops a new approach to modeling the scattering from ships.

1.1 The Scattering Problem

Practical solutions to the modeling of distributed targets are approximations that range
from extremly complex models that describe many aspects of scattering (and are difficult
and/or expensive to use) to simple models that ignore many aspects (but are easy and/or inex-
pensive to use). Each model is developed subject to constraints imposed by application require-
ments. We remark that no model can completely describe all aspects of a physical phenomenon
and very "crude" models are often the most useful; modeling a resistive element in an electric
circuit by E=IR is often quite useful though such a model ignores known resistive element
dependencies on temperature, power, frequency, etc. and hence is not useful in predicting

failure modes, noise properties, etc. of the element.

1.1.1 Scattering Models
The models that have been developed to represent complex target scattering can be

described as being one of three types (or a combination thereof): deterministic, statistical, or



stochastic. The simplest deterministic mode!l is one where the target is represented as a fixed-
position, point-source radiator with constant RCS and no glint. Deterministic scattering solu-
tions for simply shaped objects can often be obtained by using the geometric theory of
defraction or physical optics theory. The most complex deterministic models represent the tar-
get as a collection of many, simply shaped objects for which scattering solutions exist. The
scattered field of the target then becomes the superposition of the scattered fields of the simple
objects, where effects such as shadowing, multiple reflections, etc., are appropriately accounted

for.

The statistical models are those in which only the first-order statistics of one or more
aspects of the scattering, usually RCS, are modeled. These models are usually developed either
from measurements of the target or by deriving the statistics from some broad assumption (e.g.
that the target is composed of many independent scatterers of approximately equal scattering
areas) regarding the target structure. The well known Swerling models of RCS are examples of

this type.

The stochastic models are those that describe the scattered field as a stochastic process.
Stochastic processes are useful because they not only specify first-order statistical properties but
they also specify higher order fluctuation properties of the target including, at least, the
second-order correlation properties (e.g. the correlation function). Correlation properties of the
radar’s receive signal must be known if an analysis of the tracking performance of the radar is
to be made. The stochastic models used for target modeling are usually second-order stochastic
models (i.e. they specify the first- and second-order properties of the process) because to date,
radars exploit only the first- and second-order properties of their receAivelsignals and- because

second-order processes are well developed mathematically.

Stochastic models usually are either extensions or combinations of deterministic and/or

statistical models. An example of the extension approach is a modei that converts the many



scatterer deterministic model described above to a stochastic model by describing the target’s
range and orientation relative to the radar as stochastic processes and then solving the scattering
problem as a function of time. An example of a combination model approach is a model that

uses measurements that characterize not only the first-order statistics but also the correlation

properties of a target’s scattering, as a function of radar-target relative motion. The stochastic
model is then a stochastic process that is defined to produce the measured statistics as a func-
tion of the measured parameters. We refer to such a model as an empirical stochastic model.
We note that when the target being modeled is extremely large (e.g. the earth’s surface
illuminated by the radar, the moon, etc.) the approach of representing the surface as a stochas- -

tic process is often used.
1.1.2 Fundamental Constraint

The fundamental constraint imposed in the development of the model presented here is
that the model must be useful in the analysis and simulation of the pulse-by-pulse tracking per-
formance of pulse radars. A major implication of this constraint is that the model must be capa-
ble of efficiently producing time-series representations of scattered radar-signals. Both empirical
stochastic models and deterministic models using many simple scatterers can be applied under
this constraint. However, each of these models has serious drawbacks for the desired applica-
tion. The stochastic model, although very efficient for simulation purposes, is strongly depen-
dent upon actual measured data to provide the needed statistical information and so extrapola-
tion of such a model without supporting data is questionable. Further, this type of model is
usually only weakly connected to the physical process (target-radar relative motion) that is caus-
ing the scattered-signal variations. The deterministic model has two major drawbacks. First,
such a model requires an enormous amount of detailed information about the actual target to
be modeled; the structure of that target’s surface must be precisely known. Second, the simu-
lation of such a model usually is extremly time consuming because many exact scattering solu-

tions must be calculated to produce the required time series.
4



In view of the above, tracking-radar studies and simulations would benefit from a model
that is stochastic, that can be efficiently simulated, and that can be parametrized by the funda-
mental physical properties of target-radar relative motion and "significant® target structure.
Such a model would not be as accurate as the deterministic model when the target structure and
motion are precisely known, and it might not be as simple and efficient in simulation as the
empirical stochastic model when extensive experimental data is available. However, it would
incorporate the fundamental simulation efficiency of a stochastic model and much of the physi-
cal basis of the deterministic model. We will refer to this type of model as a phenomenological

stochastic model.

1.1.3 Statement of the Problem

The objective of this dissertation is to develop a phenomenological stochastic modei for
the scattering of radar signals from distributed targets using an N-source formulation. The fun-
damental parameters on which the model is based are target motion and structure. We assume
that the target’s motion can be characterized as a stochastic process and that the target’s

approximate structure and dimensions are known.

We further restrict the model by imposing several additional constraints on its applica-
tions. The model is intended for use in analyzing the performance of continuous tracking,
monostatic, pulse radars that operate at microwave frequencies and track only in range,
azimuth, and elevation. The targets of interest are assumed to be large with respect to the
radar wavelength, structurally complex, in the radar antenna’s far-field, and uniformly (plane

wave) illuminated by the radar.

Because of the importance of RCS and glint (and the existence of associated data bases),
the mode! fidelity is to be inferred from the validity of the resulting RCS and glint representa-

tions. Validation of any model of scattering from complex targets must, of practical necessity,



be statistical. That is, the model must produce a time series of data that can be tested for sta-
tistical accuracy relative to measured target data. For the reasons given in Sec. 1.1.1, we
require that the model be accurate to second-order statistics; that is the model must accurately
represent the first-order probability density function, the power spectral density function (and
equivalently, the autocorrelation function), and associated parameters over intervals where the
process is piecewise-stationary. We do not require that the second-order probability density
function be specified because that function is difficult to estimate practically and though it more
completely specifies the process, it is less useful in characterizing signal time-correlation proper-

ties than is the power spectral density.

The primary targets of concern in this dissertation are surface ships. Relative to aircraft
modeling, ship modeling has received limited attention in the literature. Ships are much more
complex in structure than aircraft and scattering from them is complicated by sea surface mul-
tipath. However, the model developed is of a general nature and should be useful in problems

where the assumptions made in its development hold.
1.2 Previous Work

Variations in RCS as a function of time (amplitude scintillation) were first observed dur-
ing World War II [5]. The early models of amplitude scintillation were developed for applica-
tion in the detection of aircraft targets beginning with the work of Marcum [6] and Swerling
[7,8]. These models represent the target as a point source whose fluctuation statistics are
chosen depending on the type of radar used and the measxllred or assumed fluctuation properties
of the target. During the 1960s, numerous papers and books appeared describing various
methods of N-source modeling of RCS. The August 1965 issue of the IEEE Proceedings [9]

was devoted to radar reflectivity and is a good reference for the early RCS work.



The glint phenomena were not observed until radar angle tracking capabilities improved,
in the late 1940s. The first models of glint appeared in Mead et al. [10], Delano [11], and

Howard [12] during the 1950s. Each was based on the N-source concept.

We focus our review on models that are based on the N-source concept because that is

the concept on which the analysis of this dissertation is based.

1.2.1 Random Models

One method of modeling complex targets has been to represent the target as an N-source
model with scatterers whose individual scattering properties are assumed to be random. When
simple random properties are assumed, this type of model allows an analytical solution to be
obtained for the target scattering. This method was used by Muchmore [13,14] to describe the
RCS of aircraft and reasonable spectral estimates, relative to measured data, were obtained.
However, as pointed out by Peters and Weimer [15,16,17], this method has serious drawbacks
when used to analyze radar tracking performance. This is because over short time and aspect

intervals the individual scatterers do not behave independently.

This random method was used, for arbitrary complex targets, by Delano [11], Gubonin
[18], and Mumford {19] to study glint statistics, by Mohanty [20], Gruner [21], and Mitchell
[22,23] to study RCS statistics, and by Varshavchik [24] and Borden [25] to study the com-
bined RCS-glint problem. Baras [26] used an N-source representation of the target to obtain

the fundamental parameters of an equivalent-point-source model of glint.

Jakeman [27,28] and Jakeman and Pusey [29-32] have investigated using K-distributions
[27] to describe the amplitude statistics of scattered radiation in a> va;iety of exi:eriments
involving scattering from turbulent media (e.g. sea clutter and optical scintillation). This K-
distribution model arises when it is assumed not only that the individual sources’ amplitudes
and phases are independent random variables but also that the number of sources is a random

variable.



1.2.2 Deterministic Models

The most common type of model of complex targets based on the N-source concept
assumes that the target is composed of scatterers with simple geometric shape for which scatter-
ing solutions are known. The field scattered by the target is then the sum of the individual
scattered fields for the given radar-target geometry. Physical optics theory, the geometric
theory of diffraction, integral equation methods and combinations thereof are used to obtain
scattering solutions for the component scatterers. Discussions of these methods can be found
in many papers and books; examples are Crispin and Siegel [33], Bechtel and Ross [34], Bow-
man et al. [35], Ruck et al. [36], Keller [37], and Oshiro et al. [38,39]. Many examples of air-
craft and missile modeling are contained in or referred to by the previous references. Examples
of ship models using this approach are given by Toothman [40] and Radza and Stenger [41].
We note that in modeling ships, thousands of scatterers are often required and usually up to
twenty generic types of scatterers are used. Further, multipath effects on each scatterer and

multiple scattering must be accounted for.

The major studies of glint have been performed without assigning specific properties to
the individual scattered fields. This approach has led to generic representations for glint.
Howard [12] used this approach to show that glint was equivalent to the slope of the phase
front of the reflected field, in the radar angular coordinate of interest. Lindsay [42] expanded
the concept of phase-front slope to phase-front gradient. He also showed the relationship
between glint and Doppler scintiilation. Dunn and Howard [43] showed that glint was
equivalent to Poynting vector tilt and, independent [5] of Lindsay, showed the relationship

between glint and Doppler scintillation.
1.2.3 Unified Scattering Models

Very few attempts have been made to develop a unified RCS and glint model for the time

varying return from a complex target. The geometric models described above can be used to
8



generate time series of data by moving the target randomly and solving for the scattered field as
a function of time. Such a procedure is of course extremely time consuming even on a com-
puter, especially for ships. Wright and Haddad [5] developed such a model for an airborne
drone where the individual scatterers were represented as ellipsoids. Both RCS and two-
dimensional glint were modeled. The stochastic returns from several target aspects were
obtained and analyzed, assuming appropriate random motion of the drone. Borden [25]
developed a random model for the unified target return of an aircraft, assuming only one-
dimensional glint. He modeled the target as N sources and then aséigned statistical values to
the individual scatterer amplitudes, phases, and Doppler frequencies. Varshavchik [24] investi-
gated the relationship between the amplitude and phase characteristics of targets composed of
an array of identical isotropic scatterers. He studied returns resulting from small angle-

oscillations of the target in a fixed plane.
1.2.4 Multipath Models

Low grazing-angle, forward-scatter, over-water multipath has been studied extensively
during the past quarter century. The most common representation of such scattering has been
made in terms of equivalent-point-source models where the scattered field is viewed as being
composed of two components: a "specular" (or "coherent") component that is deterministic,
and a "diffuse” (or "incoherent") component that is random. Although it is well known that the
specular component appears to a radar as coming from a point-source that is located at the
geometric image of the transmitting point-source, the apparent point-source location(s) of the
diffuse component(s) is not well understood. This lack of understanding has caused difficulty

in analyzing the tracking errors induced by diffuse multipath [44,45].

In a series of papers, Beard et al. [46-48] developed a second-order, statistical model of
the scattered field. The model is based on empirical measurements and the fundamental

parameters are diffuse and specular scattering-coefficients. Beard’s model is valid in the sense



of predicting the received power at microwave frequencies. It implicitly assumes that the diffuse
scattering can be viewed as coming from a point-source located at the specular point. Northam
[49] presents a second-order stochastic model, based on this work, that is useful for simulating
multipath effects as a function of time. Beckmann and Spizzichino [50] theoretically predicted
that the diffuse scattering arose primarily from surface areas near the transmitter and near the
receiver. Barton [51] modified the diffuse coefficient that was derived by Beckmann and Spizzi-
chino with a roughness factor and formulated the coefficient in terms of a bistatic scattering
parameter for the surface. He showed that diffuse scattering arose from surface areas that vary
as a function of geometry and surface structure. Mrstik and Smith [44] investigated the limita-
tions caused by multipath on low-angle tracking using four different models of the pooriy-
understood bistatic scattering parameter. Smith and Mrstik [45] investigated multipath-induced
tracking errors in elevation scanning and monopulse radars by assuming that the diffuse track-
ing errors are small so that the diffuse power can be viewed as a noise-like interference super-
imposed on the direct-path signal. Baras [52] has summarized the various models from the per-

spective of stochastic modeling.
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CHAPTER 2

SUMMARY

This dissertation addresses the modeling of the effects of electromagnetic scattering from
complex. distributed targets in a multipath environment. The basic objectives are to develop a
scattering model that is useful in analyzing and simulating the correlated processes of RCS and
glint and to develop the equations of these processes appropriate to that model. The model is
specifically intended to be useful for studying the tracking performance of pulse-radars. Ships
are the major targets of interest. We are primarily concerned representing scattering over short
time-intervals. A digital simulation is developed and some implications of results from that

simulation are discussed.
2.1 Approach

Our approach is to use a (largely) deterministic model for the target scattering and a sto-
chastic model of the target’s motion. Using the target’s motion as input we obtain a stochastic
representation of the received field. Over-water multipath effects are also modeled as stochastic

processes.

We model the target as a finite collection of point-source scatterers that represent the
dominant scattering components of the target. These ";mit-scatterers" are defined to allow a
straightforward representation of the received field at the radar. Because the target is
represented as a collection of point-source scatterers, we draw upon existing models of RCS and
glint that were developed assuming point-source scattering. A simulation of correlated RCS

and glint is developed for use in studying the effects of model-parameter variations.

11



2.2 Outline

The concept of unit-scatterer is introduced in Chapter 3, and an analytic representation of
the concept is presented. Methods of identifying and measuring the target’s component unit-
scatterers are proposed and anticipated properties of the associated amplitudes and phases are

discussed.

In Chapter 4, the usual model of the received field from a collection of point-source
scatterers is presented and for completeness a model of a generic radar system is developed in
the context of point-source scatterers. A point-source multipath model is then incorporated

into the equation that represents the received field.

The motion equations for the individual unit-scatterers of a ship are derived in Chapter 5.
For completeness, two formulations of these equations are made, each assuming different
inputs: the first assumes knowledge of the driving forces and moments that are applied to the

ship and the second assumes a frequency-response model of the ship motion.

Chapter 6 describes a ship-motion simulation that we developed as the stochastic input to
the scattering simulation. It is based upon the catalogued ship-motion data generated by the
David Taylor Naval Ship Research and Development Center using frequency-response models

for the ship motions.

In Chapter 7, equations for RCS are developed in terms of unit-scatterers based upon the
formulations of Chapter 4. Because tracking radars procéss data over short time-intervals, RCS
variations over such intervals are analyzed and the nonstationarity of the resuiting processes is

illustrated.

In Chapter 8, two approaches to glint modeling are used to develop correlated azimuth

and evalution glint models for targets that are modeled by unit-scatterers. It is shown that one

12



approach is more useful than the other, especially when point-source multipath effects are

included.

Chapter 9 presents the results of simulation studies. The effects of varying some of the

model parameters are investigated.
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CHAPTER 3

THE UNIT-SCATTERER CONCEPT

As described in Chapter 1, one of the most common approaches to modeling complex tar-
gets is to represent them as being comprised of a finite number of point-source scatterers.
Using this approach, various scattering models have been developed. The differences in these
models are due to the different ways in which the scatterers are characterized. We use this
approach but attempt to minimize the number of scatterers and the statistical assumptions made

regarding the parameters of those scatterers.

Determining the characteristic parameters of a scatterer given the incident and scattered
fields is referred to as an inverse scattering problem. Recent years have seen a rapid growth of
interest in such problems in many areas of science, especially in optics and electromagnetics;
however, for the EM inverse problem, "the prospects of expressing scattering characteristics of

complex shapes successfully and simply are still inadequate” [53].
3.1 Scattering Matrix

When an object is illuminated by a plane wave (implied by large radar-to-scatterer range)
the scattered field, E°, can be viewed as a linear transformation of the incident field, £. The
matrix representation of this transformation is called a scattering matrix [33]. Such matrices
have the form

Sy exp (i) Syp exp (i)

5= Sy exp (o) Sy exp ()| (.1
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(We note that due to phase being relative, the conservation of energy principle, and the
reciprocity theorem. only five of the eight parameters of S need to be determined to completely
specify S {54].) The scattered field representation is

Es= SE'. 3.2)
The scattering matrix provides a significant characterization of radar targets; knowledge of it for
a given set of radar parameters allows a complete characterization of the target’s RCS for those
parameters. Further, the scattering matrix for any polarization pair can be obtained from the
matrix expressed in terms of any two arbitrary polarization vectors that are orthogonal [33]. As
emphasized by Boerner [53] in his paper discussing the utilization of polarization in the EM
inverse scattering problem, when measuring target scattering all components of the scattering

matrix should be estimated or a loss of information will result.

Given a radar with receiver polarization pg, the RCS of the object can be defined to be
(54]

— 2

ES-p

o = lim 4nr? | =R
r—co |E|

(3.3)
= A )2
= lim 4772 —SEIE—I”R

where r is the target-to-radar range. If the transmitter has the polarization pr, then we can

]

write E' = |E'|pr and

o = lim 4w r*(Spr - pr)*. - (3.4)

In general, polarizations are defined in terms of horizontal and vertical unit vectors, p(H)

and p(V). Using these polarizations, we write the scattering matrix as

S(HH) S(HV) <

15



It follows from (3.4) and (3.5) that there are four fundamental components that characterize

the RCS of scattering objects; they are

o(lJ) = lim 4w r?|SUNP?, I J=H V. (3.6)

r—o0

Therefore, the RCS of an object can be described by the matrix

(HH) o (HV)
L=\ o« 3.7

The above concept of scattering can be extended to targets composed of individual
scatterers for which scattering matrices are known. The procedure is to sum the components of
the individual scattering matrices to yield a target scattering matrix; relative phasing and multi-
ple scattering between the scatterers must, of course, be taken into account. The target RCS
can then be determined from the resulting matrix. However, the complexity of this procedure,
due to the relative phasing, has led to the use of two assumptions to simplify the problem.
Because an average value of RCS is often all that is required to be known about the target, it is
often assumed that the individual scatterers are phase independent. This allows a straightfor-
ward estimate of the RCS (cross products of independent phases cancel). Second, because
most radars operate using only one polarization, it is often assumed that the three scattering
components associated with the orthogonal polarization can be ignored. Both of these assump-

tions have proved quite useful for practical problems.
3.2 Definition

It is well known that complex targets produce scattering that appeai‘s to result from
several apparent "sources” ("dominant scatterers,” "bright spots,” "hot spots," and "flare spots")
that are located at "scattering centers." The number, amplitude, and phase of thesé sources
vary with target aspect and radar frequency, polarization, and resolution. Examples of this
phenomenon for measured targets can be found in Refs. 55 through 59. These apparent

sources result because scattering arises not from the target’s entire surface but from points of
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discontinuity and specular points of that surface; cancellation of the field occurs along continu-
ously varying surfaces of the target [34]. Kell [60] refers to the portion of the target surface
that is near a scattering-center and that produces the return associated with that scattering-
center as the "cophased area." The scattering-centers are not necessarily due to specific
geometric objects; they may arise from phasing between adjacent objects whose returns, when
summed incoherently, would not be significant [34]. This phenomenon may lead to scattering-

centers that are not located on the target.

In light of the above, we define a unit-scatterer (US) to be an apparent point-source
scatterer as perceived by a radar. Clearly, the definition is radar dependent; such objects
depend directly on radar frequency and pulse width. We characterize a US by a complex

amplitude-matrix, & Our definition of this matrix is analogous to that of the scattering matrix:

Ay exp (joy) A exp (o)

b Ay exp (oy) Ay exp (dy) (3.8a)

where

4;=o}f* = (lim 4 2SIV, (3.8b)
The amplitudes and phases are functions of US orientation, and the phase is also a function of
radar-US range. The amplitude functions, 4;;, are the square roots of the associated component
RCSs. The phase functions, ¢, are defined relative to some reference point on the radar-to-

target sight line; this allows coherent summing of the matrices that represent the target. For

the standard polarizations, (3.8a) becomes

Ayy exp (o gr) Agy exp (o)

o= Ay exp Govy) Ayy exp (o) | (3.9)
The RCS of a US that is characterized by & becomes
o = |bf el (3.102)

where pr is the transmitter polarization and pg is the receiver polarization. For a target com-

posed of N USs,
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g =

N
) izrrﬂ‘,—ﬁkr (3.10b)

ja= |

The significance of & is that the electric field at the receiver antenna and associated received
signals can be written (see Chapter 4) in terms of a scattering function I' (-, -) which we define

by

N
pIE. £

i=1

T (pr, br) A b7 Pr. (3.11)
Although this approach to modeling scattering is not unique (similar formulations to obtain
RCS and glint are implicit in other work) the definition of the unit-scatterer is new in that it is

based on the fundamental scattering objects being large, complex, and not necessarily

physically-identifiable.

Because of the complexity of USs comprising large targets, such as ships, it is likely that

experimental methods or detailed simulation studies are necessary to accurately determine the
& matrices. However as will be discussed in Sec. 3.4, relatively simple representations of the

USs may yield good approximations to the components of ;.
3.3 Identification

Given the above definition of the US we now discuss methods of identifying the USs on
complex targets. There are two basic approaches to US identification (and characterization):

using analytic or experimental methods. We first consider several analytic methods.

Kell [60] investigated bistatic RCS using the N-source formulation. In this and the next
paragraph, we discuss that work as it relates to the monostatic problem. Using the Strgton-Chu
integral in the definition of RCS, he showed that a target’s bistatic RCS could be written in the

form

o= [f I(z)e"z"°”°s"/2dz[2 (3.12)
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where

ko = the wavenumber of the incident field,

B = the bistatic angle, and

A = the radar’s wavelength.

Although (3.1) is an exact expression, the difficulty with using it is that /(z) is rarely known
precisely [60]. However the analytic continuity of [(z) allows it to be divided into a sum of
integrals over subregions of the target and "reasonable approximations" to I(z) lead to contribu-
tions from these integrals only near the end points of each integral {60]. These contributions
are then identified as the scattering centers. He distinguishes between two types of scattering-
centers: "simple centers,” which result from direct illumination only, and "reflex centers,” which
result from multiple reflections. He states that it is common for reflex scatterers to produce

much larger RCS values than simple scatterers do.

Once the sources are identified, the target RCS can be written as a finite sum of those
sources. Kell shows that in terms of N sources, the bistatic RCS can be expressed as (assuming
fixed polarizations)

g ==
i=1

N ,
3 Vo emT (3.13a)

with
&, = 2kor; COS % +e, (3.13b)
where
r; = the distance between the ith and first sources’ phase-centers, projected on the
bistatic axis, and
&, = the "residual phase contributions" of the ith center.
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Setting 8 = 0 vyields the monostatic RCS. (We note that to derive the monostatic-bistatic
equivalence theorem in Ref. 60, he assumes that the §; do not vary over the range of 8 con-
sidered; we suggest that for USs arising from structurally complex objects, the £, may vary

significantly as a function of the monostatic aspect angle.)

When the magnetic field H on the surface of a perfectly conducting object is known and
the field point is at a large distance from the body, the scattered magnetic field, FI’, can be

approximated by [61]
Jjke R
4R

where 7 is the outward normal to the surface, k = 2m/\, 7 is the unit vector from the origin to

H = fs, (A x H) x fe= 7 as’ (3.14)
the field point, R is the distance from the origin to the field point, S ' is the scattering object’s
surface, and 7' is the radius vector from the origin to the integration point on the surface. To
solve (3.14) we must know H and S'. Although obtaining S’ for a known object is straightfor-
ward, though perhaps tedious, determining H for an arbitrarily shaped object is in general not

feasible. However for objects that are relatively smooth (large radii of curvature relative to the

radar’s wavelength), it is well known that the Kirchhoff (physical optics) approximation (i.e.
assume that the surface current density is —27a X H' where H' is the incident magnetic field)

leads to an accurate description of the scattered field. Assuming an incident field of the form

-~ Ey . . =
H==2(Gx8)e7 (3.15)
n
where & is the polarization direction for the incident electric field E', m is the characteristic

impedance of free space, and £, = |E'l, the scattered eléctric field can be approximated by

75 . Jke!® Eo . 5w 3 s 2k T gQr
E= 5 R fs,-;?—[ x (F x )] x pe=%/F 7 4S’. (3.16)
If the surface can be separated into N independent (no multiple scattering) surfaces for which
solutions to (3.16) can be obtained, then the object’s scattered field can be described by the

sum of N fields (due to the N "elementary” scatterers). In general, N will be large and multiple
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scattering cannot be ignored so that the resulting scattering model will be very complicated (see
e.g. Ref. 40). Scattering centers for complex objects will arise from one of two situations: the
return from an elementary scatterer dominates (in magnitude) the return from most of the
other elementary scatterers or several elementary scatterers produce scattered fields that add in
phase yielding a total field that dominates most of the other returns. However if we cannot
make the above separation but we can represent the (known) surface in cartesian coordinates
by

z= f(x, y) (3.17)
so that

Fl=xi+yj + flx, p)k (3.18)
we can apply the method of stationary phase to the integral in (3.16) if we can find the points

on the surface where
—(,;"—x G- 7) = g’; G-F) =0 (3.19)

The method of stationary phase is an asymptotic expansion technique for evaluating

integrals of the form

1) = [ g@)em® gz (3.20)

where x is a large positive parameter and 4 (z) is a real function of the real variable z [62]. The
major contribution to the integral arises from the immediate vicinity of the end points and at
stationary points of #(z) (points where #'(z) = 0) and in the first approximation, the contribu-
tion of the stationary points is more importan; than the contribution of the end boints [62]. If
z, i = 1, ..., nare the points of stationary phase (i.e. where 4(z) has extrema), then the
integral (3.16) can be approximated by

zl.+€
—¢

g(2) e gz (3.21)

w=3J

jml 1

where the €, are small. The ith element of the summation is evaluated by expanding A(z)
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about z. The method applies to the integral (3.16) since for wavelengths of interest to us, 2k is

large (on the order of 400).

Kodis [63] investigated the scattering from a random, perfectly conducting irregular sur-
face whose radii of curvature are continuous and large. Evaluating the scattered-field integral
using the method of stationary phase, he showed that to a first approximation the RCS of the
surface is proportional to the average number of specular points which are illuminated.
Although he assumed that there was no multiple scattering, implying that the principal radii of
the surface have a lower bound that is much greater than the wavelength of the scattered radia-
tion [63], his results also suggest that the scattered-field integral can be approximated by a finite
sum and that the method of stationary phase may prove useful in identifying scattering centers

of objects that are relatively smooth.

The method of stationary phase is of interest because it identifies scattering centers on the
scattering object. When the method can be used we anticipate that the scattering centers
identified by it will be USs of the object. The method may yield not only US locations but aiso
analytic representations for those USs; by investigating the scattered field at these points, we
may be able to develop analytic representations for USs resulting from "smooth surface" scatter-
ing. Examining the structure of ships we see that in general their surfaces are not smooth. In
fact there are many flat surfaces connected at right angles (zero radius of curvature). Therefore
the method of stationary phase will not in general be useful for identifying USs on targets such
as ships. However the method may prove useful for targets, such as aircraft, whose surfaces

are, in general, "smooth."

Precise identification of the USs for a specific target will most likely require actual target
measurements. Such measurements must be made by some type of high resolution radar. Pos-
sibilities include narrow pulse radar, pulse compression radar, synthetic aperture radar (SAR),

and inverse synthetic aperture radar (ISAR). Such radars must measure, as a function of target
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aspect, the return signal from the target in cells that are small relative to the target’s largest
dimension. Although our studies will show that even large ship targets can be well represented
at a given aspect by as few as six USs, we suggest a cell size at least as small as 1/10 to 1/20 of
the target’s largest dimension. The cell size can not be too small because for studies of radars
with less resolution than the measured data, the smaller scatterers can be grouped (summed
coherently or incoherently) to produce USs appropriate for the desired resolution. High resolu-
tion data exists on many targets including ships but analysis of that data has not been done as
part of this research; the effort required to obtain and analyze such data is beyond the scope of
this dissertation. High resolution radars identify scatterers in range and amplitude for the associ-
ated radar-to-target aspect. Figure 3.1 illustrates such a range profile for an aircraft model; for
this aspect (nose-on) there are five dominant scatterers. By rotating the target or moving the
radar, the amplitudes, relative phases, and position of the dominant scatterers can be deter-
mined as a function of aspect. Care must be taken to vary the aspect by increments small
enough to yield accurate (smooth) representations of these parameters. Figure 3.2 illustrates

scatterer data as a function of aspect for a simple target.

Another method of identifying the USs is to utilize existing geometric-model simulations.
(Various organizations, including the Naval Research Laboratory, Georgia Institute of Technol-
ogy, Technology Services Corporation, and Rockwell International, have developed such simu-
lations.) This method involves running such a simulation for the target of interest and for the
desired radar-target geometry. The resulting scattered field would then be examined to identify
the major scatterers (say, those that contribute 95 percexit of the total return) and then grouped
as appropriate into USs. Similarly, SAR or ISAR simulations could also be used to determine
the USs. Figure 3.3 is an illustration of the resulting SAR image from a simulation of a

KC-135 aircraft for various SAR resolutions. The "blobs” in these images are candidate USs.

A less accurate but very simple method of identifying some USs is to examine geometric

images of the target (photographs, line drawings, blueprints, etc.). This method is useful
23
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because scattering from certain generic objects is known. For example, Table 3.1 lists the 22
objects used by Toothman [40] in a geometric type of simulation of ship scattering. An exami-
nation of the structure of ships shows that there often are obvious generic scatterers whose
dimensions are such that they will dominate the scattering from the ship at specific aspect
angles. For example the broadside and stern aspects of the DD963 (Fig. 3.4) illustrate the
presence of flat-plate scatterers in the superstructure. The aft-quarter aspects indicate the pres-
ence of large corner reflectors and the two exhaust stacks should have reflections that are analo-
gous to those from cylinders. Using these observations we can obtain a set of USs that, to
first-order, approximate the actual USs for a given aspect. This is the method that we will use
1o obtain USs for the simulation (Chapter 9). In the next two sections we discuss in some

detail the application of this method to obtain US amplitude and phase characterizations.

Table 3.1 — Generic Scattering Types Used by Toothman [40]

Concave Edge Rectangular Plate

Convex Edge Paraboloid

Edge Caustic Ogive

Elliptic Disc Point

Ellipsoid Concave Dihedral (2 reflections)
Hyperboloid Concave Trihedral (3 reflections)
Cylinder Straight Edge (convex dihedral)
Elliptic Cone Convex Trihedral (3 plane tip)
Inner Torus General Curved Surface Specular
Outer Torus Cavities

Elliptic Tip Antennas

3.4 Amplitude

The measurement and simulation procedures of the previous section yield amplitude
information and can be used to determine the amplitude functions. The visual method, how-

ever, does not allow such an accurate determination except for obvious geometric objects. For
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analysis and simulation purposes we would like to obtain closed form expressions for the ampli-
tude functions. Such expressions, if accurate, would allow the US model to be more useful in

general, the model would not be dependent upon detailed information about the target.

Therefore, our goal in specifying the amplitudes is to obtain simple, visually identifiable, closed
form expressions that are valid over short time-intervals. To achieve this we rely upon optical
scattering theories and RCS measurements of distributed targets to guide our choice of ampli-

tude functions.

It is well known that the spectrum of the RCS of a distributed target is band-limited and it
is often characterized as being low-pass. This implies that a finite (though perhaps large)
number of scatterers can be used to accurately approximate the RCS. It is also known that for
most targets, due to radar-target relative motion, the target RCS is not a stationary process
because the mean, variance, density type, and spectral properties all vary with aspect as indi-
cated by Figs. 3.5, 3.6, and 3.7. The most obvious implication of this is that some of the
target’s component scatterers have amplitude patterns that vary significantly with aspect. Visual
examination of ship structures, for example, finds obvious flat plates, dihedrals, trihedrals, etc.
The RCSs of such generic objects have been calculated theoretically and are well known. The
flat plate RCS, for example, is strongly dependent upon plate orientation; it varies dramatically

near vertical incidence where a very large RCS relative to its physical size is generated [70].

Mitchell [23] has suggested that there are only four basic scattering mechanisms within a
radar resolution cell. To describe these mechanisms, he defines four basic scaitering elements;
he claims that for simulation purposes, they describe all scattering effects. The basic elements

are:
1. rough surface (diffuse scattering),

2. point source (sphere and dihedral corner),
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Fig. 3.5 — Measured RCS at 10-cm wavelength of a B-26 aircraft as a function of aspect
(from[68])
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Fig. 3.7 — Variation of the 20, 50, and 80 percentiles for an auxiliary ship as a function of
aspect for (a) S-band and (b) X-band (from [68])
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3. flat plate (specular scattering). and

4, line source (edge, dihedral corner, thin cylinder, and wire).

In view of this, we propose using a small set of generic functions to model the amplitude func-
tions of the USs. This set may vary depending upon the type of target being modeled. For
example, ship models would tend to include flat sided scatterer types (plates,
dihedrals,trihedrals, etc.) whereas aircraft models would tend to include curved surface

scatterer types (ogive, parabaloid, etc.).

In the simulations (Chapter 9), we will model the US amplitude functions using only
three generic scattering types: sphere, flat plate, and corner reflector. These types were chosen
because they represent, to first order, the most obvious scattering effects and they are con-
sistent with the fundamental set proposed by Mitchell. The fidelity of the model using only
these types of scatterers must be determined relative to measured data which we do not have

access to for this dissertation.

The sphere type was chosen to represent scattering that is specular but is also significant
(in amplitude) over a wide angle of illumination. We model the amplitude of such a scatterer
as being proportional to the projected area of the object as viewed by the radar, as it is (in the

optical limit) for a sphere [33].

To represent scattering that is specular and highly directional, in analogy with the equation

for the RCS of a flat plate near specular incidence we suggest the representation

1/2
_ X b | Sin(2ma sin8)  sin 2mb sin @)

A
A 2a sin @ 2w b sin ¢

(3.22)

where g and b are the plate dimensions and 9 and ¢ are azimuth and elevation angies between
the plate and the radar-to-US sight line and a line perpendicular to the flat surface. We antici-

pate that this type of US will be realized by actual flat plates which for a ship appear primarily at
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the bow, stern, and broadside aspects. Unlike the sphere type of US, this type is frequency

dependent.

The corner-reflector type was chosen to represent frequency dependent scattering that is
nonspecular. This type of scattering results from multiple reflections [61]. We model the
associated amplitude by the ratio of the US’s projected area to the radar wavelength. This is

analogous to the equation for the maximum RCS of a corner reflector,

2
dra (3.23)

T max = X2

where a is the area of the reflector’s aperture [61].
3.5 Phase

For a point-source scatterer located at some position R relative to the radar, the phase of
the scattered field at the radar results from the properties of and the range to the scatterer. For
a sphere the phase varies as the range to the sphere’s center varies but is constant with sphere
orientation. However for nonspherical objects, the phase depends not only on some location
point for the object (say, its geometrical center) but also on the object’s orientation. This is
because as the object rotates, scattering from components of the object (edges, protrusions,
etc.) vary as a function of aspect. This apparent point-source location of the object is called
the object’s scattering center. Aggregating several physical objects may create a US of substan-
tial physical size relative to the radar wave length. As such a scatterer rotates, the scattering-
center location may vary rapidly for the wave lengths of interest in this paper (on the order of a
few centimeters). Therefore, the US phases (the ¢; in (3.82)) are deﬁngd as the apparent loca-
tion of the US’s scattering center relative to some fixed point on the US, as a function of orien-

tation.

The scattering center will also depend upon the type of ranging ‘echnique employed by

the radar. For example, narrow pulse, leading edge tracking will yield different apparent ranges
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for scattering objects than will peak-signal techniques. However, in our development we do not
attempt to explicitly include ranging-technique effects primarily because of the lack of existing

data describing US phase-variations as a function of orientation.

We suggest that there are two dominant physical causes (excluding multipath effects) of
variations in the US phase for small changes in aspect angle. First, we expect the most
significant phase variations to be caused by the motion of the surfaces that yield the USs; that
is, the relative motion of the geometric center. Second, we expect that US rotation will also
introduce phase variations. We expect two types of effects due to US rotation: low frequency
and high frequency. The low frequency effects should result from the objects that generate the
US moving closer or farther away from the radar thus producing a change of phase (due to ear-
lier or later pulse arrivals). The high frequency variations should resuit for USs which arise
from the relative phasing of various objects. As the objects rotate, their relative phasing may
change producing glint [Chapter 81, which is a high frequency phenomenon [Chapter 9]. How-
ever we expcct this effect to be small because glint is inversely proportional to RCS and the

existence of the US implies a large RCS.

We will model the US phase by

(R, 9, w, t) = —ZX”—]ZIR‘I +80) + £w, 1) (3.24)
where
R is the location of the geometric center relative to the radar, -
9 is the orientation of the US relative to the radar,
A is the radar’s wavelength,
8() represents the low-frequency orientation effects, and

¢(w, 1) represents the high frequency effects.
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Because of the causal relationship between US motion and target motion, thé E(w, t) process
should be correlated, to some extent., with the target motion. The variance of £(w, t) most
likely will be small relative to 2w, otherwise £(w, ) could be approximated by a phase process
that is uniformly distributed over (0, 2a). This would yield a target RCS that is Rayleigh dis-

tributed (see Chapter 7) which is in general not true. This observation is consistent with our

comments in the previous paragraph.

Because of the lack of experimental data and the intractibility of US-phase analysis, we
will not attempt to model or simulate the ¢(w, ) process by other than uniformly distributed,
uncorrelated processes. The interval over which the processes are defined are specified, in a
simulation input, as a percentage of the radar wavelength. Simulation results have indicated
that if the random phase variations on a pulse-by-pulse basis exceed about five percent of the
radar wavelength, then they become a significant cause of variations in the scattered field,

which intuition suggests should not happen.

Finally, we expect that for small changes in aspect angle, scattered-field variations are due

primarily to phase variations rather than amplitude variations.
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CHAPTER 4

MODEL OF THE RECEIVED SIGNAL

Although a radar measures the EM field at its antenna aperture, evaluation of a radar’s
performance can be made knowing only a few projections of that field. The most useful projec-
tions are received power (RCS) and the azimuth and elevation error signals (glint). The vali-
dity of any model of the scattered field that is to have practical applications must be measured
relative to such projections. In this chapter we formulate the received signal resﬁlting from
scattering by an N-source target that is modeled by unit-scatterers. We develop representations
for the received field and the associated azimuth and elevation error signals. The received field

representation will be used in later chapters.
4.1 Scattered Field

Because we are modeling the target as a finite number of USs, the received electric field at
the radar is the linear superposition of the fields from each US. We are interested in represent-
ing only the pulse-to-pulse variations in the received signal, not intra-pulse properties, SO we
assume that the received pulses are ideal in the sense that they are completely defined by an
amplitude, phase, and pulse-width. Further, we assume that the target exten_t is small relative
to the radar-to-target range and that the radar pulse width is large relative to target extent. This
allows the assumption that the return pulses are time coincident. This time-coincident assump-
tion would not be acceptable if we were analyzing range tracking errors or the structure of the

received pulse’s leading or trailing edge.
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Assuming uniform target-illumination (due to large radar-to-target range) and identical
transmitter and receiver polarizations, the received field at the radar due to scattering by a

point-source target is usually represented by an equation of the form

- = = = —~ . ju,(R.9) ;
ER, 3, 1) = FX(R) g(R)a, @)’ * esot (4.1)
where
2] is the radar frequency,
R, defines the location of the scatterer relative to the radar,
9, defines the orientation of the scatterer relative to the radar,
g() describes the antenna and propagation effects on the signal,

FQ) describes the effects of multipath,
a; is the amplitude of the scattered field, and
¢;(-, ) s the phase angle of the scattered field.

Three transmit path effects are accounted for here: phases due to radar-to-scatterer path
lengths, attenuation due to path losses, and variations in the illuminating signal due to mul-
tipath. The phases are accounted for in ;(-, ©) and the loss effects in g(-). The muitipath
effects will be discussed in detail in Sec. 4.4 so for the remainder of this section we assume that

F2(:) = 1 (i.e. no multipath effects).

Summing the individual fields from an N-source target, the received field becomes

N - oy
E() = 3 g(R)a @) e " eio, 4.2)

im]

The assumption of long range implies that

g(R) = g(ﬁj), for all i, j 4.3)

so that we can approximate E (¢) by
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— . N - 1 R
E() = g(R)e 3 a,@)e " (4.4)

ful
where R locates a fixed point on the target: for example, the target’s center-of-gravity. Assum-
ing that the N sources of the target are USs, we see from (3.11) that

E(t) = g(R)e™ T (pr, pg) = g(R)eBf| T (R, 0)

-1

Dr (4.5)

where pr and pg define the polarization that is implicit in (4.1). If we make the usual

assumption that pr = pgr = (1, 07, then (4.5) becomes

- . N — % (R.8)
E() =g(R)e™ F 4, 0)e .

j=]

(4.6)

We next discuss the effect of the radar system on the scattered field.
4.2 Radar System Model

Although our primary concern is target-scattering modeling and not radar-system model-
ing, practical validation of any scattering model will of necessity involve actual target measure-
ments made by specific radars. Further, we are concerned with scattering models from the
point of view of analyzing the effects of target scattering on tracking radars rather than that of
predicting scattered electric fields. Therefore for completeness, we include a representation of

tracking radars that can be used with the US-modei formulation.

We view tracking radars as being composed of three basic functional units: a "front-end,"
error detectors, and feedback loops. Figure 4.1 is a block diagram of a generic amplitude-
comparison, monopulse radar with each functional unit indicated. Such a radar is commonly
used as a tracking radar at microwave frequencies. Because this type of radar is widely used in
practice, we limit our model of radars to this type. This limitation does not significantly restrict
the results to be obtained because the primary influence on tracking performance is the fluctua-
tion of the field scattered from the target. Further, phase-comparison monopulse has been

shown to be functionally equivalent to amplitude-comparison monopulse [71]. and other forms
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of tracking radars (e.g. sequential lobing, conical scan, etc.) differ primarily in the form of the
front-end transformation and error detector implementations. In any event, the US concept is

independent of specific radar implementations.
4.2.1 Front-End

We first consider the effects of the radar front-end: the components that transform the
input EM field (at the antenna’s aperture) to a complex signal at some intermediate frequency
(IF). This IF signal is then processed to obtain tracking information. Our approach is to model
the components that convert the input field to an IF signal as a simple, memoryiess transforma-
tion, which we represent by

V() = HIE(D] 4.7
where V(¢) is a voltage. In general, the front-end transformation, H (-), is very difficult to
specify precisely because it includes the effects of the antenna, waveguide, hybrids, mixers, and
IF amplifiers. Clearly, H(-) depends strongly on the specific radar implementation, particularly
the antenna used. For the applications of interest here (where target-radar motion is causing
the major fluctuations in the received signal), these devices can be accurately characterized by
simple models: hybrids with input signals A and B as producing outputs A+B and/or A-B,
mixers as transforming signals with spectra S(w) (@ > 0) to signals with spectra S(w — w,,)
(w — w, > 0) where w,, is the mixer frequency, and IF amplifiers as constant gain (or loga-
rithmic) devices with feedback gain control. An overall power loss, due mainly to the hybrids,
and an overall phase shift, due mainly to physical lengths and the mixers, complete the descrip-
tion of the guided signals. The video signal is produced by detectors (amplitude, phase, or
sum-and-difference [71]) that transform the guided fields to voltages. The rﬁost comple;x aspect
of H(-) is the transformation of an EM field across the antenna aperture to an EM field within
an associated waveguide. This transformation is typically represented by the antenna

amplitude-gain pattern (to be referred to as the antenna pattern).
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Since we assume that the scatterers are point-source radiators which are at long range, it
will be sufficient (as has been the case in many other studies, for example see Refs. 72 and 73)
to model the front-end as the antenna pattern coupled with a complex gain factor and a fre-
quency shift. Specifically, if the antenna amplitude-gain (complex in general) is given by
G(B,, B,) where B8, and B, represent azimuth and elevation angles relative to the radar
boresight, then for a point-source target whose angular coordinates relative to the radar

boresight are given by (8,, 8.), we model the front-end transformation as
V()= HIE()] = KG(B,, BJEB,, Be, 1) (4.8)

where K is complex and represents the non-antenna front-end gains and phase shift, and
Eo(B,, B., t) is the value of the scattered electric field at the aperture location defined by 8,
and B,. The carrier frequency of V(¢t) is the frequency of Ey(B,, B, t) lowered by the mixer

frequency.

Because we are assuming tracking, we are only interested in antenna characteristics near
boresight, say +3 dB about the main beam maximum. Therefore it may be useful to assume an
ideal approximation for the antenna pattern that has a simple analytical form yet accurately
represents typical antenna amplitude-gain characteristics in this restricted region:

G@, ¥) = Gy— k(@ — 0p)* — k(g — wy)? (4.9)
where 8y and y, define the pattern maximum relative to a given radar axis (say, boresight) and
G, and k are constants. However, we note that the long range assumption will often allow the
antenna pattern to be modeled as a constant gain because of the resulting negligible separations

of the unit-scatterers.
4.2.2 Error Detectors

The error detectors transform guided EM waves to video signals useful for determining

antenna pointing (angle) errors. Rhodes has shown {71] that in monopulse radars there are
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only three distinct kinds of angle detection: amplitude, phase, and sum-and-difference.
Because any monopulse error law can be described as a function of the difference-to-sum ratio
(A/Z) [74], we model the detectors as producing sum and difference signals which yield as out-
put A/Z. Assuming instantaneous automatic gain control (IAGC), the outputs of the phase
sensitive detectors of Fig. 4.1 are the real part of A/Z due to the sum signal being fed back to

the various IF amplifiers [71].
4.2.3 Feedback

There are two feedback loops of interest: IF amplifier feedback and antenna ser-
vomechanism (servo) feedback. The amplifier feedback is simply a feedback of the sum signal

to control the IF amplifier gains.

Angle error signals that are output from the detectors are used to control the pointing
direction of the antenna. This is done by feedback of these signals to servos that controi the
position of the antenna. Type Il servos are usually employed for this purpose [68]. We note
that the long range assumption (implying small angular separations of the scatterers) will often

allow the effects of the servos to be ignored.
4.3 Received Signal

We now describe the received signal in terms of the scattered field. First we define, in
earth- or radar-coordinates, the radar boresight direction Bzs = (8,, 8.), and the radar-to-ith

scatterer sight line, /31' = (Ba.-’ Bez)' The antenna gain associated with the ith scatterer is then

given by G (8; — Bgs) where

GBi— Bas) = G(Ba — Bas Be, — Bo)- (4.10)
With this definition each IF signal has the form (from (4.8) and (4.5))

=y jlo—w N — - N = Ty A
V(D)= g(R)e'“™"" § KG @, — Bps) b74(R,, 8 bz- (4.11)

i=]
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More specifically. there are three signals of interest: one sum and two difference signals.

Each signal has an associated sum and difference pattern (G:(B), GAH(E)’ and GAe(E)) and
complex, front-end gains (K, K, , and K,,). Suppressing the first two terms of (4.11), the

sum, azimuth-difference, and elevation-difference signals become

N . - —_
Ve() = Ky ¥, Gz (8, — Bas) 14 (R;, 8))br. (4.12a)
j=]
N —- —- —_
Vaa(t) = Kso Y Gao B, — Bas) B{#(R;, 9.) bz, (4.12b)
=l
N - -
VAe(t) = KAe 2 GAe(Bi - Bgs)ﬁ'}:‘ii,-(R,-, 9,‘)[313. (4.12¢)

=]

The three antenna patterns are derived from (4.9) where we have assumed that each of
the four radiators that comprise the antenna have identical patterns and that each is offset

relative to the radar boresight. The sum pattern is represented by

— 4 4 — -
GZ(BI‘) = GZ(Bai: Bei) = 2 G(Ba1 - Baj’ ﬁe,. - ng) = 2 G(ﬂ, - BJ) (4138)
j=1 Jj=1
where ﬁj = (ﬁaj, Bej) represents the associated radiator’s offset relative to the radar boresight.

The difference patterns are represented by

Gaa@B)=GB-B)+GB-B)~-GB—B) - GEB~— B (4.13b)

and
Gy,B)=G@E-B)+GE—-FBy) —GB—By) — GEB— By (4.13¢)

Equation (4.11) is our fundamental representation ‘of the monopulse-radar received-signal
due to N point-sources. Representations of this for radar-system have been used for analyses by
others; the most common use assumes a mix of independent processes and deterministic func-

tions for one or several of the target parameters (e.g. Refs. 11, 19, 20, 23, 24, 25, 75, and 76).
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4.4 Sea-Surface Multipath Effects

If the target is a surface ship, then for small and moderate radar-to-ship grazing angles,
sea-surface multipath affects the received signals. These multipath effects alter both the signal

illuminating the ship and the scattered field.

As discussed in the introduction, the effects of multipath on the received power of a sig-
nal transmitted by a point source is well understood but an apparent-point-source representation
of the scattered field has only been determined for the specular component. However, because
the diffuse scattering arises from scattering over a large area, there are at least several scatterers
comprising the ship at any aspect, and we are interest in only a representation of "average" seas
(determined only by a sea-state parameter), we will model the diffuse vector’s location point as
the associated target’s image-point. Although we will develop glint equations using this model,

clearly it is not restrictive and the method applies for other diffuse models as well.

To be consistent with the multipath models employed, we assume that the radar’s antenna
has a beamwidth wide enough to fully illuminate the first several Fresnel zones about the spec-
ular point (defined in Fig. 4.2). We note that this assumption will hold even for relatively nar-
row beams if the radar-to-target range is large. Because of our assumption of low grazing
angles and the reasons stated above, we also ignore time delays associated with the multipath

signals, noting that when analyzing range-tracking errors such delays should be accounted for.

It is shown in Ref. 46 that if the received field is D without multipath effects, then with
mulitipath effects the received field becomes

T=D+R (4.14)

where the total received field, 7, is the sum of the direct field, D, and a reflected field, R. The

reflected field appears to the receiver to be transmitted from a point located at the transmitter

image reflected about the plane of the sea surface (Fig. 4.2). The reflected field is modeled as
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the sum of two components, one that is deterministic and coherent, relative to the direct field,
and one that is stochastic and incoherent,

R=C+T (4.15)
The coherent and incoherent fields are also referred to as the specular and diffuse fields, respec-
tively. For convenience (4.14) is usually normalized relative to the direct field Dby

T=FD (4.16a)

where Fis a multipath coefficient defined by

F=1+pc+p; (4.16b)
where
pc = pe’e, (4160
and

The phase angle a is due to path length differences and sea-surface reflection characteristics.
The in-phase and quadrature terms, pp and pg are zero-mean Gaussian processes. Curves
defining the variance of the p; process (assuming that pp and po have equal variances) are

presented in Ref. 49. To account for the fact that the scattering coefficients p and p,; depend

on geometry we use the notation

F=F(R, 9 (4.16d)
and for the ith US we abbreviate (4.16d) by

F,=F(R, ). (4.16e)

Because the sea surface, radar, and target effectively do not move during the time of pulse
transmission and reception at the radar (for the problems of interest here), the transmit and
receive modes are reciprocal. Therefore the transmit and receive multipath effects are identical

except for the effects of the transmit and receive radiation patterns of the antenna and target.
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Because the ship is close to the scattering surface, the multipath image locations are close
to their associated scatterer locations. Note that if the antenna pattern and geometry are such
that G (B, — Bgs) = G(,Ej — Bps) for all iand j, then the received signal can be approximated
by

V(D) = g(R)“™'KG @ — Ba) 3 PR, 5T (R, T)ie. @17

i=1
However if the antenna effects on the direct versus the reflected signals are to be accounted
for, we must view the reflected signal as arising from a source located below the surface of the

sea. As is often done [49] we model the source-location of the reflected signal as the apparent

location of the specular reflection (Fig. 4.2).

To modify the equivalent-point-source multipath coefficient (4.16a) to become an N-
source model (N = 2), we view the problem as follows (where for clarity we assume that the
propagation and scatterer reflection effects are accounted for in g(:) and #(-,*)). Assume that
the incident field at the scatterer has the form E = FE; where E is the direct field (no mul-
tipath). Then if we view the scatterer as transmitting the signal FE,, then the signal received at
the radar will be F2E,. From the point of view of the radar, the received signal appears to have
a direct component D = FE, and a reflected component R = (o + p;) FE,. Therefore we
separate the two-way multipath coefficient F? for the ith US into direct and reflected
coefficients:

E;=FEy=(+pc +p)FE
= FiEy + (F,— )F,Ey= D, + R, v (4.18)

Finally, we need the direction of propagation for D; and R,;.

If in a given coordinate system R, locates the ith scatterer and Ry locates the receiver,

then the direction of propagation for the ith direct signa! is given by

—_—

R, = Rz - R,. (4.19)



In earth-axis, cartesian coordinates,

Rp=(R,— R, R, — R, hg—h) (4.20)

where hz and A; are the heights of the radar and the ith source above the earth. Therefore the

direction of propagation for the direct and reflected field components are

Ry
fp = —=— (4.21a)
1Ry
and
Ry
Pr,= 5T (4.21b)
'~ TRg |
where
R.Ri é (RXR - RX,’ RYR - Ry,’ hg + hi)' (4.22)

With the separation of (4.18) and (4.21), we see that by viewing the reflected fields as an addi-

tional set of N scatterers, Eq. (4.11) becomes

— i N — — — —
V() = g(R)e“ ™K 3 (GB, — Bss)F, + GBron — Bas) F,(F, — DIpFAB]. (4.23)

=1

Though we use this point-source model to account for the effects of mutlipath, USs result
from surfaces that are distributed in space. When there is no mutlipath we can represent the

scattered field from a US by

e jke#® ¢ E o
B~ L f —F L x G x )] x 7t T as” (3.16)

Using the point-source multipath model to represent the incident field, we répresent the scat-

tered field in the presence of muitipath by

(7 x (F x 8)] x fe~ ¥k T 4s’ (4.24)

jkef"R f EyF 2(7)
2mR Vs n
where F(7) represents the complex multipath factor at the point 7. If over S,

TS =~
Ey, =

F(F)=F, (4.25)
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then we have the point-source representation described above:

ES, = FJE°. (4.26)
Although data collected by the Naval Research Laboratory and analyzed by the author indicate
that F(7') can often be approximated by an azimuth-independent process over relatively large
variations in azimuth, other data have shown [77] that F(¥) rapidly decorrelates in elevation.
Therefore for most USs, representing E,S,,p by (4.26), with Fy = F(7) where 7 is the ith US
location, will not be valid. The difficulty raised here is, to our knowledge, an open question:
can the target effects and the multipath effects be represented in (4.24) in a way that vields an

equivalent-point-source model for the scattering?

As stated above, the point-source multipath model is valid when the transmitting and
receiving amplitude patterns {(gain pattern for an antenna) are not narrow. This constraint will
likely hold for the sphere type and corner-reflector type of US amplitude functions. For the
highly specular flat-plate type a modification to the multipath effects may be required analogous
to the antenna gain-pattern correction suggested in Ref. 49. Such a modification was not made

in the simulation.

Because multipath is but one parameter (though an important one) affecting the ship
scattering and because the point-source model presented here is the only validated stochastic
model of over-water multipath that we are aware of, we have used it in our simulation studies.

In Chapter 9 we discuss results obtained using this modeling approach in the simulation.
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CHAPTER 5

UNIT-SCATTERER MOTION MODELS

In this chapter we develop equations of motion for an arbitrary US location because this
motion determines the amplitude and phase variations in the received field. Our purpose is not
ship-motion modeling per se but US-motion modeling for use in analyzing and simulating scat-
tered fields. However for completeness, we will investigate two basic approaches to ship-
motion modeling. In Sec. 5.2 we formulate a motion model that assumes knowledge of the sea
forces that cause ship motion. Then in Sec. 5.3, we discuss a frequency-response model that
has been quite useful in ship-motion modeling given knowledge of the sea spectrum. It has
been used by the David Taylor Naval Ship Research and Development Center (DTNSRDC) to
generate libraries of center-of-gravity-motion (cg-motion) spectra for various ships (e.g, Refs.
78 and 79). In later chapters we begin our analyses and simulations by assuming knowledge of
these cg-motion spectra. Because these motions are zero-mean Gaussian, the associated spectra

are all that is required to completely specify them as stochastic processes.

Our reliance on the DTNSRDC spectra is not without its costs. Because of a strong desire
to develop models that are intuitively appealing and easy to work with (assuming a minimal
background in mathematics), the sea-surface model that has been develope& by the oceano-
graphic community is in a form that is nonstandard reiative to the system-theoretic formulation.
The differences are slight but confusing and can lead to errors if not correctly accounted for:
the spectrum is defined for positive frequencies only and so that the integral of the spectrum is

the energy in the sea surface (at a point on the surface). To minimize the confusion that
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would result when the tabulated spectra are used in a simulaticn, we have chosen to follow the
nonstandard, oceanographic spectrum-formulation. This will allow us to directly use the tabu-

lated (nonstandard) spectra.

5.1 Approaches to Linearization

We use linear equations because we are interested primarily in small deviations in the
target’s motion from a nominal trajectory, we are interested in target motion modeling oaly
over relatively short periods of time (usually on the order of seconds to no more than several
minutes), linear equations are widely used in the study of both ship and aircraft motion, and
linear equations are easy to work with. There are two basic approaches used in developing linear
equations of ship motion. The first approach is to transform Newton’s six nonlinear force and
moment equations from the target’s cg axis-system to an axis system that is determined by tar-
get symmetry. The equations are then linearized in the symmetry axis-system. We call this the
transform-first approach. The second approach is to assume linear, second-order differential
equations in the cg axis system to describe the six forces and moments. The various
coefficients are then estimated via calculations or measurements. We call this the linearize-first
approach. The choice of approach usually depends on the ease of obtaining values for the
equation coefficients and the feasibility of measuring the modeled forces and moments for the

target of interest.

The transform-first approach to linearization is strongly dependent upon target structure,
especially symmetry. Using this approach, various sets of linear equations have been developed
for ships and aircraft. The form of these equation sets varies depending on intended- applica-

tions.

The linearize-first approach begins with a set of linear, second-order differential equations

for the ships’ cg-motion. Therefore assuming rigid body motion, the equations of motion for an
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individual US have the same form regardless of target structure. We will use the linearize-first

approach in developing ship motion models that are useful in ship scattering studies.
5.2 Motion Equations Given the Driving Forces and Moments

We begin by deriving a set of motion equations for an arbitrary US location by assuming
knowledge of linearized equations of motion for the target’s ¢g and the driving forces and
moments. We also assume that the target undergoes only rigid-body motion and that the six

motions of the target are uncoupled (i.e., u=x, v =y, ..., r = ).
5.2.1 Definition of the Axis Systems

We use two axis-systems in describing US motion: an earth axis-system and a target-body
axis system. Each system is right handed with z-axes that are positive upward (relative to the

garth).

The earth axis-system is fixed relative to the earth’s surface (assumed 1o be flat) with
its origin located at some fixed but arbitrary point relative to the earth’s surface. The
x -y axes-plane is located parallel to the plane of the earth’s surface and the z-axis is

oriented positive upward. Vectors represented in earth coordinates have no superscript.

The target-body axis-system is fixed relative to the target with its origin at the target’s
cg. The x-axis is parallel to a longitudinal line-of-symmetry for the target, positive for-
ward. The j~axis is parallel to a transverse line-of-symmetry for the taréet. The z-axis is
positive upward. Vectors represented in target-body coordinates will be superscripted

with B.

Figure 5.1 illustrates these axis systems.
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Fig. 5.1 — lllustration of the fundamental axis systems and position vectors
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5.2.2 Morvion Equations for the Target's Center of Gravity

Following the notation in Ref. 80, the six equations of cg motion have the form

2

. dx.
A N Ry =Flw 1), i=1 ... 6 (5.1)
dr? dt

In (5.1) we use the notation F,(w, t) to describe each input force and moment. We assume

that the F,(w, f) are stochastic processes. For convenience we rewrite (5.1) as

d*x dx
——)—C'—+2hi7tl+v,xi=ﬁ(m, 0, i=1,...,6 (5.2)

where 24; represents a damping factor and » ; represents a natural undamped frequency of oscil-

lation of the target. Writing (5.2) in state variable format we have

X =A% + Bi?i (5.3a)
where :
_10 1
4= —2h,~] (5.3b)
and
B, = [‘l’ (5.3¢)

(5.3d)
fi=©, fHT.
We define the state of the target-motion system as the vector of position and velocity
variables of the six motion equations:

T=( 50925 é 6600 07 : (5.4)
where x, y, and z are the linear coordinates and ¢, 6, and ¥ are the angular coordinates of the
target’s cg. Because the motions are assumed to be uncoupled, the state vector becomes -

X=W, uyv,2zwo p8 g rT (5.5)
where u, v, w, p, ¢, and r are the usual variables of a six degrees-of-freedom model; that is, u,
v, and w are the linear rates of change and p, ¢, and r are the angular rates of change. The sys-

tem differential equations can now be written in the form
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X = A% + Bf (5.6)

where 4 is a 12 X 12 matrix with the form

Ax
4, 0
- A,
4= A, (5.7)
Ay
0 A,
with the A4, defined by (5.3b). The B matrix is the 12 x 6 matrix (from Eq. (5.3¢))
© 0 0 0 0 0]
1 0 0 0O 0 O
0 0 0 o0 0 O
o t o 0 0o O
oo 0 0 0 o0
B=i0 0 1 0 0 0 (5.8)
O 0 0o 0 0 O
0 0 o0 1 0 O
0O 0 0O o0 0 O
o 0 0 0 1t O
6O o O o o0 O
0 0 0 0 0 1]
The input vector is
F= Sy for for for SO (5.9)
For given A; and v, coefficients (5.6) can now be solved. The solution is
(1) = ®(OFO + [ @t~ 1)BF(r)dr (5.10)
where @ (¢) is the 12x12 block diagonal matrix
d, (1)
@yl ®,(1) ’
t
b4
(D(t)= q)¢(t) . (511)
0 D, (1)
o, (1)

Each &,(¢) in (5.11) is the 2 x 2 transition matrix associated with the appropriate 4; from

(5.3a).
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3.2.3 Motion Equations for the Unit-Scatterer Locations

The location of the ith US (ith peint) on the target (in earth coordinates) is given by

o —_— t
R =R+ [ V(rdr
= (R, R, R)T (5.12)

where V(1) is the velocity of the ith point, and R; (0) is the initial location of the ith point.

Now

V(t) = Vlt) + (1) x RE (5.13)

where VCg(t) is the linear velocity of the target’s cg (T/'Cg(t) = (y, v, w)D, @(¢) is the angular
velocity of the target @(1) = (p, ¢, r)7), and RZ = (x;, y;, z)7 is the location of the ith
point relative to the target cg in target-body coordinates (which, for rigid bodies, is constant) so
that

R0 =RO + [ 17,) + @) x REm)ldr. (5.14)

Expanding the cross-product term we have

@ X RB= (g9 — yir)i + (xr — zp)j + ip — xq)k. (5.15;

Equation (5.14) can now be written in the form

in(t) in(O) du+ Gg—wn
R, (D} = R, (0) +f0 v+ (gr — zp) | dr

Rzi(t) LRzi(O) W + ip — xq)

u

in(o) I 1 O 0 0 Z,~ —y" v

=R+ [ Jo10-z 0 x||¥ar (5.16)
’ loot1 y -x 0]]% ‘
{Rz,(O) | Yi i q
‘ r

By the decoupling assumption (Egs. (5.4) and (5.5)) (5.16) becomes

_ - ¢ 1 0 0 0 2; =V
RO=RO+[|010-2 0 x dr (5.17a)
001 y

. BN K
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= R + [ T%ar (5.17b)
= R,(0) + T.[x(1) — X(0)] (5.17¢)
where ¥ is defined by (5.4) and

100000 0 0 z 0 -y 0
T,=1001000 -z 0 0 0 x O (5.18)

000010 y 0-x0 0

Substituting (5.10) into (5.17¢) we have the position of the ith US as

R0 = RO + T[o030 + [, 0 - nEFw)ar| - 7700
— t —_——

=RO + 1[@0 - 00) + [ ot~ nBEF@)ar]. (5.19)

Next we wish to obtain the components of the impulse response matrix for the motion of

the ith scatterer (in earth coordinates). Relabeling (see (5.11)) the transition matrix as

®,
b, ® 0
3
d(1) = o, (5.20)
0 ®,
b
where
D, D12
N i 5.21
® D, @2 (5.21)
we have
— — T
b1t 0 0
b1,12 0 0
0 b2 11 0
0 2,12 0
0 0 ®3 11
T®(t) = 0 0 3,12 (5.22)
0 =zia, 11 Vida 11
0 —=Zziha 12 Vi 12
z0s 11 0 —x¢s51
oo, 12 0 —xds5 12
=yids, 11 Xibs 11 0
=Vibs, 12 Xide, 12 0 ]
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so that the impulse response matrix becomes

_ |2 O 0 0 505,12 —Vids, 12
T®B=| 0 o715 0 —zdsn 0 Xibs, 12 (5.23)
0 0 @312 »ds 12 —Xxdbs 12 0
Finally we note that

((bl,ll - 1) 0 0 a7 X()
?1,12 0 0 Up
0 (¢2’11 - 1) 0 Yo
0 2,12 0 v
0 0 (¢3,11 - 1) 2y
T[o() — 20 = 0 0 ®3.12 Wo
0 ~z(pg 11— 1 yildan—1 bq
0 =204, 12 Yi®a, 12 Do
Z,-((b5_11 - 1) 0 ‘Z,-(d)s‘n - 1) 90
705,12 0 —Xx;$s, 12 qo0
—yide 1 — 1) x(dg =1 0 o
L —Vi%e 12 Xibs, 12 0 . To

(¢1.11 — Dxg + &1, 1240 + z(@s 11 — 8o + 205,120 — yildg 11 — Dirg — yidbg, 1270

(2.1 — Dyo + d2.12v0 — 2 (@a 11 = 180 — 24,1240 = X (e 11 — Do + xibg 1270 |. (5.24)

(¢3.11 — Dzo + b3,12w0 + yi(da 11 — D8g + yidba 1290 = xi(ds 11 — Do — X005, 1270

5.3 Motion Equations Given the Sea Spectrum

Although ship-motion studies date back to Froude [81] and Krylov [82], it has only been

within the last thirty years that ship motions in realistic seas have become predictable with

some confidence [83]. The sea surface (waves) causes most of the nonmaneuvering ship

motion and the major difficulty in modeling ship motion was the lack of an accurate model of

this surface. The early sea-surface models were deterministic and therefore, because of the

complexity of the surface, quite limited. In 1952, a stochastic model for the sea surface was

introduced by Pierson [84]. Then in 1953, St. Denis and Pierson [80] introduced a ship motion

model that coupled the stochastic sea-surface model with linear ship-motion equations to pro-

duce a method of describing ship motion that is still used today. The linearize-first model of

this section is based on this method.
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5.3.1 Assumptions

There are four fundamental assumptions made by St. Denis and Pierson that allow the

linearization of the ship motion equations. They are {80}]:

(1) The theory is restricted to vessels of the displacement type (e.g. this excludes

planing and hydrofoil craft).

(2) The Froude-Krylov hypothesis holds: the waves act upon the ship but the ship

does not act upon the waves.

(3) The theory is restricted to uncoupled motions, and the motions are assumed to be
independent (e.g. this restricts the theory to vessels where the water-planes are

quasi-symmetric fore and aft).

(4) The motion response is assumed to be a linear function of the exciting, restoring,
damping, and inertia forces (e.g. this restricts the theory to vessels that are wall

sided).

Given these assumptions, each of the six (decoupled) motions can be described by a linear

equation of the form

d*x dx 1 .
— - = — . .
— 2h VX =] f(8) (5.25)

Of the six possible motions (referred to as roll, pitch, yaw, surge, sway, and heave), three
are dominant contributors to the ship motion: heave, pitch, and roll. However for generality,

we include all six motions in the solutions.
5.3.2 Sea Surface Model

As stated previously, the Pierson sea-surface model is the basis for describing ship

motion. This model describes the height of the surface (wave height) relative to its mean-level
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as a function of position and time. The model is a second-order, Gaussian stochastic process
with a spectrum that is directional. The spectrum is the most important parameter of this
model and various models for it have been developed including those by Neumann [85],
Bretschneider {86], and Pierson and Moskowitz {87]. In general, experimentaily measured

wave height spectra have the following major characteristics (@ > 0):
. the spectra are smooth
e  there is a dominant frequency (single mode)
® the spectral shape is "bandpass”
L tl?ere is asymmetry to the spectra; there is more energy in the higher frequencies.

Figure 5.2 is an illustration of a spectrum exemplifying these characteristics. Next we present a

description of the sea surface using the nonstandard, oceanographic approach.

Given a process n(¢) that is stationary, an autocovariance R (7) and a spectrum F{w) for
the process can be defined by the relations

R() = [ e Flw)do (5.26a)

and

1 = ~jor
F = 5= [ e/ R@ar. (5.26b)
Note that associating the 2w with the forward transform allows the variance to be defined as
simply 'the integral of the spectrum.” The "spectrum"” of the sea surface, S(w), is defined for

positive frequencies only by

S{w) = 2F(w). (5.27)

Because wave-height is a real process, Egs. (5.26) are usually expressed as the real cosine
transforms

R(r) = j:)m cos wrS(w)dw (5.28a)
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and

S(w) = % f: cos wr R () dr. (5.28b)

The Gaussian sea-surface is represented by the stochastic integral

n(t) = fo“’ cos (@t + 6 (@) V25 (@) dw. (5.29)

The integral in (5.29) is defined as a quadratic-mean limit of a sequence of random partial
sums,

N

—00
@IN

wyN+2 w0

Py
where ¢ (w;) is a sequence of independent random variables that are uniformly distributed over
(0, 2#). This integral was formally introduced by Levy [88] and was used in sea-surface
modeling by Pierson (891 (and noise-current modeling by Rice [90]1). It allows the intuitive
interpretation that n(¢) is made up of an infinite number of randomly phased sinusoids with
amplitudes that are determined by the sea spectrum. Most importantly, Eq. (5.28a) is useful

for simulating samples of the process n(¢) by making the approximation

N
n(t) = n,(t) = ¥ cos lw;r + ¢(0)] /25 (w)Aw,;. (5.30)

im]

Also, samples of the solution of

d’x dx
£x 4 AT = 5.31
dr? 2h a0 (1) (5.3D)
can be simulated by
N ;
x() =¥ x(t) (5.32)

=1

where x(¢) is the solution of (5.31) for

() = n,(t) = cos {w,;t + p(w)] V25 (w)Aw,. (5.33)

This is the equation that we will use in Chapter 6 to simulate the various ship-motion

processes.
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Although (5.29a) describes the vertical motion (force magnitude) of the sea at some loca-
tion on the surface, it contains no information describing the "direction of propagation" (force
direction) of the sinusoidal components. Though we will not require a two-dimensional
representation in later chapters, for completeness we present a brief description of the one com-

monly used. This model also follows the nonstandard formulation.

The directional effects are accounted for by a simple heuristic modification of the sea-
surface spectrum. (Note that because of the nonstandard formulation, the directional sea-
spectrum is not a spectral density in the sense of two-dimensional random fields [91] and that it
must also be used with caution.) The directional sea-surface spectrum S (w, (_9) where 4
represents an angle measured relative to a fixed direction, has been described [92], based on

empirical measurements, by

Cl;‘ ‘”—66—2325':_214'2
L {1 4 (0.50 + 0.82 emV2 Nt o 29
™ .
S(w, 8) = (5.34)
—4, 4,4 w) S w S =
+(0.32 e~ V287 Yy o5 49},
- I<os T
2 2
0 , otherwise.

(g is the gravitational constant and u is the mean wind speed). Another model, used by Pier-

son, Neumann, and James [93], is

wy S @ L >

»

N

T T
- <

—f —o2p =22
Cw e 2870747 cog29

S(w, 9) = 0 (5.35)

, otherwise

where g = 980 cm/s?, and C = 1.53 x 10* cm?s™3. Not only is (5.35) simpler than (5.34), but

it has been found to be a very good approximation for actual seas [92,94] where high frequency
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components (frequencies greater than about one hertz) are not significant. The "spectral

representation” of the sea surface at some point (x, y) as a function of S(w, 8) is [89]

oo /2 2 -
ni{x, y t)= fo f / cos w? (xcosf +ysinf) —wt +dlw, )] V2S(w, §)dwds. (5.36)

—-a/2

The usefulness of (5.36) is that it represents n(¢) as a summation of sinusoids of frequency w
and direction 6, traveling in the mean wind-direction (§ = 0), distributed in energy and direc-

tion as described by (5.35). Figure 5.3 is a qualitative illustration of this interpretation.
5.3.3 Response Amplitude Operators

As we saw in the previous subsection, the sea surface can be modeled as a Gaussian pro-
cess so that different seas are described by specifying their associated "spectra.” Building on this
fundamental role for the spectrum, St. Denis and Pierson developed a frequency response
model of ship motions. The system response functions describing the interactions between the
ship and sea are called response amplitude operators (RAOs). The RAOs are the frequency
response of the various degrees of freedom of the ship to the wave motion. Given the wave-
height directional spectrum, S(w, 9), and the ith degree-of-freedom RAO, R,(w, 9), the asso-

ciated response spectrum is

w/2 w/2
Siw) =f_ﬂ/2 Si(w, 8)d9 =f_ﬂ/2 IR/, )1’S(w, 9)d, i=1,...,6. (537

In terms of system theory, one can think of R,(w, 8) as the frequency response of a system
whose input is the stochastic wave motion along direction # and whose output is the ith dof
ship motion. The total motion due to the sea is then computed by incoherent, -linear superposi-
tion (Eq. (5.37)) of the contributions from each wave dir;ection. Figure 5.4 illustrates this con-

cept assuming a finite number N of wave directions.

When a ship moves in a directional sea, the response of the ship to the sea is a function
of both ship speed and heading relative to the sea-wave direction. The RAOs are derived with

reference to a system of coordinates fixed in space and oriented so that the x-axis is positive in
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the direction of the ship’s heading. To account for the speed and direction effects, a transfor-
mation from the fixed coordinate system to the ship’s coordinate system is introduced. This is
simply a frequency transformation that maps w into the "frequency of encounter" w, by {80]

o2
we=w = =~ V cos x (5.38)

where Vis the ship’s speed (¥ > 0), x is the ship’s heading (relative to the sea), and g is the

gravitational constant. Equation (5.37) now becomes

w2 ‘ w/2 )
S@=[" S 0d=[" R, dISw 0)ds, i=1 .. 6 (539
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CHAPTER 6

SIMULATION OF THE UNIT-SCATTERER MOTION

Our goal in this chapter is to develop a simulation of the six degrees-of-freedom (6 dof)
motions for the US geometric-centers which are caused by sea surface motion and ship
maneuvering. It is well known that sea-induced motions can be accurately described as zero-
mean Gaussian processes. The David Taylor Naval Ship Research and Development Center
(DTNSRDC) has utilized the St. Denis-Pierson model of ship motion (described in Chapter 5)
to generate, via simulations, libraries of ship-motion "spectra,” which complete the specification
of the processes. These "spectra” have been generated for various ships assuming various sea
conditions and ship speeds. The method of RAOs described in Sec. 5.3.3 is used to generated
the ship-motion "spectra" and time-domain realizations for the 6 dof motions of various loca-
tions on each ship. Some results of this work are presented in Refs. 78 and 79. Because we are
interested in studying the ship motions per se and not in studying the physical processes by

which these motions are generated, we base our motion model on the DTNSRDC "spectra.”
6.1 Motion Model

Because we are assuming rigid body motion and that the sea-induced motions are small
and uncoupled (assumptions consistent with the St. Denis~Pierson model) we only require
knowledge of the center-of-gravity (cg) motions and of the scatterer locations relative to the
ship’s cg. Given these, we use (5.17) to yield the position of the ith scatterer (relative to an

earth-coordinate system) as a function of time. We modify those equations here to be

Ri(1) = R,(0) + T;[%, (1) ~ %, (0)] (6.1)
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and

100 0 z -y
T,=1010-z 0 x (6.2)
001 y =-x 0
where X, () is the position vector (reduced state vector) of the ship’s cg, and R, (1) is the posi-

tion vector of the ith scatterer, both in earth coordinates.

Equation (6.1) was derived assuming small uncoupled motions. For our studies we are
interested in scattering from various aspect angles. These aspect angies result from apparent
translations and/or rotations of the ship relative to the radar. For example, the ship may be
located at some position ﬁo and aspect angle y, relative to the radar boresight axis (Fig. 6.1).
These large aspect variations are due to our choice of radar-ship orientation and to ship
maneuvering. Our approach to accounting for these effects is to specify the sea-induced
motions in a local coordinate system and then transform that solution to an earth-coordinate
system located at the radar. This allows us to retain the linear uncoupled solution (6.1), rather

than the general nonlinear solution (from (5.16)),

(6.3)

2
3

ﬁ,(t) = R.,(O) +f0t

~QW T TR

We start building the simulation by assuming knowledge of the sea-induced ship-cg
motion, %, (¢). This motion is given in local (ship) earth-axis coordinates. This local system is
defined by the ship-axis and the earth-axis systems being coincident for 'fcg({) = 0. We then
locate the ship-axis system in space according to ship maneuvering and positioning by the trans-
lation

R =R O+ [ V,@ar (6.42)

and the rotation
cos ¢ cos® cos ¢ sin 9 sin ¢ — sin Y cos @ cos ¥ sin § cos ¢ + sin ¢ sin @

T,(t) = |sin y cos 8 sin ¢ sin @ sin ¢ + cos ¢ cos ¢ sin Y sin 8 cos ¢ ~ cos ¥ sin @ (6.4b)
—sin & cos 8 sin ¢ cos 6 cos ¢
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where 175([) is the linear velocity of the ship’s cg in earth-coordinates, and &, 4, and ¢ here
denote ship-axis system orientation relative to the radar-site earth-axis system, not components

of a motion vector. The position of the ith scatterer now becomes

RE() = T,(D{REO) + T(RL () — (0]} + RE() (6.5a)
= T,()RF(t) + RE() (6.5b)

where the superscript L denotes local earth-coordinates and the superscript £ denotes radar-site

earth-coordinates. We note that the sea-induced motion X, (¢) is, in general, a function of ship
maneuvering. Ship rotations due to maneuvering (included in 7,(¢)) are not accounted for in
the DTNSRDC data and it is well known that in hard turns, ships’ responses to the sea are not
the same as in straight-line motion. Therefore we restrict our studies to maneuvers character-
ized by straight-line motions with constant forward speeds and/or turning maneuvers in which
we assume that the turns are small enough that their resulting motions are independent of the
sea-induced motions. This allows us to use the solutions ch(t) that are tabulated by
DTNSRDC as a function of ship speed. Once we choose a ship speed (i.e. ¥,(¢)) we then

obtain the appropriate X, (¢) processes.

Summarizing to this point: we begin our scatterer-motion model by assuming that the
sea-induced and maneuvering motions are independent except that T/'S(t) determines the choice
of cataloged motions X, (s). We then solve (6.1) for sea-induced scatterer motions and then
(6.5a) for maneuvering effects. Note that the sea-induced motions can be viewed as Gaussian

perturbations of the maneuvering motion.
6.2 Model of the Spectrum

Equations (6.5) are our fundamental equations for calculating phase due to scatterer
motion. They require three parameters for solution: ship position and orientation due to
maneuvering, scatterer locations relative to the ship’s cg, and ship’s cg motion. Maneuvering is

application-dependent and the scatterer locations are determined by target structure. The third
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parameter, ?c'cg(t), is always a zero-mean Gaussian process with spectra that are functions of

ship type, ship speed, and sea conditions. This section discusses the simulation of Fc'cg(t).

We simulate X, (¢) using the method discussed in Sec. 5.3. There it is shown that we can

approximate a Gaussian process with arbitrary energy "spectrum” S(w) by (5.30),

() = 3 \/I5(@)Ba; cos (w,t + 6(w) 6.6)

=]

where the &(w;) are independent random variables uniformly distributed on (0,27). The

processes are compietely determined by specifying the "spectrum” S{w) for each component

process. The "spectrum” can be defined by an analytical expression or by tabulated data.

Clearly, the motion spectra are our fundamental model inputs. DTNSRDC has calculated
and tabulated, on microfiche, "spectra” for various ships and operating conditions. An example
of this data is shown in Table 6.1. Reference 78 describes the DTNSRDC method and illus-
trates it with specific examples: cg motion for the DD963 moving at ten knots in two sea con-
ditions. Because detailed data for these examples are presented in Ref. 78, we use one of them
to obtain the motion processes for the studies of this dissertation. In particular, we use the
processes resulting from the DD963 moving at ten knots in a fully developed, shortcrested
(irregular) Bretschneider-spectrum (Table 6.2) sea and moving at a 30 degree heading relative
to the dominant sea-wave direction. The associated motion "spectra" are shown in the third
column of Fig. 6.2. Figure 6.3 illustrates the cosine-squared spectral weighting used to produce
the shortcrested wave spectrum. Clearly, the spectral shapes vary considerably as a function of
ship type, speed, and heading and sea conditions. Although the simulation can use the
DTNSRDC data directly in specifying S{(w) in (6.6), we prefer to use an analytical expression.
This allows analytical formulations in analyses involving the motion processes and more flexi-
bility in the simulation. However in doing so, we must approximate the spectral forms. This is
not a significant problem because we are concerned with very short time periods (on the order

of one second) for the scattered signal to evolve relative to the time required for the motion
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Table 6.2 — Bretschneider Spectrum and Associated Statistics (from [78])

Single Amplitude Statistics

Root mean square amplitude, rms 1.00 &
Average amplitude 1.25 o
Average of highest 1/3 amplitudes, significant 2.00 o
Highest expected amplitude in 10 successive
amplitudes 2150
Average of highest 1/10 amplitudes 2550
Highest expected amplitude in 30 successive
amplitudes 261l o
Highest expected amplitude in 50 successive
amplitudes 280 o
Highest expected amplitude in 100 successive
amplitudes 303 o
Highest expected amplitude in 200 successive
amplitudes 3250
Highest expected amplitude in 1000 successive
amplitudes 3 N2 o
Definitions
a? = Statistical variance of time history
N = Number of successive amplitudes

Bretschneider Spectrum S (w)
Aw™ exp [-B/w?*] in ft¥/s

= 483.5 )}y T4, ft3s*
= 1944.5/T¢, s

= Average of highest 1/3
wave heights

= Modal period of spectrum,
i.e., period corresponding
to peak of spectrum

CONSTANT = 2 (InN)Y?, where CONSTANT relates o to the highest expected amplitude

in N successive amplitudes.

Notes:

1. The highest expected amplitude in N amplitudes is the most probable extreme
value in N amplitudes. This value may be exceeded 63 percent of the time.

2. To obtain wave height or double amplitude statistics from rms values, rhultiply

single amplitude constants by 2.0.
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CRESTED RESPONSES

PITCH (deg) ROLL (deg) HEAVE (f1} SWAY (tu SURGE (ft) WAVE HGT ify

YAW (deg)

0.00 3006 4000 00000 2000 40.00 00000 2000 40.00 00000 20.00 40.00 0.0000 20.00 40.00 0.0000

1.00 2.00

200 000

0.00 100

DD 963 SHORTCRESTED RESPONSE SPECTRA

SPEED = 10.0000 SIGWH= 10.0000 TMODL = 11.0000

f

[N T~
I N N
| P P AN A Pl
| AN I i T~
I A /\ AN Py
;,, {\m - {\m - {\LT e e e e
\ . . . w w w

HEADINGS (deg), OMEGA E
Fig. 6.2 — Example of tabulated spectra for the DD963 (from [78])
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PREDOMINANT {0.3%4)
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(0.408)

%O
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NOTE: NUMBERS IN PARENTHESES ARE
SHORTCRESTING WEIGHTS.

Fig. 6.3 — Shortcresting scheme for the example wave spectrum (from [78])

77



processes to evolve significantly {on the order of tens of seconds). In other words, a ship does
not move very far in one second. Therefore, in generating the scattering processes we generate
very short "pieces" (realizations) of the motion processes. We quantify this observation in later

paragraphs.

6.3 Spectrum Algorithm in the Simulation

Visual examination of the spectra yields the following observations: they typically are uni-
modal, are band-pass, are asymetrical about the mode with more energy in the higher
frequencies. and have negligible energy in very low frequencies. These characteristics and the
desire for simplicity led us to propose using a spectrum of the form (following the notation of

(5.28a) and (5.28b))

Falw) = a’ + (:-— wp)? - a? + (: + wy)? 6.7
to approximate the motion spectra. For the appropriate choice of wy and «, the spectral
approximation is, for @ > 0, characterized as being unimodal, band-pass, symmetric about the
mode, of simple analytic form, and F(0) << F(w,) (Fig. 6.4). In the simulation we alter the
upper and lower spectral tails to introduce assymetry. (We remark that it has been the author’s
experience that (6.7) often well characterizes the spectrum of measured data and may be a

better approximation to the spectra of physical processes than the commonly used low-pass

form

2a .
T (6.8)

especially when wg = a so that F(w) has the form shown in Fig. 6.5; note that (6.7) becomes

Flw) =

(6.8) when wy = 0.) The autocovariance function of the associated energy spectrum

(S,(w) = 2F(w), o 2 0) is

R, (1) = fow 2F,(w) cos (w7)de

= 27e*!"l cos wyr. (6.9)
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In fitting (6.7) to the forms of Fig. 6.2, we specify five parameters: wg, a, o? (the process
variance), f;, and f, (lower and upper cut-off frequencies). Clearly, wg corresponds to the
center frequency of the process. We choose a based on the concept of bandwidth. If

$,(0) << S, (wg), we define the half-power bandwidth BW as the distance (in radians) between

the frequencies where S, (w) = 1 S, (wg). Since

2
Sa (wo) = L,
«a
we solve
1 o
S ( )= — =

a @12 2a a4+ (0~ wp)?

yielding
(1)1/2 — Wy = + a

or

mﬁ2==w0 + «. (610)

The process half-power bandwidth is defined by

BW= (1)172 - (!)1—/2

so that

o= %’. 6.11)

We modify (6.7) for the simulation to introduce an asymmetry effect by specifying asymmetric
upper and lower cut-off frequencies. For simplicity, we choose the lower frequency to be f; =
wo — BW and the upper frequency to be f, = wg + 2BW. The resulting spectral shape is illus-
trated in Fig. 6.6. Finally, we must specify the variance -of the process. Reference 71 gives the
spectral forms and the associated rms values (standard deviations) for thé cémponent pfocesses.
To generate a realization with the same rms value, we first generate a realization with a vari-
ance of one and then multiply by the desired rms value. The variance o2 of the truncated spec-

trum process is
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m0+ZBW 2
gl= [ @ + 2a } dw

wmBW a2+ (0 —wg)?  a’+ (w+ wy?
2w + 2BW 2wg — BW
= 2{tan'l 2BW | tan~! BW +tan~! |22 T an! l_‘"_g____]]
a [s a [o 4
- -1 4 + tan~! —1|4_ %0 — tan~! [4-20_ _ 5[} _
Z[tan 4+tan!'2 + tan"' |4 W + 4] — tan 4BW 2 (6.12)

For our example (Appendix A), wy/ BW varies from about 2.5 to about 3.5. For simplicity, and
with minimal loss of accuracy, we set wg/ BW = 3 so that o? = 4.940. Therefore we normalize

the simulated process by

1 1/2
F = lm—] rms {n(t)}

= 0.45 rms {n(1)} (6.13)

where rms {n ()} is the desired rms value for the simulated n(¢) process.
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CHAPTER 7

RADAR CROSS SECTION

In this chapter we develop equations for the RCS of an N-source target in terms of unit-
scatterers. Muitipath effects are accounted for by using the model described in Chapter 4. The
transmit and receive polarizations are assumed to be the same; no cross-polarization effects are
considered. We will focus our attention on the correlation properties of RCS over short time-

intervals.

7.1 Fundamental Representation

In Chapter 3 we showed that the RCS of a target comprised of N USs is

2

o) = 7.1)

N -
Y. o (R, 0 bz

=1

where, for the ith US, py is the transmitter polarization vector, pg is the receiver polarization
vector, 5,~ defines the US orientation (as a function of time), and R, defines the US-to-radar
range (as a function of time). For simplicity we assume that pr = pr = (1, 0)7 so that (from
(3.8a))

R.o)12

N ~ L3P i Vi
o) = |3 dy @Ge (7.2)

i=]

For practical reasons, measurements of ship RCS at low grazing angles must include the
effects of sea-surface multipath. Therefore we include a model of rﬁultipath effects in our
representation of RCS by modifying (7.2) by the complex multipath factor F(R, 9) (described

in Sec. 4.4) yielding

N = - = . Joy (R, 9 2
o =3 FA(R, 8)4,; (R, 8) e : (7.3)

=1
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As discussed in Chapter 4, Fz(ﬁ,, 9,) was obtained assuming that the US reradiates equally

toward the radar and toward the sea-surface specular point (Fig. 4.2). This is a good approxi-

mation for small radar-grazing-angles and when the US amplitudes are not strongly dependent

upon elevation. Otherwise, the elevation radiation pattern must be viewed as an antenna pat-

tern. This pattern is then accounted for using the same method as was used to account for the

radar’s pattern in Sec. 4.4,

7.2 Useful Equations

Equation (7.3) is the fundamental equation that we use to model RCS. In this section we

derive from (7.3) several other equations for RCS. These equations will prove useful for

analysis and simulation. Suppressing the 1—5,- and 5,~ terms of (7.3),

N o |2
O'(t) = 2 F,-ZA”,_ e ”'
i=1
and associating | F;|* with 4, ,
N ) f(¢u‘+‘)',') 2
al(t) = ZIF, |A11ie !
=1
N o |
=¥ 4, e
=1
Expanding (7.5),
N 2 N 2
a(t) = [2 AjcosW,| +]3 A4;sin¥,;
=1 =1

N N N N
=Y 4;cos¥; ¥ Adjcos¥;+ Y 4,sin¥; ¥ A4 sin¥,;

=1 j=1 . =1 /=1
NN

=3 T 4;4;lcos ¥, cos ¥; + sin ¥, sin ¥,]
=1 =

and hence

o(t) = i é A;4; cos (¥, - ¥))

jm] ]
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and

N
o) =23 3 Ad;cos (¥, ~¥) + ¥ 47 (7.70)

N N
=

Jj=1 i=|
i*f

For the ith US, let 8,(-) account for the orientation effects on phase and y;() the mul-

tipath effects so that

v (R, )= [21’-

and

4 — — — -~ — = - -
Equations (7.7a) and (7.9) are our fundamental equations for simulating RCS. In the simula-
tion, the 4;(-) and B(-) functions are user controlled, the ﬁ,— terms are generated by the ship

motion (Chapter 5), and the y,(-) terms are generated using the model in Chapter 4.

As suggested by (7.5) and (7.2), we define a complex scattering function s(¢) to simplify

notation:

N ¥,
st)y=3 4; ¢ " (7.10)

=]

Note that o (¢r) = s{t)s*(2).
7.3 Statistics For an N-Source Target

In this section we investigate the first and second moments of the RCS process. We show
that over short time-intervals the RCS process can be nonstationary and anélytically complex
even when simplifying assumptions are made regarding the scatterers. We also investigate in
what sense the well known random-phase model (resuiting in Rayleigh-amplitude statistics) is a
limiting case of the general formulation. We will use the notation of o (1) for RCS and o; ()
for standard deviation of the ith phase process; no confusion will result given both the context

and the subscripting (standard deviations only).
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7.3.1 Mean and Correlation Functions

Because the amplitude functions are much less sensitive to target motion than the phase
functions are, over short time-intervals they can be well approximated by deterministic func-
tions (typically as constants, except for specular scatterers). However even ignoring the US

orientation and multipath effects, the phase functions are rapidly varying, nonlinear functions

of target motion. Therefore we view the phase terms as stochastic processes.

Given an N-source target with deterministic amplitudes 4;(¢) and stochastic phases 8,(¢),

the target RCS is

N N . _
o) =3 T 4, ()0 (7.11)
im] k=1

and the associated mean and autocorrelation functions are

N N .
Elo®) =3 3 4,04, (nE( %, (7.12)
jm] k=]
and
N NN N o _
Elc(tDo(p)}=3 3 T Ai(tl)Ak(tl)A,(tz)Am(tz)E{ej[(g" 910 +(6,=9,)(e)ly (7.13)
jm] km] [m] m=]

The expectations in (7.12) and (7.13) suggest characteristic functions. Such functions are
useful when the joint densities of the phase processes are known. Writing the characteristic

functions in the form

Oy (0, 1, w, 1) = EfeF T I000) ‘ (7.142)
cbiklm(wit L, @, tk’ @y, 4 ‘wm: tm) = E{ej“’iei(li) +"'+jwm9m(’m)} (714b)
we have
EC N 2. (1,1 -1, 0 (7.152)
(where we use the notation (8, — 6,) (1) = 6,(¢) — 9,(s)) and
E{ej{(a,.-ok)(:l)+(a,—9m)(:2)} =@, (1, 1, =1, 1, 1, 0, =1, 1) (7.15b)

Using this formulation in (7.12) an d(7.13) we obtain
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N N

N
Ele} =Y 420+ 3 T 404,00, (1, ¢ =1, 1)
=1 i

jam] ke
i=k
N N N
=Y 40 +2F T A40A40,0, 1 -1, 0, (7.16a)
jm=] im] kw=mi+l
ik

N N N
E{O‘([l)c'(lz)} = 2 Aiz(ﬁ)Aiz(Q) + 2 Z A,-Z(tl)Alz(fz)
=] 1-11#11-1
N N N N
+ E 2 2 2 Ai(tl)Ak(tl)Al(tZ)Am(12)¢z’k1m(1’ ., =1, 1, 1, 1, —1, [2), (7.16b)
jm] k=] [=1 mw=]

eXCept [mkm[=m
and j=k 7= {=m

and
N N N N N
Ela’(D} =T 40D + 3 T 470420 + 3 T 470 420)
=] i-il#lr 1 i-il;tkk- 1
N N N N
+3T T T T 404044, (DPn (1, ¢ =1, 1, 1, 4 =1, ). (7.17)

im] k=] [m] m=i
eXCept j= k= [=m
and i=k = l=m

In general the phase processes are complicated functions with probability laws that at best
can only be approximated. Over long periods of time (relative to target-motion time constants)
they most likely have probability density functions that are unimodal and symmetric when they
are not viewed as modulo 27 (i.e. distributed over (—oo, o)). This suggests a Gaussian
approximation. If the phases can be represented by joint Gaussian processes then the form of

the associated characteristic functions are known; they are [95]

Jlw I-ni(ti)+mk'nk(rk)]—-;—[o,z(ti)w :‘2+2’ik (ti,tk)wiwk+0'£(tk)w,%]

¢,‘k((ﬂi, t,’, (l)k, tk) = e (7183)
and
jﬁm 7, )—-I—ﬂry.ﬂ
D pim (@8, @iy @)y B, Wy, ) = €7 e , (7.18b)
where
ni(ti) = E{g,(’,)}, (718(:)
O’,'z(t,‘) = E{[O,(t,) - ni(t,')]z}, (718d)
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E{6,(2) = n, (D16, (t) — e (1))
U,-(t,-)c'k(tk)

ret, 6) = (7.18¢e)

Q = (w,;, wg, @, w7, (7.180

and u is the covariance matrix for 8,, 8, 8,, and 8, with

Mgty 1) = E{18,(8) — m,(e)18,(2,) = n, (e )1} for p, g =1 k | n  (7.18g)
We note that from (7.18a)

i{n, (0 = - Ho)=2r, (e 2
®,(1, 1 ~1, 1) = ej[n, 1) = D=2 f)=2ry (1) +o £ ()] (7.19a)

and from (7.18b),

Dum(l, 1, =1, 1, 1, 13, =1, 1) = ejFI—UZFZ (7.19b)
where
Fy=m,0) = n(e) +1,(t) — 1, (2,) (7.19¢)
and
Fy= (e, 1) = ey, o) + ey, 1) = wim(ey, 0)
— ity t) F (e, t) =gt 8) + w2, 1)
+ ;L[i(lz, t1) - /-le(tz, [[) + ;.L”(lz, tz) - ,U-[,,,([z, IQ)
- /.l-m,'(tz, f]) +,U.mk(t2, tl) - [.L,n](lz, tz) +,u.,,,m(t2, [2). (7.19d)

7.3.2 Random-Phase Mode!

We define a random phase model for RCS to be an N-source model in which the phases
are represented by independent, uniformly distributed (over (0, 27)) processes. Such models
are widely used in analyzing the RCS of complex targets. They are useful because they greatly
simplify the RCS analysis. They are valid when the time period of imerest- (for analysis) is

large relative to the correlation times of the phase processes.

Because we are interested in RCS analysis and simulation over short time-intervals, it is
important to consider in what sense the general formulation can be replaced by a random-phase
model. Therefore in the following we examine the behavior of the first and second moments

of RCS as the random-phase assumptions are approached.
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We now consider the simplest random-phase model: assume that the scatterer amplitudes
are equal and constant and that the individual phases are white noise processes. To obtain the
first two moments of this model we write

N N N .
s(t) =3 Ae’' =3 A4;cos6, +j ¥ A siné, (7.20)
i=1

=] -]

where we recall that o(¢) = s(¢) s*(¢). By the central limit theorem, the real and imaginary

sums in (7.20) approach being Gaussian distributed for large N. Further, they are uncorrelated

because
N N N N
E{Y 4,cos8, T A sin6 =4 ¥ Efcos 9, sin ;)
{=l k=1 =1 k=1
, X _ , & |sin’9,
=4 i_zl Ef{cos 8, sinf;} = 4 i;l > = 0. (7.21a)
Clearly the mean of each sum is zero. Now consider the variances:
N 2 N N
E{Y 4;cos ;| t=AE} Y cos 9; 3 cos §;
jom | j=1 k=1
N .
= A2 Y E{cos’ 8}
=1
N ~2r cos @, NA?
= 42 d = 7.21b
y Mfo o, = (7.21b)
and similarly,
NA?

5 (7.21c)

2 N
] = 4* ¥ Elsin’9,} =

i=l

N
E{ Y A sin 6,

=1
Because of the white-noise assumption, RCS is also a white noise process. Finally, the RCS

process,

2
+

N 2
Y Asing|, - (7.22)

i=]

o) =|ls()|*= IZV:A cos 8,

=1

approaches being exponentially distributed because the summations are independent Gaussian
processes (approximately) with zero means and equal variances [95]. From (7.21b) and

(7.21¢),
Ef{o (1)} = NA? (7.23a)
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and because o (t) is exponentially distributed,

Ela?(1)} = 2N?4*4.

(7.23b)

Next we consider Egs. (7.16) in the context of the random-phase assumption. We

assume that the phases can be represented by Gaussian processes and, for simplicity, we

assume that the means of the individual phase processes are zero.

become

and

E

where

N N N _ 2(5)—3r. a 200)
Elo@) =T 4200 +2F T 404 (e Hoi0iutioreld]
jm-| j=] k=i+1

N N N
{G'(tl)(T([z)} = z A,—Z(tl)Aiz(lz) + z 2 Aiz(tl)A[z(fz)
i=1 =] [w]
i=l

+ N N N N A () Ay () A (1) A )—1/22ik,m(t,,t2)
Y Y 3 AE)A)A(H) A, (L)e

jm] k=l =] pa=]
eXCept [m = [m=m
and je=k# (=m

Sim (11, 1) =) + o} (t) +a} (1) +a}(t)
- 2",-/(([1, [1)0',-([1)0'1(([1) - 2"1,,,([2, tz)O'l(tz)O'm(tz)

+ 2’1‘1([1: [2)0’i(t1)0'1([2) + 2rk,,,(t1, tz)O'k(tl)O’m(tz)

- 2)',-,"(l1, tz)O',-(tl)O'm(tz) e 2I‘k1(t1, lz)O'k(tl)U'l(Iz).

Now assume that the ;s are not cross-correlated. In the limit of large variances,

and

lim Elo ()} = i A ()

a > =
i

K N N~
lim Ef{oc(t)o ()} = i AFD A ) + T T A7) 4R ()

i
hat]

=1 =1 =1
i
) 2T (t,,15)
+ 2 2 Ai(tl)Ai(tz)A[(ll)A[([z)e NGNS
jum] ]
i

where the function in the exponent is

T (1), 1) = [02(t)) + 0}(ty) + a?(t) + a2ty = 2R (1, 1) — 2R(2}, 1))]

(R,(#,, t,) is an autocovariance function). (The third sum-term in (7.27a) remains because
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(7.25b)

(7.26)

(7.27a)

(7.27b)



even for o} large, as (1, — 1)) approaches zero (7.27b) approaches zero; in other words as f
approaches ;. even for o? large [8,(¢;) — 9,,(z;)] and (8, (¢)) — 9,(r,)] approach zero when i =

mand k = () For t; = t, = 1, Eq. (7.27a) becomes

N N N

lim Elc*()}=F 4D +2F ¥ A AE(D). (7.28)
gt i=1 =l k=1
¥ ik

Equations (7.26) and (7.27) imply that even if the variances are time-varying, as they become
large the RCS process becomes wide-sense stationary, assuming the amplitudes are constant.
Equation (7.27b) shows that the RCS process can remain correlated even for large a;(+) if the

individual phase processes remain strongly correlated.

Next we assume that 4;(z) = 4,(1) = A. Then (7.26) and (7.28) become

lim E{c(s)} = NA? (7.29a)

-
i

and

lim E{cX(t)} =[N + 2NN = 1)]14*

o i—x
Y
AN -—-11 .
— 2|2y — 14
2N[ TN A (7.29v)
and (7.27a) becomes
) . PR AR A7) ¥
lim Elo(t)o(t)) = NA*+ N(N -1 A%+ 4*F T e TN (7.30)
o 2o =1 (=1
,‘P‘i
Assuming equal and constant variance functions in (7.30) (R, = Ry, o; = o4, i = 1,
N,
N N 2 _
lim Elo(1)o (1)} = Nd* + 443 § &4 Rt
vl i=1 [=t
- Ao l-
= N244|1 + ————N(A}’vz D) 2oi-Ryl| (7.30)

We see from (7.31) that the RCS process remains correlated if the individual phase processes

remain correlated (not white noise).
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For real targets the phase variances remain finite and the phase processes are not white
noise processes. It is likely to be the case that for target motions that produce large phase vari-
ances (over (—oo, )), the phase process (due primarily to geometric-center motion) will be
strongly correlated. Clearly, for high sampling rates (short time between samples), the correla-

tion of the phase processes cannot be ignored.
7.3.3 Range Variation Effects

Next we consider a specific model of the geometric-center motion to further illustrate the
difficulty of modeling phase variations over short time-intervals. Ignoring US orientation and

multipath effects we have

N N 4 — . e
o) = 2 2 A;A; cos ~ (R, (@, )| — iRj(w, . (7.32)
jm] jea]

The range process, R, (@, 1), is (Eq. (6.5)),

RE(w, 1) = T,()RE(w, 1) + RE(D). (7.33)

The stochastic component of (7.33) is RF(w, ); it is a linear combination of Gaussian
processes and therefore is Gaussian. The ship maneuvering terms, 7,(z) and Ef(t), are deter-
ministic, and over small time-intervals can be approximated by linear functions of time. If
T,(t) and RE(r) were constant, then Rf(w, t) would be a three-dimensional Gaussian process.
If in addition, each component of RE(w, t) had a mean of zero and equal variances (which

they do not), then |RE(w, 1)| would be Maxwell distributed [95].

Clearly, the Iﬁi (w, #)| process is in general nonstationary and analytically complex. Even
assuming that the ship does not maneuver; all that can be said in general about IE,E(w, Nl is
that it is a nonlinear transformation of large-time-constant Gaussian brocesses (relatvive to a
radar’s PRI), is oscillatory and positive, and probably has a density function that is symmetric
about a mode. Relative to a radar’s PRI, long time periods may be required to produce realiza-

tions of |§i (w, t)| that exhibit stationary statistics.
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As a specific example, we investigate range-induced variations in the RCS phase for our
example ship. We assume a (moderately-high) radar frequency of 10 GHz (A = 3 ¢cm). Over
short intervals the |§i (w, )| processes vary slowly (a numerical estimate is made in Appendix
B) and therefore we will model them as linear functions of the form

IR (w, )] =Rw) + Vi(w, 1)t (7.34)

Normalizing by 4#/\, we obtain the phase angle process

biw, 1) =No) + ¢lw, D1t (7.35)
where y%(w) is a uniformly-distributed random variable (over (0, 2#)). For nonmaneuvering
motions, ¢;{w, ) is a slowly varying process whose density function is determined by the ship’s
motion. Because this motion is oscillatory, the density function of V,(w, ¢) will likely be sym-
metric with mean equal to zero. For short periods we approximate VAw, t) by a random vari-
able and the RCS process becomes

N N i Mw) - o Nw) + (¢, —
() =T T 4,04 (r) ST Y (7.36)
jml =l

The RCS which is generated by the target over the short periods are "pieces" of realiza-
tions of the RCS process. Because the radar must process only these pieces, we examine the
"apparent variance” of them. For an interval of length 7, the apparent mean of the phase pro-

cess is
1 T/2
nr Tf-m WO + c,0)dr = | (1.37a)
and the apparent variance is
. C,-2T2

1 7/2
2 = — . 2 =
o= = J ,, a0t = =

Equation (7.37b) confirms that which is intuitively obvious: either or both ¢; or T must be

(7.37v)

large for the uniformly-distributed-phase approximation to be valid. If the standard deviation

of ¥, is required to be greater than 2anw for the approximation to hold, then over a time inter-

val T, we require that
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> 2 7,
or
¢ = VB, (7.38b)
Ty
Since ¢; = 4w Vi/A,
vo» BA, (7.39)
T,
and
TV,
n < J%x (7.39b)

To illustrate the limitations of the uniformly-distributed-phase model, consider a radar
tracking the stern of our example ship at a low grazing angle. To estimate the value of V, we

use

2)1/2

Vv, = _]-'lA_].:_}_ (7.40)
T

where 7 is the radar’s PRI. In this scenario, pitching motion has the dominant effect on the

variations in the scatterer ranges: from Appendix B,

E{AR?} = z}, E{a6%)

= zzéaxo'ez[l - e—agl‘r| cos 0)091']. (7.41)

For r = 0.002 s, wp, — 0.409 rad/s and oy = 0.0089 rad (Appendix A), and z,, = S m
(Appendix B), E{AR?}Y? = 0.00127 m and ¥; = 0.64 m/s. If the pitch process, 8, is approxi-
mately Gaussian, then n must be no less than about 10. For a 3 c¢m radar, Eq. (7.39a) says that
for the random-phase model to apply, ¥; must be greater than 0.51 m for 7 = 1 s. We see that
in our example this is only marginally true and that for lower-frequency radars, it will not be

true.
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CHAPTER 8

GLINT

The second (next to RCS) most common projection of the scattered field is glint (angle
noise, angle scintillation). This parameter represents the apparent angular location of the target
as seen by the radar. It is correlated with the target’s RCS and is a function of the radar’s fre-
quency, polarization, and antenna pattern and of the target’s shape, size, and composition. We
make the same assumptions for glint that we made for RCS: the radar is horizontally polarized
with fixed frequency, the target is a perfect conductor whose polarization effects are accounted

for in the unit-scatterer amplitudes.

As described in Chapter 1, two concepts have been used to understand and analyze the
phenomenon of glint: phase-front distortion and Poynting-vector direction. In the develop-
ment of glint models based on these concepts, it was assumed that the target was composed of
a finite number of point-source or dipole scatterers. Therefore, these models are directly appli-
cable in our modeling approach. In this chapter we use both concepts to develop glint equa-

tions for a target described in terms of unit-scatterers.

Various authors have applied the glint concepts to specific problems but to our knowledge
no deterministic analytic-formulation of two-dimensional glint has been made for the N-source
target in the presence of multipath. We develop this formulation for both concepts. The

resulting equations will be analytically complex but ideal for digital simulation.
8.1 Definitions

Most existing models of glint represent the target and its motion in only one plane: the

target is represented as a line in the azimuth plane of the radar. (This approximation is made
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because the longest dimension of most targets is in that plane.) Therefore, these glint models
are one dimensional. We refer to such glint as azimuth glint. The less-often-used but more-
general glint models are two-dimensional. Because of our three-dimensional representation of
the ship and of multipath effects, we will develop a two-dimensional glint model. The second

glint dimension is elevation.
8.1.1 Phase-Front Gradient

The phase-front definition was introduced by Howard [12]. He showed that azimuth glint
was equal to the azimuth slope of the phase front of the scattered field. Figure 8.1 illustrates
this concept. For the one-dimensional problem, the phase front is a curve that passes through
the location point of the radar. This curve is defined by mapping the locations of points where
the phase of the scattered electric field is equal to the value of phase at the radar point. The
analytical expression for azimuth glint is derived by expressing the phase of the scattered elec-
tric field, @, as a function of the angle about the sight-line from the radar to a fixed point on
the target, ¢ (see Fig. 8.1). Each scatterer is assumed to yield identically-polarized plane waves

at the radar. The azimuth glint then becomes, in linear units,

1 do
G,,(lll)==; m 8.1)

where k is the wave number, 2w/\. It was shown by Howard [12] that for a target composed

of N point scatterers on a line (Fig. 8.2), azimuth glint, in linear units, is

N N
Y 3 aq;L; cos 2k (L; — Lj)cos ¢l

G, () = —sin ¢ - S (8.2)
Y 3 aa; cos [2k(L; = L)) cosy] ‘

] jol

where L; and ¢ are defined in Fig. 8.2 and g, is the amplitude of the ith scatterer. The minus

sign arises because we define ¢ in the opposite sense than that of Ref. 12.
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Fig. 8.1 — Azimuth glint visualized in terms of phase front slape
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The obvious extension of the phase-front-slope concept (Eq. (8.1)) is the phase-front gra-
dient

S _m 8 g (8.3)

Ve = |a 96 rsinew

~ |~

9
6r+

From (8.3) and Fig. 8.2, we see that in linear units azimuth glint is

= Vd - m 9P/ dv
= - ) 8.4
Gy = IR} = = Sn o a0/ar (8.42)
Similarly, the elevation glint is, in linear units,
G, = |k L2 =D _ _—00/80 (8.4b)

Vo - n sin 9 9®/9r’

For 8 = =/2, these equations reduce to the one-dimensional problem.

8.1.2 Poynting-Vector Direction

The phase-front model indicated that the flow of energy was not necessarily radial at the
radar. This led Dunn and Howard [43] to show that the Poynting vector from an N-source tar-
get was normal to the phase front. Therefore the Poynting vector concept was shown to be
equivalent to the phase-front-slope concept in predicting glint. Assuming that the Poynting vec-

tor of the scattered field at the radar is

P=

~

P.+ P, + Py= P + P,fn + Pyl (8.5)

where P,, P,, and P, are the radial, azimuth-tangential, and elevation-tangential components,

we see from Fig. 8.3 that the azimuth glint, in linear units, is

G,= IR - —==. - -~ (8.6a)

Similarly elevation glint, in linear units, is

G. = |R,| - —. (8.6b)

100



PHASE FRONT

Py

Fig. 8.3 — Azimuth glint visualized in terms of the Poynting vector

101



8.1.3 Axis Systems

To obtain equations that are useful for simulating the glint from an N-source target, we
use N + 2 axis-systems: an earth axis-system, a target-cg axis-system, and &, US-location axis-
systems. All of the axis-systems are right-handed with the z-axis positive upward relative to the
earth’s surface:

The origin of the earth axis-system is at the radar point. This system is fixed relative to
the earth with the x — y plane defined as being parallel to the earth’s surface. Sub-
scripting a vector with the letter e implies that the vector is expressed in earth coordi-

nates. The unit vectors i, j, and k are the unit vectors of this system.

The origin of the target-cg axis-system is fixed at the radar point. The x-axis is colinear
with and directed along the sight line from the radar point to the target’s cg. Subscript-
ing a vector with the letter s implies that the vector is expressed in target-cg coordi-

nates.

The origins of the N US-location axis-systems are fixed at the radar point. The x-axes
are colinear with and directed along the sight lines from the radar point to the US loca-
tions. Subscripting a vector with an index implies that the vector is expressed in coor-

dinates of the associated US axis-system.

Coordinates and vectors that locate points on the target relative to the radar point are indicated
by subscripting with the letter R: location vectors are subscripted with a target-point indicator,
location-vector coordinates are first subscripted with a coordinate indicator (x, y, or 2) and then
with a location-point indicator (index or s). Whenever the letter R is used as a vector coordi-

nate, it is an earth-system, rectangular coordinate.

For both the gradient and Poynting-vector approaches, the most natural formulation is in

spherical coordinates. Figure 8.4 illustrates the spherical-system unit vectors that we use. We
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define the ith Poynting-vector plane (ith plane) as the plane passing through the radar point
that is normal to the ith Poynting vector. The spherical unit vectors are defined relative to this

plane:

is perpendicular to the ith plane and positive away from the target,

N

R

is the intersection of the ith plane and the x — y plane of the earth axis-system,

and
! isin the ith plane such that 1= fx hand is positive downward.

From these definitions we see that 7 indicates the azimuth direction and / indicates- the (nega-
tive) elevation direction. We note that 7 is also aligned with the target’s Poynting vector and,

equivalently, with the phase-front gradient.
8.2 Polarization Effects

The electric field polarization is an important parameter in determining glint but it has not
been explicitly addressed in previous work. The one-dimensional glint problem has always been
analyzed with the implicit assumption that the target elements radiate with the same polariza-
tion as the radar. This is a reasonable assumption in many practical problems. However if this
assumption is not valid, then current glint models can yield erroneous results. For example,
consider the classic problem of a target composed of two scatterers (Fig. 8.2 with N = 2). If
one of the scatterers’ reradiation polarization is horizontal and the other’s is ‘vertical, then an
ideal horizontally or vertically polarized radar will not sense one of the scatterers and there will
be no nontrivial glint. The physical components of a US will often exhibit multiple scattering

and such scattering causes cross polarization [53].

Implicit in the glint concepts are different assumptions regarding the received-field polari-

zations. The gradient concept requires knowledge of the phase of the received field. This
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phase can be obtained accurately by assuming that the received fields from the USs are plane
waves which are identically polarized. The Poynting-vector concept requires knowledge of the
Poynting-vector direction and therefore only assumes that the received fields are planar; the
received-field polarizations and directions of propagation must be accounted for in this method
because they contain the directional information. For long ranges, the two methods produce
results that are equivalent for practical purposes. However, we prefer the Poynting-vector
method because it accounts for polarization effects, it is more closely related to physical con-
cepts (power flow), and it does not require knowledge of rate-of-change properties of the US or

multipath functions (Sec. 8.3).
8.3 Phase-Front Gradient

From (4.5), the magnitude of the received field has the form

- —_ N
E==g(R)I'(ﬁT, ﬁR)=g(R)ﬁ}‘[2ﬂ, f)R. (8.7

=1

Equation (8.7) represents only that portion of the received field that is sensed by the radar.

Assuming plane wave propagation, the vector representations of the fields sensed by the radar

are simply
and
B=-L5 (8.8b)
]

where n (= 377 Q) is the characteristic impedance of free space and Pk is orthogonal to pg
such that when the received polarization is horizontal, in the target-cg axis-system p = mand p
= ] Given the large-range assumption, this formulation yields accurate estimates of the mag-

nitude and phase of the received field.

We begin with the received-field representation of (8.7), where we assume, for simplicity,

that pr = pg = (1, 0)7. Expanding the field into real and imaginary parts, the phase is
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N
Y. 4;sin ¢,
@ =t | 39
Y. A4; cos @,
=1

where we have implicitly included multipath effects (in 4; and ¢,) for later use. Glint is refer-

enced to the target-cg axis system. Therefore all derivatives must be calculated in that system.

First,
Y 2 N
50 Z}A,- cos @; 5 Y 4, sin é;
== j=]
_a—!!l—= " 3 i T ) — (8.10)
Y 4 cos«b 3 A;cos ¢,
i1 =1 =1
and
N N N i 94;
Y 4; sin ¢, 3 A4;cos ol 3 A,-ﬁ—c ¢,+Wsm¢
= =1 w1
|V = N 2
v 3. 4; cos ¢, Y, A4 cos ¢,~]
=1 =]
N 0, 94,
,?{A' sin ¢; 21'[ A, Eb—sm b, + 5% cos d;,-]
- . >
z A; cos @;
fml
N N ¢ N N
YT 44— 30 O (p; — @;) — EZA, 8 sin (¢, — &)
im] juml jm] ] 'Wh
= < 5 . (8.11)
Y 4; cos d;,-]
=1
Hence,
N N 9 .84, | '
Z 2 AA; -é;fh cos (¢; — qu)—Ai-é-dl—sm (d),-—qu)]
%%= =1 j=1 g— . (8.12)
T 3 A4, cos (@, — b))
=1 je=l
Similarly,
v o~ 9 04;
)y [A,Aj ad; cos (@, — @;) — 4, —67 sin (¢, — &)
%%_311;1 R (8.13)
j-] j=
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and

N N ) A
2 2 A,’Aj"a-?'J—COS ((b,‘_‘bj) ,a
9 _ =il o (3.14)
ST v -
jmm] jel

The aq; functions (4, = |F?| a;) depend upon US orientation, not upon range. Therefore

8a,/dr = 0 for all iand

N 39, Fl .
50 ZZA,A]—B—COS (6, = ¢j)—222aA sin (¢, ~ @)
—aT ] jel = =] j=1 (8.15)
=1 jm=l
The resulting glint equations are
N N 3¢>,
A
S XAy s eime) 4 )]
121 le A; AJ cos (@, — ¢,) — a; 4; 6; sin (¢; — ¢,~)]
and
N N A4,
>y A,Aj ¢ cos (¢, — @,) — 4; 9 ]
G, = —TLi= % , (8.16b)
¢ N N ¢ d|F? '
T |4:4; — cos (¢, — ¢,) — a;4;, —L— sin (¢,~-—¢j)]
jm] jel ar
We recall that
6;(R, 8) = 2kIR| +y(R,, 6) +B,8)) (8.17)

where y(R;, 9,) is the phase due to muitipath and 8,(6,) is the phase due to US orientation.
Clearly, specific knowledge of the US functions is reqdired to use the glint equations in the
form of Egs. (8.16). In particular, the derivatives of the US and multipath coefficient ampli-

tudes and phases (with respect to azimuth and elevation) are required.

For the classic problem of N sources on a rigid rod (Fig. 8.2), various assumptions are
made: ranges are large, the scatterer amplitudes and phases are constant with respect to rota-

tions, and there is no multipath. These assumptions yield
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Lo —— (8.18a)

oy o
3, 3R]
—6—5— = 2k —aT, (8.18b)
d¢;
9% (8.18¢)
ar
IFl =1, (8.184d)
and
04, 94, 3l Fl
5% 30~ ar 0. (8.18¢)
So that
N N 9IR.
a; a —?,I)Ei-‘- cos (¢, — @)
=1 =1
G, = 2 . (8.19)

2 Y. a;a; cos (&, — )

jml jeml
We see from Fig. 8.2 that the large-range assumption implies that

b; — ¢, = 2k(L, — L;) cos ¥ (8.20a)
and
IR;| = R, + L; cos ¢ (8.20b)
so that
IR, ,
3w L;siny (8.21)

where the L; are the signed distances of the scatterers from the target reference point. (We
note that Howard [12] incorrectly uses the unsigned distances in his Eq. (5).) Using (8.20a),

(8.20b), and (8.21) in (8.16a) we obtain the well known equation (8.2).

8.4 Poynting-Vector Direction

Dunn and Howard [43] showed that glint was equivalent to the direciion of the time-
average Poynting vector. The time averaging is performed over the period T, where o = 2a/T
is the radar’s frequency. The averaging is valid because the phase terms of the received field
(Eq. (8.7)) are approximately constant over the period T. The time-average Poynting vector is

defined by

P= % E x B (8.22)
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For an N-source target and no multipath,

N -
S #(R, )

=]

E= [g(ﬁ)i;% brl P& (8.23)

Given that the polarization of both the transmitter and the receiver are horizontal, in the

target-cg axis-system the electric field and the Poynting vector can be represented in the forms

— I ;
E=g(R) [2 e’ (8.24a)
=1
and
- 2y [~ ~
P= gzz(f) Y 3 aa cos (¢, — a&k)]ﬁs (8.24b)
=1 k=1

where the ¢; and ¢; terms are obtained by taking into account the associated US-radar
geometries. (Note that the pr and pg vectors must be expressed in each of the individual US
axis-systems.) Equation (8.24b) is not in a useful form because 7, is not known directly.

Therefore, we next derive an equation for P in terms of the N, known Poynting vectors.

Equations for the locations of the USs were derived in Chapters 5 and 6; given the radar
point and the US locations, the Poynting vector for each US can be determined. The total

fields due to the USs are

— - N .
E=35®) ¥ am (8.252)
i=1
and = N
H=- £R) )y a,e’%7] (8.25b)
n =l

and the associated Poynting vector is

— gz(ﬁ) N N . ) .
P=- n Y ¥ aa cos (¢ = bi) iy X . (8.26)
Py

We define the position of the ith scatterer relative to the radar (in earth coordinates) as
Ri=Rji+Rj+ Rk (8.27)
where for clarity, the ﬁ,- time-dependence is suppressed. In the ith US-system

P . (R,i + R, J + R.K). (8.28a)

IR;|
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Because #, is in the x-y plane of the earth axis-system and is perpendicular to ﬁi,

m; = sin W,i — cos lb,j (8.28b)
where u; = tan™' (R,/R,) and R, = R,i+ R,j (Fig. 8.5). Finally,

. R, . Ry . R, sindg; R cosy; |, ( )
L=y X A= ~=—cos ;i + —=— siny,j — e + — k. (8.28¢c
’ IR, IR,] IR, IR,
Using Egs. (8.28), the cross product term of (8.26) is
f‘hi X ‘ik = f;l,- X (f;lk X ;lk) (8293.)
Expanding (8.29a) in terms of known quantities,
R Ryk sin Y, + ka COS Yy A
"hi X Ik = — [Me}] dl,l
|R|
R, siny, + R, cos s, R R, .
R — & sin¢,) + —% cos by — vk (8.29b)
IR | IR, |

Equations (8.28) express the ith-system unit vectors in (rectangular) earth coordinates. Refer-

ring to Fig. 8.5 we see that the transformation from earth coordinates to target-cg coordinates,
TET7 is

R, cos st siny; —R, sinyg, — R, cos i
Ter = —=—=| sing, —cosy; 0 (8.30)
|Rs|2 Rx Rys Rz

S
where the subscript s indicates the target’s cg location and ¢, = tan~! (Rys/Rxs). The Poynting

vector is now

- By [~ W ‘ .
P = g_z(.:n&- 2 2 a;a; cos (¢l - (bk) TET(’;II' X Ik)e] (8313.)
=1 k=1 . .
2B N N -
- g2(R) Ter [ Y aa; cos (b, — &) (i X lk)e] (8.31b)
n i1 kwl

where the (m; % 7k) vector is expressed in earth coordinates. The azimuth and elevation glint

can now be expressed as
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% é a;a; <08 (¢, — &) Ter (A x I),| -
G, = IR, ‘v‘ kfv‘ (8.32a)
Y ¥ aia cos (@; — o) Ter(rm X I - A
=1 k=1
N N . .
z 2 a;a, cos (¢, - ¢k) TET(’ht‘ X lk)e : [_Is]
G, = IR, L= (8.32b)

N N A

z 2 q;a, Cos (¢, - (bk) TET('hi X Ik)e © N

=1 k=i

We note that for small US-separations and long ranges, m; X 7k = p, so that the denominator

of Egs. (8.32) is approximately the target’s RCS (Eq. (7.7a)).
8.5 Multipath Effects

For low-grazing-angle illumination of ships, over-water multipath affects the received sig-
nal. In Chapter 4, we described a multipath model appropriate for point-source scatterers. In

this section, we discuss the modeling of the effects of multipath on glint.

A different method of multipath modeling is required for each glint concept because they
are developed under different assumptions. The phase-front gradient method requires explicit
knowledge of only the received amplitudes and phases whereas the Poynting-vector method

also requires explicit direction-of-propagation information.
8.5.1 Phase-Front Gradient

For the phase-front gradient model, we view multipath as an alteration of the received
amplitude and phase from the US. Referring to (4.17), we rewrite (8.9) to explicitly show the

multipath effects:

N
z IEZI a; sin ¢;

® = tan™! | 5 (8.33)
3 |F?| a; cos &

jml

where ¢, is defined by (8.17). From Eqgs. (8.16) we see that the terms of interest are the par-

tial derivatives of |F?la, and ¢; with respect to r, ¥, and 9 (in the target-cg axis system).
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Because there are in general no physical interpretations for these rate-of-change processes, they

would, at best, be difficult to estimate. They are also analytically complex so we will develop

the general multipath formulation only for the Poynting-vector method, which yields

physically-meaningful results. However, we will analyze the special case of very calm (smooth)

S€as.

From Egs. (4.16) we see that the ith multipath factor is

Fi=(1+p, cosa; + Py) +j(ps, sina; +pg).

For smooth seas, p, = 0 and pg, = 0 (their variances become zero) and we have

F = (1 +cosa;) + jsina;

where

|F,| = [(1 + cos a;)? + sin? a,]V?
= 2+ 2cosa)l?
and

v, = tan”!

1 + cos «;

The partial derivatives with respect to a parameter p are

OIF7 - 2 cos a—ai-
ap Y
and
dv: (1 + cos a) 9 sin a;
dp (1 +cosa)?+sin*a;, 08p}1+cose;

8a; | (1 + cos a;) cos a; + sin? «;

dp (1 + cos a;)? + sin? a;
_ 10
2 dp’

(8.34)

(8.35)

(8.36)

(8.37)

(8.38a)

| (8.38b)

Clearly, da,/dp is the significant parameter. We use the well-known approximation for path-

length difference

(8.39)



for the difference between the direct and reflected path lengths so that

2khg h;
a, = —2 (8.40)
Because ¢ is the azimuth angle,
da;
— = 0. 8.41
o ( )
The coordinate r is the radial distance so that
da; 2khp by
Qa; _ _ 2khrh; (8.42)
ar Inyilz
Finally, 8, is an elevation angle and (see Fig. 8.6)
R, R,
oS, = —— = — (8.43)
Rl 1Ry
where, from Fig. 8.6, R, = h — hg. Now
R, + hg
a; = 2khp | ——=——
1 IR
hg
= 2khg |—=— +cos 4, (8.44)
IR,
so that
6(1,' hR (ﬂﬁ,' . 69,
30 = 2khg |- AL, = sin 6; ==-. (8.45)

Because sin 8, = 1, 30,/80 = 1, hg/|R,| << 1, and 8|R;|/86 << |R,|, we have that for a

smooth sea-surface,

Oa;
- = 2khg. o ~ (8.46)

Hence, the multipath components of the phase-front-gradient formuiation are

3| F?
! = 47
I 0, (8.47a)
ay;
- 8.47
30 0, (8.47b)
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8| F?| dkchg 2khg h;
= cos

— — , (8.47¢)
ar Inyl,l2 leyi|
a‘)/,' ~ th h,~ (8 47d)
ar IR, 2 '
3| F? 2khg by
Liil = 4khg cos | —+], (8.47¢)
and
dv;
—_— = — . 8.47
5 khg (8.470)

8.5.2 Poynting-Vector Direction

To introduce multipath into the Poynting-vector formulation, we modify the received
fields by the multipath factor, F?, described in Sec. 4.4 (Egs. (4.18)). This factor modifies the
direct-return scattered fields and induces N apparent (image) scatterers. This model allows the

obvious extension of (8.31b) to

- gZ(E) 2N 2N R R
P=- P Ter |3 3 MiMyaiay cos (b, — o) (i X k), (8.48)
=1 k=1
where
F. , 1<ig<N
Al,' = E—N(F'—N - 1) , N + 1 < i < 2N, (8493.)
a = an
¢;=¢nt |SN m=I[+N, (8.49b)
ﬁ’l[ == f;lm
and, from Fig. 8.6,
R=R=Ri+Rj—(hg+hk N+1<i<2N (8.49¢)
Equation (8.49c) implies that (8.28¢) becomes
. R i RZ: . | R, siny; + R, cosy;| . ( )
IR IR, R

for N+ 1 € i< 2N. Therefore when accounting for multipath, the glint equations become
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IN N ]

2 Z lekaiak Cos (¢, - (bk) TET(”hi X 2k)e mg
G, = IR, == (8.50a)
[2 Y M Myaa; cos (¢, — &) Tgr(m; x ?k)e] * A
=1 =
and
IN N . .
Y 3 MMaa cos (b, ~ &) Ter(iy X b, | - [=4]
-, =1~
G, = IR, “=— (8.50b)
2 2 IVIiMka,-ak cos (¢, - ¢k) TET(""'I,‘ X Ik)e ' ﬁs
=1 =1

As in Egs. (8.32), for small US-separations and long ranges the denominator of Egs. (8.50)

approximates the target’s RCS.

It is clear that Egs. (8.50) are more natural and accurate for use in modeling the glint of
N-source targets then are Eqgs. (8.16). Equations (8.50) are used in the simulations (Appendix

0).
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CHAPTER 9

SIMULATION RESULTS

In this chapter we briefly summarize the results of simulations that were performed using
the method of Chapter 6 to simulate US motion and the equations of Chapters 7 and 3 (as
modified, for efficiency, in Appendix C) to simulate RCS and glint. The source code that was
used is presented in Appendix D. Because of the number of parameters affecting the scattering
process, a parametric study of the model was beyond the scope of this dissertation. Among
those parameters are:

ship structure

ship maneuvering

ship speed

ship response to the sea (RAOs)

sea state

sea structure (sea, swell, etc.)

ship heading relative to the dominant wave direction
radar-to-ship aspect angle

radar-to-ship elevation angle

radar frequency

radar pulsewidth

relative motion between the radar and the ship
US amplitudes

US phases

US locations

118



We note that when measurements of ship scattering (e.g. RCS or glint) are made, measure-

ments of the first twelve parameters listed should also be made.

In the simulation studies, we have investigated the qualitative effects of variations in ship
maneuvering, radar-to-ship aspect angle, and multipath (which is primarily a function of radar-

to-ship elevation angle, radar frequency, and sea state).
9.1 Simulation Parameters

In the simulations, the radar’s wavelength was 3 cm and the radar was located at a fixed
point that was 40 m above the sea surface. The ship’s position was initialized at 10 km from

the radar. This yields grazing angles on the order of 0.25°.

Two maneuvers were considered for the ship: straight-line motion and turning. For the
straight-line motion the ship’s speed was 10 kn and for the turning motion the turn rate was
0.4°/s and the ship’s speed was 6 kn. The maneuvers were simulated with and without mul-
tipath effects. For the straight-line motion an rms waveheight of 0.762 m was used because this
corresponds to the sea state associated with the ship-motion spectra that were used (Appendix
A). For the turning maneuver an rms waveheight of 0.135 m was used and the ship-motion
spectra were changed from the spectra of Appendix A by reducing the rms values by a factor of
10 for each of the six motion processes; this was done to approximate the ship’s motion in
slight to moderate seas. For the geometry of the simulations the sea-roughness factor (a funda-
mental parameter characterizing multipath7 defined by Asin ¢/\ where A is the rms waveheight,
W is the grazing angle, and A is the radar’s wavelength; see Ref. 49) is on the order of 0.025 for
the turning motion and 0.133 for the straight-line motion. The simulation time-increment was

0.002 s and the simulated time was 2.1 s.

The USs used in the simulation were chosen based on visual identification of scatterer

type and approximate projected area. For A = 0.03 m the sphere-like (constant RCS) scatterers
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have amplitudes that are small relative to the flat-plate and corner-reflector types, assuming
comparable projected areas. Therefore only flat-plate and corner-reflector types were used in
the simulations because such scatterers dominated the ship’s structure. A ship was chosen for
which photographs were available and the USs were chosen for three aspect angles: broadside,
aft-quarter, and stern. Table 9.1 lists the location, magnitude, and type (flat-plate is type 2 and
corner-reflector is type 3) for the USs that were used. Figure 9.1 is intended as an aid in
visualizing the ship representation: it contains two-dimensional plots of the US locations rela-

tive to the ship’s cg using the location data from Table 9.1.

Table 9.1 — Scatterers That Were Used to
Model the Three Aspects

(a) Broadside

Location (WRT CG) | RCS | Scatt. | Plate
X Y V4 amp. | Type | Diam.

-50.0 | -4.0 20 4.0 3
-5.0 | —4.0 7.0 2 5.0

3.0 0.0 | 200 | 3.0 3
10.0 | —4.0 7.0 2 5.0
200 | —4.0 7.0 2 3.0

30,0 [ =30 | 150 | 5.0 3

(b) Aft-Quarter

Location (WRT CG) | RCS | Scatt. | Plate
X Y Z amp. | Type | Diam.

-50.0 | -2.0 30 3.0
0.0 | =2.0 7.0 | 6.0
3.0 0.0 | 200 | 3.0

140 | -3.0 7.0 | 5.0
17.0 0.0 | 200 | 4.0
30.0 0.0 7.0 | 3.0

W W L W W W

(c) Stern

Location (WRT CG) | RCS | Scatt. | Plate
X Y Z amp. | Type | Diam.

~60.0 | 0.0 | 0.0 2 6.0

-50.0 | 0.0 20| 40 3

—40.0 | 0.0 50 1] 40 3

-25.0 | 0.0 7.0 2 10.0
30 1 00 | 200 | 3.0 3
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Fig. 9.1 — Two-dimensional schematics of the US locations for each aspect
(drawn to relative scale)
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9.2 Discussion

The output of each simulation run is presented as a figure composed of four plots: RCS,
azimuth glint, and elevation glint as functions of time, and azimuth glint versus elevation glint
for each time instant (connecting the points from instant to instant). RCS is plotted in dB
above one square meter (dBsm) and all RCS piots use the same scale. The scales for the glint

plots vary (due to the nature of glint). These plots are Figs. 9.2-9.15.

Figures 9.4 through 9.15 display the output of twelve simulations. The parameters varied
in these simulations were maneuvering (straight-line, turn), aspect (broadside, aft-quarter,
stern), and multipath (yes, no). Although the parameter variations are limited,” the outputs
indicate the qualitative effects of the parameters on RCS and glint. In the remainder of this

section we will discuss some of the most salient features of the output data.
9.3 Multipath Effects

Figures 9.2 and 9.3 illustrate the effects of (point-source) multipath for the two muitipath
conditions chosen. In each case the only motion is that of the sea surface: the ship scatterers
do not move. We note the following implications of the sea-roughness factor: the rms
waveheight of 0.762 m implies that diffuse-component multipath effects (random) dominate
those due to the specular component and the rms waveheight of 0.135 m implies that the spec-
ular effects (deterministic) dominate. We also note that the diffuse multipath effects are essen-
tially independent (except through variatjons in the value of the roughnéss factor) of ship
motion for our scenarios but the specular multipath effects, which are deterministic, are of
course correlated with that motion. Clearly, both specular and diffuse multipath modulate the
scattered fields further complicating the problem of US identification in the presence of mul-

tipath.
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9.4 RCS

It is clear that the correlation properties of the RCS are strongly dependent upon aspect
angle. We see this in Figs. 9.4(a) through 9.15(a) and it is quantified by the normalized spectra
shown in Figs. 9.16 through 9.18. (These spectra were calculated using the TSAP program,
which is described in Ref. 96. A time series of 1024 points, 2.048 s, was used. First the autoco-
variance function was calculated using a 12.5% lag. This result was windowed and then an FFT

was used to obtain the spectral estimates.)

Examining the quartering-aspect RCS in Fig. 9.5 (b) we see that as shown in Chapter 7,
even assuming constant amplitude functions (Table 9.1 (b)) the slow, oscillatory motions of the
ship can yield RCS realizations that appear nonstationary over short time-intervals. (Note that

there is an apparent decreasing trend in the variance of that data.)
9.5 Glint

From the data we see that glint is a process with a wider bandwidth than the RCS process.
Figure 9.19 contains examples of glint spectra (calculated using the procedure described in Sec.
9.3) for data (from Figs. 9.5 and 9.8) that exhibits no obvious nonstationary characteristics in

the mean or variance.

A well known property of glint is also illustrated in the data: sharp decreases in the magni-
tude of RCS ("fades") produce sharp increases ("spikes") in the magnitude of glint. Recalling
from Chapter 8 that glint is the ratio of two functions where the denominator approximates

RCS, we see that this fade-spike correlation is to be expected.

If Figs. 9.4(b) through 9.15(b) are interpreted as scatter diagrams then we see that
azimuth and elevation glint are in general not strongly correlated. Only the stern aspects show

strong correlation (due to the associated scenario producing very little signal fluctuation). To

further confirm this observation, cross-covariance functions for the glint data of Figs. 9.4, 9.5,
137
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9.7, and 9.8 were calculated (using TSAP) and are plotted as Fig. 9.20. We suspect that the
relatively strong but brief correlation that does occur (at zero lag) is due to the simultaneous
occurrence of spikes. We also note that multipath appears to contribute to decorrelation

between azimuth and elevation glint.

An examination of the azimuth-glint plots shows that the data is often asymmetrical about
a mean near zero (e.g. in Fig. 9.4(c) the positive values are more correlated (smooth) than the
negative values). This suggests that such data may not be Gaussian distributed. (It is known
that some radar targets display glint statistics that are approximately Gaussian [97].) This
observation was confirmed by using a Kolmorgorov-Smirov test of fit (from TSAP) to test the
hypothesis that the azimuth-glint data is Gaussian distributed: for each time series the result
was rejection of the hypothesis at an a-level less than 0.01. This result also holds for the
elevation-glint data except for one time series: that in Fig. 9.10(d). We comment here that
what we simulated was "ideal" glint in the sense that it cannot be exactly measured by radars.
Constraints on radar system performance (antenna pattern effects, finite bandwidths, system

noise, etc.) may result in error signals that are more symmetrical (due to smoothing of sharp

variations) and hence more likely to appear Gaussian.

Figure 9.21 illustrates the correlation between RCS and azimuth glint for four of the

simulations. We note that weak but definite correlation exists between these two processes.
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CHAPTER 10

CONCLUSIONS AND FURTHER RESEARCH

The major result of this research is the development of a unified stochastic model and
associated simulation for the EM scattering from complex objects in the presence of over-water
multipath. By modeling each component of this very complex problem using an N-source for-
mulation, we have obtained a unified RCS-glint model that is useful in applications. We have
introduced the concept of unit-scatterer and shown that it is a generic element for use in
modeling scattering effects. Though by defining the unit-scatterer as our generic scattering ele-
ment we have, in a sense, only shifted the scattering problem from the entire object to sub-
parts of the object, we suggest that the unit-scatterer concept is fundamental to the practical,
pulse-by-pulse modeling and simulation of scattering from complex objects. We believe that it
may not be necessary to precisely characterize unit-scatterers to obtain good approximations to
the total scattering. If this is the case then having determined classes of US types one could
quickly build models and efficient simulations for the scattering from complex objects using ele-

ments from these classes as building blocks.
We suggest four major areas of research for extension of this work:

(1) The primary area concerns the identification and characterization of unit-
scatterers. Particularly useful (and cost effective) would be éimulation studies
using the geometric simulations such as those at the Naval Research Laboratory
and the Georgia Institute of Technology. It would be important to

(a) identify US types,
(b) characterize US amplitude functions, and
(¢) characterize US phase functions with emphasis on determining the rate-

of-change of phase with US rotation.
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(2)

(3)

(4)

Analysis of existing ISAR data for identifying and characterizing unit-scatterers as
suggested in the first area.

Second-order-statistical comparisons of simulation data with measured data where
the simulation data is generated using the parameters associated with the meas-
ured data.

A study of the effects of multipath on objects that are distributed to determine a
better model for the multipath effects on unit-scatterers than the existing point-

source models.
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Appendix A
AN EXAMPLE SIMULATION OF SHIP MOTION

A simulation of the 6 dof motion for a ship’s cg was described in Chapter 6. This appen-
dix presents the output of a simulation that was implemented according to that description.
The ship chosen for simulatioq is the DD963 because that is the ship used as the example in
Ref. 78. A ship speed of ten knots and a relative ship-to-dominant-wave heading of 30° were
chosen for the simulation. Figure Al illustrates the spectra calculated by DTNSRDC for the
DDY963 at ten knots. The center frequency, bandwidth, and rms values used in the simulation
were estimated from this figure and are listed in Table Al. The frequency increment, Aw, was
chosen to be constant and equal to BW/10 for each component process. The simulation runs
used a time-step size of 1.0 s in generating six, 2048-point samples. The first 300 points of each
of these samples are plotted as Fig. A2. The samples were analyzed using the time series
analysis package described in Ref. 79 to estimate the associated spectra and rms values. The
resulting rms values are tabulated in Table A2 and normalized spectral estimates are plotted in
Fig. A3. Figure A4 illustrates two-second samples of the motion processes generated using a

time-step size of 0.002 s.

Table A1 — Spectrum Parameters That Were Table A2 — RMS Values of the
Input to the Example Simulation Simulated CG-Motion Processes
Process | wg (Hz) | BW (Hz) | RMS Value | - Process | rms value
X 0.061 0.018 0.344 X 0.334
Y 0.076 0.029 0.357 Y - 0.36
4 0.069 0.025 0.411 360
PHI 0.083 0.022 0.0539 Z 0.417
THETA 0.065 0.018 0.0089 PHI 0.0538
PSI 0.072 0.025 0.0066 THETA 0.0088
PSI 0.0067
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ROLL (4) SURGE (x)

PITCH (6) SWAY (y)
/\
YAW () HEAVE (2)
(a) ANGULAR-POSITION (b} LINEAR-POSITION
SPECTRA (DEG) SPECTRA (FEET)

Fig. Al — DTNSRDC motion spectra for the example simulation
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Fig. A2 — The first 300 s of the simulated cg-motion processes
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Appendix B

AN ESTIMATE OF RANGE VARIATION DURING
A SHORT TIME-PERIOD

Let 1—2',-(t) be the range from the radar to a scatterer on the ship. The phase of the

received field due to range is

w (1) = 4Tﬂ IR0, (B1)

To estimate the variation in | R,{t)| over short periods of time, we use the measure

E(AR}? = E{(R,(t + ) — R (D hHHV2. " (B2)
From (6.5b),

AR, = |T,(t + )RE(¢ + 7) + REGt + 1) = IR, () + RE(DI. (B3)

For simplicity we assume that there is no maneuvering, hence 7,(s) = /and RE(t) = RE(0).

Therefore

AR, = |RL(t + ) + REQO)| — |RE(e) + REO)I. (B4)
From (6.5),

AR, = |R,(0) + T[X, (+ + 7) — %, (0)] + RE(O)]

— |R;(0) + T[X, (1) — X, (0] + REO)|. (BS)

Collecting the initial terms,
AR, = |R? + T%,(t + 1) = IR? + T X, (D]

< TR, (e + 7) = X, (D], (B6)

Expressing the difference in (B6) in terms of components,

AR, < |T,[ax, Ay, Az Ag, A6, 9y]7] (B7a)

and

AR, < [(Ax + 740 — yAY)? + (Ay — zA¢ + xAW)? + (Az + yAd ~ x46)7]"2 (BTb)

so that
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AR? € Ax? + (A8)* + (yAW)? + Apy? + (zA¢)? + (x,Av)?
+ AZ? + (y;A¢)? + (x,40)% + cross-product terms.  (B8)

Because the component processes were assumed to be independent, we have

E{AR?} = E{ax? + E{ay?) + E{az) + (32 + D E{A¢Y)

+ (x? + zHE{a0% + (x? + yD) E{au?) (B9a)

where each epectation has the form
E{Ax?) = E{lx(t + 1) — x(D)]*} = 2R (0) - 2R (7). (B9b)
As described in Chapter 6, a useful approximation to the covariance function for each process

has the form

R/(7) = cz-,-ze—m"h'I cos wg (B10)

where a is 1/2 the bandwidth and o, is the center frequency of the ith process. Using these

approximations we have, for example,
Efaxd) = E((x(D) = x(t + D12 = 20201 = ™" cos wg 71. (B11)

For a ship, three scatterer locations yield the largest values for the position coordinates:
the location highest above the ship’s cg and the locations at the bow and stern. For the exam-
ple ship, the DD963, xp., = 50 m, yn. = 5 m, and z,,, = 15 m. Because of ship structure,
each maximum does not occur at the same location. The broadside aspect presents the largest
range variations because the largest angular rate, roll, has the maximum effect on the z-axis
components and the largest scatterer-distance from the cg, along the x-axis, also yields its max-
imum range effect. Even if the scatterer was located such that the location ;naxima occurred
we find that using the position values above, the process values from ’_I'able Al, and a typical

PRIof 7 = 0.002 s, E{AR}Y? = 2.1cm, andforr = 1.0s, E{AR?}Y2 = 0.42 m.
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Appendix C
SIMULATION EQUATIONS FOR RCS AND GLINT

We use (7.7a) and (7.9) to simulate RCS where, in anticipation of the glint simulation,

we modify them to be in the form

IN IN
o= Z{ 2{ M,a;M;a; cos (¥, —¥)) (Cla)
jum] jum
and
‘I’,- - \I’j = ﬁxﬂ-— (IR‘,! - lﬁjl) + B,@,) - )Bj(aj) + ')’,-(ﬁi, —él) - '}’j(ﬁj “5]') (Clb)
where
|F,| , 1< k<N
Mc=NF(F, -1l , N+1<k<2N (C2a)
and
< F , 1< k<N '
Ye=|< F(F,—1) , N+1<k<2N (C20)

We describe in detail the simulation of the multipath coefficients, F, in Refs. 49 and 98.

The glint equations used for simulation are Egs. (8.50). Next, we make an assumption

that simplifies those equations for use in the simulation.
Because we have limited our studies to small-grazing-angle illumination of the ship and
because the ship’s cg is near the earth’s surface,

R} << R} + R/ : (C3)
which implies that (see Fig. 8.5)

IR, | = IR, (C4a)
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and

IR, | = IR (C4b)
Equations (C4) imply that
R
sin ¢, = —=—, (C5a)
IR,
R
cos Y, = ——=— (C5b)
l 3 |
R,
sin §; = l_.'l , (C5¢)
and
i (C5d)
cos §; = ——. C5d
v IR;|
Using Egs. (C5), the transformation matrix in Eqgs. (8.50) becomes
cos @, cos Y, cos @ siny, —1
Ter = sin ¥, —cos ¥, 0 (Ceé)
COoS sin g cos 6,
and the cross product term becomes, from (8.29b),
(M, X J)e = cos ;i + sin ¢,j + cos f; cos (f — W)k (ep))

Therefore,

(A, % Iy = Ter(my x B,
= [cos 8, cos W, cOS &, + cos B sin y, sin y; — cos 8; cos G, — w1,
+ [sin @, cos y; — cos ¥ sin ¥;1m,
+ [cos @, cos @, + sin ¥ sin &; + cos O cos 8, cos (Y — ¢)ln, (CB8a)
= [cos §, cos (Y, — ;) — cos 8, cos (;bk — w1l
+ sin (§, — ;) M, + [cos (y, — W;) + cos 8, cos 8, cos (Y, — ¥,) A,.(C8b)

Using (C8b) in Egs. (8.50), we have

IN N
Y 3 M.a;Ma; cos (¢, — ¢;) sin (¥, — ¥;)

G, = IR,| 5% (C9a)

Y 3 MaM;a; cos (¢, — ¢,) cos b, — i)

jm] j=1
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and

IN N
Y ¥ Ma;Ma, cos (¢, — ¢,)[cos 8, cos (b; — ;) — cos 8 cos (b, — b))l
| ==
G, = IR, 2N 2N

.21' 21 M,a;M;a; cos (¢; — &) cos (b, — ;)
jum]
IN N
2 2 Ma;Ma; cos (¢; — @) cos 8, cos (br; — ¥;)
= |R,| {= ’2;,1 v — cos 6. (C9b)
Y 3 M.a;Ma; cos (¢, — &) cos (b, — w))
=1 /=1

Because sine, cosine, and arctangent functions are time-expensive on digital computers, we use

Egs. (C5) in Egs. (C9) to obtain

. R, |R.R.,—RR, RZ;: kaRx, - R_kay, .
(ﬁllx lk)sz _-‘S S-I —.S I — — —’I — i IS
|R,] IR,| - IR, IR IR;| - IR
R, R, —R. R, R.R.+R R,
+ yS-‘l _.S yl f;ls S-_l _..VS yl ;IS, (ClO)
where we recall from Chapt. 8 that
_ R+R,j+Rk i< i<N
Ri= ~ “ o N+l< <2N (Clla)
Rx’l + Rle - (hR + hl)k ’ I X
= ij? +R,j+ Rk (C11b)
Therefore the simulation equations for glint become
N 2N R, R, — R, R,
Y ¥ Ma;Mja; cos (¢, — o)) =
_ jm] jml |R,l
G, = |R;] (C12a)
IN N Rstx,- - RysRy‘_
Y ¥ Ma;M;a; cos (¢, — @) 7]
jm] el i
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and

IN N R, IR, R, + R R,
L X MaMe cos 6= &) TR IR TR, R,
G, = IR, — RE -RER| Kl (C12b)
i.zl j; M;a;Ma; cos (¢; — &) AR i
IN N | Rx R + R, R,
— 1§ j§ Mai%aj cos (¢l - ¢j)sz /U-i,‘ : !Esjl
- R,| - R,. (C120)
IV 2N R.R, - R, R,
i.z‘ j; Ma,M;a; cos (¢, — &) ‘lﬁi'l . IR':] ;

Finally we note that because of the long-range assumption, (¢ — ¢,) and (§; — ;) are small

angles so that

cos (Y, — ) = 1 (C13a)

and

cos (Y, — ;) = L. (C13b)
Using Eqgs. (C13) in (C12a) and (C12b) we have

W 2N RysR"i B Rstyi
Y 3 Ma;M;a; cos (¢, - é;) —
_ =1 IR;]
G, = IR, TR (Cl4a)
‘21 21 ]W,-a,—A/IjaJ- CcoS (¢, - ¢j)
jum] jem
and
IN 2N u ( ) R R, + R, R,
a;M.a; cos (¢, — ¢ )R, | —=——=—
- I-zljgl 7 ! g ]Rll ) ]lez
G, = |R,| TR - R,. (C14b)
j=m] jem
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Appendix D

SIMULATION DESCRIPTION AND SOURCE-CODE LISTINGS

The simulation was written in FORTRAN and run on a PRIME computer system. A flow
chart is presented in Fig. D1. Parameters are input (1) directly by the user and (2) via data
files. An example of user-interactive data is shown, in the proper sequence, in Table D1. The
first input data-file defines the ship-motion spectra and the second defines the US parameters;
example files appear in Figs. D2 and D3. The ship-motion input-file is called SHIP-PARMS
and the US-parameters input-file is called SCATT-PARMS. Data is output in binary format,
one record per time increment. The output file-names are defined in a DATA statement in

subroutine INIT. We note that the compiler replaces the PRIME statement
SINSERT filename

with the contents of the file that is named ‘filename’.

The remainder of this appendix lists the insert files followed by the source-code except for
that used to simulate mutlipath. The multipath source code is presented in Ref. 98.

Table D1 — An Example of the
User Input-Sequence

0.0300 Radar Wave Length
0.0 Pct. Range Error
0.002 Step Size

0.135 Wave RMS

Yes Multipath Indicator
10.00 Run Time

10000,7,0 Initial Ship Position
0.0,3.19,0 Initial Ship Speeds
88.0 Initial Ship Orientation
0.0070 Ship Turn Rate
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I

CALCULATE SHIP'S POSITION
START DUE TO SEA MOTION
) 1
OPEN OUTPUT CALCULATE US LOCATIONS
FILES RELATIVE TO THE SHIP'S CG
\ |
READ-IN THE PARAMETERS CALCULATE SHIP'S POSITION
FOR THE SHIP-MOTION SPECTRA DUE TO MANEUVERING
\ /
READ-IN THE PARAMETERS CALCULATE THE RANGE FROM
FOR THE USs THE RADAR TO EACH US
| ]
IF MULTIPATH IS DESIRED, CALCULATE RCS AND GLINT
INITIALIZE THE MULTIPATH PROCESSES
\
! OUTPUT DESIRED DATA
CALCULATE AND STORE THE
SHIP-MOTION SPECTRA

YES

CLOSE OUTPUT
FILES

i
EXIT

Fig. D1 — Simulation flow chart
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SCATTERER DEFINITIONS
TOCATICYN (¥WET CG) kCS SCATT. FLATE
Y Y ‘ AMP TYFY® NIA¥
-50. -4, 2. 4. 3 0.
-5. -u. 7. 0. 2 5.
2. 0. 2C. 3. 3 o.
10. -4, 7. 0. 2 5.
20. -4, 7. 0. 2 3.
30¢ —3. 15. 5. 3 O.

Fig. D2 — An example of a US-parameter input-file

CG-PRCCESSES SPEICTRUM-DEFINITICRN

CENT FREQ (RAD/S) 2W (RAD/S) RMS VALUE PROCESS
0.386 0.114 0,344 X
0.u77 c.182 0.357 Y
0.432 0.159 0.411 Z
0.523 0.136 0.053¢9 PHI
C.u09 0.114 c.0089 THETA
C.u5% 0.159 0.0066 ESI

.Fig. D3 — An example of a ship-motion input-file
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¢ $INSERT SITE
INTSGFR DIMEN,DIMEND
PARAMFTER (DIMEN=28)
PARAMETER (DIMFN2=DIMETN*2)

C SINSERT 3TCCK3

INTFGESR*Y Iq—rp
CO¥¥ON/2LOCK1/ISEED,DT,TINE

C SINSERT BLCCKZ
CCMMON/BLCCY2/3 \¥P(NIMEN),T(2,€6,0IMEN),

M )’
) ,BNDWT™ (F),R¥S(£),RNGERR ,WAVRNS ,RADHGT

CALL DRIVEPR
C*LL EXIT
TN
C FILE: DPIVER
[ e e e e e e e e M e m e e e -
C PURECSEZ:
< TC GENERATE 2 TIMT STRITS OF 2ANIR SIGN2LS FESULTINC FECM
c ILLUMINATICN OF A SHEIP AT LONG RANGF, T¥IS RCUTIVE IT TEE
z DRIVER ¥CR THF EPACK2ACT,
c
: ‘P\'V U’-‘-
C AFGUYENTS:
- NCNFE.
c
¢ CUTPUT:
C ARGUMENTES
z NoNwE,
o
C AUTHCR: D,Y.,NCPTHRY,
C DEVELCPED: u/82.
C MCDITIED: 1582, 1683,
SURRNUTINT DRIVER
SINSFRT SYSCC¥D>ASKEYS
SINSFERT RCSORCUTINTS>SICT
SINSFRT RCS>ROUTINES>RLOCK!?
SINSTRT RCS>RCUTINES>RLOCK?2
DCURLE PRFCISICN TMP,DELERI(R,DIMEN)
PCURIF 2RFCISICY DY,DV,D7,TF
LCGICAL UPDATE(DIMMN),?T?ST(DI"FV),“PFEAG

INTEGFR SCTTYP(DIVMFN)

PARAKETER (P’ON2‘1.571 TWOFI=€.2832)

DIMENSICN LUNITS(O),¥SHIL(F),XCH(6),RI(2,DT¥EN),ESI(TIYEN),
* DIAM(DIMEN)

3y )

INITIALIZE SIMULATICN



vt

TRIL INIT(LON
TUN1=LUNI
TON2=LUNT
TUN2=LUNT
TUSSBELUNIT

CrE [ NT]
(E=LUNT

.y

N N e e e e T
SSERC LIS L Y =V | Y
R N N I RN N S ]

35 e 3 ]r—] rjr]»)r—] [ I BN
] |7.§"()’\U] MNININ NN MmN

TUNT=TUNT
TUNO=LUNITS (8
LUNS=LUNTTS(2
10 CALL TNCU N
RTAN(Y, >, °=
MAX=TMAY /DT+1
DC 15 I=1,0IME

TIRST(I)

TS ,NSCATT ,,SCTTVYP,DIEM  WAVLEN,MEFTAC)
TER ¥RX TI¥E: ',148)

C) TvaY

N

1e NT
SEGIN SIMULATICN 1OCP
neoag I=t, MRy
TIWE=DT*I
UTDATE & DCF PCSITION VALTES FCR ZEIP'S C6
pno2C I=1,6
CALL PPCCES(J,ANTEFQ(J),BENTWTE(S),0, . FALSE,.,YCG(J),TII¥E)
XCG(J)=RXS(J)*¥CG(C0)
2¢ CCONTINUR
CEDATE SCATTERFR DCOSTITIONS
no o3¢ K=1 ,NSCATT
CALL LINMAFT(T(1,1,%X),2,6,XCC,RIC1,%))
rZ 3¢ 7=1,3
RI(J,X)=RI(J,KY+NY7(J,X)
3C CONTINUE
2 CONTINUE
UEDEITT SHT? MANTUVFRING PCSITICN
C3LL SUIP(TIMT,YSHID)
UEDATF PATAR-TO-SCATTERER RANGE
rTQ 4u¢ ¥=1,NCSCRTT
CALL TRNSFE(RI(%,¥),XYSHIP,PADHGT,NRLRI(1,¥))
ESI(K)=ASPECT(YSHIP(1) ,XSHI P(Z),VCF’U(S),K,FI?ST(K))?XCG(6)
uf CoONTINUT
UTDRRATT PCS ANT GLINT TRQCTIESSES
FUI=YCG(4)
CRLL SIGNIS(FESI, NSCATT,SCTTYE,DIMNY,PHI VLEN,DBLPI,¥SHIP,
* ®CS,3ZCLNT ,ELZINT ,¥DILAG)
CUTPUT DESIRED TATA .
WZIT=(IUNT) PCS
PITE(LUNS) RZGLYT
WEITF(LING) TILCLNT
TURN OFT INITIRLITATION FLAGS
Tl aC ¥=1,NSCATT
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IF(LNCTLFITST(X)) &0 TC e¢
FIRST(X)=,FATCST,
CEDATE(¥)=,FALITE,

EC CONTINCE
@0 CONTINUE

Z CILCSE 2UTFUT FILES
bc *C0 I=1,¢
CALL CLOSSA(LUNITS(I)-u)
1CC CONTINTET

T END OF SIMULATION
RETURY
END

Z FILE: INIT

c PUQPOSE.

z TC INITIALTIZ?E TET SIVULATICN DARMMTTERT,

C

C INTUT:

7 ARGUMENTS:

z NOVE.

o

C 0oUTPpUT:

c ARGUMENTS:

c LUNITS =LOCICAL UNIT ¥UMRERS FCR THE 2UTPUT FILES,

T NSCATT =NU¥BER OF SCATTFRERS.

z SCTTYE =INDEX INDICATING TYPF 0F SCATTEELRER.

C =1 FCR CCNSTANT TYP

C =2 FCP FTIAT-FLRTT TYPF.

< =27 FOR CCBNEZR TYPF,

c DIAM =DIAMETZRS £F THE FLAT PLATFE SCATTEREFS.

c WAVLEN =PACAR WAVE LENGTE,

c MPFLAC =MULTIRETH FLAC.

< =,TPUF, IF ¥ULTIPATH EFFECTS ARE TO RE ACCCUNTETD FCE.
c =.,FALSE., OTHZIRWISE.

C /BLCCK1/:

z cT =STIMULATICN STEP STZET,

c ISEED =RANDCY YUMZER GENERATC? SEEDS (I*L).

C /BLOCX2/:

c RADHGT =HEIGHT OF THE RADAR ABOVE THF SER.

c CNTTRQ =CENTER FTRFQUENCITS 0% THYF SYIP-MCTION SPICTPR.
C BNDWTH =BANDWITTH COF TFF SHIP-MCTICN SPECTEA.

- RMS =RMS VALUTZS OF THF SHIP ¥OTICN PROCICSCES,

C RNGERP =RANGF EFROF IN THF PHASE CENTER LOCATICN.

c Xyz =CASTFSIAN CCCRDINATTS QOF THF SCATIFERING CTENTERS
o IN THE SHIP-CG AXIS SYSTEWM,

z AMP =AMPLITUTES OF THE SCATTERERS.

o T =TRANSFCRIMATION FROM SEIP-CC. 6-DOF PCSITICN TC
o SCATTEFER €£-DCF ECSITICN,

~

C AUTHOP: D.Y.NCRTEAM,

C DEVELOPED: u/82.

C MCDIFIED: 1982.

(O ittt
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FAbA r4 A

SUBECUTINE INIT(LUMITS,NSCATT,SCTTYP,DIAM,WAVLEN,
SEZT SYSCOVYORASYFYR
SERT RCS>EOQUTINESHMSIZE
STRT SOSO>REOUTINES>RLOCK
SE2T ECS>EQUTINES>RICCK2
INTICTR OLUNITE(1),FNR2Y(3,2)
INTTGES SCTTYP(NSCETT)
LCGICAL FUNIT,YESNQ ,MPTLAG
INTEGER*L I1,I2
FAFAI¥ETIE (TWCFI=€.2832)
TATA FNRM/VY-CC' 6! ',
* ay_ccv’s*u '
- |7_ppv Ex v,
* 'FUT’CG' Sx 1,
* TTHETA - Cﬂllu*l |’
* 'PSI-CGY S ‘.
* 'RCSMAG' , 8! 'y
* FAT RTINS 'u*l r,
* PEL-CGLINT' ,4xr '/
IsreD=1
FADHGT=U40.0
2 CALL TNOUAR('RNTEF RADA® RJAVLENGTH: ',23)
EFAD(1,*,5RF=3) WAVLEN
CALL GFTSCT(XYZ,NSCATT,A¥P,SCTTY?,DIMY)
nes I=1,“SFB“*

in
R
(@]
LS
(]
1
2z
[
1

CALL GTT?RY(CNTFRO,?NDWTH,R!S)

CATI GWTMAP(XYZ,NSCRTT,T

CPLL TNCUA('FNTEIF TERCENT PANGE ERRCR: °,27)

READ(1,*,ERR=7) FCT

PNGERP=WAVLEN*(PCT/100.)

10 CALL TNCUA('FNTEF STEP SI2F: ' ,17)
PEAD(1,*,EFR="C) DT

~d

CPEN CUTPUT FILES
rC o uc I=1,6G
IZ(FUNIT(NFU)) GC TC uQ
STCP?

Lo CRLL CPENSA(RSWEIT+ASSAMF ,FNAM(1,I),16,NF1)
LUNITS(I)=NFU+u
48 CONTINU®

SET UP FOR MULTIPATH
46 CAIL TNNUA('ENTER WAVE RMS: ',16)
READ(1,*,ERR=U46) WAVRMS
F(.NCT.YESNO('USE MULTIPATH? ')) GO TO 85
¥PFLAG=.TRUE,
T1=1C1
I2=100C1
0C 5¢ I=1,NSCATT
CRALL MFINIT(I,C.0,%WAVR¥Z,WAVLEN,0,I1,1I2,DT)
I1=I1+5
T2=I2+¢
s¢ CCNTINU®
GC TC 60

164

MTFLAG)



28 MDFLAG=,FRLEST.,
AC CCONTINTE

T CRICULATE AND STOET® SPECTP®2
oC 7C I=1,6
CALL DROCES(I,CNTERO(I),ENDWTIH(I),INTL(I),.TFUE.,FPNCVAR,C.C)
7C CCNTINUE
RETHPRN
END
T FILE: GETSCT
T PURPOSE
C TO PEAD IN THE SCATTTURING PARAMETERS FOPRP THT INDIVITDHIA
= JNIT-SCATTERERS.
C INPUT:
. ARGUMENTS:
° NONE.
Z CUTPUT:
c ARGUMENTS:
c XYz(2,I) =CARTE=SIAY COCPDS. OF SCATTERER LOCATICNS
c IN THF SEIP-C3 AXIS SYSTTYM,
i NSCATT =NUMZFR OF SCATTEPFRS.
= ANMD =AMPLITUDE CF TFE SCATTERECS,
c SCTTYP =INDICATES TYPE OF SCATTFZRER.
z DIAM =FLAT PLATE DIAMETER, IF RAPEPCPRIATE.
~
T AUTECR: D,V .NCETHRNM,
C DEVFEIONPED: uL/82,
C MCDIFITD: 1982.
SURRCUTINE GETSCT(XYZ,NSCATT,AMF,SCTTY?,DIA¥)
SINSERT SYSCOMDASKEYS
INTFGER FNAME(16)
LOGICAL FUNIT
INTEGE? SCTTYP(NSCRTT)
DIMENSION XYZ(3,NSCRTT),AMP(NSCATT),DIA¥(NSCATT)
DATA FNAME/'SCATT-PARMES ',10%*' '/
C

C NEEN INFUT FILES AND READ IN SCATTTPRPING PARAMETFERS
IF(FUNIT(NFU)) CC TC 10
STOP
10 CALL CPTNSA(RSPRAD+ASSANT FNAIMF,32,NFC)
LUN=NFU+4
READ(LUN,11) DUM1,DUM2,DU¥3,DUNL
11 FCRMAT(AL/AUL/AL/AL)
¥SCATT=0
ne 12 1I=1,100
READ(LUN,*,END=20,ERP=20) XYZ(1,I), XY"(Z I),¥YZ(3,1),ANP(I)},
* SCTTYP(I),DIAN(I)
NSCATT=NSCATT+1
1% CONTINUZ
20 CONTINCE
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T TILE: GTITERNM

C FURPCET:

B TC REZAD IN THT SHTT-MCOTION-FRCCESS DRPAMETERS,

T IXPUT:

- APGUMENTS:

< NCNT.

Z CUTPRUT:

- ARGUYENTS :

z CN¥TERC =CENTER? FRECUENCIFS CF THE SHIP-¥OTION SPECTEA.
Z BNDWTH =BANDWIDTH CF THF SHID-MOTICN SPECTRA.

- F¥E =P¥S V2LUFES 7% THT SUIP MCTINN DPROCESSES,

]

DATA TNAHE/'SHI?-PAPYS',T1*' v/

NYPUT FILY AMD STAD TN MCTION PARAMETIRS
INIT(NFU))Y GC T 12
P
10 CRLL OFFNSA(ASREADSRSSAME , PNAME, 22 ,NFU)
FU+l
READ(LUN,13) DUMT,TU¥Z,DUN3
13 FORYAT(AU/AL/AL)
NF22¥E=0
e 15 1I=1,5
NDARMS=NTARMS+1
READ(LUN,*) CNTFFC(I),ENDWTH(I),R¥S(D)
1€ CONTINUF

T~ CLCSE INPUT FILE
2C CALL CLCSSA(NTL)
EETURY
IND . .

T EFUERPCSFE:
TC TEFINE TUE LINEAE MOTICN-MAPS FCR THE INDIVIDUAL

(@]
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UNIT-SCATTEPEF LCCATIONCS.

[A5]

INTUT:

ARGUVEINTS:

XYZ(3,I) =CAPTFTIIAY CCCRDPS. CF SCATTEREIR LOTATIONS
IN THY SHIT-CC AYIS TYSTEV,
NSCATT =NUMBET QOF SCARTTITTRS.
CUTEUT:
RRGUVMENTS
T STRANSFCP¥ATION FRCM SHTIP-7G A-DOF POSTITICN TO
SCATTERER A6-DCF FOSITION.
AUTHCR: N Y.NCRTH2¥,
DEVELCPED: u/8Z.
MCDIFIEZD: 1682.
SURRCUTINF CET¥AP(YYZ NSCRATT,T)
DIMINSION XYZ(3,NSCATT),T(R,6,NSCATT)

CC 20 ¥X=1,NSCATT
noo1c I=1,3
ne 10 J=1,3
T(I,3,¥)=0.0
IF(I.EQ.J) T
10 CCNTINUE
T(1,4,K)=0C.0C
T(2,4,K)=-XYZ(3,X)
T(3,4,K)=XY7(2,%)
T(1,8,K)=¥Y¥Y"(3,X)
T(2,5,K)=C.0
T(3,5,K)==-XY"7(1,%)
T(1,6,K)=-X¥Y7(2,K)
T(2,€6,XK)=¥Y7(1,%)
T(2,6,K)=0.C
20 CONTINUE
RETURN

(I,3,X)=1.0C

PURPCSE:
TO OBTAIN THE COCRDINATYS COF THE ITH SCATTERER IN
THE RADAR ANIS-SYSTEM.

INFUT:
ARGUMENTS:
RI =SCATTERER COOCRLCINATES IN THE SEIP-CG AXIS SYSTTM.
XSHIP =SHIP?-CG, 6-DOF PCSITION DUE TO MANEUVERING.
RADHGT =HEIGHT OF THF RADAR ARCVEF THE SER,

CUTPUT:
ARGUMENTS: .
DBLRI =RADAR AYIS-SYSTEM COORDS. OF THE ITH SCATTERER (I*u).

AUTHCR: D.Y.NCRTHAM,
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DEVELCEED: 19£2.
MARTTTT N hReR-Nel
fODIFTED 1682,

SURFQUTINE TFNSFF(RI,XSHIP,SADHAT,PRLRT)
PCURLE TRPEICISICN DRLRI

RIMENSTON SI(3),YSUTP(F),2(2,3),R0LRTI(3),Y(3)
gru TN(XSEIT(4))
CEH CS(¥SEIT(L))
STET=CTN(YSHETE(5))
CTH NE(XSEIT(E))
SPSI=SIN(XSHIP(£))
CPS CT(YSHIP(A))
A(1,1)=CPSI*CTHT
3(1,2)=CPSI*STH=*STHI-TESI*CPHI
A(1,3)=CPSI*STHEL*CTHI+SPSI*SFHI
2(2,1)=SPSI*CTEY
A(2,2)=SPSI*STHT*STUHT+CCST*CPET
A(Z,3)=SPSI*STHT*CPRI-CPSI*SPHI
2(3,1)=-STHF
2(23,2)=CTHF *STYT
A(3,3)=CTHE*CZPI

FCSITICN NUE TC STA ¥CTICHN
oCo20 I=1,2

Y(I)=0C.,0
o 1C 7=1,7
Y(I)=Y(IY+A(I,2)*RI(J)
1C CONTTINUT

20 CONTINTF

POSITION TUE
o 20 I=1,3
CBLRI(IY=Y(I)+XSHIP(D)
3C CCNTINUE

CCRRTCT FCR RADAR REING ABCVE THE TARTH
DELPI(2)=DRLPI(2)-FALHGT

PURPOSE:
TC LINE2ARLY TRANSFORM AN INPUT VECTCR INTO 2N OUTPUT

INEUT:
ARGUMENTS:

A =TRANSFORMATION MATPRIY,
KOCWA =NU¥RER OF ROWS IN 'A',
NCOLA =NUMRFR OF COLUMNS IN 'A’,
X =VECTOR TC PE TRANSFCPMED.

CUTFUT:
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" ¥ =EESULTANT VECTCE,
T AUTHCR: DLY.NCPTHYY
- DFVFLOPTD: u/82.
~ ¥CPIFIZD: 1982,
T o o n o e - . AP B M W e TR e N AR R R D R SR N R EE R TE dE G AR L R R W A S R P R MR R T W S e R MR AR R R YD W e e W S WD We W WR W e e

SU230UTINT LINMAD(R,NRCWR,NCOLA,Y¥,Y)
c DIMENSTCN 2(NRCWA,NCOLA),X(XCOLA),Y(NROWA)

NIMTNSTON A (3,6),Y(8),Y(2)
-

N0 20 I=1,NRCWA

Y(I)=0.0
DO 10 J=1,NCOLA
Y(I)=Y(T)+A(I,T)*¥(J)
10 CONTINUF
20 CCNTINUE

RTTURN

END
C FILE: SIGNLS
T BURDCST
s TC CALCULATE THE OTCTIVFD RADAR-SIGNMIS,
-
c INPUT:
z BRGUMENTS :
c pST =SHID*S ASPECT BNGLT,
a NSCATT =NUMRER QOF UNTT-SCATTFTRUES
c SCTTYP =FLAG INDICATING TKE TYPE CF SCATTELER,
. =C FOR CONSTANT,
c =1 FOS FLFT TIATE.
c DTANM =DIAMTTER OF THE FLAT FLATTS.
z PHT =PCLL 2NGLF CF THE SHIE,
~ WRVLEN =3ADAE WAVELENGTH,
c DRL2I =POSTTICN VECTCR OF TYWE ITK SCATTFRER, IN EAPTH CCCRDS.
z XSHID =POSTITICN VECTCP CF THE SPFI®, IN TAFTH CCOPDINATES.
z ¥PTLAG =¥ULTIPATH FLAG.
a =, TE'T, IF MULTIPATH EFFECTS 32T TC RE CALCYLATED.
c =.TALST. CTHERWISE,
c A¥D =E¥PLITUDE OF THE ITH SCATTFREP,
C OUTDUT:
r BRGU¥ENTS:
c RCS =TAFGFT PCS
o BZGLNT =TARGET 2ZI¥UTH-GLINT
o FIGLNT =TARGFT TIEVATION-GLINT
C AUTHOR: D.Y.NORTHAM.
C DEVELOPED: 4/82.
C MCDIFTED: 1982, 1982,
C .......................................................................

SURRCUTINE SIGNLS(PSI,NSCATT,SCTTYE,DIANM,DHT ,WAVLEN,JRLFI,XSKIF,
- PCS,AZGLNT,ELGLNT,¥PFLAG) '
SINSERT RCS>RCUTINES>SIZF
SINSERT RCS>ECUTINES>RLOCK1
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IVTN2),DRIPI(3,DIMIN) 2 (DIMEND) ,XSFIP(E),
MEN),DIAM(TINEN),PHASE(DIMEND) ,GNDRNG(DI¥EN)
=6,7232)

*
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2

~ CALCULAT A?lp TO-SCATTFRTR RANGTES

WODT /WAVIEN
T(XSHIB(1)**2+¥SHEIF(2)**2+¥YSHIB(3)**2)
NSCaATT

ALV IE NS T 34

SY=RNGERE*ZANNSA (ISEFD)
GNDRNG(I)=DSQRT(DY**24DV**2)+DW
FANGT(T)=DSORT(DY**2+DY** 240 7% %2 ) 40y

- DSCRT (DX**240Y**2+(XY7(2,I)+¥SHIP(2)-FAPHCT)**2)+ DN

10 CONTINUT

SU¥1=0.0

SU¥220.0

SU¥3=0.C

IF(YPFLAG) NPTS=2<NSCATT

IF(.YOT.¥PFI2G) NPTS=NSCATT

T CALCULATE SCATTERING BMPLITUDES
pC 15 J=1,NSCATT
RB(I)=A¥P(J)
IF(SCTTYP(J).EZ.2) CALL FLT®LIT(DIAM(J),WAVNUNM,PSI(J),PHI,A(T))
IT(.MO0T.MPFLAG) GO TC 13

7 CRICULATE MULTIPATH AMPLITUDE AND PHASY EFFECTS
TARHGT=YSHIP (3)+XY7(3,
CALL MPMAIN(J,TARHGT ,EPDHGI, NDPNG(J),TIME,PSISPC,XPEAL,YIXRG)
F1=SQRT((1.0+XREAL)**2+YIMAG**2)
FP2=FA*SCPT(YRFAL**Z+XIMAG**2)
A(J+NSCATT)I=F2*2(J)
A(J)=F1*a(J)
PHASE(J)=ATAN2(XIYAG,1.0+XRFAL)
PHASF(I+NSCATT)=ATANZ2(¥TMAG*(1.,0+2.0*XREAL),YREAL+XREAL**2~
* XIVRG**2)
GO TO 15
13 PHASE(J)=0.0
18 CCONTINUT
T CRLCULATE =®CS RAND GLIYT
DO 25 I=1,¥PTS
TR(ILIELNSCATT) T7=T
IT(I.GT.NSCATT) IT=I-NSCATT
AZCOWFE=(XSHIP(2)*DBLEI(1,I1))/BANGE(I)
* ~(XSHIP(1)*DBLRI(2,I1))/RANGE(I)
re 25 J=1,NPBTS
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IF(JLLELNSTATIT) GO TC 21
J1=J-NSC2ATT
FZI=-(XSHEIP(Z)+DRTFI(2,J)+2ACKET)
GC TC 22
2 J1=J
RZI=NRLRI(2?,7)
22 CONTINUE
ELCCEF=RZI*(CBLRI(1,J1)*PRBL=I(1,I1)+D3IRI(2,J1)~*
* DRLRI(2,I1))/(RANGE(II*(PANGE(JI)**2))

CRLCULATE TFHASE DUE 77 RANGF
DR=RANGE(I)-RANGF(J)
RATIO=DZ/WAVLEN
ANGILE=2.0*TWCPI*(IATIO-DINT(RATTIO))

ADD MULTIFATH PHASE
ANGLE=ANGLE+TFHASE(I)-PHASZ(J)

C*LCUTATE SUMMATION TwoMs
TERM=A(I)*A(J)*COS(ANGLE)
SU¥1=SUM1+TER¥*ELCNEF
SUMZ=CUMZ+TERY*A7CCEE
SUMI=SUMI+TERY

25 CONTINUE

SUM3=S1UM3+1,0F-1C
RCES=SU¥?2

CALCULATE CGLINT IN METERS
AZCSLNT=SUM2/5U™2
ELGLNT=RSHIP*STU¥1/SUM3 - (XSHIE(3)-RADMHAT)
RUTURN
END

FI'RPOSE:
TO CALCULATE A FLAT-PLATE-TYPE AMPLITUDE AT
NEAR-PERPENDICULAR INCITENCE.

DIAM =DIAMETERS CF THE PLATES.
WAVNUM =WRAVT NUMBTR FCR THE PADRR,
AZIMTF =RATAR-TO-PLATE ARZI¥UTH RNGLE.

ELEV =RADAR-TO-PLATE ELEVATION ANGLE.
CUTPUT:
ARGUMENTS:

A¥P =RESULTING SCRTTERED AMPLITUDE.

AUTHOR: D.Y.NCRTHRYN.

CEVELCPED: U4/82.

MODIFIED: 1982.
SUBROUTINFE FLTPLT(DIAM ,WAVNUM AZIMTH,TLEV,A¥P)
FARAYETER (TWCFT=6.2832,SQRTFI=1,77245,FICN2=1,57C¢)
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CRLCUTATE TCTAL AMTLITUDF
3C MMT=C1*SCRT(ZLEAMP*AZMANE)
FETURN

oNn

"C ”;LC”TP“r THE MANTUVEZRING TRAJFCTORY CF THE SEIP
IN EARTH CCCFLCINATES,

INTUT:
AFGUMENTS:
TIME =CUFRENT STMULRATICON TIXFE,

AUTHCR2: D.Y.NCRTHANM,
CEVEICPED: 1982,
MCLIFIED: 1982, 1583,

SURRCUTINE SHIT(TI¥E,XSHIP)
LCEICAL FIRST
DIMFNSTON ¥SEIF(£)

DATA XO,Y0,20,YX,VY,VZ/6*0.0/,FIRST/.TPUE./,CMEGA,FSI0/2*0.0/

Ir (.“OL.F;.u*) GQ TO 10

FIRST=,.FALSE.

CALL TN”UA('VV”VQ INITIAL SHIEF CCCEDS: *,27)
PERD(1,*,EPF=5) Y0,Y0,20

7 CALL TNCUA('TNTER SKIP SEEED: ',18)
RFAD(1,*,EPR=7) V

CAlL TNOUA('ENTER INITIAL SHIP? PCTATION ANGLE (DEG):
READ(1,*,TPR=2) FSIC
PSTO=CSTN/87.23
VX=V*CCS(ESIO)
VY=V*SIN(PSIO)

‘n
U s

(8 2]
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@ CALL TNCUTA('ENTIP SHT? TUININA RATE (RADY: ' ,37)

,3
STAD(?,*,TPR=G) CMTGA

’ 14
1C XSHIP(1)=XO0+VY*TI¥%
YEHTE(2Z)=Y0+VV*TINT
XSHID(2)=Z0+VZ*TIV"
YSHIP(4)=C.C
¥SHEIP(S)=0.0
¥CUTE(E)=PSIC+CMEGRYTI¥T

RETURN

S TURPOSE:

c TC CALCULATE A SCATTEIRFA'S ASPEAT ANGLT SFLATIVF T3 TEF SADAER.
-~  INBUT:

: AEGUMENTS

- X =¥-CGOSCINATE OF TEF SCATTTBTEZ,

. v =Y-COOBRDINATE OF TEE SCATTERES,

- peT =SUTD ROTATTON ANGIT,

- SCTYU¥ =TNDEY 70 THE SCATTERFPS (T).

- FIRST  =FIRST-PASS TIAG.

z =.™30T, FCR TET FIRST PASS TUSAUGH THT SIYULATICN.
- =.FAIST, CTHTEWISFE,

c orTpnT:

~ ARGUMENTS

- ASTFCT =SCRTTTREE'S ASPECT ANGLF (PAD).

S AUTHCR: D.Y.NORTHAM,

C DEVELCPED: 4/82.

~ MCCIFIED: 1982,

FUNCTION ASPECT(X,Y,PSI,SCTNUM,FIEST)
SINSERT PCS>ROUTINES>SIZT

LCGICAL FIRST

INTEGER*4 ISEED

INTEGEF SCTNUM

DIMENSION ASPCTO(DINMEN)

PRRAMFTTR (TFCREE=Z.0)

DATA ASPCTCO/CI¥EN*C.C/,ISEED/1/

C ASSIGN RANDOM INITIAL ASPRCT
IP(.NOT.FIRST) GC TC 1€
ASPCTO(SCTNUM)=2,0*(2PANDSA(ISTED)-0.5)*(DFGREE/S7.2096F)
T CAILCULATE ASPECT
10 ASFECT=ASPCTO(SCTNUM)+ESI+ATAN2(Y,¥)
20 RETUERW
END
C FILE: PROCES
Cmmr e e e r s m c e e e e e e e o m e - = = = . - = —
C PURFOSE:
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TC FTALITT TUE SHIF-CG ¥CTION FRQOCESSES,

INTUT:
REGUMENTZ:
II =INTEX TC THE SHIP-CG TRCCFSSES,
CXTFR7T  =C¥NTT? FOVCHENCITS CT THT STRCOTRPA (RAD/S),
BNDYTH  =RRINDRWITTHES OF THE SPECTPRA (RAT/S).
IsFED =ZANTCY NUMSIF GENEEREATCE STEIDS (Ivu).
FIFST =FTRST-FASS FLIG.
=,TPUF, FCF TUF FIRST EASS THRCUSE TUT STXULATICN.
=,7ALEE, CTHFEPWIST,
TI¥~® =CURRENT SIMUTATICON TI¥EZ (S).
cuTzUT:
RRGUMENTS:
RNDYVAR  =CURRFNT VALUT CF THE DESIRED FRCCESS,.
AUTHCR: D,Y,NORTHEN,
DEVELCFED: u/802,
MCDITIED: 1982,
SUTPCUTINT PRCCES(TI,C¥IFRC,3INMWTH ISFED,FIRST,RNDVRAE,TINE)
PRPAMETE® (TWCTI=6.,2832,RMSFAC=0,440G6 ¥MAXFPC=31)
LOGICAL FI=ST
INTEGEP*4 ISEZID
COYMCN/PVBLY/S(Y2YFED,6) ,W(MAYFRC,A),DW(€E) ,PHI(MAXFRQ,€),
* PRREAMS(10),NFPEC (%)

INITIALIZE PRANICY PHASES
TC S I=1,MPYFRC
PEI(I,IT)=TWCPI*EANDSA(ISEED)
< TCNTTNUE

INITIRLIZE PARAMFTERS
FPARAMS(1)=CNTTRQ
FARAYS(2)=RNDWTY
WMIN=CNTFRC-BNDWTH
PARAMS(2)=WMIN
NFREC(II)=MAYFERQ
DW(IT)=ENTWTH/10.

THE SFECTFA

CALCULATE
LL SPCTEM(1,PRRAMS, NFREQ(II),DW(II),W(1,II),5(1,II))

CA

STORE NORMALIZED SPRECTRUM
MAX=NFREC(II)
DO 20 I=1,MRAY
S(I,II)=SCRT(2.0*S(I,II)*NW(TI))
2¢ CCNTINUE

70 TC 2¢0

CRICULATE THE CURRENT VALUE OF THE PRCCESS
10C Sy¥=C.C

¥AX=NFPECQ(II)

L0 110 I=1,YAX
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CCSINE=CCOS(THI(I,IT)+W(T,TI)*TINE)
SU¥=SUM+S(I,II)*COSINE
11C CCXNTINUE
BNDVAR=RMSFAC*SUY
20C RETUEN
ENT

PURPOST:
TO GENERATE THE SPECTRU¥ OF A PROCESS OVER A RANGE CF
PCSITIVF FREQUENCIES,

INTUT:
ARGUMENTS:

TYTE =FLAG INDICATING TYTE OF SPECTRUM TC BE GENERATED (I).
PARAMS(1) =CENTEF FRFCUENCY CF TKE (UNIMCDAL) SPECTRUM (FRD/S).

PARAMS(2) =RANDPWIDTH OF THY SFECTRUM (BAD/S).
PARAMS(3) =LOWEST FRFQUENCY AT WHICH THE SPECTRU¥ IS
TC BE CALCULATED.

NFREQ =NUMEER OF FTREQUENCIES AT WHICH THE SPECTRUY
IS T0 BRE CALCULATED.
DW =FPECUFENCY INCREMENT (RAD/S).
OUTPUT:
ARGUMENTS:
W =FREQUENCIES AT WHICH THE SPFCTRUM IS CAICULATED
S =VALUES CF THE SPECTRUWM.

AUTHOR: D.Y.NCRTHAM,
DEVELCFED: 4/82.
¥CDIFIED: 1982,

SURROUTINE SPCTRM(TYPE,PARAMS,NFREC,DW,W,S)
INTEGER TYFE
DIMENSTCN PARAMS(1),S(1),W(1)

GO TO (10), TYFE
WRITE(1,1) TYPE
1 FORY¥AT('NC SPECTRUM DFFINTN FCPR TYPT=',I2,' (SPCT2¥).")

GO TC 20

BANDPASS SPECTRUM
10 CNTFRC=PARA¥S(T)
PNDWTH=PARANS(2)
WYIN=PARAMS(3)
ALPHA=BNDWTH/2.0
pCe 18 I=1,YEFREC
W(T)=WMIN+(I-1)*TW
S(I)=ALPHA/(ALPHA**2+(W(I)-CNTFRZ)**2)
S(I)=S{I)+ALPHA/(ALDHA**2+(W(I)+CNTFRQ)**2)
S(I)=2.0*sS(I)
1% CONTINUE
20 RETURN
END
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