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The dynamic control of two queues competing for the
service of a single server is treated. The problem is to
optimally design a server time allocation strategy, under
various performance criteria and conditioned on various
information patterns. The instantaneous cost is selected
as the total expected aggregate delay. The problem is
formulated in discrete time. The arrival and departure
processes at each queue are modelled as independent
Bernoulli processes.

The research divides into three topic areas. First,
the problem is formulated as a stochastic optimal control
problem with complete observations, i.e. the controller's
information at a decision epoch includes the past histories
of the control values, departure and arrival data. The
arrival rates and departure (servicé) rates are considered
constant and known; The finite horizon, the infinite
horizon discounted and the expected long-run average cost
per unit time performance criteria are analyzed. In all
cases, for the unbounded system the optimal service

allocation strategy reduces to the '"uc rule."



Second, the service allocation problem is studied as
a stochastic optimal control problem with partial obser-
vations. Here, the information available to the controller
includes the past histories of the control values and the
arrival data, no past histories of departures are observed.
The observations are modelled as discrete-time, O0-1 point
processes whose rates are influenced by the size of each
queue. By a simple application of Bayes rule and dynamic
programming, we show that the "one step'" predicted density
for the state is a sufficient statistic for the control;
the finite time expected aggregate delay criterion 1is
considered. A special relationship between the queue trans-
itions and the observations in such queueing system is noted.
Third, the competing queue problem is formulated as
an adaptive control problem. The arrival rates and service
rates are considered constant but unknown. The information
available to the controller includes the past histories
of the control values, departures and arrival data. The
infinite horizon discounted and expected long-run average
cost performance criteria are analyzed. Convergence
results for certainty-equivalence type, adaptive control
schemes are established. Several possible extensions

of the results are discussed.
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1. INTRODUCTION

Classical queueing theory has been concerned with
the properties of the queueing system under fixed modes
of operation. Considerable attention has been directed
towards optimal static control of these systems.
Recently though, interest has been directed towards
dynamical control. Despite their deceptively simple
formulation, these dynamical optimization problems have
highly nontrival solutions, Within this class of
optimization problems is the priority assignment problem.
The priority assignment problem simply stated regulates
the customers in a system by assigning priorities to
their respective service times, This important problem
is encountered in such diverse applications as urban
traffic control, multi-mode, packet-radio networks
routing, inventory control and computer communication
polling schemes. In this dissertation, a dynamic
priority assignment problem is studied with the feature
that its control strategy be adaptive.

The basic discrete-time priority assignment problem
is loosely described as follows. At each unit time slot,
two classes of customers, with different arrival and
departure rates, enter the system and join their res-
pective buffers. At most one arrival and one departure
of each customer class can occur during any given time

slot. Also, the buffers have either finite or infinite



capacity. The two parallel queues then compete for the
services of a single server, The server obeys a non-
idling, non-preemptive priority queue discipline. At each
service completion time, the controller selects which queue
to service next. The controller's information at a
decision epoch includes the past histories of the control
values, departure and arrival data. The objective is to
develop a service time allocation strategy to minimize
various performance objectives. The expected finite
horizon, the infinite horizon expected discount and the
expected long-run average cost per unit time criteria are
analyzed. The instantaneous cost 1s selected as the total
aggregate delay,

This simple priority assignment problem is considered
within the framework of control theory. First, the basic
problem is formulated as a completely observed, stochastic
optimal control problem, The arrival and departure rate
parameters are assumed to be known constants, Under each
criterion for the unbounded system, the optimal service

"ue rule,"

allocation strategy reduces to the so called
Second, the problem is analyzed with partial information.
Specifically, the controller has available only the past
histories of the control and the arrival processes; the
departure processes are not observed. TUnder the finite

horizon expected aggregate delay criteriomn, the "one-

step'" predicted density of the state is shown to he a



sufficient statistic for the control, Finally, the
priority assignment problem is studied when the rate
parameters are assumed constant and unknown. Here a
certainty equivalence, adaptive control scheme is
analyzed and its convergence properties discussed.

The text is organized as follows, The complete
observation problem is studied in Chapter 2., The upc-rule
for the discrete-time, priority assignment problem
is shown to be optimal for the infinite capacity system,
Also, the value function of the optimal cost is shown
to satisfy a monotonic property in its arguments. The
finite capacity system is analyzed via numerical results.
In Chapter 3, the partial obhservation stochastic control
problem is considered. By a simple application of Bayes
rule and dynamic programming, it is shown that the
optimal control satisfies the separation principle.
Moreover the optimal value function is shown to be
linear in the sufficient statistic. The
practical implications of these results are discussed.

In Chapter 4, the adaptive control problem is presented.
For a persistent excitation of the‘server, the adaptive
control scheme is shown to converge (a,s.) to the optimal
control strategy achieved if the true parameters were
known. Finally in each chapter, an introduction is
provided to survey the relevant results in the literature.
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2. STOCHASTIC CONTROL OF TWO COMPLETELY OBSERVED COMPETING

QUEUES

2.1 Introduction

Dynamic control of queueing systems is a subject of
great interest presently, due to the potential applicatiouns
in performance evaluation and design of computer and
communication networks and systems. Classical queueing
theory applied to such control problems has generally been
directed towards deriving various limiting properties of
such quantities as the queue length or waiting time distri-
butions, under appropriate stability conditions, Extensive
bibliographies on queueing control models and strategies
can be found in Crabill et al [1], Sobel [2], Stidham and
Prabhu [3]. Recently though, the analysis has matured to
extend the results of these static or steady-state models
and strategies to allocation schemes that are dynamic. By
dynamic strategies, we mean a policy which at each time, t
utilizes the information available up to time t. Examples
of such dynamic control of queueing systems can be found
in studies by Hajek et al [4], Bremaud [5], Baras
et al [6], Lin et al [7] and Rosbgrg et al [8]. We
follow this last referencé in some of the results pre-
sented here,

The present chapter analyzes a simple stochastic
control problem for two competing queues., We consider the
problem of allocating the resources of a single server
to serve requests from two parallel competing queues.

4



The problem is formulated in discrete time with the
arrival and departure processes modelled by Bernoulli
streams. The arrival rate and the service rate at each
queueing station are allowed to depend on the queue size
and the control value, At each service completion time,
the controller decides which of the two queues to serve
next. The controller observes both the arrival and
departure processes, The instantaneous cost is linear
in the waiting times of the two queues and three differ-
ent performance criteria are considered. Thus, we have
a stochastic control problem with complete observations.
One can view this problem as a dynamic priority
assignment problem in a single-server queueing system.
Within this context, several related results have been
obtained [9] - [1l4]. Cox and Smith [9, p. 77] considered
priority assignment in a single server queue with k classes
for arrivals modelled by independent Poisson processes
with rates Al’ Az,...,kk. For each class i (1=<i<k)
customer, the service times were modelled-as independent
random variables with probability distribution, Bi(') and
a waiting cost, c, was incurred per unit time. The
performance objective was to minimize, over all admissible
open loop policies (i.e. strategies that did not incor-
porate current information such as queue size), the
expected long-run average cost per unit time criterion.

5



They showed that the optimal open loop strategy was the

t 1

so called "uc rule," Specifically if

ui = l/\’)i

where vy is the average service time for the ith class,
then the optimal priority assignment ranks classes according
to the products {uici; i=1,2,...,k} such that the classes
with higher uc values are given higher priority, Rykov and
Lembert [10] and Kakalik [11] generalized this result by
proving that among all feedback control laws (i.e. the
controller knows the queue size at each decision epoch),
the optimal policy is the same as the uc rule. In other
words, given the additional information of the past history
of the queue size, the optimal dynamic priority assignment
reduced to the simple static policy, This result is not
surprising. Heuristically, one can argue for an ergodic
system that since the instantaneous costs are uniformly
weighted over the infinite horizon, the controller attempts
to minimize his immediate cost, for which he has direct
control and disregards the influence of the future cost
since they are uniformly weighted anyway. In the
analysis [9] - [11], the problem was formulated in contin-
uous time with general service time distributions and
unbounded queues,

The aforementioned queueing system [9] under an
infinite horizon discount performance criterion was

investigated by Harrison [12], [13]. For an arbitrary



service time distribution and a linear cost structure,
he maximized the expected net present value of service
rewards received minus holding cost incurred over an
infinite planning horizon. In other words, upon entrance
into the system a customer incurs an entrance cost equal
to the total discount holding cost if he remained in the
system forever. At his departure epoch, the system is
rewarded with that portion of the entrance cost not
incurred (corresponding to his departure from the system).
Harrison showed that there exists a special type of
priority assignment, called a modified static policy,
which is optimal among all feedback policies (the controller
has knowledge of the queues sizes). In particular once
the customer classes are appropriately ranked, there
exists an integer k*(OSk*Ek) such that

(i) for customers in classes 1 through k*, the "uc

priority rule'" holds
(ii) for customers in classes k*+1 through k, serve
is never provided,

The explicit algorithm for computing the class ordering
and the threshold value, k* is given in [13]. An
important feature of this modified static policy is that
in the case of two customer classes, the optimal dynamic
strategy reduces to the uc-rule, However for queueing
systems with three or more classes, the determination
of the lower priorities depends on the arrival rates of

the higher ranked classes [12]. 1In the analysis [12] =~

7



[13], the problem was formulated in continuous time with
unbounded queues.

A related problem for bounded queues was analyzed by
Mova and Ponamarenkoe [14] using Markov decision theory,

They considered a multi-server queueing system with k
classes of arrivals modelled by independent Poisson pro-
cesses, The arrival times for each class and each server
were modelled by identical, exponentially distributed random
variables. The performance criterion was chosen to mini-
mize the probability of losing an arrival of the first

kind., In other words, a penalty of wvalue c; was incurred
on the system when an arrival of the ith class was rejected
entry into the system., Due to the finite bound on the

queue length, they demonstrated via numerical examples that
the simple "uc rule" is not optimal. The equations character-
izing the optimal policy showed that the optimal solution R
is a true feedback strategy in the sense that it depends

on the current queue size and on the arrival rates of all
classes. The optimal strategy was obtained by a variation
of the simplex algorithm used in solving linear programming
problems.

The queueing model cbnsidered here differs in two
respects from the previously mentioned studies, First, the
optimal priority assignment problem is formulated as a
discrete~time stochastic control problem, This framework
extends readily to the adaptive control problem presented
later in the text. Second, our analysis considers the system

with a finite capacity; specifically under the finite horizon

8



criterion. The optimal policy, in general, depends on all
the parameters of the queueing process. For the finite
horizon problem, we demonstrate that this is the case. Our
approach is via the solution of the Hamilton-Jacobi-Bellman
equation, whose implementation is simplified.

This chapter is organized as follows. In Section 2.2,
the mathematical assumptions of the optimal priority assign-
ment problem are formulated. The optimality equations
characterizing the solution of the finite horizon problem are
presented in Section 2.3. Extension of these methods to the
multi-class case of [9] - [13] is theoretically straight-
forward, but computationally burdensome. Our development
simplifies the on-line solution for theoptimal policy. In
Section 2.4, the infinite horizon discounted problem is con-
sidered. Here the general results of the unbounded, finite
horizon problem are extended by a limiting argument. To
overcome the difficulty of an unbounded instantaneous cost,
we use the results of Lippman [16]. Our proof of optimality
is based on the convexity of the value function [8], [17].
The expected long-run, average cost per unit time criterion
is discussed in Section 2.5. Our results are obtained by
taking the limit of the finite Therizom, T as T+e. Finally,
in Section 2.6, some numerical exémplés for the bounded
queueing system are presented.

2.2 Problem Formulation and Notation

We consider two queues served by the same server in
discrete time, The time is divided into equal length time

9



slots (which are prespecified). During each time slot,
arrivals and service completions can occur. We let
t = 0,1,2,... be the index of these time slots. The

situation is depicted in Figure 2.1 below.

u(t)=1
nd(t) n‘;(t)(\,
U/
A u(t)=0
2 T x, (t) Mo '

a d
n2(t) nz(t)
Figure 2.1. The server time allocation problem.

Customers arrive into queues 1 and 2 according to two
independent Bernoulli streams with constant rates Xl, Xz
respectively. Thus if we let {n?('); i = 1,2} denote the
two arrival processes, it is clear that they are discrete
time 0-1 point processes:

. . . th .
1, if an arrival occurs in the t time
slot of queue i

ni(t) = (2.2.1)
0, otherwise
OQur convention is that the tth time slot is the half open
interval [t-1, t), where the length of each slot is assumed

to be unity. 1In standard nomenclature [18], our assumptions

imply that the arrival rates are

10



past histories of
1 ] all processes } jio= 1,2

>
1]

a
Pr{ni(t)

Pr{n?(t) 1} 1= 1,2, . (2.2.2)

The two queues compete for the services of a single server.
When the server serves queue i, i = 1,2, service completions
follow a Bernoulli stream with constant rate {ui; i = 1,2%.
These assumptions imply that during each time slot at most
one arrival and one service can occur, when each queue
operates alomne.

Let xigt) be the number of customers in queue i(i = 1,2)

at the end of the tth

time slot, the customer in service (if
any) included. The control is used to allocate server time
to queue 1 or to queue 2. Namely when u(t) = 1 and the
server completes a service, the next customer to be served
comes from queue 1, while if u(t) = 0 the next customer
comes from queue 2. If we let{ni('); i = 1,2} denote the

two departure processes, their rates are given by (see [18]

for some standard definitions)

Pr{nq(t) = 1 | past histories of x., x,, na, na,
i 1 2 1 2
d d .
n,, n,, Up to time (t-1), and the
past history of u, up to time t}
= Pr{ni(t) =1 ‘ xi(t—l) = k, u(t)=vi}= ui(t,k,v) 3
i=1,2 . (2.2.3)

Under our assumptions we have

11



By Vo, if k#0

py (Ek, V) (2.2.4)

0 , if k=0

o (1-v) , 1if k#0

b, (t,k,v) (2.2.5)

0 , 1f k=0.
We assume that both queues can grow without bound. This
allows analytical treatment of the problem. When the queues
are bounded, e.g. due to finite buffer size in computer/
communication systems, the methods used here lead to
numerical treatment; analytical solutions have not been
obtained to date. In the latter case if{Ni,i = 1,2} are
the maximum queue sizes for each queue, we have additional

contraints on the arrival rates

Xi , 1f k#0, all t, v,
xi(t,k,v) = for i = 1,2
o , if k=Ni, all t, v,
(2.2.6)
The transition probabilities for each queue modelled as a

Markov chain with countable state space over the set of

nonnegative intergers have the form:

i ) - ' .
Pj,j(V) = Ay ui(J,V) + (l-Xi)(l-ui(J,V))
i _ )
(2.2.7)
i _ 1l .
j’j_l(V) = (1-3;) u,; (§,v)
i /
Pj K = 0 , elsewhere for 1 = 1,2

12



where we have suppressed the time argument,

not enter explicitly. In view of (2.2.4) (2.2.5),

b, = A (l—ul) s b

1 1 2

d = l“l'l (1—)\-1) ’ d2

by (l—Xz)

then (2.2.7) becomes in matrix form:

-
l—Xl Xl
dl 1-b
pl(1) =
0 dl
l—Xl Xl
0 l—Xl
pleo) =
0 0
l—Xz XZ
0 l—Xz
p2(1) =
0 0

13

Hi
(9]

1f]
=

1]
=

since it does

letting

(2.2.8)

(2.2.9a)

(2.2.9b)

(2.2.10a)



1-%, X, 0 0
a, 1-b,-d, b, O 0
2 ~ )
P7(0) = = G, (2.2.10b)
0 d, 1-b,-d, b,

The transition probability matrix for the Markov chain

representing both queues is given by
1 2
P(v) = P (v)®P " (v), for all v (2.2.11)

where ® indicates matrix tensor product. It is straight-
forward to establish that for any value of the control
variable v (i.e. 0 or 1), P(v) will not be a block diagonal
matrix and therefore any state will communicate with any
other. In other words, P(v) is irreducible [19, p. 232] for
each value of v. We also observe that for each value of v,
there are no absorbing states.

The controller decides the value of u(:) for the tth
slot at the end of the (t—l)th slot. The decision is based
on past histories of control values, departure and arrival
data up to the decision time (time slot by time slot).
Therefore the controller kﬁows the queue sizes at decision
times. We shall assume that the parameters {Xi, pi; i =1,2}
are known constants. Thus, we have a completely observed
stochastic control prohlem. In subsequent chapters, we
shall consider the case when the controller only observes
the arrival process (Chapter 3) and when the parameters are

unknown (Chapter 4).

14



At each decision time the controller must assign the
value 1 or 0 to the control variable u(t) based on the

following information:

taf(s) 58 =0, 1, 2, ... , t-1} for i = 1,2
{n?(s) ; s =0, 1, 2, ... , t-1} for i = 1,2 (2.2.12)
{u(s) ;3 s =0,1, 2, ... , t=1}

Let
yt = {n?(s), ng(s); s = 0, 1, , ty i = 1,2} (2.2.13)
at = {u(s); s =1, 2, ... , tl}.

We denote by T the set of admissible control policies,

whereby each yel has the form:

vy = (815 8ys ++- ), (2.2.14)
where

u(t) = gt(y s (2.2.15)

and each g, takes values in {0, 1}. Note that at all times

the controller knows the queue sizes, since
= 42 _ L4 - .1 o=
xi(t) = ni(t) ni(t) + xi(t 1) ;i 1, 2. (2.2.16)

Service is assumed to be non-preemptive and server idling

is not allowed; specifically

1, if xl(t—l)%o, xz(t-l) =0

fl

u(t) (2.2.17)

0, if xl(t-l) = 0, xz(t-l)#l.

If both queues are empty at a decision time then either

15



decision is acceptable.
In terms of this model, the performance criteria of
interest are the following:

(A) Finite Horizon Problem with Expected Total Cost

T
JE = E[ & e(x(t), u(t))] (2.2.18)
t=0
where x(t) = (xl(t), xz(t)) and T denotes the finite time
horizon. In the present discussion, the instantaneous

cost, c(x(+), u(-)) is linear in the state, x(*) and has

the form:
c(x(t), u(t)) = clxl(t) + czxz(t) (2.2.19)

where ¢ c, are positive constants modelling the relative

1’ "2

weight the controller attaches to delays in queue 1 versus
those occurring in queue 2. Indeed ¢, can be interpreted
as the cost for a customer waiting for the duration of one
time slot in queue 1.

(B) Infinite Horizon Problem with Discounted Cost

t

Jz s = ELZ BT elx(e), u(e))] (2.2.20)

t=0
where Be[0,1) is the discount factor and the instantaneous
cost is given in (2.2.19).

(C) Expeeted Long-Run Average Cost

T<1

37 = 1im inf i\EI I c(x(t), ul(t))] (2.2.21)
2 Tee T =0 '

Our objective is to derive the optimal strategies minimizing
criteria (A), (B) and (C) for the queueing model introduced
in (2.2.1) - (2.2.17).. The superscript, v in (2.2.18),
(2.2.20) and (2.2.21) refers to the control strategy as

16



defined in (2.2.14). For the cost considered here (2.2.19),
the optimal strategy under both infinite horizon criteria
turn out to be stationary, i.e., vy = {g, g, ... s g}, where

g depends on the parameter values and the queue size.

Y
d,8

aggregate delay, while JZ to long term average cost per ynit

Clearly J is related to long term discounted average
time aggregate delay. ©Note in the case of unbounded queues,
the instantaneous cost of (2.2.19) is unbounded.

2.3 Finite Horizon Stochastic Optimal Control

General Results

In this section, the finite horizon average aggregate
delay (2.2.18), (2.2.19) problem for the queueing system
(2.2.1) - (2.2.17) is considered. This priority assignment
problem is formulated as a stochastic control problem with
complete observations. First, we review briefly the general
dynamic programming theorems for the completely observed,
finite horizon stochastic control problem. For discrete-
time systems, these results can be proved by relatively
straightforward arguments. In general, the optimal control
policy depends parametrically on the dynamical system.
Second, we apply the particular results for the two competing
queue problem. We obtainkexplicig solutions for the finite
time expected aggregate delay problem for bounded and
unbounded queues. The implications of these results for
practical applications are discussed.

Let the state space be an n-dimensional, Euclidean vector
space, ¥ with state dynamics satisfying:

17



x(t+1l) = q)t(,x(,t), u(t), w(t+l)); x(0) = x (2.3.1)

0

for ¢t = 0,1,2, ... , T

where T is the finite time horizon, u(t)eU are the control
values and w(t)eD are independent random variables with a
known distribution. The function wt(-,',') is assumed to be
known. The random disturbances {w(t)} are characterized by

a probability measure pt('rx(t), u(t)) defined on a collection
of events in D. This probability measure may depend
explicitly on x(t) and u(t), but not on values of prior
disturbances. An underlying probability triple (R,F,P)

which carries x. and the {w(t)} processes is assumed to be

0
given. Furthermore, we shall assume, as is standard [20],
that the disturbance space D is a countable set. The con-
. m
trol space U is a convex, compact subset of R. The state

space for the complete observation problem is a countable
subset of Rn; for bounded queues ¥ is finite while for
unbounded queues, X is infinite. We note in passing that
the partial observation problem (c.f. Chapter 3) can be
reduced to the complete observation problem by an appropriate
redefinition of X.

For a control policy, yel the‘finite horizon perform-

ance criterion is denoted by

T-1
J1(xy) = E[L 2 c(t,x"(t), u¥()) + (T, x"(T))] (2.3.2)
t=0

where c(t,x,u) and c(T,x) denote respectively the instan-
taneous and terminal costs. The expectation above is, of
course, taken with respect to the given probability

18



distribution, P(*|x,u) which depends on x, u. The super-
script ¥ in x, u indicates the state and control trajectories
induced by the policy Y. The set of admissible control
policies I is defined in (2.2.12) - (2.2.15), (2.2.17).

%
The problem is to find ¥ el such that
JY*(X ) = inf {3V (x ):yel} for all x,cX (2.3.3)
£ 0 £f 0 0 LD

The corresponding policy, Y* is called optimal. It will be
verified later that J¥ is well-defined. For the finite
horizon problem, it is well-known that the optimal policy
may not be stationary [20].

To molve the optimization problem (2.3.3),
we resort to the well-known imbedding procedure of dynamic
programming. Let Vk(x,Y) denote the expected cost to go

from t = k to T, given x(k) = x when the control law yel is

followed; specifically

T
v Geoy) = B[ 2 ele,xT(e), u'(£)) + e(T,x" (1) [x (k)=x]
t=k
(2.3.4)
for k = T-1, T-2, ... , O
with terminal condition
Vo (x,v) = o(T,x7 (1)) (2.3.5)
The problem then is to select a contrel law for which
VO(X,Y) is a minimum. Since for any control law, Vk(x,Y)

satisfies (2.3.4), (2.3.5) it is natural to ask whether one
can compute a control law which is optimal. We have the
following sufficient condition for optimality [20, p. 50]:
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*
Theorem 2.3.1. If there exists a control law y &I such that

%
(a) Vk(x,y ) satisfies (2.3.4) and (2.3.5) for yv*eT', and

(b) For all t,x in the domain of interest and for all vyeTl

*
Vk(x,Y )
* * * * *
= inf Efe(k,xT (k) ,u () +V, - (o, (x¥ (k) ,uY (k) v (k+1)), vy ]
k+1 "7k ’

uelU

< EleC,x (k) ,u ()47, o (o, (=¥ (k) ,u¥ (), wl (k+1)),¥) 1 (2.3.6)
for all k = 0,1,2,...,T-1
*

then ¥ 1is an optimal control law. Furthermore,

JY*(X) = vV _( *y < 7

£ = Vy(x,y ) = Vo(x,v) (2.3.7)

for all xeX and vyel.

The dynamic programming technique decomposes the
problem (2.3.3) into a sequence of simpler minimization
problems (2.3.6) that are carried out over the control space
U rather than over a space of functions. The value functions
in (2.3.4) minimize the "cost to go'" from time k to T and
are computed recursively, backwards in time starting, at time
T and ending at time 0. Although Theorem 2.3.1 characterizes
the optimal policy, explicit solutions of Vk(',-,-) are

generally not possible due to the "curse of dimensionality.”

Application to the Two Competing Queue Problem

The finite horizon formulation is now applied to the
two competing queues problem of Sectiom 2.2. The state
dynamics and instantaneous cost are given, respectively,

by (2.2.16) and (2.2.19)
20



x, (t+1)
i
c(t,x(t),u(t))
where

T
c =

More precisely for x(t) (il,iz), (2.3.8) has the form:
u(t) = 1 u(t) =0
Alx(t) = (il+1,12+l) Prob blx2 byhy
Azx(t) = (i1+l,iz) bl(l—Xz) (1-d2-b2)xl
A3x(t) = (il,iz+l) (1-dl—bl)x2 bz(l-xl)
x(t+1) = (D x(t) = (i, +1,1,-1)7 0 a0
D,x(t) = (ip,i,-1)7 0 d, (1=}
D,x(t) = (11—1,12+1)+ d 0
D, x(t) = (11-1,12)+ d,(1-1,) 0
x(t) = (i5,1,) (1-d,-b ) (1-},) (1-d,=b,) (1-};)

where b,,d,; 1
i’71i

. . +
(11312—1)

For a policy vyel,
T
3l(x,) = E[ 2
£*70
t=0

The control space for the single server queue is U

the cost 1is

x, (t) + n?(t+1) - nq(t+l) ;i
1 1 1

clxl(t) + c

= (11,12-1 v 0) and (11—1,1

chY(t)]

2xz(t) ch(t)

(cq.cy) and x(£) = (x(£),x,(£))"

1,2 (2.3.8)

(2.3.9)

= 1,2 are defined in (2.2.8),

+
) =

(2.3.10)

(i,-1 7V 0, i,)

2

the average aggregate delay

(2.3.11)

{0,1}.

The state space for the unbounded queueing system is the

Cartesian product,
integers.

A

operators A 2

l’

and A

X

For a bounded queueing system,

3
21

ZxZ where Z is the set of positive
the arrival

occur with probability zero at the



boundary states (see equation (2.2.6)) and the state space,

X = le22 where

z; = {0,1,2, ... , N} for i = 1,2.

To simplify notation, we adopt the convention, for the
remainder of this section, to denote the optimal value

functions of Theorem 2.3.1 as follows:
%
Vk(x) = VT_k(x,Y ) for k = 0,1,2, ... , T (2.3.12)

In particular, we have dropped the designation of the optimal
%
policy y e¢I' and have reversed the indexing argument. By
combining (2.3.8) - (2.3.12), the dynamic programming
recursion of Theorem 2.3.1 reduces to
_ T
Vo(x) = ¢'x
T 0 1
- ATV (x)} .3.
Vk+l(x) c’x + {T Vk(x) K (2.3.13)
for all xex, k = 0,1,2, ... , T

where

79V (x)

V(A - V(A ~b, - V(A,x)
byry V(A + b, (12 V(A0 + (1-b,-d,) %, V(A)x

+ d. V(Dlx)+ dzgl-xl) V(sz)+ (1-b —dz)(l—xl) V(x)

2
(2.3.14)

and

|
o
>

1lv(x) V(A;®) + by (1-1,) V(A,® + (1-b,-d )X

174 V(Ayx)

2

+ d. ) V(D3x)+ dl(l-Xz) V(D4X)+ (1-b —dl)(l-xz)v(x)

1
(2.3.15)

Remark 2.3.1. In (2.3.13), we have assumed the existence of

*
the optimal policy, ¥ eI so that the infimum of (2.3.6) is

22



replaced by the minimum [20].

Remark 2.3.2. For x = (0,0) in (2.3.13), it follows

VO(O,O) =0

0 1
Vk+l(0’0) = {T Vk(0,0)AT Vk(0,0)}

where in this case b, = Xi’ d; = 03 i =1,2 in (2.3.14) and

(2.3.15). In other words

0
T Vk(0,0) = Xlxzvk(Alx) + Xl(l-Kz)Vk(A3x) + (l—XZ)XlV(AZX)

Tlvk(0,0) (2.3.16)

Consequently for x = (0,0), the control value is arbitrary.
The finite horizon problem is considered for both
bounded and unbounded queues. For an unbounded system, we
. prove that the optimal policy is the uc=-rule, i.e. for
HpCop>Hi¢y
1 if i, = 0, 11#0
u(1l,12) = (2.3.17)

0 if i,#0

and for ulcl>u2c2

u(iy,i,) = (2.3.18)

0 if i.=0, i

When the queues are bounded, the methods used here lead to
a numerical treatment; analytical solutions have not been
obtained to date.

To prove (2.3.17) (2.3.18), we proceed with the follow-
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ing sequences of lemmas:

Lemma 2.3.2. For all x = (il,iz)ex, and arbitrary functions

£(),g(') such that f(x)>g(x) then
i i .
T £f(x)>T g(x) : i = 0,1 (2.3.19¢(
Proof: (Without loss of generality, assume i = 1). Suppose

the converse, i.e. Tlg(x)STlf(x). Then by (2.3.15) we have

The(x) - T EG) = b A, [5(A %) - £(a,x)]

4~

bl(l—xz)[g(Azx) - f(Azx)J

+ (1-b —dl)Xz[g(A3x) - f(Asx)]

1
+ dlkz[g(sz) - f(D3x)]
+ dl(l—Xz)[g(Dax) - f(D4X)]

+ (1-b —dl)(l;Xz)[g(x) - f(x)]1<0

1
since each term involving Xi’ bi and di's are non-negative

and by hypothesis
f(x)>g(x) for all xeX

Contradiction. Therefore Tlf(x)>Tlg(x) QED.

Lemma 2.3.3. For all x = (il,iz)sX such that (il,iz)%(0,0)

%1y, () = TP, () for all k = 0,1,2, ... , T
(2.3.20)
Proof: We consider (2.3.13) in vector form by defining
Ve = {Vk(il,iz)} (2.3.21)
T
e = (1,1,1, ... , 1, ...) (2.3.22)
T
v = (0,1,2, ... , n, ...) (2.3.23)

The optimality condition then becomes
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XO = cl(vse) + cz(e®v) (2.3.24)
Vw1 = cl(vﬁe) + cz(eev) + {P(O)KkAP(l)Xk} (2.3.25)

for k = 0,1,2, , T-1

where P(v);v = 0,1 is defined in (2.2.8) - (2.2.11) and ®
indicates matrix tensor product. Note that we have ordered
the vector value functions {Xk} according to the sequence
¢o0,01,02, ... , 10,111,112, ... , 20,21,22,

To show TOTle(x) = TlTOVk(x) we need to show equivalently

P(O)P(l)lk P(l)P(O)Kk (2.3.26)

By (2.2.9) - (2.2.11), we have

P(0O)P(1) (R1®G2) . (GlQRZ)
= (RlGl) @ (G2R2)

where the second equality follows from properties of tensor

products [21, p. 228]). Similarly

P(1)P(0)

(Glng) . (R1®G2)

(GlRl) ® (R2G2)

Therefore to show (2.3.26), one need only show that except
for the first row (recall (il,iz)%(0,0)).

R,G. = GiR' ; 1= 1,2 (2.3.27)

By simple matrix multiplication, it is obvious that (2.3.27)
holds. In particular from (2.2.9) we have
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1—Al xl 0 0 1-xl xl 0
R,G, = 0 1=y Al 0 d, l—bl—dl by

0 0 1-A1 xl 0 dl 1—bl—dl

[ 2

Q—xl) +dlxl [xl(l—xl)+xl(1—dl—bl)] blxl

= 0 dl(l—xl) [Aldl+(l—xl)(l-bl—d1)]
0
Also
_' hn O
l—kl Al 0 0 1—xl Al 0
GlRl = d1 l—bl—dl bl 0 0 l—Xl Al
0 dl l-bl—d1 b1 0 0 1-xl Xl
p 2 . 2
(l—Al) Zkl(l—Al) Al

dl(l—Al) [kldl+(l-Al)(l—bl—dl)] [bl(l—Al)+Al(l—bl—dl)]

0 dl(l-kl) [Kldl+(l—kl)(l-bl—dl)]

0

.

—

so that it follows that except for the first row

26

dl(l-Xl) [Kldl+(l—Kl)(l—bl—dl)][bl(l—kl)+xl(l—bl—dl)] blA

1
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R,G, = G,R, QED
Lemma 2.3.4. For each k = 0,1,2,...,T if u202>ulcl and
cl,c2>0 then
(a) Vk(Azx)>Vk(x), Vk(A3x)>Vk(x) for all =xey (2.3.28)

1 0 o . . s
(b) T Vk(x)>T Vk(x) for all x = (11,12)€x H 12#0 (2.3.29)
(c) TOVk(x)>Tle(x) for all x = (il,O) ; il#O (2.3.30)

Proof: By mathematical induction. By (2.3.13) - (2.3.15)

for k=0, we have

- T _ T _ T
Vo(x) = c x VO(Azx) = ¢ x + cyo VO(A3X) c x+c2

T .
c x+clxl+c2A2 - Micy 11#0
TlVO(x) - (2.3.31)
T .
c x+clkl+c2X2 ; 11—0
ch+c A +c A.=-U.C ;. 1i.#0
11 7272 "272 ’ 2
0
T Vo(x) = (2.3.32)
T .
c x+clkl+c2A2 5 12—0

Clearly (a) - (c¢) hold for k = 0. .Suppose (a) - (c) hold
for k, We shall show they hold for k + 1.
Part (a)

For x = (il,iz)#(0,0), we have by (2.3.13) and (2.3.29)
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7 0
Vk+l(A2x) = ¢ (Azx) + T Vk(Azx)

T 0
Vk+l(x) = ¢ x + T Vk(x)

By Lemma 2.3.2 and (2.3.28)

Tovk(A2x>>T°vk(g) (2.3.33)

so that it follows

(A2x)>V (x) for x = (il,iz)#C0,0)

Vie#1 K+1
For x = (O,iz) ; 12#0 we have by (2.3.13), (2.3.29) and
(2.3.30)

T 0
Viepp (A,%) = ¢ (A,x) + TV, (A,x%)

_ T 0
Vk+1(x) = ¢cx + T Vk(x)

Again by Lemma 2.3.2 and (2.3.28), equation (2.3.33) holds

so that
Vk+1(A2x)>Vk+l(x) for x = (O,iz); iZ%O
For x = (il,O); il#O we have by (2.3.13), (2.3.29) and
(2.3.30)
Vo (Ax) = cT(a x) + TOV (A, x)
k+1 72 2 k"2

_ T 1 T 0
Vk+l(x) = cx + T Vk(x)<c x + T Vk(x)

where the inequality follows from 62.3.30). Again equation

(2.3.33) holds so that

Vk+l(A2x)>Vk+l(x) for x = (il,O); il#O

For x = (0,0), we have by (2.3.16)

T T
Vk+l(A2x) - Vk+l(x) = c (A2x) - ¢ x>0

Hence we have shown
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Vk+l(A2X)>Vk+l(x) for all xeX
By similar arguments, one can show

(A3x)>V for all xeX

Vi+1 k1 (%)
Part (b)

For x#(0,0), we have by (2.3.13) and (2.3.29)

T 0 1
Vk+l<X) = c ' x + {T Vk(x)AT Vk(x)}
= cTx + Tovkcg) (2.3.34)
Hence,
1 1,7 1.0
T Vk+l(x) = T (cx) + T°T Vk(x)

0 .0, T 0..0
T Vk+l(X) = T (¢°x) + T T Vk(x)

1A

9Ty + 107 v (x)  (by (2.3.34))

< theTx) + 10 v (x)  (by (2.3.31), (2.3.32))

Tl(ch) + T TOVk(x) (by Lemma 2.3.3)

1
= TV ()

so that it follows

TlV (x)>TOV

K41 (x) for all x = (il,iz)#(0,0)

k+1
For x = (O,iz) ; iZ#O we have by (233.13) - (2.3.15) with
bl=Xl and dl=0

Tle+1(X) = A IV Ax) - VG T+ (1A [V, (A,x) =V ()]

+(1—X1)X2[V(A3x) - Vk(x)]
TOVk+l(x) = b, [V (A13) =V, ()] + by (10 ) [V, (A %)=V, (x)]

+ (l—bz—dz)xl[Vk(Azx)—Vk(x)] + dle[Vk(Dlx)-Vk(x)]

+

dz(l—kl)[Vk(DZX) - Vk(X)]

29



By combining and simplifying, we have

1 , 0
TV (x) - T vk+l

k+1 (x)

A, (M

L Oy =by) [V, (A3 =V, ) T8 [(1=2)=(1=b ) 11V, (8,%) =V, (x)]

2
#(1=h) (b)) [V, (A,%) =V, ()]

- dle[vk(Dlx)—Vk(Azx)]—dz(l—xl)[Vk(DZX)“Vk(X)]

Xl(xz-bz)[Vk(Alx)-Vk(Azx)]

+

(12 ) (hy=by) [V (Ay3) =V, (x)]
- [V, (D x) =V, (A,%) 1=, (1=3) [V, (D,x) =V, (x)]

But Xl, (l—Xl), d2>0 and X2>b2 = Xz(l—uz). Also by (2.3.11)

and (2.3.28)

[Vk(Alx) - Vk(Azx)]>O [Vk(A3x) Vk(x)]>0

[Vk(AZX) - Vk(Dlx)]>O [Vk(DZX) - Vk(x)]SO

so that

1 0
TV (=T 7V

(x) for all x (O,iz) ; iz#O

Hence, we have shown

1

0
T Vk+l(x)>T v

for all x

g () (i)51,) 5 1,#0

Part (c)
For x = (il,O) ; il#O we have by (2.3.13) - (2.3.15)
with b2 = XZ and d2 = 0

1
T Vg (2

leZ[Vk(Alx)—Vk(x)]+bl(1—X2)[Vk(Azx)—Vk(x)]

+

(l—bl—dl)xz[Vk(ABX)—Vk(x)]+dlK2[Vk(Dlx)-Vk(x)]

+

dl(l—Xz)[Vk(sz) - Vk(x)]
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0

T Vk+l(x)=XlX2[Vk(Alx)—Vk(x)]+X2(l—Xl)[Vk(Aax)—Vk(x)]

By combining

0
T V1

Ay (hy=by

(x

+ (1-X2)X1[Vk(A2x) - Vk(x)]
and simplifying, we have
1
) - TV, (%)

) [V, (&%) =V, () T+2,) [(1=2 )= (1=b DI [V, (45%) =V, (x)]

+ (1 —Xz)(Xl—bl)[Vk(Azx) - Vk(x)]

-'dlxz[vkcn3x)-vk(A3x)] - dl(l—xz)[vk(DAX)-Vk(X)]

= Xz(Xl—bl

+ (l—Xl)(X

- leZ[Vk(DBX) - Vk(A3x)] - dl(l-kz)[Vk(Dax) - Vk(x)]

Again XZ, (1-X2), d2>0 and Xl>bl = Xl(l—ul). Also by (2.3.11)
and (2.3.38)

[Vk(Alx) - Vk(A3x)]>O [Vk(Azx) - Vk(x)]>0

[Vk(A3X) - Vk(D3x)]>O [Vk(D4x) - Vk(x)JEO
so that

% (x)>TlV, . (x) for all x = (i,,0) : i,#0

k+1 k+1 1’ ? 1

The lemma now follows by induction. QED.
By the nature of the queueing system (2.2.1) - (2.2.17), we

have the symmetric result:

Lemma 2.3.5.

€10 ¢

For each k = 0,1,2,...,T if hpcy>uyc, and

c,>0 then

(a) Vk(AzX)>V(X) R Vk(A3x)>Vk(x) for all x€X (2.3.35)

0

1 P .
(b) T Vk(x)>T Vk(x) for all x = (11,12)€X, 11#0(2.3.36)
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() Tlvk(_,x)>1:0vk(;<) for all x = (0,1,) 5 i,#0 (2.3.37)

Proof: TFollows along the same lines as Lemma 2.3.4.
In addition to the above properties, since chZO we have
Vk+l(x)2Vk(x) for all xeX (2.3.38)
Moreover, the optimal cost 1is well-defined.
*
Lemma 2.3.6. For xeX and for the optimal policy v T,

*
JE (x)<>

Proof: Let |x| = |11| + IiZI and |c| = max(cl,cz) = ¢ Ac,

For any initial state x and any policy, the state, x(t) at

time t must satisfy
lx(t)]f]xl + t
Moreover

T
Vk(x) = 2 ]cl(]x]+t)
t=k

1A

|c| x| (T+1-K) + T(T+1)/2 < =
Hence it follows from (2.3.12) and Theorem 2.3.1
Y*
J¢ (x) = Vo(x) <o QEL -

Theorem 2.3.7. There is an optimal stationary policy,

Y:sr for the unbounded queueing system (2.3.8), (2.3.10)
under the finite horizon average aggregate delay criterion
(2.3.9),_(2.3.11). The optimal policy and cost, V: are
determined from the optimality equation (2.3.13).
Specifically, let g;(.,.): 72x72~U define the optimal policy,
i.e.
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* _ * * * *
Yf = (gf’ gf’ gf’ "°,gf)

*
then gf(.,.) is the pec-rule given in (2.3.17), (2.3.18).
Proof: Without loss of generality assume HoCo>Hycy- By

*
Theorem 2.3.1, the optimal policy ¥ eT is that strategy

which minimizes (2.3.6); more precisely the bracketed

quantity in (2.3.13). By Lemma 2.3.4, we have

1 0 P
T Vk(x)>T Vk(x) for all x = (11,12) : 12#0
TOV (x)>TlV (x) for all x = (i.,,0) ; i.#0
k k 1’ ’ 1
and by (2.3.16)
1 1
T Vk(0,0) T Vk(0,0)
for all k = 0,1,2,...,T. Hence
1 if il#O, i2 =0
*
gc(1,,1,) =40 1f 1,70 (2.3.40)
arbitrary if il = 12 =0

. .
By Lemma 2.3.6, Vo(x,Y ) is well-defined. The stationary of
the optimal policy follows from (2.3.13) and a consequence
of Lemma 2.3.3. QED .

Remark 2.3.3. One can observe that the optimal strategy is

almost open loop and independent of the arrival rates, Xl and

Xz. For the case of more than two classes, this latter
property is no longer valid [12]. 1In the two class system,
it easily follows that the pc-rule is optimal for time-

varying and state dependent arrival rates. Consider the

recursive equations (2.3.13) - (2.3.15) for k = 0 and
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T
Vo(x) = ¢c'x

TOVO(X)

b2(0,iz)Xl(O,il)[VO(Alx) - VO(X)J

+ b2(0,i2)xl(0,il)[VoA3x) - Vo(x)]

+

(1-b,(0,1,)=d,(0,1,)) A (0,1,) [V (Ayx)=V (x)]

+ d2(0,iz)>xl(,0,il) [VO(DlX)—V0 (x)]

T R .
c x + clkl(0,11)+c2X2(O,12)—clul (2.3.41)

where from (2.2.2), (2.2.8)

A, €0,35) = Pr{nf(0) = 1x,(0)=3;} 5 i=1,2 (2.3.42)

(2.3.43)
dz(oalz) = [*1'2(1_)\2(0,12))
Similarly it follows
10V _(0,1.) = ¢Tx + c %, (0,0) + c.h,(0,i.) (2.3.44)
0 >T2 11 ’ 22 >72 o
TlV (i,,1i,) = ch + c A, (0,i,) + c A, (0,1i.) CAl
07172 11 S g 2 °2Y 2727 272
(2.3.45)
v (1,,0) = ¢Tx + ¢, A, (0,1.) + ¢ 1. (0,0) (2.3.46)
ol c'x c A (0,1, c, A, (0, . 3.
Consequently, the properties (a) - (c) in Lemma 2.3.4 hold
for the more general recursion (2.3.41) - (2.3.46) when
k = 0. The arguments in Lemma 2.3.4 follow along the same

lines for the rates given in (2.3.42), (2.3.43).

The discussion up to this point has dealt with the
unbounded queueing system. We shall discuss
for the remainder of this section the bounded system. In
particular, the arrival rates satisfy (2.2.6) where Ni
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equals the maximum queue size for the ith queue. Moreover,
the state space becomes X = Zl,x Z2 where Zi = IO,l,Z,...,Ni}
fori = 1,2. When the queues are bounded, the optimality of

the pc rule does not follow. First, consider the results of

Lemma 2.3.3. For a bounded queueing system,
1ty () = 1M1V (%) for all k=0,1,2,...,T (2.3.47)
for all x = (il’iZ) in the interior of X; specifically

xa{l,2,...,Nl—l} x {1,2,...,N -1} (2.3.48)

2

In other words, the product matrices

are identical except for the first and last rows and the last
columns. Second, these additional conditiomns on Lemma
2.3.3 imply a feedback on the control value. This feedback
control law, with the methods presented here leads to a
numerical treatment; analytical solutions for this case have
not been obtained. Due to the linearity of the instantaneous
cost (2.3.9) and binary control space U = {0,1}, the
computation of the optimal strategy is quite simple.
Furthermore, these off-line computations can be stored in an
elementary way to facilitate the og—line implementation of
the strategy. The optimal average delay (2.3.11) is shown
to be piecewise linear in the state.

We proceed from Theorem 2.3.1or more precisely (2.3.13) -

(2.3.15) to have

v, (i,3) = el al + &% 4 (2.3.49)



where

i .
do = Civi ;1 =1,2 (2.3.50)
T Ni+l
vy = (0’1’2""’Ni) eR ; 1= 1,2 (2.3.51)
Nin1

eJ = (0,0, ,0,1,0, .} eR s 1= 1,2 (2.3.52)
t.
J

position

Next at k = 1, (2.3.13), (2.3.21) - (2.3.25) imply

Vl(i,j) = ei dé + e? dé + min {(Pl(u)®P2(u))z0}

uel tsJ

min {ei[I +Pl(u)]dé + e§[12+P2(u)]dg} (2.3.53)

uel 1
where I. is an identity matrix of dimension {Ni; i = 1,2} and
{*}, . denotes the (i,j) element of the vector in brackets.

1i,]

In other words, the optimal control is a function of the

state, x = (i,j)eX. It can be described as follows. The
set X = Zl b4 22 is separated into two disjoint subsets
Xl = {(i,j)eX such that
elretco) - Pty 1qp = e§[92<1) - p%(0)1al) (2.3.54)
XO = complement of Xl
We associate the index 1with.Xl, the index 0 with XO so that
1 on Xl
*
u; = (2.3.55)
0 on XO

Let al(',') be the function
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1 if (1,J)SX1

al(l,J) = (2.
0 if (i,j)eX
and 0
1,. .\ _ 1 . . 1
(2.
1., .. _ 2 .. 2
dy(i,3) = [I, + P (al(l,J))] dg
It is now clear that
V.o(i,3) = el d (i,i) + e d.(i,3) (2
1 > i "1y 3 277 :

and therefore, Vl(-,.) is piecewise linear also. The

general computation follows from the following lemma.

Lemma 2.3.8. Define the binary-valued functions

x Z, and the column vectors

2

{ag; £2=1,2,...,T} on X= Z1

3.56)

3.57)

3.58)

{dz; i=1,2;¢4 =0,1,2,...,T} by the forward recursions

i
do = c v,
i i i i
dg = dg ¥ P(ay) dy 1@y gy 2y gseeisay)
, 1,,.1 1 1
1 if ei[P (0)-P (l)JdZ~1(a3—l’a€-2""’al)
.y 2,2,y 52 2
ag(l,_]) = = ej[P (l) P ('O)Jde—l(ag—l’aﬂ—z’. ,al)
0 otherwise
for i = 1,2 3 £ = 1,2,...,T
Then for k = 1,2,...,T and x = (i,]j)eX
.. 1 .1 2.2
V. ( = :
e (1,3 ey dk(ak,ak_l,-.-,al) + ejdk(ak,ak_l,,..,al)
(2.3.59)

In other words, Vk(-,-) is piecewise linear for each k.
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Proof: By mathematical induction. It follows from (2.3.53) -
(2.3.58) that (2.3,59) holds for k = 1. Let us assume the
result holds for k. Then from (2.3.13) (2.3.21) - (2.3.25)
after computations identical to (2.3.53), we have

1

A | 2.2
Vk+l(1,J) = min {eido + ejdO
uclU

2

1.1 1 2 2
+ eiP (u)dk + ejP (u)dk}

It follows now by the definition of a (+,+) and di+l(','),
2

e+1 ¢

k+1

d ,+) that (2.3.59) holds for k + 1.

QED.

Remark 2.3.4. The recursive forward computations proceed

diagrammatically as follows:

rdl— rdz— ’—dl 7 ’_dl i
0 1 k T
2 2 2 2
do | —| 91 |==e e | I — | 47
a a a -
1 2 k+1
. - - - . - . J

We also have established the corollary.

Corollary 2.3.9. The optimal control policy in feedback

form, as a function of xeX, is given by
* ki i = i i k = 1,2 T
gf( ,11312) = ak(ll,lz) = 3L g e ey
Combining now the results of Lemma 2.3.8, Corollary
2.3.9 and (2.3.7) of Theorem 2.3.1, we have established the

following result for the bounded queueing system (2.3.8),

(2.3.10).
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Theorem 2.3.10. The optimal server time allocation strategy

and expected aggregate delay for the finite horizon criterion
(2.3.9), (2.3.11) are determined as follows. First the
vectors {di; i=1,2;2=0,1,...,T} and binary-valued functions
{a2;2=1,2,...,T} are computed off-line and stored from Lemma
2.3.8. The queueing system propagates forward as described
by (2.3.8), (2.3.10). The optimal strategy at time k is

given by
%
gf(k;il,iz) = ak(il’iz) s k=1,2,...,T (2.3.60)

The optimal average aggregate delay has the form

. , 1 1,, , 2 .2, .
VT(11,12) = ei dT(ll,lz) + ej dT(ll,lz) (2.3.61)
Note: Recall the notational convention introduced in (2.3.12).

In particular, the recursion in Lemma 2.3.8 is more correctly
a backward recursion and the time argument in (2.3.61) is
strictly speaking O.

The discussion here has dealt with the bounded queueing
system. The results of Lemma 2.3.8, Corollary 2.3.9 and
Theorem 2.3.10 hold equally well for the unbounded queueing
system. One consequence of Lemma 2.3.,8 is an alternative
proof of Theorem 2.3.7. We proceed by the following sequence

of lemmas:

Lemma 2.3.11., For arbitrary vectors f,g such that
1 >0 if i#0
<ei, f-g> = £(i) - g(i) (2.3.63)
=0 if 1i=0
then
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(a) <el, f-g>. = el G (f-g)>0 for all i (2.3.64)
i G1 i 1
and
1 -1 .
(b) <e,, f-g> z e, R, (f-g)>0 for all i (2.3.65)
i R1 i 1
where Gl’Rl are defined in (2.3.9).
Proof: TFor (a), we have for i>1
1 . .
<e,, f~-g> = d [£(i-1) - g(i-1)]
i Gl 1
+ (l-bl-dl)[f(i) - g(i)]
+ dl[f(i+l) - g(i+1)1>0 (2.3.66)
where each term in brackets is positive by (2.3.63). For

i=1, by (2.3.63) the first term in (2.3.66) is zero but the
remaining terms are positive; hence (2.3.64) holds for i=1l.

Finally for i=0

<el, £-g>, = (1-3)[£(0) - g(0)]

1
+ Xl[f(l) - g(1)1>0

1’

since the first term is zero and the second term is positive.

The proof of (b) follows along the same lines. QED,

Lemma 2.3.12. Define the column vectors {d;:i=l,2,;k=0,l,2,...,T}

as specified in Lemma 2.3.8. For k = 0,1,2,...,T if HiC1ZH,C,

then

ak(i,j) = (2.3.67)

or equivalently for i#0
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1,.1 1 1 2.2 2 2
ei[P (0) - P (1)]dk_l>ej[P (1) - P (O)]dk—l (2.3.68)
and the reverse inequality for i=0.
Proof: By mathematical induction. For k=1, (2.3.68) becomes
1.1 1 1 1
ei[P (0) - P (l)]dO = ei[R1 Gl](clvl)
1 .
= ei[clu1 1] (2.3.69)
where the second equality follows from (2.2.9) and
¥ T
1 = [0,1,1,...,1,...] (2.3.70)
Similarly by (2.2.10)
2..2 2 2 2
ej[P (1) - P (0)]d0 = ej[R2 G2](c2v2)
2 ~
ej[czu2 1] (2.3.71)

By combining (2.3.52), (2.3.69) - (2.3.71), then for k=1

(2.3.68) holds. Suppose (2.3.68) holds for k; specifically
(2.3.72)
(2.3.73)

We shall show (2.3.68) holds for k+l1. First, we have by

(2.3.73)
ei Gy d11<+1 + ej Ry di+1 ‘
= el o [dg + G, aj1 + e§ R,[d] + R, a2
< el G [dp + R, 4]+ e§ R, [d2 + G, d] (2.3.74)

where the last inequality follows from (2.3.72) and Lemma
2.3.11,
For (i,3j)#(0,0) by Lemma 2.3.3, equation (2.3.37) we have
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1 1
e; (R1Gy) = ey (GRy)
2 2 (2.3.75)
ej(Rsz) = ej(GZRZ)
so that combined with (2.3.74)
1 1 2 2
e; 61 dpgr T ey Ry dyyy
1 1 1 2 2 2
< ei[GldO + Rlcldk] + ej[R2d0 + G2R2dk]
1 1 1 1 1
= e Rl[dO + Gldk] + ei(Gl Rl)dO
2 2 2 2 2
+ esz[dO + R2dk] + ej(R2 - Gz)d0
1 1 2 2
< e R1 dk+l + ej G2 dk+1 (2.3.76)

where the last equality follows from (2.3.69) - (2.3.71) and

(2.3.73).

For i=0, j#0 it follows from (2.2.9), (2.3.52) and (2.3.68)

that
1..1 1 1 _ 1 1 _
eO[P (0) - P (1)]dk+1 = eO(R1 - Gl)dk+l =0 (2.3.77)
since the first rows of R.,, G, are identical. Combining

1 1
(2.3.76), (2.3.77) the result (2.3.68) holds for k+l. QED,

Lemma 2.3.13. Define the column vectors {d;:i=1,2;k=0,1,2,...

as specified in Lemma 2.3.8. For k = 1,2,...,T 1if u2c2>ulc1

then
{0 if j#0
ak(i,j) = (2.3.78)
1 if =0

or equivalently for j#0

1
k-1

2

1,1 1
e [P1(0) - PT(1)]d f-1

<e§[P2(1)—P2(0)]d (2.3.79)
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and the reverse inequality for j=0.

Proof: Follows along the same lines as in Lemma 2.3.12.
Given the above Lemmas 2.3.12, 2.3.13 for an unbounded

queueing system, we have the following:

Alternative proof of Theorem 2.3.7: Without loss of generality

assume u2c2>ulcl. By Theorem 2.3.10, the optimal strategy
at time k is given by
. 1 if 11#0, 12=O
gf(k;il,iz) = ak(il,iz) = 0 if 12#0

arbitrary 11=12=O

(2.3.80)
where the second equality follows from (2.3.78) for il#O and
(2.3.77) for il=0' Clearly, (2.3.80) is identical to (2.3.40)

and the remainder of the proof follows as before. QED.

Remark 2.3.5. The discussion of both the bounded and un-

bounded queueing system (2.3.8), (2.3.10) assumed that
{Ai,ui; i=1,2} are constant. The above algorithm, specified
by Lemma 2.3.8, Corollary 2.3.9 and Theorem 2.3.10, can be

adapted to handle a time-varying, state dependent system by
replacing

Ay xR 3D

wy 7ouy (ks 3)

P (u) - P (u,k) (appropriately modified)

for all k = 0,1,2,...T ; jeZi 3 i=1,2.

Remark 2.3.6. The implementation of the optimal strategy

43



is quite simple. The decision space X = Z1 X 22 is divided
th . k . .

at the k step into at most 2 subsets which are character-
ized by the binary numbers with k binary digits i.e.,

a8y 8p_1 8o - ag- The first binary digit of the number is
associated with the control as provided in Corollary 2.3.9.
These observations are quite useful when implementing these
strategies in a microprocessor. The only on-line computation

needed is the propagation of the queue sizes (2.3.8) and

the selection of the pre~stored arrays {ak s k= 1,2,...,T}.

2.4 Infinite Horizon Discounted Stochastic Optimal Control

General Results

Motivated by the results of the previous section, we
are interested now in the existence of a stationary optimal
policy, under the infinite horizon discounted criterion
(2.2.20). 1In the present and subsequent section, we shall
assume: (i) the number of stages are infinite, (ii) the
system dynamics are stationary, (iii) the queueing system
(2.2.1) - (2.2.17) has unbounded capacity. These assumptions
constitute a reasonable and analytically convenient
approximate for problems involving a very large, but finite
number of stages. The stationarity and unboundedness
assumptions provide mathematical and conceptual
elegance not found in the general finite horizon problem.
Moreover, the infinite horizon problem introduces certain
analytical tools needed in analyzing the limiting behavior
of the system. These tools are exploited in the adaptive

control problem of Chapter 4.
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As in the finite horizon problem, the state space is an
n-dimensional, Euclidean vector space, X with state dynamics

satisfying:
x(t+1) = o(x(t), u(t), w(t+l)) (2.4.1)
for t = 0,1,2,...

where u(t)eU are the control values and w(t)eD are independent
random variables with a known distribution. The disturbance
space D is assumed countable. The general problem description
is as before (see the beginning of Section 2.3) given the
above assumptions (i) - (iii). For a control policy, yvel

the infinite horizon performance criterion is denoted by

3 (x) = E[ 2 pRe(x¥(t), uT(e))] (2.4.2)
d,p t=0

where Be[0,1) is the discount factor and c(x,u) denotes the
instantaneous cost. The expectation above is taken with
respect to a given probability distribution, p(-}x,u) which
depends on x, u (see discussion between (2.3.1) and (2.3.3)).
The superscript vy inm x,u indicates the state and control
trajectories induced by the policy y. The set of admissible
control policies I' is as defined in (2.2.12) - (2.2.15).

.
The problem is to find y eI such that

JE*B(X) = inf{J, _(x):yeT} (2.4.3)

d,g
*
The corresponding policy, vy 1is called optimal. A class of

admissible policies of interest is the class of stationary

admissible policies, FSCF of the form:

y = (g8,8,.--) (2.4.4)
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where

ue) = gy, Wty 5 gew (2.4.5)

For such policies, the rule for control selection is the
same for each stage.

In the case of uniformly bounded instantaneous cost
|c(x,u) |<M<w for all xeX, ueU (2.4.6)

the following approach is standard [20], [22].
First, one defines from (2.4.1) - (2.4.3) an operator, H(-)

such that

H(J)(x) = inf E[c(g,u) + J(o(x,u,w))] (2.4.7)
uel

The operator H(:) is defined on B(X), the set of all bounded
real-valued fﬁnctions on X. With every function J:X-R

that belongs to B(X), we associate the metric

13l = sup |J(x)| (2.4.8)
xeX

Because the discount factor Be{0,1), the operator H(-) is a

contraction mapping; specifically

Definition 2.4.1. A mapping H:B(X)—>B(X) is a contraction

mapping, if there exists a scalar g<l such that
N2(J) - BH(I")|=el|d-3"] for all J,J"eB(X)

where ||-|| is defined in (2.4.8).
Second by the contraction mapping property, we have the
following:

Contraction Mapping Fixed Point Theorem 2.4.2. If H:B(X)—
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B(X) is a contraction mapping, then there exists a unique
. *
point of H, i.e. there exists a unique function J e€B(X) such

that
* *
H(J ) = J (2.4.9)

Furthermore, if J is any function in B(X) and Hk denotes the

composition of H with itself k times, then

lim HHk(J) - J*H =0 (2.4.10)
k—»ao

The fixed point theorem leads to a necessary and sufficient
optimality condition for the problem (2.4.3) [20, Proposition
2, p. 229].

Theorem 2.4.3. For a uniformly bounded instantaneous cost

(2.4.6), the optimal value function satisfies

JT*(x) = inf Ele(x,uw) + 337" (0 (xyu,w)) ] (2.4.11)
B ueU B

for all xeX
or equivalently

Y* _ Y* B *
Jd,B(X) = H(Jd’B)(x):zJ

*
Furthermore, J 1is the unique bounded solution of (2.4.11).
* *
In addition if g :X-=U is a function such that g (x) attains
the infimum in the right-hand side of (2.4.11) for each xeX,
* * x %
then the stationary policy ¥y aFSCF, v = (g ,8 ,+.--) 1is
* * *
optimal. Conversely if y = (g, & ,...) is an optimal
*
stationary policy, then g (x) attains the infimum in the
right-hand side of (2.4.11) for all xeX.

* *
Third, the optimal value function Jz B(EJ )} and the

47



%
optimal stationary policy ¥ of Theorem-2.4.3 can be obtained

by dynamic programming. Let JO = 0 on X and
3k = H(ID) (%) £ 1 xeX
k+l(x) = H( k) x) or all xs¢ (2.4.12)

k =0,1,2,...
Then it follows from (2.4.6), (2.4.10) and (2.4.11)

* * *
J (x) = Jm(x) = 1lim Jk(x)<w, (2.4.13)
k—“”

Recall from Section 2.3 that (2.4.13) was the starting point
of our analysis for the finite horizon problem.

To obtain the optimal policy, we have to overcome a
slight technical problem when the instantaneous cost does

not satisfy (2.4.6). The value function, (xo) in (2.4.2)

JE’B
for some initial state X, and some admissible policy ves! may
be infinite. Thus, we shall conduct our analysis with the
understanding that the value function is an extended real-
valued function. Within the context of the optimization
problem (2.4.3), we shall follow the results of Lippman

[16] and allow a polynomial growth (in the state) of the
instantaneous cost. Our approach is to define an equivalent
operator as in (2.4.7) under a suitable metric. The

contraction mapping and fixed point properties then follow.

The results to be presented provide a characterization of

Y*
d,8

*
stationary policy, ¥ . 1In particular, the successive

the optimal value function J as well as the optimal
approximation method is applied to obtain the limiting optimal
value (2.4.13). Rather than presenting a general result
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(the reader is referred to [19]1), we shall concentrate our
development on the intended application. Our methodology
follows the standard approach mentioned above.

Application to the Two Competing Queue Problem

For the two competing queue system of Section 2.2, the
infinite horizon formulation is as follows. The state
dynamics and instantaneous cost are given respectively by

(2.2.16) and (2.2.19)

x, (£+1) = x, (t) + nf(e+l) - ng(t+l) cio= 1,2
(2.4.14)
c(x(t), u(t)) =_clil(t) + c2x2(t) = ch(t) (2.4.15)
where
T - (Cl’CZ) and x(t) = (xl(t), Xz(t))T

These dynamics (2.4.14) can be expanded as in (2.3.10).
For a policy yvel', the cost is the discounted average

aggregate delay

3] o (xg) = EL 8t e Tx? (£) ]

£=0 (2.4.16)
where the discount factor Be(0,1). The control space for
the single server queue is U = {O,L}. The queueing system
is assumedto have unlimited capacity. Consequently, the
state space is the Cartesian product, X = Z x Z where Z is

the set of positive integers.
The existence result of Lippman [16] requires the follow-
ing assumptions:
(Al) Only a finite number of states are accessible from

each state in one transition
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(A2) There are constants K and m such that for

each t

max sup Elc(x(t"), u(t'))|x(t) = x,u(t)=v]sK(tv1)"
t' veU "
(2.4.17)

(A3) With probability one, only a finite number
of transitions are made in a finite amount

of time.

Assumptions (Al) and (A3) are satisfied trivially for the
queueing system (2.2.1) - (2.2.17) since ounly one arrival
and one departure can occur in each queue during each time
slot (see (2.3.10)). Assumption (A2) holds for the cost
(2.4.15) when m = 1. A slight modification of the arguments
in [16, Theorem 1] for discrete time, establishes Denardo's
[23] N-stage contraction assumption in an appropriate metric
space with weighted sup metric. These arguments provide

the proof of the following result, since the control space,
U = {0,1} is finite.

Theorem 2.4.4, If Assumptions (Al) - (A3) hold, then for

%
Be[0,1) there is an optimal stationary policy vy for the
infinite horizon discount problem (2.4.3), (2.4.16). The
%
optimal policy and optimal cost, Vé(x) are determined from

the stationary Bellman functional equation:

% *
v.(i,,i,) = c,i,+c,i, + B min [ 2 »p. LMV L (x) ]
a‘ttict 11171 e (0.1} xex "ipigix d
(2.4.18)
for all (11,12)5X
where P(v) = {p, . .. ., (v)} is the transition probability
1123313
%
matrix given in (2.2.8) - (2.2.11). Moreover, V., is the

d
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unique solution of (2.4.18).

Proof. Basically we follow [16], [23] where (Al) - (A3)
are respectively (1'), Assumptions 1 and 2, of [16, pp. 718-
720 ]. The proof is given here for completeness. Let
(B,p) be the comﬁlete metric space of doubly indexed

sequences.
Z(*,*) : X-R

where

[Z(iy,1,) |

_ oy . . (2.4.19)
1°°2
and
[2(i,1,) = 2" (i ,1,) ]
D(é,?;') = iui ((il+i2) v l) s L% SB(X)
172 (2.4.20)

For each control function, g defined in (2.2.15), we define

the operator Hg:B(X)*B(X) by

(H_Z)(i,,i,) = ¢, i +c i, + B 2 p, ., ._(g8) Z(x)
g 1’72 1 71 "272 xex Tpigsx

To see that Hg&aB(X) for ZeB(X), let M = p(¥,0) and observe

(Hgi)(il,iz) = (cl v cz)'(il+iz)

+B 2 Py i2;X(g)"M%(jl+j2) vV 1)

xeX 1

1A

+2)

(1l+12+2)

(c, V cz)(il+iz) + B M-(il+i

1 2

[(i1+i2) v l]'[(cl \ c2) + g M-

1A

< [(il+i? Y 1]1[(c, V c2) + 3 B M]

1
(2.4.22)

where x = (jl,jz)ex. Next we show that H: is a contraction
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%*
mapping for some k . From (2.4.18), we see that

(B £ - B Z2")(1i,,i,)] =8 2 p. . ..(8) [¥(x) - Z'(x)]
& & 'z xeX T1toi¥ |
< Bo(X ') " (4 +1,42) (2.4.23)

By induction

k+1 |5 R < * o akor
(B2 - H )(11,12>i_3[$§x piliz;x(g)[(ﬁgz HZ') (x) ]
- k 'S rs s
= Bgix B piliz;x(g)o(é,é ) (1, +1,+2k)
< Bk+1p(g,g')-(il+12+zk) (2.4.24)

Therefore

(1l+12+2k)

((il+iz) vV 1)

oci®y, %2y = g%o(x,%") rsup
& & i1,

Bko(i,i') (1+2k) (2.4.25)

* * *
Choose k such that Bk (142k )=B and the result follows.
Note that the bounds in (2.4.22) - (2.4.25) are independent
of the choice of g and therefore for any finite sequence

81> gz,...,gk of control functions

H o H o ... o H (2.4.26)
g1 g9 Ex

is a contraction on B(X). By defining the operator,

%
Hg : B(X)=>B(X) such that

(B2) (1),1,) = inf {(B2)(11,1,)) ¢ £eBO)

then it follows from the above (2.4.22) - (2.4.25) that

* k%

(H ) is a contraction mapping on B(X). Hence by Theorem
*
2.4.2, Hg is a unique fixed point. The existence of an

optimal stationary policy follows from Denardo [23,
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Corollary 2]. QED.

Similar to the uniformly bounded case (see Theorem
2.4.3 and (2.4.13)), Theorem 2.4.4 provides a means of
characterizing the optimal value function (2.4.3), (2.4.16)
and optimal stationary policy, Y*SFSCF. In particular, by
the uniqueness of the solution in (2.4.18), we define the

following dynamic programming recursion:

_ T
Vo(x) = ¢'X
V.ooo(x) = ctx + {10V, (=) A TV, (%)} (2.4.27)
k+1 k k T
where for notational convenience
B * B * k
Vk+l(x) = (Hng)(x) = (HgVO) (x) (2.4.28)

for all xeX, k = 0,1,2,...

and TOV(-) and T'V(-) are defined in (2.3.14), (2.3.15)
respectively. By combining (2.3.10), (2.4.14) - (2.4.16)
with (2.4.18), the resulting recursion (2.4.27) follows. As
in the finite horizon problem we have the following

sequence of lemmas.

p<Hqcy and

Lemma 2.4.5. For each k = 0,1,2,... if woc

,¢,>0 then

€12

(a) Vk(A2x)>Vk(x)’ Vk(A3x)>Vk(x) for»all xeX (2.4.29)

(b) Tle(x)>TOVk(x) for all x = (iy,i,)eX; i,40(2.4.30)

(c) Tovk(x)>Tle(x) for all x

(1,,0) 3 il%O (2.4.31)

Proof: By mathematical induction similar to the arguments
in Lemma 2.3.4, the result follows. QED.
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2.4.6. = e 1
Lemma 6 For each k 0,1,2, if Hici>u,c, and

¢,,c.,>0 then
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4.32)

4.33)

4.34)

limit

4.35)

r,

x(t)

3.10)

1’272
(a) Vk(Azx)>V(x), Vk(A3x)>Vk(x) for all x=eX (2.
() 1%V, (x)>T1V, (x) for all x = (i,,i,)eX; i, #0
k k77 1’72 > 71
(2.
(¢) TV, (x)>T7V, (x) for all x = (0,i,); i.#0 (2
k k rU24 T2 :
T ; .
Clearly ¢ x=0, therefore Vk(x)ivk+l(x) and so this
exists:
V (x) = lim Vk(x) for all xeX (2.
k—»oo
Moreover, the optimal value function is well-defined.
*
Lemma 2.4.7. For xeX and for the optimal policy vy eFSC
Y* o
Jd,B(X)< .
Proof. [8, p. 602] Let |x| = i,+i,, lc| = max(cl,cz) =
clACZ' For any initial state and any policy, the state
at time t must satisfy
lx(t)’i[x[ + t
Moreover
k-1 "
Ve (x) = 2 P e ][ ]x]+k]
t=
< £§|é§l ¢ lel 2 < = for Bel0,1)
(1-8)
Hence it follows from Theorem 2.4.4,
Y* o
Jd E(x)"= V_(x) <o for all xeX QED.
Theorem 2.4.8. There is an optimal stationary policy
*
Yd6FSCF for the unbounded queueing system (2.4.14), (2.



under the infinite horizon discounted average aggregate
delay criterion (2.4.15), (2.4.16). The optimal policy
and cost V; are determined from the optimality equation
(2.4.18), (2.4.27). Specifically, let g;(-,-) L ZxZ+T

define the optimal policy, i.e.
* * % *
Yg = (84 Bgse-er8y)
then g;(',') is the "uc rule'" given in (2.3.17), (2.3.18).
Proof. By Theorem 2.4.4 and Lemmas 2.4.,5 - 2.4.7, the

result follows along the same lines as in Theorem 2.3.7.

QED.

2.5 Expected Long-Run Average (Cost Stochastic Optimal Control
In this section, the expected long-run average cost
(2.2.21) problem for the unbounded queueing system (2.2.1) -

(2.2.17) is considered., Because of the special structure

of the optimal discounted control strategy, one might
expect the same structure for the optimal average cost
policy. This indeed is the case., In general, the average
cost problem is treated as the limit of the discounted
problem {[16], [20]1, [22], [31]. However in our problem,
the optimal ucerule strategy is insensitive to the dis-
count factor, B or the number of étages (see the results
in Theorems 2.4.8 and 2.3.7, respectively), Consequently,
we exploit these properties by following the unusual
procedure of moving to the average cost as the limit of
the finite horizon problem., This approach was followed

by Rosberg et al [8] in a tandem queue problem. Since
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this latter approach is problem dependent, only the
intended application is presented:; no general formulation
is discussed. Thus after certain preliminaries, the average
cost two competing queue result is stated.

For the long-run average cost problem, let x denote
the state space and U the finite control space such that
for each (il,iz)ex, uclU there corresponds a set of trans-
ition probabilities {pi i1do9
1727-°1-2
(v) = Pri{x(e+1)=(j;,3,) |[x(t) =

(U):(jl,j2)€x} where
Po s . .
1113313
(il.iz),u(t) = v} (2.5.1)

For a control policy, yel' and finite horizon T, the

expected finite horizon cost criterion is denoted by

T-1
J; o(x) = E[ % c(x(t),u’(t))] (2.5.2)
’ t=0

and the expected average cost criterion is denoted by

Y = 1im 1 1l -y
Ja(x) lim inf T Jf,T(X)
T
1 T-1
= lim inf T E[ I e(x (), u" ()] (2.5.3)
T t=0
where c(x,u) denotes the instantaneous cost, For the

two competing queue problem, the transition probabilities
are given in (2.2.8) - (2.2.11) and the instantaneous cost

is of the form:
e(x (t),u’(t)) = c %y (£) + e, x,(t) (2.5.4)

The expectation above is taken with respect to the
probability distributions in (2.5.1) which depend on x,u.
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The superscript y in x,u indicates the state and control
trajectories induced by the policy y. The set of admissible
control policies T is as defined in (2.2.12) - (2,2.15),
(2.2,17). The average cost per unit time problem is to

*
find v €T such that

*
JZ (x) = min{JZ(x): vyeT} for all xex (2.5.5)

*
The corresponding policy, Y 1is called average cost optimal.
A class of admissible policies of interest is the class

of stationary admissible policies, FSCF of the form

Y = (8,8,¢..) (2.5.6)

where

t-1

u(t) = g(yt—l,u ) 5 geU (2.5.7)

For such policies, the rule for control selection is the
same for each state. As in Section 2.4, we shall assume:
(i) the system dynamics are stationary and (ii) the
queueing system (2.2.1) - (2.2.17) has unbounded capacity.

Given these preliminaries, we have the following
result:

Theorem 2.5.1. PFor the unbounded, stationary queueing

system (2.3.8), (2.3.10) under thé expected long-run
average cost criterion (2.5.3) - (2.5.5), the pc-rule is
the optimal stationary policy.

Proof: Let y = (E,E,...)ars where g(x),xex denotes the

pc-rule. By Theorem 2.3.7 for each finite T, we have
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Y Y
Jf,T(X)SJf’T(X) for all xeyx, vyel (2.5.8)

Now consider

S -
Ja(x) %iz inf T Jf,T(X) (2.5.9)

First, suppose that JZ(-) is infinite. Then given an M

and T', there is a t>T' such that

1y 1oy for all yeTl
0<M<t Jf,t(x)—t Jf,t(x) Y (2.5.10)
where the second inequality follows from (2.5.8). Hence

for each yeT, J:(') is unbounded so any policy is average
cost optimal; in particular the uc~rule is optimal. Con~

versely, suppose that J:(') is finite, i.e.
Y(x) = -
Ja(x) Ay < for all xex (2.5.11)

Now to show that VETS is average cost optimal, let us

suppose there exists a policy y'eFS such that
\
JZ (x) <A for some specific xey (2.5.12)

Then

Y 1 .
Ja(x) = Ax—si for some el>0 (2.3.13)

By the definition of lim inf [64], there exists a T"(sl) such that
- €

157 1 > v

. Jf,t(x)>Ax - 5 for all t>T (el) (2.5.14)
Moreover, given € and T'(sl); there exiéts a t'zﬁ'(gl) such. that

. > -
vyt SN e 2.5

J, &) + 3 > T 0e e (2.5.15)
By combining (2.5.13) - (2.5.15), it follows

7 1oy "1 1y

g Jf’t[(,X)>1\x -T2 TSI, x) + 3 > v Jf,t(_x),
which contradicts (2.5.8), Hence for JZ(-) finite, the
vc-rule is average cost optimal, QED,
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2.6 Evaluation - Finite Queue System

In this section, the infinite horizon discounted
average aggregate delay (2.2.20) and the expected long-run
average cost aggregate delay (2.2.21) problems for the
bounded queueing system (2.2.1) - (2.2.17) are considered.
For the finite capacity system, condition (2.2.6) is
satisfied. The methods presented here lead to a numerical
treatment; analytical solutions have not been obtained.

We intend to demonstrate via numerical examples the
additional complexity 1in determining the optimal control
strategy. While in the unbounded system, our major effort
involved handling the cases of zero queues, here one must
handle in addition the upper boundary states. The sensiti-
vity of the optimal policy to the rate parameters

{ ﬁ,ui; i=1,2}, to the queue size and the corresponding
performance criterion is presented.

Before proceeding, we shall first discuss the
computational algorithms used in this evaluation. For
the discounted performance criterion, we have selected
the successive approximation methodology [20, p. 237].

Specifically from (2.3.13), we have the following recursion:

Vo(l,J) = c,i + ¢,

Vk+l(1’j) ¢, + c2j (2.6.1)

N
+ B min { I
m=

1 . 2
e Pi,m(u) v, (m,n) Pj’n(u)}

0

where Be(0,1) is the discount factor, N=N1=N2 is the

j(u):k=1,2} are

-

maximum queue size (see (2.26)) and {pi
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the transition probabilities given in (2.2.4) - (2.2.7).
Note, the term in brackets is easily implemented as a
weighted inner product norm with respect to the rows of

Pl(u), Pz(u) respectively, i.e.

1 2
<Pi(u), Pj(u)>V
k

For the average cost performance objective, three
different implementations were investigated; successive
approximations, linear programming and policy iteration.
The successive approximation approach involved simply
using B equal to unity in (2.6.1). However, as will be
apparent later, the solution is not numerically stahle for
large B. For B8 small, the contraction property holds with
the algorithm (2.6.1) converging in 10-20 iterations.

For 8 large, the algorithm typically failed to converge in

40 iterations. The convergence criterion was the following:
IVk+l(1,j) - Vk(i,j)|<0.01 for all i,jex (2.6.2)

Alternatively, the linear programming approach of
Wolfe and Dantzig [67] was developed. The average cost
problem reduces to the following linear programming (LP)

formulation:

1 N
min £ z (c,i+ec, i) y(i,j;su) (2.6.3)
.. 1 2
u=0 i,j=0
subject to

1 N

z z y(i,jsu) =1 ;5 y(i,3;u)>0
u=0 i,j=0

and
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1 2 .
L I p, (uwy(mynz;u)p, (u) - L y(i,j;u) =0
i,m jsn
u m,n u

(2.6.4)
By letting d(i,js;u) be the probability of choosing action

u given the state (i,j), then it follows

d(i,j;v) = Pr{u(i,j) = v|x = (i,3)}
Zy(i,jsv) (2.6.5)
v
The implementation of (2.6.3) - (2.6.5) introduced a 2N2—
dimensional vector, Y = {y(i,j;u)}i . and an augmented

transition probability matrix such that the equality

constraint (2.6.4) becomes

[P(O)P(L)]Y - [IN{IN]Y =0 (2.6.6)
where P(v) 1is given in (2.2.11). The minimization in
(2.6.3) invoked the simplex method of linear programming.
For the cases considered, only in the trivial situations
did the LP solution compare with the corresponding dis-
counted cost strategy (8 small). In several situations,
idling-type policies (i.e. u(0,j) =1 or u(i,0) = 0) were
generated. Consequently, this approach was not felt
'appropriate and thus was abandoned.

The policy iteration method of Howard [68] was adopted
for solving the average cost problem. Given a stationary
policy YeFS, Yy = (g,85...), the algorithm obtains an
improved policy by means of a minimization process on the
transition probabilities, until no further improvement 1is

possible. Because of finite state and control spaces,
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the number of iteration is finite. The basic iteration
consists of two steps: value determination and policy
improvement. Given a particular policy the value deter-

mination step solves

h + £(i,j) = Cli + c2j (2.6.7)

1 .. 2 ..
+ mfn Pi’m(u(l,J))'f(m,n)-Pj’n(u(l,J))

for i,j = 1,2,...,N
for the relative values {f(i,j)} and h by setting £(0,0)
to zero. The policy improvement step updates the control

values {u(i,j)} such that

u'(i,j) = arg min{ I pi m(u(i,j))°f(m,n)'P§ ICICTRDDY;

m,n
(2.6.8)

for all i, = 1,2,...,N

The values {u'(i,j)} become the new control actions in the
next value determination step (2.6.7). The algorithm
converges when the set {u(i,j)} equals {u'(i,j)} in the policy
improvement step. To improve computational efficiency,
the policy iteration algorithm was initialized with either
the equivalent discounted cost policy or the uc rule
strategy. On average, the policy iteration algorithm
converged more rapidly than the successive approximation
algorithm (2.6.1), but the later requires less computations
per iteration verses the former.

Given these preliminaries, the cases studied are shown

in Table 2.1. The size of each queue were identical with
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N =N, = N, = 7. Also, the parameters were selected such

Table 2.1 - Finite Queue System (N=7)

Figurd 1 °q A ) My My Optimal Cost
2.2 0.3 {1.0 0.3 1.0 0.5 0.5 6.44
2.3 0.3 1.0 0.3 | 1.0 | 0.6 | 0.2 7.32
2.4 0.4 | 1.0 Jo.2 | 2.0 | 0.6 ] 0.2 13.88
2.5 0.45 |1.0 lo0.2 2.0 | 0.6 | 0.2 13.94
2.6 0.5 (1.0 0.2 | 2.0 | 0.6 | 0.2 13.99
2.7 0.4 1.0 0.3 | 2.0 |o0.6 ] 0.2 14.73
2.8 0.4 |1.0 |o0.2 | 2.0 |o0.6 | 0.15 13.88
2.9 0.4 |1.0 0.2 | 2.0 | 0.6 | 0.1 14.864

that Hic iuzcz. Because of symmetry, there is no loss of

generality. The optimal policy of each case is shown in

Figures 2.2 - 2.9 with the following notational convention:
'S
%2
(0,7)% *(7,7)
For each entry
1 service 1
[ ]
(i,3) u(i,j) =4 0 service 2
o 2 arbitrary
(0,0) (7,0) xq
In each figure, the optimal strategies for 8 = 0,3, 0.5, 0.9
and 1.0 are shown respectively in (a) - (d) with the under-
standing that for (d) policy iteration is used. 1In Figure

2.2, the parameters were selected for a completely symmetric
system. This case insures that each algorithm handles the

trivial case. Observe for small B, the control value 1is
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arbitrary in the lower-valued queue states while as B
increases, only the diagonal entries retain this property.
In Figure 2.3, the parameters were selected to establish
that the pc rule holds in the bounded queue system. Here

the policy is independent of the discount factor with

= 0.6>0.2 ¢, and ﬁcl = A,c, = 0.3

1€ HaCo 22

One may conjecture that even in the finite case, the uc
rule is optimal.

The conjecture is shown false given the results in
Figures 2.4 - 2.6. In these cases, the boundary states
and the discount parameter influence the optimal policy.

First, consider Figure 2.4(a), (b) (B small) which can be

explained as follows: Foxr control values {u(7,j):j=1,2,...,6},

1111112 211111128
11111209 21111120
011112009 11112009

(a)OEEEEOOO 211120009 (c)
2222000 21120000
62222000 21200000
e22ecc20029 02000000
ec11t11111 el1111111
1111112 21111112
11111280 2111112080
2111120080 21111200

(y 01112000 011120080 (4
6220000 91120000
02220000 2120000900
02220000 Q2000000
ei1111114 ec1111111
Figure 2.2 ﬁ=0.3 cl=1.0 ul=0.5
A2=O.3 = .0 u2=0 5
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01111111 1111111
1111111 e 1111111
01111111 011111114

) @1 111111 1111111
01111111 et1111111 (9
01111111 1111111
01111111 01111111
21111111 21111111
01111111 01111111
01111111 01111111
01111111 1111111

() 01111111 1111111
01111111t 1111111 (@
01111111 1111111
01111111 e1111118
21111111 20111111
Figure 2.9 Al=0.4 cl=1.0 ul=0.6

A2=0.2 c2=2.0 u2=0.l

the controller performsa dual function; minimize overall cost
while regulating overall system capacity. Since queue 2
incurs a higher cost (c2>cl) then queue 1 and since it's
customer is already in the system, it is more advantageous
to restrict queue 1l's arrivals and service queue 2. At
the boundary (7,7), both arrivals can be restricted. Hence
since c1<cz, it is better to serve queue 1. Non~-
idling policies explain the boundary state (7,0). This
same pattern holds true in Figures 2.5(a), (b) and 2.6(a)
(b) where the parameters remain the same except the arrival
rate, Al is increased.

As the discount parameter B increases, the above
situation becomes more pronounced. In Figures 2.4(c) -

2.6(c), the immediate rewards are now competing with the
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long term benefits. The additional service provided to
queue 2 for the states {(i,j):i=5,6;j=1,2,...,6} suggests
that it is more desirable to restrict system capacity.

Note that in Figure 2.6(c), it is better to service queue

2 for state (7,7) than permit another arrival into queue

1. This phenomenon is natural within a traffic flow
context. With increased demand on the system, it is better
to avoid overall system congestion by restricting entry at
the nodes of the network.

For the average cost performance criterion (B=1), the
resulting strategies in Figures 2.4(d) - 2.6(d) are
unexplainable. As remarked earlier, the successive
approximation algorithm (2.6.1) for B8=1 is not numerical
stable. Even for the cases in Figures 2.4(c) - 2.6(c)
with B=0.9, the algorithm did not converge under the given
criterion (2.6.2); the maximum iteration count equalled
40. To insure the policy iteration algorithm (2.6.7),
(2.6.8) was not yielding misleading results, the initial
policy was chosen as the corresponding (8=0.9) discount
cost strategies. Hence, there is a high confidence that
the results are numerically correct.

In Figures 2.7 - 2.9, the discounted cost strategies
follow the same pattern as noted earlier. Conversely,
the average cost policies are unrelated to these results.
In several situations, idling-type policies are selected
(see e.g. Figure 2.9(d)). Moreover, the switch curve 1is
no longer a connected region. This is an area for future
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research.
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3. STOCHASTIC CONTROL OF TWO PARTIALLY OBSERVED COMPETING

QUEUES

3.1 Introduction

While the analysis of the priority assignment:strategies’ for queueing
systems with complete observations has received moderate
attention [1] - [8], the study of dynamic strategies with
partial observations has barely begun [24] - [29]. By
dynamic strategies, we mean again a policy which at each
time t utilizes the information available up to time t. In
Chapter 2, the discussion dealt with a completely observable
queueing system. Here, our discussion deals with a partially
observed system; specifically only the arrival process to
each queue is observed. Consequently, the queue sizes are
unobservable to the controller because the departures are
not observed. The theory of optimal control of perfec£ly
observed Markov processes is by now well-understood and
quite general optimality conditions are available [20], [22],
[30] - [32]. When the observations are noisy, the analysis
becomes more difficult. 1In this chapter, we analyze a
simple stochastic control problem for two competing queues
using noisy observations. Estimation schemes for such a
queueing system have been provided previously [33]; here we
shall incorporate these estimates in the optimal control
scheme.

The problem formulation is similar to the previously
discussed complete observations problem. Two parrallel queues are served

by a single server with the control selected so that the
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finite horizon aggregate delay is minimized. The problem

is formulated in discrete time with the arrival and departure
processes modelled by Bernoulli streams. The arrival and
service rates at each queueing station are allowed to depend
on the queue size and control values. At each service
completion time, a control is selected to decide which queue
to service next. The controller observes the arrivals of
the two queues but the queue sizes are unobservable, i.e.
departures are not observed. The control is to be selected
as a function of the past histories of the observed arrival
and control processes. The instantaneous cost is linear

in the waiting times of each queue. Thus, we have a finite
horizon, partially observed stochastic control problem.

The framework in which the problem is formulated is that
of a controlled, partially observed Markov process [34] -
[38]. The problem of optimal control of a Markov process
with incomplete state information can be transformed into a
problem of optimal control with complete information [34,
Theorem 3]. However the original state space is transformed
in the latter problem to be the space of probability
distributions. It is of interest though that the information
set, upon which the transformed problem is formulated, can
be reduced to a "lower dimensional" set without loss of

information content. The search for such a sufficient

statistic is primarily a problem related to data reduction
[36]. While it is possible to show that various functions

of the data constitute a sufficient statistic, our attention
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is focused on a particular one; the sufficient statistic
chosen is the conditional probability measure of the state
of the Markov chain given the past histories of arrivals
and controls,

It is difficult to treat the partially observed control
problem unless the control aspects and the statistical
estimation aspects can be somewhat separated. The best known
example of such a separation occurs in the partially observed,
lineaf regulator problem [37]. 1In that case the separation principle
[39, p. 339] states that the optimal feedback law is a
function of the past observations only through the expected
value of the state; not a function of any other higher order
moments. For the controlled, partially observed Markov
process, it can be shown that the conditional distribution
of the state given the past histories depends on the control
policy only through the most recent value of the control
[36, Theorem 1]. In other words, the optimal control law
need only depend on the information set via the sufficient
statistic and as consequence, the optimal control problem
is simplified.

By transforming the partially_observed problem into a
completely observed problem, the theory of optimal control
of Markov processes is readily applicable. In particular,
the standard arguments of dynamic programming follow [20],
[221. A particular feature of the transformed partial
observed problem is that the '"cost to go" function is

convex in the state statistic [35, p. 406]. This convexity

73



of the value function is exploited in the work of Smallwood
et al [24], [26], Segall [27] and Baras et al [29].

The two competing qﬁeuesproblem is analyzed within the
aforementioned framework. Our starting point is the joint
statistics (assumed known) of the observed arrival processes
and of the transitions of the chain. By this approach,
the observations, modelled as discrete time 0-1 point processes,
have rates [18] that are influenced by the chain
states. An identical formulation in continuous time was
applied by Segall [27] for a dynamic file assignment problem.
The dependency of arrival and departure rates on queue Sizes
was first copnsidered in the queueing system context by
Jackson [40]. By our joint statistic approach, a slight
modification is required to the existing framework of a
controlled, partially observed Markov process. The modifi-
cation is necessary due to the special relationship between
the observations and state transitions in such queueing
systems.

The classical tools of Bayes rule and dynamic programming
suffice for our analysis [24], [41]. We show that the "one-
step'" predicted density of the state, given the point process
observations, is a ;ufficient statistic for the control.
Thus, the optimal server allocation strategy depends on
the observed arrivals through this statistic which is computed
recursively via the filter-predictor equations [33]}. It
is shown that the optimal strategy in addition has the form

of the separation principle.
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The dynamic programming methodolgy is simplified as a
consequence of this separation property. In particular,
all the necessary computations needed to implement the
optimal strategy can be performed off-line. Due to the
linearity of the instantaneous cost, the optimal value
function is piecewise linear in the state statistic. The
piecewise linearity of the value function was first observed
by Smallwood and Sondik [24] in a machine replacement problem.
The resulting off-line computations can be stored in an
elementary way in order to facilitate the on-line imple-
mentation of the strategy. The results are similar to those
of Chapter 2 (see Section 2.3, Theorem 2.3.10 and Remark
2.3.6). The methods presented here lead to a numerical
treatment; analytical solutions for this problem have not
been obtained. Our results serve as a basis for further
analysis of the two competing queue problem: evaluation of
suboptimal policies and alternative performance objectives
such as infinite horizon discount and average cost per unit
time aggregate delays.

This chapter 1is organized as follows. In Section 3.2,
we formulate a simple two competing queue problem. Extensions

to more general models of such queueing systems are then

presented. The basic questions to be studied in this
chapter are discussed. The data reduction algorithm to obtain
a sufficient statistic is developed in Section 3.3. The

general filtering and prediction results for the class of
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stochastic systems whose ohservations are influenced by
state transitions are presented. We then apply these
results to the queueing problem under discussion. In
Section 3.4, the optimality equations characterizing the
solution of the finite horizon, partial observed problems
are presented. Again, the extension of these methods to
the multi-class case of [9] - [13] is theoretically straight-
forward, but computationally burdensome. Our development
simplifies the on-line solution of the optimal policy. In
Section 3.5, we present computations and evaluations of the
strategies obtained, as the theory is applied to a simple
problem.

3.2 The Two Competing Queues Problem

Consider the problem of selecting which of the two
parallel queues to serve with a single server. The system
is depicted in Figure 3.1 below. Time is divided into
uniform time slots; that is,we adopt a discrete time formu-
lation. Customers arrive into stations 1 and 2 according
to two independent Bernoulli streams with constant rates

Xl, Xz respectively.

A
! T Xl(t)
u(t)=1
n{i(t) ('\ m
A
2
T XZ(t)
n;(t)
Figure 3.1. The partial observation control problem
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If we let {n?('); i = 1,2} denote the two arrival processes,

it is clear that they are discrete time Q-1 point processes:

. . . th .
1, if an arrival occurs in the ¢t time
slot of queue 1

ni(t) = (3.2.1)

\O, otherwise

Our convention is that the tth time slot is the half open
interval {t,t+1). The rates of the arrival processes are

given by [18]:

A = Pr{n?(t)=l} , i=1,2 ) (3.2.2)

The two queues compete fof the sef&ice of a ser&ef whose
service completions follow a Bernoulli stream with constant
rate pw. If we let{nd(t)}be the service process, whenever the
server is connected to one of the two queues (when it is

nonempty) then
d
w = Pr{n (t) = 1} (3.2.3)

Let xi(t) denote the number of customers in the ith queue
during the time slot t, with the customer in service
included. The control to be selected is of a switching
type. When u(t)=1 and the server completes a service, the
next customer to be served comes from queue 1, while if
u(t)=0 the next customer comes from queue 2. This is a
simple priority assignment (sequencing) problem in a two
class queueing system.

The server time allocation is to be selected in order

to minimize delays, weighted according to c.sCy two positive

1
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constants. Thus, the instantaneous cost at time t with

queues xl(tl, xz(t) is given by:

clxl(t) + czxz(t). (3.2.4)

For a finite horizon of length T, we wish to minimize the

average aggregate delay

T
Y _
Jf = E[tzO (clxl(t) + czxz(t))] (3.2.5)

The queue sizes are not observable, since only the arrival
processes {ni(t); i=1,2} are observable to the controller.
The server time allocation strategy is to be selected, so
that (3.2.5) is minimized, and is allowed to be a function
of the past histories of the arrival processes and the past
history of the control.

This simple priority assignment problem is motivated by
the related work in urban traffic control problems [42] - [44],
[33]. This problem is the simplest in a sequence of such
problemsin the urban traffic context. The controller
represents the traffic light, the two queues correspond to
the two approaches at a traffic intersection and the arrival
processes observed are the outputs of street loop detectors.
Therefore the problem we have described above, models in an
elementary way the critical intersection traffic control
problem [45]. Traffic activated control laws lead to the
dependency of the control value u(*) on the past histories
of arrival and control processes. The filtering and
prediction results of queue sizes in [33], [42] are

incorporated into the results of this chapter. The
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interested reader is directed to [33], [42] for further
details on the development of queue models appropriate to
urban traffic problems. Similar priority assignment problems
appear in computer networks, where one allocates files
according to demand [27] or in satellite communication
networks [28] where one controls retransmission laws
according to traffic load of the network.

The priority problem is easier to analyze for an
unbounded queueing system. The results obtained can be
applied to more general queueing models thamn the one
described above. 1In particular, to represent effects of
congestion, one can let the arrival and service rates
depend on the queue size. Consequently, we shall consider
the queueing system under the following assumptions:

a t hist i f a na
Pr{ni(t)=l pas istories o Xl’ gy Oy,D,,

and u, up to time t}

=Pr{nj(t)=1 | x (e)=k, u(e)=v} = A (t,k,v) ; i=1,2
(3.2.6)

and

a a
1°%2°01°1
and u, up to time t}

Pr{ni(t)=l past histories of x

=prind(t)=1 | x (O)=k,u(t)=v} = b (t,k,v) ; i=1,2

(3.2.7)

Since there are no departures when a queue is empty we must

have
ui(t,O,v)=0 for all t,v ; i=1,2 . (3.2.8)

For the simple problem described in Figure 3.1,
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Xi(t,k,v) = Xi for all t,k,v ; i=1,2 (3.2.9)
and
pl(t,k,v) = U v for all t,v ; k#0
(3.2.10)
uz(t,k,v) = p (1-v) for all t,v ; k#0

In most applications the queues are bounded in size.
If we let {Ni;i=l,2} denote the maximum queue size for each

queue, then in addition to (3.2.8) we must have
Xi(t,Ni,v)=O for all t,v ; i=1,2 (3.2.11)

For the simple problem of Figure 3.1, (3.2.11) implies that

Xi, k#0, for all t,v ; i=1,2
Xi(t,k,v) = (3.2.12)

o , k=Ni’ for all t,v ; 1i=1,2

In queueing models such as the preceding, there is a
direct link between the transitions of the queue process
and the observed arrival process. Indeed the occurence of
an arrival implies that the queue will increase or remain
the same for the next time slot. In other words, the obser-
vations imply certain 'state transitions” for the underlying
queue. Thus the appropriate way to characterize a descrip-
tive queue model, like the ones discussed here, 1is by means

of the joint statistics of queue transitions and observations:

Sij(t,v,W) = Pri{x(t+l)=3,y(t)=¢|x(t)=i,u(t)=v} (3.2.13)

for i,jex = 2={0,1,2,...},be¥={0,1},veU =10,1}

This is the starting point of our development of filtering
and prediction results in Section 3.3. Moreover, the two

queues are linked only through the current control value;
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a fact that is made precise in the subsequent section.

Finally in modelling the admissible control strategies,
one may wish to allow the control during the tth time slot to
depend on the observations during the tth time slot or not.
This is clearly a modelling question. Realistically, it is
better to allow u(t) to depend on the observations only up
to time t-1. However in some applications, it may be impor-
tant to know the tradeoff in complexity and performance,
when the former condition holds. TFor completeness we shall
consider both cases here.

It is important to emphasize that the finite horizon
problem discussed here plays a central role in the analysis
of other criteria, such as average delay per unit time or
discounted aggregate delay as was apparent in Chapter 2.

3.3 Filtering and Prediction

General Results

In this section, we briefly review the filtering and
prediction formulas for the state of a partially observed,
controlled Markov chain that influencesthe observations
(241, [34], [36], [46]. Since our problem is formulated in
discrete time, these results can bg derived in an elementary
fashion using Bayes rule [24]. These general results are
applied to the case of primary interest: discrete time,

0-1 point process observations influenced by the state

transitions of the chain. The explicit filtering and

and prediction formulas for the queueing problem under study

are equivalent to the ones in [33] obtained by martingale
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techniques. For an unbounded system, the Markov chain state
space, X is countable while for a hounded system the state
space 1s finite.

We assume the joint statistics of the observations and
state transitions are known and are given by:

S, 5 (£, v, 1) =Pr{x(c+1)=] vy (e)=v]x(t)=1,u(t)=v}
for i,jex, veY, velU (3.3.1)

The inclusion of controls in the description of these
statistics is meant to emphasize that the filtering and
prediction formulas derived here are used in subsequent
sections for the solution of the stochastic control problem
with partial observations. For our purposes, it suffices
to assume that the output process, {y(:)}and the control
process, fu(*)}ltake values in finite sets, denoted Y and U,
respectively. For the gqueueing system introduced above
(3.2.1) - (3.2.12), the output set, Y = {0,1} while the
control set, U = {0,1} for the single server problem or

U= {0,1}™ (mth

-fold Cartesian product) in the case of m
servers. The state space X in (3,3.1) for the unbounded

queue is the set of positive integers, Z = {0,1,2,...} while

for the bounded queue, it has the form:

X =2 = {0,1,2,...,N} ; N = maximum queue size
(3.3.2)
For the queueing problems of interest, the fundamental
modelling assumption is that the joint statistics of
observations and state transitions are influenced only by the
current state and control values. Specifically, let |
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t
X LY

t- t . . .
l,u denote respectively the past histories of the

state, observation and control processes up to time ¢t

Then

tion

This

x" = {x(s); s8=1,2,...,t}

yt_l = {n?(s); s=0,1,...,t=1; i=1,2} (3.3.3)
t

ut = {u(s); s=1,2,...,t}-

we assume that the following "semi-Markovian'" assump-
holds:
. ‘ t t-1 ¢t
(sM) Pri{x(t+l)=j,y(t)=y[x ,y “,u’}
= Pr{(x(t+1)=j,y(t)=v|x(t)=1, u(t)=v} (3.3.4)

for all i,jeX, VeY, vel

assumption is consistent with a "stochastic dynamical

system'" model of queues, which as discussed in [33] (see

equation (2.11), p. 13) is valid under very general

circumstances. It is easy to see that on the basis of

(3.3

.4), one can describe the partially observed queue as

a probabilistic automaton [47].

The available information to the controller for

inference purposes at time t 1is denoted by

= (vy5,u"TH) ; : (3.3.5)

We denote by T the set of admissible control policies,

whereby each yel has the form:

Y = (goagl""’gt"") s (3.3.6)

where each g, is a function

83



gt:thUt+U
2u(e) = g, z5) (3.3.7)

The policies in ' are called nonanticipative, following

standard terminology [31]. Recall in Section 3.2, we

noted the difficultiés-associated with whether or not

to allow the control at time t, u(t) to depend on the
observation at time t, y{(t). This

problem is intrinsic to the influence of state transitions
on the observations, which in the case of a queueing systemn
are arrivals or departures and therefore convey information
about the queue size (the state). One thus has the choice,
in the specific problem of two competing queues described
in the preceding section, either to utilize in the decision

process at time t, the arrival observation at time t, or

not. This is a matter of choice and we wish to develop the
methodology keeping both options., Thus we shall consider
a subclass of ' as admissible policies. ©Namely, let FO

be the subset of I consisting of policies ¥ of the form

(3.3.6), where each g, is a function of the form:

gt:Yt X Ut* U

t-1 t-1

2T e u(e) =g, (67T = g 7Y, u(e-1). (3.3.8)

and

AR Ll L ) (3.3.9)

bd

We call the policies in T strictly nonanticipative.

0’

Wherever our results need modifications as a consequence
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of restricting admissible policies to be strictly nonantici-
pative, we shall indicate so explicitly and give the necessary

t
modifications. Following standard usage [36], we call z or

L el the information vector available at time t.

=

From the joint statistics (3.3.1), it follows that the

transition probabilities of the ehain are given by:

p,.(t,v) = Pri{x(t+l)=j|x(t)=i,u(t)=v}i= 2 S . (t,v,V)
+J yey *J
(3.3.10)

Similarly the output statistics given the state are given

by:

Xi(w,t,v)s Pr{y(t)=y|x(t)=i,u(t)=v}= 3 Sij(t,v,W).
jeX
(3.3.11)

There is a consistency requirement on the statistics
described by the matrix S. This requirement is due to the
nature of the link between observations v(*) and state
transitions that was discussed earlier. Namely from (3.3.1),
it appears that the value of the control at time t influences
the statistics of the observations y(t) at time t.
On the other hand, since we wish to analyze nonanticipative
policies as well, we allow the value of the control u(t) at
time t to depend on the value of the observation y(t) at
time t. To avoid the apparent difficulty with existence of
a causal relationship between u(t) and v(t) (which is
necessary in studying nonanticipative control policies) we
require that S satisfies the following consistency condition:
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Consistency condition: The output statistics at time t

(3.3.11), induced by the joint statistics of output and

state transitions (3.3.1) do not depend on the value

of the control at time t; specifically

'Z Sij(t,v,W) = independent of v for all i,V,t.
jeXx
(3.3.12)

For queueing systems with server control, the consistency
condition (3.3.12) is always satisfied as will be demon-
strated later in this section. As a consequence of
(3.3.12), the control argument, v is dropped in the notation
of Xi(') as defined in (3.3.11).

Given a control policy vyel', the conditional probabilities
of interest in the control problem (3.2.1) - (3.2.12) are
the probabilities of the state given the information vector;

specifically we define the row vector probabilities

(possibly infinite dimensional) for all iey to be

HI+1]t (1) = Pri{x(t+1) = 1|5}
and
nl . () = Pr{x() = ilchy (3.3.13)

The supercript ¥y in (3.3.13) indicates the state and control
trajectories induced by the policy y. For notational

convenience, we introduce the additional probabilities:
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pz'*'llt(j.i’gt) = Pr{x(t+l) = JIX(t) = i, Ct}
(3.3.14)
Y imztly = Priy(e) = wlx(e) = i,u(t) = v,it7ly

Then to establish the sufficient statistic for the control
problem (3.2.1) - (3.2.12), we proceed with the following
sequence of lemmas:

Lemma 3.3.1. For all vel, ztsthUt and i,jeX we have
Sij(t’“(t)’Y(t))

(a) (31,25 = (3.3.16)

pY
e+t 2 8, (t,u(e),y(t)

jex HJ

provided the denominator in (3.3.16) is positive.

) pY(uli,v,zt 7t

) = Xi(w,t) (3.3.17)
where Xi(.) is defined in (3.3.1l1)

Proof: For (a), by Bayes rule

p! (j,y(e) |1, y&1,ub
p’ | (311,25 = t+l]e
+1 ’ i t-1
ErLit p (y(t)|i,y ,ut)

sij(t,u(t),y(t))

T I, (5u(0),y(e) (3.3.18)

jex

provided pY(y(t)!i,yt—l,ut)>0. The second equality in
(3.3.18) follows from (3.3.1) and (3.3.4).
For (b), we observe from (3.3.4) for any policy vyeTl
. t-1 .
pY(u|i,v, 257 = pT(yli,v)
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and hence the result (3.3.17) follows from (3.3.11) and

(3.3.12). QED.

Remark 3.3.1. Observe in (a) since Sij(')EO when

t_l,ut) is zero for some ieX,y(t)eY (recall that

due to the consistency condition (3.3.12), pY(y(t)Ii,yt_l,ut)

pY(y(t)|i,y

does not depend on u(t)), then

Slj(t,u(t),y(t))=0 for all jeX (3.3.19)
. . Y T N
In this case for consistency, we let pt+l‘t(311,é ) i3 in
(3.3.16). To simplify later computations, we introduce the

following matrix:

S, J(t SV V)
5 (v, ) 1t .EXS j (€55 ¥)>0
jex J
Mlj(t,v,W) = (3.3.20)
5., , otherwise for i,jeX
i3

Then Lemma 3. 3.1(a) can be restated as

Pliil ¢ (3 11,25 = My, (e,ue),y(e) (3.3.21)

Remark 3.3.2. By Lemma 3.3.1, the filtering and prediction

formulas for the conditional probabilities of interest

(3.3.13) can be derived. First,

Y iy = - Y . ot
Ht+l’t(3) = pt+l[t(3'é ) = iixpt+l't(3,x(t)—1|g )

Y e o By LY -
iixpt+l‘t(Jil’C ) pt[t(llé ) (by Bayes rule)

2 oM, (t,u<t>,y<t>>'n{‘t<i> (by (3.3.21) and
Lex (3.3.13)) .
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or in matrix notation:

Y =Y
Ht+1}t Ht]t M(t,u(t),y(t)) (3.3.22)
Similarly,
Y N ¢ L tFly Y . t+l
Meprfe+r D pt+l]t+l(llz ) pt+1[t+1(llz )

(by (3.3.7)

pt+1]t+l(i’zt+l)
= — (by Bayes rule)
5 pY (i zt+.\.
jex ttlle+l (3.3.23)
By Lemma 3.3.1(b), we have
Y . tH+ly oY iy Ey.p Yyt
pt+1}t+l(1’z ) A (v (e+1) ,t+41) pt+l|t(1lt Yep' (L)
(3.3.24)

By combining (3.3.23), (3.3.24) and simplifying, we have

Y ;
. O e ] ()
Ht+l]t+l(l) = Y (3.3.25)
iIiX)\i(y(t-Fl) ,t+1)‘nt+l I t(i)

or in matrix notation:

Y
Ht+1|t+l = " (3.3.26)
where the diagonal matrix
D(t,¥) = diag{xi(w,t)} for all ieX (3.3.27)
and the column vector
T
e = [1,1, , 1, ] (3.3.28)

The computations (3.3.22), (3.3.26) - (3.3.28) are
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slight modifications of existing results (e.g. see [19]).

Jv
in the notation of [19]. Although this product form for

Indeed, S, (t,v,¥) in(3.3.1 has the form p . (v)-r}

S(*) was considered in [19], the arguments of [19] do not
make use of this fact. The filtering and prediction formulas,
(3.3.22) and (3«3.261«C3.3.28) respectively lead to the result [36, Theorem 1]:

L. s Y
Lemma 3.3.2. The conditional probability vector Ht+l]t+l’

H:+1’t,<ﬁf (3.3.13) does not depend on yel; specifically

it depends only on the values of the control not on the
control policy. Furthermore, the conditional probabilities
are computed recursively by (3.3.22), (3.3.26).

Proof: The recursive computation of nI+l’t+l’ Hz+l|t

follow from Remark 3.3.2. For the independence with respect
to the control policy, let HO denote the row vector of the
initial probabilities of the state x(0). Then by (3.3.26)

for t=0, we have

MyD(0,y(0))

Yoo T T 5(0,5C0))e (3.3.29)

; ; Y Y
It is now obvious from (3.3.22) (3.3.26) that Ht+l{t+l’nt+1|t
depend only on the values of the controls. QED.

As a consequence of Lemma 3.3.2, we shall drop the
superscript y from (3.3.13), (3.3.22) and (3.3.26), for the
remainder of our discussion. Following [36], [41] we
consider the concept of information states; specifically
[36, pp. 583-585].

t . .
Definition 3.3.1. Let T denote the information vector

available at time t. Then a vector ®(t) is called an
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information state at time t for the controlled stochastic

system described by (3.3.1) if
(a) &(t) can be evaluated from ot
(b) There exists a function Tt(') such that
$(t+1) = T _(2(t), tT\H) (3.3.30)

where Tt+hw¢ denotes the new information generated at

time t+1.

We can now state the following theorem, which is a
slight modification of well-known results [24]), [34], [36],
[41].

Theorem 3.3.3. For the system described by (3.3.1), (3.3.4)

(a) if Tt=Zt as defined in (3.3.5), then (Ht|t,y(t)) is
an information state at time t.

1

(b) if 7 =% ' as defined inm (3.3.9), then Hile-1 s

an information state at time t.

Proof: For (a), Tt+l\Tt=(y(t+l),u(t)) so that combined

with (3.3.22), (3.3.26)

Ht]t-M(t,u(t),y(t))‘D(t+1,y(t+1))

Mer1)e+1 = T ¢ MCE,u(E),y(£)) DCevL,y (1)) (3.3.31)
the result follows.
For (b), Tt+l\rt = (y(t),u(t)) so that combined with
(3.3.22), (3.3.26)
I *D(t,y(t)) " M(t,y(t),y(t))
Teapfe Htlt—l.D(t 75y (3.3.32)
t]e-1 'y N
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the result follows QED,

Remark 3.3.3. From (3.3.31) (3.3.32), the difference

equations for the "unnormalized'" conditional probabilities

are easily derived; specifically they have the form:

Cre1]t+1 Ot1t'M(t,u(t),y(t))'D(t+1,y(t+1)) (3.3.33)
rrr]e T Pele-1 S (Esu(t),y(e)) (3.3.34)
where
Polo = Tojo 27 P11 = T (3.3.35)
Then
Pe+1]t+1 Pele
Titlfe+1 = 5 e and Oy = 572 (3.3.36)
t+l]t+1 |t

To obtain (3.3.34), observe that from (3.3.11), (3.3.27)
D(t,y(t))e = S(t,u(t),y(t))e (3.3.37)
and from (3.3.11), (3.3.20)
D(t,y(t)) M(t,u(t),y(t)) = S(t,u(e),y(t)) (3.3.38)

As a result of Theorem 3.3.3 and (3.3.33) - (3.3.35),
we have established the following corollary.

Corollary 3.3.4. For the system described by (3.3.1),

(3.3.4)

(a) if Tt=zt as defined in (3.3.5), then (pt t,y(t) is an
information state at time t.

t t-1

(b) if T~ = Z as defined in (3.3.9), then ¢ is an

t]t-1
information state at time t.
The importance of considering the "unnormalized"

versions (3.3.33), (3.3.34) rest primarily on their linearity
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in state dynamics (as compared to the nonlinear equations
(3.3.22), (3.3.26)) as it has been recently emphasized in
nonlinear filtering studies [48], [49]. The recursions
(3.3.33), (3.3.34) are a slight modification of the results
of Rudemo [46].

Application to Queueing Models in Discrete Time

The filtering and prediction results developed above
are now applied to the general queueing system described
by (3.2.6) - (3.2.13). Recall by (3.2.6), (3.2.7) that the
arrival and departure rates are allowed to depend on the
queue size. Using martingale techniques, similar results
have been obtained by Baras et al [33], [42].

Let the arrival and departure rates of a controlled

queue in discrete time be given by

an arrival occurs in [t,t+1)
A(t,i,v) = Pr{givaxthe queue size at time t
is i and control u(t) = v
and (3.3.39)
a departure occurs in [t,t+1)
w(t,i,v) Pr{givanthe queue size at time t
is 1 and control u(t) = v

‘

We assume that time discretization is such that the
probability of more than one arrival or departure in a
single time slot is zero. The arrival and departure point

processes na(t), nd(t), respectively are defined as follows:

a {l , if an arrival occurs in the tth time slot
n (t) =
0 , otherwise,
, . th .
d {1 , 1f a departure occurs in the t time slot
n (t) =
0 , otherwise.
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Consequently by (3m3539), we have

A(t,i,v) = Prin®(t)=1|x(t)=1,u(t)=v}.
(3.3.40)

Prind(t)=1]x(t)=1,u(t)=v}

w(t,i,v)

The queue size during the tth time slot is denoted by x(t).
Here we assume that the queue size is controlled by controlling
the departure and (or) the arrival rates. The quantity
w(t,i,v) in (3.3.40) is also referred to as service rate.
Finally, we make the usual assumption (see e.g. [33])

that the departure and arrival processes are independent of
each other given the queue size and the control.

The problem of interest is the partially observed queue
as described in Section 2; specifically the arrival process
{na(t)} is observed while the departure process {nd(t)} is
not observed. Consequently, we have that the observation

process is given by
y(t) = o (1), £=0,1,2,...,T (3.3.41)

Following the framework of (3.3.1) (3.3.4), we need to
specify the joint statistics of the observations and state

transitions:

il

S;4(t,v,1) = Prix(e+l)=j,n"(£)=1]x(t)=i,u(t)=v}

Pr{x(t+l)=3 |n®(t)=1,x(t)=1i,u(t)=v}

H

. Pr{na(t)=l]x(t)=i,u(t)=v} for all i,v

Therefore
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Sii(t’v’l> = )\(t,i,V) LJ.(_t,i,V)

Si,i+l(t’v’l) = A(t,i,v) (l-p(t,i,v)) (3.3.42)

]
o

Sij(t,v,l) , elsewhere for all i,jeX;veU

Similarly,

Sij(t,v,O) Pr{x(t+l)=j,na(t)=0lx(t)=i,u(t)=v}

Pr{x(t+l)=j]na(t)=0,x(t)=i,u(t)=v}

Pr{na(t)=0]x(t)=i,u(t)=v} for all 4i,v
and therefore

(l—X(t,i,V,)) (l—p‘(t’i)v))

Sii(t,v,O)

S5.1-1(6,v20) = (1=X(t,1,v)) p(t,i,v) (3.3.43)

Sij(t,v,O) =0 , elsewhere for all i,jeX;veU
Observe that the special link between the observations and
the state transitions as discussed in Section 2 is captured
in the description of § in (3.3.42), (3.3.43). 1In the case
of a queue evolving without bounds, the only constraint

imposed on A(t,i,v), u(t,i,v) is that
p(c,0,v) = 0 , for all t, veU. (3.3.44)

On the other hand in the case of a finite queue bound, i.e.
when the queue is not allowed to grow beyond N, in addition

we require
AMte,N,v) = 0 , for all t, veU. (3.3.45)

The matrix of state transition probabilities, according to
(3.3.10), are computed from the description of S (3.3.42),
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(3.3.43); in particular they coincide with our earlier model
(2.2.7) for state independent rates. The point to be noted
here is that the description of S is more appropriate when
studying partially observed queueing systems.

In our discussion of nonanticipative and strictly non-
anticipative policies (3.3.5) - (3.3.9), we stated that, for
queueing system which are controlled by controlling the
departure (or service) rate, the consistency condition
(3.3.12) holds. Clearly, the arrival rate A(-) in (3.3.40)

is independent of v and from (3.3.42), (3.3.43) it follows:

z Sij(t,v,l) = A(t,1i)
jeX
I (3.3.46)
= (1-X(t,1)) for all ieX

Z S,.(t,v,0)
jex 13

Hence the consistency condition (3.3.12) is satisfied for
the system under discussion. In (3.3.46) and for the
remainder of our discussion, we shall drop the argument v
from the arrival rate, A(+) in (3.3.40).

To complete the characterization of the filtering and
prediction results (3.3.31), (3.3.32) from (3.3.20), (3.3.42),
(3.3.43) it follows:

Mii(tsvyl) = l.l.(t,l,V)

Mi,i+l(t’v’l) = 1-u(t,i,v) (3.3.47)

Mij(t,v,l) = 0 , elsewhere for all i,jeX;veU

and
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Mii(t,v,O) = l-p(t,i,v)
i,i—l(t’v’O) = pu(t,i,v) (3.3.48)
Mij(t,v,O) = 0 , elsewhere for all i,jeX;vel

Furtheremore, the matrix D introduced in (3.3.27) becomes

D(t,1l)

diagi{x(t,i)}

(3.3.49)

D(t,0) diag{li-2(t,i)} for all ieX

By substituting (3.3.47) - (3.3.49) into (3.3.3)), (3.3.32)

we obtain

A(t,i) I (i)
i t]t-1 . a -
T T 1o =1
jeX
Htlt(i) =
(-2 (e,3)) Ty () if o (t) = 0
PONETD) T o ()
jaX
H(t,i,V) Ht]t(i)
+ (l-p(t,i-1,v)) Htlt(i—l) , if oo (t) = 1
Mg e (2) =< (3.3.51)
(1-p(e,1,v)) Ty (D)
\+ L(t,i+l,v)) Ht|t(i+l) , if n° (t)=0

By elementary techniques, we have obtained the filtering
and prediction formulas for quéue size previously reported
in [33, equation (3.14), (3.15)]. Futhermore from (3.3.33),

(3.3.34), we have established the unnormalized versions of
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these filtering and prediction formulas.

Now we shall apply the filtering and prediction results
developed above to the two competing queue problem (3.2.1) -
(3.2.13). Each queue is described as in (3.3.39) - (3.3.45)
where for notational convenience the superscript or sub-
script 1 or 2 refers to the parameters of the respective
queue. In particular, the matrices {Si(-), Mi(-), Di(');
i=1,2} are described respectively by (3.3.42) - (3.3.43),
(3.3.47) - (3.3.48) and (3.3.49). The observation process

for the combined two queue system is given by:
(£) = (y,(t),y,(t)) = (nf(£),nd(t)) (3.3.52)
y = yl syz nl anz 3
for each t = 0,1,2,...,T

Again, the control is applied through the departure rates

of each queue. Hence, the consistency condition (3.3.12)
holds as was demonstrated in (3.3.46). Although we can
accommodate more general models, we shall assume the following
independence condition to simplify the computations:

Independence condition: ©Each queue's transitions and

arrival process are conditionally independent given the
current queue sizes and current control value.
In most practical applications (e.g. urban traffic control,
computer or communication networks) this condition is
usually satisfied. Basically it expresses the observed fact
that for the comhined two queue system with control provided via the
service rate, the basic coupling between the two arrival

processes 1s through the control and through each queue's
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evolution in response to the control.

For the combined queue system, the state process 1is

given by:

x(t) = (x, (), x,(t))

where the state space X =

ZxZ and Z denotes the set of positive
integers. The combined joint statistics of the observations

and state transitions is given by:
. . a -
i i ;j j (t’v’\l/)—Pr{xl(t+l)_Jl’X2(t+l)_Jz’nl(t) Wl’
172°-1-2
a = = 1 =1 =
n2(t)—¢2|xl(t) 1l,x2(t) 12,u(t) v}

o )
= S, , (t,v,y,) 8, ., (t,v,V¥y.,) (3.3.53)
i34 1 1,3, 2

for all i,jsX;vaU;Wrwst

or in matrix notation:

S(t,v,¥)= Sl(t,v,wl) 9® Sz(t,v,wz) (3.3.54)

where ® denotes tensor product. The output observation

probabilities for the combined system wiﬂ1w=wﬁ,%?aregivm1by-

Pr{y(t)=u4x1<£1=il,x2(t)=iz,u(t>=v}

' 1 2
=3 S. . . . (t,vo¥) =2 ST . (t,vol) 2 S (t,v,¥,)
. . i.i,33,3, X i.j [N R i Y2
Jl,JzaI 172°~1°2 JleI 1 ; 3281 272
- pt , (e,v)) p? (t,0,) (3.3.55)
111 )

where the first equality follows from (3.3.10) and the last

equality follows from (3.3.37). Again in matrix notation,

(3.3.55) becomes
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D(t,v(t)) = Dl(t,ni(t)) ® D2(t,n§(t)) (3.3.56)

Similarly, the M-matrix introduced in (3.3.20) for the combined

system has the form:

M(t,v,y) = Ml(t,V,ni(t)) ® Mz(t,v,ni(t)) (3.3.57)

Assuming that the initial probability vectors Hé,ﬂé

for the two queue sizes are independent, implies that the
initial probability vector for the combined state can be

written as

1 2
0 0 -] HO . (3.3.58)
Consequently from (3.3.26), (3.3.56) it follows that the

initial condition of the filtering-prediction recursive for

the combined system satisfies:

M, D(0,y(0)) Mg p'(0,nl(0)) &1} 0%(0,n3(0))
TI = =
0fo T, D(0,y(0))e (g D1 (0,0l (0))e) pZ2(0,02(0)e)
a 0 2
(3.3.59)
1 2
= oo ® Moo

Moreover by (3.3.54) - (3.3.57), it follows inductively that

(3.3.22), (3.3.26) have the form:

I -t en?
t]t t]t t]t
I = 1t ® 11’ for t=0,1,2,...,T (3.3.60)
t+l]t t+l|t t+l]t Y ’
i i . . .
where {Htlt, Ht+l|t’ i=1,2} are computed independently using
(3.3.22), (3.3.26). Clearly similar tensor product expressions

are valid for the unnormalized filtered and one-step pre-
dicted probability vectors of the combined two queue system.
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To emphasize the significance of this 'decoupling”
nature of the filtering-prediction recursions for the
stochastic control problem, we restate Theorem 3.3.3 and
Corollary 3.3.4 for the combined queueing system.

Theorem 3.3.5. For the combined queue system described by

(3.3.1), (3.3.4), (3.3.52) - (3.3.57):
(a) if nonanticipative control strategies as defined

in (3.3.5) - (3.3.7) are used, then Ht n?(t);

e’

i=1,2} (or {pt[ n?(t); i=1,2}) is an information

t,

state at time t
(b) if strictly nonanticipative control strategies as

defined in (3.3.6), (3.3.8) - (3.3.9) are used,
i -
t]t-1’

i

then {II tlt-l;

i=1,2} (or {op i=1,2}) is an
information state at time t.

3.4 Finite Horizon Stochastic Optimal Control

General Results

In this section, the finite horizon average aggregate
delay (3.2.4), (3.2.5) problem for the queueing system (3.2.6)
(3.2.13) is considered. This priority assignment problem is
formulated as a controlled, partially observed Markov process
[34] - [38]. First, we review briefly the general dynamic
programming results for a controlled, partially observed
Markov process. By the introduction of the information state
(3.3.30), this partially observed problem is transformed into
a completely observed Markov decision problem. Consequently,
the theory of Markov decision processes is applicahle.

Roth anticipative and strictly non-anticipative
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control policies [31] are discussed, Second,
we apply the particular results for the combined two competing
queue problem. We obtain ekplicit solutions for the finite
time expected'aggregate delay problem for bounded and
unbounded queues. These results are an extension of those
discussed in Section 2.3. The implications of these results
for practical applications are discussed.

Let the state and observation spaces be an n-dimensional
and p-dimensional Euclidean vector spaces, denoted respectively
as X and Y, with state dynamics and observations satisfying:

(x(t+1) = o (x(t),u(t),w(t+l)); x(0) = x,

(3.4.1)
y(t) = et(x(t),v(t)l for t=0,1,2,...,T

where T is the finite time horizon, u(t)eU are the control
values and w(t)eD, v(t)eV are independent random variables
with known distributions. The functions ¢t(‘,~,-) and
@t(-,o) are assumed to be known. The random disturbances
{w(t)} are characterized by a probability measure pw(-|x(t),u(t))
defined on a collection of events in D. This probability
measure may depend explicitly on x(t) and u(t), but not on
values of prior state disturbances. The random disturbances
{v(t)} are characterized by a probagility measure pv('|x(t))
defined on a collection of events in V. This probability
measure may depend explicitly on x(t), but not on prior
observation disturbances v(0), v(l1),...,v(t-1) or any of the
state disturbances w(0), w(l),...,w(t). An underlying

probability triple (R,F,P) which carries x, and the {w(t)}

0
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and {v(t)} processes is assumed to be given. Furthermore,
we shall assume, as is standard [20], that the disturbance
spaces D and V are countable sets. The control space U is
a convex, compact subset of R". The state space is a
countable subset of Rn; for bounded queues X is finite while
for unbounded queues, X is infinite.

For a control policy, Yel the finite horizon performance

criterion is denoted by
T-1
T¥(xg) = EL 2 c(t,x'(8), u'(£)) + o(T,x ()] (3.4.2)
t=0
where c(t,x,u) and c(T,x) denote respectively the instan-
taneous and terminal costs. The expectation above is, of
course, taken with respect to the given probability distri-
butions, pw('}x,u) which depends on x, u and pv(-|x) which
depends on x. The supercript vy in x, u indicates the state
and control trajectories induced by the policy y. The set of
admissible nonanticipative control policies, T is defined in
(3.3.5) - (3.3.7) while the set of admissible, strictly non-
anticipative policies, T', is defined in (3.3.6), (3.3.8) -

0
* *
(3.3.9). The problem is to find y eI (or ¥ sTo) such that

J¥*(xo) = inf{J;(xo): vel'} ‘ (3.4.3)

*
The corresponding policy, vy 1is called the optimal non-

anticipative (or strictly nonanticipative) policy. It is

well known [341, [36] that due to partial observations of the
state, the optimal policy will not be Markovian [20], [31].
It has been shown in [24], [34], [36], [38], for various

partially observed stochastic systems, that instead the
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the optimal policy is a function only of the information
state. Typically, the information state in the notation of
Section 3.3 is the filtered probabilities Ht]t of (3.3.13).
For the intended application, a slight modification is needed,
to reflect the fact that the information state is not the
usually prescribed one (see Theorem 3.3.5).

Before proceeding, we introduce the concept of a
separated nonanticipative policies; in particular following
[417]:

Definition 3.4.1. A policy veT, Y={go,gl,...,gt..} is called

a separated, nonanticipative policy if depends on the
Y p y &¢ P

available information, Tt at time t, only through the infor-

mation state, ¢(t) as defined by (3.3.30); specifically
u(t) = gt(¢(t)) for t=0,1,2,...,T (3.4.4)

Similarly, yel'y, is called a separated, strictly nonanticipative

0
policy if (3.4.4) holds.
Let FSCF denote the subset of separated, nonanticipative
policies and FO,SCFO denoted the subset of separated, strictly
nonanticipative policies.

To solve the optimization problem (3.4&3);
we resort to the well-known procedufe of dynamic

programming.
Let mw be the set of probability vectors
{H(i);iex:TI(i)=20, 2 TI(i)=1} _ (3.4.5)
ieX

Y.t

and let =T denote the information vector, sample path
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¥

generated while using policy ¥. Let Jk

denote the expected

. . . k
value to go from t=k to T, given the information vector TY’

and the control law y is followed; specifically

T
3V = EL 2 ce,xT(e), uV(e)) + c(T,x" (1)) [V

t=k
(3.4.6)
for k = T-1, T-2,...,0
with terminal condition
7Y = Ble(T,x¥ (1) |+ 7] (3.4.7)

The problem then is to select a control law for which Jg is a
minimum. Since for any control law, Jl satisfies (3.4.6),
(3.4.7) it is natural to ask whether one can compute a control
law which is optimal. We have the following sufficient
condition for optimality in the case of nonanticipative

policies:

Theorem 3.4.1. For 0O<k<T, define the functions Vk(',') on

mxY such that

() Vo(T,y) = 2 e(T,1) N(1)
ieX
(b) Vk(H,y)= inf { 2 c(k,i,u) TI(i) + (3.4.8)

uel iel

0 M(k,u,y) D(k+1),V)

* k1t TGS Y) D(RFT, D e

ey

AT M(k,u,y) D(k+l,¥)e}

Then for vyeTl

(I ¥Ry aonsal for k=0,1,2,...T (3.4.9)

Vi Mo i (2
* *
Furthermore let v aTS, be a separated policy such that g (II,y)

*
achieves the infimum in (b). Then ¥ is optimal in T and with

probability one
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* *
TRy y )y = g for k=0,1,2,...,T

v, @ K

k|k
(3.4.10)

Remark 3.4.1: Recall from Chapter 2 Theorem 2.3.1, the value

functions were defined on the state space X, while here they
are defined on the set of probability wvectors, w. This is a
consequence of transforming the partially observed problem to

a completely observed problem. Also notice that the state
dynamics in (2.3.6) and (3.4.8) differ. 1In the latter, the
state dynamics of (3.4.1) are mapped by the filtering-predic-
tion formulas (3.3.22), (3.3.26) to the operators shown.
Specifically for the information vector, TY’k = zY’k defined

in (3.3.5), where Yok denotes the sample path generated infor-

mation, the value of the filtered probability vector is denoted

Y,k

Proof: The basic steps are standard and are given here for
the sake of completeness. By (3‘3”23)3 (3.4.7).

3 = E{e(r,x () x0T = 2 e(r,i) My 270D

ieX TlT

so that (3.4.9) holds with equality for k = T. Suppose (3.4.9)
holds for k + 1, i.e.

(H Y’k+l),y(k+’l))SJY . (3.4.11)

(
Vier1 Y1 | k12 k+1

Then

-t K+l v,k
30 = Blel,x"(0),u"(0)) + B2 ele,xV(e),u’ () +e(T,x7 (1) |27 32"
t=k+1

(by induction hypothesis (3.4.11)

Y, k+1l

>E{c(k,x (k) ,u (k) + v, .. (1 R WAL TS A PALLS!

k+1 ¥ k+1 | k1
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= BB (e, x0T M)V ) @y 1y 7y e [ 8, 0T @0 1270
(by (3.3.31))
= E{ 2 c(k,i,u’(k)) Hklk(i,zY’k)
ieX
) Vk+l(Hk|k(zY’k)M(k,uY(k),yY(k))D(k+l,yY(k+l)) e T

Hklk(zY’k)M(k,uY(k),yY(k))D(k+l,yY(k+l))e

(since vyel)

_ N ¢ ‘ .Y,k < Y X Y.k
—izxc(k,l,u ¢9)) Hk'k(l,z )+ZY Vk+l(---)p (y' (k+1)|z")
yv' (k+1)eY
= 2 oelk,i &) I, (4,205
ieX k‘k
nklk(zY’k>M(k,uY(k>,yY<k>>D<k+1,w) |
¥,k
* 2V K M=)
23 nk,kczY’ MM(k,u’ (k) ,y ' (k))D(k+L,)e

Mk, yY (k) ,yY (k) D(+L, ) e
(and by (b))

2 v (M Ty )y (3.4.12)

and this completes the proof of (3.4.9). The last equality
in (3.4.12) follows from

k

pY(leY’k)= 5 PYWIi,ZY’ )'pﬁi[ZY’k)
ieX .

for y ' (k+1) = ¥, x'(k+l) = i

(by (3.3.13) and Lemma 3.3.1)

= I A (¥,k+1) T Yoky

ieX

k+l‘k(i’x

(by (3.3.22), (3.3.27)
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= nk.k(zY’k) M(k,u' (k),y (k)) D(k+l,¥)e . (3.4.13)

To prove (3.4.10) observe that it holds for k = T by (3.4.6).
Next assume (inductive hypothesis) that (3.4.10) holds for

k + 1. In (3.4.12), the first inequality becomes now
equality because of the inductive hypothesis. The last
inequality in (3.4.12) becomes equality because now (b)

holds with equality when Y=Y*- Thus (3.4.10) holds for k.

Finally for k=0 in (3.4.10)

- T

and
*y = E{3¥"} = B{v_(m 0))} 3.4.14
IO = BLIETY = BV (g 0,y (0) ] (3.4.14)
However for any yel', from (3.4.9) with k=0
<1V
and
= Yy >
J(y) = E{JO} > E{VO(HO[O’Y(O>)} (3.4.15)

and the proof of the theorem is complete. QED.
To simplify later computations, let QP{CkOD;k=OJﬂ..”T—lﬂwU}

be the column vectors
CT(l) = c(T,1)
[Ck(u)](i) = ¢c(k,1i,u) , for all ieX (3.4.16)

Then we can rewrite the dynamic programming recursion (a)

(b) of Theorem 3.4.1 as:
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VT(H’Y) =TI CT

_ IMCk,u,yIDCHL V) ¥) . (i, u,y) D(kHL, ¥)e]
v, @,y) = igg[ C (u) + invk+1%TM(k,u,y)D(k+l,W)e

k = 0,1,...,T-1. (3.4.17)

In the case of strictly nonanticipative policies, we have

the following:

Theorem 3.4.2: For 0=<k=T, define the functions Vk(-) on 7 such

that
(a) Vv, (D =1 Cy
(b) v, (M=inf{I ¢ (W)+ 3 vk+1(%§§§4§4$%e)~ T D(k,¥)e}
uel veY > (3.4.18)
Then for YEFO
Ysk-1.v..Y -
vk(nklk_l(g ))=Ty for k=0,1,2,...,T. (3.4.19)

*
Furthermore let ¥y EFS 0° be a separated policy such that
b
% %
gk( ) achieves the infimum in (b). Then ¥ 1is optimal in TO
and with probability one

- *
sk=lyy o Y , for k=0,1,...,T (3.4.20)

Y'k
v, (1 (x Y

k|k-1
Proof: Now TY’k = ZY’k—l defined in (3.3.9). The proof is
almost identical to that of Theorem 3.4.1 and we only give

the analog of (3.4.12) here. From (3.3.23), (3.4.7)

y T-1 k k-1
Jk=E{c(k,xY(k),uY(k))+E{Z c(e,x  (£),ul (eN)+e(T,x () [£ % g5
t=k+1

(by induction hypothesis)

= E{c(k,x (k) ,u' (k))+V LYKy ekl

k1 T | k¢
(by (3.3.31) and (3.3.38)
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Y,k-1 Y Y
T 1g-1 % 1S (k,u’ (k),y" (k)) ) Ykl

¢
I N saou @),y )e

= E{c(k,xY(k),uY(k))+Vk+l

I |k-1
(since YEFO)

- Yk~ Y
SR A AR I

CARL AT I TN FR W

1l
k| k-1 v,k-1
+ IV ( — —) ., (& )D(k,¥)e
o U @FTh souTa,nel kIR
(by (b))
- Y’k—l
> vk(nk]k_l(g )) QED. (3.4.21)

Theorems 3.4.1 and 3.4.2 characterize the optimal policies
as feedback laws on estimates of the states. In cases where
the dynamic programming recursions can be solved explicitly
for the functions Vk’ the only on-lihe implementation needed
for the control policy is that of the filter-prediction

formulas (3.3.22), (3.3.26).

Application to the Two Competing QueuesProblem

The finite horizon partial observation formulation is
now applied to the combined two competing queue problem of
Section 3.2. The instantaneous cost, observations and state
dynamics are given, respectively, by (3.2.4), (3.3.52) and
(3.3.22), (3.3.26), (3.3.60). By transforming the partial
observation problem into a complete observation problem, the
state space is defined over the set of probability vectors,
n defined in (3.4.5). Specifically, we let HO denote the
initial probability vector for the combined state (3.3.58)

with the components ordered according to the sequence
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0o0,01,02,...,10,11,12,...,20,21,22,... , In (3.45), the

state set, X for the unbounded queueing system is the

Cartesian product, X = ZxZ where Z is the set of positive
integers. For the bounded queueing system, the state set
becomes X = leZ2 where

Zi = {0,1,2, ... , Ni} for i=1,2. (3.4.22)

For a policy vyel (or ysFO), the cost is the average

aggregate delay

T
Y = Y Y
Jf(HO) E[tio(clxl(t) + czxz(t)’ﬂo] (3.4.34)

From (3.4.2), (3.4.16), it follows that
Ck(ll’iz) = c i, + c,i, for all (11,12)8X (3.4.25)

Let the vectors

e, = (1,1,1, ... , 1, ...)Tezi
(3.4.26)
v, = (0,1,2, ... , n, ...)TaZ, for i=1,2
1 1

where {Zi;i=l,2} is the set of positive integers for the
unbounded gqueue case and is the set defined by (3.4.22) for

the bounded queue case. Consequently, (3.4.25) becomes
Ck = cl(vlaez) + cz(elsvz)

where @ denotes the tensor product with C, ordered according

k

to the sequence given above. Since Ck does not depend on k,

the subscript to dropped from our notation

Ck = C for k=0,1,2,...,T

First, we consider strictly nonanticipative control
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policies, HO as defined in (3.3.6), (3.3.8) - (3.3.9). 1In
this case the optimal policy and value function are deter-
mined by Theorem 3.4.2. Due to the "decoupling" of the

filtering-prediction recursions (3.3.60), the dynamic

programming recursion of Theorem 3.4.2 reduces to the

following:
1 2. 1 2

VT(H JI7) = ¢y I vy + c, I v,

v. t,m%) = infle. MY v, + e, O2 v, + (3.4.27)

K 1 1 2 2
uel
mstouy) TSP 0Guy)

+ oz A 2y @t (e,ypep)

\yl,\yze{o,l} In-s (k,u,\j/l)el’ HzSz(k,u,\lfz)el

D% (k¥ e )}
In (3.4.27) the probability vectors Hl,Hz are defined over X,
and {Si,Di; i=1,2} are described for each queue by (3.3.42) -
(3.3.49). Recall from (3.3.10) that the matrix of transition

probabilities is given for each queue by

1

pi(e,v) = sT(e,v,v) for i=1,2. (3.4.28)

z
¥=0
Our aim is to show that (3.4.27) can be solved a priori
and that all functions {Vk; k=0,1,..., T} are piecewise
linear in Hl,HZ. Backwards induction on (3.4.27) is the most

elementary method to establish these results. For k = T,

(3.4.27) implies

voat,n?y = ot d% + 0% al for all (MY,0%)er,(3.4.29)
where
i .
dT = c, v, for i = 1,2 (3.4.30)



are column vectors of dimension equal to the cardinality of
{Zi;i=l,2} in (3.4.26). VNext at k = T-1, (3.4.27) implies

the following:

120 . .1 .1 2 .2
Voo (I = min{nt dp + 07 4
uel
L 1.1 o 2 2
+ 3 nt st(r-1,u,v.)dr - % pA(T-1,v.)e,]
1’47 2787
Yy ¥ y=0
1 2 2 2 1.1
+ 3 n~ s“(T-1,u,¥,)d. * [I7 D (T-1,V¥,)e.]}
_ 2747 1’%1
‘1/1:\1/2_0
= min{Hl[I + Pl(T—l,u)]dl +
1 T
uel
+ n2[12 + PZ(T—l,u)]di} (3.4.31)

where the second equality follows from (3.4.28) and

{Ii;i=l,2} are identity operators of dimension equal to the

cardinality of {Zi;i=l,2} in (3.4.26). Clearly, the optimal
2

control as a function of Hl,H is described as follows. The

set 7 defined in (3.4.5) is separated in two disjoint sub-

sets
1 .2
Al = {(II",lI") such that (3.4.32)
Hl[Pl(T—l,O)—Pl(T—l,l)]d%énz[Pz(T—l,l)—Pz(T—l,O))d%]}
AO = complement of Al in w.
We associate the index 1 and Al’ the index 0 with AO, so that
1 on Al
%
u (T-1) = (3.4.33)
0 on AO
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Let aT_l(Hl,Hz) be the function

1 if (ngnz)eAl
1 .2
a,_(I°,0%) = (3.4.34)
0 if (nl,nz)aAO
and
1 1.2, _ 1 1.2 1
dp_; @707 = [I, + PT(T-1,a,_, (I7,07))] d;
(3.4.35)
2 1.2, _ 2 1.2 2
dp_ @M7,0%) = [I, + P (T-1,a,_;(II7,07))] dj

It is now clear that

1 2, _ -1 ,1 1.2 2 .2 1 .2
VT_l(H ,J17) =11 dT_l(H ,LJ17) + 1 dT_l(H ,II7) (3.4.36)
and therefore V (-,+) is piecewise linear also. The general

T-1

computation follows from the following lemma.

Lemma 3.4.3: Define the binary-valued functions

{a8;8=0,1,...,T—l} on M, as defined in (3.4.5) and the
column vectors {dz;i=l,2;£=0,l,...,T} by the backwards

recursion

d% = civl
d;—@= d; + Pi(T'e’aT-z) d§—€+l(aT—E+l""’aT—l)

1, 1f T PY(e-2,00-P1 (T-2,1)1d)_,, (ap 4,10 enap )
ap_, @07 = >1% pA(1-2,1)-27(+,01d5_, @y, 1aeeehag )

0, otherwise (3.4.37)

for i = 1,2; ¢=1,2,...,T-1 .

Then for k=0,1,...,T, and (Hl,HZ) e
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12, 1 .1 )
Vk(H 7)) =107 d (ak,...,aT_l) + 11 dk(a

K )

AL Pt
(3.4.38)

In other words, Vk(-,-) is piecewise linear for each k.

Proof: By mathematical induction. It follows from (3.4.31) -

(3.4.36) that (3.4.38) holds for k=T-1. Let us assume that

the result holds for k=T-4. Then from (3.4.27), after

computations identical to (3.4.36), we have

1,20 _ . .1 .1 2 .2
Voo (M,07) = SES{H dp + 07 dp +

1,1 1 2.2 2
+ITP(T-6-1,u)dy_, + I°P(T- -1,u)dy_,}

R 1 .2 1
It follows now by the definition of aT-B—l(H ,J17) and dT-Z—l’
d%_,_, that (3.4.38) holds for k = T-¢-1. QED.
Remark 3.4.2. Recall from Chapter 2 Lemma 2.3.8, a similar
sequence of {ag} and {dz;i=l,2} were defined. In that context,
particular elements of the column vectors:
1 m_ _ plm_ 1
[P~ (T-2,0) P (T-£2,1)] dT—E+l(aT—8+l""’aT—l)
and (3.4.39)
(P2 (T-£,1) - P2(T-2,0)] 2 (a a. )
> ? T-£+1 T=£41°"""*“7-1

were compared in determining the corresponding value for
aT_Z(-,-). For the partial observation case, we have a
generalizations; specifically the state probability vectors
of each queue {Hi;i=l,2} are averaged over the corresponding
elements of these vectors (3.4.37) to define aT_E(-,-).
Clearly, if with probability one the combined queue states

were at a particular (i,j)th component, them Lemma 3.4.3
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reduces to Lemma 2.3.8. As in Remark 2.3.4, the recursion

above proceeds diagrammatically as follows:

-dl 7] _dl (;1 ! [;1
T T-1 T-2 T—g-1 0
2 2 2 2 2
dp |—»|dp g |—> -+ —ldp_, | |dp_, g 45

(T-2-2]

We also have established the corollary.

Corollary 3.4.4: The optimal control policy in feedback form,
1

as a function of (II ,Hz)sn, is given by

*
gf(k;Hl,Hz) = ak(Hl,Hz) for k=0,1,...,T-1.

Combining now the results of Lemma 3.4.3, Corollary
3.4.4 and (3.4.20) of Theorem 3.4.2, we have established the
following result.

Theorem 3.4.5: The optimal server time allocation strategy

and expected aggregate delay, for the finite horizon partially
observed queueing system with strictly nonanticipative
strategies are determined as follows. First the vectors

{dz; i=1,2;¢=0,1,...,T} and binary-valued functions
{a8;8=0,1,...,T—l} are computed offfline and stored a priori
from Lemma 3.4.3. Foe each queue, the one-step queue pre-
dicted probability vectors Hilk_l;i=l,2} are computed, using

the recursions (3.3.50) (3.3.51) with initial conditions

(3.3.58). The optimal strategy at time k is given by
* 1 2
gf(k,nk‘k_l) ak(nkfk—l’nklk—l)’ k =0,1,2,...,T-1.

(3.4.40)
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The optimal average aggregate delay has the form:

1.2, _ 1 .1 2 .2
Vo (pullg) = Ty dg + My dy (3.4.41)

Note: The vectors dl d2 in (3.4.41) are functions of

0 "0
1 .2
HO,HO.
Remark 3.4.3: The implementation of the optimal strategy is

similar to that of the complete observation case (see Remark
2.3.6). The decision space 7 is divided at the kth step into
k

at most to ZT_ subsets which are characterized by binary

numbers with T-k binary digits, i.e. The first

S Rk
binary digit of the number associated with the subset provides
according to Corollary 3.4.4 the optimal control in feedback
form. These observations are quite useful when implementing
these strategies in a microprocessor. The only on-line
computation needed, as emphasized earlier, is that of the
filter-predictor (3.3.50) (3.3.51) which as have been shown
elsewhere [33] are easily implemented on a microprocessor.
Observe that the value functions Vk(-,-) are concave in

Hl, convave in H2 for k=0,1,...,T; a fact that follows easily
from the defining backwards recursion (3.4.27) by an inductive
argument.

We consider next nouaﬁticipati&e control policies, I' as
defined in (3.3.5) - (3.3.7). In this case, the optimal
policy and value function are determined by Theorem 3.4.1.
Again due to the "decoupling'" of the filtering-prediction
recursions, the dynamic programming recursion of Theorem

3.4.1 reduces to the following:
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v.mi,n?,at,n?) = c. ot v, + e, 0%
T a a

1 vy 2 2
1.2, 1 2. _ . 1 2
Vk(H 11 ),na,na) = 1nf{cl I vy + ¢, II vV, + (3.4.42)
uclU
il (e, u,nl) DY (kg ) TT2M2 (k,u,n2) D2 (kL)
2 Vi G T " -, 7.2 5 2 sVpa¥y)
¥y »¥,el0,13 M (k,u,n )D7 (k¥ ey M7 (k,u,n )D" (k+l,¥))e,

I M e, uonl) DL vy ey 10 T2 M2 G, u,n) D (kL py e, 1
In (3.4.42), the probability wvectors Hl,Hz are defined over
Xand {Mi,Di;i=l,2} are described for each queue by (3.3.47) -
(3/3/49). The reason for the reduction in (3.4.42) is the
independence condition introduced earlier. If one rederives
(3.4.12) under these assumption and the cost structure
(3.4.25), the recursion reduces to (3.4.42). The same
inductive step employed in (3.4.12) establishes (3.4.42),
while for k=T the form given in (3.4.42) is apparent.

Again we can show that (3.4.42) can be solved a priori
and that all functions {Vk; k=0,1,...,T} are piecewise

2

linear in Hl,H . Backwards induction omn (3.4.42) is applied.

For k=T (3.4.42) implies

1 2 1 2, _ -1 .1 2 2 1 .2 1 2
VT(TI , 11 ’na’lia) = 1II ST + 11 6T , for all (II~,n )en;(na,na)ey
where (3.4.43)
i .
6T = c; vy for i=1,2 (3.4.44)

are column vectors of dimension equal to the cardinality of

{Zi;i=l,2} in (3.4.26). Next at k=T-1, (3.4.42) implies
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l(nl,nz,ni,ni) = min{Hl 5% + 112 5% +
uel
1
+ 3 mt w1, u,n ) D (T, ;) sl[pz W2 (T-1,u,n0 ) p? (£,9,)e,]
¥y ¥, =0
L 1
+7 1% M?(T-1,u,n 3D 2(r, v,) 8 [nln (T-1,u,n)) (T, ve 1)
¥y ¥, =0

(3.4.45)

Recall from (3.3.49) that
D' (k+1,0) + D (k+l1,1) = I, for i=1,2; for all k

where {Ii;i=l,2} are identity operators of dimension equal to
cardinality of {Zi;i=l,2} of (3.4.26). Then any one of the
sums in (3.4.45) reduces to

1
3 (o)
¥y s¥,=0

Hl Ml(T—l,u,ni) Dl(T,O) Sé[HZMZ(T—l,u,ng)ez]

[}

+ Hl M (T-1,u,n ) D (T,1) 6 [H M (T-1,u,n )e ]

! ml(r-1,u,nt) st (3.4.46)
a T
in view of (3.3.47) - (3.3.49). Thus

Hl,HZ,ni,ni) = mln{H [1 +M (T-1,u,n )] 6 +

uel 1

Vg ¢
2 2 . 2 2
+ I [12+M (T—l,u,na)] ST}. (3.4.47)

The set of information states mx{0,1} x {0,1} is separated

in two disjoint subsets

A, = {(Hl,Hz,nl,nz), such that
1 a’ a
1 1 1 1 1 1
- [ (T—l,O,na) - M (T—l,l,na)]ﬁT
(3.4.48)
HZ[MZ(T—l,l,ni) - MZ(T—l,O,nz)]éi}
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A = complement of A

0 1

Clearly the optimal control is

%
u (T-1) =

0 on A

1 2 1 2
bT_l(H LI ,na,na) =

in vx{0,1} x {0,1}.

i.e. the characteristic function of the set A_.

1

1 1.2 1 2, _
6T_1(H ,I1 ,na,na) = [Il
2 1 2 1 2
ST_l(H 11 ,na,na) = [I2
it is immediate that
1 -2 1 2, _ 1 .1 1.2 1 2
VT_l(H 11 ,na,na) =TI 6T_1(H G 11 ,na,na) + II

2

5

(3.4.49)

(3.4.50)

If we let

2
T-1

1 1,,.1
+ M(T-1,bp 4 (...),n2) 16

(3.4.51)

2 2 2
+ M (T—l,bT_l(...),na)]5T

(Hl,Hz,nl,n
a

(3.4.52)

and therefore VT_l(-,~) is piecewise linear in Hl,Hz also.

The general induction step is identical and leads to the

following:

Lemma 3.4.6: Define the binary- valued functions

{b3;6=0,l,...,T—l} on "x{0,1}x{0,1} and the column vectors

{6z;i=l,2;8=0,l,...,T} by the backwards recursion
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Sp = ¢y vy
i i i : i i
5T_Z = 5T + M (T-&,bT_Z,na) 6T_3+l
Lo 1.1 1, 1 1,1
1, if I [M (T—z,o,na)—M (T—ﬂ,l,na)]éT_g+12
1.2 1 2 2.2 2, .2
b, (II7,1%,n",n") = I Mme(T- - . 2 2
7§ 2" Mo(T ¢,1,n_)-M"(T 2,0, 015, ,

0, otherwise

for i=1,2;¢4=1,2,...,T-1

Then for k=0,1,...,T, (Hl,Hz,ni,ni)sﬂx{O,l}x{O,l}
1.2 1 2. 1 .1 )
vt n?ag,e?) = ot sl +m? ol

In other words, V ) is piecewise linear in Hl,Hz for each k.

LG

We also have established the corollary.

Corollary 3.4.7: The optimal control policy in feedback form,

as a function of Hl,HZ,ni,ni is given by

1

% 2 1 2 _ 1.2 1 2 _ _
g (k3II7,0%,n yn") = b, (I7,07,n_,n.), k=0,1,...,T-1.

Combining now the results of Lemma 3.4.6, Corollary
3.4.7 and Theorem 3.4.1, we have the following:

Theorem 3.4.8: The optimal server time allocation strategy

and expected aggregate delay, for the finite horizon partially
observed queueing system with nonanticipative strategies are
determined as follows. First the vectors {Sz;i=l,2,8=0,l,...,T}

and binary-valued functions {b,;£=0,1,...,T-1} are computed

Z;
and stored a priori from Lemma 3.4.6. For each queue, the
i -
k|k’

the recursions (3.3.50) (3.3.51) with initial conditions

filtered probability vectors {II i=1,2} are computed, using

(3.3.58). The optimal strategy at time k is given by:
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* _ 1 2 1 2 i
gf(k,nk'k,y(k)) = bk(Hklk,Hk!k,na(k),na(k)), k=0,1,...,T-1

(3.4.53)
The optimal average aggregate delay is
v, g0y =l sb +ml sl (3.4.54)
Note: The vectors Gé, 63 in (3.4.54) are functions of
Hé,Hg.
Remark 3.4.4: As was noted in Remark 3.4.3, the nature of

the solution (3.4.53) (3.4.54) suggests a computer-oriented
implementations. The decision space is 7x{0,1} x{0,1}. We
concentrate on the @ part as an index set. Essentially, the
computation of the optimal policy proceeds by subdividing
the decision space ™ to regions, which define the optimal

control at each time. When X is countable, m is a convex

N N
subset of the positive cone in R 1xR 2. At any rate the

subsets of T where bk takes the value 1 or 0 are on each
sides respectively of a hyperplane, as is easily seem by the
definition of bk in Lemma 3.4.6. In effect at each time

3(T-k) subsets which

k=0,1,...,T-1, ™ is divided at most to 2
are characterized each by two binary numbers, one with T-k
binary digits and one with 2(T-k) binary digits. The first
number has as digits the sequence of values bk’bk+l""’bT—l'
The second number just describes a possible sample path of
ni(t),ni(t), t=k,k+1,...,T-1 and therefore has T-k slots

with two digit binary numbers each. To determine the control

to be applied, one computes the filtered probability vectors

{Hi’k;i=l,2} and finds the subset characterized by
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‘|

number associated with the subset provides according to

{11 k,n:(k);i=l,2}. The first binary digit of the first

Corollary 3.4.7 the optimal control in feedback form.

3.5 An Example

As an illustration of the foregoing theory, we consider
the problem posed in Section 3.4, Figure 3.1 with the same
arrival rates (xl=X2=X) and waiting costs (cl=c2=c). The
aggregate delay under the optimal strictly nonanticipative
policy, To of Theorem 3.4.5 is compared with two suboptimal
policies by means of Monte Carlo simulation.

The combined two queue system is modelled as described
in (3.3.52) - (3.3.60) with the performance objective of

(3.4.24)., A finite buffer size (N1=N =10) is simulated, with

2
each queue and state estimator initialized to zero customers
(w.p. 1). For the finite-horizon (T=50), Bernoulli arrival
and departure processes are generated at each time step such
that
(i) no customers arrive in a queue when it is full;
i=1,2 (see (3.2.12)).
(ii) no customer departs from queue i when either queue
i has zero customers or queue j (j#i) is being
served (see (3.2.8)).
The selection of the optimal control sequence follows
from the normals to the hyperplanes characterizing the value
functions Vk(Hl,HZ) of Lemma 3.4.3. To weight the merits

of the a priori calculation of these normals, two suboptimal

policies were simulated. Using the sufficient statistic
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1 2 . .
(Hk|k-l’nkfk-l) of the one-step predictor, we define
B = {(0,0%)en:m20)>Tr(0)}
C = {(Hl,Hz)an:Hlﬁ>H2v}

where n is defined in (3.4.5) and let

1 2

L LE (T pye g oMy pmq 208
w0 =
0 otherwise
. 1 2
1 if (Hklk—l,nkik__l)ﬁc
u(k)MMSE -
0 otherwise
The probability-of-zero strategy {u(k)n;k=0,l,...,T—l}

chooses to serve the queue which has the higher probability

MMSE . _0,1,...,T-1}

of being nonempty. The MMSE strategy {u(k)
selects the queue having the higher estimated queue size.

Recall from (3.3.13), (3.4.26)

k—l} i

x, (k[k-1) = E{x (k) | = Hklk—l

v,; 1i=1,2
i

Both suboptimal policies are simpler computationally but
disregard the future evolutions of the Markov chain and
consider only the immediate cost. On the other hand, the
optimal strategy incorporates the coupling of the future
states via the dynamic programming formulation. Thus, one
expects on the average that the performance of the optimal
strategy is superior to the suboptimal ones.
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The parameter selected for the model were chosen rather

arbitrarily. The case of unity cost (c,=c_=1) with the same

1 72

arrival rate was investigated because the symmetry of the
problem provides a better insight into the control selection
process while not introducing other factors. Clearly, for
the two suboptimal policies, the defining sets B and C are
different when the waiting cost or the arrival rates differ.
The arrival and departure rates were chosen so that two
different traffic conditions are represented; light and heavy
traffic.

Figures 3.2 and 3.3 show results obtained in the first
case, intended to represent light to moderate traffic. Here
X1=X2=O.35, u=0.70. 1In Figure 3.2, a particular sample path
of the optimal and two suboptimal policies is shown. We
show for each policy three graphs. The first and second
depict the time histories of the queues, while the third
depicts the time history of the control policy. The same
arrival processes are used under each control law and the
aggregate delay for each policy is computed by summing the
two queue sizes over the finite horizon. For the case of
Figure 3.2, the optimal policy results in an aggregate delay
of 130, the policy uH resuits in 153 and the policy uMMSE
in 128. In order to evaluate better these three policies,
we show in Figure 3.3 a table with aggregate delays achieved
in 50 samples. It is seen that all policies perform

comparably for most sample paths. This raises the very

interesting question of obtaining some analytical comparison
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u* o uMMSE
130 153 128

172 159 172

164 198 162

196 181 181

254 218 215

120 83 83

203 203 203

74 54 59

158 154 170

175 144 121

172 171 177

101 53 74

392 392 392

216 208 218

186 185 185

270 251 251

197 239 226
261 227 227

125 86 86

95 78 77

64 79 79

91 89 99

85 81 81

57 59 59

183 182 182

178 139 144
458 426 458

79 82 82
254 254 254
412 412 412

366 366 366
228 228 266
201 197 234

229 238 238

54 40 39

78 77 77

160 137 137

176 173 173

231 162 162

219 219 219

144 94 106

232 235 235

215 215 215

138 126 125

51 40 40

113 77 94 Fig. 3.3. Aggregate
;28 15; 15; delays achieved in 50

30 30 olicy.

203 200 200 samples, by each p y
132 79 89 Ay = hp= 0.35, w = 0.7.
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s MMSE

u u u

329 343 343
383 471 481
448 483 489
463 548 557
407 452 463
342 391 391
389 377 384
273 257 257
406 444 444
384 384 375
342 361 356
354 354 354
542 582 560
488 567 540
404 458 463
536 574 563
570 581 545
479 508 518
389 454 464
279 279 319
318 318 318
236 200 215
351 362 364
383 383 383
435 460 476
378 400 402
479 613 650
345 345 345
470 500 494
594 622 630
569 695 680
555 620 613
496 497 496
457 520 509
188 188 188
345 345 345
334 345 345
482 513 518
393 438 460
457 514 511
343 402 409
425 424 430
535 536 535
364 364 364
220 258 220
318 332 356
366 443 451
620 652 653
406 465 479
303 294 294

129

Fig. 3.5. Aggregate

delays achieved in 50
samples, by each policy,

kS
1

=X2=0.35, w=0.35.



results. This problem will be studied elsewhere.

Similar results are presented in Figures 3.4 and 3.5 for
a heavier traffic case with K1=X2=0.35, ©=0.35. It is seen
that in this heavier traffic éasé, the optimal policy per-
forms considerably better in almost all samples. These
observations seem to imply that in heavier traffic the
difference between optimal and suboptimal policies is greater,
while in light traffic it is negligible. This conclusion
agrees with intuition. The analytical establishment,

however is an open problem.
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4. ADAPTIVE CONTROL OF TWO PARTIALLY OBSERVED COMPETING

QUEUES

4.1 Introduction

The problems studied here have considered a finite-
controlled Markov chain where the control
objective is to minimize certain performance objectives,
The aforementioned models have assumed a priori knowledge
of the chain's transition probabilities. In Chapter 2, we
dealt with the completely observed queueing system while in
Chapter 3, a partially observed queueing problem was consid-
ered. Here, our discussion deals with the partially
observed system whereby the a priori knowledge is assumed
incomplete; specifically the parameters characterizing the
chain's transition probabilities are assumed unknown. The
problem then is to identify the unknown parameters while
seeking the optimal control policy. In other words, the
optimal controller of such a system needs to perform the
dual, simultaneous function of realizing the desired perfor-
mance objective and reducing system uncertainty. Such a
problem is referred to as an adaptive control problem [50],
[51].

Our objective 1is to derive an adaptive control strategy
for the two competing queue problem presented earlier, when
the arrival and departure rates {Ai,ui:i=1,2} are unknown

constants. The problem formulation is similar to the
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complete observation problem studied in Chapter 2. Two
parallel queues are served by a single server with the
control selected so that the infinite horizon aggregate
delay is minimized. The problem is formulated in discrete
time with arrival and departure processes modelled by
Bernoulli streams. At each service completion time, a
control is selected to decide which queue to service next.
The controller observes both the arrival and departure
processes. The control is to be selected as a function of
the past histories of the observed processes and the control
process. The instantaneous cost is linear in the waiting
time of each queue. Because the transition probabilities
depend on the unknown parameters, we have an infinite
horizon, adaptive control problem.

The adaptive control problem is analyzed via two
different methods. First, an approximate solution to the
problem is posed whereby parameter estimates are substituted
for the true ones in the optimal control policy. Recall
from Chapter 2, the optimal infinite horizon strategy was
the uc-rule. By this approach at each service completion
time, a maximum likelihood (ML) estimate is generated for
the unknown departure rates {ui;i=1,2} and substituted into
the control policy. The convergence properties of the
parameter estimate and the adaptive control policy are
discussed. This method in the adaptive control literature
is often called certainty equivalence or self-tumning [50],

[51]. The second approach treats the adaptive control
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problem as a stochastic control problem with partial
observations. In this case, the parameters {Ai,ui;i=l,2}

are treated as additional states, which are however
unobservable. Since they are constant, they have trivial
transition probabilities. The stochastic control methodology
for partially observed Markov chains (e.g. Chapter 3) is
applied to obtain the optimal control strategy. By
construction, the resulting strategy is adaptive.

The problem of adaptively controlling a Markov chain,
whose transition probabilities depend on an unknown parameter,
has appeared recently in the literature [52] - [60]. Each
adaptive controller is derived assuming the certainty
equivalence principle [39, p. 339] holds. Mandl's pioneering
work [52] considered an adaptive control scheme under the

following assumption:

Identifiability Condition (IC) For each pair a,aleA - a

L. . 1 . . ..
finite parameter set, if a#o then there exists a ieZ (finite)

for which
[p(i,15u,0), p(i,25u,a),..,p(i,n5u,a)]
# [p(i,l;u,al), p(i,2;u,ul),...,p(i,n;u,al)}
for every control uelU
where p(i,j;vA@EPr{x(t+l)=j[x(t)=i,u(t+l)=v,a} (4.1.1)

If the chain satisfied the IC condition, then Mandl showed
that the minimum constrast estimate (of which the ML
estimate is one) of the unknown parameter converged to the
true parameter almost surely (a.s.). Moreover for the
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infinite horizon, average cost per unit time performance
criterion, the cost using the adaptive scheme converged
a.s. to the optimal cost achieved, if the true parameter
were known a priori. The adaptive scheme enforced the
separation principle by first updating the parameter estimate
and then selecting the control. The results were obtained
for an arbitrary cost function with the restrictions that
(i) the optimal control law be stationary and (ii) the
Markov chain be irreducible.

Mandl!s result guaranteed that the certainty space
equivalence adaptive controller converged
to the true optimal control policy. This fact was a
consequence of the identifiability condition. However even
in the simplest models [53], this IC condition need not
hold. Moreover, Mandl's parameter estimate converged to the
true value irrespective of the control policy employed,
Consequently, it seems advisable to weaken Mandl's IC assumption,

Several papers have appeared in an effort to study the
behavior of the parameter estimator and adaptive controller
when Mandl's IC condition is relaxed. An important result
by Borkar and Varaiya [53], [54] examined the adaptive
control problem with the identifiability condition replaced

by the assumptiont

There exists an €>0 such that for every i,jeZ, either
p(i,jsu,a)>e or p(i,jsu,d) = 0 for all u,«
(4.1.2)
For this case and for control laws of the form:
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u(t) = ¢(a(t), x(t=-1)) (4.1.3)

~

they showed that the ML estimate, o, (generated at each

*
stage) converges a.s. to a random variable a such that
.. * * .. * 0
p(i,js¢(a ,id,0 ) = p(i,j;¢(a ,1i),a ) (4.1.4)
for all i,jeX

where.ao(eA) is the true parameter. In other words, the
maximum likelihood estimate of the parameter converges to.
a value in the parameter set A such that the closed-loop
transition probabilities are indistinguishable with those
corresponding to the true system. It can happen however
that the parameter estimator may not converge to the true
value and hence (4.1.4) not be satisfied. Moreover by
relaxing Mandl's IC condition, the average cost per unit
time. performance criterion using the adaptive scheme may
exceed the corresponding optimal cost achieved if the true
parameter were. known a priori. In [53], the result (4.1.4)
was obtained for finite state space x and a finite parameter
set A while in [54] the results were generalized for a
countable state space and a compact separable metric space,
A. Borkar and Varaiya's results were less general than
Mandl's in one sense; namely they considered only maximum
likelihood estimators.

Variations on the results of [52] - [54] have followed
by several researchers [55] - [60]. 1In [55], Doshi and

~

Shreve showed that by choosing a randomized estimate, @,
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from among all those a's which nearly maximized the log-
likelihood function, the resulting estimate converged a.s.

to the true parameter. Kumar et al [56] - [58] considered

the adaptive control scheme using a modified maximum likeli-
hood estimator; namely a likelihood function that is biased

in favor of parameters which yielded lower optimal costs. In
[56] for finite parameter, control and state spaces, they showed
the corresponding adaptive controller obtained the performance
precisely equal to that of the optimal performance attainable
if the system were known a priori. The performance criterion
was the average cost per unit time. Moreover, the

overall performance of the adaptive system did not

depend on whether the parameter estimate converged or
diverged. This represents a significant step in that the
adaptive controller primarily attempts to achieve overall
system performance and only secondarily considers the
corresponding parameter estimation. In [57], the restriction
of finiteness of the parameter space is relaxed, but the
state and control spaces are finite. The finiteness
restrictions on the state and control spaces is removed in
[58]. 1In [59], Sagalovsky considered the results of [53],
[54] with the additional assumption that the unknown para-
meter enter the transition probabilities linearly;

specifically
p(i,j;uk,a) = ak(l,J,uk)a + bk(i,j,uk) (4.1.5)

where ak(~,-,~), b, (+,+,+) are known functions. He showed

k
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that for a®cA-a closed bounded interval, if the sequence
{ak} approaches zero asymptotically, then the ML estimate

~

o does not converge. In other words for the ML estimate
not to converge, the transistions should provide less and
less information as k grows. Conversely, Sagalovsky showed
that if the sequence {ak} satisfies a certain sufficiency
condition, then the ML estimate converges a.s. to a para-
meter value a* (where a* mayv not necessarilv equal the true
value). One limitation of the ML estimator is its non-
recursive nature. Within the framework of this adaptive
control problem, El-Fattah [60] considered a recursive
stochastic gradient algorithm for the parameter estimation.
He showed that for the class of randomized control laws,
the adaptive control scheme and corresponding parameter
estimate converged almost surely.

The adaptive control problem considered here differs
in two respects with the aforementioned works. First, the
competing aueue's Markov chain does not satisfy the sufficent
condition (4.1.2) for convergence of the adaptive control
scheme given in [53] - [60}. ©Nevertheless exploiting the
special structure of the Markov chain and its corresponding
optimal policy, we are able to establish convergence for
the unbounded system. Second, various information patterns
are available to the system: both to the controller and the
parameter estimator. In our case, two alternative ML

estimators are developed and their convergence properties

analyzed. Our analysis incorporatés the results for the
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complete observation problem of Chapter 2.

A similar problem to ours has been studied by Hermandez-
Lerma and Marcus [61]. They considered a continuous time,
non-Markovian decision process with K-priority classes.

For random sample times, they show that

(i) the sample mean estimator ;t converges a.s. to

the true parameter, uo

(ii) the adaptive control scheme using ﬂt converges

a.s. to the optimal policy achieved if the true
parameter were known a priori,
(iii) the expected long-run, average cost per unit time

performance, using the adaptive scheme converged
a.s. to the optimal cost, achieved if the true
parameter were known a priori.

Our work. K parallels theirs in (i) and (ii) for the discrete-

time system.

This chapter is organized as follows. In Section 4.2,
we formulate the adaptive control problem and establish
the relevant notation. The basic questions to be studied
in this chapter are discussed. In Section 4,3, our main
results on certainty-equivalence, adaptive control of the
two competing queue system are described. The results of
Borkar and Varaiya [53, 54] are modified for the queueing
system's dynamics. The adaptive control problem treated
as a stochastic control problem with partial observation

is presented in Section 4.4. Although straightforward,

this latter adaptive control scheme is computationally
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unfeasible for the general case. In Section 4.5, we
present computations and evaluations of the adaptive
strategies obtained, as the theory is applied to a simple
problem,

4.2 Problem Formulation and Notation

We consider a queueing system similar to the one
introduced in Section 2.2; we shall therefore be brief.
Two queues are served by the same server in discrete time.
The time is divided into equal length time slots (which are
prespecified) with the convention that the tth time slot is
the half open interval [t-1, t), We let t = 0,1,2,... be
the index of these time slots and the length of each slot
is assumed to be unity. During each time slot, arrivals
and service completions can occur. The situation is

depicted in Figure 4.1 below,

1 1

' Xl(t)
ad (e) ad(e) N, w(t)=1

A
2
I Xz(t)
a d
nl(t) nz(t)
Figure 4.1, The adaptive control problem.

Customers arrive into queues 1 and 2 according to two
independent Bernoulli streams with constant rates kl’ AZ
respectively. ©Each queue competes for the services of

the single server. When the server serves queue i, 1 = 1,2,
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service completions follow a Bernoulli stream with constant
rate {ui; i = 1,2}, By implication at most one arrival
and one service can occur during each time slot, when each
queue operates alone,

Let Xi(t) be the number of customers in queue i(i = 1,2)
at the end of the tth time slot, the customer in service
(if any) included. The control is used to allocate server
time to queue 1 or to queue 2, Namely when u(t) = 1 and

the server completes a service, the next customer to be

served comes from queue 1, while if u(t) = 0 the next
customer comes from queue 2. Following the notational
convention of Chapter 2, let {ni('),ni(-); i = 1,2} denote

respectively the two arrival and the two departure processes

with associated rates given by (see (2.2.2) and (2.2.3)):

x, = Prinf(t) = 1} 1= 1,2, . (4.2.1)

by (e,k,v) = Prini(e) = 1 | x, (£-1) = Kk, u(t)=v}; i=1,2

(4.2.2)
where in particular
Hy Vo if k#9
ul(.t,k,V) = (4.2.3)
0 , 1f k=0
uz(l—v) , if k#0
uz(t,k,v) = (4.2.4)
0 , 1f k=0
We assume that both queues can grow without bound. This

allows analytical treatment of the problem, When the
queues are bounded, the methods used here lead to numerical
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treatment; analytical solutions have not been obtained.

In the latter case 1if {Ni, i =1,2} are the maximum queue
sizes for each queue, we have additional constraints on

the arrival rates

A, , 1if k#0, all t, v,

Ai(t,k,v) = for i = 1,2
0 , if k=N, all t, v,

(4,2.5)
Each queue is modelled as a chain with a countable
state space and having transition probabilities as given
in (2.2.7) - (2.2.10). Moreover the transition probability
matrix for the chain describing both queues 1is

given by:
1 2
P(v) = P (v)®P  (v) , for all v (4.2.6)

where Pl(') and P2(~) are given in (2.2.9), (2.2.10)
respectively and ® indicates matrix tensor product, For

any value of the control variable v(i.e. 0 or D’ P(v)

will not be a block diagonal matrix and therefore any

state will communicate with any other. In other words,

P(v) is irreducible [19, p. 232] for each value of v. We

also observe that for each value of v, there are no absorbing
states.

The controller decides the value of u(') for the tth
slot at the end of the (t—l)th slot. The decision is based
on past histories of control values, departure and arrival
data up to the decision time (time slot by time slot).
Therefore the controller knows the queue sizes at decision
times. In Chapter 3, we analyzed the partially observed
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case where the controller had available only arrival data.
The difference here is that the controller does not know
the values of the parameters {Ai, Wyl i = 1,2}. They have
to be estimated on the basis of the observed data {ni(s),
ni(s); s<t; i = 1,2} for each decision epoch, We shall
assume that {Ai, PR i = 1,2} are constant but unknown.

Furthermore, we shall assume that the a priori infor-—

mation on these parameters is of the form:

u;eMi ,i = 1,2
+ (4.2.7)

Agedy ,i=1,2

where (a) Mi'Ai are compact intervals or

(b) Mi’Ai are finite sets.
This latter assumption reflects a common practical situation
where depending on measurement accuracy and quantization
levels, some apriori information on system demand or
server performance is summarized in the sets Ai’ Mi'
The controller performance criterion is the expected

long-run average cost per unit time denoted by:

T-1

J7 = lim inf 1 El T c(x(t),u(t))] (4.2.8)
a T ?
- T t=0

where the instantaneous cost, c(x(*),u(*)) is linear in
the state, x(°*) and has the form:

c(x(t),u(t)) = clxl(t) + C2X2(t) (4.2.9)
and cys,c, are positive constants modelling the relative
weight the controller attaches on delays in queue 1 versus
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those occurring in queue 2. At each decision time,
the controller assigns the value 1 or 0 to the control

variable u(t) based on the following information:

a .
{ni(s) i1 s =0, 1, 2, ... , t=1} for i 1,2

il

{ng(s) ; s =0, 1, 2, ... , t-1} for i 1,2 (4.2.10)

{u(s) 3 s =0, 1, 2, ... , t-1}
Let
vt = (ad(s), n‘ii(s); S =0, 2, .. , t: i = 1,2} (4.2.11)
t
u = {u(s); s =1, 2, ... , t}.

We denote by I' the set of admissible stationary control

policies, whereby each yel' has the form:

Y = (8, 8y vo- ), (4.2.12)

where
t- -1
u(t) = g(y l, ut T for all t=0,1,2,... (4.2.13)

and each g takes values in {0, 1}. Since at all times

the controller knows the queue sizes, then
- 52 d . o=
Xi(t) = ni(t) - ni(t) + xi(t—l) ; 1= 1, 2. (4.2.14)

Service is assumed to be non-preemptive and server idling

is not allowed; specifically
1, if xl(t—l)#O, xz(t—l) = 0

u(t) (4.2.15)

0, if xl(t—l) =0, x2(t-l)%l.
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If both queues are emptv at a decision time then either
decision is acceptable. The decision slots, i.e. the
slots when control values can change, are either service
completion slots or arrival slots when the other queue is
empty., Finally, the superscript y in (4.2.8) refers ‘to
the control strategy as defined by (4.2.12).

Our objective 1is to derive optimal strategies which
are adaptive. Two methods for analyzing this adaptive
control problem are considered. By the first method,
known as the certainty-equivalence adaptive controller,
the stochastic optimal control problem with known para-
meters {Ai,ui; i=1,2} is considered (see results in Section
2.5). For the cost considered here (4.2.9), the optimal
strategy is stationary; specifically y = {g,g,g...}, with
g(x) = g(a,x) explicitly depending on the parameter values
a=(ul,u2). At each time t=1,2,... the controller selects

via a maximum likelihood criterion, an estimate of the

unknown parameters, denoted byv:

a(t) = (uy(e),n,(e)). (4.2.16)
He then uses the feedback control law of the form:

u(t) = gla(t),x) (4.2.17)

as a candidate for the adaptive controller., By this
method, the analysis focuses on the following issues:
(i) Does the parameter estimator, &(t) converge
almost surely?
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(ii) Does the adaptive control scheme, g(&(t),x)
converge to the optimal control policy achieved
if the true parameter were known apriori?

The second method augments the state space and treats the
adaptive control problem as a stochastic control problem
with partial observations., We apply the methodology
developed in Chapter 3 to obtain the optimal control
strategy. The resulting strategy is of course adaptive
by construction.

4.3 Certainty Equivalence Adaptive Control

In this section, the expected long-run average
aggregate delay (4,2.8), (4.2.9) problem for the queueing
system (4.2.1) - (4£,2.7) is considered. The adaptive
control law is constructed as follows. At each decision
epoch t, a maximum likelihood (ML) estimate &(t) of the
unknown parameters is made. If the maximizer is achieved

by more than one value, we assume that only one of these

is chosen according to some prescribed ;uie. Given the ML
estimate &(t), the certainty-equivalence adaptive controller
selects the control action according to the rule u(t) =
g(&(t),x(t)). For the average cost problem, the performance
objective for known o is to minimize over the set of
admissible stationary control policies T, defined in

(4.2.11) - (4,2.13) such that

*
I (x) = min{JI)(x) : yer} (4.3.1)
for all xey - the state space. From Theorem 2.5.1,
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the optimal stationary strategy v =(g,g,...)el is of the
form:
0 if u2c2>ulcl;12¢0
g(a;ll,lz) = 1 if ulcl>u202;11#0 (4.3.2)
arbitrary otherwise

The resulting "closed-loop" system is shown in Figure 4.2,

| - x(t+1) — x(t)
™ p(x(£),x(t+1)ju(t),a ) Delay
x(t)
a(t)
u(t) - - - .
g(a(t),x(t)4' ML estimator
Figure 4.2. The closed-loop adaptive control system.

In the queueing system (4.2.1)-(4.2.7), the informa-
tion available to the controller includes the past histories
of the control, arrival and departure data. For the para-
meter estimator, two alternative ML estimates, &(t) are
developed; each has available different information.
First, we consider the case where the parameter
estimator has the same information available as the con-
troller. The sequence of actions are described as
follows. At the end of the (t-1)th time slot, the con-
troller decides on which queue to serve next, based on
the available information {yt—l,ut—l}. During the gth
time slot, the arrivals {ni(t); i=1,2} and departures
{ng(t); i=1,2} are observed. Based on the information

t -
{yt, u }, the ML estimator a(t+l) is selected. By
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(4.2.15), this latter set contains the equivalent infor-

mation as given by
{ni(s), x;(s), uls); ss<t, i=1,2}

Hence, the estimate a(t+1) is chosen to maximize the

likelihood function:

L(t,a) = Pr{n®(s), x(s), u(s); s<t|x(0),a}
t-1
= T Prix(s+1)|x(s), u(s+1l), n®(s+1l),a}
s=0

Prin?(s+1)|x(s), u(s+l), n%(s),a}
« Priu(s+1)|x(s), u(s), n(s),al (4.3.3)

where the second equality follows from properties of con-
A . a a a d
ditional independence, n (t) = (nl(t), n2(t)) and n (t) =
(ni(t),ng(t)). The certainty equivalence adaptive control
law need only estimate {ui; i=1,2} since the optimal
strategy with known parameter (4.3.2) does not depend on
the arrival rates {Xi; i=1,2}. Namely, let o = (ul,uz) in

(4.3.4), then the maximum likelihood estimate is given by:

&(t+1) = arg max{L(t,a):ae(Ml,Mz), Mi compact intervals}
(4.3.4)
An explicit form of the ML estimate, &(t+l) is obtained
as follows. From (4.2.1) - (4.2.7), we have

Prix(s+1)|x(s), u(s+1), n(s+1),a}

2
= T Prix,(s+1)|x,(s), u(s+l), no(s+1),a} (4.3.5)
1=1 i i i

where
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Prix, (s+1)|x;(s), u(s+1), n](s+l),a}

ulu(s+l) I(xl(s)) ni(s+l) if a departure occurs
in the tth time slot
of queue 1

[l-ulu(s+l) I(xl(s))](l—nl(s+l)) otherwise (4.3.6)

1 if xl(s)#O
I(Xl(s)) = (4.3.7)

0 otherwise

and Pr{xz(s+l)|-,-,','} is similarly defined. Also, it
follows for the non-idling, service rate control, upc-rule

that

Pr{na(s+l)ix(s), u(s+1), na(s),a} = Pr{ni(s+l)}'Pr{n;(s+l)}}
(4.3.8)

and
Priu(s+l)|x(s), u(s), n®(s),a} =1 (4.3.9)

By combining (4.3.5) - (4.3.9) into (4.3.3), we have

L(t,a) = Ll(t,a) . Lz(t,a) (4.3.10)
where
t-1 t-1
Ll(t,a) = sEO [ul u(s+1) I(xl(S))n{i(sH)] Szo[l-ulu(sﬂ) I(xl(S))](l-nl(s+l))
(4.3.11)
t-1 t-1
L,(t,a) = SEO [u,(1-u(s+1)) I(xz(s))n;(s+l)] Szo[l—uz(l—u(s+l)) I(x,(s))]
(l—nz(s+l)) (4.3.12)

Note in (4.3.10), the probabilities associated with the
arrival processes (4.3.8) have been neglected (independent
of a). Now the event {ni(s+l) = 1, u(s+1l) =1, I(Xl(S)) =1}

reduces to the event {ni(s+l) = 1} so that (4.3.11) reduces
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to F -
t-1 t-1
L (t,a) ={ I u . I (1-u.)
1 s=0 1 s=0 1
d d
s.t. nl(s+1)=l s.t. nl(s+l)=0, u(s+l)=1
L I(xl(s) =1 -
tnd (s+1) Z(1-nd(s+1))u(s+1) I(x.(s))
= ¥ 1 (l—ul) 1 1
(4.3.13)
Let
t-1 d t-1
a= I n.,(s+l) , b = I u(s+l) I(x,(s))
1 1
s=0 s=0
so that (4.3.13) becomes
_ .a - b-a
Ll(t,a) = My (1 ul)
By (4.3.4), the ML estimate of Wy implies
a-1 b-a a b-a-1
a Ul (l-ul) - (b_a)ul(l-ul) = O
or equivalently
a-1 b-a-1 _
My (I-u7) [a(l-ul) - (b—a)ul] =0
so that
t-1
b nd(s+1)
- a s=0 1
ul(t+1) T - to1 (4.3.14a)
T u(s+l) I(x.(s))
1
s=0
Similarly, it follows from (4.3.4), (4.3.12)
t-1 d
) nz(s+l)
) s=0
uz(t+l) = 107 (4.3.14b)
T (l-u(s+l)) I(xz(s))
s=0
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In case the denominates in (4.3.14) are unchanged, the
previously estimated value is used.

For the adaptive control scheme with parameter
estimates generated by (4.3.14) and control law g(&;x)

as in (4.3.2), we have the following result:

Lemma 4.3.1. If the controller satisfies the condition
t-1
L u(s+l) I(xl(s)) = 0(t) as t-w
s=0
t-1
I (1-u(s+1)) I(xz(s)) = 0(t) as t-e
s=0
where F(t) = 0(t) denotes that for t large, the function

F(+) grows linearly in t, then the parameter estimates
&(t) = (;1(t)’J2(t)) converge a.s. to the true parameters
ao = (ug,ug) and the adaptive control law g(&(t);o)
converges a.s. to the optimal policy achieved if the true
parameters were known apriori.

Proof: Without loss of generality, we consider the con-

vergence of ul(t) in (4.3.14). By (Al), we have by the

law of large numbers

t-1
z nd(s)
lim M () = 1im 20 - = E[ad(s)]1=u. < )
t‘];: 1 = tiz t—l = nl S Lll a.s.
T u(s) I(x.(s-1))
60 1 (4.3.15)

Consequently by the continuity of the pc-rule to the para-

meters {ul; i=1,2}, we have by (4.3.2)
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Lim g (i) (8),u, (£)5x) = g(up,u,5%) (a.s.)

t>ow
for all xex (4.3.16)

QED.
Remark 4.3.1. Heuristically, one can view condition (Al) as

follows. First, suppose the system always serves queue 1

(i.e. u(t) = 1 for all t). Then the ML estimate (4.3.4)

reduces to the standard one for a single queue [19]; specif-
ically ;l(t) converges to My a.s. and ;z(t) = 0 a.s. for all

t. The converse is true when the system always serves queue

2. The condition (Al) implies that the server switch infinitely
often between the two queuesy requiring certain stability conditions on the

queueing system {2\ i=1,2} and on the stationmary policy

i’ui:
(4.3.2). Sufficient conditions to insure that (Al) holds is

an area of future research. For the unbounded system,6it can

be shown that if
—_+ == > 1 (4.3.17)

then the system is unstable, i.e. one queue grows without
bound. Hence, the parameter estimates (4.3.14) and adaptive
control law are degenerate,

An alternative ML estimate is obtained by using
different information than that used by the controller.
The information available to the estimator, in this case
includes only the past histories of the control and the queue
sizes, {u®,x"1. Clearly, this is a reduced set of informationm.
The .estimate &(t+l)iis chosen to minimize the likelihood

function:
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L(t,a) = Prix(s),u(s);s<t|x(0),al
t-1
= T Pri{x(s+l)|x(s),u(s+1),a}-Pr{u(s+l) x(s),u(s),a}’
s=0
t-1
= I p(x(s),x(s+1);u(s+l),a) (4.3.18)
s=0

where the second equality follows from conditional independ-
ence and the last equality follows from (4.1.1), (4.3.9).

From (4.2.1) - (4.2.7), we have
p(x(t),x(t+l);v,a)
= i i 3vea) ¢ pi(dasdo3vaa) (4.3.19)
1le, s P 2:32, > «J .

for x(t) = (il’iZ)’ x{(t+l) = (jl’jZ) and o = (ul,uz) where

(l—kl)ulv if jl = il—l ; il#O
(l—Al)(l—ulv) + Alulv if j1 = i,
1, . .. _
P (1lle9Vaa) = (4.3.20)
Al(l—ulv) if i, = 11 + 1
0 elsewhere

and p2(°,';-,°) is similarly defined. The resulting ML
estimates a(t+l) = (ul(t+l), uz(t+l)), given (4.3.4), (4.3.19) -
(4.3.20), follows from the solution of the quadratic

equation:

. 2
1-u, (t+1)
(1-X DN} (&) [——2—
ul(t+l)
1-u, (t+1)
+ {(ZA.—l)Ng(t)+X.N?(t)-(l—k.)N%(t)] =
1 1 i 1 1 1
ui(t+1)
= AiNi(t) for i = 1,2 C(4.3.21)

where
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Nl(t) = t;l Nz(t) = tgl I and
1 c=0 {jl>il}’ 1 <=0 {jl=il}
NEPTOSNI (4.3.22)
1 om0 31%iy) o
The counting processes {N;(t); i = 1,2,3} are similarly

defined and the function, I{.} denotes the indicator func-
tion of the specified set.

Remark 4.3.2. The ML estimate (4.3.21) appears initially

to be more complex than the earlier one presented (4.3.14).
Clearly, its convergence properties -are not as easily

state as in (4.3.14). However, it may follow that the
equivalent sufficient condition (Al) for estimate (4.3,21)
is more physically apparent due to its dependency only on
the queue size and not on the control values. This is an
open research problem,

Remark 4.3.3. The implementation of either estimator

(4.3.14), (4.3.21) is straightforward, In the former, three
adders are required while in the latter six are needed.
Recursive expressions for the ML estimate in (4.3.14) have
been obtained. To develop an understanding of the adaptive
control scheme, a numerical evaluation is presented in
Section 4.5.

4.4 Partial Observation Adaptive Control

In this section, the adaptive control problem of

Section 4.2 is considered as a stochastic control problem

with partial observations. In this case, the parameters
{Ai, ui; i=1,2} are assumed to be unknown constants and
are treated as additional states. Furthermore, we will

assume that the apriori information on these paramaters

153



is of the form:

uieM , A.ed, for i = 1,2 (4.4.1)

0 1 i
Mi = {Ui’ Ui) L y Ui }
0 .1 Si
Ai = {Ai, Ai’ e ki } for i = 1,2 (4.4.2)

The. true parameter values {Ag, ug:

i = 1,2} are assumed to
be elements in these sets.
Following the development of Chapter 3, (3.3.52) -

(3.3.55), we define the state and observation spaces as

follows:
X(t) = (Xl(t)) Xz(t)y Ul(t), Uz(t)ﬂ\l(t),)\z(t))ﬁx
where

x Ao x A (4.4.3)

X = Z x Z % Ml x M 1 2

2

and
y(t) = (ad(t), nd(o), ni(t), ng(t))sY (4.4.4)

The combined joint statistics of the observations and

state transitions is denoted by:

Sij(t,v,w) = Pri{x(t+l) = j,y(t) = w,x(t)=i, u(t)=v}

(4.4.5)
where
i = (il,iz’mlﬁmzs’q‘lag’z)’ jeX ‘PEY
and veU = {0,1}. Note, the additional state parameters
{Xi(t), pi(t): i = 1,2} are unobservable while the queue
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sizes {xi(t); i = 1,2} are observable. Hence, we have
a partial observed stochastic control problem within the
framework of Chapter 3,

To proceed within the framework of (3.3.1) (3.3.4)
(3.3.53) (3.3.54), we need to specify the joint statistics
(4.4,5) in terms of these parameters. By properties of

conditional probabilities and independence, we have

Pr{x(t+l) = j, y(t) = ¥|x(t) = i, u(t) = v}
ny
= Pr{x(t+l) = j, y(t) = ¥|x(t) = i, u(t) = v, ul(t) = U,
R) ky k,

>

uz(t) = U, Al(t) = A 2(t) = 1, }

RS
Priu,(t) = u, lx(t) = i, u(t) = v}
R
Pr{uz(t) = ¥, lx(t) = i, u(t) = v}
kg .
Prir, (t) = A, lx(t) = i, u(t) = v}
ky
Prii,(t) = A, |x(t) = i, u(t) = v} (4,4.6)
where for i = (il,iz,ml,mz,zl,lz)ex
n ‘l if n,=m,
Priu, (t) = u; lx(t) = i, u(t) = v} = 1 (4.4.7)
0 otherwise
k 1 if k.= &
Pr{x, (t) = All]x(t) = i, u(t) = v} = 5 1 L o4.4.8)
IO otherwise

and similarly for the other terms in (4.4.6). In other
words, the transition probabilities for the parameters
{Ai(t), wy(e)s 1= 1,2} are identity matrices, The first

term of (4,4,6) is characterized in (3.3.42) - (3.3.45),
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(3.3.53), (3.3.54) with the exception here that the
parameters‘{ki, My i = 1,2} are constants, independent of
time and queue size.

In Chapter 3, the formulation was the finite horizon
average aggregate delay. For the performance criterion
(4.2.8), (4.2.9), the approach introduced in Section 4.3
may be applicable; specifically treat the expected long-run
average cost as the limiting case of the finite horizon
problem. This is an area of future research. The main
utility of analyzing the adaptive scheme as a partially
observed stochastic control problem is to obtain performance
estimates for more practical schemes, such as the one
studied in Section 4.3. An analytical solution of this
problem has not been obtained; the methods presented here
lead to a numerical treatment similar to that of Chapter 3.

4.5 Evaluation — Finite Queue System

In this section, the adaptive control scheme of
Section 4.3 for the bounded queueing system (4.2.1) - (4.2.7)
is considered. For a finite capacity system, the arrival
rates on the upper boundary states are zero (see equation
(2,2.6)). The discussion here leads to a numerical treat-
memt of the problem: these results augment the discussion
of Section 2.6. We intend to demonstrate via numerical
examples the behavior of the queueing system, under the
average cost optimal, adaptive and uc-rule control strategies.
The bounded queueing system is modelled as described
in (4.2.1) - (4.2.7) with the performance objective (4.2.8),
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(4.2.9), (4.3.1). A finite buffer size (N = N1 = N2

7)
is simulated, with each queue initialized to five (5)
customers., For a finite horizom (T = 100), Bernoulli
arrivals and departures are generated at each time step
such that
(i) no customers arrive in a queue when it is
full (see (4.2.3), (4.2.4)),
(ii) no customers depart from queue i when either
queue 1 has zero customers on queue j(j#i) is
being served (see 4,2.15),

The selection of the control sequence depends on the

respect policy under consideration. For the optimal
average cost policy, the parameters {Ai,ui; i =1,2} are
assumed known. The optimal policy is generated using the

policy iteration method (2.6.7), (2.6.8) of Howard [68].
Because the parameters remained fixed throughout the
sample path, the policy iteration is only invoked once,
For the pc-rule strategy, the sample paths were generated
for comparison with the other two policies. Clearly for
the finite buffer case, the uc-rule is suboptimal, as
noted in Section 2.6. The adaptive control strategy was
implemented as follows, At each time step, the parameter
estimates ﬁl('), ﬂz(') are updated using (4.3.14). Given
these parameter values with {Ai; i = 1,2} known, the
stationary control strategy (4.3,2) is generated using
the policy iteration method (2.6.7), (2.6.8), Because of
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multiple calls to the policy iteration program, the
excution time of adaptive control sample paths were
exceedingly long,

Given these preliminaries, the cases studied are
shown in Table 3,1. In each figure, the queue sizes
{xi(t); i = 1,2}, the control values, u(t) and the running

average cost

¥ 1 t-1
Ja(t) =T z [clxl(t) + c2x2(t)]
s=0
as a function of time are shown, respectively in (a) - (d).

For the optimal average cost strategy, the resulting optimal
policy for the specified parameters is shown (see Section
2.6 for notational convention), For the adaptive control

scheme, both the apriori (true) optimal policy and the

adaptive control strategy (converged value) are shown. In
addition, the parameter estimates {ui(t): i = 1,2} are
shown respectively in (e), (f). Note in Figures 2.6 - 2.8

that the parameter values are the same as those of Figure
2.4

In Figures 4.3 - 4.5, the queueing system under each
strategy is shown to perform quite similarly. FEach system
has the same (final) running average cost (4.5.1). A
comparison of the average cost to the pc-rule shows that
their sample paths are identical. This can be explained
as follows. The two policies differ only in the states
{a,0), (4,1, (7,4), (7,5), (i,3): i = 5,6,7: j = 2,3,4}.
Since the state process {x(t)} never enters these states,

158



the control value sequence are identical. A comparison

of the average cost to the adaptive control strategy is

more involved. Up until the first service time to queue
2, the sample paths are identical; queue 1 is always

serviced. After queue 2 is serviced, each queueing system

Table 4.1 - Finite Queue System (N=7)

Optimal Y
Figure | Strategy >\l €1 AZ €2 M1 Ha Cost Ja(T)
4.3 Optimal |.40(1.00.25;2.00 {.60 |.20 |14.56 13.23

*
4.4 Adaptive|.40(1.00}.25]2.00 |.60 |.20 |14,56 13.23

4.5 ye-rule |.40(1,001(.25[/2.00 |.60 |,20 - 13.23
4.6 Optimal |.401{1.00{.20(2.00 |.60 |.20 {13.88 10.05
4.7 Adaptive|.401(1.00(.,20|2.00 }|.60 |.20 |13.88 12.47
4.8 wc-rule |.401(1.001},20;2.00 {.60 |[.20 - 12.49

*
Optimal cost computed from converged parameter
values

performs differently, Under the adaptive scheme, the system
goes into a learning mode attempting to determine the
departure rate, ﬁz(t) (Figure 4.4(£f)). The learning exercise
is at the expense of increased cost for queue 1 (Figure
4.4(a), (b)). After queue 2 empties (t = 52), the adaptive
system returns to a mode similar to the optimal average

cost system (compare Figure 4.3, 4.4(a), (b)). Observe

that during the learning cycle (40<t<60), the running average
cost, J:(-) is slightly higher for the adaptive system
compared to the optimal average cost systems (Figure 4.3,

4.4(d)). The parameter estimates {ui(t); i = 1,2} and
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the adaptive control law both converge to the values of
the true system (Figure 4.4(e), (£)),

In Figures 4.6 - 4.8, the system parameters were
chosen to move the switch curve further away from the y-axis
{¢(7,5); 3 = 1,2,...,7}. As a consequence, the queueing
system under each strategy performed differently. First,
we compare the system under the average cost verses the
Jé—rule strategies. Under the average cost policy (Figure
4.6), the optimal control provides serve to queue 1 only
when queue 2 is empty or queue 1 is near its capacity. The
sample path (Figure 4.6(a) - (c)) displays this property.
Conversely, the pc~rule services queue 1 until it empties
at which time service is provided to queue 2. It is more
apparent that the pc-rule is suboptimal when comparing the
running average costs of the two systems (Figure 4.6, 4.8(d)).

Now we compare the adaptive control scheme to the
optimal average cost. Again the adaptive system has a
learning mode which starts with serve to queue 1 and ends
after queue 2 is empty (Figure 4.7(a) - (c), (e), (£)).
Once the learning mode is completed, the adaptive system
follows the average cost optimal system, The running
average cost, JZ(') for the adaptive system is higher than
the optimal average cost and furthermore is slightly higher
than the corresponding uc-rule system (Figure 4.6 - 4.8(d)).
The parameter estimate for queue 1 is fairly accurate but
the parameter estimate for queue 2 is this sample has not

stabilized. Note, the adaptive control strategy does not
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converge to the optimal control law. These latter two

observations are a consequence of a finite sample path.
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5. CONCLUSIONS AND FURTHER RESEARCH

This dissertation has dealt with the priority
assignment problem of two queues competing for the service
of a single server. Within an optimal control theory
framework, we have established for the unbounded, complete-
ly observed system that the optimal server time allocation
strategy is the pc~rule. Furthermore, we have shown that
the optimal value function is convex in its arguments,

For the bounded system, we have demonstrated via numerical
results that the optimal solution is a true feedback
strategy in the sense that it depends on the current queue
size and system parameters. For the partially observed
system, two different approaches were adopted, First, we
considered the systems with known parameters and whose
queue size was unobservable. We showed that the one-step,
predicted density of the state was a sufficient statistic
for control. As a consequence, we obtained an explicit,
easily implementable algorithm whose properties were
evaluated. Second, the partially observed problem was
treated as an adaptive control problem. Here, the para-
meters were considered unknown constants and the controller
observed the past histories of the control and queue size.
The analysis lead to a certainty-equivalence, adaptive
controller. Provided that a certain sufficient condition
on the control value 1is satisfied, we showed that the
adaptive control law and parameter estimator converged to

their true values. The interdependencies of the adaptive
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control law and parameter estimator for a finite capacity
system were investigated via simulation.

Our analysis of this simple queueing system leads to
several areas for further research. First, for the finite
capacity completely observed system, a bound on the cost
under the suboptimal pc-rule strategy to the optimal cost
is useful. The uc-rule is an elementary control strategy.
From a practical standpoint such a bound could justify the
additional complexity., Our results provide a framework to
compute such bounds numericallyj analytical bounds are within
reach. Second, the partial observation problem of Chapter
3 retains much of the structure of the complete observa-
tion problem. It is conjectured that there exists a
simple priority assignment rule for the unbounded, partial
observation problem that depends on the costs and on the
probability of non-zero queues. An extension of the
alternative proof of Theorem 2,3.7 could provide this
result. Third, the analysis of the adaptive control scheme
requires alternative sufficient condition on the control
values, For the two competing queue system: this condition
needs to be restated in terms of the parameters {Xi; P
i = 1,2}. Extension of the results in Chapter 2 for

general arrival processes are discussed in [6].
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