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Direction finding devices, such as phase interfero-
meters, when operating over a rough surface (such as the
sea ocean or terrain) sustain inferior performance. This
performance degradation is due to the so called multipath
interference from reflections by the rough surface. 1In
this thesis we analyze multipath effects on linear array
phase interferometers. Based on parametric models for
this multipath interference we derive recursive signal
processing algorithms for estimating the angle of arrival

of electromagnetic plane waves. Comparison with other

existing algorithms is also provided.
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1. INTRODUCTION

Direction finding devices such as phase interfero-
meters, when operating over a rough surface (such as the
sea ocean or terrain) sustain inferior performance. This
performance degradation is due to the so called multipath
interference from reflection by the rough surface. In
this thesis, we analyze multipath effects on linear array
phase interferometers. Considering the underlying para-
meters in multipath phenomena, we derive recursive signal
processing algorithms for estimating the angle of arrival
of incident microwave plane waves, Specifically, our
approach is a sequential computation of the maximum likeli-
hood estimate of source direction using a bank of Kalman
filters operating on the received data. The structure of
the thesis is as follows. In Chapter 2, simple models of
multipath phenomena are presented in relation with
general direction finding problems. The effects of multi-
path on a horizontal linear array interferometer are
qualitatively analyzed also. 1In Chapter 3, we review the
typical approaches to the estimation of the source signal's
direction of arrival in linear array interferometers. We
present here an extensive literature review including
various configurations of interferometer system, assumptions
on the observation models, and the resulting estimation
schemes. In Chapter 4, we derive the sequential maximum
likelihood algorithms for horizontal linear array interfero-
meter. Firstly, a prototype receiver model for pulsed
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modulation is described to set nomenclature, specify the
interferometer operation and received data and to describe
the assumptions used in this work. As mentioned previously,
we incorporate multipath phenomenon effects explicitly in
the observation model. The so called channel spread
function [12] is employed to explain the direction spread
in some detail. The problem of estimating the source
direction is then formulated as a sequential hypothesis
test under certain assumptions. The most critical
assumption is a restriction on the source motion. Three
versions of the proposed algorithm are then presented,
depending on the model of the combined source signal. The
problem associated with the measurement of underlying
parameters is discussed briefly in connection with state-
space models of diffuse multipath component from the rough
surface. We carry out the detailed implementation of the
proposed algorithm in one example. Recursiﬁe equations

for estimating the source direction are deriﬁed using
Kalman filtering. In later section of Chapter 4, we extend
the statistic used in Section 3.3 (see [9]) by formulating
the problem of ambiguity resolution as sequential hypothesis
testing and by combining it with the usual statistic for

fine resolution of source direction.




2. MULTIPATH PHENOMENON EFFECTS ON PHASE INTERFEROMETERS

2.1 Basic Interferometer

An elementary interferometer measuring angle of
arrival of microwave signals is provided by the simple two

element interferometer in Fig. 2.1

Source at P

ok —

QZ

S -
\-\—F'—“‘ IP
Q

Fig. 2.1. Basic interferometer

Consider a distant source at P radiating a plane wave

field that is incident on two identical receiving antennas
located at positions Q1 and Q2, which are separated by a
distance d. The angle of incidence 1is measured from the
normal to the line connecting Q1 and Q2‘ Propagation of
the form exp j(wt - kr) is assumed, where k = 27/Xx and ) 1is
the known wavelength. Denoting the incident electric field
intensity Ez at Q2 by Ei, the field intemnsity at Q1 is

equal in magnitude to E' but retarded in phase because of

the additional path length.

. §
E2 = E
El Ele—Jk-d sin ¥
E 1. . j¢
2 _ ejk d sin ¥y _ o 12. (2.1)
£y

Functioning as a direction finding device, angle ¢ 1is

obtained from the inverse relation,
3
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Always the overall antenna separation satisfies d>X.

).

Y = sin

Writing the last relationship in the form

o = gqsind (2.2)
12 ( 1 )
d/x
it may be seen that ¥ ranges from 0 <y < %, while ¢12
satisfies 0 < ¢12 < ¢0 where ¢O > 2m. ¢12 changes by 27
rad as sin Yy increases by factor of 1/(d/»). For example,

assume d = 10A, then 0 < ¢12 < 207 as is shown in the

following table.

¥ (degree§) sin ¥ ¢12 (radians)
0 0 0
5.73 0.1 27
11.50 0.2 b
17.50 0.3 6w
90 1.0 20w

As the ratio d/X is made larger, the angle ¥ can be
determined with greater precision for given amount of
phase error in ¢12, provided that the phase ambiguity
explained above is resolved (i.e., the phase angle ¢12 can
be measured uniquely only within 27 rad). Considering a
range of ¢ from - g to %, the usual simple way to overcome
this phase ambiguity is to use A/2 spacings between sensors
in the configuration of the array or to employ certain
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nonuniform spacings such as explained in Section 3.3.

Referring to Fig. 2.1, the angle ¢y determines a cone of
revolution about the axis of symmetry through Q1 and Q2'
It is evident that the direction of arrival cannot be
determined from measurements with a single axis interfero-
meter. In order to determine the source position P in
both azimuth and elevation, two interferometers may be
oriented orthogonally as shown in Fig. 2.2. Simultaneous
measurements using the x axis interferometer (Q3,Q4) and z
axis interferometer (Q1’Q2) determine the source direction
unambiguously by (a,B), since underlined space X is blocked
by radiation patterns of antennas and facilities in

practice.

. P
z
|
Space X '
(, where 9
y<0) Q,| B A
1 /
!
Q 7T~ N
3 | a —~ j
[ — ~—
X ng

Fig. 2.2. Orthogonal pair of interferometers

2.2 Multipath phenomenon

In real enviroments the signal from an emitter
arrives at the antennas through multitudes of indirect
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paths as well as the direct path, due to scatterings from
rough surfaces. Accordingly, any direction estimation
system should suffer from the effects of multipath induced
direction spread. In this section, we describe briefly
some simple characteristics of the scattered field.

It is well known that the observed field, scattered
from a rough surface, can be considered as the sume of
specular component and diffuse component. This was
validated by the analysis of field scattered by a normally
distributed surface and also in the investigation of other
statistical models of rough surfaces as well as by many
experiments [1]. 1In the sequel, we assume homogeneous
rough surface.

Specular component

T1f considering specular reflection from perfectly
smooth surface, the total observed signal voltage is given

by (refer to figure 2.3) [11 [2]
E=AFf@W) + A0, - pef(-p)e 3% (2.3)

where At and Ar represent the free space field strengths
of the direct and reflected field, respectively at the
antenna, and f(wt) and f(y) are the voltage gains of the
atenna along the direct and reflected paths, respectively.
D is the divergence factor for curved earth, and IR is the
magnitude of the Fresnel reflection coefficient, so that
pOD represents the reflection coefficient of smooth but

spherical earth. Finally o is the total phase shift of the

6



reflected field relative to the direct one.
a = 27 So/k + ¢
where 80 is the extra length of the reflected path and ¢

is the phase angle of the Fresnel reflection coefficient.

emitter

receiver

h

/

rl ¥ v
1

Fig. 2.3. Geometry of specular reflection

To a first approximation, reflected energy originates
from the first Fresnel zone [1], defined as the set of
the points p on the surface such that §(p) - 6(1)<%, where
8§(p) is the optical path of a light ray tra§elling from
emitter to receiver by way of reflection at point p. I is
the point of reflection, given by the optical specular
point.

The effects of the rough surface are accounted for by
introducing multiplication of poD by the complex scattering
coefficient pS, the statistics of which depend on the
irregularities of the rough surface, with mean square
<pSp:> showing strong directivity toward specular direction
for small irregularities.

Let the surface height £(x,y) be distributed normally
with mean value <£> = 0 and standard deﬁiation g, i.e., let
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the distribution of & be given by

_i exp(—z2/202) (2.4)
V2n o

w(z) =

The correlation coefficient C(1) is assumed to be given by

2 2
cE(P)e(xr) +. 1) = e ' /T, (2.5)

<2 (>

c(t) =

T is the characteristic correlation distance, for which

c(t) drops to e_1 jsotropically in XY plane. For such a
normally distributed surface, the average value of pS in
the specular direction, used as the specular reflection

coefficient, is given by [1]

cog> = exp(- 3 (Arosin ¥y2), (2.6)

where ¥ is grazing angle of incidence at the specular point
(see figure 2.3). Due to the elongation of the first
Fresnel zone, Eq. (2.6) will be, in general, only an
approximate expression. As <ps> is real, the phase of the
specularly reflected field from a rough surface interferes
with the direct field as if the reflecting surface were
perfectly smooth.

For more general models of rough surfaces, the distri-

bution of Pg depends on O, the root mean square amplitude

of surface height. The variance of Pg is zero, when o=0
. . . g sin .
and increases with growing ——i———i, a scaling parameter

called apparent roughness. Coefficient Pg becomes Rayleigh
amplitude distributed for large apparent roughness, which
means that the scattered field from the first Fresnel

8



region becomes part of the diffuse scattered field observed.

However, Beard [2] noticed from experimental data analysis
that a phase—coherentrcomponent still exists for very
rough surfaces which indicates that additional factors
have to be taken into account when computing the specular
component.

In general, fluctuates as though it results from

Ps
the superposition of a constant field and a field with
mean zero, whose real and imagainary part are normally

distributed with variances 5, and S,. Fig. 2.4 illustrates

the result of Beard's experiments [2].

<p >

1.

0.

experiment
:L theory =~ -
ol : : |
100 200 300
%E in milliradians

Fig. 2.4. Specular term, theoretical and experimental.

The above experimental results were obtained from L - Q

band over the ocean surface. Fresnel reflection coefficient

variation with grazing angle is described in F.g 2.5.



1.0
0.97 ~_ | Sea Water
Po 0.8} Average 7
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0.6+ polarization
0.5 : bt p——t—t t
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0.8+ vertical

N
/ \ polarization

0.6] Sea Water \

0 4 } - { 4 i 1 L
T t T ¥

0.1 0.205 1 2 5 10 20 50 90

Yy in degree

Fig. 2.5. Fresnel reflection coefficient ey for
for horizontal and vertical polarizations, at 1~2GHz
If the surface is covered by vegetation, another

factor, denoted by P, has to multiply the Fresnel
reflection coefficient Py to account for absorption which
is varying with frequency. In temperate climates, most
of the ground is covered with grass, weeds, trees, bushes,
providing an effective absorbing blanket. Values of ey,
between 0.1 and 0.3 are common for microwave frequencies
at grazing angles from 0.5 to 2 degree.

Diffuse component

Diffuse scattering is a phenomenon that has little
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directivity and which consequently, takes place over a

much larger area of the surface than the first Fresnel

zone. Its phase is incoherent and its fluctuations are
Fayleigh distributed. The following discussion is based
on Spizzichino's work [1]. Our objective is to describe

a measure of direction spréad in the observed diffuse
component. The rough surface is modelled as a gaussian
surface in the parameter regime X/sin yY<o. To describe

the diffuse field, it is necessary to define the glistening
surface S, from where most of the observed diffuse
scattered field emanate. Under the abo?e assumption
(approximate evaluation of tangent plane method [1]), the
expected elemental diffuse power from an elemental area

ds on S is given by

2 ds r 2 1 2
—= ( ) A cot Bo exp (-

= EEEEE_)
d b r1r2 cos B tan BO

do (2.7)

n

where B is the angle made by the bisector of the incident

and scattered rays with the z axis, BO is given by tan BO =
20
T

2
In (2.7), dpd

direct field. Since the vertical dimension o (height of the

The corresponding geometry is described by Fig. 2.6.

is normalized with respect to the power of

irregularities) is, in most cases, much smaller than the

horizontal dimension T (correlation length of the surface),
the angle Bo is small. Therefore B is also small since we
are interested only for points such that IB[<BO (see below

for details). Thus (2.7) becomes

11



dpz s 1 (——)° cot“8_ exp(- )ds
d 4 Ty ¢ 8
) an P, (2.8)
. 1 r 21 B
T 4n (r r ) 2 exp (- —7)'ds
172 B B
0 o

From this expression, the bistatic radar cross

2 .
section is g, = dS/Bi'exp(:Ei) with reflectivity %—exp(—éi).
o

0 o
Expressions (2.7), (2.8) do not include the effects of

depolarization, shadowing, and multiple scattering. These
factors are important for low grazing angle of incidence
geometries. We will have occasion to refer to T.P.
Mcgarty's calculation [12] in Chapter 4, which consideres
some of these effects. Specular point theory [3] postu-
lates that the observed diffuse field is a superposition
of waves scattered from local specular points whose local
slope is given by B, a tilted angle of local facet. Since
surface slope is normally distributed with standard

B

R o . . .

deviation —, contributions from points such that |8i<80
V2

dominate and this condition is used to define the

glistening surface S (see Figure 2.6). Actually, express-
ion (2.8) provides the pdf of surface slopes, due to the
assumption of XA/sin ¢<o,

If antenna gains are considered, the expected elemental
diffuse power, dEi, from ds is given by,

g.8
aE% = dp? - g2 olo2 2
°© 810820

where,
EO is the intensity of direct field,
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glO’gl are the transmitter voltage gains in the direction
of the receiver and that of the element ds,
respectively,

gzo,g2 are the receiving antenna gains in the same

directions

The total pi from the glistening surface S is given by the

integral of dpi over the glistening surface, using the

fact that elemental difuse scattering components add

incoherently.

£18)

2 2 2

Pq = ( )T rdpy. (2.9)
s €10820

Consequently, the power coefficient of diffuse scattering

Rd is given approximately by,

where o5 is the Fresnel reflection coefficient defined at
the specular point on the mean surface. We next consider

an example of glistening surface, given by Spizzichino, tO
describe multipath induced direction spread. The assumption
used here is that the heights of transmitting and receiving
antennas are small, compared to the distance between them
(hr’ht<<d) and that antenna radiation patterms are isotropic
so that the glistening surface is not restricted by

antenna patterns. The resulting glistening surface 1is

depicted in figure 2.7 below.

13



-3 B = BO contour
Fig. 2.6. The area Bi80~
y
ds . — - -
. A= T 7 .
b -tand, [ Z/ s \ (d,0,0)‘T hy-tanB,
L /A
| | L
2 y | :
hr'cotZBOI hg-cotZBO
N/
<— X, > x, _— >
-y

Fig. 2.7. Glistening surface in example.

The coordinate y of the glistening surface boundary is

given by

X, X h h h h
T t 2 1, r t,2
AL P ¥ Crali i)

- (2.10)
d X1 2 1 2
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The glistening surface has in general the form of a narrow
strip extending along the x axis of the link under the
assumption of hr’ ht<<d, and can also be used for low angle
emitters, for which hr<<ht<<d' The power scattering
coefficient of an elemental component of the diffuse field,
dpi, can be transformed into elevation power density by
taking ds in an approximate way as depicted in Fig. 2.7.

We assume pi = 1 for all ds' for simplicity and also that

g is virtually constant across the y direction of ds with

8] = lwl - wzl/Z (see figure 2.6 for definition of wl,wz).
Then
172
ds = 2~ye-dx§/q. = (0 +9,) By Ty AV, /Yy (2.11)

rzdwzz dx'w2
where, Ve is the effective width of ds and is given by
/T
multiplying ¥ by‘/%. By combining Eq. (2.8) with Eq. (2.11),

and using the approximation d=r, we obtain

Y+ Lo =0,

r 1 72 1 1 72',2

A i e L e S
1 2 o} o

[

2
dpd

3

4

I}

f(wz)dwz. (2.11)

The function f(wz) defines the evevation power density of
the observed diffuse field as a function of wz. In azimuth

distribution, the azimuth spread at xl,Ae, is given by,

AD = iy _ e il (Y, + U,)B (2.12)
T, T 1 270" *
For a geometry such that hr<<ht<<d’
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this width becomes A6 = 2V7 « y - Bo near the specular
point, where rlsr, and wl = wz = . Generally it is

seen that with BO<O.1, azimuth dispersion is quite small
so that diffuse reflections as well as specular ones may
be considered to originate along a line at emitter azimuth
under the specified geometry. Antenna radiation patterns
as well as short pulse duration may also restrict the
surface S where BiBO. Equation (2.8) results in excessive
amount of pi, due to the lack of consideration of all the
other factors in scattering. Fig. 2.9 [2] dillustrates
experimental results by Beard, performed under similar

conditions as the results described in Fig. 2.4.

0 : : o %‘ﬂ in Mils.
100 200 300
Fig. 2.9. Diffuse field vs apparent ocean roughness.
Incoherent power = 2(08)2 =03
16



In addition to the direction spread, the frequency spectrum
of the diffuse component is also an important factor in

any direction of arri&al estimator, since we wish to
estimate the performance degradation due to the diffuse
component (and therefore modelling of diffuse component

is required). Broadening of the spectrum of the diffuse
component is known to occur. This result is supported

both by theory and experiments. Fig. 2.10 illustrates
experimental results by Beard and Katz [4], using X band

over ocean surface.
20

power

18 point = 0.1 0.25

16]

144
fradio

fwaves 12¢

101

100 200 300 400 500 600
roughness, hy/2 (mils)

radio/fwaves vs hy/A for

various power points of diffuse spectra from
experimental data.

17

Fig. 2.10. Composite curves of f



Here, fwave represents maximum‘ﬁrequéncy of océan wa&e
spectrum, fr(O.S) is the frequency of % power point of
diffuse spectra, etc. The reason for the spéctrum,spread
can be described by the following qualitati&e argument.

As each small scatterer moves vertically through any height,
it changes its contribution to the phase of the resultant
signal. This phenomenon can be referred to as Doppler
shift with respect to observer. For example, the phase of
the return from a patch near the specular point will vary
as 4m(hy/A) as height h changes, and if it moves through
twice that height in the same time, its contribution to the
frequency of fluctuation is doubled. Thus as wave height
increases, one would expect an increased spectrum bandwidth
generated by harmonics of all the frequencies in the wave
spectrum. In land terrain as well as in ocean surface, as
the emitter moves, the glistening area is changing in time,
which causes fluctuation of observed diffuse component.
Direction spread of diffuse component should account for
spread of pure Doppler shift with respect to direct signal.
Also, the characteristic correlation distance T and thus BO
as well as the tangential velocity of emitter (with respect
to ground) will affect the spectrum width.

Another important factor to be considered is the
spatial correlation of the diffuse field, since observations
at various points are used in the interferometer array.
However, analytical deriﬁations of spatial correlation is
a rather cumbersome problem and is not addressed here. We

18



can only state as a general trend, that for gentle slope
'(%<<L),.surface correlation influences observed field
correlation while for steep slopes, emitter—recei&er
geometry plays a dominant role. ‘Latér we will utilize a
spatial correlation model defined in a 1o¢a1 sense.

We have giﬁen a brief déscriptioh of multipath phenomena.
We conclude this section by qualitatively examining the
effects of multipath. Direction spread will cause an error
in any direction finding system, including interferometers.
In the case of the horizontal x axis interferometer in Fig.
2.2, the specular component has some direction cosine, My
(= cos a) as the direct signal for most of geometries of
practical interest, so that there is no spread in the
direction of arrival. Furthermore, the phase of the specular
component associated with each sensor of the array, may
well be shifted as in the case of the direct signal (plamne

wave), as long as the specular component plays a meaningful

g sin

role (i.e., —_T——<<l)' This can be justified since fluct-
. c sin V¥
uations of the specular component are small when —~—X———<<l.

Both unspreadness and deterministic phase relationship ensure
that the specular component does not cause an appreciable
error in horizontal interferometer. However, it causes
intensity fluctuations in the observed signal.

On the other hand, the diffuse component, due to its
direction.spread, will cause errors in the direction
estimation. Direction spread of the diffuse component is

different than that of plane waves, howeVer. The phase

19



relationship between the set of diffuse components, jointly
observed at the array, is not deterministic as that of
plane waves. This fact as wéll as the small power leﬁel

of the diffuse component (considering homogeneous terrain)
will alleviate the effect of direction spréad to some
extent. Finally filtering effects, as the emitter moves
on, are helpful. 1In Chapter 4, we will treat the hori-
zontal interferometer in detail‘under the condition that

Wy (= cos B) is slowly varying.
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3. SURVEY OF TYPICAL ANGLE'OF'ARRIVAE'ESTIMATION SCHEMES

In this chapter, we review previous works related to

the angle of arrival estimation in interferometer systems.

The maximum likelihood method (ML) is exclusi%ely used in

most of these studies. It is characterized by the follow-

ing properties under reasonably general conditions [5]:

1.

where

The ML estimate converges in probability to the
correct value of the parameter, as the number of
independent samples goes to infinity. Equiﬁa—
lently, the bias in the ML estimator (if any)
diminishes asymptotically.

The ML estimate is the efficient estimoator if
the latter exists. If not, ML estimate is asymp-
totically efficient; that is,

varfe, () - o1 _

2 >
3 lnp(R/e)

(-E{ 1)
362

9 is the unknown parameter to be estimated,

-5
R is the N dimensional joint observation,

--)-
p(R/6) is the conditional probability density of R,

~

and also

> v
GML(R) is the ML estimate of 6, given R,

given 6,

>

Var, E denotes variance and expectation respectively,

3.

>
with respect to R, given 6.
The ML estimate is asymptotically gaussian,
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N(8,0, ), where @ is a variance of the ML

Qe f¢

estimate at 9.
The literature reviews given here, emphasizes descriptions
of system condifuration, signal models, and resulting

statistic.

3.1. Case I [6]

The system used here is a minor variation of the basic

variable baseline correlation interferometer, which
employs relative phase detectors between a reference

th ,
sensor and the k sensor of array. Before proceeding,

the configuration of the relative phase detector is shown

in Fig. 3.1.

R(t)cos(wt + ¢R(t);reference

filter I(t)

V(t)cos(wWt+d(t))

filter Q(t)

jMl:\"\

Q@ ; multiplier
Fig. 3.1. Basic relative phase detector.

v(t), I(t), ¢(t), ¢R(t) are narrow band-limited signals.

I(t) V(t)R(t)cos (o (t) - ¢R(t))

(3.1)

Q(t) V(t)R(t)sin(¢(t) - ¢R(t>);

Here, the constant gain factor is omitted. This relative

phase detector provides quadratures of incoming signal

with respect to reference signal, and thus 1s used as the

22



basic bhlock in interferometer systems,

Fig. 3.2 shows the case of the kth baseline pair
where the signal is recei&ed by the isotropic antennas at
A and B separated by k half wa#elengths. Half wa%elength
spacings in this array configuration are taken primarily
for simplicity and also to avoid the inherent ambiguity
involved in observables; that is,the phase ambiguity.
Phase ambiguity will be discussed in more detail in

Section 3.3.

we T T T T T o - o o
Jw 12 : T 8
v(t)e 5 W(t)ej(wt+k cosf)
) jwt jut
&= n_(t)e @—n, (t)e
AN
time delay
T>> %%— time delay
1;>>2TT
Aw
hase shift
¢= lr-
2
v (t)‘“‘*%}“ v, (t) . _l
a b Jva(t ) %Dvb(t—r)
LpF LpF
Ty 1 U
- D
jj
/2 /7
2 %, 2 ¥y
. th .
Fig. 3.2. Interferometer at k baseline,
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Remote noisy point source at angle § measured from the
baseline is exciting the system., The path difference of
the source's incoming wa&e will cause an RF phase differ-
ence of (%E) [k(%) cos 8] = km cos & = k§, where § =

™ cos 6(-m<é<m). From now on, & is considered as the
direction parameter. According to Fig. 3.2, the kth base-

line output is given by,

1]

I, () Re<Va(t)V:(t)>Te (3.2)

%
Re<jVa(t-T)'Vb(t—T)>Te

Qk(t)

where Re stands for "real part" and <-.> for finite averag-
ing process of LP filter. Subscript Te represents effect-
ive averaging time; that is, the time constant of the low
pass filter. Equation (3.2) is, in essence, the same as
Equation (3.1), except that complex envelope representation
is used, and the bandwidth of LP filter is considered.

It is assumed that the signal

v(t) = v'(t) + jv'"(t)

and noise (3.3)

na(t) n;(t) + jn;(t)

1

n, (t n'!(t) + jnl'(t

L(E) = nl(£) + jnf(e)

are independent complex gaussian processes, whose quadrature
components v', n;, né, etc., have zero means and variances

Vv, N, N, etc., respectively, with flat power spectra

within the system bandwidth of Aw rad/s.

24



E{vPvi} = v (3.4)
P29
P_4
E{ = N§ :
nans} _ p,qda’B
where p,q = ',", @,B = a,b and ¢ , & are the Kronecker
Psq 0‘:6
deltas. The noise considered is combination of receiver

noise and incoherent background noise uniformly distributed
over the angle.

In the ideal case of infinite correlation time (i.e.,
t = o), the filter outputs are the two dc %alues. Under

e

the assumption of ergodicity E{+} is replaced by <->

i

kl're=oo T cos k69 leTe=°° = T sin ké (3.5)

2V is the total power in the received signal

Where T
and is proportional to the source strength. However, for
a practical averager, the pair Ik’ Qk will be slowly vary-
ing random processes whose pdf can be assumed to be
gaussian with mean given by Eqs. (3.5), respectively,
provided that Te>>l/Aw. In general Ik is correlated with
Qk’ with correlation coefficient p(Ik, Qk) dependent on

the delay time 1 through the transfer function of the low

pass filter. The variances of Ik’ Qk depend on the
direction to be estimated. By choosing delay time Tt1>57e,
I

K> Qk become virtually decorrelated.
A transformation is performed to obtain the final

observables {x,,y, }, whose variances are independent of
k’>7k

the parameter § to be estimated;

V2 1 1 Qg
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E{x,} = T cos(k§ + %)

E{y, } = T sin(k§ + %) (3.6)

p(xk!yk) = O!

Var{xk} = Var{yk} = b(T + 2N)2 = 02;
where b is determined from system parameters. The ratio

T/o (and not T/N) is recognized as the baseline measurement's
voltage SNR. Taking sequential samplings of (xk,yk), the
resulting set of measurements are statistically independent.
With this system configuration the problem is to
estimate (T,8) jointly, given (Xl’yl”"’xN’yN)' The

conditional pdf of observables, given (6,T) is,
N
E fk(x

1
> >

L(S§,T; X,¥)

» v, 38,T)
K k>’ k

N
= (2n02)_N . exp{—l/202 + % [(x, - T cos «a )2 +
k k
k=1
( - T si )2]}
Y sin o,
n
o, = ké§ + % k =1,2,...,N (3.7)

~

The ML estimates & and T jointly maximize L or its

logarithm; thus,

8 gnlL(8,T,x,y)]| . =0 (3.8)
36 -
§=8
T=T
9 an[L(8,T,%,y)1] . =0
9T §=6
T=T

Equations (3.7), (3.8) determine the ML processor.

The likelihood function L(é,T,z,;) has N local maxima with
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one global maximum, along d, The Cramer~Rao lower bounds

of estimation errors are computed by taking the diagonals

-1 . , . . ,
of T , where T is Fisher's information matrix.

2 2 ]
_ d (ZnL) ) 3 (lnL)
862 980T
T=E 2
az(an) _ 9 (gnL)
i 3T36 8T2 |
2
O§=0—2 3 6 2 (3.9)
T 2N + 3N~ + N
gl = ot 1
T 1 + 4b N

In this referenced paper, results show that the asymptotic
property of ML estimate is achieved with relatively small
N, which is a decreasing function of output SNR.

3.2. Case II [7]

An array of receiving elements is placed in a medium
in which plane waves are incident upon it. Each receiving
element is assumed to have an omnidirectional characteristic.
The geometry of the array is shown in Fig. 3.3. An
arbitrary coordinate system is placed af the center of the
array and the position of the ith receiving element is
given by the displacement (di) along the x-axis. A planmne
wave whose propagation vector is lying in the XY plane, is

incident on the array at an angle 6.
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Y
incident direction
3]
o 0 o— X
2 . . origin . k . . . N
(dk.0,0)

Fig. 3.3. Interferometer array geometry

Here, the XY plane is the plane formed by the incident

ray and the axis of array. The array actually measures

polar angle relative to its axis, considering phase shift

relationship between sensors. At any position vector T,

the plane wave may be represented by the form Aoexp[j(—z-

o + wt)
vector,

phase.

>

r
=

], where AO is the amplitude, k is the propagation

w is the angular frequency, and ¢ is an arbitrary

¢ is assumed to be uniformly distributed on (0, 2m)

and independent of Ao’ and AO is assumed to be Rayleigh

distributed with known variance. This model implies that

in-phase and quadrature components of the signal have

gaussian amplitude. In complex signal notation, the output

from the kth sensor is then given by,

signal

. E_ d,

b/ o exp (j ZN(X—) cos 6 + jwt), (3.10)
where, b is a complex gaussian random Qariable with zero

mean and
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E(bb*) = 2-00 | (3.11)

/2

1 .
The term (ES/T) is a normalization term, where ES

is defined as the undisturbed signal energy and T is an

observation interval. At each sensor, we also observe

~

noise nk(t), which is assumed to be narrowband, zero mean,
complex gaussian noise. Therefore, in complex notation,

the narrowband output of the kth sensor, fk(t), is given

by,
- . E d -
2 (8) = 5D exp (s 2050 + ny(0), (3.12)

where u is the direction cosine, cos 6. As a convention
taken in this reference, the observed output rk(t) equals

V2 Re[rk(t) exp(jwt)]. Provisions are made to measure the

inphase and quadrature components r (t), at the output of
k

h
kt sensor.

The complete observation is represented by the N

sensor outputs and this can be compactly written in vector

notation as
<+ E - >
_Ss

e) = o=S1Y% A + nco) (3.13)

T

N ~
where, T(t) is the Nxl vector with components rk(t) and

dl
exp(jZﬂ—Tu)

= Zd (3.14)

Lpr(jZW—%u)

=g
|

P
The observation variable ¥ for signal processing is defined

29



by

1 e T 1 r
r A J — r(t)dt
0 T
T E > >
- 1 2 s
- f 2L b2 /2 h(u) + n(t)lde
/T
0
-~ F1 e
= b s + N (3.15)
e 1 T2
with N = — n(t)dt,
T
0
> = z
where s equals /ES m(pg) and N is a zero-mean complex
gaussian vector with covariance matrix 2-KN. b is assumed
to be constant during the observation period T.
z 7
E(N NT) = 2.K (3.16)

N

where "+" denotes complex conjugate transpose. The ML

z
estimate p, given r is given by generating two dummy hypo-
rd
theses, HO and Hl' Under Hl, r is given by (3.15) and
E z
under H , r is just N.
° z
L(r,u) A
- p(F/H)
P o
~ < -
Eb[p(r/Hl,u,b)]
= N 3 (3.17)
p(T/H )
where Eg denotes expectation with respect to b.
We can proceed directly, based on (3.17). However, we

will take a more general approach [8]. Under hypothesis

Hl’UQ

r(u) = bs(u) + N = g(u) + N



B i o oo AR

E(r(w)rt ()

> > > >

~ ~ -~ ~

E(z z) + E(N N

Let 2-K1'J
T

]

= 2.K2 + 2:Ky (3.18)
M 1.N ?+ n *
p(x/H,,u) = (2) - expl{-r (2:K°) "r}
! " | 2x" | r
N : . (3.19)
- 1. N 1 "+ -1
p(r/H ) = (=) - expl{-r (2-K.) "r}.
R o T !ZKN N N

Given r, the minimum mean square error estimate of z,
-5

denoted by Zg» is given by

> =

z, = Hr(u); where H is the (N,N) matrix
= . H . H —1

H = 2 Kz(2 Kr)
e
= KZ (Kr)
- uo_ uy-1 _ _ uy-1
= (Kr KN)(Kr) I KN(Kr) . (3.20)

Multiplying both sides of equation (3.20) on the left

by KN gives,

u -1 _ -1 -1
(Kr) = KN KN H. (3.21)

Combining (3.19) with (3.20), (3.21) gives
>
p(r/Hl,u)

L(%,u)
r,u = .
p(f/Ho)
K
I~E| exp(l %+ K_1 H %)
U 2 N
|k |
T
| Z| expEEt k2t kY - owH7TH oD (3.22)
M 2 N Z r
|k |
T
v 2z 2t
But Kz o, & 8 (w)
o2 2 2t
Kr = 0, 88 (n) + KN (3.23)



Substituting (3.23) into (3.22), and manipulating matrices,

we have
02
> T ;1 2 + =1z 2+ ~1x
L(t,u) = - {5 < Op E) KN 5 KN } (3.24)
o
b
where
G2
2 b
Ty ERCR 0
b N

~

The maximum likelihood estimate of u,u is obtained by
>

measuring r and using it in (3.24), and then finding the yu
that maximizes that expression. Also (3.24) can be used
for detection purposes with some preset AO. IThe likelihood
ratio in (3.24) has another interpretation as an estimator
correlator, as is clear from (3.20).

~ >

where b is MMSE estimate under hypothesis Hl,u, given r.

Thus (3.24) can be written as,

2 .
o
2 >+ ~-17 =
L(T,u) = —g exp(% F3 KNlb 3). (3.27)
g
b

This is the estimator correlator form for the likelihood

ratio. This is also further simplified by noting that KN

. + . . . .
can be written as W W where W is a whitening matrix,.

e 2 =z =z z
Then, defining Sy as Ws and rw as W¥, we have

2 2
9] >+ =
L(%,u) - g (% T sw(u)). (3.28)
%

A processor implementing this result, is shown in Fig.
(3.4).
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IR adi IS I i 4o 4

YT ™~ — -
Swl(U) swlag

W + . + + >
@D— L @_*_ 2nL (T,u)
+ |2 b
1
1 . GTZ
/T s fuw) : nc 2
Sw Sw, qu) b
: 7 N
G sTLEE ‘
0
L
Estimator
Fig. 3.4. Estimator-Correlator receiver.
N

Specifically, considering the case when KN equals —% I,

the likelihood ratio (3.24) becomes,

2

o 2
_° o
> 2 1 b >+ 2 ,
L(t,u) = N . exp[f N N T si ] (3.29)
o 2 o 2 0
(-7) + Nog ——2-(N0b + —7)

When the array is uniformly distributed with spacing do’

the Cramer-Rao lower bound is,
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’L‘
:
3
4

var(u - w)> - 5 L
Bz 1(E,0))
du
N
-0
= 12 31 - {1 + 22}
2rd_ [E o (N° - N) NE_o
( o) s b b
X N
) (3.30)

3.3, Case III. [9]

In this reference, a 3 element linear interferometer
with nonuniform spacings is used. Depending on the
location of the reference sensor, two types of configu-

rations are possible.

t 6
0 | 2
N
L oe— 3+ — L ——7
RCVR RCVR RCVR
| I [
I
2
MKmA¢l AsinA¢1 2
AcosAqb2 AsinA¢2
Phase Phase
decoder decoder
Ad, A¢,

Fig. 3.5. Midphase Configuration.
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| N 1

N M 2
0 h —-—>T<— A ———>T
RCVR RCVR RCVR

T e
2
TN —"T\ - _®
I - A ®
2
Phase Phase
decoder decoder
2 l
1
A¢2

Fig. 3.6. End phase configuration.

Figures 3.5 and 3.6 show block diagrams of the Mid
and End phase three elements interferometer systems.
Signals from a linear array of three antennas are passed
through narrow band receivers and one signal is correlated
with quadrature components of the other two to produce
measurement proportional to the sine and cosine of the
phase differences, A¢1 and A¢2. If the emitter is located
somewhere in the far field region at an angle 6 from the

normal to the array axis, the resultant phase differences

will be given by:
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Mid phase case

A¢2m [MT sin 6] Modulo 27 = b, = ¢

End phase case

]
2
=3

Ad sin 6] Modulo 2w

I
©-
-
i
©-

le

LD [(M + N)7 sin 6] Modulo 27 = 4, = 9

o
where N, M are the inter-sensor spacings in units of half
wavelengths. Modulo 27 means that observed phase is

modulo 27 of absolute phase. Thus, the phase difference
between a pair of sensors separated by D-% is dne—to—one

-1 1/D, sin~ ! 1/D);

mapping of 6 only for 6 in [-sin
]D-n°sin] < 7, to avoid phase ambiguity.
Lemma.

When two colinear sensor pairs with separations of Dl
and D2 half wavelengths are used, mapping from 6 into

(A¢1,A¢2) plane is one to one for 6 restricted to
eé(--sin_1 1/¢g, sin-l 1/g).

Here, Dl’ D2 are integers greater than or equal to

one

g = greatest common divisor of D1 and D2.

Proof.

Let D1 = g'dl, D2 = g-dz. Assume D2 > Dl‘ Assume

81 and 8, are in the range of (—sin'_1 1/g, s:‘L‘n—l 1/¢g).

Observation set, (A¢i,A¢é) is defined as the phase

differences due to 61. Likewise (A¢§,A¢§) is defined as

those due to 62.
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1
2

2

5)

Also assume §, > ®,« Suppose (A¢i,A¢ ) = (A¢§,A¢
Since 62‘> 61, the only way these two observations are the

same should be given from phase ambiguity.

g-d;*m-sin 8, - g-d -7 sin © 2nym (n, > 1)

1 1 1 1 —
(3.31)
g-dz-w-51n 62 - g-dz-n-sin 61 = 2n2w (n2 > 1),
d1
Thus n; = n, ° E;. dSubstltutlng n, = kz-d2 + 2 (2 < d2)
. _ . _1
gives n, = k2 d1 + dz <.
Since (dl’dz) is a coprime pair, £ should be zero for
n; to be an integer. Thus,
nl = k2-d1 and k2 > 1 (3.32)
2+.n
From (3.31), sin 82 - sin 91 = 2 d From (3.32)
2.k 1
sin 6, - sin 6, = Z > g
2 1 g -
Contradiction results, since both 6 and 6 lie in

1 2
., -1 . =1 1 1
the range of (-sin 1/g, sin 1/g). Hence <o 5B, #

<A¢i,A¢§> for 61, 642&:(—53'.r1-—1 /g, sin_1 1/¢g).

Thus, for Dl’ D2 relatively prime integers, the

o] =t

relation between 9 and (A¢1,A¢2) is one—-to-ine for ]9|<
regardless of magnitudes of Dl’ D2.

Therefore, given observation set (A¢1,A¢2) can be
processed to recover the correct value of 6 in the absense
of noise. The important aspects of the 6 estimation
process are well illustrated by the so-called ambiguity

diagram, shown in Fig. 3.7 for the case of a Midphase

interferometer with spacings of 3 and 4 half waGelengths.
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A%,

~30° 90° 30° 0°
(0)2“) (2’”,21\’)
(e
~41.8
—41.8° 8
|
(o
41.8° . f{j:‘* ‘fg‘;“’°
41.8 7 2
A¢1 A¢2
(an) (27\'.0)
8=0° Ady

Fig. 3.7. Ambiguity diagram.

In Fig. 3.7, A¢1 = 37 sin 6 - 2k1w, A¢2 = 47 sin 6 -
2k2ﬂ0(°,') represents (kl.kz). The principal phase plans
is taken as (27 x 2m).

As shown on the figure, the set of points corresponiing
to all possible noiseless measurements form parallel
straight lines of slope, 4/3 in this case. When additive
noise is present on the two measurements, the measured
point is displaced from the solid lines, and estimation
procedure is to obtain estimate si; 8 from (A¢1,A¢2).

In terms of the ambiguity diagram, estimation proceasdure
will first determine probable set of (nl,nz) and then
estimate sin 0 as a whole. The two parts of the estimation
may be viewed as ambiguity resolution and fine resoluticn.

The result of the ambiguity resolution will either be

correct or incorrect, and if it is incorrect, the resultant

effect on the angle estimate will be in error by such a
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large amount that the exact value of the error is of
relatively little importance, Such errors are referred

to as gross errors for this reason. It is the probability
that gross errors will occur that is important as a system
performance measure. The error in the fine resolution,
since it can take on an uncountable number of Values, will
be nonzero with probability 1, so that variance is a
measure of performance.

Let's proceed to the statistical assumptions of
observables, the relative phase differences. The phase
measurements made by the interferometer system will, in
general, be in error, due to noise present in the system
and its environment. This noise, being narrow band,
can be represented by the quadrature components with

respect to some arbitrary phase reference ¢o,
1 2 . '
n(t) = m (¢O,t)cos(wt + ¢O) + m (¢O,t)51n(wt + ¢O),

1 2 , . .
where m ', m~ are real independent gaussian signals, and
are written as functions of ¢O to emphasize that another
choice of phase reference would result in different
1 2 . . . 1 2
samples of m , m . The statistical properties of m ', m ,
however, are independent of ¢0, making the choice of

representation one of convenience.

Composite signal plus noise is,
s(t) + n(t) = A cos(&t + ¢0) + ml(t)cos(mt + ¢O)
2 .
+ m (t)sin(wt + ¢o) (3.33)

The resultant phase is then,

39



-1
¢ - ¢ =¢_ =~ tan "[——7].

\ o ' , 1

¢ € A+ m

Let the variance of ml, m2 be oi respectively, also

-+ |8

2, .
assume that Go is independent of 8. For SNR of interest,

2, 2
A /00310, it is shown that approximation below holds.

2 2 2

-1 m N m m
tan 1= 1 A—-é z.
A+ m A+ m

i?

Consequently, probability density function of phase error

¢€ approximates gaussian distribution
2 2
A -A
p(z) = —— exp[—-%—]. (3.34)
2m o 2 o
o 0

Having established statistics for phase error in model
(3.33), statistics of observables in each of two configu-
ration follows immediately. For Midphase configuration

of Fig. 3.5,

2
m
¢O = ¢z - KE ; phase disturbed at reference sensor

2
o m,

¢1 = ¢1 e phase disturbed at lst sensor
2
o m2

¢2 = ¢1 -5 phase disturbed at 2nd sensor.

. . i
Further assumption is such that mp(t)'s are independent with

each other.

The measured phase differences can be written as,
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—
A(bl = [¢O - ¢l] Madule 27
_ 0 o S, 2 2
= (¢o ¢1) + y ( m + ml) Zwkl
- : 1
= prt sin 6 + A¢€ - 2wk1
A¢2 = [¢2 - ¢o] Modulo 2w (3.35)
_ o _ .o 1 2 2y _ “
= (¢2 ¢O) + 5 (-m, + mo) 27k,
= qr sin 8 +A¢% - 27k
qm sin . ’
where p,q = baseline lengths in half wavelengths.
kl = integer part of (pm sin 6 + A¢i)/2ﬂ
. . 2
k, = integer part of (qm sin 0 + A¢€)/2ﬂ.

Treating (kl,kz) as parameters, covariance matrix of

(A¢1,A¢2) is

P A COV(A¢1,A¢2)
_ 1 . .2.T,,,1 ,.2
= E(A¢€,A¢€) (A¢€,A¢€)
2 -1 02
= (3.36)
-1 2 ,
where 02 = ci/Az.

For End phase configuration of Fig. 3.6,

. 1 2 2

A¢1 = pm sin 6 + A (mO - my) - 21rk1
_ . 1 2 2

Ap, = qm sin 6 + 4 (mO - m,) - 21k, .

Corresponding covariance matrix is given as,

2 1 GZ

1 2
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Now, ML estimate can be derived, hased on the
observation model described so far. Conditional pdf for

observation set (A¢1,A¢2) is,

P(A¢1,A¢2/Sin 9,»k11k2)
= — L expl- Lrae,- in 6 + 27k, ,A¢,- in 8 +27k, ]
palp| /2 ST 20T AR 1°7%7aT S5 2

A¢l - pm sin 6 + 27rk1 ]
-1

P . (3.37)
-f¢2 - gqm sin 6 + 27rk2

Since phase differences are taken as obser?ables, (kl’kz)
is also an explicit conditioning event as described by
the ambiguity diagram. Maximizing p(A¢1,A¢2/sin e,kl,kz)

is equivalent to minimizing the quadratic J.
. T — .
A¢l - pm sin 6 + 2ﬂk1 A¢1 - pw sin 6 + 27k

1
P-l >

«
e

-f¢2 - qm sin 6 + 2ﬂk2 _f¢2 - qm sin 9§ + 2wk2

The minimum of J with respect to the continuous variable
sin ® and the discrete wvariables kl, k2 can be found by
first finding the minimum with respect to sin 6 for given
k

k then minimizing the resulting value of J over kl’ k?a

1°72°
then minimizing the resulting value of J over kl’ k2. Let
v. = sin 8. TFor given values of k1’k2’
3J _ .
[;%} = 0 gives,

v = v
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< >
]

sin 8 = {n[p,ql2~" [p]3 7 (p,qip} 24, + 2mk | (3.38)

_q A¢2 A+ 2nk2
Applying v to J yields

J(v = v, kl’ k2)

- Tr o1l -

A¢l + anl P A¢1 + Zﬂkl

_Ad)z + ZTFkZJ —A¢>2 + ZﬂkZ_J

1 -1 2
- — {[p,ql P Ao, + 2mky )
[p>qlP " |p
q fd)z + 21Tk2

= £(p,){ads-pbo, + 21(k q - k,P)}°

f(p,q) does not depend on (kl,kz) and is always positive,
so to minimize J over (kl,kz), we need to minimize the

function
37 = (q8é, - pbé, + 2n(k,q - k,p))°
= (qa¢, - phd, m(k,q 9P .
Letting K = qu = kzp, integer K to minimize J~ is simply

given by,

1

K=l

(qu)1 - pA¢2)] round off (3.39)

Since p,q is a coprime pair, there exist unique values
of kl.kz such that K = qu - kzp. Thus, the estimation
procedure will be to determine kl’kZ' Thus, the estimation
procedure will be to determine kl,k2 as (3.39), and insert
these into the expression for sinAG of (3,38), to find é.

Let's examine the performance of this estimator. From the
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observation model,
qdd, - ph¢, = qA¢€E:pA¢€2 + 2m(k,p - k,q).

For any true kl’ s probability that correct K is chosen

is given by |qA¢ - pA¢§| <,

ky
1
€
. 1
Variance of (qu)€

‘Im¢b = [q, -p] P[ q] = b,ﬂHP(p

™

1 2
prlads_ - pao_|<m) = ere( ) -
{[p,-qlP|p F
q
y
2
Here erf (y) = 1 J e—l/2 X dx
v2m 7
Thus, probability of gross error
T
= erfc ( ~ 1/2) (3.490)
[P,—Q]P P
.-q
In the Mid phase case,
2
p =N, gq=M, P = 2 -1 o}
-1 2
so that,
[p, -q] P| p| = (2M2 + 2MN + 2N2)02.
-q

In the End phase case,

so that
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2

[ps, -al P.—p = (2M° + 2MN + ZNZ)QZ.

-q

Therefore the probability of gross error depends only on
the sensor separations, and not on whether Mid or End phase
configuration is used. In either case, probability of

gross error is,

Pr = erfel 5 u 5 1/2] (3.41)
Y20 (M° + MN + N7)
The mean square error in fine resolution is gi%en by
Cramer-Rao lower bound;
2 32 ~1
oCin 6" [Ef —2 ——— en(p(84,,88,/sin e,klkz)ﬂi

3(sin 8)

1 -1 -1
= =5 [p>qlP p

m
q

which, like probability of gross error, 1is identical for

Mid and End phase processing,

2
o2 - 39 (3.42)

sin® 2 (M2 + MN + N%)

Since erfc(*) is a monotonically decreasing function of
argument, increasing (M2 + MN + N2) will increase probability

of gross error, while decreasing @ From this, it is

sin 6°
apparent that any choice of sensor spacings represents a
trade off between minimizing probability of gross error and

maximizing fine resolution accuracy.

3.4. Case IV [10]

The maximum likelihood estimate can also be used for
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multiple source location [l1]. But we will refer to a
different approach for the purpose of this sur?ey~ In
this referenced paper, the problem of simultaneous angular
location of multiple sources with a linear antenna array

is formulated as follows.

Fig. 3.8. Linear array and signal sources.

N isotropic sensors are unfirmly distributed with spacing
d. The array is operated in a narrowband mode at center
frequency whose wavelength is A. There are m signal
sources Jl’JZ""’Jm located with angles 81,82,...,8m with
the antenna normal. Provisions bave been made to measure
quadratures at the output of each sensor. Observed

>
complex envelope z is given, from the configuration, as:
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——1 — -t Y T r—
21 51 g1
%2 o 1152 %2
. V1 Vz Vm . .
. = . + ‘ (3.43)
zN Sm gN

where v, = 1 = {1
L2m .
exp(JA d sin 91) t
Jam . 2
exp(JA d sin ei) t
N-1
exp(j(N—l)%Ed sin Gi) t
z ¢ resultant complex envelope observed at the out-
put of ith sensor ( i = 1,2,...,N).
Sj: complex envelope from jth signal source at the
reference sensor (j = 1,2,...,m).
8¢ complex envelope of receiver noise at the ith
sensor (i = 1,2,...,N).
Statistical assumptions are such that,
E(g.) = 0, E(g.g.) = 6 2, E(g's.) =0, E(S.) = 0
gi - B gigj = i,j g » gi J = ) ( i = .
Let [vl,vz,...,vm] = [v]. Covariance matrix C of
->
joint observations z is,
cs ez =g’ +veE@E§DH) T (3.44)
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Given sampled covariance C, the problem is to evaluate

the number of sigpal sounces and their angular locations
using (3.44). A theoretical basis is presentéd in this
paper, using the properties of Vandermonde Qectors.
Basically the algorithm consists of determining the eigen-
values, eigenvectors of complex covariance matrix obtained
from the sampled output signals of linear array and
solving a polynomial equation whose coefficients are
obtained from the eigenvectors. The vector of the form,
(1,t,t2,...,tk—1)T is referrea to as a Vandermonde Qector
and is denoted by vk(t).

Lemma 1. Vectors Vk(ti)’ i=1,2,...,2 are linearly
independent for k>, where ti#tj for i#j.

Proof. Consider the matrix below.

_ .
1 1 1
t]. t2 t
t2 tz t2
1 2 2
k-1 k-1 k-1
£ 2 v

Since the column rank of a matrix is the same as its row
rank, consider the square matrix formed by extracting the
first % rows. The determinant of this Vandermonde matrix
does not vanish when ti%tj for i#7j.

> > .
Theorem 1. Let {xl,xz,...,xg} be a set of linearly
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independent k-tuples with Vandermonde basis
™= ™

.QWTp
1 —
W
wT
2
wT
wl ‘
k - —
Assume W has a .rank . Construct polynomials G(x) =
T , 4+ -1 + k-1 I P
W (WW) "W vk_l(x) - x and gi(x) = Wi(W W) "W vk-l(x)
171 for i = 1,2,...,k-1. Then

f(x) = gcd(G(x),gl(x),...,gk_l(x)) pOSSesses Gj;,0 ;.. 0,
as its only roots (where gcd means greatest common divisor).
Proof. The existence of Vandermonde basis implies the

existence of set, (a,yl,yz,...yl) satisfying the following

k nonlinear equations

Vk(a) = F vy (3.45°
T .
where v = (yl,yz,...,yl) . Rewrite (3.45) as
Wy = v, _; (&)
(3.46
T _ k-1
W, Y a

Since a consistent solution y exists, y can be written as

y = (W+W)_1W+§ _1(a), and let G(a) be such that G(a) =

k
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G(a) possesses Opslyyees®y and (k-%-1) extraneous roots.

Desired root also satisfy Wy = Gk—l(a)f Hence,

wevtn Tty @) = v (), et s T]v,_y(a) = 0
from which one can obtain polynomials gi(a), i=1,2,...,
k-1. Thus f(x) = gecd{G(x), gi(x); i=1,2,.,.,k-1}
should include as its roots al’d2""’a£’ If o” is a
root of f(x), y can be found such that Fy = Qk(a’). If
o’ é(al,az,...,az), then there exist more than & linearly

independent Vandermonde vectors, from Lemma 1 (since k>%).

A contradiction. Thus the only roots of f(x) are

(11,(!2,...,@1.

- > -
Corollary 1. If vectors xl,xz,...,x are orthonormal,

2
T. + k-1
kw Vk_l(x) - (1-M)x

-1

then G(x) = w , and gi(x) =
T X T, + i-1 . 2
wi(I + (1 -X) Wkwk)w Vk_l(X) - X where A = |w |”.

) > + +
Proof. Since xi's are orthonormal, F F =W W + w

+o-1 * T -1 _ -l % T
@) T = (T - ww )T = T (L= ) v

+ - . .
Inserting (W W) 1 into expressions in Theorem 1 yields

=~ x x

T _
wk = 1.

the result.

In the case where W does not have rank %, the
following modificati?n has to be performed. Since F has
a column rank &, and row rank %, a wg can always be found

such that W_ has a rank 2, that is,

where Fp is obtained by deleting wg from its original
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position, and putting wg next to the last row, and WP has

rank %. Define

- 2 =2 -];
VP G0 = (s, xPT xS h.
. T, .+ -1
Theorem 2. Construct polynomials G(x) = wb(Wpr)
+ k-1 __p-1 T, 4 =l_40p _
LI (x) - % and g, (x) wi(Wpr) vak_l(x)
i-1

X , for i = 1,2,...,k, i#¥p. Then £(x) = ged {G(x),
gi(x)} pOSSesses 0 ;0,5 ..50, as its only roots.
Proof. Since the rows of F have been pefmuted, the
elements of vk(a) has to be permuted accordingly.

Corollary 2. For k = & + 1, gi(x) = 0 and hence f(x) =

G(x), and degree of f(x) is 2.
Proof. g(a) = [W(V~T+W)_1 wto- I]vk_l(a), where W is
>
nonsingular matrix. Thus g(a) = §.
Based on the theory described so far, let's consider
the problem of multiple source location. Consider

covariance matrix C of (3.44).

¢ = g?1 + v-EE §HT

gZI + VoAV = gZI + B.

We assume that source signal covariance matrix A is

positive definite, also number of sensors N is greater

than the number of sources m. To show that eigenvectors

of received signal covariance matrix B can be expressed
. . . 1 > >, .

as linear combinations of v,'8, assume e = V.p is elgen-

vector of B and hence C. Then we should have B.o = XZ’

i.e.,
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vAVTY = AV-B; Let VTY = A

->

VAA; = A*V-p
VAL - AI)D = 0 (aA - AD)p = O.

Since 31'5 are set of m linearly in&épendent vectors,
Thus nontrivial eigenvalues of B are the same as those of
AA. Since both A and A have rank m, it follows that B
has m nonzero eigenvalues. Also, these eigen%alues are
positive since A, A are both positi&e definite. Since
C = gZI + B, C has m eigenﬁalues greater than gz.

Thus, the problem of multiple source location is
solved by first obtaining eigen?alues of sampled covariance
matrix C, and eigenvectors associated with eigenValues(>g2).
Then apply Theorem 1l or Corollary 1 to obtain vi's. In
this case, since the roots is of the form exp{j2nd/x sin 91},
we can restrict our search for the roots to points on the
unit circle.

Consider the situation where noise assumption gz-I
is not true. In this case, the desired roots of G(x) and

gi(x) do not exactly lie onm the unit circle and we seek to

find the least square error solution satisfying the system

of nonlinear equations. Let the system of nonlinear

. e '+ +
equations be Gvk(x) = 0. We minimize & = vk(x)G Gvk(x)
subject to the constraint that x = eJe.

In this reference paper, Reddi also considered the

\

case when the source covariance matrix A is singular, due

to multipath phenomenon and various other reasons.
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In closing this chapter, it should be mentioned that
there is a vast amount of algorithms in the field of array

signal processings,
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4. SEQUENTIAL LIKELIHOOD ALGORITHM FOR INTERFEROMETER

In this chapter, we will develope a sequential likeli-
hood algorithm for a linear horizontal interferometer.

4.1 Array and receiver model

The coordinate system of the array is described by Fig.

4.1 below.
z
—>
k; wave propagation vector
R=¢
0 /"
7\ y
\\
6 ~
|
-’ reference sensor
Fig. 4.1. Horizontal interferometer and

coordinates.

The direction cosines, M., and My, are defined as in Fig.

1
2.2, and given by
U£ cos O sind . cosb
cos B coso

Ho
where W, is assumed to be slowly changing.
In the above array, the ith sensor is located at the position

(di,0,0), and its output voltage as a function of time 1is
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given by ri(t).

Fig. 4.2 represents our prototype configuration of the
associated ith channel, when the waveform received is pulse-
modulated with pulse width T. Although the automatic gain
control can be incorporated so as to maintain a constant
video level of the IF signal at P> the effect of AGC will
not be considered in this work. The Doppler shift, due to a
motion of the emitter, is assumed to be compensated by the
common reference signal of Fig. 4.2 (i.e., f = fo + fd) or
through a demodulation in general. Also the effect of
spectrum spread (, due to a short duration of pulse) on the
effective receiver noise is assumed negligible. The
observation rate is assumed to be at the typical order of
1 KHZ. 1In establishing the sequential algorithm, the
quadratures at py are used as observations because the

sequential algorithm replaces the role of low pass filter.
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4.2 Observed signal model

With the receiver structure in mind, the IF output of
.th i .
the i sensor r (t) can be represented in terms of the
complex envelope,

ciee) = Re(rl(t)exp(i 2mEL), (4.1)

~
.

where rl(t) is the complex envelope of ri(t), and is
expressed with the common reference signal providing the
phase reference.

In the description of the observed signal model, we do
not consider the variations of antenna gains for different
directions of arrivals, and also the differential delays due
to different paths of propagation are assumed negligible.

The first portion of the received signal, the directly

incident portion, is given by,

sEee) = ad(0rexp (39 (£) R (6) - (exp (3kgpy +dy) (4.2)

1 _ 2T
where ko = S5

If processing at the level of random variables 1is
desired, one can treat Adexp(j@d) as a complex random
variable, whose quadratures are independently gaussian with
identical probability densities. Later, sample values of
Adexp(jwd) are to be properly defined through the integration
over the pulse-width (see (4.13)). According to this model,
the amplitude is Rayleigh distributed and phase 1is uniformly
distributed on (0, 2m). Although the amplitude is not
always fluctuating, the distribution of phase is uniform
due to fluctuating factors such as slight variation of

57



emitter position or fluctuating phase of source signal at
each transmitting sequence.

For the sequential algorithm developed in this work,
let's assume that Ad(t) is a slowly varying function of time.
We say "function of time" in terms of discrete basis in
time, which will be clear in (4.13), (4.16). 1In (4.2),

p(t) represents a pulse modulation;
1 for te(ti,ti + T)

p(t) =
0 otherwise,

where ti's are arrival times of the signal of interest.
The second portion of the received signal is the specular

multipath return and is given by

$E(e) = a%(e)exp Gl (0) p(E) -exp (3 Uy -d,) 0L (8] -exp (Jog (£))

(4.3)
where,

p:: amplitude of the overall terrain reflection
coefficient, which is a function of elevation and
effective roughness.

i .
p- = p for all 1i.
S s
i i i .
¢ : ¢ =Y + k_ - 2h, cos ¢ for most of the geometries,
S s o} i
where the specular returns are important.

Yi: phase shift due to the complext reflection

coefficient of ground. Yl = vy for all 1i.
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k o2hi sin ¢: phase shift, due to the path length
difference between the direct ray and
the specular one. hi = h for all i.
@2 equals Py for all i in horizontal interferometer. In
reality, the observed specular component at each sensor will
fluctuate along sensors of the array, because each geometrical
center of first Fresnel regions, associated with each sensor,
is slightly separated with each other on the rough surface.
As explained in Chapter 2, it should be reasonable to assume &
strong phase coherences between the specular components,
considering the modelling of the specular components.
In a linear horizontal array, it is convenient to combine

the direct portion with the specular return. Thus,

st(e)

Ad(t)-exp(j¢d(t)-(l +Osexp(j¢s(t)))'p(t)'exP(jkopl-di)

A(t)~exp(jw(t))-p(t)'exp(jkoul-di) (4.4)

We will treat ;i(t) either as an unknown deterministic
function of time or as a complex gaussian process whose
quadratures are i.i.d. gaussian with mean zero, and locally
wide-sense stationary with low pass spectra. However, even
when gi(t) can be approximately gaussian process under a
given situation, the actual choice of model for ;i(t) depends
on the length of the processing period as is compared to
correlation time of given ;i(t).

As a remark, when there exist several of the specular
returns from a given terrain, these can be parts of ;i(t).

Specifically, each specular return with direction cosine
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+
ui can be characterized by a planewave along the sensors of
the array, and is independent of the other specular return

3 . . ) . + . 3 e
with a different direction cosine uj in their phase relation-

. . =i .
ship. Further, if the resultant S (t) is regarded as a
complex gaussian process at each sensor, joint observation
set of the array is described by spatial covariance matrix

. . . » .+ . 3
which depends on the direction cosines, ui's- This case 1is
an example of a spatially dispersive channel, the adversary

-+
effect of which may well be severe [17]. Since ui irregularly
—> . » .
depends on U(the source direction) in nonhomogeneous surface,
a priori knowledge of the spatial covariance matrix is
required to set up the maximum likelihood estimator. If a
+ 3 .
local range of Y is of interest, we may use same measured
3 . . +
spatial covariance for that interval of u.
The diffuse component can also be characterized using

the same format. However, the diffuse component is assumed
to come from a continuum of directions and not just one 1like

the free space and specular returns. To represent this

continuum, we use an integral representation in the following

form.
ey = adeo [t e oL TR du)ldu,
bd(t) = A (t)| [} pu(t) (u,u',t)exp(] 0ul~di) Wolduy
-1 -1 (4.5.1)
_ d . i -Ni . 5 .
= A (t) Od(t) b~ (t) exp(;]kou1 di) (4.5.2)

my(£) + 3 my(t)
where Ad(t) in (4.5) is an expression for convenience, consid-
ering the varying factors separately involved in the multipath-

induced paths.
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In (4.5),
p:;(t): spread in the arrival time of elemental

diffuse component coming from the direction

+|
u
i > -

M (u,u',t): complex envelope of the elemental diffuse
component expressed relative to
exp(j(ko°ui-di + 27ft). Quadrature
components are i.i.d., zero mean, gaussian,
and locally wide-sense stationary with
following covariance assumption.

i > - T * > > -> >
EQ (H,ut, e (u,u ™) = £ jauut,e’ - t")s(u’ - u")
b
(4.6)
> > > >
£, .(u,u',0) A K(u,u') for all i. (4.7)

i,1 =
This covariance states that radiation fields coming from
different directions are independent. Spatial independence
> >
corresponds to fi 3 = f-Si i K(u,u"') is the so called
channel spread function [12], and is normalized with respect
to intensity of direct signal.

The CSF represents direction spread of the given
observed signal, due to the diffuse component. The model
(4.5) is different from T.P. Mcgarty's model in that we

i > >
allow M (u,u',t)'s to be a set of the spatially correlated
i . i, >,
random variables at each t, rather than treating M (U,u’',t)
&> >
M(u,u',t) for all i which is not the proper expression for
the diffuse component [12].

Expressing (4.5.1) in terms of spherical coordinates
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(8,9),

~ TeT .
S;(t) = Ad(t) I [ pe,’¢,(t)Ml(6,¢;6',¢')exp(jkoeui~di)d¢'d6'
-7 0

(4.8)
i 2
E|MY(6.03;0',¢") |7 = K(8,9,0",9") (4.9)
™
f K(0,0;0',¢")do" = K, (8,0;0"). (4.10)

0
Assuming isotropic and homogeneous rough surface, K(6,0386")
takes maximum at 6 = 8' source azimuth, and is a function of
|6 - 0'| for given ¢. A detailed explanation of the CSF,
X > >
relation between K(u,u') and K(6,9), and the assumed properties
of the spatial correlation are given in the next sections.
> +—>' | "
In (4.6), the time dependence of fi j(u,u , t' - t") comes
’
from fluctuating factors such as relative motion of the
emitter or fluctuation of rough surface (e.g., ocean surface,
vegetation motion). The expression (4.5.2) is a simpler
description of the diffuse component from a homogeneous
rough surface.

i

Od: standard deviation of quadratures of the diffuse
.th . o
component at the 1 sensor, normalized with
respect to intensity of direct component, and
also independent of My given Moy
ol = 60 . R(¢) = S 4 for all i (4.11)
o d ) gcos¢
Od: function of the apparent roughness -
R(¢): Fresnel reflection coefficient for smooth earth
with absorption loss considered.
bl(t): normalized complex gaussian process, spatially

correlated in gemneral.
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The final term in the observed signal is the RCVR noise
component wl(t). Thus the observed signal at the ith sensor
is,

ri(e) = 8T(t) + Sp(t) + w (t). (4.12)

It is convenient to deal with an integrated form of
rl(t). Integration of rl(t) is depicted in Figure 4.1 and
is equivalent to a demodulation in general.

1 ti+T 5
ro(t,) A—J r(t)dt (4.13)
i = T
t.
i
where ti is written in an approximate sense. Thus, the
integrated diffuse component is,
i B ’d Ty, i,> -, ) . . . ,
Spleyy = a (t) JJ g(u') M7 (u,u',t ) exp(ik pyd )du,du,
(4.14)
i > > i > -
where M (u,p',t);M (U,u',ti), due to its low-pass character

as compared to a typical pulse width T.

t,+T
-, 1 i
g(U') = 1 J P, (£)de (4.15)
t,
1
- ) -
g(p') is almost 1 over most viewing directions n'. Thus
the term "p>,(t)", due to differential delay, is eliminated.
u

1
>
In summary, letting m(ul) be exp(jkoul'dl{} , we obtain

exp(jkoul'dN)

T(e) = ACeDexp (ol ))muy) Ad(ci>[f ICRAIISENERP
1 1 fad

°duldu2 + w(ti) (4.16)

where,
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t,+T
(t) b3 I T S(e)de (4.17)
t

E(%(ti)3+(tj)) = N -ToR(e, - £))

M(ﬁ,ﬁ,ti) = Diagonal Matrix with Mi(ﬁ,ﬁ',ti) being
a diagonal element.
The joint observation set ¥(ti) is the output of sample and
holder at P3 of Fig. 4.2.
Considering a sampling rate, typically at the order of
1 KHZ, 3(ti) is virtually discrete white gaussian process

with R(ti - tj) = é(ti - cj) in (4.17).

4.3. The channel spread function

From the definition of channel spread function K(ﬁ,a')

(Eq. (4.7)) and K(8,8') (Eq. (4.9)),

f{ KLU ) duldul = JJK(3,3'>de'd¢'.

Thus R(GE,UT) = k(§,81)| 298 , (4.18)
HiHoler o0
where J = d6d9 is a Jacobian. Thus, once K(g,g') is

du.du
1772 .
obtained, the CSF K(u,pn') follows directly from Eq. (4.18).

We will refer to T.P. Mcgarty's work [12] in the
> >
description of K(6,8'), which is more rigorous than the
similar expression in Chapter 2 (i.e., elevation power
density).
For a notational convenience, we will use (6,¢) for
(6',0") with emitter located at (%,¢O) in this section.

Consider radiation coming to the sensor R from solid angle
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5,6 + d¢ and 6 + d@ in Fig. 4.3. If we let ¢ = o + %(5»0),
then this solid angle‘générates a surface area dA from‘
which power must be scattered so as to be received from
this direction. Let ?1 be a &ector from the emitter at T
to the center of dA, and ?2 a ﬁector from the center of

dA to the sensor R. Radiation patternms of antennas are

assumed to be isotropic.

bisecting line T

1

i Local mean surface; xy plane
Local incidence plane; xz plane

2> .
ki lies on xz plane

g
Fig. 4.3. Spherical earth-scattering geometry.
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N ,

Let ki represent the wave vector defining the direction of
N 4 .

radiation coming from T to dA, and ks the wave vector

defining propagation from dA to R. Define a scattering

> >
cross section per unit area as ob(ks,ki). The power at R

Py

is (k Lk )dA p, is transmitter power. From

(4m) 2

2 b
2
the definltlon of K(8,¢),

-+
K(8,¢) = p°'0b(k1’ks) | da A//po
(4w)2 i g déde 4brr
: (Fm )2 ‘o, (K ﬁ ) - dA/ded¢‘ (4.19)
Chmy r, T, b i’"s . .

where 6 and ¢ are azimuth and elevation with respect to R.
ob(ﬁi,ﬁs) depends. on the nature of the scattering surface

aﬁd |dA/d8d¢| is a Jacobian. Eaéh of these terms will now
be evaluated starting with the scattering cross section.

Let £(x,y) be the height of the surface, which is

normally distributed with Egs. (2.4), (2.5). The correlation

function of the surface has been chosen to satisfy certain
regularity conditions for Kirchhoff approximation. Barrick

[13] has obtained an expression for the scattering cross

section per unit ares. It is given as
> -+ > > 2
o (kysk) = mm, * p IR(ki,ks)| (4.20)
where n, is the average number of specular reflectors per
unit area. p is the average absolute value of the product

of the principal radii of curvature at specular points and
> 2 . s -
lR(ki,ks)| is the reflection coefficient giving the

depolarization loss from a tilted surface. Following
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Barrick's result,

2
n, = (7.255/w"T2)exp(*tanzB/tanZBO),

112/

, 2 . . .2
tanf = (sin ¢i - 2 31n¢i>51n¢s coses + sin ¢S)

(cosd)i + cos¢s)

where B is the angle between the local normal on dA and
the local surface normal at the specular point.

Note that n, represents a density of specular scatterers
per unit area, and it depends on the location of surface
through B and the statistical characteristics of the
surface. For surfaces with large slope tanBo, n, can tend
to be large. Also p is given by p = 0.1378 (Tz/tanzso)seCAB,

As a result, o (ﬁ.,ﬁ ) depends on tan Bv(gc) as a

b i’ s o' T
parameter, is independent of 0 and T separately as in
Chapter 2, and it is independent of wavelength, due to
the specular (optical) point approximation.

The reflection coefficient has been evaluated by
Mitzner [14].

For horizontal-to-horizontal or vertical-to-vertical

polarization, we have (with omitting Fresnel reflection

coefficient),

2, > _ . . .2 . 2 2
R (ki,ks) —(—81n¢i 31n¢s sin es + aza3)14 sin“§ cos" g
with
cost = (1 - sin¢, sin¢_ cos@_ + cos¢. coso )lj2/2
i s S. i s
a, = cos¢i 31n¢s + 31n¢i cos¢s coses
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= gin¢., cos + cos¢, sin cos .
¢1\ ¢ ¢1‘ ¢s es

aj S

But additionally, Rz(ﬁi,ﬁs) has to be modified by considering
the actual inclination of the antenna axis in this case.
The model (4.20) is valid under the following constraints.

(1) The radius of the surface curvature is large
compared to a wavelength, Hence the tangent plane
approximation can be applied.

(2) Multiple scattering can be neglected. The
problems associated with multiple scattering are significant
in low angle geometry.

(3) (ko cos¢i)2>>l; the surface is apparently very
rough. This allows us to sum the power from each specular
point incoherently.

|dA/ded¢| in Eq. (4.19) relates the incremental surface

area to the solid angle that generates it, and is given by

|§gd¢l rg/{cscza - csca cotl[(h _/Rp) + 11}/sina.

Thus the spatial spectrum of the field 1is

1l r (2 sina
K(0,) = 37G) o(es,¢s,¢i>|1 o )
RE

where es’¢s’ ¢i’ and o all are defined in terms of 8 and
¢, given the position of emitter.

When the surface is rough, the very nature of the
roughness acts as a shadowing mechanism that pre&ents the
incident radiation from falling on a reflecting surface.
Furthermore, when the radiation is scattered, it may also

find itself shadowed from the receiving point, a result of
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the same phenomenon. Wagner [15] has derived the function
S(¢i’¢s) which is the prob#bility that a ray incident
from angle ¢i does not get blocked and generate a scattered
ray in direction ¢s, which is also not blocked. This

function, called the shadowing function, is given by

S(¢i,¢s) = {l—exp[—Z(Bi+BS)]}-[erf(vi)+erf(vs)]/[4(Bi+BS)],

where
) o
Bk = [exp(—vk) - /?‘vk erfc(vk)]/Vﬂvk
_ 2
v = lcot¢k|//2.tan B,
k = i or s, and erf is the standard error function. This

function gives the portion of the total number of specular
points both not shadowed and not blocked. However, closer
to grazing, other corrections besides shadowing must also
be included because constraints (2), (3) generally fail.

In Fig. 4.4 through Fig. 4.6, we show Mcgarty's result
of plotting the function, 10 1ogloK(6,¢). The effects of
shadowing can best be seen by evaluating the total power
scattering coefficient pg as function of range, and pg
(=2-[03]2) is given by,

2 A
Pq = J J K(6,¢)ded¢.
0o O

: g2
Figs. 4.7 and 4.8 show p, = lO}log:J J K(8,4)d6d¢d
0 0
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where, 6 =

~

~

$ldeg)
5 8 8838388

Rs10km, 320.5, NO SHADOWING

-1048

Fig. 4.4. CSF with no shadowing.

¢ (deq)
5 8388838388
T

- %: ¢ = ¢ - %, s = tanB_. R = range to

T

Re100km, 32 0.5, NO SHADOWING
-10d8

-80 -60  -40

~
8{deq)

Fig. 4.5. CSF with no shadowing.

’Z(deq)

R=10km, 8:0.5, SHADOWING

B -1048

5d8

?(doq)

Fig. 4.6. CSF with shadowing
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Fig. 4.7. Ratio of diffuse to direct ﬁower; shadowing.
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Fig. 4.8. Ratio of diffuse to direct power.

4.4, Sequential likelihood ‘algorithm

The sequential likelihood algorithm proposed, has three
o .
versions, depending on whether st(t) of Eq. (4.4) is a

complex gaussian random process or an unknown function of

time.
Let t, be t in (4.16) for convenience, t can be
regarded as a discrete integer index of sequence. From

(4.5) and (4.16), the quadrature components obtained at
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P3 are,

xp(E) = A(t)eos(@(t) + ki +d,) + mp(e) + wh(e)

ACE)sin((t) + k_u <) + mi(e) + wi(t) (4.21)

ri(t) 1
In this work, the sequential algorithm is to be applied

to local range of Moo pro&ided that rough estimate of My is

given by simple likelihood statistic based on each

observation. Thus the algorithm proposed is essentially

a tracking version with validation feature on the rough

estimate, u Firstly, depending on the nature of Sl(t),

1
the corresponding versions of sequential algorithm are
given in this section, respectively. Parameter estimation,
necessary to implement the algorithm, will be discussed in
the next section.

Suppose a rough estimate of u, is given initially by

1
the use of a simple statistic. Then M, range of interest

is defined locally, and quantized with step size Aul.
ul(k) = ¥Hyg + kAu,; k = o,xl1,%+2,... (4.22)

where M0 is the rough estimate of Hy quantized. The
estimated lower error bound as well as the degree of
complexity allowed will determine the step size Aul in
(4.22). From now on, we assume that the situation is such
that the effect of quantization error is a secondary one,
and further, the emitter of interest is statiomary within

the kth cell of ul during the several multiples of a

processing interval Tp. Thus the set of u, (k) establishes
P |
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set of hypotheses for the sequential test. We assume an
fixed u, for all the hypotheses of yl(k)'s,

As a configuration of array, we refer to Fig. 4.9.

— % —_—
0 1 2 .o . i .. N; Sensor index
di
ti - T ti is integer, t0 = 0.
(5)

Fig. 4.9. Configuration of array.

Among the ti's, at least one pair of them is coprime so as
to ensure no inherent ambiguity in the data as explained

before. Accordingly, the phase shtift term becomes,

d

Jleuyrdy = j2n(xi)ul = jzntiu1{ (4.23)

CASE 1. When Si(t) is treated as an unknown function of
time with Ad(t) being wvirtually constant during processing
period.

A

The problem is to find the estimate Wy maximizing the

=
likelihood function Ll(r(’),ul) under the condition that
-—)-
[A(t),p(t)] is unknown function of time. Here r(-)

' . . th
represents the set of observations, gathered during n

processing period [nTP,(n+l)TP]. ul(k)'s in (4.22) define

the set of hypotheses, H, 's. Observation ;l(t) in complex

k

notation is given from (4.21) as,

ey = A(t)exp (3o (£))exp (32t u ) + oty + wicny,

i=20,1,2,...,N (4.24)
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->
Conversion of r(t) is required to get rid of the

unknown parameter set [A(t),p(t)]. . The compverting pro-
cedure under each hypothesis Hk’ is given next.
Let the true hypothesis be Hg(i.e.,gl = ul(l)).

Under each Hk’ let's define the new observation set

,{yi(t), i =1,2,...,N},as following.

. 5~
zi(t) = exp(j2ﬂtiul(k))} .rT(t); * = complex conjugate
Ci _ i ~o . oo _ o0
Yk(t) = zk(t) - zk(t)’ zk(t) =T (t)

i=1,2,...,N, (4.25)

~

Rewriting y;(t) yields,

yEee) = ACe)exp (3o (£)) Lexp (327e, Guy (1) = g (k) = 1]

-+

[m; (£)exp(-j2mt uy (k)) - m_(t)]
+ Loy (Bexp (=32t uy () = w ()],

i=1,2,...,N (4.26)

At the true hypothesis H yz(t) becomes,

Q,’

I = my (6) rexp (-32mE uy (1)) = mo ()

+ow (£)-exp(-32mt uy () - v ()

i=1,2,...,N. (4.27)

In the above,mi(t)-exp(—jZntiyl(R)) is the diffuse
component with its biased phase shift converted. We restate
the contents up to now in terms of the real quantities for the
purpose of processing, and as a result, we haﬁe the
expressions (4.28), (4.29) for the obserﬁation model.
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-1 e -
M2 (t) T, (k) |mp(®)
o
M3 (t) (mp(t)
Mi(t) T, (k) mi(t)
1 1
My (t) my (t)
MY () ' | mh (£)
N . N
M (t) Ty (k) m, (t)
= S(k)+ [mg(£), m(t),...,my(e),m)(e)]T (4.28)

i . o~ .
where, MR(t) + j MI(t) = mi(t) exp ( JZntiul(l))

. R . T _
S(k) is the phase shifting matrix; S(k)S (k) 12(N+1)

o - cos(2ﬂtiul(k)), Sin(ZWtiul(k))
1 -sin (2t uy (k)), cos(2me (k).

Since we are calculating a likelihood function with the

assumption that H, is true, the observation model is given

k
by (4.27).
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S _ | 94 r, -
yR(t) 1, 0-: Mx(t)
1 | o
yg(t) 0, -1 M ()
| )
-1, 0 : MR(t)
| mice)
0, -1 : I(t
1
|
1
I
1
I
? X
N
YR(t) -1, 0 i 1 0 |Mp(t)
l ~
v (t) 0, -1 ! o 1 M?(t)
. _ L ! L _
_ ; S . -
-1, 0 ! we (€)
1
i o
0, -1 E wx(t)
! 11 (4.
-1, 0 E we (£)
1
1
E wy ()
H
I
|
1
i
H
! N
E wo (£)
-1, 0 1
1
: T (k)| |wh(e)
_0, -1 N Wt

where, y;(t) and y;(t) stand for the real and imaginary part
of y;(t) respectively. The required covariance matrix 1is,

Q (t,8) = BN (s))

N

E(w(t)wr(s) = Egé(t—s)Iz(N+l)

We can reasonably assume that under the isotropic and homo-
geneous rough surface,

Ql(t,s) is independent of ul(k), and

depends on the parameters of surface, e.t.c. for horizontal
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array, given By In general, Ql(t,s) may depend on Hy -
However, since we are obser&ing a data from the gi§en true
pl(R), it is not feasible to obtain knowledge of Ql(t,s,ul).
A sub-optimal processing would be one that assumes the same
Ql(t,s) for local range of pi(k).

oAlgorithm I

1. Under each hypothesis Hk’
oPerform data conversion from g(t).
oEvaluation Ll(;k(t), nTpit<(n+l)Tp/ul(k)) sequentially
by use of state-space approach [16].

Here, the likelihood function Ll is gi?en by,

Ly (3 (8),nTp < £<(+D)T /u; (k)

>

log fpdf(§k(c), nT <e<(a+l)T /3y (k). (4.30)

2. Select ; that maximizes L1(§k(‘)/pl(k)), and pl(;)

is the ML estimate.

CASE II. When éi(t) is treated as a complex gaussian process
during processing period.

As before, the problem is to find the estimate ;l’
maximizing the likelihood function L2(¥(t), nTpit<(n+l)Tp/ul(k))
under the condition that gi(t) is a gaussian process.

The observation model is given by (4.21), where the
quadratures of signal part are an i.i.d. pair of gaussian

processes under each Hk'

The joint observation set under hypothesis Hk is

&
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rp () NN mg (t)
r;(t) . ) ) -mo(t)
’ ' [a(t)cosy (t) I
= - * la(t)sing(e)| T
rg(t) mg(t)
£ (6) -t (k) | my (t)
'Eg(tf
W§(t)
+ * (4.31)
wg(t)
N
wI(t)
N

cos(koul(k)'di), - Sin(koul(k)’di)

where T;l(k) = . s, T (k) = I.
sin(k uy (k) d;), cos(k uy (k) d,) ©

Rearranging (4.31) yields,
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E’jg ()]

tg(t)

rg(t)

rfu:)J

From (4.28),

where, Si(t) =

combined signal part observed at the Oth

r——l ™
ToC () :: Fs.l<t>
' !
TTh (k) S (t)
1 : 2"
i e
: m;(t)
E
O

512(N+l) mp (t)
!
{
]

. 1
1
I
I
| my (£)
1
]

-1 | N
[Ty (&) 1 1 [mre
[ -1 : I N
T0 (k) E Sl(t)
1l 5. (t)

1 ! ) (t

]

1

! M (t)
E sT (k) R

1

s
i

1

1

1

!

f N
| My (t)
I

-1 | N
_?N (k) ! J _?I(t{J

cosy (t
ACt) sing (t

The required covariance matrix is,
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w0 ()]

wy (t)

wp (t)

Wl (t)

— -

- _
w;(t)

w‘I’<t>

(t)

w

2 wm=

WI(t)_J

ﬂ is the quadratures of the

reference channel.

(4.32)



— | 7
: : ]
E(S, (£)8,(5)) 0 !
. : 0
0 E(Sz(t)Sz(S» |
- o — - o o o —— —— e = —— - ———
1
!
Qz(t’s) = i
0 !
i
1
1 T
LEQr(e)m(s) )
> >T No
E(w(t)w (s)) = 7 6(t—s)-I2(N+l)
From (4.32), the sequential algorithm for this case is

the following:

Algorithm II

1.

Under each hypothesis Hk’ the obser&ation model is
defined by (4.32).

Evaluate Lz(?(t),n'l'p <t <(n+i)Tp/u1(k)) sequentiallvy,
based on the observation model (4.32) by use of state
space approach.

Here, the likelihood function L2 is given by,
>
Lz(r(t),nTp < t <(n+l)Tp/ul(k))

f . (F(t),nT_ < t <(n+1)T_/u, (k))
log —R45—. P p_1L (4.33)
fpdf(r(t),nTp < t <(n+l)T/HNULL)

>

~

Select k that maximizes L2(¥('), u](k))? and ul(k) is
the ML estimate.

In (4.33), after pl(ﬁ) is. selected, Lz(pl(ﬂ)) can be

used for the detection purpose with some present. value Ao.

Pattern of Li(pl(k)) over k may also be processed for the
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detection purpose.
CASE III

When gi(t).is'treated as. a constant, during processing
period.

This situation corresponds to the casé when the emitter
of interest is relati&ely stationary in all the aspects.,
The problem is to find the estimate ﬁl, maximizing the
likelihood function L3(;(t),nT§ < t <(n+1)Tp/ul(k)) under
the condition that gi(t) is a constant. The joint observa-
tion set under each Ho is given by (4;31), whére {A(t)cosy (t),
A(t)sinp (t)} are constants during processing period.

Algorithm III

1. Under each hypothesis Hk’ the observation model is
defined by (4.31). Evaluate L3(?(t),nTp St <@FDT Lu ()
sequentially by state space approach,

-—).
Here, L3(r(t), ts—:NT . ul(k))

p
fpdf<¥<t>, ceN, /ug (k)

log — P (4.34)
fpdf(r(t), tsNTp/HNULL)

>

As an approximate way to obtain (A cosp, A sinp), integration
of the each quadratures (r;(t), r?(t)) at the reference
sensor is performed during processing period. Delay of cata

is required to obtain the sampled mean of quadratures.

2. Select k maximizing L3(k), and ul(k) is the ML estimate.

4.5 State space model of signal and diffuse component

We will refer to the observed signal model in Section
4.2 throughout this section. First order discrete gauss-

Markov model is used for all the random processes involved,
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due to practical limitatiqns. ~Also random processes are
assumed to be locally-stationary as before. Firstly the
signal part, if gaussian processes, is modelled as,

S, (t+1) a,, 07 [s,(¢t)] e, (t)
L ) 1 1 + 1 (4.35)

S, (t+1) 0, a; :sz(t) e, (t)

where quadratures Sl(t)’ Sz(t) are i.i.d. low-pass processes
in steady-state. The diffuse part can also be modelled,
using the same format.

The state-space model of joint diffuse component is

o) - — -7 O ~ ~— 0 -
FﬁR(t+1) M (t) dp (t)
[0} (o] (o}
MI(t+l) MI(t) dI(t)
* = 32 . 12(N+l) : + : (4.36)
N N N
MR(t+l) MR(t) dR(t)
N N N
My (+D) | _ ) My (8] 4 (8]

M;,I(t)’ as defined in (4.28), is an identical low-pass
process at each (i, R, I). Also, (M;, Mi) ié pairwise
i.i.d. at each i,

To implement the sequential maximum likelihood algorithm
of Section 4.4, we need to know the parameters of underlying
random processes. From the reference model (4.35), (4.36),

a straight-forward problem statement is to estimate the

following parameters from the given observations.
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1. a;
2. a,
3. varle,(t)]
4, Var[d;(t)], p =R or I
> S
5. Spatial covariance Matrix, Cov(d(t), d(t))
The observation model (4.29) and the state space model of
joint diffuse component (4.36) describe the estimation
problem of the underlying parameters for the Case 1, and
also the models (4.32), (4.35), (4.36) are for the Case II.
Since the observation models depend on ul(t) in all three
cases of Section 4.4, the current parameter estimation,
using the joint observation, can only be performed aposteriori,
and will be used for the next processings. This approach is
reasonable, provided that the parameters involved are slcwly
changing and also a sufficiently correct My is given. The
- > .
parameters except Cov(d(t), d(t)) may be estimated at each
sensor output, since these are not parameters of joint
character.
Depending on the complexity allowed, various kinds of
the estimation schemes and a proper simplication on the
> -
Cov(d(t), d(t)) can be employed, ranging from a simple
approximate measurements to a sequential estimate of underlying
parameters.

4.6 Implementation of the Algorithm TII

In this section, we will proceed with Case III under
-—>
some assumption on the spatial covariance matrix, Cov(M(t),

M(t)).
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From the diffuse component model in Section 4.2,

1,1
~1i _ d i > - . v, ] ]
Sy(t) = A (t)J J M™ (u,u',t)exp(Jk uy-d, )duyduy (4.16)
-1 -1
-4 “ 5%
E(sy(t)sy ()

1,1
_ d 2 > oy . ] _ ' v,
= [A7(t)] J J fi,j(u,u ,O)exp(Jkoul(di dj)duzdul,
-1 -1

j<3,3',0) Mt (LT, oM (5, 01e) %) from (4.6)

where f.
1,

= K(p,u') for i = j
d 2 1 > >
= [A7(t)] K(u,u')duydug for i = j
-1 -1
= %1% 2202

From the above form of correlation, the following

compensating factor is set from a macroscopic point of view.
~1 1 .
E(S;(£)83 (£)%)
1,1
—_ d 2 ++' O 1] 1] 1]
[A7(t)] j J K(u,u )EXP(JkOul(di dj)duzdul.
-1 -1
2, 2

exp(—(di—dj) /Qf).

Here, Zf is the characteristic spatial correlation
distance of the observed diffuse component. Qf is locally
defined within the aperture dimension, and depends on the
given geometry of emitter and the statistical properties
of rough surface. In a linear horizontal interferometer, Qf
is assumed to be locally independent of My given My -
Distribution of the diffuse power along ui,J K(K,K')dué,
can be approximated to be locally even aroG%d uy, source

direction in many cases.

\

Let ui beul + Al.
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o1 aJ p
E(S3(£)83 (£)%)

wrl
- [Ad<c>]zexp<jkou1(di-dj>>[J J KGi,u ' exp (3koA] (d;-d,))
-w -1

duydsy - exp(-(d;-d,)%/19)]

(bracketed term is a real quantity), where w is the spread
width of Ai determined from the criterion on the power level

- >, 3 i -
of K(u,u'), and depends on the source direction u.

- o3
E(SD(t) SD(t)*)

Il

E(ng(t) + jmi(e)) (m(e) - jmd (£))

t

. _ . i .1 i ]
exp (jkguy (dy=d ) "E[Mp(£) + FM7(e)) (Mp(e) - §M(e))].
From the arguments made so far, it is reasonable to

assume the following
i 3 _ i 3
E(Mp (£)MJ(£)) = E(M(£)M3(£))

-1 ad? (w lK(+ P exp(j k_ -+ A! + (d,-d )duldu!
2 j HoH o Jexpil X, 1 SRR Rkl el
-w -1

exp(—di—dj)z/lﬁ
i j _ i J - /
E(MR(t)MI(t)) = E(MI(t)MR(t)) = 0. (4.38)

Equation (4.38) defines Cov(ﬁ(t), ﬁ(t)) in theory in
the presence of spatially dispersive channel, based on the
CSF and the spatial correlation distance Qf.

A simpler form of processor can be obtained by using
unspread channel approach in the presence of spatially
dispersive channel, in which case spatial correlation factor,
exp[—(di—dj)zzg], is to be disregarded. (T.P. Mcgarty, [12]).

We will take a different simplification by taking the
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advantage of horizontal interferometer; the CSF K(E,K') is
relatively concentrated around My - Thus the following

approximation is taken.

wel
>y s CAT. _ U 1
[ J K(u,u') eXP(JkO Aq (di dj)duszl

-w -1
wrl
= +'+v..V|=.2
= J J K(p,u')-1 du?_dAl 2 od. (4.39)
-w -1

When ko-w-dN<<l, (4.39) is perfectly correct. According
to (4.39), the qualitative behavior of the diffuse component
lies between those of the specular and the RCVR noise, and
thus the effect of the direction spread is not treated
explicitly other than a contribution of power in the linear
horizontal array.
> >
The simplified covariance matrix Cov(M(t),M(t)] is

given by,

Cov[M(t),M(t)]

d 2 2
- %010 |1 0 by, 0 by 0

2

D 0 1 0 by, 0, S
A 0, 1 0
21, (4.40)
0, A,y, O 1
AN,1,0 1 0
0, By, 0 -

2, 2
, where Ai,j = exp((di—dj) /Qf.

From the state space model of the diffuse component

(4.36),
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]

Cov (¥, 1) a% Cov (M,H) + Cov (d,3)

(4.41)
Cov(g,g)

(1 - ag)c°v(§,ﬁ)

Under each hypothesis H, in Case III,

K the following models

are the relevant ones.

r—0 u r ] —O N r—O ]
MR(t+l) MR(t) dR(t)
o] (o] o]
MI(t+1) MI(t) dI(t)
=2 |Lym+n) || - +
MY (t+) MY (£) a¥ee)
R : R R
N N N
MI(t+l) MI(t)-J dl(t)
0 ()] 171 | O (e 00y ]
R o R R
(o} [e] o]
rI(t) MI(t) wI(t)
S
1 T
- = |57 (k) +
S2
ry (t) My () wy (6)
r?(t) T&l(k) ‘ M?(t) w§(t)
T _ i IR R
\ J \ /
3 2" (t) 3 s¥(e)
Under the null hypothesis HNULL’
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rp(e) wa (€)
€2 (6) w2
rg(t) Wg(t)
r?(t) w?(t)

The above set defines the system matrices for Kalman
filtering to evaluate likelihood function sequentially.
Let's assume that the parameter set [D, a2, lf,No] is
estimated from the pre?ious data, and thus write down the
equations necessary for the sequential evaluation of

likelihood function.

Ly (t/ug (k) = 1og{fpdf(§k(t), £eNT )]

}

Log{f 4e(F(E)/Hyy )

e

Al(t,k) - Az(t).

From now on, the index k as well as the vector notation
"+" will be omitted whenever the meaning is clear.

From Schweppe's formula [16],
2[2,(£) = A (e-1)]
- 1og(2n)2(N+l)[zzﬁtJt-1)| -~ qT(ers M e/ q(e) (4.42)
where,
q(t) = z(t) - z(t/t-1)
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= z(t)

- s, (e/e-1) = 2(e) - sTEOM(E/em1)

Let's dengte the first sequence in every Nth processing

period as t

during each

= 0 for convenience. Tp séquences are taken

period. Then, in (4.42), the initial conditions

are given by,

q(0) = z(0)
Xl(—l) =0
£,(0/-1) = E(2(0)z"(0))
T Feoy. @ Yo
= S (k)Cov(M(0), M(0))S(k) + 7 12(N+1)

(4.43)

N .
Cov(M(0), ﬁ(O)) is steady-state covariance matrix.

Kalman filtering equation is,

M(t+l/t) = az-ﬁ(t/t-l) + K(){z(t) - sT()M(e/t-1)}

M(0/-1)

= 0.

The gain matrix K(t) is given by,

]

K(t)

R2 =

where error

a, P(£)S(k)[ST(K)P(£)S(k) + Rz]‘l
1
2 Yo Ton+1)

covariance matrix P(t) is,

P(t+1) = ay-la,l, yoqy = K(©ST)IR(E) + R,
R, = cov(d(0), T(0)) = (1 -ajcov(H(0), H(0))
P(0) = cov((0), (0)). |
In (4.42), I_(t/t-1) = P(t) + 22 I. A,(t) is sequentially

evaluated by use of M(t/t-1) from Kalman filtering .
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2(1, (£) = A, (£=1))

2 (N+1) %f%— rT(t)»r(t)

Q
with A,(-1) = 0. » " (4.45)

= —log(Noﬂ)

Thus, the recursive equation for L3(t’k) is,
2{L(t,k) = L(t=1,k)}

= 2{a (t,k) = A (E=1,k)} = 23a,(t) - x,(t-1)}

= —1og(2n)2(N+l)lZz(t/t-l)l - qugl(t]t—l)q(t)
+lOg(Noﬂ)2(N+l) + §~ rT(t)'r(t).
(o]
- 10522 ggln (ere-n |+ (2 #T(o) e (o)
o
~a"(e) 1t ese- (e (4.46)

Equations (4.42)~(4.46) define L3(t,k), once
[az,Cov(ﬁ(O),ﬁ(O))] is given uder the first order state-space
model of ¥M(t). 1In turn, Cov(ﬁ(O),ﬁ(O)) depends on [D,zf,az]
under the simplified covariance matrix model of (4.40).

As a possible simplification, one can think of the
following.

1. Use of the steady-state Kalman gain matrix, during

each processing period.

2. ST(k)%-ST(O), since local region of By is
interested in tracking &ersion, where yl(O) is
being updated with Pl(O) = ;l(Tp). With ST(k) =
ST(O), zz(t/t—l) is independent of hypothesis H,_
assumed.

The remaining future area is to obtain an alternative

way of updating (az, Coi(ﬁ(O), ﬁ(O)) by a feedback-type
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adaptation.
- As for the future -analy»s.i.s, the following ones are
important:
1. Sensitiﬁity'of the sequential ML estimate al'on
the underlying paraméters in&ol&ed.
2. Justification of thé usé of first—ordér state-

“~

space model, as far as ul‘is concerned.
3. Analysis of direction spread effect by some practical

parameter.

In summary, the exact block diagram is drawn for the

sequential processing of case III.
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In Fig. 4.4, the following conventions are used:

- T > : Transpgose of column vector

B : [A] X [B] . — ; one sequence

delay in t.

+
: add or subtract
+
— I > : summation (integrator)
— K : constant gain
subblock I : Kalman filter under each Hk
subblock II : likelihood calculator under each H, .

k

4,7. Simplified algorithm

In this section, we will extend the statistic described
in Section 3.3, Case III. The same receiver configuration
of Fig. 4.2 will be used except the following replacement of

the common reference signal (IF) as given below.
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IF output
from the
ref. senso

IF output
from the
2nd sensor

Fig. 4.

IF Output from the 1lst Sensor

?} Phase
2
r oo & ' 9 A¢l
L @—0(t) _| P3 of
Holder decoder .
. Fig.
IF Output from the ref. Sensor
P3
I(t) _|] Sample Phase
- ! ¢ e & p' _> A¢2
_ Q(t) 3 of
Holder decoder Fig.
11. Receiver configurations for

. i I(t) Sample

Midphase of Case III.

With dynamics of emitter relatively in a wide range,

3

3.

one can assume that the emitter is within the given ambiguity

lobe during a processing period T

by the range to the emitter.

As a simplified version of algorithms described in the

T
p

will be determined

previous sections of this chapter, a sequential hypothesis

test will be given to the ambiguity lobe (kl,kz) of Section

3.3. The

algorithm to be described is a combination of a

sequential hypothesis test with the usual statistic based on

each observation for the fine resolution of sin 9.

94

The

.5

5



qebjective of this approach. is to enhance the performance of
ambiguity resolution,. ,;gi;';%'e'n: the specification of error in
the fine resolution,

First assumption on the ébserQéd signal model is that
the diffuse component can be approximated to an independent
process from sample to,samplé. The abo&e situation may be
expected to arise in practicé when the spectrum of diffuse
component is wide, due to a largé tangential Qélocity of
the emitter, (tangential to thé ground), or when other
rapidly fluctuating factors are in&ol%ed.

Let the IF outputs from each sensor be xi(t)'s.

x (£) = (A(t) + mi(t) + wi(t))coé(mt + ()

+ (m§<t> + wi(t))sin(gt + 9 (t))

x, () = (ACE) + ml(e) + wi(t))eos(ut - prv(t) + @ (£))

) 9 : (4.47)
+ (ml(t) + wl(t))sin(wt - ppv(t) + @ (t))

x,(£) = (A(t) + m;(t) + W (£)) cos(ut + qrv(e) + ().

+ (m%(t) + wg(t))sin(@t + qqov(t) + @ (t)) J

v(t) = sing(t): p(t) is the angle from the normal to

the axis of array as in Fig. 3.5,

mz(t): quadratures of the diffuse component at the

.th . ' , 2
i sensor with variance ap

. . . th
wi(t): quadratures of the receiver noise at the i

. " . 2
sensor with variance OR

By use of integrator in the configuration of the
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receiver, we can re-define the observation properly as in
the case of Eqs. (4.,13). or (4.16), Thus from now on, we
will neglect thé notatignal-compléxity. As é note, we
mention the followingsip connection with the above represent-
ation of xi(t)'s,
(1) coswt is referenée’signal in mind, and is used
as phase referencé;
(2) A(t)cos(&t + ¢(t)) is the combination of the
direct component and spécular component.
(3) Receiver noise is originally represented by w(t) =
wl'(t)cos@t + wzj(t)sindt. Representation of
the form wi(t)cos(ut + @(t)) + w2(t)sin(wt + ¢ (t))

T
1 2 (t)) by the orthogonal

|
is related to (w~ (t), w
transformation, which preserves independence
between the quadratures.
wo(t) cosp (t), -sing (t) wo (t)
(4.48)

w (t) sing (t), cosyp (t) wo (t)

Due to the white property of wi'(t), the correlation of

wi(t) is the same as that of wi'(t) for any sample path ¢ (t).

Thus the statistical property of (wl, wz) is the same as

that of (wl', wz'), and only sample Values are different.

Same arguments hold for ¢ (t) + prm sin®(t), and also for m?(t).

From Equation (3,33) which corresponds to xi(t)‘s and

the observation model (3.35), the observation (A¢1, A¢2) at

Pj of Fig. 4.11 is giﬁen by
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8¢, (t) = PV + A(t)(m (t) - m, 2(t) + W 2ey - W 2e)) - 27k
= prv + A;q,i(c) - 2mi,

D6, (8) = amV + Tery (sma(e) + m2(e) - wa(e) + wl(t) - 27k,
= qnv + i(t) - 2wk2

(4.49)

where (p, q) is a coprime pair of integers as before.

We assume one emitter under homogeneously rough surface.

2
g

Under this environment, - is usually less than 0.1, consid-
A

ering Fresnel reflection coefficient. Consequently,
2

_7(OD + oﬁ) is less than 0.2 with E§«<0.1. Therefore, we

A AZ

may expect that the In-phase components are not important,
and thus we obtain the obserﬁation model (4.49) for elevation
greater than 59, The restriction on the range of elevation
is necessary to ensure above ratios, considering the cancel-
ling effect of the specular component.

Also the amplitude of signal A(t) is assumed to be
slowly fluctuating, so that we can treat A(t) virtually
constant during the processing period Tp. Hence we may
treat (A¢i(t), A¢§(t)) as stationary, independent process
during the processing period Tp (i.e., power of the diffuse
component will not be Qarying much, due to the limitation
of the emitter dynamics). Provision to reject an abnormally
low value of A(t) is to be made, since data is then meaning-

less. Also we assume that spatial covariances of m?(t)'s

are independent of 6.

97



- By using the statistic based on each observation, the

fine resolutiaqn estimate‘Qkﬂ k,(t).is'gi&en from Eq. (3.38)
Tkyuky
by
v (t) = sind] = 7 ([ qﬂp'i-p )"l[ ]P“1 Ap, (t)+27Tk
kysk, kp sk, P2 P9 1 1

g . A¢2(t)+2wk2

Covariance matrix P should be E[A¢i,A¢2]T[A¢i,A¢§] in order

for vk K (t) to be the ML estimate for the fine resolution
1772

at each (kl’kZ)'
ol 2 -2 2 2
P ~E(—E my - om [ml m_, - m, + moD
A
—m2 + m
1 2 2 2 2 2
+ E(—i wyo- oW [w1 W T oW, Wo])
A
2 2
-w2 + wo
U; + oﬁ
= ( 5 ) 2 + Ell -1 + 812
A
-1 + 821 2 + 522
where, €, . is caused by the spatial correlation of m?(t).
Let's disregard €, , in P. Then P becomes
2 2
2 -1 (QD + cR)
P = . 5
-1 2 A

. . 5
Consequently, we don't have to know the variances of o and
q Yy D

02 as well as ¢, i in the formula of Qk k(t). The only

R 1,

knowledge necessary in P is as before. However, it
_l 2
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should be noted that v

K k'(t) is no longer ML estimate now.

1’72
All possible set gf'(ki,kz) establishes the set of

hypotheses to be tested, given arbitrary lengths of baselines.
We will define the effecti&é obserﬁable for the ambiguity

resolution.

V(t) - Vk Lk (t) = e(kl,kz’t)
1?72
= sino(t) - (nlp,al®™* [p]) " p.q12™" [Be, + 27k,
q A¢2 + 2nk2
-1 -1 15-1
> -(rlp,qlP [%}) - [p,qlP 6o (¢)! , at the true
1
q .
boc (o)
hypothesis. (4.50)
k ,k2
Define zq (t) = A¢l(t) - pﬁvkl’kz(t) + Zﬂkl
kl’kz (4.51)
z, (t) = A¢2(t) - qvvkl,kz(t) + 2ﬂk2

Combination of Eqs. (4.49), (4.50) and (4.51) yields

k
1’72 1
z, (t) q'q, -pq’ bo_(t)
_ at the true
k., k ‘ ' 2
- A
zzl 2ty qp ', PP o_(t)
hypothesis, where
) ~1 -1
[P', q'] = ([p, Q]P P ) [P, qlP
q
thus p'p + q'q = 1 and p', q' >0, p'#q'. The above square
matrix is singular as expected. At the true hypothesis,
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(t)
(e

2(e) = (p" + q") [q, -p]

(’)Nm)—‘

"." gign is taken for example. Hence, define final effective

obserﬁable z(kl’kZ’t) for the ambiguity resolution by,

1 Kok - kpeky
z(k;,ky,t) = PR (z; () -z, (t)) (4.52)
—>[q, -pl A¢i(t) at the true hypothesis.
2
Ay _(t)

Let the true hypothesis be (jl,jz) explicitly from now on.

kl,k2 _
- - v '
zy (t) A¢1(t) plp'y, q'] A¢1 + 2Trkl + anl
A¢2 + 2ﬂk2
jl’jz(c) Colp'.a'l ke —i.| - 2me2m(k -
ky -3y
ko,k R — -
1 2 1 2 : . .
z, () = z, () - alp'sq'] |k, -3;| © 2m+27(k,-],).
ko 3]
Thus Z(kl kz’t) = Z(jl,jz,t) + A(kl’kz) (4.53)
. Sy _ I
with Z(Jl,JZ) = [q, =-p] A¢€ and,
2
A¢€
A(kl’kz) = ZN[Q(kl—Jl) - P(k2 - jz)}- (4.54)

When p and q are coprime and also p,q =:(e§enéodd), A(kl’kz)
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0 if any only if,(kl,ké) =*(j1,j2) for any (kl,kz) of
interest. As a note,the additional condition that (p,q) =
.(efenﬁodd) is necessary to avoid the ambiguiﬁy at extreme
hypotheses, (e.g. in‘Fig}'3;7§ (-2, =2), (l,1) the extreme
ones) when one of them is true.

Hence z(kl’kZ’t) is a gaussian proéess with mean
A(kl,kz) at a false hypothésis, and beéomés a gaussian with
mean zero at the true hypothesis. Thus the sequential test
reduces to the sequential mean test, particularly with
Z(jl’jz’t) being shared among all Z(kl’kz’t)'

Define K(kl,k

2’Tp) for each hypothesis H(kl,kz) as

below.
A(kl,kz,Tp) = log p(Z(O),Z(l),-..,Z(Tp—l))
P is joint pdf.

z(t) is defined under each H(kl’kz)

Tp—l
= tEO log p(z(t)), due to whiteness of
z(-)
But,
1 1 2
p(z(t)) = —— exp ( - 5 2 (£))
2T ot th
where
o, = [a, -p] = P - |4
-P
.1 2.1 .1 .2
P0 = E[A¢5’A¢e] [A¢€’A¢8]a
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Thus

T -1 S T -1

P ey o P
X(kl,kz,T ) = L log( ) - 5 -
P =0 . X 9, th £=0

(4.55)

2
z- (kl’kz’t)

Maximizing A(kl,kz,TP) is equivalent to minimizing
LI
z

y(ki’kZ’Tp) = Azz(kl,kz,t), and under the assumption of
0

local stationmarity we don't have to know the underlying

covariance matrix Po. The ambiguity resolution is achieved

by selecting (31,32) that minimizes y(kl’kZ’Tp) over (kl,kz).
Implementation of these combined algorithms can be

depicted by Fig. 4.12.

siﬁe(t), based on Low-
b (6 each observation for pass sing (t)
1 all the possible Filter delayed
H(kl’kz)
A, (t)
(kl’kZ’t) After the decision 1is
te[nT, (n+l1)T) made at each nT,
select 81ne(t)]31,j2

Fig. 4.12. Implementation of algorithm.
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At the true hypothesis,;siﬁe'(t) is given from Eq. (4.50)
by,
oo o -1 o1 4=l
sin 6(t) = sinQ(t) + [wlp, qlP ~ |p| ]
q

1

[p>qlP” A¢i(t)

A¢§(t)

Los pass filter smoothes the estimation error (caused by
A¢i(t), A¢§(t)) by rejecting the fluctuating high-frequency
portion. Consequently, although sinNQ(t) is not ML estimate,
these estimates are impro&ed by thé filtering to a certain
extent. When the number of the ambiguity 1obés is quite a
lot, the following version can be useful.

(1) In the search mode of interferometer, use the
usual statistic based on each observation
described in Section 3.3.

(2) After the reliable acquisition 1is made, say
(jl’jz)’ use the sequential hypothesis test on
the neighboring set of hypotheses around
(jl’jZ)' Update (jl’jZ) continuously as the

decisions are made.
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5. CONCLUSION

In the deri&ation of statistic for estimating the
source direction, the 'statistics of obserﬁables usually
does not include the effect of scattering from the rough
surface. That is, the&source—dépendent noisés are not
considered. Also the statistic is usually based on each
observation, so that the first order distribution is all
the statistical knowledge required. Accordingly the
statistic is usually simple, but is more susceptible to a
performance degradation in the multipath en?ironment. In
Cases II and III of Chapter 3, a knowledge of co%ariance
matrix of noise is not necessary to estimate the source
direction, as far as the obserVed noises are spatially
independent and identical, and are independent of ﬁ assumed.
In Case IV, only the Qariance of receiﬁer noise is required
to obtain the sampled covariance matrix of source signals.

In this thesis, we have considered the linear
horizontal interferometer under the multipath environment.
Our work has been carried out in a way to use the observa-
tions sequentially and to include the background noise
statistics, due to the scattering from rough surface. The
sequential maximum likelihood estimator has been derived,
and applied to the local inter&al of Hy - Consequently a
computational complexity is reduced, due to the tracking
version. We haﬁe assumed one source under thé homogeneous

rough surface in the derivation of algorithm. Measurements
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of some underlying Paraméters are necessary to implement
the proposed algqorithm, dué tomitS'considération of the
multipath effect. We also hafé'extended the statistic in
Section 3.3 to the comhinéd form, in'which‘méasﬁrements of
the underlying parameters are not nécessary dﬁe to the
assumptions in Section 4.7.

The essential assumptions aré as follows: Firstly,
we have assumed that emitter is stationary in the cell of
interest during se&eral multiples of procéssing period Tp.
Secondly, the models of random processes in#ol&éd remain
as a problem to be examined further.

The future goal is to make the sequential algorithm
an adaptive one, which ensures the adaptiﬁe convergence
of the estimate in a multiple source situation under the

environment of rough surface.
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