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ABSTRACT
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Associate Professor
Electrical Engineering

The problem of efficiently routing vehicles from many origins to
many destinations in a large Automated Guideway Transit (AGT) network
is formulated into an optimization problem. First, a system using a
vehicle-follower strategy is modeled at various levels of complexity
by aggregating states over sections of guideway link. At the simplest
level, the state variables are the link densities while a more complex
model includes the specific vehicle-follower control dynamics by
defining a link velocity as an additional state variable. Discrete
vehicle simulations of a mérge Junction, diverge—mérge Junction, and
'a station are used to show the models adequately represent actual link
density and delay. All models are nonlinear and nonconvex.

An optimal control problem is formuleted by devising a performance
index based on total system delay (time averaged travel time) subject
to the dynamic flow constraints of the network. Duality theory is
applied to decompose the overall network dynamics into vehicle type
(origin—-destination pair) subnetwork constraints that are decoupled
in vehicle type state and control but coupled through the intercon-
nection variables of total density and total control. The resulting
structure of the subnetwork dynamics is then exploited to allow a

distributed control computation where each node in the network only




needs to communicate with neighboring nodes to optimize the dual
function objective. An upper level coordinating control, localized to
each link, seeks to satisfy the interconnection constraint that the
sum of individual vehicle type densities is equal to the total vehicle
density on the link. As a result, all control computations can be
performed in a completely decentralized manner where information
exchange only occurs between physically sadjacent wayside control
computers. Convergence of the algorithm is proven,

Computational studies of a L station, 58 link network is used
to demonstrate the efficacy of the proposed algorithm, It is shown
and proven that no duality gap éxists for the problem (convex cost and

non-convex constraints). Moreover, several suboptimal control schemes

with reduced computational requirements are presented and evaluated.
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1. INTRODUCTION

Automated Guideway Transit (AGT) systems are a relatively recent

development in transportation technology, intended to serve urban
regions and major activity centers such as airports, shopping dis-
tricts, and universities. They are characterized by automatically
controlled vehicles (driverless) of small-to-moderate size, operating
on dedicated guideway networks that have either on-line or off-line
stations. In addition, AGT systems can vary in complexity according
to vehicle size, system capacity, network density, and whether routes
are fixed, selected at the time of trip request, or dynamically

selected as vehicles progress through the network.

1.1 The Routing Problem

A large AGT network may be briefly described as a dense network
composed of hundreds of miles of connected guideways, joining as many
as a hundred stations (typically off-line), and containing possibly
thousands of vehicles. Consequently, the problem of efficiently
distributing and routing vehicles between many origins and destinations
is of considerable importance in terms of customer acceptance, cost-
effective operation, and energy use.

One approach to this problem is a reservation system (or .
synchronous—method) that selects an entire unimpeded route for each
vehicle before it departs an origin station. A second approach,
possibly more appropriate to large systems, dispatches vehicles on
demand at origin stations with local wayside computers at intersections

solving the merging and routing problems on-line.
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Algorithms for this latter approach are developed in this thesis
and are structured by the following situation. As each vehicle enters
an intersection, the vehicle is assigned to a particular outgoing link
based on its origin, destination and the state of the network. The
vehicle is then assigned to follow a preceding vehicle and controlled
according to specified merging and spacing policies. It is assumed
that these latter problems (merging and spacing regulation) are of
a local nature and can be solved independently of the routing problem.
An additional problém is the distribution of empty vehicles from
stations where demand is low to stations where demand is high and
ijs included as part of the routing problem.

From a practicality standpoint, there is considerable advantage
in solving the routing problem by local control. Suppose routing
strategy were determined by a central control node in the network.
Such a node would periodically obtain information concerning traffic
congestion from all other nodes in the network and solve the current
routing problem. For a network with many nodes and vehicles, the
communication requirements would be costly. In addition, there can
be serious problems when either the control node or any communication
link fails. Consequently, from a economic cost and reliability view-
point it is beneficial to design a distributed routing control
algorithm. For example, each merge junction mey ccmmunicate only
with its nearest neighbors to determine the dynamic routing of vehicles
throughout the network, the objective being the avoidance of vehicle
bunching and excessive delay.

In formulating the routing problem it is first necessary to

develop models that adequately represent the dynamic behavior of
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traffic flow in the network so that algorithms for the management of
vehicles may be designed. In principle, inter-vehicle dynamics are
known to a fairly high degree of accuracy for an automated system

and therefore, one could easily derive a microscopic traffic flow model
based on discrete vehicle behavior. However, such a model would be

of extremely high order and would lead tc a complex and costly control
algorithm. As a matter of judgment and practicality it is likely

that an aggregate model using macroscopic variables such as density,
flow, and average velocity will prove to be sufficient for the suc-

cessful application of on-line control laws.

1.2 Objectives

In view of the above discussion, the basié objectives of this
work are as follows. The first is to devglop aggregate traffic flow
models for an automated transit system., Next, an optimization problem
is to be formulated by devising a performance index representing
system delay. Minimization is subject to the dynamic constraints of
the network (flow model) with control variables being the routing
of vehicles through the network and the dispatching of empty vehicles
from surplus areas to deficit areas. In particular, it is desirable
to design distributed algorithms as an effort to minimize cormunication
requirements.

Background literature for investigation of this problem is v o=

reviewed in the following section.




1.3 Previous VWork

The fundamental routing problem may be viewed as a nonlinear
multicommodity flow problem, a problem that has received wide atten-
tion in the nonlinear programming literature, although priﬁarily for
the static case. Recently, more research has been devoted to the
decomposition and efficient solution of large problems for both the
static and dynamic situations. In particular, applications have
centered on traffic, power, and computer communication networks.

For the specific application of automated transit systems we begin
by reviewing the work that has been the most analytic in nature and
then discuss some pertinent work in the related fields of traffic
and computer communicationcnetworks. Finally, theoretical work in
the area of large-scale dynamic systems most useful for this appli-

cation is summarized. First, the modeling problem is reviewed.

1.3.1 Traffic Flow Models

Previous work in developing traffic flow models has concentrated
on the problem of automobile traffic in congested urban streets and
freeways. Many models are based on the original continuum model
of Lighthill and Whitham [1] derived by using the analogy to continuity
of fluid flow. Cunningham [2] has applied this model to the routing
of vehicles in an AGT network, although, the effects of intervehicle
dynamics are not included. These effects have been studied with
respect to automobile traffic by either empirical derivation of .
dynamics [3] at high density or applicaﬁion of statistical mechanics
at low to moderate densities [4]. An additional problem that has

received less attention is the description of vehicle dynamic behavior
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at intersections [5].

Fortunately, the modeling of an automated network dces not contain
the complicating factors of an urban traffic network such as passing;
parked vehicles and human behavior. The interactions between
vehicles in a automated system may be described according to a well-~
defined longitudinal control law (Garrard et.al,, [6] and Pue, [7])
that is based on accurate measurements of vehicle position and velocity,

The longitudinal control laws that have received the most
attention may be classified according to one of two approaches,

The first, usually termed point following, assigns each vehicle to

a moving cell, the cells being propagated along the guideway network
at predetermined velocities and spacings. In this case, propulsion
commands are generated so that each vehicle maintains its location
within its assigned cell. The second approach, termed vehicle-
following, is a control scheme which allows communication between
successive vehicles such that the motion of a given vehicle is
controlled in accordance with the motion of its neighbors. In
particular, the strategy of greatest practical interest is where a
vehicle follows the motion of its immediate predecessor; this approach

is specifically considered in this thesis.

1.3.2 Automated Transit Network Studies

The analysis of automated transit networks has been exclusively
limited to point-following systems or a model which makes no distinc-
tion. In [8], a steady-state point-following model is assumed and
flows are assigned to each link based on minimization of a performance

index given by the sum of fleet size cost, travel time cost, and
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wait time cost., Tong and Morse [9] also study a point-following
system but divide the system into cells of consecutive slots. The
vehicle management strategy examined employs a fixed routing policy
where each vehicle is assigned a particular route before leaving
a station. The vehicle is then assigned to occupy the first cell
leaving the station which has an open slot for a vehicle traveling
the designated route. It is shown in [9] that the system may be
properly phased so that as two distinct cells pass through a merge,
they merge together, slot by slot, and may be locally merged without
conflict under certain explicit conditions, |

In [10], a point-following network is analyzed from the viewpoint
of queueing theory for both local merge control and synchronous
control methods (Sec. 1.1). The two methods afe compared by calcu-
lating expected delay where for the local merge case, a station is
modeled to be a M/M/1 queue and a merge is a M/M/1-Mg queue where Mq
is the maximum queue length. For the synchronous case, the -probability
of securing a reservation is computed;

In [2], a model based on conservation of flow is used to determine
a suboptimal control (i.e., routing variables) which minimizes the
maximum value of the sum, over all links, of the densities squared.
Simulation of the strategy revealed a distinct oscillatory behavior in

the vehicle densities.

1.3.3 Traffic Network Studies
There is a large body of literature concerning the traffic
assignment problem [11] for the static case, Several investigators

have included dynamics for the problem of freeway ramp metering as for
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example, in [12]. A few references which have considered the network
problem are discussed below.

In [13], Kaya develops a traffic flow model based on conservation
of flow with flow being & nonlinear function of density. An optimiza-
tion problem is formulated that minimizes a performance index based on
waiting time to get on a freeway, travel time, waiting queue length and
vehicle density with control variables being the flows on to the
freeway entrance ramps. It is noted that the problem is separable
and nonlinear programming techniques for separable programs may be
applied, however, no specific algorithms are given.

Merchant and Nemhauser ([1L], [151) formulate a dynamic traffic
assignment problem using a discrete time, single destination model of
vehicle flow where the number of vehicles leaving each section is a
nonlinear function of the number of vehicles on that section and
the conservation of flow constraint is em@loyed. A performance index
sums over all sections a nondecreasing cost that is a function of
vehicle numter. The performance index is minimized by using a piece-
wise linear approximation and then applying linear programming decom-

position techniques.

1.3.4 Related Work

We now discuss several references that are related to the general
'problem of routing flow in networks using decentralized approaches.
In particular, much work has been accomplished in the area of computer
communication networks.

One of the first works to apply mathematical programming to

computer cormunication networks is found in [16]. Cantor and Gerla
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formulate the optimal routing of packets in terms of extremal flows
and then solve a restricted master problem using the gradient pro-
jection method. A linear subproblem is then solved to determine if
the solution is optimal and if not, what extremal flow should enter
the basis. The approach is static where all flows are determined
apriori.

An on~line computational algorithm is presented by Gallagér
[17] where the gradient of the total delay with respect to the routing
variables is computed in a distributed manner, That is, the compu-
tation is accomplished at each node in the netwérk using information
only from adjacent nodes. The proposed algorithm seeks to equilibrate
marginal delay, and is shown to be loop free,

Bertsekas ([18], [19]) expands on the work of Gallager by
formulating the distributed computation approach in terms of a mathe-
matical programming problem using a gradient projection method. It
is shown that Gallager's algorithm is a special case of a class of
algorithms using this method.

Another distributed approach is proposed by Meditch [20] who
uses the goal coordination technique for large scale systems to decom-
pose the routing problem. The conservation of flow equations are
decoupled by breaking each link into an input flow and an output
flow. The dual problem is then solved where an upper level controller
seeks to satisfy the interconnection constraints (the input flow is

equal to the output flow on each link),
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1.3.5 Large-Scale Systems Theory

There has been much work related to the analysis and design of
large systems as descfibed in [21]. We will restrict attention to
the deterministic optimal control of nonlinear systems and cite
several of the references most pertinent to this problem.

A unifying discussion of techniques used for decomposition of
large mathematical programs is given by Geoffrion [22] where various
approaches to problem manipulation and solution are surveyed,

Most of the work on large-scale dynamic systems has adopted
the viewpoint of low-order first level controllers which are coordina-
ted by a second level central controller tc achieve optimal perfor-
mance for the overall system [23]. Specific algorithms are analyzed
by Pearson [24] who investigates the role of duality and coordination

in multilevel control.

1.4 Outline

The approach taken in this thesis is to develop accurate dynamic
models of vehicle flow and formulate a performance index based on
total, time averaged, travel time. The resulting optimization problem
has convex cost and nonconvex constraints. Duality theory is applied
to decouple the overall network dynamics into vehicle type (origin
destination pair) subnetworks. The triangular structure of the
subnetwork dynamics allows a distributed control computation to
solve the dual problem while an upper level ccordinating control,
localized to each link, seeks to satisfy the interconnection
constraint that the sum of the individual vehicle type densities

is equal to the total vehicle density on the link.
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In Section 2, an extended summary of the results cf this work is

given.

Section 3 provides a general description of an automated trans-
poftation system, the network layout, customer demand,.associated con-
trol problems, performance measures, and motivation for the approach
used to solve the routing problem.

The modeling of traffic flow for vehicle-follower systems is giv-
en in Section 4. The simplest model defines state as the vehicle den-
sity on a given guideway section while a more complex model includes
the specific vehicle follower control law used between vehicles, and
is represented through a link velocity, an additional state in the mod-—~
el. The validity of the models is tested with a discrete vehicle sim-
ulation and shown to well represent the actual system over a wide
range of conditions.

In Section 5, the network control problem is formulated into an
optimal control problem using the dynamic constraints derived in Sec-
tion 4 and a performance index which averages travel time over all
links in the network. The advantages of applying duality are then
demonstrated.

Section 6 gives a description of the specific algorithm used for
solution while Section 7 proves convergence. Section 8 contains com-
putational results when the algorithm is applied to a 4 station, 58
link network. Certain aspects of convergence such as run time, state
initialization, Lagrange multiplier initialization, step-size selection,
control initialization, and problem duration are examined.

Section 9 proposes several suboptimal control strategies that

approximate the optimal control algorithm in various ways. Simulations
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of these strategies show significant savings in computational cost
with little degrdation in performance.

Section 10 discusses practical issues concerning implementation
such as algorithm initiation and termination criteria, and computer
storage and speed requirements,

Finally, Section 11 contains conclusions and recommendations for

further research.
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2. SUMMARY

The basic objective of this work is to develop on-line control
algorithms for the routing of vehicles through an automated transpor-
tation network. The first step is to derive and evaluate a set of
macroscopic models analogous to traffic flow models, for the particular
case of automated vehicles under vehicle-follower control. Next, an
optimization problem is formulated and sclved by distributed computa-
tion. Finally, the optimal algorithm as well as several suboptimal

strategies are evaluated by computer simulation.

2.1 Flow Models

The flow models assume a control law where each vehicle controls

its motions according to the motions of the immediately preceding

vehicle, the control policy being a constant time headway of h seconds.

Two models of traffic flow for an infinite string of vehicles are
derived. The first is based on a static velocity-spacing relationship,
that is, vehicle spacing is given by hv + L where v is vehicle velocity
and L is vehicle length. The second model includes the specific veh-
icle follower control dynamics by aggregating a velocity state over a
guideway section. The former was chosen for algorithm design.

For both models, a flow function was developed to represent the
behavior of flow when links are connected into Junctions, that is,
merges and diverges. The flow functicn was derived by observing a
discrete vehicle simulati&h of a merge junction and comparing several
possible models based on mathematical derivation and physical intui-

tion. By & process of discovering deficiencies in the proposed
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models and providing improvements, a final version that well represents
behavior at junctions over a wide range of densities and bunchiness of
input flow was selected. For example, at a headway of 3 sec the |
model compares favorably to actual vehicle density in a range of

.01 veh/m to 0.1 veh/m where the guideway section length is 100 m and
the maximum velocity is 15 m/sec. Thus, the lower bound corresponds
to a single vehicle, while the upper bound corresponds to vehicles at
a 2 m/sec velocity. Outside this range, the behavior of individual
vehicles becomes significant and the averaging technique used for the
model is invalid. This became evident when simulating a diverge

and station.

The flow function has the form, qi+l(yi’yi+1)’ where q, ., is the
flow into link i+l and Yis Yi4q0 8T€ the total vehicle densities on
links i and i+1, respectively. The function depends on the physical
characteristics of the guideway section through specification of a
meximum velocity on each link. The function, QLiyqe is nonlinear.

The flow due to a particular vehicle type J is assumed to be the
fractional portion of that vehicle type on a guideway section. Iif xi,j

is the density of vehicle type J and Y is the total density then the

flow due to type J is

where all densities are a function of time. Defining at time k, the

velocity function, as s
b1

1+l(k) = qi+l(yi’yi+l)/yi’ the density of vehicle

type J on link i is given in discrete time by

-13-



X 1) =% GG + Tley ) o (k)xg 5 (k)

- a (k)xi,j(k)]/Di (2.2)

1,i+l
where T is the integration step size and Di is section length. The

above model is extended to include a merge and a diverge. For a di-
verge, the routing control variable, 0 < u,

i,d

fraction of vehicle type J density routed onto one outgoing link,

(k) < 1, is defined as the

Thus, we define a total control Vi = Iu

. 9N .
3 i,31,J
As a result, the dynamics associated with a particular vehicle type

have the form

xj(k+l) = [Aj(k) *Iouy J(k)Bi

1eCj ’ j(k)]xj(k)+rj(k) (2.3)

vhere Cj is the set of diverge links for vehicle type J and rj(k) is
the vector of dispatch variables at the origin station for type J.

We associate a vehicle type with each origin-destination pair although
a destination-only formulation could be easily accomodated. The

matrices, Aj(k), B. .(k), are functions of total density and total con-

i,J
trol.variables, but we write (2.3) in this way to emphasize the
bilinear form of the dynamics with respect to subnetwork variables.
Moreover, Aj(k), Bi,j(k) are triangular in structure, that is, in
terms of subnetwork variables each vehicle-type density variable,
xi,j(k+l)’ only depends on the immediately upstream type J

densities and xi J(k). Both of these properties are used to simplify
-]

the optimization problem which we now discuss.
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2.2 Optimization Problem

The performance index used is the total time averaged travel

time (or delay) encountered by all vehicles. Thus, if r(yi) is the

travel time on link i the total cost is

K
T I 'I'Diti(yi(k))yi(k)/tf (2.h)

k=1 iel
vhere K is the number of time steps, £ is the set of links and tf is
the final time,

Minimization of (2.L4) subject to the flow constraints of the
network is accomplished by applying duality. That is, the inter-
connection constraints of total density and total control are appended
to (2.4) via Lagrange multipliers. As a result, the problem constraint
dynamics decomposes into J vehicle type subnetwork constraints that
are decoupled with respect to individual vehicle typé density and
routing control variables. The interconnection variables of total
link density and total diverge link control are treated as additional
control variables that act to couple the subnetwork dynamic constraints.
As explained below, the principal benefit of applying duslity 1s to
produce a dynamic constraint structure that allows a completely
decentralized control computation.

Because of the triangular structure of the subnetwork dynamics
and the additive form of the cost function, the effects of each
control variable upon the dual function objective can be computed
locally. To accomplish this, the state equations are integrated in
a distributed manner from origin to destination where each link

only needs to obtain information from adjacent upstream links.
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Similarly, information concerning future downstream congestion
is obtained by integrating a subnetwork adjoint equation from
destination to origin and backwards in time. Because the state
equation is triangular and linear in state, the adjoint equation is
triangular and independent of state. Thus, the adjoint equations are
also integrated in a distributed manner where each link obtains
information from adjacent downstream links.

Using state and adjoint information the algorithm is structured
so at the link level, routing, total control, and total density
variables are computed to minimize the dual function objJective.

The upper level coordinating control on each link computes Lagrange
multipliers vie subgradient optimization to mgximize the dual function
and satisfy the interconnection constraints that total density be equal
to the sum of individual vehicle type densities and total control be
equal to the sum of vehicle type controls. Consequently, the control
algorithm could be implemented such that wayside control computers

only need to communicate with neighboring computers to solve the over-
all dual problem.

Convergence of the algorithm is proven and demonstrated by
simulation of a U4 station, 58 link network. It is shown that nc
duality gap exists and therefore, solution of the dual problem
corresponds to solution of the original problem.

Several suboptimal strategies, more appropriate for actual
implementation, are proposed. It is shown for the network example
studied that significant savings in computational cost is obtained
with little sacrifice of performance. Because the computational cost

for the optimal control increases dramatically as time scale is
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lengthened, for practical implementation, it is recommended that

the suboptimal strategies be further developed.
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3. PROBLEM DESCRIPTION

3.1 System Types

Two basic types of AGT systems have received consideration for
high capacity urban travel. A Personal Rapid Transit (PRT) system
employs small vehicles for single party (one to four passengers)
service. Such systems will typically be required to operate at
headways significantly below those of conventional transit systems
in order to attain satisfactory levels of capacity, thus dictating
operating headways in the range of 0.5 to 3.0 seconds. An Advanced
Group Rapid Transit (AGRT) system is characterized by 12 to 2k
Passenger vehicles and operates in the range of 3 to 5 second
headways.

In a PRT system a party enters a station, makes its destination
known and requests service. An empty vehicle is provided and the
destination is encoded on the vehicle which then departs into main
line traffic. The vehicle is appropriately routed through the net-
work to the destination station where passengers deboard. A demand
actuated system of this type leads to the following problems [25]:

1. Selecting a vehicle to respond to a request for service

at a station, e.g., assigning a vehicle from station
storage, calling in a passing empty vehicle from the main
line, or waiting for the next inbound vehicle to arrive.

2. Disposing of an empty vehicle at a station after its

passengers have departed, e.g., placing vehicle in storage,
assigning vehicle to another passenger, or dispatching
the empty vehicle to ancther station.
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3. Selecting a route for each vehicle (occupied or empty)
once it has been dispatched.

In an AGRT system additional questions arise due to the multiple

party occupancy of each vehicle:

1. Once a vehicle has been assigned to one party, will it
wait for other passengers and for how long?

2. Will service to other passengers be limited to those going
to the same destination or to certain destinations that
are "along the same route"?

3. Will the vehicle be permitted to stop at stations along
the way to pick up other passengers or ﬁossibly diverted
for pick-ups?

L.  Should transfers be permitted?

To select algorithms for sclution of the above problems, we

may formulate the management of an automafed transportation network
into a control problem., This first requires definition of system
inputs, states, controls, constraints (including dynamics) and per-
formance indices. We begin by characterizing the components which
comprise the transportation network in terms of network geometry
and demand models, followed by exposition of the various control

problems associated with automated transit systems.,

3.2 Network Model

The network geometry is described in terms of nodal elements and
links. ©Nodal elements maybe classified into five basic types [25].
First, stations are points where passengers board and deboard vehicles,

and are characterized by the number of berths, berth configuration,

-19-




length of the deceleration lane, and length of the egress lane into
mainline traffic. Intersection nodes are points where two lanes
merge or a single lane diverges. A yard designates the location

of the entrance to empty vehicle storage facilities and maintenance
area, The final type of nodal element is a link characteristic
breakpoint where certain link characteristics such as speed, grade,
and radius of curvature change. The guideway links of the network
are assumed to be constructed within the publie right-of-way, i.e.,
urban streets and highway systems and are specified according to
directionality, speed, curvature, and grade. A link is considered
to be one-way although two links of opposite direétion may parallel
one another,

Thus, network layout consists of station locations, station
configuration, link connectivity and geometry. For this work, these
parameters are assumed to be given as dictated by known and projected
population distribution in conjunction with economic cost-benefit
studies. Hence, with respect to network management, only size and
location of vehicle storage facilities are considered design variables
in the control problem,

To formulate the control problem we must relate the fundamental
system output, link flows, to the system demands and the constraints
vimposed by the above network geometry. In the following section,
the system demand model is first described. The modeling of network

geometry constraints in terms of link flows is considered in Section %,
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3.3 Demand Model

The trip request model may be specified by level of demand,
pattern of demand, arrival frequency, and diurnal variation of
demand. Network demand description therefore has several charac—
tersitics [25]. First, the number of trips between various stations
varies throughout the day. For example, morning trips are generally
towards employment centers while midday demand may be between
shopping areas. There is also variation in total trip demand as
a function of the time of day. For downtown urban systems there
is heavy morning and evening use while at activity centers such as
airports and universities, the patterns are quite different.

Variations also occur in the rate at which passengers arrive
at a particular station. For some stations, arrivals may be by car
or walking and by bus at other stations. "Thus, in the latter case
large groups will arrive with large interarrival times and in the
former case demand will be characterized by small groups with short
interarrival times. Finally, the size of a party making a trip is
of importance, particularly in GRT systems where several parties
use the same vehicle and the possibility arises of splitting parties
between vehicles.

Consequently, the demand for service at each station will vary
in a random manner throughout the day and from day to day. In
distributing occupied and empty vehicles, the ability to predict
demand is likely to be advantageous. For this purpose, it is useful
to note that demand variations will likely fall into one of three
categories:

1. Recognizable average trends in demand such as morning
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and evening rush hours,

2. Short~term random fluctuations in demand characterized

by commonly occuring brief surges or lulls,

3. An occasional unanticipated long-term change due to, for

example, sporting or cultural events.
The first two categories may be termed routine while the last may
be known in advance but the precise time and extent is often not
known.

In an attempt to predict demand changes the following-kinds
of data would be available for use:

1. Cumulative past experience such as daily trip records over

past weeks or months,

2. Current states of stations in the syétem, that is, queues

of waiting passengers and trip requests received.

To quantify demand for analysis, many investigators define a
demand matrix, where each element, dij’ is equal to the average
demand from station i to station j in trip requests per unit time.
Passenger interarrival time is then exponential distribution with

mean, dij' In addition, d,, may be a function of time to account

i
for temporal variations in demand.
We now describe the various control problems associated with

an automated transit system.

3.4 Control Problems

There are four major levels of control for an automated
transportation system operating under non-emergency or non-failure

conditions. They are:
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1. Vehicle control

2. Merging

3. Station control including empty vehicle dispatch
4., Routing. -

These problems are discussed, in turn, below.

3.4.,1 Vehicle Control

Vehicle control requires the regulation of longitudinal and
lateral motions of the vehicle during normal operation. Longitudinal
control involves the adjustment of vehicle velocities and spacings
within a string of several vehicles, the selected‘spacing policy thus
affecting overall network performance. Lateral control, on the
otﬁer hand, is only reléfed to passenger comfort and safety, and
therefore, will not be discussed further.

Two generic approaches to longitudinél control for short-
headway AGT systems have received consideration in previous studies.
They are point-following and vehicle-following, already described
in the Introduction.

For a vehicle-following system, a typical situatipn is

depicted in Fig. 3.1.

» _S(V7) >
VTt Vp ;
4 y A A A A A A A A A A A A
Uplink Downlink
Wayside |
computer |

Fig. 3.1  Vehicle - follower control.
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A wayside computer. determines the position of each vehicle within

its Jurisdiction (i.e., guideway section) by position markers,

such as induction coils imbedded in the guideway. Vehicle velocities
are also downlinked through communication lines to the wayside
computer. A vehicle-follower control law, generally based on the
spacing and relative velocity between a preceding and trailing
vehicle, generates acceleration commands to the trailing vehicle

in order to maintain a specified spacing policy, S(VT). As discussed
below most spacing policies are a function of the trailing vehicle
velocity, Ve When the spacing between vehicleé is large, a trailing
vehicle operates in an open-loop velocity command mode. When vehicle
spacing crosses some threshold value, the vehicle must account for
the presence of a preceding vehicle and a transition to the spacing
policy, S(vT), is initiated.

Several spacing policies, S(VT), havé been suggested [6]. A
constant spacing policy, employed in point following, maintains a
constant nose to nose spacing between vehicles., A constant time
headway maintains a constant time between vehicles passing a fixed
point on the guideway. A third spacing policy defines a K-factor
as the ratio of vehicle separation (tail to nose) to emergency
stopping distance. Thus, this represents a "brickwall" stopping
ceriterion where if a vehicle is operating with a K-factor greater
than one, the trailing vehicle may come to a stop without collision
if the preceding vehicle becomes a brickwall. Both constant headway
and constant K-factor policies may be used in either point-following
or vehicle-following systems. A final policy designed for vehicle-

following systems is a kinematic spacing [T] scheme where vehicle
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spacing is based on a relative stopping distance. This policy arises
in a vehicle following system because a trailing vehicle cannot
anticipate future deceleration maneuvers of a preceding vehicle

(due to downstream cohgestion). Thus, a trailing vehicle must main-
tain a spacing such that if the preceding vehicle suddenly brakes

on limits to a stop, the trailing vehicle can respond without
collision.

Many studies of vehicle~following have focused on the regulation
of vehicle speeds and spacings during perturbations about nominal
values as determined by one of the first three policies described
above. However, in general, a control capability must exist to
perform transient maneuvers such as overtaking a slower moving
vehicle, switching from an open~loop velocity éommand mode to a
closed-loop regulation mode, merging vehicles both on the main line
and from stations, and generating gaps in vehicle flows during such
merging operations. A control law based on a kinematic spacing policy
is suitable for all of these maneuvers as reported in [7] and will
be used to model discrete vehicle motion in the simulation work.

The next level of control is vehicle merging,

3.4.2 Merge Control

Many merging techniques have been studied in terms of the effect
upon vehicle delay at a junction given various types of input flows.
The algorithms ﬁhich have been studied may be classfied into one of
two general categories. First, synchronous methods are those where
all vehicles are allocated to slots which move along the guideway so

that no conflicts occur in the system, thus requiring a central
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controller. Also note these methods would be associated with a
point-following system. A second approach 1s to employ local
control where at-a given distance upstream from the merge junction,
a merge controller commands vehicle actions to assure a successful
merge of two vehicle strings. This may be accomplished in two ways:
(1) movements of vehicles are controlled by the relative movements
of other vehicles on the guideway (vehicle-following); or (2)
vehicles are assigned slots so that merging occurs without conflict.
Because a distributed control algorithm is sought the synchronous
method will not be considered. The local strategy mey be broken down
into a number of schemes depeénding on how prioritiles are assigned.
The results of studies comparing various schemes are now discussed.
The amount of literature concerning merge strategy using a
vehicle follower approach is rather limited. The only work to -~
address the problem analytically is by Athans [26] where he collapses
the two incoming merge lanes into a single lane and then considers
a string of "non-crashing" vehicles. A control law is designed
using a quadratic performance criterion for the string of vehicles,
For each possible merging sequence, the value of the associated
performance index may be calculated and thus, the merging sequence
with the lowest cost is selected. The major drawbacks of this
approach is that (1) all vehicles in the string require information
of every other vehicle in the string, (2) in a high density network
the number of possible sequences is high and the required computation
becomes excessive, and (3) the algorithm does not consider resulting
delay.

A first come, first serve algorithm is simulated by Brown [27]
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where individual vehicles through a merge are simulated using a
linear vehicle-follower control at a 4.0 sec headway. This approach
appears to be a good candidate for a merging algorithm because of
its simplicity for implementation and the fact that it tends to
treat all vehicles equally. This latter result has been shown by
several investigators in the point following case discussed below.
To implement first-come, first-serve a parallel data region upstream
from the merge junction is selected such that a merge controller

has knowledge of all vehicles within this region. Each vehicle
entering the region is then assigned to follow the last vehicle to
have entered the region whether it be a vehicle iﬁmediately in front
or a vehicle on the alternate guideway.

There is more literature available concerning merge control
dsing point;following, most likely because of its analytic tract-
ability. The most basic formulation of the problem is given by Whit-
ney [28] where incoming streems of vehicles are described by a binary
word with a 1 representing an occupied slot and a O representing an
empty élot. A terminal cost is computed by squaring the net number
of slots moved by each vehicle, and summing over all vehicles moved,
In [29], it is proved that a first-come, first-serve scheme minimizes
the cost.

The most detailed investigation of merging for a point following
system is contained in the thesis by Godfrey [30] where he evaluates
six merging strategies based on queueing models and simulation.,

He also concluded the first-come, first-serve strategy to be
cpnsistently the best strategy by measuring merge effectiveness

in terms of tail probabilities (i.e., Prob [Delay > N slots]).
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In [29], Sakasita simulates Godfrey's six merging strategies,
compares resulting queue lengths of each merge lane separately, and
comes to the same conclusion concerning the desirability of first-

come, first-serve. Some specific algorithms and problems which arise

at intersections are considered in [31]:and [32].

3.4.3 Station Control

The impact of station design upon network performance depends
upon the station guideway configuration and the station operating
policy ([33]1, [34], [35]). The configuration is the actual physical
layout of the station including deceleration and accelerating ramps,
number of berths, and layout of the docks. The station operating
policies involve the mansgement of vehicles once they have entered
the station, the unloading and loading of passengers, and the merging
of vehicles onto the mainline. It will be assumed that a station
design has been performed to efficiently handle expected demand at
that location; the only vehicle management design variable being
the handling of empty vehicles and the dispatching of occupied
vehicles,

To aid in station modeling we note the events which occur [34]
when a vehicle enters a station:

1. Time to switch off guideway

2. Deceleration time

3. Move to dock from deceleration ramp

L.  Open doors

5. Unload time

0. Load time
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T. Close doors

8. Dispatch queueing time

9. Move from dock to acceleration ramp

10. Acceleration time

11. Switch onto main guideway.

The above sequence may be altered when, for example, a Vehicle
unloads and then advances to the first unoccupied berth to await
-passengers for loading. The loading and unloading times are randonm
variables and have been modeled [3L4] using a log-normal distribution.
However, this may also be represented as a deterministic minimum
dwell time which is normally expected to be sufficient for all
loading and unloading of passengers.

The most important aspect concerning stations is the possibility
that there is no room for an arriving vehicle and it must be rejected.
The vehicle would then be routed to the nearest station or looped
around until a space is free. Alternatively, we may allow "backups"
onto the main guideway until space is free,

Pinally, in a demand actuated AGT system an essential feature
of vehicle management is to provide empty vehicles at stations to
serve trip requests [36]. Two questions which naturally arise are
where to obtain the empty vehicles and how to efficiently dispatch
the vehicle to the station. The first question deels with the
arrangement of vehicle storage facilities while the latter is
associated with vehicle routing.

The possibilities for vehicle storage facilities are as follows
[36]:

1. Each station can have its own storage
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2. Network divided into districts, each district having a
common storage
3. Moving storage with vehicles circulating through a district
ready to be called upon.
Many factors including economic cost and real estate enter into the
selection of an appropriate arrangement for vehicle storage facili-
ties. This selection process would be aided by comparing network
performance in terms of figures of merit (discussed below) for a
given vehicle management strategy and various facility configurations.
The final level of control is that of vehiéle routing, the major
problem of interest in this work. A review of li£erature was given

in the Introduction. We now describe the general approach to the

problen.

3.4.4 Routing

In the previous sections we have described the local control
problems of vehicle control, merging, and station control. We now
consider the combined problem of network control, illustrated by
the network section in Fig. 3.2. Passengers arrive at the station
loading dock and board a vehicle that has either Just unlocaded
arriving passengers or has been withdrawn from vehicle storage.
The vehicle merges into mainline traffic and is controlled by a
series of local wayside computers that communicate with the vehicle
through seasors imbedded in the guideway. ZEach wayside computer
has jurisdiction over a region of the guideway network and passes
control to adjacent wayside computers as the vehicle passes through

Jurisdictions.
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As we have already indicated, in a large network it may be
desirable to make routing decisions on-line and locally. That is,
as each vehicle approaches a diverge link the local wayside computer
makes the decision as to what outgoing link the vehicle should
travel. In addition, the local wayside computer makes this decision
based on information obtained from the adjacent wayside computers,
Thus, using this approach we utilize the communication links already
in place for the vehicle control problem and no additional links
are required,

It might be suggested that because we have a completely
automated system, we only need information at stations, That is, all
behavior within the system is deterministic and all control policies
are initiated in response to trip demands. However, any practical
system will have occasional failures, rquiring a re-start within
the network and therefore, an implementation such as that in Fig., 3.2
is needed.

The above discussion implies a multi-level structure to the
control of an automated transportation network where the levels of
control are interacting. The effects of local vehicle control,
merge control, and distributed routing must be assessed in terms
of network performance. To quantify this performance several figures

of merit may be employed as we now describe.

3.4.5 Figures of Merit
In describing figures of merit for a transportation network
we first note the distinction between a system optimizing index and

a user optimizing index. OSystem optimization involves assigning

.
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a cost to

delay and

each section based on system variables such as flow or

then summing over all sections in the guideway network.

User optimization assigns costs associated with origin to destination

pairs.

System optimizing performance measures would include:

l.

User

Total Delay - average all link delays where delay is
defined as either (1) time to traverse a link, or (2)

extra time to traverse link due to congestion, and is
weighted by the number of vehicles experieﬁcing édelay.
Total Service [12] - compute the product of the number

of vehicles on each link and the average velocity on that
link; sum over all links and integrate over a time interval
T; the result is the total distance ﬁoved by vehicles in
the network during time interval T,

Energy Use - vehicle accelerations, number of empty vehicles
traveling on network, fleet size (i.e., total number of
vehicles required to fulfill a given level of demand).
optimizing performance measures would include:

Average origin to destination delay where delsy is the
time beyond the time required for an unimpeded trip
(including wait time)

Maximum origin to destination delay

Dependability - variance in crigin to destination delay

at a given time of day.

To complete a description of the control problem, we conclude

with a discussion of the information that would be available through

sensor measurement.
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3.4.6 Sensors

The fundamental information needed for control is position and
velocity. A multitude of systems have been conceived to measure
these quantities, but at this time the most technically feasible
type of sensor appears to be one which is imbedded in the guideway
to measure vehicle position. As a vehicle passses over a sensor
(e.g., inductive loop) this event is recorded to determine vehicle
position with respect to a reference. The spacing of these sensors
thus determines the accuracy of the position measurement. Vehicle
velocity may be measured by a tachometer on-board the vehicle or
estimated from the position measurements. Using éhese measurements,
vehicle control computation is performed either at wayside, on-board
or with an appropriate allocation between wayside and vehicle. The
necessary communication links are generally through the guideway by
inductive coupling.

Other possible sensing elements would be:

1. Measure demand at stations,

2. Measure time delay to traverse a link by clock aboard

vehicle,

3. Measure number of vehicles on a link with up-down counter.

‘3.5 Problem Scope

Section 3 has been devoted to an overview of the normal
operational control problems involved with the design of an automated
transportation system. This is done to place in context the more
limited scope of the present research work, although it is intended

that the results of this work may be suitably modified and
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extended to encompass associated problems for purposes of comparison
and performance trade-off studies.

Specifically, a vehicle-follower control policy will be
considered'primarily because of its wider applicability to traffic
problems, and the general lack of studies in this area for automated
systems. We will also consider a PRT system with single party vehicle
occupancy because of its greater simplicity, a useful asset for an
initial study. The network geometry is assumed to be a general connec-
tion of links, diverges and merges; note this includes intersections
by an appropriate combination of diverges and merges. Finally, station
configuration is assumed to be a single, off-line spur where vehicles
are both queued for arrival and departure, and stored., A detailed

model of the station is given in Section 4,2.3.
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L, TRAFFIC FLOW MODELS

The major component describing the behavior and characteristics
of a transportation network is vehicle flow., This flow is determined
by the operational policies (e.g., intervehicle spacing control
scheme ), station geometries, and link connectivities (merges and
diverges) discussed above. The accurate modeling of vehicle flow
and the attendent description of network dynamics is critical to
a successful control law design., Therefore, this section discusses
in detail, the derivation of vehicle-follower traffic models and
the simulation of these models to evaluate their effectiveness in
representing actual traffic flow, We begin with the basic flow model
drawn from analogy to fluid flow and then derive a specific vehicle-

follower model at various levels of comp;exity.

4,1 Fundamental Link Flow Model

In modeling the flow of traffic on a given guideway link, there
are three quantities of interest: vehicle density (vehicles/unit
length), flow (vehicles/sec), and velocity (m/sec). Each quantity
is a function of time, t, and position, s, along the guideway link.
The fundamental relationship between flow and density is derived
by considering conservation of flow across an element ds (Lighthill

and Whitham, [1]). The resulting continuity equation is

where x(s,t) is vehicle density and q(s,t) is vehicle flow,
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Discrete forms (Tabak, [37]) of the above model are obtained
by considering guildeway sections of length Di with nc more than

one entrance link and one exit link as shown in Fig. 4.1,

Qi > > Qi+

ri i

Fig. 4.1  Guideway section.

The continuity equation, discretized in space, becomes

ax;
— - + -
rraiall O R Ve

The modeling problem is two-fold. First, we need to represent
what occurs when we concatenate links together, and into junctions.
That is, the flow, q; into link i will be a function of the state
of link i and link i-l. To derive an aggregate model, we also need to
determine this function without the detailed knowledge of every
vehicle's position and velocity. Second, we must establish the
relationship between the fundamental quantities of density, flow,
and velocity for a string of discrete vehicles, We first consider
the latter problem.

For vehicles operating under vehicle-following, a steady state
spacing policy is employed such as a constant time headway., For
example, using constant headway a string of vehicles with velocity

v is spaced by hv+L where h iz the desired headway in seconds and
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L is vehicle length. Consequently, the vehicle density, x(t),

is given by
x(t) = 1/(av(t) + L) (4.1)

and the corresponding flow is

at) = x(t)v) = v(&)/(av(t) + L) (4.2)

Through (1) and (2) we may determine the vehicle flow in terms of

the vehicle density, or
a(t) = (@ - x(t)L)/n | (L.3)

Note that (L.3) neglects the vehicle-follower control dynamics, that
is, some control law on vehicle position, velocity, and acceleration
is used to regulate to the desired spacing, hv, giving a dynamic
transfer between vehicle spacing and vehicle position rather than
the static relationship assumed in (4,1). Models that include
vehicle-follower control dynamics are derived in Section 4.3, First,
we will derive a simpler model that describes flow connecting

adjacent links and assumes the static relationship, (4.1).

4.2 Vehicle-Follower Network Model

The basic network elements to be modeled are a link, & merge,
a diverge and a station., We will assume a constant headway control
policy of h sec, a maximum allowable velocity vmax(i) on the link 1

and a vehicle length, L.
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L,2.1 Link Model

A guideway link section, i, is represented in Fig. 4.2, The
rate of change of density on link i is given by the flow into link
i minus the flow out of link i divided by its length, Di' Thus,

letting xi denote the density on link i we have

xi = [qi - qi+l]/Di . (hvh)
For simplicity of notation the time subscript, t, is dropped
wherever it is apparent tgat quantities are functions of time

(e.g., density, velocity, flow).

1 ]
T

-
e

Fig. 4.2 Link section.

We now propose that the flow L4y is given by

qi+l(xi’xi+l) = fl(xi)fz(xi+l) (L.5)
where

1% /v, 3) x; S ¥, (1)

f]. (Xi) = )
1 v, (i) s x; = 1/L

qmax(i) xi s ym(i)
fr(x.) =
T @ - xmim w2 ()




yy(i) = 1/(av (i) + L)
qmax(i) = ym(i)vmax(i) .

The quantity, Yo is the density at maximum flow, which occurs at
the maximum velocity for a constant headway system. It also repre-
sents the threshold density value at which vehicle following is
initiated. That is, when densities are below Yo it is assumed that
vehicles are operating in an open-loop velocity command mode and
are therefore, decoupled. The functions f,, fz are represented
graphically in Fig. 4.3. Note the flow function,v(h.s), depends

on the physical characteristics of links i and i+l through specifi-
cation of vmax(i), which is typically at a lower value for curved

links.
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Fig. 4.3 Flow functions.

The rationale of the above model is that when the density on
link i-1 exceeds Yo then the input flow is restricted by the flow
on i, that is, there are enough vehicles on i-1 to fulfill the flow

allowed into link i as determined by the density on link i. When
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the density on link i-1 is below ym the flow is Xi—lvmax for x:.L §_ym,

and is reduced as Xi exceeds ym,

The simplest model which we will term Model 1 is therefore

given by

xg = Loy g ax;) = g Oy 170 (4.6)

Note that link capacity constraints are implicit in the model. To
evaluate the performance of a network control algorithm it is important
that delay be accurately represented for each link. The delay on

link i may be computed as a function of density by solving (k4,1)

for vehicle velocity when x, > ym(i). As a result we have

hx, D, / (1-x,L) x; >y, ()
T, = (4,7)
D, /v . () x; sy, (A1)

The models for the merge, diverge, and station are straight-

forward extensions of the link flow model.

4,2,2 Merge Model

A merge junction be modeled by two links joining'into a common
merge region where vehicle assignment and merging takes place. This
is shown schematically in Fig. 4.L, the two actual merge fegion

links being collasped into a single link,
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> Merge |

region

Fig. 4.4 Merge model.

The density on link i may be modeled by summing the flows
determined by the i-1, i boundary and the i-2, i1 boundary. As a

result, we have
4,2.3 Diverge Model

A diverge is represented by the geometry illustrated below

in Fig. L.5.

T

Fig. 4.5 Diverge model.
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We define a control variable, u, as the fraction of vehicles on link
i to be routed onto link i+l; hence, the fraction routed onto i+2
is l—ui. The corresponding flows are qi+l(uixi’xi+l) and

qi+2((l-ui)xi,xi+2). Again, extending the basic link model we have

xi = [qi(xi+l’xi) - qi+l(uix.,x.

4.2.4 Station Model

The imﬁact of station design upon network performance depends
upon the station guideway configuration and the station operating
policy (Sirbu [34]). The configuration is the actual physical lay-
out of the station including deceleration and accelerating ramps,
number of berths, and layout of the docks. The station operating
policies involve the management of vehicles once they have entered
the station, the unloading and loading of passengers, and the merging
of vehicles onto the mainline.

The station model considered here consists of an off-line spur
containing a vehicle arrival queue that also serves as an empty
vehicle storage area for arriving trip requests. For simplicity
we assume that passengers disembark and load at a single platform,
once loaded each vehicle enters an egress lane queue and then merges
into mainline traffic. The model may be extended to include multi-

ple loading berths. The model is illustrated in Fig. U4.6.
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Entry Station link
. 1 point . .

i-1 \ i i+ 1
Ups_tream Downstream
link link

Entrance Loading Egress
lane platform lane
oL 11 |
—m—m— N —— *
Arrival T Egress
queue ) queue
Trip request
queue
Fig. 4.6 Station model.
Each station is associated with a link i where
qa = gllowable arrival flow
n number of stored:vehicles (stored vehicles number of
vehicles at loading platform plus number in the arrival
queue )
N oax maximum number of vehicles that can be stored at station i
r new trip request rate (trips/unit time)
w number of waiting trips
t a minimum dwell time per vehicle at station platform
(total unload and load time, designed to be fixed for
the majority of circumstances).
. 1 if trip is dispatched
u
d 0 if n=0, x = x° r oth i
s X max?® OF © ermvse
X, vehicle density on egress lane
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length of station egress queue

o
il

e
e .
Di = length of egress merge section
e . . . .
Xox = maximum vehicle density allowed on vehicle egress lane
a, = gervice deceleration rate.

The allowable arrival rate, s is defined in a manner analogous

to the previous models for link flow. That is, for low vehicle
densities the flow is constrained by some maximum rate and falls
off to zero when vehicle storage is filled. As vehicle storage
fills, the distance to decelerate to a stop on the station entry

lane decreases as shown in Fig. L4.T.

Stored
vehicles
I ——— T

b ~ —
T ——
Remaining ramp

length

Fig. 4.7 Station entrance ramp.

It will be assumed that a vehicle may begin decelerating on the
main line as it enters the station. Consequently, the allowable
flow at the station entry point is determined by the velocity a
vehicle must have to successfully stop at the end of the arrival

queue. This velocity is given by

v, = (2za.s(nmam--n)L)l/2 (4,10)

and the corresponding allowable flow is
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v

_ a
qy = PG (&.11)

The equation for the density of vehicles entering the station

from upstream link, i-1, is given by

AR CHRCHPE R e L I L) (b.22)
vwhere f)(x; ,) is defined in (4.5) and q_ is defined in (k.10),
(L.11). Note we have assumed that all vehicles d@stined for station
i are diverted into the station. Hence, backups onto the mainline
are allowed when station capacity is exceeded. This is a policy
decision that would be determined by judgement and network analysis.
The above model (4.12) may be easily modified to treat the upstream
link, i-1, as a diverge link and thus allow station bypasses.,

The accumulation of stored vehicles is given by
n o= - L
n fl(xi_l)qa ud/td (k.13)

where ud determines if a vehicle is being dispatched and ud/td

is the flow of vehicles into the egress lane. Note that td is a
minimum dwell time (or 1/td is & maximum flow). Longer dwell times
are represented by setting ug = 0 if a vehicle is idle at the dock
berth.

To describe egress lane dynamics, it is necessary to consider

multiple vehicle types, that is, vehicles destined for stations

other than station i traveling on link i. As a vehicle departs

L6



from the loading berth it enters the egress lane queue where it is
assigned to follow a vehicle on the mainline (link i), Thereafter,
it merges into mainline traffic according to the same control policy
as a mainline merge junction. Thus, the egress lane may be modeled
in two parts. The first consists of the injection of vehicles from
the dock berth into the egress queue, The second is the flow of
vehicles into the merge section, collapsed onto the station link

as in the merge model. This is illustrated in Fig, 4.8,

Station link i
D;¢
N T N ———
' 7
Egress lane D /akctualegress
model e / lane
/
/
ug/tg

Fig. 4.8 Egress lane model.
The flow into the egress lane is given by ud/td while the flow
out of the egress lane depends on the density of link i so that
the egress lane density is determined by

ie = [ud/td - qi(xe’xi)]/De (L,1k)

The density of egressing vehicles merging into link i on section

e R .
Di’ denoted by X; .0 1s given by
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xo = Loy Ggoxy ) = g (g 0%y 001705 (4.15)

where i+l is the downstream link and i is the mainline station link.
If station bypasses are allowed, (4.15) would be modified to account
for vehicles entering from the upstream station link.

Finally, the queue of waiting trips is given by
w=r - ud/td . (4,16)

The delay on link i is computed using (4.7). The delay on the
arrival link is computed by

T, =0ty * va/aS .

The delay on the egress lane is computed in a different manner
from previous cases by taking into account that vehicles are accel-
erating from a-stop under congested conditions. (Note on the arrival
lane that vehicles always come to a stop, unimpeded by traffic).

We first compute the maximum density of vehicles in the egressing

region assuming they accelerate from a stop and are overating under

vehicle following. The velocity a vehicle attains after a distance,
s, with constant acceleration is

v(s) = (.223.55)1/2

and the corresponding vehicle density is
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x(s) = 1/(hv(s) + L) .

We set v(Di) = v .. Thus, the maximum density of vehicles allowed

in the egress region is

e
e 1 Di
X == [ “x(s)ds .
max e’o
D;
i
We now assume that the delay in the egress region is determined by
the density, X5 s since egressing vehicles must merge with vehicles
on the station link, i. For densities below x;ax it is assumed that
vehicles can egress with acceleration ag (i.e., unimpeded). For
densities above x;ax’ we compute the vehicle Vélocity corresponding

to a density, D:. Consequently, the delay is computed as

oD% Iy + 4§ X, S %X
i’ "max i max
T =
e
v /a_ + 6 X, > x°
e e i max
where
$ = fixed delay for vehicle to advance from loading dock
to egress queue
v. = ((1/x;)-L)/n
e 1
= v2 €
a, ve/(QDi) .

4,2.5 Multiple Destinations

The above equations do not account for the various destinations

of the vehicles on a section, a factor that must be included in order
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to develop a routing strategy. Consequently, we may modify the
above equations by attributing the flow of a particular vehicle
type to the fractional portion of that vehicle type on a guideway

section. Thus, if we define

i
1}

density of vehicle type J on link i

>
n

Xxij = total density on link i (4.17)
J

then the flow due to vehicle type j leaving link i is

0541 (3) = (%5 307300547 03 5¥547) (4.18)

At this point, we will express the dynamic equations for the
network in discrete time, being consistent with the formulation in

the following sections. Using (4.18) we define the velocity function

at time k as ai,i+l(k) = qi+l(yi(k)’ Yi+l(k))/yi(k). The equtiop

for a link is then

xi,J(k+l) xi’j(k) + T[ai_l’i(k)x._l’j(k)

1

-a (k)xi,J(k)]/Di (4.19)

i,i+1

and a merge is

xi,J(k+l) xi,j(k) + T[ai_l’i(k)xi_l,J(k) +

ai-a,i(k)xi—z,j(k) - ai,i+l(k)xi,3(k)]/Di (4.20)

-50-




For a diverge, we define the total control variables

Vi,i+l = 'Vi = ;ui,jxi,j (’-&.21)
Vigep = Vi T 3:(1 u.,j)xi’j (k.22)

and associated flows 8 41 = qi+l(yi’yi+l)/vi’ 8 g4 =

qi+2(vi ,yi+2)/vi . The corresponding diverge equation is

xg Uerl) = xy ((6) + Tlay y  Gkdxg (k) - oy g Way gy ()

+ (l—ui,J(k))ai’i+2(k))xi’j(k)]/Di (4,23)

A complete listing of all equations for the network is given
in Appendix A. Note the above dynamics ﬂave e relatively simple
form if the total density variables, Vs and total control variables,
V;s axre treated as independent variables and not a function of state.
That is, the dynamics are bilinear in the state and the control, and
triangular in structure. This structure will be exploited in the
problem formulation discussed in Section 5.

The next section derives a more detailed model based on specific

vehicle follower control dynamics.

4,3 Vehicle Follower Control Model

A vehicle follower control law will generally base acceleration
commands on the relative motion between a preceding and trailing
vehicle. For example, a control law designed by Pue [T] is approxi-

mately
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dvi as vmax
a, =g = -ew; telzt 2a_ - ) (vi4q - Vy)
Vi
- + ol .
+ gEE; (vi+l vi) g(s-L) (k.24)

where a, = acceleration command

vi = velocity of the ith vehicle

Viel T velocity of vehicle preceding the ith vehicle

S = yehicle spacing

h = headway

g = controller gain

&, = service acceleration limit (1.5m/s)

Jg = service jerk limit (2.0 m/s)

Vo oy = maximum line speed (15 m/s).

The control law in (L.2L4) neglects several nonlinearities due to
a vehicle being on a Jjerk or acceleration limit. In addition, if
we neglect vehicle propulsion dynamics then vehicle acceleration
is a_ = dv./dt.

c i

Now consider a vehicle string to form a continuum with vehicle
velocity and density a continuous function of time and position along
a guideway link. Then substituting 1/x(s,t) for vehicle spacing,

»(h.Qh) becomes

Tloat) o g v(s,t) + (epresvls,t)) [v(stl/x(s,b),t) - vis,t)]
+ ¢, ((1/x(s,t)) - L) (k.25)
where the gairns, c;, ¢y, C3, Cy &re given by the corresponding

quantities-in (4.24). For a congested link we may approximate the
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"preceding" vehicle velocity, v(s+1l/x(s,t),t) by
v(x+1/x(s,t),t)% v(s,t) + (av(s,t)/3s)/x(s,t) . (L .26)

Substitution of (L4.26) into (L.25) gives

dyv(s,t)/dat = cyv(s,t) + (cotc3vis,t)) (ov(s,t)/3s)/x(s,t)
+ ey ((1/x(s,8)) - LY (&.27)

Using dv(s,t)/dat = av(s,t)/ot + v(s,t) (Bv(s,t)/9s) with x = x(s,t)

and v = v(s,t), (4.27) becomes
ov/at = ;v + ((cptesv)/x - v) (Bv/os) + e, ((1/x) - L) .(L4.28)

If we now discretize in space and time over a guildeway section of

length, Di’ and time interval T then
v, (k1) = vy (k) + T{[-v; (&) + (eatesv, (k)/x; (k)] v, (e)-v, (K)1/D;
+ ey ((1/x; (k) = L) + eav, ()} (k.29)

where vi(k) and xi(k) are the velocity and density of link i at time,
k.

The model (L4.,29) appears similar to that used by Payne [12]
for traffic flow. In Payne's model a desired velocity that is a

function of density is used while controller dynamics is modeled

-53-




by an average driver reaction time. Note the above derivation may
be applied to any longitudinal control law.

As noted earlier, a major problem in modeling the transportation
network is to describe the flow connecting adjacent links., As seen
in (L.19), the above model provides some interconnection through
Vi4p» Dut as found in simulation, results in too much "averaging"
and tends to smooth out bunchy input flows. The models proposed
in Section 4.2 appear to mitigate this problem when we combine the

above with the flow functions defined in (k.5). As a result, we

have the model, termed Model 2,

v 0eb1) = v, (k) + e2lohv, () + 1/, (K)) = L
* Ivy g k) = vy ()1 [=v, () + (5.3-h + .33v, (k))]/D, }
x; (k+1) = x; (k) + Tla; (k) - a5, ()I/D;

qi(k) = fl(xi_l)vi(k)/(hvi(k) + 1)

vi(k+l) =V . if xi(k) < ym(i) (4.30)

where the gains 5.3, .33 are obtained by substituting the assumed
values of Jerk and acceleration limits into (L.24k). The flow, qi(k)
is determined as in Model 1 except we use (4,2) to compute the
allowable flow intc link i rather than fz(xi) as defined in Model 1.

The delay may be computed as in Model 1 or by
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Ty =Dy (4.31)

The above appears to be the more accurate as shown by the simulation

results of the next section.

4.4 Computational Results

To-evaluate the effectiveness of the above proposed models,
each network element was simulated using discrete vehicles operating
under the vehicle-follower control law designed by Pue [7]. On each
1ink the vehicle density is computed as a function of time by
dividing the number of vehicles on the link at a given time by the
link length. The other major quantity of interest, link delay, is
measured by computing link travel time for each vehicle as it leaves
the link, giving a pieéewise constant function of time. The resulting

values are compared to those predicted by the models.

L.4.,1 Merge Simulation
The first geometry considered for verification of the traffic
models is a merge Junction with upstream and downstream links as

shown in Fig. L.9.

Line 1 e :/Ieeirgi >
1 g
3 i 4 t
! ! j
Beginning Merge
of merge point

Line 2 control

Fig. 4.9 Merge simulation geometry.

-55-~




Individual vehicles enter the simulation from the left. Vhen a
vehicle enters the merge region it is assigned to follow the last
vehicle to have entered the merge region on either line 1 or line 2
(Brown, [27])). The links are labeled 1 and 2 for the upstream links,
3 for the two merge links combined into a single link, and 4 is the

downstream link.

The vehicle input distribution is assumed a shifted exponential

in headway and is given by

0 O0<h<h
m

F(nh) = (h.32)_

*®
Fo+ (1-F_) [1-exp(-h-h )/n )], h <h<ew
where hm is the minimum allowable headway and Fo is the percentage

of vehicles entering at minimum headway. The mean headway is given

by
— *
h=hn +h (1-F) .
m (]

For a given simulation run, h is specified according to a mean
traffic density, hmlﬁ; and FO which regulates the degree of
‘bunchiness in the flow. That is, a large Fo will generate long
strings of vehicles at hm with large gaps in-between while h* is
adjusted in order to set h. In all simulation runs, hm = 3.0 sec.
To compare the proposed models against the simulation, the
density and delay on each link of the actual system (i.e., discrete

vehicle simulation) was measured. The model equations were inte-
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grated in parallel, with inputs being the actual vehicle densities
on sections 1, 2 and 4. The density and delay on section 3 was
computed via the model and plotted against the density and delay
of the actual system.

Models 1 and 2 were generated by a process of simulating a
series of models based on physical considerations, discovering
various flaws through examination of the results, and subsequently
improving the models.

The equations for the selected models are now given followed
by the simulation results.

Model 1:

x = [q3(x1,x3) + a3(x2,%x3) - qy(x3,%,)1/D3 (4.33)

with q3, gy as defined previously

Model 2:
. = L
vy = g (~hvs + Xy " L
Vy=V3 1

+ 5, (=v3 + x (5.3 = nh + .33v3)) (4.3%a)
i3 = [a3 - a41/D3 (4.34p)
a3 = (£;(x;) + £1(x2))vs/(hvy + L) (4.3he)
ay =fy(x3)vy/(hvy + L) (4,3k4)
vy = v if x3 <y (L4,3Lke)
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The equation for v,(t) is analogous to v3(t) with vg(t) = Voax
and x,(t) = actual density as inputs. That is, after passing
through the merge, it is assumed vehicles accelerate to vmax'

Several other variations of these models were considered in
the simulation work. For example, flows could be averaged according
to either an arithmetic or gecmetric mean of densities in adjacent
links., Other models considered included summing the two input
flows and then limiting by the maximum flow on a link. However,
all of these variations performed poorly when compared to models
1 and 2 given above.

A variety of simulation test cases ﬁave made over a wide range
of traffic densities and bunchiness of input flows for a minimum
operating headway of hm = 3 sec, An example ié given for models
1 (long-dashed lines) and 2 (short dashed lines) in Fig, 4.10 where
the traffic density on each input line is .5(h = 6 sec) and 50 per-
cent of the vehicles are at the minimum headway, a moderately
bunchy situation. Both models compare favorably with the actual
system with model 2 performing slightly better at higher densities,
On the plot of delay, the curves denoted method 1 and method 2
correspond to the use of (4.7) and (4.31), respectively, in computing
delay for model 2. As can be seen, method 2 is more accurate, Time
delayed versions of these models show that each model is shifted
to the right and peaks match more closely.

Based on these and other simulation results, model 1 is selected
to be the analytic model used for design while a time delayed model

2 can be used for simulation of an actual neiwork. The accuracy

of the models deteriorate for densities above 0.1 veh/m, although
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Fig. 410 Merge model simulation results.
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this is a rather high density corresponding to a vehicle velocity
of approximately 2 m/s. Modeling accuracy also degrades at very low

densities as seen in the following section.

4.4,2 Diverge-Merge Simulation
To evaluate the effectiveness of models 1 and 2 when control
is involved, a diverge-merge was simulated based on the representa-

tion illustrated in Fig. k.11,

41
R
1

X
|
|
|
|
¥

Fig. 4.11  Diverge-merge simulation model.

The model equations assuming one vehicle type (j=1) are given

by

= [a3(x;,x3) + q3usxp,x3) = ay(x3,%411/Dg

"
w
f

[a5((1-uz)x2,%x5) - ag(xs5,%6)1/Ds

S
)
11

The flows, q;, are determined by either a static function of density
(Model 1) or a function of link velocity (Model 2). As in the
merge simulation, vehicles enter from the left via a truncated
exponential distribution in headway and vehicles merge on link 3

according to a first-come, first-serve strategy.
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Again, several test cases have been run for a variety of traffic
densities and bunchy flows. The merge link 3 density end delay
showed very similar results to the pure merge. An example of
link 5 density is given in Fig. 4,12, Here, input traffic densities.
are .5 on link 1 and .9 on link 2, 25 percent of incoming vehicles
are at the 3 sec minimum headway and the control variable up is
equal to .5. The resulting density on link 5 is very low with only
1 or 2 vehicles on the link at any given time, thus producing the
spikes in density and delay in Fig. 4,12, Note that both models
cannot respond to these single vehicle spikes and tend to give an
average value for vehicle density. Vehicle delay (not shown) is

at the minimum value for both the simulation and the model.

L.4,3 Station Simulation

The model described in Section 4.2.4 was simulated in parallel
with a discrete vehicle simulation of the station. One result was
_ that the model tended to smooth out the injection of vehicles from
the station onto the main guideway. Because bunchiness of vehicle
flows could be important with respect to congestion, several modi-
fications to the model were considered in order to represent this
effect.

The major modification was a redefinition of fl(xe) to include

. e R
hysteresis for x, < Xoax That is

e
xe/xmax for uj 0

fl (Xe) =

]
]

e e
I/(Di xmax) for uj

j=1, ..., J and I is an appropriate integer corresponding to
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Fig. 4.12 Diverge-merge simuiation results - link 5.
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quantization of xeDg to discrete vehicles. This model considerably
complicates an analytic model but could be easily incorporated into
a simulation model.

A second refinement is used to account for the fact that only
one vehicle can pass through the station entry point at a time.
Thus, if the arrival queue is backed up intc the mainline, vehicles
cannot pass the station. This phenomenon would also cccur on diverge
links, that is, if the flow is blocked to one outgoing link, the
flow is also cut-off to the other outgoing link. As a result, the

flow, qg, out of a diverge link, i, could be represented by

o = 150, 02 0y ) ey (41D (142007 (4.35)

Again, this modification could be useful for a simulation model but
the increase in complexity for the analytic model is not Justified
by the increase in performance.

A variety of simulation test cases have been made to investigate
the effectiveness of the suggested nodels. One example showing
arrival lane density and delay is given in Fig. L4.13, Iere, the
input traffic density is .90 and 50 percent of the vehicles are at
minimum headway. The percent of upstream vehicles diverted into
the station is 20 and the station dock dwell time is 15 sec. The
lead in the arrival lane delay is due to the fact that the model
computes the delay to a vehicle entering the arrival lane while
the simulation of discrete vehicles computes the delay to vehicles
leaving the arrival lane. As in the merge model, the station model

tends to be less representétive at densities above 0.1 veh/m. A
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plot of vehicle density and delay on the egress lane is given in
Fig. 4,14, When delay exceeds the minimum delay, the model over
predicts the actual delay by approximately 20 percent, This is
because the continuum model assumes an interference between mainline
and egressing vehicles whenever there are vehicles present on these
links and they exceed the threshold densities computed in 4.2.3.

On the other hand, when individual vehicles are modeled the pre-
cise relative positioning of vehicles on the mainline and egress
links determines the incurred delays as the vehicles mancuver,

The discrepancy between the model and actual system due to this

effect becomes significant at low densities as revealed in Fig, 4.1k,

4.5 Conclusions

Analytic models for the basic elements of an AGT network have
been developed and compared to discrete vehicle simulations of a
diverge, merge and station. In particuiar, a nonlinear function
of vehicle densities in adjacent links is used to compute vehicle
flow across link boundaries. This function was introduced to help
preserve the representation of bunchy input flows at merge junctions,
otherwise flows tended to smooth out to average values,

Simulations of the various network elements demonstrate that
the models well represent discrete vehicle behavior fdr moderate
densities. In a 3 second headway system this corresponds to a
density range of 0.0l to 0.1 veh/m. Outside this range, individual
vehicle positioning and dynamics become significant and the continuum
model is degraded in representing the true system. Moreover, if
many links are connected in a long string, it is expecled that

smoothing of flow would occur in the model. Thus, final verification
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of the proposed models would require a network simulation to
investigate the importance of this effect upon the study of network

operation.
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5, OPTIMAL CONTROL FORMULATION

We now combine the model of traffic flow constraints and>
station constraints given in Section 4 with a performance index to
formulate the routing problem into an optimal control problem.

We then demonstrate that duality may be spplied to decouple the
overall network flow constraints into simpler subnetwork constraints

that allow a distributed control computation.

As in multicommodity flow problems a vehicle type will be
associated with a particular origin-destination pair. For each 0-D
pair we apriori select a set of links which is "appropriate" for
that pair, that is, exclusion of loops and any extraordinarily long
paths that would be unacceptable to a customer. For practical network
configurations that have been proposed [38] this does not pose any
serious problem. Thus, associated with each 0-D pair is a subnet-

work which we index by j. Letting J be the total number of subnet-

works or 0-D pairs, we define for j=1, ..., J;
£J = set of links in subnetwork j
CJ : = set of diverge links in subnetwork j,

To define a performance index we use (L4.7), the delay (travel
time) per vehicle on each link i. The instantaneous cost to vehicle

type J on link i is ti(yi)xi Di and the total cost for all vehicles

J
9
on link i is Ti(yi)yiDi. Summing over all links in the network and
summing over K time intervals the total time average delay is

K

kil iEGCTDiri(yi(k))yi(k)/tf (5.1)
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where £ is the set of network links and tf is the final time. If we
. - + - , R
define di(yi(k)) TDiTi(yi(k))yi(k)/tf he performance measure is
written as
K
IooDo4 b)) (5.2)
k=1 iel
We include a cost on passengers waiting at stations by appending
the number of waiting passengers of each vehicle type to the cost
function. This cost is designed to force the dispatch of empties
from stations with excess vehicles. Thus, the performance index

1s

K J
Iyl = 2 [z G ;&D+T I x j(k)] (5.3)

k=1 iedl J=1 ?

where the index 1 in x, ,(k) refers to the trip request queue for

1,3
vehicle type J.

The above cost is a system performance measure because it sums
the total trip time to all vehicles as they pass through the system,
Hence, it is possible some vehicle may incur a large delay while
others have a very short delay when the sum is a minimum, Note,
however, during uncongested conditions where Ti(yi(k)) is a constant
travel time, (5.3) will favor shortest path routes thus reflecting
some degree of preference to the user. Moreover, the apriori selec-

tion of possible subnetwork paths reflects user costs,

We now define the vectors

u routing and dispetch control wvariables

uJ routing and dispatch control variables for vehicle type J
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xJ = vehicle type J link densities

y = link densities

v = total routing control variables

v’ = alternate total routing control variables

VA = [y,v,v*] = vector of interconnection variables

zJ = [yj,vj,vjf] = vector of interconnection variables

for links in subnetwork, J.

Using the above notation the problem statement is
min I(x,y) such that 0 S u < 1 (5.4)

u

subject to the dynamic constraints
xj(ki-l) = F(xj(k), uj(k), zj(,k)), =1, e I (5.5)

and the interconnection constraints

Yi(k) = ;xi,j(k) : (5.6)

vi(k) = iui,J(k)xiJ(k) (5.7)

vi'(k) = L(l-u; J(k))xij(k) . (5.8)
J 2

As noted in Section L, the dynamic flow constraints have a
relatively simple form if the interconnection variables are considered
as independent variables rather than a function of state. This

suggests a problem manipulation where the subproblems consist of
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individual vehicle type and the total density variables are treated
as additional control variables.

Such an approach corresponds to the goal coordination method
of optimal control where we dualize with respect to the intercon-

nection constraints. As a result the problem becomes

Max ‘I’O\.;U,}l')
AsHau”

where
K J
o(A,uop”) =min I [ 2d(y, (k) +TZx k)
k=l dief® j=1

+ iEc{ui(k)(vi(k) - §ui’j(k)xi’j(k))

g0 00) = 2oy Gy JGINTG29)

with xeX(u,z), ueU, zeZ .

The constraint sets are defined as

X(u,z) = {x: xj(k+l) = F(uj(k), xj(k), zj(k)), J=1, ..., J}

U= {1 0s5us1l; first-come, first-serve priority for dispatch
controls}
Z = {z: ym(i) sz s 1/L, ief} .
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The algorithm used to solve this problem is given in the following

section. However, we will first demonstrate how the duel function

(5.9) can be computed in a distributed manner.

First, in view of (4.19), (%.20), and (4.23) the dynemics may

be written in the form

xj§k+1) [Fj(k) + igc ui’j(k)Bi’j(k)]xj(k) + rj(k)

J

AyGedxy () + ry(k) . : (5.10)

where Fj(k), Bi j(k) are functions of the interconnection variables,
9

zJ(k). The dual function objective may also be written as

K J T _ T
$(u,z) = kﬁl [jilai(k)xd () + ,ZF (v, R+ 07 Ge)v(k)

+ T () v (k)] (5.11)
vhere - 2, (k) tef,, ieC,
ai,J(k) = - Ai(k) - ui(k)ui,J(k) -Lﬁf(k)(l-uij(k)) 3‘.(»:}0‘j

T i=

fjﬁyi(k)) = d, (r; (&) + A, (ky, (k)

As explained in Section T, (5.11) is minimized by application
of the Principle of Optimality (or Dynamic Programming). That
is, at each time step k, the cost-to-go is minimized with respect
to the control variables u(k), z(k). Satisfaction of the Dynamic

Programming recursion guarantees an optimal solution, namely, if
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Y, = min [v, + V ] for k=1, «+-, K
K u),zk) K

where

J .
_ T T
xpk = jzl aj(k)xj(k) + iiocfi(yi(k)) + p (k)vik)

LT -
+ u (k)ve (k).
then u(k), z(k) for k=1, *++, K, are optimal.
As a result, an essential feature of the optimization algorithm
. sos e th th
is to minimize ¢ at the k~ stage for k=1, +++, K where the k stage
optimization problem is

min ¢ :
w(k), zk) X - (522

such .that xeX(u,z), ueU, zeZ and

K T
= T (o (a)x, () +

z £, (y, (k))
2=k j 11

¢
k iel

+ uT(k)v(k) + u'T(k)v’(k). (5.13)

The only difficulty in solving (5.12) is to determine the
dependence of the first term in (5.13) upon u(k), z(k).
Because of the triangular structure of Aj(k) (5.12) can be

solved in a distributed manner by defining the adjoint variables
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T
Py (k) = AJ (k)pj (k+1) - aj(k) (5.14)

Py (x+1) =

A listing of the adjoint equations for each link type is given in
Appendix B. Use of (5.1k4) is explained below.
Expanding the first term of (5.13) in time we have
K T
I I a (z)xj(z) = Il (k)x (k) + o (k+1)x (k+1)
j 8=k 9 j 4

+oeee 4 ag(K)xj(K)]. (5.15)

" Recursively using (5.10), the summation (5.15) may be expressed in

terms of xj(k) or

: Tk, (2) = ¢ {as(k)x, (k) + o Get1)[A, (k)x, (k)+r, (k)]
T I o b d = aj‘ xJ aj 3 3 3

yek 99 3

+ o2 (er2) a, (k+1)[AJ(k)x'J QERSIEENCEN

Cie ] 00

+ q (K)[AJ(K—l) e A (k)xj(k)

J

+ AJ(K-l) AJ(k+l)rJ(k) .

+ AJ(K—J.) Aj(k+2)rj(k+l)

+ rj(K—l)]}. (5.16)
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All terms involving rj(zl for % > k+l are not inyolved in the
minimization and can therefore be neglected. If we separate the

terms associated with xj(k) and rJ(k),we then have

Ko q T T T
I I aJ(z)x.(z) =3 {aj(k)x.(k)+[a (kt1)+a, (k+2)A, (k+1) + ~«o
J 4=k J 3 _ Jd J dJ dJd

T
+ aj(K)AJ(K—l) cee Aj(k+l)][Aj(k)xj(k)+r3(k)]}
+C | (5.17)

where C is not a function of u(k), z(k). Using (5.14) the summation

(5.17) is given by

K
T - T T
3: ;k aj(z)xj(z) = § {aj(k)xj(k) pj(k+1)[Aj(k):‘:j(k)wj (x)]1}

+ C. ‘ (5.18)

The summation in (5.13) can now be expressed in terms of the

adjoint variables so that (5.13) becomes

oy = g([aJT(k) - o, 0er1)A, ()], () = py" Gebd)r (1))

+ 12 Gy, 00)) + T V() TG + e (5.19)
ief

~T5-




As a result, for link i the dependence of ¢, on yi(k) can be

written as

¢(@r; (k)) = £, (v, (k)

J
T Z {a.
=1 °

+

a1,p (g g Odpy ) Ger1)/D; y-p; (et1)/D;]

toag g )x G G)p; 5 Get1)/D (k+1)/D; ,, 1}

Pi+1,3
(5.20)
The minimization of (5.20) with respect to &i(k) is considerably
simplified if the change in value of the objective function along
a coordinate direction,'yi, only depends on yi. This may be accom-
plished by a simple modification of the flow model.
For adjacent links i, i+l when yi>y;(i) and yi+l>ym(i+l), that

is the densities are above the threshold values for vehicle following

the velocity function is given by

8y j41 k) = (v DV (i) (5.21)

The simplification is achieved if a; i+l(k) is only a function of
3

either Yi» OF ¥y41s OF if it is an additive function of s and Vi

We take the latter approach by determining a function that

approximates (5.21) and has the form

o,141() = g 00 + g, ()

~76-



If we expand (5.21) into a Taylor series about ym(i) and ym(i+l)

and drop cross derivative terms the result is

ai’iﬂ(k) = q (i+1)/y, + Liy, (1+1)=y, )/ (by_ (i) (5.22)

giving the desired form. A similgr approximation is used for the sta-
tion arrival velocity (Appendix A).

Siﬁulations of the modified model (5.22) versus the original mod-
el (5.21) have shown essentially identical performance over the density
range for which the original model is valid. An example showing a
comparison with (5.22) and Model 2 is given in Fig. 5.1. A plot of
the original Model 1 would precisely overlay the revised Model 1 plot
in Fig. 5.1.

Because of the form of the velocity function (5.22) we can inde-
péndéntly minimize ¢k for each link density. That is, as a function

of yi(k), ¢k has the form
0y, G)) = 2, (y, (k) + eyy, () + e fy, (k) (5.23)

where c¢., c, are not functions of u(k), z(k). Note that c. and c,

1’ "2 1
are computed using information loecal to link i,
For a diverge link the optimization problem becomes more complex

than a link because the subnetwork control variables, u, ,(k), cannot

i,J

(x), y.+2(k)]. The

be decoupled from zi(k) = [vi(k), vs (x), Vi1 i

value of ¢k due to these terms has the form

=TT~




Density (veh/m) 10-1

Delay (s)

2.5

2.0

1.6

1.0

0.5

0.0

50.0

40.0

30.0

20.0

10.0

0.0

: Complex model
i \ ul
: 3 A&%}@i\m A
; i\ L Ny
{d Ne e
1/ ‘«:Mf r N\M
i 13 Modified model
1 1 P T 1 1T 1 T 17T 171 T 11 % LR R |[ T 7T T i L AL LR L LR R R N L AL L

0 100 200 300 400 500 600 700 800 900 1000

Time (s)
5 u/ Modi.fied model /-\
] / V\ /"’\ //\ Y
i ”
] /,'/N” /\\‘ s /\\”/éﬁi
- \ / W\A
J N \ L/ \l
)l NI T
/o 1/, > Complex model Wi AL
4
0' - x100T1 I I200I - ]300' - I400I - l500l - 1600‘ - T7O(; - '8001 - ‘90(:; - ,1000
Time (s)

Fig.

5.1 Modified model, complex model comparison.
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0 (2 (6)) = £, (v, 0D+ 2 o0y o (60) + 4 (v, () + v; (k)72

ai,i+l(k)§ui’j(k)[—pi+l’j(k+l)/Di+2 + pi,J(k+l)/Di]xi’J(k)

+ -
8; 4p (KIE(-uy

b J b

j(k))[—pi+2,j(k+l)/Di+2 + pi,j(k+l)/Di]Xi,j(k)

* 250,540y &) §[Pi+2,;](k+l)/Di+2 = Py, g (1D x5 ()

+ (u;(k) - ui(k))Zui

] o3 %y

3060+ ug v () + ugedv, “ ()

(5.24)

3

where link i+3 is downstream from link i+l and link i+l is downstream
from link i+2. Again, because of the additive form of the velocity

function, (5.2L4) can be written as
9y (zg (k)) = £ (g g QD)4 £ Gy b (RD) + (v, (k) + vi(k))/2
+ §ui,3(k)[01 + ey, (k) + ey (6 + eu/v; (k) + es/vyk]]
+ cgv, " (k) + 7y, (k) + calyy (k) + calyy,, (k)
+ o, (v, (k) + u, (kv (k) (5.25)
where ¢, %=1, ..., 9 are not functions of u(k), z(k). The algorithm

2
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for minimizing (5.25) with respect to zi(k) is given in Appendix C,
Again, only information local to link i is required. Note the
presence of the term, di(vi(k) + vi(k)). This is included to prevent

occurrence of a duality gap, as discussed in Section T.
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6. ALGORITHM DESCRIPTION

The basic algorithm consists of a subnetwork optimization

and an upper level coordinating control [23]. As illustrated in
Fig. 6.1, the upper level seeks to maximize the dual function by
| finding Lagrange Multipliers (A,p) via subgradient optimization
([39] [40]). The lower level minimization problem requires compu-
tation of routing and dispatch control variables u, total control
variables v, and total density variables,y. As shown in Section 5
this can be accomplished in a distributed manner using information
local to each link. Each subnetwork updates state and adjoint vari-
gbles by integrating the state equation from origin to destination

and the adjoint equation from destination to origin.

The specific steps of the algorithm are:

1. Initialize state variables, Lagrange multipliers and
adjoint variables

2. Compute @(Ao,uo) by minimizing the cost-to-go at each

time step & as follows:

K
2a, min z ¢ for =1 . K
x(2+1)eX k=g © >
u(® )eU
z(2 )eZ

Each link may be independently optimized except for
diverge links which are optimized by the algorithm

given in Appendix C.
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Update
A iel
Hr reC
Maximize ® (A, u) x
T yil Vl
Upper level An Xij. Yij
Lower level A _ T
l Update
Minimize ¢ (u, z) Yi iel
V. v; reC
Urj =1,...4
! A A
Yi Xi1 Yi XiJ
Vr Pn ¢ o o vy PiJ
Uy Urd |
Subnetwork Subnetwork
1 J
Update e o o o Update
Xit, Pj1, leLy © Xy, Pig. lely
Fig. 6.1 Algorithm structure.
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2b. If a stationary point is found (i.e., no change in

variables) stop. At the n®® iteration the values

n ..n n n
provided to the upper level are v, v/, ¥y , u .

2¢c. Otherwise, compute new adjoint and state variables

and return to 2a.
3. Compute subgradients of ¢ and update multipliers

k)

M) = AT + e ) - Bxy 5 (6]

AR AR O RENCAC R ?ug;JCk)xg;jgil)

v£n+l(k) - vin+l(k) +a (v (k) - g(l-ug,J(k))X?,J(k))

l".

If interconnection constraints are satisfied, stop,

otherwise, return to step 2.

The step-size rule that determines e is given in Section T.
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T. CONVERGEICE ANALYSIS

The analysis of algorithm convergence is divided into three sec;
tions. First, we prove overall algorithm convergence, that is, the
dual function is maximized via subgradient optimization. To compute
the subgradient for upper level iteration, we next show the lower level
algorithm converges to a minimum of the dual function objective.
Finally, it is shown that no duality gap exists for the problem and

the subgradient magnitude does not necessarily go to zero.

7.1 Upper Level Convergence

To maximize the dual function, subgradient optimization is applied
([39), [40], [41]). The proof given below is a modification of one giv-
en by Poljak [LO] where the subgradient algorithm has access to all in-
formation. To implement a distributed control, we apply the step-size

rule first given by Ermoltev [39].

T.1.1 Theorem 1

The algorithm consists of constructing the sequence

ntl _ ,n =n
A = Aot €7.1)

—

wvhere A" is a subgradient to the function, ¢(X), at the point, AR,

The step length parameters, e s Y, are subject to the conditions

lima =0 . (7.2)
n .

n-rw
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o

I a =« (7.3)
n
n=0

0 < e f_Yn§>€2/{an|l . (T.4)

Then, for arbitrary A%, the sequence, {2}, contains a subsequence
n
{A k}, keK for which

T
lim ¢(A ~) = ¢* = max ¢(A) .
ke A
Proof':
Select an arbitrary B8<¢* and define SB = {x:9(2) > B},
Suppose that AT ¢ S8 for all n, It follows that Sg:{k:¢(k) 3_¢(An)}

and ¢(Ao) > (A7) for all Aoss Because ¢{A) is concave we also have

"
p(r) - 407 < (%2 )) - (K% . (7.5)

where (+,+) denotes inner product, As a result,

2

[ A -y |

2
NENTR SRR

L}

n 2 2 2 - 2
A% = 11+ [R]

n Tn
+ zanYn(X ,)\ - )\01

1R 117+ el 2

-2y [CTPA0) - (M)
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<A =, 12+ a2 X2
-~ 20y [0 ) - o (A")]

< || A" - A |12 + aie% - 20 € €q (7.6)

where the last two steps follow from (7.5) and (T.4t), and the fact
n
- >
¢Q\°). $(A71) > €5 > 0,

Now, sum (7.6) from n=N to n=N + m to obtain

TSNP RIS WIE

N+m
+ I an(ana
n=N

2 _
5 - 2e1e5)

Finally, choose N such that dn j_els3/e§ = e/eé to obtain

N 2 N+m
o< |[x x|l ~e T a. (7.7)
— fe) E . n
n=N
Because the summation, Xan , diverges (7.7) is impossible and thus,

there exists Ank € SBk + If we let Sk + ¢¥*¥ we obtain the desired

subsequence.

Note that the above step-size selection rule requires the sub-
gradient magnitude be upper bounded, otherwise Yn = 0, This property
is satisfied in our application since x,y,v are bounded between O and
1/L, and therefore, the interconnection errors used for subgradient

computation are bounded in magnitude.
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7.2 Lower Level Convergence

The minimization problem required to compute the dual function can

be written as

min F(z) ' (7.8)

zeZ

where the vector 2z consists of

X j(k) H is;j
u, . (k) ieCj
y; (k) 3 1el
vi(k) ;3 ieC

v;(k) 3 iec

for j=1, «v., Jand k=1, ..., K.

The set Z = XX U x Y x V where

]
fl

{x|x = G(u,y,v), uel, ye¥, veV}
U= {ul 0<u, ,&) <1}
(w0 <uy 00 <

Y

{y] 0 <y, (x) <1/1)

v={v,v7]| 0 < v, (), vi(k) < 1/1}

F(z) = £(z) + XTg(z) .

The dispatch control variables are included in the set, U. This
is done to assure the continuity of F although physically, these
variables can only have a value of zero or one. However, this poses no

problem since F is linear in the dispatch variables.
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According to Theorem 6.3.L4 of [42] if z* is a solution to (7.8)
then g(z*) qualifies as a subgradient. Thus, it is necessary to show
that the algorithm gives an absolute minimum of F(z), otherwise the
subgradient computation may not be valid.

To assure an absolute minimum, we apply Bellman's Principle of

Optimality [43]. That is, at each time step, k, we define the recursion,

V, = min [F (z)+V, ] (7.9)
z
k
where 2y is the portion of 2z at time step k and Fk(zk) is the cost

at the kth stage.
The proposed algorithm is to compute Yoo Vi Yy at a given X for

k=1, ..., K. Using z, we then compute z The process is continued

k+1°
and repeated until a stationary condition satisfying the above recurrence
relation (7.9) is reached. According to the Principle of Optimality,

zy is then an optimal control. Thus, we need to prove that a stationary

point is, indeed, obtain via the proposed algorithm.

A point, z, is stationary if there is no z

K such that F(zk)<F(z),

zkeZ, k=1, ..., K. We define the sets

D
n

{z:z is a stationary point}

N
]

{z:2zeZ, F(2) j.F(zo)}.

Note F(z) is continuous, Z is compact, and Zo is compact by continuity

of F(z).
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T.2.1 Theorem 2

A s
Let Aki Z+2” be a point to set map at time k. We define the al-

gorithm

Z 41 € Ak(zn) » if z ., € Q, stop

where Ak(zn} is the minimization at time step k defined by

- 1
= H = +
Ak(ZO ’F’k) {z:2 Z aigk

for some a.€ L and
o 1

Fe

F(z) < F(zo + i aig;)}

i

= +
where L {ailzo E @y € z}
BN
i _ . . cs . .th
gk = vector with one in position corresponding i

variable in 2y and zeros in the remaining positions.

Then every convergent subsequence of {Zn} has a limit in Q.

The proof is a straight forward modification of the proof
corresponding to convergence of the cocrdinate search algorithm.
Several proofs are described in [42]. The modification applies com-

pactness of Zo’ the fact that Ak is closed, and continuity of F,.

7.3 Duality Gap

When applying duality to nonconvex optimization problems it is
generally expected that duality gaps will appear, that is, the cost
function optimum value is greater than the dual function optimum val-
ue, However, for this application we can show that the duality gap is

zero despite nonconvexity of the constraints.
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In [44], a duality gap estimate is derived for the following

?roblem (Theorem 3, p. 365):

n
Min ... (x.)
i=1°i1i 1
xeX

n .
such that I gJ(x\) < cJ 351,000,k

1
where fi’gj’ are functions on some Euclidian space, E. = X.
i
The Shapley-Folkman theorem is applied to obtain the estimate

GAP < [ aff.)
- . 1
ied

(7.10)

where a(fi) = izﬁ[fi(X) - f:*(x)],

*%
fi a largest convex function bounding fi(x) from below,

i js a subset of {0, =++, n} with k+l eléments,

(GAP = duality gap for convex gi, see [LL] for details).

In our formulation, X is the set of dynamic constraints,
fi(x) corresponds to di(yi(k)) and & gg(xi) = 0 correspond to the
interconnection constraints. Thus, we have replaced Ei vith a
nonconvex constraint set and replaced the inequality constralnts
with equality constraints. However, these modifications do not
change the results given in [L4]. Because di(yi(k)) is a convex
function on X, and the interconnection constraints are convex,
use of (7.10) shows there is no duality gap, a fact confirmed by

the computational results given in Section 8.

A condition given in [4l4] as part of the duality gap estimate

is that
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k
Ly Gy )+ 2 gy Gegd1 4 il > =

as |l 1] > =,

This condition is included to assure the lower-semicontinuity of
the perturbation function ([LL], Lemma 1, p. 360). In our
application, this condition is satisfied with respect to the total
density variables since delay approaches infinity as density
approaches 1/L. To satisfy this condition with respect to total

control variables, we may rewrite the delay on diverge link i as
d.{y.(k)) = + "
103 () = 4 (v, (R))/2 + 4 (v; (k) + v;(k))/2

and thus, not change the cost function. However, the diverge
link algorithm (Appendix D) must be suitably modified to account

for nonconvexity in the total control variables.

It is interesting to note that if we had written the cost function

as

4. (yi(k))xi’J(k), (7.11)

the same slgorithm may be applied to solve the dual problem‘but a

(k)

duality gap would appear because of the nonconvexity of xij

s a function of interconnection variables. In fact, (7.11) was

simulated and a large duality gap did occur.
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The final fundamental question concerning convergence is magni-
tude of the subgradient, or satisfaction of the interconnection con-
straints, In the next section,we show the magnitude does not necessar-

ily approach zero.

T.h Subgradient Magnitude

Under certain conditions, the subgradient does not approach zero
but the interconnection constraints can be satisfied without affecting
the result,

This situation arises with respect to total aensity variables in
the region 0 L (k) _<_ym(i), that is, the total density does not
influence the network dynamics but the dual function objective for link

i has the form (dropping i subscripts)
¢@r) =cy + Ay - x ) (7.12)
vhere c, X do not depend on y. Thus, the minimum is given by

- AX c+ A >.0
¢(A) = min ¢(y) = (7.13)

Yy
- +
(c+A)ym Axo c+ A <0

Consequently, the dual function is linear in A and non-differen-

iable at the maximum., The maximum is found from (7.13) to be

max 3(A) = ¢o(-c) = cx . (7.14)
A
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At A= -c, y can have any value without affecting the cost or dual func-
tions, but note that (7.1L4) is the cost function for link i.
A similar situation arises in the case of total control intercon-

nection variables. In the region, 0 ivi(k) < ym(i) the dual function

objective has the form
$(v) = clyy T RV - x) (7.15)

where c, X, do not depend on V.

The minimum is given by

ey, - Hx, p20
min ¢(v) = { (7.16)
v .
ey +uly, -x) u<o
When x <Y, we have,
max ¢(p) = ¢(0) = c. (7.17)

M

At the optimum, v can have any value without affecting (7.17) and thus,
we set v = xo, although the value is immaterial with respect to both

cost and dual function values.
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8., COMPUTATIONAL STUDY

The algorithm described in Section 6 was simulated for the b
station, 58 link network, structured by one given in {25] and shown
in Fig. 8.1. The traffic flow model for fhe network contains 54 total
density variables (y) and 28 total control variables (v, v”). For the
simulation results given here, foﬁr vehicle types corresponding to O-D
pairs (1,3), (3,1), (2,4), (4,2) were considered. Each subnetwork
was chosen to exclude loops so that for example, the only 0-D pair
(1, 3) subnetwork diverge links are 5 and 15 with all possible paths
being the minimum distance path to station 3 (Fig. 8.2). The other
vehicle type subnetworks are similarly defined‘as shown in Figs. 8.3 -
8.5. There is a total of 8 routing control variables.

For a 10 time step problem we have 40 dispatch control vari#bles,
540 density interconnection variables, 280 control interconnection,
and 80 routing control variables, giving a total of 940 variables for

the subproblem optimization,

8.1 Network Parameters

The simulation was run at a 5 sec. headway, a typical value for a
high capacity AGT system. Values for other parameters were:
vehicle length = 3 m,

service acceleration limit = 1.5 m/secz,

integration step size = 3 sec,

6 sec,

i}

dock berth dwell time
The network link characteristics, length and maximum velocity are given

below in Table 8.1
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52

15 , 27 , 16 , 28 17,23,}\

! ' J v 48
58 :
36
21 43 3
44
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l
1 1
10 30 11
31
45;\, | N

Fig. 8.2 Subnetwork 1 (O-D pair 1, 3).
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18 2o .

23 26 15

49
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60 2

50

12
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51 &7

Fig. 8.3 Subnetwork 2 {O-D pair 3, 1).
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Fig. 8.4 Subnetwork 3 (O-D pair 2, 4).

Fig. 8.5 Subnetwork 4 {(O-D pair 4, 2).
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Link Type Number Length (m) Vmax(m/s)
Station 1-4 - —
Egress Queue 5-8 L 15
Mainline 9-22 350 15
Bypass 23-34 150 15
Arrival Queue 35-38 —_— 15
Merge or Diverge 39-62 75 T

TABLE 8.1 NETWORK LINK CHARACTERISTICS

The demand matrix used is given in Table 8.2 in terms of average

times for an exponentially distributed interarrival time.

To Station Total
From Station 1 2 3 L
1 -_ 20 > L5 3.9
2 40 - 23 180 13.3
3 26 60 - 51 13.3
L T2 30 360 - 30
Total 12.9 10 4.3 21.2

TABLE 8.2 AVERAGE INTERARRIVAL TIMES (SEC)

8.2 Computational Parameters

Computational studies were performed to investigate convergence
Properties of the algorithm. Convergence and computational cost were
studied as a function of initial control, step-size selection, Lagrange
multiplier initialization, problem duration, initial state, and accuracy
of lower level solution. The subproblems were allowed to converge but

the upper level was terminated after a given number of iterations,
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although convergence is apparent.
The upper level step-size rule employed was:

-~

o », n<n

_ o
@ = (8.1)

L

ao/(n -n’), n>n

where n is the iteration number and @ is a constant. For all
simulation runs, n” = 10,

Two methods for initializing Lagrange multipliers were investi-
gated. The first, termed method 1, is to offseﬁ the total density
delay cost on each link with the cost due to the multiplier. That is,
determine_xi(k)o such that di(yi(k)) + Ai(k) yi(k) is a minimum for the

initial yi(k). This gives for y; (k) > y (i),

A (k)= - wDZ y (k)2 - v, (0)L)/(6,(1 - v, (K)L)2)  (8.2a)
and for y, (k) <y (i),

A (k) = - D2/ (6, v (1)), (8.2b)

The multipliers associated with arrival queue total densities are
initialized to zero and the total control multipliers ui(k), u{(k) are
initialized to zero.

The second method, termed method 2, is to initialize all multipliers
to zero.

Two sets of initial control variables were investigated. They are
given below in Table 8.3 with the associated link number and vehicle
type. Each set gives the control variable value at all time steps
where a 1 indicates diversion to the lower numbered link. The dis-
patch control variables are initially set so as to dispatch a waiting

trip if one exists.
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Link No. 5 15 T 18 6 13 8 10
Veh. Type 1 I 2 - -2 33 L L
o 1 1 1 1 0 0 1 1 1
;Set
o 2 0 1 0 1 0 1 0 1

TABLE 8.3 INITIAL CONTROL VARIABLES

The accuracy of the lower level optimization was investigated
according to two techniques. The first was to halt a link optimi-
zation if the resulting values of the variables had not changed when
compared to the previous iteration. Thus, as thé lower level iterations
progress, only those links that have changes in associated variable
values are reoptimized. This approach was compared to fully optimizing
all links at every lower level iteration. The difference in dual
function value was typically less than l% but cost savings were signi-
ficant. Thus, the approximation was used for all subsequent simulation
runs although it was found that an instability can result if e, is too
large. The approximation is used only for the first 15 iterationms.

The second accuracy technique involves computation of the total
density interconnection variables. We have noted that the function of
y to be optimized is nonconvex. The optimization approach is a linear
~search taken at uniform steps between ym(i) and 1/L (ymax < 1/L was
used to save computational cost). A parabolic fit is determined using
the minimum and two adjacent points. The minimum of the parabolic fit
is used as the solution. The parameter that was varied to investigate
the accuracy of this approach was the number of increments, N, used in

the initial linear search..
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The final parzmeter investigated was initial state. By method 1,
each vehicle type was initialized to a density of .0l5 veh/m on each
link while method 2 increases the initial density to .020 veh/m.

The simulation runs with associated parameter values are listed
in Table 8.4, The values of control variable initialization, state
variable initialization, method of Lagrange multiplier initialization,
and lower level accuracy are indicated by a 1 or 2 as defined by the
above discussion. Problem duration is indicated by the number of time

steps, each being 3 sec. The results are discussed below.

8.3 Numerical Results

The results of the simulation runs described in Table 8.4 are
summarized in Table 8.5. In each case, the initial, final, and
maximum dual functions are given because in some cases a maximum dusl
function value exists prior to the final iteration. In addition,
initial and final cost function values are given as well as total run
time on an IBM 3033. Note the run times correspond to sequential
processing while an implementation would contain a high degree of

parallelism.

8.3.1 Lower Level Accuracy

Runs 1, 2, and 3 compare the effects of changing, N, the number
of increments in the linear search to optimize with respect to total
density interconnection variables. The differences are most apparent
in the values of the initial dual function. As expected, increasing
the accuracy gives a smaller dual function value. However, the cost

savings for N = 5 (i.e., lower run time) versus the degradation in
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Table 8.4

Simulation run descriptions

Step Initial Initial Lower Upper Initial Probiem
Run size control | state level level lagrange duration
variable | variable ?Ic\:ﬁuracy iterations | multipliers | {time steps)

1l 2000 - 1 1 10 20 1 10
2 || 2000 1 1 20 20 1 10
3 || 2000 1 1 5 20 1 10
4 || 1000 1 1 5 20 1 10
51| 4000 1 1 5 20 1 10
6 || 2000 1 1 5 10 1 10
7 || 2000 1 1 5 40 1 10
8 || 2000 1 1 5 5 1 10
9 || 2000 2 1 5 20 1 10
10 {| 2000 1 1 5 20 2 10
1 500 1 1 5 20 1 20
12 || 2000 1 2 5 20 1 10
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Table 8.5

Numerical results

Dual function

Cost function

Run
Run || Initial Final Maximum Initiai | Final time
(sec)
11 8158 8864 8868 9641 8908 15.23
2 | 8157 8872 8872 9641 8918 19.88
3 || 8171 8876 8879 9641 8908 10.38
4 | 8171 8854 8854 9641 | 8913 10.27
5| 8171 - - 9641 9062 —
6 || 8171 8819 8831 9641 8917 5.60
7 1 8171 8892 8892 9641 8908 20.05
8 || 8171 8744 8744 9641 8917 3.25
9 || 7990 8877 8882 9784 8910 9.55
10 j| 2867 8141 8141 9641 8979 11.37
11 || 6395 7875 8081 9110 8393 40.54
12 ||15480 | 16806 16923 18068 | 16928 12.34
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performance suggests that N = 5 be the value of choice for the

remainder of the study. Note that N =5 corresponds to computation

of 6 points, twice the minimum number required for a parabolic fit.

Typically, only 2 or 3 lower level iterations were needed for convergence.

8.3.2 Step-Size Selection

Runs 3, 4, and 5 show the effects of adjusting oy The differences
between 3 and 4 are small with the larger step—gize, LR = 2000, per-
forming slightly tetter. However, increasing the step-size to L4000
created an instability because of the approximation discussed in
section 8.2 where the lower level iteration is prematurely terminated,
that is, the dual function is not accurately cémputed and the sub-
gradient computed at the upper level is npt actually a subgradient.

Removing this approximation removed the instability.

8.3.3 Upper Level Convergence

Runs 3, 6, 7, and 8 compare results when 20, 10, 40, and 5 upper
level iterations are used. The run times are approximately pro-
portional to the number of upper level iferations. The results for
the cost and dual functions are plotted in Fig. 8.6. The cost function
is reduced rapidly. After 2 iterations (not shown in Table 8.5) the
cost function has a value of 8936 and the dual function is to within
1 percent of the final cost function value (dashed line) after 6
iterations. The total interconnection errors for the total density
and total control variables are plotted in Fig. 8.7. The errors are

defined by
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<
1

£z {T|v.(k) -z u, ,(x)x, ,(k)
ieCk  * g B T |

+ T|vi(k) -z (2 - u. .(k . k
IV 00 = 2 G-y 00 g 0
The difference in final cost between Run 3 (20 iterations) and Run 6
(10 iterations) is due to the value of the type 2 dispatch control

variable at time step 1.

8.3.4 Control Variable Initialization

Run 9 shows the effect of initializing the control variables to
the second set given in Table 8.3. The initial cost is slightly higher
but all other aspects of convergence are essentially unchanged. However,
the final control variables are quite different, indicating either the
non-uniqueness of a solution or that several control variables do not

significantly affect the cost.

8.3.5 Lagrange Multiplier Initialization

In Run 10, all multipliers are set to zero, in contrast to the
previous runs which used method 1. Clearly, our initial approximation
(method 1) places the dual function closer to the solution after the

first iteration and is therefore, the method of choice.

8.3.6 Problem Duration
In Run 11, the number of time steps is increased to 20. The
first observation is that the initial cost decreases as the time

increases., This is because vehicles are arriving at stations at a
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faster rate than they are departing stations. Thus, as time increases,
the time averaged delay decreases. Comparing Run 11 to Run 3 the run
time is quadrupled while the number of time steps is doubled. More-
over, the dual function is further from solution in Run 11. It was

also found that the step-size, s had to be decreesed, otherwise
convergence was very poor. That is, the dual function became negatively

large before increasing.

8.3.7 1Initial State
In Run 12, the initial state for each vehicle type is increased to
0.02 veh/m. Convergence is similar to Run 3 with a slight increase in

run time.
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9. SUBOPTIMAL CONTROL STRATEGIES

To develop suboptimal strategies we first outline the greatest

contributors to computational complexity in the optimal control.

These are:

1.

¢

The computation of the interconnection variables at the

lower optimization level involves & linear search that

" requires many evaluations of the cost. This is because

the cost function as a function of an interconnection

variable is of the general form
¢,y /(1 = yL) + c,/y + cg¥, (9.1)

a nonconvex function for certain values of Cys Cos Cg3e If
o Were zero, the minimum could be easily computed analytically.
Otherwise, the roots of a fourth order polynomial must be
determined.

The diverge link optimization algorithm is complex because
of the nonconvexity of the problem resulting from coupling
between routing control variables and interconnection
variables.

The lower level optimization requires several iterations
through the network. This must be repeated many times
because the upper level does not generally converge

quickly.

In devising suboptimal strategies it may also be useful to keep

in mind the relative ease of solving the following associated problem

(Appendix D):
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Min % AY(k) x(k)
u k

such that x(k + 1) = [A(k) + Z ui(k) Bi(k)] x(k) + r(k)
i

where A(k); Bi(k) satisfy the constraints of a transportation
network.

The three following strategies are proposed to simplify the
"computational burden of the optimal control, There is no significant

savings in storage requirements,

9.1 Suboptimal I

This strategy is characterized by making the following modifi-

cations to the optimal strategy.

l. To compute the y interconnection variables at the lower
level a linear least squares fit is made to approximate
c2/y when determining the optimal y. However, the original
flow function c2/y is retained when integrating state and
adjoint equations, As a result, a closed form solution for
¥ can be found. That is, the cost function as a function
of y has the form

e ¥?/(1 - yL) + e,y (9.2)

The optimal y is found by solving the guadratic equation
2 =
(c,L = c)) Ly® + 2(c; = cpL)y + ¢3 = 0

where I is vehicle length and c c,, are computed at each

12 72
time step for each link and are functions of the current state
and adjoint variables. Note it must be checked if the solu-~

tion falls within the density variable range and that

ch -cy > 0.
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2. The diverge link algorithm is simplified by using the
density variables that were computed at the previous
iteration. That is, the routing control variables are

P
computed based on Vi vi, yi+1, yi+2, computed at the

previous iteration., The ¥y, variables are re-

i+1° Yi+2
computed using the new routing control variables while
vi, v{ are computed at the upper level using the newly
~ computed state and routing control variables.
3. The adjoint variables are computed at the upper level
and the lower level is optimized using these adjoint

variables without iteration. Thus, at the lower level

we solve the K problems for k = 1, +¢+, K

Mi old, (y. (k) + A (k) v.(k)
u(k),ny(k) ; 1d R
K
- ék A (2) § xi,j(z)] (9.3)

rather than
Min 2T [4(y; () + A Gy (k) - B %y L GD)].
u,y ki J ’

Thus, the lower level problem gives an approximate dual

function and approximate subgradient.

9.1.1 Suboptimal I Algorithm
The algorithm for Suboptimal I at the nth iteration is:

Upper Level Computation:

O S R W)
vi(k) = 3; W7 k) xi:;(k)
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.n _ n-1 n-1
vi (k) = § (1 - ui,j(k)) Xi,J(k)

compute adjoint variables pg (k) as a function of un_l,
*J

n-1 n n
Y s Vo, V7,

Lower Level Computation:

Solve (9.3) where

_ n
xj(k +1) = [Aj(k) + iﬁc ui’j(k) Bi,j(k)] xj(k) + rj(k)

J
and Aj(k) is a linear function of yi(k), isLﬁ

n X n _,n A=l Dn=}
Bi,j(k) is evaluated at v,, v{, Vier* ¥ i4p

y®  are

. n . n.
when computing u’. The variables y
i+l i+2

computed at un.

9.2 Suboptimal II

This control strategy is derived as a further simplification of
Suboptimal I. That is, the constraint dynamics use interconnection
variables computed at the previous iteration while the upper level
computation is identical to Suboptimal I. The lower level problem is:

Min I 2 [a;(y; (k) + A(R) (7 () - 2 xg ()]

u,y ki -
n-1 n-1

s.t. x(k+1)=[A, (k) + £ u, (x)B, ,(x)]x,(k)+r,(k)

J J ieC 1, 1, J J

J

n-1 n-1 . n-}

where AJ (k), Bi J(k) are evaluated at previous values, y ,
b}
vn, vP,
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Note the minimum at the lower level is the desired minimum rather than

the K step approximation in Suboptimal I.

This is because the dynamics

in Suboptimal II are only a function of time and the results in

Appendix D apply.

9.3

Suboptimal IIT

at the upper level thereby eliminating use of the duality concept.

The final simplification is to adjust all interconnection variables

The

lower level problem corresponds to the simplified problem in Appendix D.

The algorithm is:

90’4

Upper Level:
yie) = 1 x?js(k)
ACES: uy ) %L (k)
SREACEE EACY

Lower Level:

L i E § di(yi(k)) xi,j(k)

s.t. xj(k +1) = [A}l(k) + Iy (k) B?

ieC *J

J

Computational Results

,j(k)] xj(k) + rj(k).

The three proposed suboptimal strategies were simulated for the

network and honditions described in Section 8.

Table 8.4 was repeated for the three suboptimal schemes.

&

are given below in Table 9.1.
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Run

Final Final Time
Dual Cost (sec)
Optimal 8876 8908 10.38
Suboptimal I 88ok 8918 3.91
Suboptimal II 8694 8913 3.71
Suboptimal III - 89L1 2.39

TABLE 9.1 SUBOPTIMAL COMPUTATIONAL RESULTS

Each of the suboptimal strategies have significantly smaller computa-
tional time than the optimal strategy. Although the dual functions for
I and II (not actually dual functions but approximations) are not as
large as that attained in the optimal algorithm, the final cost
functions have nearly the same value. In Section 10, it is noted that
an implementation would not include a dual function computation but the
upper level iteration number may be determined by apriori analysis.
Thus, the significance of Table 9.1 is that the suboptimal strategies
nearly attain the optimal cost function value in the same number of
iterations as the optimal algorithm. In suboptimal I it was found that
the gap between the dual and cos£ functions at the ZOth iteration can
be eliminated if the step-size, @y is increased to L4000.

Only suboptimal IIT has significantly worse performance than the
optimal. Moreover, suboptimal III does not converge but oscillates
between the values 8940.88 and 89L0.kLk,

Most importantly, because there is no iteration at the lower levels
run times for the suboptimal strategies are directly proportional to the
number of time steps in the problem (i.e., doubling the time steps doubles

the run time) versus the dramatic increase seen in the optimal algorithm.
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10. CONTROL IMPLEMENTATION

In this section we address the question of how to implement the'
algorithms given in previous sections. Many of the specific questions
must be resolved through apriori analysis of a particular network.
That is, many of the approximations, suboptimal designs, computer
configurations, software designs, and communication requirements are
highly network dependent. Here, we outline some general approaches
and possibilities that should be considered. In particular, algorithm
initiation criteria, stopping criteria, and computer storage and speed
requirements are examined. ‘

First, we note the overall intent of this work is to develop on-
line control algorithms. However, for certain networks it may be
possible to devise routing tables using the given algorithms as part
of an apriori analysis. That is, a nomiﬁal routing strategy might be
developed for a nominal set of demands with relatively simple rules
for adaptation to off-nominal cases. The adequacy of this type of
approach must be evaluated for a specific network. In the following

sections, the on-line approach is discussed.

10.1 Algorithm Initiation

Under non-failure conditions the operation of the automated
transit network is essentially deterministic except for unexpected
changes in demand. Thus, as long as the trip demands correspond to
the predicted demands, a nominal set of routing control variables
computed apriori may be used. However, as actual demand departs

from the predicted demand, the nominal control may degrade in
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performance such that on-line control computation should be invoked.
Thus, the question of how to determine when the control should be re-
optimized, arises.

A simple technique is to continuously run the algorithm using
current demand and future predicted demands. Thus, known changes in
demand are taken into account.

A second technique, intended to reduce communication requirements,
is to initiate control computations only when it-%s needed. This may
be accomplished by computing the changes in cost function value associ-
ated with each subnetwork due to changes in demand. The value of the

cost function due to vehicle type j dispatch, uj(k), has the form
c(u,(k)) = u, (x k + 1) - k+1) +p (k+1)]+C (10.1
(a5 (k) = wy(6)p, (k+ 1) =p, J(e+1) #5 (k+1)]+C (10.1)

where subscript 1 represents the trip reéuest queue, subscript 2
represents the egress queue, §n is the adjoint variable associated

with the arrival queue of vehicle types with origin station being the

(k).

destination station of j, and C is a constant not depending on u

J

Thus, each station may compute the change in cost due to a dispatch of

vehicle types departing that station. At each time step, if u (k)

J

o(k) then the state and adjoint equations

J

must be integrated to account for the future effects of uj(k).

differs from the rnominal u

Whenever a change in demand causes the cumulative change in cost
to cross a specified threshold, then a particular station can initiate
a new control computation. As the algorithm progresses from the
station that initiates the re-optimization, it must be determined

whether subnetworks emanating from other stations need to be
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re-optimized. Again, there are several options as to how to accomplish
this task. As the total densities on common links change, this infor-
mation eventually reaches other stations through transmission of adjoint
variables. Thus, other stations may initiate re-optimization of
associated subnetworks according to the same criterion, namely, when
change in cost function passes a specified threshold. A second approach
would be td re-optimize all portions of the network affected by the
initiating subnetwork. Because communication links are distributed

this must be accomplished by a flag being passed between adjacent

links, eventually reaching the origin station of each affected sub-
network.

Thus, the general approach we have outlined is that a decision
whether or not toc initiate re-optimization is made at the subnetwork
level. The effects of re-optimization eventually reaches the other
subnetworks which in turn, make a decision. For a specific network,
synchronization and time delay problems must be investigated prior

to implementation.

10.2 Stopping Criteria

The stopping criterion typically used when applying duality is
that the error between the dual and cost function values be within a
specified level. For the distributed implementation described here,
this is clearly impossible and an alternate criterion is needed. As
in algorithm initiation, decisions must be made at either the subnet-
work or link level.

One possible approach is to select a fixed number of upper level

iterations and accept the result. A number that is found to be satis-
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factory over a wide range of conditions would be determined via
apriori analysis.

Another approach is to decide at the link level whether or not
to continue upper level iterations based on satisfaction of the inter-
connections constraints. The need to continue iteration must be
transmitted through the subnetwork and network.

These approaches can also be applied to solution of the lower
level problems where the criterion used is the change in each link

solution from the previous iteration.

10.3 Computer Storage Requirements

The arrangement of computational facilities is also a network
dependent variable although it can be expected that a single wayside
computer would handle a small portion of the network involving several
links. To estimate the storage requirements for algorithm implementa-
tion we consider the requirements for variables associated with each
link. Note this may underestimate actual requirements because state
and adjoint variables transmitted from adjacent links must be stored
prior to computation. On the other hand, a single computer would
typically be responsible for several links and therefore, intermediate
storage for these links is not required. Thus, we only give the
single link requirements with a rough approximation of total require-
ments being the sum over all individual links.

The storage regquirement for a non-diverge link is estimated as
follows. Let J be the number of vehicle types that pass through a
given link and K be the number of time steps in the optimization time

interval. Then, for each link the variables that must be stored are:
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1. J vehicle type density variables (computed as needed at

each time step),

2. K total density variables - stored for adjoint integration

and other computations,

3. JK adjoint variables - stored for forward control

computation,

4. XK Lagrange multiplier's -~ stored for adjoint integration,

5.%10 miscellaneous variables such as headway, integration

time step, subgradient step-size, vehicle length, etc.,

6. storage space for intermediate computation.

Neglecting space needed for (5) and (6) the storage requirement
is approximately J + X (J + 2). Thus, the major contributor to
storage requirement is the JK term, that is, the adjoint wvariables.

The requirement for a diverge link is increased due to the
additional variables involved. Namely, a maximum of JK routing control
variables (the variables for some vehicle types are fixed in time
according to subnetwork definition), 2K total control variables, and
2K additional Lagrange multiplier variables. Thus, the total require-

ment is approximately, J + K (27 + 6).

10.4 Speed Requirements

Speed requirements must be determined for a specific network.
That is, the delays, due to computation, that still maintain a speci-
fied level of network performance places requirements on wayside

computer speed.
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The suboptimal strategy run times given in Section 9 appear
plausible for implementation. That is, the time for 20 upper level
iterations is approximately 10 percent of control time history.
Although these times correspond to a computer that is considerably
faster than the typical mini-computer, the following caveats should
be taken into account.

First, computations for the simulated algorithm are performed
sequentially while an implementation would take advantage of parallel
processing. Although the degree of parallelism depends upon the
precise sequencing and communication of information for a given net-
work, the possibilities for parallel computation are the overall sub-
network problem and computation of variables for each link. Only state
and adjoint information must be processed sequentially, being passed
through each subnetwork from origin to destination and destination to
origin.

Second, the coding used for this simulation was not optimized in
all respects.

Third, it is possible the upper level could be terminated sooner
than 20 iterations.

Finally, the simulation contains many "bookkeeping chores" that

can be "handwired" into an actual implementation.
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11. CONCLUSIONS AND FURTHER RESEARCH

The major result of this work is the development of a routing
control algorithm with potential for on-line application. The algor-
ithm is based on a traffic flow model derived for vehicle-follower
systems and a cost function representing total, time averaged, travel
time. The traffic flow model is a first attempt at formulating and
applying a macroscopic model for vehicle-follower automated systems.
Furthermore, the model has been compared to a number of alternatives
and tested with discrete vehicle simulations of several network ele-
ments.

The most practical feature of the algorithm is the distributed
computational structure. By applying duality, the optimization prob-
lem is decomposed into parallel subnetwork problems. Communication
links needed for solution of the subnetwork problems correspond to
communication links in place for vehicle spacing and velocity reg-
ulation, that is, connection between adjacent guideway sections. The
control coordinating subnetwork problems is also localized to each
link. Thus, routing control is completely decentralized, as is the
vehicle-follower control strategy.

Development of the suboptimal strategies enhances the possibili~-.
ties for on-line implementation of & routing algorithm although design
refinements and evaluation of these approaches should involve consid-
eration of a specific network.

Suggested areas of research for extension of this work are,

(1) further development of the suboptimal strategies in-
cluding analytic investigation of performance degrada-

tion,
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(2)

(3)
(%)

(5]

(6)

The last point

extended formulation of the problem to include systems
based on multiple party vehicle occupancy and inter-
mediate stops,

comparison to simpler but more heuristic approaches,
testing of the flow model in a discrete vehicle simula-
tion of a network, and performance evaluation of the
algorithm when used with a discrete vehicle network,
jmprovement of the model to include discrete vehicles,
that is, each link can be modeled as a queue of discrete
venicles with motion through the queue being represented

by an aggregate flow model,

reformulation of the problem where each vehicle type
is associated with a destination rather than an origin-
destination pair.

(6) can produce significant savings in communication and

storage requirements although increased complexity of the subnetworks

will create longer delays, a trade-off that needs to be investigated.
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APPENDIX A

SUBNETWORK DYNAMIC EQUATIONS

The dynamic equations of the network are derived in Section L
and verified with the aid of computer simulation, It is assumed
the subnetwork link may be classified as one of the following types:

1. waiting passenger queue’

2.  egress queue - diverge

3. egress queue - link

L, link

5. diverge

6. downstream diverge

T. alternate downstream diverge

8. merge

9. station arrival queue - merge

10. station arrival queue - link
Note the above list does not include for example, a link that is
both a merge and a diverge. This is because the list only covers
those links in the subnetworks being studied (Section 8). The list,
however, can be expanded to include any link type. Also note that
there may be network link types that no subnetwork contains. This
is the case for the network in Section 8 which, in faét, contains
many merge-diverge links,

The state equations for type j are written in discrete time
with the j subscripts dropped for notational convenience, The

integration step-size is T and sJ indicates the waiting queue for

trip type, J.

-123-




1. waiting trip queue

i+ 1

Sj M

Fig. A.1 Waiting trip queue.

xi(k+1’) = xi(k) + r(k) - ud(k)

where r(k) number of new trip requests of type J at time k,

ud(k) dispatch of vehicle type j at time k

2., egress queue - diverge and downstream links

5 |—p——F—

Fig. A.2 Egress queue - link.

, % (k1) = uy(k)

1]

xi+l(k+l) xi+l(k) + ui(k)xi(k)/Di+l - Tai+l,i+3(k)xi+l(k)/Di+l

X;4p(k1) = x; 5 (k) + (1w (k))x, (k)/D, .,

= Tay o g4 ()X o (R)/D o
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3. egress queue - link

Fig. A.3 Egress queue - diverge.

xi(k+1j = ud(k)

<

xi+l(k+l) = xi+l(k) + xi(k)/Di+l - Tai+l,i+2ﬁk)xi+l(k)/Di+l

L, 1ink

Fig. A4 Link.

x; (1) = x, (k) + Tlay ) (Gedx; j (k) - 2y 4oq%; (K)1/D;

where a. , .(k) = velocity from i-1 to i
i-1,1

- . . 4

ai,i+l(k) velocity from i to i+l

(these are defined in Section A.1l)
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5. diverge

i+ 1
. . Downstream
| i-1 I i diverge
r J Alternate
downstream diverge
it+2

Fig. A5  Diverge link.

x; (kr1) = x, (k) + T[ai_l’i(k)xi_l(k)

- [a (kJug (k) + &y 5,0k (L () )%, ()1/D,

i,i+l

6. downstream diverge

Fig. A.6 Downstream diverge link.

X34 (B41) = x ) (k) + Tlay ;o ()x; (k)u, (k)

i+l
()%, ()1/D,

- &, .
i+l,i+3

By convention, the "downstream" diverge link is assigned the lower

link number.
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T, alternate downstream diverge link

i+ 1

| | { 1

Fig. A.7 Alternate downstream diverge link.

%5 4p0t1) = x5 (k) + Tlay ;o 0cdx, (k) (1-uy (k))

- ai+2,i+3(k)xi+2(k)]/Di+2

8. merge

Fig. A.8 Merge link.

+ =
x; (k*1) = x, (k) + T[ai—l,i(k)xi-l(k) ta o

- 8y 54 (dx; (x)1/D;

=127~
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Fig. A.9 Station arrival queue - merge.

xi(k+l) = xi(k) + T[ai-—l,i(k)xi—l(k) + ai-2,i(k)xi—2(k)] - ﬁ-d(k)

where Ed(k) = vehicle type dispatch control that returns to

9. station arrival gueue - merge
J source station
10. station arrival queue - link

Fig. A.10  Station arrival queue - link.

xg (k1) = x (k) + Tay ) (e, ) (6) - wg(x)
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A.1l Velocity Functions

The velocity functions denoted by a(+) in Section 4 are defined

separately for a link, diverge, and arrival queue. We give the

revised function derived in Section 5 for the optimal control

formulation.

A.1.1 Link
q, (i+1)/y, (i) for y; s ¥ (1), ¥i4q
9 (142073, for y; > v (1)s v

"t ) G ) for v, % v (1), vy
@ (41)fy; + Ll (5) = 4y )/ (g (1)

for y; > v, (1), ¥vi4y

where Yis Y547 are at time k,
qmax(i) = maximum flow on link i

y,(1) = density at maximum flow

I, = vehicle length

h = headway.

A.1.2 Diverge

Define ai,i+l(k) = a(yi,yi+l) given above.

diverge to downstream:

)

(k) = alv;,¥;,y:

a, .
1,i+l
diverge to alternate downstream:

2; j4plk) = a(vy%s Vi)

=129~

< ym(i+l)

A

vy (i+1)

v

ym(1+l)

v

¥, (1+1)



A.1.3 Station Arrival

q, (i+1)/y (1) for y, sy (i), vy, s ¥ (342)
q (i+1)/y, for y, >y (i), vy, <y, (3+1)
={
a; 141 () :
va/(ym(i)(hva+L)) for y, = ym(i), Yiep > ym(i+1)
q, (1+1)[(1/y;-(1/y, (AN + v, /(y, (1) (v +1))
for y, >y (i), v, > v (4+1)
: 1 '
v - (gas(ymax(l)"yi.'.l),(lﬁ'd)) s Yi+l > Ym(l+l)
a . .
Voo (- » ¥ipp S ¥p(i42)
§ = nose to tail distance between vehicles parked in arrival

queue
<y = (Y L w2 . +
v, (1) =y, G) - v (G)/(2a_(1+8])
q (i+1) = Voo (1) (Bv (141)+1)
where Yis yi+l are at time k.
yﬁax(i) = maximum number of vehicles allowed into arrival gqueue
v (i+l) = maximum velocity
mex
a, = service acceleration limit.
The velocity function for a merge is given by the link velocity

function,
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APPENDIX B

SUBNETWORK ADJOINT EQUATIONS AND COST RELATIONSHIPS

The equations used to compute cost, c(-:), due to vehicle type j
at time k according to link type are as follows: (1link designations

correspond 1o Fig, AL - 4,10),

1. walting trip queue

pi(k) = pi(k+1) - T

(pi(k+l) - pi+l(k+l) + 5;(k+l))ud(k) (occupied vehicle)

cluy(k)) =
(pi+l(k+l) + 5;(k+l))ud(k) (empty vehicle)

where 5; = adjoint variable associated with arrival queue of vehicle

type thathas origin station the destination station of J.

2. egress queue — diverge

p, (k) = p, (kt1) + u, (klp,; ., (&+1)/D, 0 + (1-u,; (k))p, , (k+1)/D,

i+l

clu;) = u;(k)(py,(k+1)/Dy = Pyyq (B41)/D, )
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egress queue - link

p, (k) = p, (x+1) + p, ., (t1)/D,
link

p; (k) = p; (kt1) - Tla, (k) [p; (k+1}/D; - P;4q (K+1)/D; 4]

i,i+l
+ di(yi(k)) - Ai(k)}

cly; (1) = T{a (k)x (k) [p; l(k+¢)/D - pi(k+1)/Di]

toay 5 Gdx () o (e1)/D; - py ) (e1)/D,

+ xi(k)yi(k) + di(yi(k))}

diverge

i

Py (k) = p; (k1) - Tl(a; ., (kdu, (k)

+o () (1w, (x)))p; Get1)/D;
(eu; (kdpy g Get1)/Dy 4

1 i+l

42k (1=, (), (k1) /D, ) = A, (K)D
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C(ui) ui(k)T{xi(k)(a (x) - ai’i_kz(k))pi(k+l)/Di

i,i+1

x; (Kday g4q (K5 (410/D;

+

xs (kdag ;o o0k, o (k+1)/D, )

+

;7 (k) = 1y () ), )}

e(v;(x)) = Tfa, (k)ui(k)xi(k)pi(}&l(),/Di.

Litl

—8; 4 4q (du, Gedx, (kdp, o (et} /D, 0+ g (kv (k)3

The relationship for vi’(k) is identical in form to vi(k)

ely; (k) = T{ai,i+2(kl(l—ui(k))xi(k) [p; (k+1)/D;

Pi+2(kil)/Di+2]

+

a; i+l(k)ui(k)xi(k) [pi(k+l)/Di - pi+2(k+l)/Di+2

3

+

A )y, () + & (v (6003

The downstream diverge and alternate downstream diverge fall into

either the link or diverge category.
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merge
Pi(k) = (same as L)
cly; ()) = Tlay ;) Cdx, (k) [p; 5 Getd)/D; , - p, (k+1)/D,]
Tﬂé;—é,;(k)[pi-2(k+l)/ﬁi—2‘; p, (k+1)/D,]
+ ai,i+l(k)xi(k) [p; (et1)/D; - pi+l(k+l)/Di+lJ

+ di(yi(k)) + Ai(k)yi(k)}

9. station arrival queue - merge
p; (k] = p; (kt1] + Txi(k)
c(yi(_k),) = T{ai—l,i(k)xi—l(k) [pi_l(kﬂ.)/Di_l - pi(k+l)]
*ay o Gedx; 5 [p; o(e1)/D; , - p; (k+1)]}
10, station arrival queue - link

Pi(k) = (same as 9)

cly; ()) = Txg,, (kag_y (k) [py_; (k#2)/D; ) - p; (k*+1)/D;]
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APPENDIX C

DIVERGE LINK ALGORITHM

The minimization problem for diverge link variables at time k

has the general form (see (5.20))

Min [£(z) + ¢ (z)ul | (c.1)
s,¢t., 0=susl
a<zx<b .
where u is a vector of routing control variables and z is a vector
of interconnection variables.
Because of the relative simplicity of the optimization problem
when either u or z are held constant, a projection type optimization

technique is suggested. That is,

min {f(z) + min [c’(z)u s.t. 0 s u < 1]} (c.2)

z€Z u
We know at an optimal solution, each u; = 0 or u; = 1. Thus, a
straightforward approach would be to minimize over Z for eact
possible u, However, the number of possible control vectors is 2J
and such an approach would be computationally prohibitive for a
large network. To obtain a solution we use the following
relaxation procedure,

Given an initial us determine Y, such that

f(zo) + cT(zo)uo < f(z) + cT(z)uo, zeZ . c.3)
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This problem is relatively easy because of the separability of f(z)

and c¢(z). The solution pair (zo, uo) is optimal if
T T
c (z)uo < ¢ (z2)u, uel, zeZ (c.k4)
because substituting (C.4) into (C.3) gives
T T
f(Zo) + ¢ (zo)uo <f(z) + ¢ (z) u (c.s)

uel, zez .
If (C.4) does not hold, then a u; is generated ana (c.3) is repeated
for u,, uy. Because of the nonconvexity of the problem, we cannot
Justify dropping U, from consideration. The process repeats until
(C.4) is satisfied. The algorithm coverges in a finite number of
iterations because of the finite number éf control vector z, u.

th

The specific algorithm at the n” iteration for time step k is

as follows.

7
1. Given u?’J n=l, ..., N determine v?, vi“, y§+l, y§+2 by solving

“the following subproblems for n=1, ..., N:

n . or -y
= + +
1 mln[?lq (i 1)/vi wvy ot di(vi + vi)
ViV

n . - I
+ + +
ch (l 2)/V. H.V.]

£2 =min [e]T(y, (i+1) -y, )/ (ny (1))
Yis1

P eny (1430 yg g+ eeding (pag) ¥ Apaa¥ig)
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£3 = min [e3L0y, (3+2) - y;,,) + esq (3+4)/y
' Yis2

+ °7d1+2(y1+2 A eo¥i40]

where the coefficients, c,, are not funétgoﬂsrd% u, (k), zi(k).

We then solve

min(f} + £5 + £3) n=1, ..., N
n

to give VN N vN N
&1 i* Vi o0 Yiv1® Yieo o

+
2. Determine u¥ 1 by
i,J
o R>20
N+l _
u
1,3
1, R<
where
= (pi-pi)xi,‘j + a(V 3yl+l)c1 J a‘(vi s Y~+2)C2~ j .
N+l ¢ {L .3 n=l, ..., N} go to step 1 otherwise, check optimality
in step 3.
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3. Define:

a1(1) = a1(3) = min a(vi,yi+l)
a2(1) = a»(2) = min a(v{,yi+2)
ar(2) = aj(4) = max a(vi,yi+l)
a(3) = ap(L) = max a(v%,yi+2) .
Solve

min {yzu, . (c + a,(X)ec -a (X, .
“1,i 3 1,373, 1€ 2() Z’J)

3 1,3

N+1

N+1
- (c;

+a;(2)ey T - a2(2)c§+l)}

such that 2=1, 2, 3, 4 and

cN+l - zuN+lc

1 j i’j 1’j
cN+l = Tu N+%

2 j i’j le
ML o ML

3 1,371,  °

3

- * *
Let the solution be u . If u e{u®, n=1, ..., N+1}, stop. Otherwise,
*
uN+2 = u and return to step 1.
For diverge links where no subnetwork diverges, the above
optimization becomes identical to the link optimization since the
u, are held constant.
i, .
The subproblem that computes fg is identical to the

link subproblem for total density.
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APPENDIX D

SOLUTION FOR AN ASSOCIATED PROBLEM

Consider the problem given by

K 1
min I a (k)x(k)
u k=1

such that x(k+1) = [A(k) + Zui(k)Bi(k)]x(k) + r(k)

i
where d(k), x(k), r(k) are n-dimensional vectors and ui(k) i=1, ..., M
are scalar control variables., We denote u(k) as the M vector at time,
k.

To solve the above problem we apply the Principle of Optimality
[4L3]. Thus, at the gth stage we have

min 4’ (K)x(K)
u(k-1)

<
!

1l

min [2(u, (K-1)a* (K-1 B, (K-1)x(§-1))
i

+ AT (K) (AK-1)x(K-1) + r(x-1))1 .

“Because u; are routing control variables, they are multiplied only by

xi. Hence, the matrix Bi is zero except for the ith column so that

P, (1087 (K)B, (£-1)x(K-1) = Tuy (R=1)a" (K)by (1) (6-1)

th

vhere bi(Krl) is the i~ column of Bi(K—l). It is now assumed that by

-
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the flow constraints of a transportation network we have xi(K—l) >0

and the Kﬁh stage solution is

1 dT(K)bi(K—l) <0
*
u, (K-1) =
: 7
0 a (K)bi(K—l) 20

At the K-1 stage we apply the Principle of Optimality to give
v2 = min [zu, (K—2)(dT(K-l )B, (X-2)
. 1 1
u(k-2) i
* T
+ Eui (K—l)Bi (k-1)a (K)Bi (k-2)
i
+ dT(K)A(K—l)Bi(K—2))x(K—2) + €]
vhere C is not a function of u(k-2). The coefficient of ui(Ke2) can be
written as
*
[dT(K—l) + dT(K)(A(,K-l) + Zui(K—l)Bi(K—l)]bi (K—2)xi (K-2)
i
and defining,
*
pl(k) = - p(k+1)A (k) - a (k)
‘pT(K}l) =0

A () = AGk) + zug (6B, (k)

then the optimal control at K- 2is

~1Lo-




1 - pT(K-l)b.(KPZ) <0
* 1
u, (K-2) =
+ T
0 - P (Kbl)bi(KFZ) >0

Proceeding recursively to the kﬁh stage
T
v =min [~ p Get1)(ACk) + Zu, (kDB (k})x(x) + CT

K-k+1 ulk)

Thus, the optimal control at each time k is

1 - pT(k+l)bi(k) <0
w; () =
a - pT(k+l)bi(k) >0 .
-1k41~
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