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ABSTRACT

Title of Thesis: Decision Directed Approaches to the Target Discrimination

Problem.
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Thesis directed by: A. Ephremides, Professor,
Electrical Engineering

A radar detection problem is studied, in which nature can be in one
of three states, corresponding to the three'targets', ships, chaff and sea
clutter. A Neyman-Pearson type of ternary detector is developed, and
the optimum decision rule is determined assuming that the conditional distri-
bution functions of the observations are known. It is shown that if the
a-priori description of the conditional distribution functions is incomplete,
then problems in simultaneous estimation and detection arise.

Then in a simplified setting we develop two theorems on parameter
estimation under uncertainty. They are valid under different conditions, but
essentially in each of the two, we assume that there exist estimates which
converge in quadratic mean to the unknown parameter, when the identity of the
underlying target is known; then we propose new estimates (in terms of the old)
which converge in q.m. to the unknown parameter, even when there is uncertainty

about the identity of the underlying target.
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Title of Thesis: Detection of Gaussian Processes Observed
through Memoryless Nonlinearities

»

Georges P. Panayotopoulos, Master of Science, 1979
Thesis directed by: John S. Baras
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Electrical Engineering Department
This work deals with the detection of nonGaussian

processes which can be modelled as the nonlinear outputs

of linear dynamical Systems driven by White Gaussian noise

Our approach is based on the idea to find some auxiliary

process et and a nonlinear transformation F(t,et,Yy)=Xt

so that Xt to be Gaussian.
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INTRODUCTION

The present work was written as a thesis towards the
Master's degree at the University of Maryland.

It deals with the nonlinear detection problem that 1is,
the detection of nonGaussian processes which can be modelled
as the nonlinear outputs of linear dynamical systems driven
by White Gaussian Noise.

In chapter 1 we give an introduction to the signal
Detection problem and we emphasize the so called Signal in
Noise case.

In chapter 2 we deal with our problem. Specific
2.1 deals with the case when we have Rayleigh processes.

2.5 examines the prbblem for chi-square with four degrees
of freedom and 2.6 the case for lognormal processes.

Qur approach is based on the idea to find some auxiliary
process et and a nonlinear transformation F(t,et,Yt)=Xt so
that Xt to be Géussian.

In chapter 3 we search one way to approach the estimation
problen. It is based on the fact that when we know the
covariance of a nonlinear transformation of a Gaussian
process, sometimes it is possible to recover the covariance

of the Gaussian process.



CHAPTER 1 SIGNAL DETECTION

(1.1) DESCRIPTION OF THE PROBLEM

Two are the problems with which science deals. The
first problem which would be named the "prediction'" problem
is the following:

Based upon some data which have to do with the past and
present someone has to predict the future. This should be
possible provided causality holds in nature.

The other problem, which would be called the "inverse"
problem is to find the source of the given data.

I would say that the detection problem belongs to the
category of the inverse problems.

Briefly, the detection problem could be described as
follows:

We make observations Yt in the time interval [o,T1].
Based on these observations one has to decide and accept one
of the following hypotheses
H. : The observation process is y,.

0

Hl . The observation process 1is Yie

Of course the decision will be taken based upon some
criterion of optimality. Inm general our purpose is to
minimize some cost function in the long run.

Each time, we choose a cost function which depends upon
the a priori information we have for the problem.

In accordance with the chosen cost function we have the

following 3 basic decision-making strategies.
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1. The Bayes criterion
2. The minimax criterion
3. The Neyman-Pearson criterion

The observation process Yt is a random element in a
Hilbert space H.

For instance if we make only one observation at only
one time instant then we shall have a random element in R
that is a random variable.

If we make n observations at the time instants
tl,tz,...,tm then Yt is a random element in R™ that is an
m~dimensional random vector.

Finally Yt may be a random process that is a random
element in uz(l) where I=[o0,T].

In any case there will be a decision surface D in H
which will divide the space into two regions Ro’Rl'

For a specific experiment Yt will belong efther to
R0 or to R, and we shall decide for Hb or Hl respectively.

The decision surface is determined from the decision
strategy we use.

The above is equivalent to the following. 1In all three
strategies one computes a quantity which is called the
1ikelihood ratio (LR) and then compares the LR with a thres-
hold value v. If the LR is greater than v we accept Hl
otherwise we accept HO.

The strategy has to do with the computation of the

threshold value v.



So the pure theoretical detection problem deals with the
computation of the LR which in the measure theory foundation
of probability is not anything else but the Radon-Nicodym

derivative of P1 with respect to PO that is dP1 where Pi

dP0

is the probability measure induced by the observation process
Yt under hypothesis Hi.
Now we shall state briefly each criterion.
(1.2) BAYES CRITERION
In this case we know a priori the following information
First the a priori probability £ to occur HO. So 1-¢g

is the probability H,6 to happen.

1

Second the so called cost matrix
(€00 Coﬂ

€= ¢ C
1%10 11!

where Ci is the cost we have to pay when we <pt Hi while

3

Jj is true.

The cost function we have to minimize is F(D)=£ -
F(D)=E[C,Qu+Cqq(1-Qy) 1+ (1-g) [C( @ +Cy; (1-Q)]
where Q0=P0{w:yt(w)&R1}

Q1=P1{w:yt(w)gR0}

QO’ which is called the error of the first kind, 1is the
probability to accept Hl when HO is true. The radar
engineers call it the false alarm probability.

Q1 is the probability to accept HO when Hl is true.
1—Q1=Qd is called the detection probability.

The cost function F(D) is called the average risk. The

4



The minimization of the average risk gives rise to the

following result.

f@m‘coo)
0 (1-€)(Cy,=C )
(1.3) THE MINIMAX CRITERION

The threshold value A

In this case we have no information about the a priori

probability &

Then we compute the Bayes risk Fmin(g) for different &

the minimax risk

- minimax strategy 1s the Bayes strategy for E=£0 when
the Bayes risk is maximum.

(1.4) NEYMAN-PEARSON CRITERION

In this case, which is used when we have to do with
radar problems, E is not meaningful. On the other hand it
js difficult to estimate the Ci .

In this case it is meaning%ull to preassign a false-
alarm probability Q0 we can afford and they try to maximize
the detection probability Qd_l

After this brief discussion of the 3 criteria we return
to our subject.

It is usual to use the term signal Detection when the

observation process is a random process. On the other hand
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we use the term "Hypotheses testing' when Yt is a random
element in R".
The most studied case in Signal Detection theory 1s the

case when

The observation process is pure White Gaussian Noise

(WGN)

H : The observation process is a‘distorted by additive WGN
version of some signal process

In the following, this case will be referred as the
"Signal in Noise" case.

(1.5) THE SIGNAL IN NOISE CASE

In general the classical approach to the Signal Detection
problem was through the Karhunen-Loeve expansion OT
biorthogonal expansion (see Appendix 1).

The modern approach 1is based on martingale theory, more
specifically on some results due to Girsanov aﬁd Kunita-
Watanabe.

The first to introduce this approach in the detection
theory was Thomas Kailath who in 1968 wrote a famous paper
"General Likelihood ratio formula for random signals in
Gaussian Noise"

We are going to state this formula.

If we have observations {Xt,tE[o,T]=I} such that

H Xt=Zt+wt
A more consistent mathematical rephrasal of this would

6
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H, : X =W
t
where Wt is the Standard Wiener process and Zt is a random
process which satisfy the following condition
E fTIZ |dt <=
0 t

This condition is sufficient for the probf of the
theorem but not necessary.

Another basic assumption is that the future noise is
independent of the past signal that is we can assume only
one sided dependence between the signal and the noise

E[wtzt_s]=0 , s>0

Then

! - ~2
LR=—— = exp [F 2,dX _-%s X dt]
P t t t
1 I
Zt is the causal least-squares estimate of Zt based on data

o

{).(_t,‘rf_t} that is
it=E{Zt|kT,rit}
The symbol ¥ represents the lto integral. 1In the Appendix
1 we give some properties of the Ito integral.
Now we shall make some comments on the above formula.
Since in this formula we‘have to know the least squares
estimate of Zt which is very difficult to obtain in the
general case one could argue that this formula doesn't offer

much in the computation of the LR. This is partly true.

As Dr. Kailath has stressed in his paper the major value of

7



this formula lies in its physical interpretation. That 1is
in the fact that we gain physical insight into the structure
of the likelihood ratio computer. This receiver must be of
the "Correlator - Estimator" form.

On the other hand this result is a unified formula for
results which existed for some specific cases like the case
when Zt is a known signai or a Gaussian process, etc.

For a proof of this theorem see Appendix II.

In the following we shall give some known results for
the LR for the case of a Gaussian signal.

(1.6) GAUSSIAN SIGNAL IN WGN

Someone has to decide between the hypotheses

H,

X =W
t t

H

L K, = W, #+ z, t €1=[0,T]
with Zt Gaussian signal of Zero mean and covariance K(t,s).
Also we assume that all the conditions for the general
Signal-in-Noise problem are satisfied.

The classical approach through the Karhunean-Lodve

expansion gives rise to the following formula.

LR = exp (A-B) where

26 = ff X_ H (t,s;l) X dtds
1, °© : s

2B = fl dt f H(t,t;T)dt
0 I

where H(t,s;u) 1is the resolvent kernel for the operator
k(t,s) that is the solution of the resolvent Fredholm integal
equation

H(t,s;u) +u [ H(t,t;u) K(t,s)dt = K(t,s)

I
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whichhas a unique solution provided that -% £ o(kR), o(K) is
éhe spectrum of the operator K. |
Price gave an interesting interpretation fof A. As we
can see 2A=§ kt Zzt dt where .
Zo¢ =£ H(t,s;1l) xsds
We shall demonstrate that H(t,s;l) can be interpreted
as the smoothing filter for Zt given data {kr’ tel}

Really the smoothed estimate of Zt is

z . =E{z |i , t€I} but since Z_ is a Gaussian
et t T : t
signal the least-squares estimate will be the linear one.

So,

zet=£ G(t,s)XSds
r using the projection theorem

E[(z -2,.)X_]=0 =
c(t,s)+ fg(t,t) K(t,s)ds = K(t,s)
But since the resolvezt Fredholm equation has a uniqqe
solution H(t,s;l)=G(t,s)
Dr. Kailath was able to prove that his formula is
equivalent to the one for the Gaussian case. He used in

order to prove this, the following formula which is

equivalent to the above result

® A
LR=exp(A-B)= [T (1+Xi) & exp[l & X2 = ]
1 ‘ 11+A,

A .
with X, =7% (£)X dt, fTKR(t,s)y (s)ds = Ay (t)
i 0 i t 0 i 171

This is easily proved 1if we take into account the fact



when Ai’ wi are the eigenvalues and eigenfunctions of K(t,s)

. respectively then the Fredholm integral equation

H(t,s) +fT‘H(t,T) K(t,s)dt = K(t,s) or in the operator
0

form

H + HK=K has a solution which can be written

o Ay
H(t,s) = X /]
1 TE e (s)

i
Now we shall discuss another detection problem which

will be proved to be equivalent to the Signal in Noise
problem.

In this case we have to decide between the hypothese
.23) H, : it is WGN with covariance § (t-s)

| Hl : Xt is a Gaussian process with covariance R(t,s)

We shall assume that the problem is nonsingular that
is the measure P1 is not singular with respect to PO that is
P1 is equivalent to PO.

It has been proved by Shepp and others that D3 is non-
singular 1ff
a) R(t,s) = §(t-s)+K(t,s)

) K is square integrable function on (0,T) x (0,T)
K € ﬁ_z(i x I)
¢) -1 is not an eigenvalue of K , —l_ﬁc(K)

Now assuming the conditions for nonsingularity a, b, ¢,
hold we are going to prove the so called representation
theorem for second order processes.

(1.7) REPRESENTATION THEOREM

Assume that Xt is Gaussian and a, b, c, hold, then

10



t can be represented as

X, = ot tzZ
where Vt is the standard wiener process so Gt is WGN
and Zt is Gaussian with covariance K(t,s)
The proof will be based on the so called resolvent
identity property. This property states that the Fredholm

equation

H(t,s) + r* _
o H(t,t)K(t,s)dt=K(t,s) or H+HK=K and the Wiener-

Hopf equation
h(t,s) + ét h(t,t)K(t,s)dr=K(t,s) or h+hK=K
s<t<T and h(t,s)=o for t<s
have unique solutiong in U_Z(I x I) and they are relater
H(t,s)=h(t,s)+h" (t,8) - £T b (£,71)h(1,s)ds
with h*(t,s) = h(s,t) the adjoint filter.
The above resolvent identity is very difficult to be
proved and involves some concepts like the abstract triangular
~egral.
Using this property the proof of the representation
ﬁheorem follows very easily.
We are going to sketch the proof in the operator form.
We define a Voltera operator y(t,s,) through the Voltera
equation.
u(t,s) ; étu(t,T)h(T,s)ﬂh(t}s) or in an operator feorm u-+uh=h
From the Fredholm integral equation

1

H+HK=K €> (I+K) = (I-H) = and the resolvent identity

11



I-H=(I-h*) (I-h)
We obtain I+K=(I+u) (I+y*)

u is a Voltera kernmel that is u(t,s)=0,s>t
Now if we pass WGN Ve through the operator I+u and say

Ve the output

v

t
E— I+u —
WGN *
yt
§t will be Gaussian and
. . t . .
= -+ \Y) = V
Ve = Ve v ult,r) vidr £ + %t

The covariance of it will be
R§ = I+ u+ ux + uux = I + K

so X , y, have the same statistics and

it = &t almost surely that is

X, = v _+ .E.

X, = v, +2 QE.D

After this the problem (D3) can be formulated as follows:
: = +

Hy s X = vt 2,

HO : Xt = vt

ch is the Gaussian Signal in Noise problem.

CHAPTER 2 THE NONLINEAR DETECTION PROBLEM

(2.1) DESCRIPTION OF THE PROBLEM

Basically one has to depide‘between two random processes
ylt' yot which are modelled as a nonlinear transformation of
the outputs of two linear dynamical systems driven by WGN
Ho : The observation process is Tote
H, ¢ The observation process 1is Tie

1

12



il a5, | fie. RCoX, o Jit

— i’ it’'p————>

= Ai(t;ei) Xit + Bi (t;ei) gti i=0,2

»a
|

h(t;x. )

yit it

The observation process may be a pure or a distorted
version of the signal process.

Also we want to estimate the perameter ei provided
that we know the-a priori probability density fi(ei).

The problem is difficult because y,, are not Gaussian
but they are nonlinear transformations of Gaussian signéls.

We are going to approach this problem in the following

We shall generate some proper vector random process and
using some proper nonlinear transformation we shall go to
a detection problem which will deal with Gaussian random
vector processes.

So the idea is:
Given a process yt nonGauséian, find some vector process Bt
and a nonlinear transformation such that F(t’yit’et)=xit to
be Gaussian vector processes.

In the following we shall examine some specfic cases in
order to illustrate this approa;h.

(2.2) DETECTION OF 2 RAYLEIGI PROCESSES

In this case the Signal processes are Rayleigh with
known covariances.

It is known that if Y is a Rayleigh random variable

then if 6 is uniformly distributed in (—n,i] the random

13



vector

X Ycos®
X = 1 =
X, Ysin®
is normal and Xl’ X2 are uncorrelated.

So if Yie are the two signal processes we must generate
a stationary process ¢t independent of Yi¢ S© that the first
order probability density of ¢t to be the uniform density in
the interval (-m,7).

Then we take the random vector processes

(1) '
' 1t Yie €088
X(i) ()| = i=0,1
. )
*2t Vi Sie%y

This process will be normal and the problem is to

(1)

determine the statistics of Xt

The idea is to generate the process ¢t through two other

Gaussian processes X X! by using the transformation

it® T2t
: X
- -1 it
¢ = tan
t Xit .
1  —
g IES I NRE
1L 7 — t X(l) y sing J
2t it t
T -
[] [ "'"x'
' =
X t, X t | So Xt '].t
X2t

—_ T —Rg(r) 0
X0 X, Gaussian and E Xep X J= . Rg(r)

that 1is Xlt’ th uncorrelated in |
Then as we prove in the appendix III the statistics of
(1)
Xt are

14



— X - . (1) :
()7 _ |0 (1), - (1) ] :
S SRR -
(1) - .
| =, o

\ 0 Ri(T) i =0,l1

R, (x) = 1RG0 [T, (<R (0) 5 R_(0)) = K(R (2 Ry (0)
g —

where K and TTl are the complete elliptic integrai functions
of the first and third kind respectively.

In the following we shall examine the detection problem
for two cases

(A) when the cbservation process is noiseless

(B) when the observation process 1is destorted by
additive WGN version of the signal process.

(2.3) THE DETECTION PROBLEM FOR NOISELESS OBSERVATIONS

We have to decide between the hypotheses
H. : The observation process isvthe Gaussian vector process

1
(D) L ox ) g

]T with zero mean and covariance

it 1t > T2t
Ri(r) 0
in(t) = i =0,1
0 Ri(r)

—

In order to obtain a formula for the Radon-Nicodym

derivative dP1 we shall apply a theorem the proof of which

dP

o

can be found in the book "Gaussian random processes" by
Ibragimov and RozanoV page 88 theor. 8.

We shall state this theorem

Let P, P to be two Gaussian measures generated by the

0 1
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Gaussian processes X X of zero mean and covariances

ot’> "1t
RO(T), RI(T) respectively.

Then these measures are equivalent iff the difference

b(s,t)=R0(s,t)-R1(s,t)

is representable as
(1) b(s,0) = fre TSRy Ly E (@ @)
for s,t €I = [0,T] .
where the function Y(A,u) determined from the integral
equation (1) is such that

£ v oom ] ? F @) B < e
with

Y(A,p)E U—Z [T x1, FO x Fl]

Then the density function Pl(dw)
Po(dw)

Pl(dw)

= D exp [-%S//Y¥Y(A,w)Y¥(dA,du)] = P(w)
Po(dw)

where D is a normalizing multiplier and the stochastic
measure Y (dA,dup) is defined through the relation
= - N
Y(Alez) ¢O(Al) QO(AZ) .FO(AI AZ)
where F_ is the spectral measure corresponding to th and

0
¢o the stochastic measure which corresponds to the same
process.
A simple generalization for the case when Xt are 2-
dimensional random vector processes with uncorrelated

components and all components to have the same covariance

gives rise to the formula

16



Pl(dw) .
?;YEGT =D exp [-SSY(A,H) Y (dA,du) ]
In the same book theorem 11 page 34 gives a_simpler
condition for the equivalence.
Upon this theorem Po, P1 are equivalent iff b(s,t)

s,t € 1 can be extended to a square integrable function on

the whole plane whose Fourier transform

1

4n2

o (A1) =

Is ei(ksfpt)b(s,t)dsdt

satisfies the condition
2
o (A, |

fo(h)fl(t)

d}\dp- < o

F, (dA)
~here £, (1) = i
i dA

The above theorem although it states clearly how to find

dPl is very difficult to be applied because in order to
dpP
0

determine Y¥(A,k) we have to solve a difficult integral
equation.

If we apply the Karhunén Lpéve expansion approach to
the above problem we shall have the following.

For simplicity we assume one-dimensional random
processes. The generalization‘into two dimensional will be
straight forward.

The observation process Xt under hypothesisvHO can be
expanded as
X =%

i

Ot =Oai¢i(t) where ai are orthogonal Gaussilan

17



random variables and ¢_ (t) are orthonormal functions with
i

B (ay@)=0; k5 Ro(e,8)=d ghy @ (£)9,(8)

ij 1
and
Ai » ¥, are the eigenvalues and eigenfunctions of
R.(t,s) that is
0
T
i)

0 Ro(t,s) wi(s)ds = Aiwi(t)

Similarly the observation process Xt under hypothesis

Hl can be written

o]

X = 2 b. ¥Y.(t) where b, are orthogonal
It 3=0 "3 ] b 8
Gaussian with zero mean and Yj are orthonormal

Bi b ) =y Byy o Ri(E,8) = T by Y (0) 4y (8)

i 1ij i=0
and
ui . Yi are the eigenvalues and eigenfunctions of Rl(t,s)
that is
tT R (t,s) ¥.(s) ds = B, ¥, (t)
‘0 17 i i i
From the above expansion if we keep only the n terms
e« -'  have the Gaussian vectors
_ T _ T
a = (al’QZ’ ’ an) b = (bl, b2’ s bn) .
with probability densities
-Il n G.kz
P ()= || .Y ] —1
on 1 (2n k) exp | 1% Xk]
2
3 -1 n by
P. (b)= || (2mp, ) * exp [-%Z
in 1 k 1 Wi
Py, () ﬁ bi ai
So the LR = lim A . exp [-% £(— - 7 )]
we Poo(a) ) kot P K

If we define



© }‘i © bi Oti

A= 1n (—) B=% (— - —)
- ’ = A

i=0 pi 1=0 “i 1

then

LR = exp (%(A-B))
So for the case of 2-dimensional processes with uncorrelated
components and each component to have the same covariance

function we shall have

dP1 = exp (N-B)
dP0

(2.4) THE DETECTION PROBLEM FOR DISTORTED OBSERVATIONS

If ét is the observation process we have to decide

between tﬁe hypotheses

HO :dst

yOtdt + th
1)
H1 :d§t = yltdt + dwt

where Yy is Rayleigh with correlation Ryi(T) and Wt is the

t
standard Wiener process.
After applying the nonlinear transformation the observa-

tion process will be a 2-dimensional vector process y, and the

detection problem will be

(0)
: = +
HO dnt Xt dt btdwt
. _ (D (D2)
Hl : dnt Xt dt + btth
where Xé ) is a two dimensional zero mean Gaussian Vector

process with uncorrelated components and each component has
covarlance Ri(T) known.

8
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We are going to establish the equivalence of Dl-Dz.
From the general formula for the likelihood ratio for

the Signal in Noise case we shall have for D1 the formula

T, 2

F o (y - y
0 lt ot

(LR) | = exp [£7 (y;,774,)d5, s ydt]
0

(see thorem 7.6.4 "Statistics of random processesI" by
Liptser—Shiryayev)

In the same book theorem 7.20 gives the LR for the
problem D2 when we have to do with ome dimensional processes.

The multidimensional analog of this theorem is the following

(LR), = expl/" (x {1 x(OT T L ob )t an, -

0 t t t
L pT (1) _ L (0) T T +re (1), (0)q 4¢
LI [xt X ] (bt . bt) [xt +X | ]dt}
0
+ -
in our case with the notation « we mean either « 1 towirQ

or 0 if a=0.

. “cos®
For our detection problem b ainb so
t sin®
- (1) _ (O) T 1 (1) (0) T,,(1) (0)
(LR), exp{f [x X, ] dnt Y f [x X, ] [xt +X Jdt}

0

—exp{f (x(l) (°>)dn1t+(x(1) - x$an,,

2
T e (2) ) + (x(l) x99 1an)
0 1t

If we take into account how XE ) is related with Vi V¢ .21y
see that
(LR)1 = (LR)2 = LR
From the formula (LR)2 we can see that in a formalistic
way the LR can be written as
LR = . LR
L ‘ LR1 L 2

- where LRi corresponds to the detection problem
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H, : d§ = X(l) dt + dg

0 it ot . t PR
(i) i=1,2
e = +
Hywodby, = X de v dey
where Xii) is the ith component of the vector Xt.-

(2.5) DETECTION PROBLEM FOR 2 CHI-QUAVE PROCESS WITH
FOUR DEGREES OF FREEDOM

We generate 3 stationary processes ¢t, Qt’ wt and we
apply the transformation - 4
v N X1t
t — =3 - .
____9l v l — —3 X, X,,| Gaussians
y=/v > X uncorrelated
t t .
LA A X3t processes
L4t
®pa0pouy
= in® w
L yt cos@t sinb cos t
= i in® w
X2t Ve 31nwt sinv cosw,
= °] w
X3t yt cos t cos N

X, t = sinw
yt

4 t

where ¢ must be uniformly distributed in (-m,7) and bt’ Wt

to have the following first order densities
£ (%)= % sinV ve [0,m]
2 2
fw(&) =~ cos W WEE (-w/2, ©/2)
Under these assumptions we can prove that Xt is Gaussian
with uncorrelated components.
Proof in Appendix 1IV.
Now one has to make lots of computations in order to
determine the statistics of Xt'
The idea as in the Rayleigh case is to use 4 other
|l 1 1 A t T

Gaussian processes Xt X,.)

) lated
(xlt’ X 5p0 X3t’ At uncorrelate

N '
with the same covariance R (T) in order to generate ¥.. bt’
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After that the detection problem is treated as in 2.3,

2.4, -

(2.6) LOGNORMAL PROCESSES

We know that if X is lognormal r.v then ¢n X is Gaussian.

In this case give Yt we use the transformation bnYt=Xt.

Then X will be normal with covariance R
t x(T)

Yt=exp(Xt)’?E[Yt+TY ] = Ry(T) = E{exp(Xt+T) exp(Xt)}

t

=E{exp(Xt + Xt)}

+T
X1
If we consider X = X. and X _=X_ then X=
t+1 1 t 2
random vector with let say zero mean and covariance
R_(0) R (T
E(X X7) = = B
T
R (T) R (0)

So if someone considers the characteric
: i uTx‘ -4 uTBu
¢(u) = E le = e

-1

S Ty = € =

o Rt( ) (u) for u iy

inally Ry(T) = exp in(O) + Rx(7)3

T = & T
R_(0) + R () = 4 R (7
T = X -
R (D) = 4 (R () - R (0) |
On the other hand E(Yt) = exp (Rx(o)/Z)
So RX(O) = ”Jl(My) where My is the mean of Y. RX(O)
2

So finally RX(T) = *n(Ry(T)) - in(mi) ?£>

R (1)
R (T) = 4n y
o * ( M2

2 X is Gaussian

ZX/n(my)

In this way we have found the statistics of the Gaussian

process and the detection problem is known.
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CHAPTER 3 THE ESTIMATION PROBLEM

After the detection problem has been solved we want to
estimate the parameter 0

¥ = .8 .0) T

X,= A (£;8) X_ + B(t30) W,

Ye = h (t;Xt)

In the case when someone could recover the covariance
of the state vector Xt’ knowing the covariance of the process

v, we would be able to recover © since

+ 7% & (t,8;8) B(s;08) dWs

X =%(t,0358) X
t 0

0

+ 7% o (t47,v;8) B(v;0)dw,

X =2 (t+7;0;9) X
T 0

t+ 0

we assume XO Gaussian vector independent of Wt with covariance

o

then

R ()= E [X_  X11 = 2(t+7,0;0) P

S ¢(t,030) +

0

ft

0 ¢ (t+7,s,9) B(s;0) BT(S;B) §T(ty5;e)ds

From these equations we could be able to compute 9.
So the basic problem is if we can recover RX(T) !
R (7).
y
Recovery of the covariance RX(T). Let's consider the

case when X is a two dimensional vector
F
. n
Let & = | °1 n= "1 Lien

éz 2

,&, uncorrelated Gaussian r.v

5105,

1

N> Mg uncorrelated Gaussian r.v
T P o
E(Ey") = ool = R and both éi,ni N(0,1)

Since X are uncorrelated the space

1’X2
23



2
u2(¢(xi) ) (xz) dxld X ) with ¢(x) =ﬁé: e %—
2 Y2n
has a complete base the polynomials {Hmn(xi’XZ) M0, ...,,,
n=o0,...o} with Hmn(xl,x2)=Hm(xl) Hn(xz) and Hi(x) to be the
Hermite polynomial.

So if ﬁk&) belongs to the above space it can be written as
o

with opp = < £(8), H (8) > = E [£(5) H__(5)]

f(n) has an identical expansion

From the one dimensional case it is known that Hn(xl)’

Hm(xz) with XX, correlated are uncorrelated when m#n

X
H H (x.)
nj—— n’l
pl x }M(p)=E [Hn(xl)Hm(Xz)l = p"n 16 m
——)2 Hm S Hm(XZ)

In the two dimensional case

Hy(E)) H ()

£
[51] s (v S B (E,E)
2

. M(e) R i g

rl —
S Hij e Hij.(yl’?’z) = H O B Gy)
2
- _ m+n
E[Hmn(EIEZ) Hij(nl n2)] - P n!m!Smian
So M(p) = E(£(E)f(n)) = E {z2z2X %mn 2ij
2-m!n!£lj!
_ & mn m+y
. Hmn(EIEZ) Hij(nl,nz)} = EZ(ETHT)Z m! n! e
2
M(p) = LI O mn L
m!n!

So one has to examine the function M(p) and to find
conditions in order to be invertible.
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These will be the same as in the one dimensional case as
we can see from the fact that the function M(e) has the same
structure in both cases.

(For such conditions see [2])
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APPENDX I "STOCHASTIC CALCULUS"

1. Karhunen-Loeve expansion.

Given a second order process Xt , te[0,T] with covariance

R(t,s) we can have the biorthogonal expansion.

X, =L o ¢, ()
m=0

where

a are orthogonal r.v

and

{¢m(t) , m=0,1,..,} 1s an orthonormal set

We shall show that

E(amaj) = ij Am

R(t,s) = A ¢m(t)-¢m(5)

o™ 8

where Am’ ¢m are the eigenvalues and eigenfunctions of R(t,s)

that is
IT
Really, if E(amaj) = ij omz —>

R(t,s) = E[xtxs]

E[2Z o a ¢ ()¢ (s)]

- 3 2 (t) o

o3 ¢m t ¢m(5)

But also, if we assume that the set of the eigenfunctions is
complete in HZ(I) for t fixed we have
< R(t)') ] ¢i(°) > = Ai¢i(t) =%
R(t,s) = 2 (A o,(e)) ¢, (s)
i 71
For more detalls see E Wong, Stochastic process in
.information and Dynomical Systems, McGraw Hill 71.
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2. Martingales

Let P to be a prébability measure defined on a o-
Aloebra F of subsets of the basic space 2. In other words
consider the probability space (Q,F,P). |

Let also [Mt R t@l] a random process and {Ft , t I} an
increasing fawily of g-subalgebras.

Then {Mt,Ft,P} will be called a martingale iff

E(th|Ft) = 0 or E(M_|F)) = M_ ,s<t

S

Local martingales

t(w) > 0 is a stopping time iff {w:t(w)< t}eFt

1f Mt is a martingale then the stopped process M(tAT) is also

nartingale where tAT = min(t,T)
If Ty T peees Tos oo is an increasing
2
stopping times and the stopped processes are .oitingales

then Mt is called a local martingale.

Local Semi-Martingales

Xt is called a local Semi-Martingale if Xt = M_ + B
ere
Mt is a local martingale and
Bt is a process of bounded variation
3. Quadratic Variation of a Martingale
Let {Mt’ Ft’ P} to be a sémple—continuous second order

martingale. Then if Xt=Mt2 we define a process BtE <M>t by

the relation

- = 2 - M2
dB, = E(dX [ F.) EMML L4 MtlFt]
2
= M - 2 - F
EL( e+de M) lFt1 * E[(Mt+dt Mt)Mtl t]

n

2
E((dM )" | F ) 20
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The process Bt which is nondecreasing will be denoted by
'<M>t and will be called the quadratic variation of Mt'
It is interesting to observe that the process
m, = Mt - <M>t is a martingale.

4, Wiener Process
The n-dimensional vector process (wt’Ft’P) will be called
standard Wiener Process 1iff
1) It is sample-continuous
ii) The components wit are martingales that is
E(th F)) = W, , s<t
111) E[(W, W) (wt-ws)T] =1 . (t-s)
where I is the nxn Identity matrix.
The above used definition usually is called the Doob Levy
2orem.
Another useful version for the definition of a Wiener
process is
(wt’Ft’P) is Wiener 1iff
i) It is sample continuous
ii) It is a martingale
iii) Its guadratic variation is t ,<W>t=t
5. Ito Stochastic Integral
If {Mt,Ft,P} is a martingale and Qt is a process adapted
to {Ft, teI} such that
fT ¢z d <M> <= almost surely we define the Ito

0
integral

o amM. & 1imzPev |t

fT A M(n) - M(:) where the limit
0 "t t v+1 v

28
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is taken in the quadratic sense.
The calculus of the Ito integral is somehow different
from the ordinary one. For instance observe that

st w av_ =% wi - 4t that is there exist the

o ° |
term -%t which would not be exist in an ordinary integral.

This definition has been generalized for the case when
Mt is a local semi-martingale.

Itos's differentiation rule.

= +
Let Xt to be an Ito process that is dxt atdt btdwt
or in a much more consistent mathematical rephrasal
t t
X =X,.+ /S adS + F b_dW
t 0 s s s
0 0

Now define a new process Yt=f(t’xt) where the function
f(t,x) is assumed to be twice continuously differentiable
with respect to x and once with respect to t.

Then the process'Yt is also an Ito process with

: T
= t,X _)d=s
dYt f(t,xt)dt + fx(t’xt)dxt + % bt gxx( s t)

Kunita and Watanabe have generalized the above rule for
the case of a local semimartingale in their famous paper
"On square integrable martingales".

We shall state the rule.

Let Xt a vector process whose components are continuous
local semimartingales. Define Yt = f(t,Xt) . f satisfies
the previous conditions. Then

= <M,M>
ay, £(e,X )de + £ (t,X )dXx  + L tr [fxx(t,Xt)d M, t]
where fx is lxn vector and represents the tronspose of the

grandient of f

29



£ 1 ith i,9) =—2f
S nXn w fxx(l,J)

XX X ,3X,
3 i

d <M =
M> {d<Mi,Mj>t}

A useful result which is proved by using Ito's rule is

X = =t
A
then <x,y>, = ft a b d
t 0 S s s

APPENDIX II PROOF OF THE GENERALIZED LR FORMULA

We have to decide between the hypotheses

HO : Xt = wt
. . (D1)
Hl : Xt = wt + Zt

where Wt is the standard Wiener process.

We consider the "new information" or "innovation" process

£ - -
v: Xt - é sts or dvt = dXt - tht
where z, = E [Ztl XT, T <t , Hl] and
= X
Ft o ( o T < t) so
z, = E(zt[Ft)

“we shall prove that Ve is the standard Wiener process.

Really

i) v, is sample continuous

ii) v, is a martingale since

E[dvtl Ft] = E[(Zt— Zt)dt + dwt| F ] =

t
o= E(Ztl F )dt - z dt + E(dW _[ F ) = 0

-

since Zt is Ft measurable and (wt’Ft) is a martingale
t - :
= + - =
iii) v, wt é (ZT ZT)d_r Wt + Bt
Obviously Bt is of bounded variation since it is absolutely
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continuous as an indefinite integral. Consequently Bt doesn't
contribute anything to the quadratic variation of Ve That

is

<y > = <W> = t
t t

Thus we have completed our proof.

After that problem (Dl) is equivalent to:

H : k = v

Now by applying Girsanov's theorem we obtain the LR

formula
dPp
1 T ° T 72
P ° eXp [+ zZ ds - % [ s ds]
0 0 0
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APPENDIX III

Xlt yt
—> —> X, ANCO,1)
4 I ¢ it
¢ t
X
2t
S -1 XZt
Ve = 'x2 +x? b T rAR X
1t "2t 1t
where xlt’ th zero mean Gaussian processes with covariance
R(1).

We are going to compute the covariance of wt=cos¢t

Rw(T) = E coso>t+T cos¢ttj

We shall use the following notations:

X =X 0 Xy = Xy s Xy 7 Ky X, = Xear
_ -
Y, o= V322 = e (XXX K,)
115
Y, = /y2iy2 g, (X ,X),X5,%,)
3%,
X
ey SN )
¥y moran Ty T g4 (X)X, X5,%,) = &
X
- -1(74) _ _
R 6, = 8, (XX X3,X,)
§1
So if we consider the r. vector X = XZ this is Gaussian
3
X,

zero mean with covariance

T I R where I is 2x2 identity matrix
R = E [X.X =
X R I
d

an
p O] |
R = (p has taken the place of R(1)

0 o

From the r. vector X we have taken the random vector
Yl gl(x)
Y = = =
Y, g (x) g, (%)

L e
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l1st step Computation of the joint probability density

P(Y,,Y,,¥,,Y,) = P(Y)

P(Y) = -1 - (Y) B
|det J | ¥
g 8 g g
1x1 1x2 lx3 lx4
g2X1
The Jacobian of g is J=| ° . . . =
B4x : * .
x1/y X2 0 0
1 i
1
X212 X ;x2 0 0
Y 1
1
= _ 1
0 0 X3/v Xuly Y1y
2 2
0 0 -X 2 X 2
4/Y, 3/Y,
On the other hand
‘ 1 1 T -
P (X)) = 7my4/2 (detr yi7z °*F \:”“X Rxlx) ]
But '
1 1 r]E (I-RZ)-I ~r(1-8%)"! A
X = = =
R -R(T - -r? ) -1 (I—Rz)—l B
-1 2 -
where A = ( _r? Y~ 02 _ [ (1=p7)
p 0
- P 5
1-p
B =
0 p
l—pz -
X{} X
2
Now if we put X = |77} =
x3
X W
L L

0
(1-p2)"~



we take

)T g7l x = xTa x -2%xTB W + WA W=

X
X +X
_ 2 2 .2 0
= 5=+ X3+X, - 2 5 (X X 4K, %)
1-p 1-p
R 2 2 _
1-02 (Y1 + Y2 2pY1Y2 cos (¢1 ¢2))
So finally
¥,y Y2+Y2
(2m) (1-p7) 1-p 1-p
Some results
P(y. ,¥.) = IZW IZW A . e X cos(¢1—¢2) a6 . d¢
1’72 172
0 0
- fZ" (27 - |¢l) A excos¢ 46 = 4TA IZ“ excos¢d¢
-2 0
2w xcosd 2
- 20 7 ¢ e d¢ = 4mA.2w Io(x) - 2A. 2m Io(x)
0
= 4n2 A 1. (x)
OY y - Yz + YZ Py, Y
So P(Yl,YZ) = 1 % e —l————% IO ( ———Lfg— )
1-p 2(1-p7) (1-p7)

Computation of E[cos¢1 cos¢2]

If we define @(Xl,xz;p) = E[ejxl¢l+3x2¢2] then
provided that ®(1,1;p)=0 we shall have
E[cos¢1cos¢2] = 1/2 Re [2(1,-13p)]

we have P(Y,$) = p.eXC0s(8)-0,)  Lrere

2. 2
A= 1 V1Y2 exp (71772 x = PY172
2 2 2 2
(2m) 1-p 2(l-p7) 1-p

SO ITT le' A ej(¢l-¢2) excos(¢1_¢2) d¢1d¢2 =

-n =T
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27 .
2a § ed? o¥05% (21_4) 44 =
0

27 27

'4“A s ej¢ excos¢d¢ “2A L o pxcos¢dcp

0

n

4oA (27 Il(x) - 2A (2112 Il(x))

4ula I,(x) But I;(x) = 1,(x)

2 2
So E cos¢1 cos¢é]= I f ——5~ exXP \ T 3_ IO -7 dyldy2
00 2(l-p7) 2(l-p7) 1-p
So we want to compute the integral
' 2 2
=Y yZ
g Ay,1,(ay,) e dy,
2
y (102
where A =—l———§ e 2(1-p )
2(1-p
. = le Yz i _—_1_—_
- 2 ’ - 2
1-p 2(1-p )
One can show that
YZYZ J 32 az ! az i
, - -
e -’ 3 2 |1,(—,) + I, (=)
y IO (ay) e dy g Y «e 8y 0 8Y2 0 8y

to compute integrals of the form

2 2 2 2

o 2 - 2 © - ' 2

[y e Y'Y 1 (ayS)dy , f y2 e Y Y 1 _(ay“)dy
0 0
0 0]
2
with y as before and a = g————f—
4(l-p )
The first integral
2 2 2 2

= - 2 2 o - - 8
1 9% Y 1 (ayhyay = o rETae 7yl e (v -acos8y 4y
0 0 27 0 0

1 /1.1 n % 4 =
2n 0 2 2 (Yz-acose)z(yz-acose)
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2.3/2 do
- I as P 2 2 22 %
2V/7 0 (l-p“cos“8)(l-p cos"8)
1 2.3/2 1
=——(1'p)/ 4 2 dxzz % 2 1 -
Y2n : -1 [(1-—:{ Y(l-p“x )] (1-p“x
2 2,3/2 2
= (1-p7) T, (-p750)
V2m 1
where H H is the elliptic integral function of 3rd kind
1

The second integral

2, 2
cosd [ y2 e ¥ (y —acose)d

f
0 0
2

o
8
\Y
)
<
k<

2 1
y e Il(ay )dy = 5=

(2x -1)dx :
(1-p 2x ) [(1 X )(1 ple):l/5

f
0
_ 2 (1-0 2 3/2 dx
pz/n [(1—}(2)(1-;)2}(2):]’i

— - 1) ‘dx
(1-p2x%) Bl—xl) (l-pzxz)]”i

. 2

2.3/2 2
- 25;_"_” ) [m(m + 272 (-pz;o):l
p Vm

where K(p) 1is the elliptic integral function of the first kind

So finally we have

E{;oselcoseé]

L

(—pz‘;p) = IK(p):l

E [;in8151n8%]

; [%sinelcoseé] = E [}1n(61—82{]
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So if we have a Rayleigh process y Ve apply the following

nonlinear transformation

”
I

»
1

Te _— 1t ytcoset
- { \ Ro(1) = E1Y Yy
—_— ytsinet y
1
x,t
T et=tay_1 __2..__
] |
L 1
Xltx2t

Gaussian with correlation R(T)

X

Then the vector process Xt = lt is zero mean Gaussian
| Xoe
Rl(r) 0
-h covariance RX(T) =
0 : Rl(t)

with R, (1) = 12‘;(5;) [H m, - RZ (1)) - K (R(1)) R, (1)
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APPENDIX IV
. 2
Let XI’XZ’X3’X4 uncorrelated random variables Xij\N(O,c )

and the nonlinear transformation

Xl = Y cos¢ sinf cosw y> O

X2 = Y sin¢ sin® cosw ® Cmw,m

X3 = 'Y cosB cosuw 8 (0,m

X4 = Y sinw w (-n/z,nlz)

We are going to find the density functions of ¢,6,w

£(y.0,8,0) = |I(y,0,0,0)] £(X;,%Xy,%X5,%,)

where J(y,$,8,w) is the Jacobian of the above transformation.
After some computations we take

J(y,$,8,w) = y3coszwsin6 and X%+X§+X§+Xz = y2

So finally

3 2 1 —
£ 9 (y,0,p,w) =y cos wsing —5 7 e 1_2
yose (2m) %o 20
1. Zi_ 9—1—2 1 sin® 2 coszm
27w G4 20 2 -

So ¢ is uniform in (-mw,m)

.45 density fe(e) = 1/2 sin®
w has density fw(m) = 2 cos2w
w

and y2 has density of a chi-square with & degrees of freedom.
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