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ABSTRACT

i

Title of Thesis: Block Diagonal Dominance and the Design of
Decentralized Compensation

William Henry Bennett, Master of Science, 1979

Thesis directed by: Dr. John S. Baras
: Associate Professor,
Electrical Engineering Department

A frequency domain design method for control systems via
decentralized feedback compensation is presented using transfer
function models for the system input-output dynamics. The proposed
design method is an extension of Rosenbrock's Inverse Nyquist Array
method for the design of linear multivariable syste.ms. The technique,
based on the concept of block diagonal dominance for rational transfer
function matrices, allows characterization of a control system as an
interconnection of weakly interacting subsystems. The flexibility of
the method with respect to the partitioning and measures of gain
employed leads to improved estimates for overall system stability
under decentralized compensation. Examples are included which
illustrate the theory and its application b? computer-aided design.

Various extensions are suggested for further research.
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INTRODUCTION

(1.0) PRELIMINARIES

During the present decade several methods for the design of multi-
variable system compensation via transfer function (or frequency domain)
techﬁiques have been developed [1]-[9]. These techniques
draw on the breadth of experience available from the classical fre-
quency dorhain design techniques of Nyquist, Bode, and Nichols, aﬁd
extend the results to the current spectrum of multi-input/multi-output
problems facing the modern control systems engineer. By a multi-
variable control system we mean one in which the introduction of a
signal at one of several inputs to the plant will have an effect seen at
perhabs all of the several outputs of the plant which are to be controlled.
Thus in the general case of multivariable feedback compensation the
correction or error signal applied to each of the inputs to the plant is
a function of all of the outputs which are to be controlled. If the plant
to be controlled can be modeled by a linear time-invariant model a
useful representation employs Laplace transforms to describe the
input-output dynamic behavior in a matrix of transfer functions.

Alternatively, a plant dynamic structure can be modeled by a
first order matrix differential equation, the state space médel. The
state space model describes in detail the internal structure of a
dynamical system. As such there are infinitely many state space

models which can be written to describe the input-output behavior of



a given plant. Design techniques which utilize the state space descrip-
tion require certain internal variables, called state variables, to be
available in the realization of a feedback compénsator. When these
variables are not available, a dynamic feedback compensator is required
which will asymtotically estimate the state variables.

This brings us to the first major advantage of the frequency domain
design techniques for compensation over the state space techniques. The
methods employing transfer function descriptions of the input-output
dynamics allow greater control over the required dynamic degree of a
feedback compensator. This is true not only because the input-output
description alone is used but also because the classical frequency
domain techniques allow order reductions or model simplifications such
as the dominant pole approximation to be recognized during the design
procedure., Additionally, it is well known that design specifications in
the frequency domain can often be more meaningful than the performance
measures employed in state space (or time domain methods). As an
example of the latter, consider the specification of bandwidth and
damping ratio for a servomechanism as opposed to the specification of
a measure of waveform energy that will be available from a performance
index in an LQG design.

The multivariable frequency domain design techniques [1]-[9] have
several aspects in common. They are typically supported by interactive
computer codes which often make use of graphical descriptions of the

parameter space. The designer can inject at this point his intuitive

insight in order to achieve design goals. These design



methods typically employ one or both of the following techniques
during the design procedure:

$
(1) Algebraic manipulations of the transfer function matrix viewed

as a matrix rational expression are performed to place the
matrix in some standard form (eg upper triangular),

(2) Sequential design methods are employed where the classical
single-input/single-output techniques are applied sequentially
to each input -output pair in such a way that overall system
stability is guaranteed (or other specifications are met),

The former procedure suffers again from the inability to limit the
dynamic degree of the compensator as a result of algebraic manipu-
lations on a rational matrix. The latter technique, when used
separately, is not recursive in the sense that once a loop design is

. .th | c .
fixed for the i input-output pair it need not be changed during the

design of the next loop; but the procedure does not guarantee system

robustness in the face of a failure in one loop.

(1.1) INTERCONNECTED SYSTEMS AND DECENTRALIZED
COMPENSATION

The above situation describes the most general case of compen-

sation of a multivariable plant and is often called centralized compen-

sation. We will now look at the motivation for what is called

decentralized compensation of control systems.

As the demand for high performance automatic control systems
increases the size and complexity of the design problem increases

in two important ways;



(1) more information must be processed regarding a larger
number of controlled parameter,
(2) the flow of information develops increasingly complex
networks.
The result is that modern control systems have increased dimensionality
not so much due to an increase in dynamic complexity as to an
increase in the number of influence and observation parameters (i.e.
inputs and outputs), Often, previously isolated systems become
joined forfning large networks as in power distribution networks,
Both the system analyst and the engineer are faced with the
problem of reducing the dimensionality of large scale problems before
solutions can be found. This is often motivated by the computational
and arithmetic complexity of these problems. Perhaps more
important is the fact that the design engineer or systems analyst
looses intuitive insight into the cause and effect relationships which
become blurred by the size of the problem.
Several order reduction and model simplification techniques are
currently in use [10]-[14]. They include:
(1) techniques for aggregation of high order models into lower
dimensioned problems,
(2) dominant mode or time scaling techniques,
(3) techniques for decentralization or decoupling into
subsystems. ’
In the decentralized approach a large scale system is viewed as
an interconnection of subsystems that are in some sense dominant

over the interconnections. The partitioning of the large scale

problem into weakly interacting subsystems may be implicit in the



design. Design specifications or physical constraints can naturally
partition the vectors of inputs and outputs conformally.

In references [11]-[13] and [16]-[18] the authors develop stability
theorems for interconnected systems with decentralized feedback
compensation, The system may contain isolated non-linearities
which obey certain sector properties. Stability results are then
developed in terms of bounded input-bounded output stability utilizing
norms defined on function spaces. The various theorems developed
have in common a test matrix composed of gains (norms on certain
function spaces) of the partitioned input-output structure of the
interconnected system. If the test matrix is 2 member of a class of
matrices known as Metzler mai:r-ices, then stability of the overall
system is guaranteed. In general these results are achieved by the
straight forward application of the small gain theorem [15] to various
descriptions of the interconnected system structure. Several
limitations are obvious. The results obtained can be extremely
conservative since the function space norms are rather gross
estimates of the system frequency response. The description of
system performance or the design specification in terms of response
time or bandwidth is not immediately apparent. That is the variation
of system response with frequency is not fully utilized,

A typical result [17] for the system described by:
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—
1]

€. =X, +2z2 +w,
1 1 1

f. = u, . .
i u1+y1+vl

where v,, w, are reference signals, x_, u, are input signals, y_, z,
i i i i i i
are output signals, and H'j' B.. are transfer function matrices, is
i ij

that stability is guaranteed if the test matrix
A =1- G(B)G(H)
has all its successive principle minors positive (i.e., A is an M-
matrix), Here the following definitions are in use:
=
(M) A r D),
G(M) & Lg(MIJ)J
the matrix of gains, where
g(H) = sup Hjw)|,
w
with an appropriate matrix norm employed on the right hand side.
Then the connection is made with the frequency domain desc ription of
a linear time-invariant system in such a way that accentuates the

gross nature of the norm measures used.



It is worth mentioning at this point that the results of this thesis
will utilize one of a group of theorems from lin?ar algebra which
includes the theorems on Metzler matrices due to Fiedler and Ptak
[25]. In particular, we will use frequency varying norms to describe
system dynamics.

Some results are available for the decentralized stabilization
problem via state space methods. For example, the results of Wang
and Davison [11] and [12] for the decentralized pole placement problem
are of theoretical significance. In [11] the authors extend the
familiar concept of unobservable and uncontrollable modes of a system
with centralized output feedback compensation to the more constrained
problem of decentralized feedback compensation. The result provides
decentralized (output feedback) dynamic compensation scheme which will
stabilize the system, provided the ''fixed modes' of the system defined
by the given decentralized structure are in the open left half plane.
The problem of constructing a decentralized feedback compensator of
minimal order remains unresolved.

(1.2) DECENTRALIZED COMPENSATION IN THE FREQUENCY
DOMAIN

In [1]and [2] Rosenbrock and his coworkers developed a practical
technique for compensator design of multivariable systems which
makes use of standard frequency domain techniques. The method,

known as the Inverse Nyquist Array (INA), results in a feedback



compensator which is diagonal. The method, which has been rather
extensively used to design compensators for industrial processes
[2], is supported by interactive computer codes and graphical
displays.

The general multivariable control system for the INA method is

shown in figure 1.1 below.

e(s)

als) 4o o G N e BETOW y(s)

T F(s)

Figure 1.1 The general multivariable control system,

Here Q(s) is the n x £ plant transfer function matrix,
K(s) is the £ x m input compensator,
L(s) is the m x n output compensator,
and F(s)is the n xn diagonal feedback compensator.
Letting,
G(s) = L(s)Q(s)K(s)
be the m x m forward loop transfer function matrix, the closed

loop transfer function matrix is,

-'l—l
H(s) = [Im + G(s)F(s) | Gls)

r -1
= Gls) | I + F(s)G(s)

4



As its name implies, the INA method uses as a representation of the
system dynamics the inverse of the transfer function matrix. Thus

s
define the matrices

&) 2 G (s)
fis) 8 uls).

Provided the inverses exist we have the following relationship,

H(s) = F(s) + G(s).
Important motivations for using the inverse description can be
found in [1] and [2].

The primary mathematical tool of the design method for our
purposes is the use of the theorems of Gershgorin and Ostrowski
(which bound the eigenvalues of a complex matrix) to support the
diagonal or decentralized feedback matrix, F(s). The concept of

diagonal dominance of a rational matrix on 2 contour D in the complex

plane is of primary importance. A rational matrix Z(s) is diagonally
dominant on the contour D in the complex plane, @ , if zii(s) has no

poleon Dfori=1,,.,., mand

. m -
either [zii(s)] -7 [zij(s)|>0, i=1,...,m

j=1
j#i
for each s on D
m .
or ]zii(s)[ -jz: 1lzji(s)’> 0, i=1,..., m.
j#i



The first step of the design method is to produce a compensator
K(s) (L(s) = Im usually)) so that é(s) is diagonally dominant on a
relatively large part (with respecf to the poles e:nd zeros of G(s)) of the
imaginary axis [0< wamax]. Then the Gershgorin discs (with respect
to either the rows or columns of é(s)) when plotted atop the Nyquist locus
of the diagonal elements of é(s) sweep out a broad or '"fuzzy'' Nyquist
locus for each separate input-output pair. If feedback compensation is
designed for these fuzzy Nyquist loci using the classical Nyquist crite-
rion, then overall system stability is guaranteed. Furthermore, using
the result of Ostrowski, Rosenbrock in [1] shows that t.he Gershgorin
discs shrink as a result of the overall closed loop structure by a
quantifiable amount. The final reduced fuzzy Nyquist loci can then be
used to define gain and phase margins for each of the decentralized
single-input/single-output servomechanisms,

The main disadvantage of the INA method is observed during the
design of the input compensator, K(s), to achieve diagonal dominance.
Although it is true that we can always find a dynamic precompensator
K(s) to achieve dominance no algorithm yet exists which will guarantee
the realization of a K(s) which achieves dominance under specific
constraints on the dynamic order. For simplicity of realization, it is
usually required that K(s) be a matrix of constant real gains, K, which
is often selected by the designer on an ad hoc basis. Algorithms have
been reported in [9] and [26] which search for the required K to achieve

diagonal dominance. Unfortunately, it is not guaranteed that these

10



algorithms will converge to the globally ''best' compensator or that

they will in general find any compensator that achieves dominance.
:

(1.3) SUMMARY OF THE RESULTS OF THIS THESIS

The intent of this thesis is to apply the generalized Gershgorin
circle theorem for partitioned matrices [20] to the problem of
decentralized compensation using a development analogous to that of
Rosenbro.ck [2,3] described in the previous section. Specifically, let
the system shown in figure 1,1 be compensated by decentralized
feedback (i, e, F(s) is block-diagonal). We seek a measure of
interaction between the diagonal subsystems defined by partitioning
G(s) conformally with F(s) in terms of the frequency response of the
subsystems and their interconnections,

Suppose that during a design .process subsystem interactions
are ignored (i.e. the off diagonal blocks of G(s), Gij(s) where i#],
are set to zero) and the diagonal blocks of F(s) are chosen in m separate
designs, If certain bounds on the measure of interactions are satisfied
(see section 3, 2) the actual system, compensated by decentralized
feedback, is guaranteed to be stable,

The specific frequency response measure of subsystem interaction
used here is developed from the generalized Gershgorin theorems in

[20]. These results permit the definition of block diagonal dominance

of a partitioned rational matrix transfer function Z(s) on a closed

contour D in the complex plane (see section 2,2-5). Then the stability

11



of a system compensated by decentralized feedback can be determined
via the results of this thesis when its frequency response can be
described by a rational transfer function matrb: which is block
diagonally dominant on an appropriate closed contour D in the complex
plane. The proposed design method is a three step process, First,

a test is performed on the open loop plant transfer function matrix. If
the test is satisfied, a decoupled design is pursued where the
""diagonal'' subsystems are assumed to be non-interacting. Complete
freedom in available here as to the design technique employed for each
of the decoupled subsystems, Finally, a test similar to that performed
in the first step is performed on a matrix constructed from the plant
and feedback matrices in a familiar way, If this test is satisfied,
then the closed loop system is guaranteed to be stable. Furthermore,
the tests performed in steps 1, and 3 can be performed graphically.
The graphical tests will be shown to indicate restrictions on the choice
of compensators for each of the decoupled designs of step 2 in a simple
way (see section 3.2-2).

The significant contribution of this thesis is to provide an extension
of the iNA method to the broader context of decentralized feedback
compensation. Consequently, we propose a technique for finding the
natural decentralized structure of a system (if one exists) and we set
aside the requirement for compensation to achieve diagonal dominance
in this thesis. It shall be recognized however that the techniques

developed here suggest a sequential construction of the series

12



compensators (K(s), L(s)) to achieve weak coupling between subsystems.
Additionally, wAe ;an férﬁove the restriction that the feedback
compensator always be diagonal which is clearly restrictive for

many applications. Finally, it is worth emphasizing that the results
available in [21]-[25] from linear algebra point to several useful
alternatives for the Gershgorin circle theorem which lead to ""INA type"
designs and which may offer several advantages over the standard

INA method.

13



REGULARITY THEOREMS FOR PARTITIONED MARTICES AND
APPLICATIONS TO ANALYSIS OF DYNAMICAL SYSTEMS

(2.0) PRELIMINARIES AND NOTATION ‘

In references [20]-[25] the authors develop, using results which
establish the no‘n-singularity of 2 square complex matrix A, theorems
which establish bounds for the spectrum of A and bounds for the deter-
minant of A, These results which'can provide a variety of estimates
for the eigenvalues of A are in fact generalizations of the Gershgorin
circle theorem. Interestingly, these results can lead to even tighter
estimates for the spectrum of A as seen in [20],

In this chapter we describe how these regularity theorems for
partitioned matrices lead to estimates for the dynamic behavior of a
linear time-invariant system described by a rational transfer function
matrix. These estimates are derived in a way analogous to the
approach of Rosenbrock in [1, 2], but we recognize that for our purposes
any such regularity theorem can be used.

Finally, we state for reference the generalized form for partitioned
matrices of several other well known regularity results., We will omit
the parallel development of stability theorems using these other
results in this thesis. It will be obvious though as the design
technique is developed how these results may be
substituted in the procedure. The question of the numerical complexity

of these alternative techniques and the relative merits of each for

14



obtaining tighter estimates for stability analysis will be the subject of
further research.
]
We establish the following notation for consistency of presentation.
. .th . .
Let Aij denote the i,j submatrix of an n x n complex matrix A
partitioned into rn2 submatrices where 1 < m< n, Then the dimension

m .
of each block Aij is k,'i x k.j where % 'ki = m. The determinant of a

i=1
m
square matrix A will be written det A. The symbol ¥ will replace
o ‘ (i)
b so that,
itj
j=1 m m
Z A.=% A, .
)4y,
j=1
Then establishing the notation, | x|, for the vector norm of x¢ C " we
. . . nxn
will denote the induced matrix norm of A¢ € by,
N(A)é sup ]Ax (2.1)
e X x|
x#0

where X is the subspace appropriate for x in this case @ ", Then

the induced infimum matrix norm for A [20, 22] is,

n’(A)é inf | Ax] . (2.2)
xeX x|
x#0 _

Clearly if A is non-singular then,

n(A) = N(A’l)'l . (2.3)

15



(2.1) BLOCK DIAGONAL DOMINANCE FOR PARTITIONED MATRICES

- (2.1-1) Block Gershgorin Theorems ¢

Following Feingold and Varga [20] we state,

2
Definition 2-1: Let the n x n matrix A be partitioned into m"~ sub-

matrices. Then A is block diagonally dominant (BDD) if,

(i) each Aii is non-singular fori=1, ., ., m

and : m
either, n(Aii)> i}%j) N(Aij)
m (2.4)
(ii) or, n(Aii)>.2. N(Aji)
i(j)
for eachi=1, ... , m.

The above reduces to the usual definition for diagonal dominance [1, 2]
when the Aij are 1 x 1 matrices.
We first have,

Theorem 2-2: If the partitioned matrix A as in (defn. 2-1) is BDD then

A is non-singular.

Proof: Assume that A is BDD and is singular. Then there must
exist some non-zero vector, w, such that Aw = 0. If w is partitioned
conformally with the block structure of A, then W is the ith subvector

of w. Rewrite the assumption as,

m

L A, . w.=-A w, foreachi=1, ...
i3 ij 3 il i

Now, since w # 0, we can normalize w so that ”WJU < 1 for each

s, Im.

j=1, ..., mand for some k, l1<k<m, ”Wk” =1,

16



Now by definition of the induced norm we have,

A7 = Iz A, I<¥ N I, IsT N k) -

ik T e (k)
Since ”Wk || =1, the left-hand side can be written,
| A |
kk 'k
1A g™ I = Tl = P -

but since k is arbitrary, we have proved the theorem.
Then we can state immediately [20],

Theorem 2-3: For the partitioned matrix A in (2-1), each eigenvalue

A of A satisfies,

m
A -)\L)< A,
2y MJ)<1§(J')N( i’
(2.5)

m
or < ¥ N(Ak.) for at least one 1 <j< m.
k(j) J

Proof: Immediate since assuming the contrary implies by
theorem 2-2 that A - )\Iis non-singular,
Now theorem 2-3 defines inclusion regions for the spectrum of A

in the complex plane which are analogous to the Gershgorin discs,

We define,
m
A :{xea; . n(A -u)<g( N(A )f
and (2.6)
) [ m 1
Si,A = ‘L)\ eQ ; n(Aii-)\ Ii) <X N(Aji)j‘\

j(i)
which are each closed and bounded and; are therefore, compact sets

inQ@ foreachi=1, ..., m. From equation (2.5) we can see that

17



each Si contains also the spectrum of Aii’ since n(Aii-}‘Ii) attains

, A

its minimum for ) an eigenvalue of Aii' If we also define,
3

m m p | 5
(o [ e
i=1 i=1
then we see that the spectrum of A is contained in the set S.
A useful result towards characterizing how many eigenvalues of A

are in each set Si A (following [20]),

’

' £
Theorem 2-4; If the union TR = ‘ ’ S. of 4, 1<i<m (2.8)
IES R
Gershgorin sets is disjoint from the m - £ remaining Gershgorin sets
£
for a partitioned matrix A, then TR contains precisely I kj
j=1

eigenvalues of A,

The flexibility inherent in these block Gershgorin results is
important for our application since the inclusion regions depend on the
choice of the vector norm used on each individual subspace (different
subspaces can have different norms) and on the partitioning of A,

In fact, as in [20] tighter estimates can be obtained over the scalar
Gershgorin theorems, These facts suggest considering various
alternate combinations in order to achieve optimum bounds for the
eigenvalues of A,

The shape of the generalized Gershgorin sets‘ is not clearly defined
by theorem 2-3, The generalization of Gershgorin's result where the
Si,A are each circles is the following.

Theorem 2-5: Let the matrix A be partitioned such that its diagonal

18



submatrices are each normal. If the Euclidean vector norm is used on

each subspace Xi of X,i=1, ... , m, then each Gershgorin set Si A is
‘ 2

the union of 'kj circles.

Proof: Let the eigenvalues of Aii be Ay l<i< ki' Then Aii normal
implies that n(Aii - zij) = min hl, -z | .

As it will be desired later to calculate lower bounds for the spectrum
of a matrix A we seek a lower bound for ) an eigenvalue of A which is
not an imblicit function of the unknown parameter ) .
We have,

Lemma 2-6; The Gershgorin sets Si,A(Si’,A) of the partitioned
matrix A are included in the tori
T. , = rAe(I: (A )-z N(A )<!)\|<N(A )+z N(A. )}

Al i) j(i)
(2.9)

T {}\ec n(A)—Z NA)<[>\I<N(A +2 NA)
i) i)

Proof: First show n(A -)I)2n(A) - ])\l . (a)
By the triangle inequality for vector norms,
lax]< f|ax-ax]+][ax] =]l (a-aDx|][+]r],

for any vector x such that ”x” =

Then by definition (eq. 2. 2),

n(A)< (A -ADx [+ ]|A]
since the infimum can be taken equivalently over the unit ball

[l =]l = 1.

19



<n(A-AD +|A|
Then show that ,
n(A-AD) = |r | - N(A). (b) ‘
Again by the triangle inequality,
x| sl ax-ax]+ | ax]| .

Then for any x such that | x| =1,-

Ixn[=]a-aD x|+ [lax].
or AT -1l axli=]] & -anx]
so |A | - N(A)< n(A -)\]) .
Now from equations (a), (b) and (2.6) the result follows.

As will be seen in the subsequent development we are primarily
interested in the maximum of the two inner radii of the tori Ti,A and
T,i,A foreachi=1, ..., m, since whenever these are all strictly
positive we have that A is non-singular. Various considerations

indicate that the maximum of the two inner radii is in fact a tight

estimate for the Oi defined as,

, A

A roa min |z| min!zl (2.10)
Pj, A=TEX

ZeS; o ZES; A

for eachi=1,...,m where Si (s! A) are defined in (2.6) for A. For

A1,
example from theorem 2-5, it can be seen that if the diagonal blocks of
A’Aii’ are each normal then the two quantities are the same for each

- — - I - -
i=1,... , m, since the si,A(Si,A) are the union of m circles

in the complex plane,

20



(2.1-2) Block Ostrowski Theorems

Next we extend the results of Ostrowski utilized in [2, p. 27] for
:
our block diagonal dominance results. We will need the following

-~ -1 A o
notation as in [1, 2]. Let A é A ., Then when we write Aii 1 we mean
the inverse of the ith diagonal submatrix of the inverse of A,

We recognize that the definition of BDD in (2-1) can be rewritten as,

m -
Gi n(Aﬁ) —.Z. N(Aij) ,i=1, ..., m
j(1)
. (2.11)
/ ! n(A By NA i =
(Or 91 n( ii) —E ( 'i) s 1

o, m )
O /

where for each i,0 < 8, < 1 (or 0< 8'i< 1).

[
[
-

Then we establish the result,

Theorem 2-7: If the partitioned matrix A is BDD, then A has an

- -1
inverse A = A ~ which satisfies,

A < A
N(Aji)_ ejN(Aii)
(2.12)
) ’ -~
(or N(Aij)S Sj .N(Aii) )
for each i, j=1, ..., mexcepti =j.

Proof: From theorem 2-2, since A is BDD it is non-singular and

we can write,

m A

kz_l Ajk Api = 0
foralli,jzl,...,mexcepti=j
or,

A _lm ~

A.+A. T A_ A  =0.
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Taking norms we have,

N(A. )< max N(A 3
I k#j k() 7

ki
= 9. max N(A .)
Trgy

Since this holds for all j different from i and each 9j<_1

max N (A

N(A..),
k#_] 11

K

m 1
) N(Aj JN(A

and the result follows. (The proof for BDD by columns, 0< 93 <1,

follows similarly).

We now can show the important block Ostrowski result.

Theorem 2-8: Let the partitioned matrix A be BDD., Define,

@ié max ek(or @'é max Gk' )

k#£1i 1 k#£i
Then,
atloa 9.3. n(A
DAy - Ay) < 88, nlAy)
(or <9.'<§.'n(A..))
11 11
for eachi=1, ..., m.

Proof: Again A is non-singular so we write,

m
b3 A.Ak.=I,i=l,...,
k=1 ik ki
or
A DA VAL ST AL
(A =8 24578 Ap B
k(i)
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Taking norms we have,

s | ~ m PS
N[(Aii - Ay Aii] SE(i)N(Aik)N(Aki)'; ()

Now let us show that in general,
N(AB) = N(B) * n(A) (b)
Since for A non-singular we have,
-1
B=A AB.,
Taking norms we see that,
-1
N(B)< N(A ") - N(AB)
or,
1 -1
N(A ") - N(B)<N(AB)

So from equation (2. '3) we have shown (b).

Now using (b) on (a) we can write,

a-1 m a A
DA, - Aii)SE(i)N(Aik)N(Aki) / N(A)

m
< E(i)N(A max § = Bi @i N(Ai')’

k#i 1

from equation (2. 12) and the definition of ‘I>i,

ik)

m ﬂ( -~ ] PS
= E(i)N(Aik) ;n:’: NWA ) /N

Then from theorem 2-7,

m
<=|¥Y NA.,)| max 8, ,
[k(i) 1k] Kfi ©

So by definition of @i and (eg. 3.5) we have,
~-1
nA-A L) 6,2, n(Ay),

which completes the proof.
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(Again, the proof assuming A is BDD by columns follows similarily).
This result will be useful for characterizing the behavior of the

individual subsystems with interaction as will be seen in Chapter 3,

(2.2) CONSEQUENCES FOR BDD FOR DYNAMICAL SYSTEM
ANALYSIS

(2.2-1) General Comments

In thié section we prove a basic result which underlies the methods
presented in the next chapter for stability analysis and design of
decentralized control systems. First, we will define our conventions
for stability analysis, We then review some basic complex variable
theory which leads to the generalized Nyquist theorem. Then we prove
the main result which will extend this classical theorem to the analysis
of decentralized control systems,

(2.2-2) Basic Definitions

For the extent of this analysis we will adopt the conventions for
multivariable stability analysis of Rosenbrock in [2]. We, therefore,
define the poles of the multivariable system described by the
rational transfer function matrix, G(s), to be the poles of

det D(s), where G(s) = N(s) D’l(s) a polynomial matrix factorization.
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(2.2-3) Some Basic Results in Complex Analysis

. 4
We recall from complex analysis,

Lemma 2-9: Suppose that f(z) if analytic inside and on a closed
elementary contour, D, in the complex plane except at a finite
number of points (called poles) inside D. And, if in addition, f(z)

does not vanish on D, then,

1 f'(z) _
zniff(z) dz =27 - P (2. 14)

D
where Z is the number of zeros of f inside D,
and P is the number of poles of f inside D.
Then the following corollary to the above lemma is commonly

known as the principle of the argument,

Corollary 2-10: With the definition of D and f(z) above, let z

trace once around the curve D in a clockwise direction.
Correspondingly, let f(z) trace out the closed curve I‘f. Then Ff

encircles the origin in the complex plane Z-P times in the clockwise

direction,

Proof: Using lemma 2-9, we see that,

) |
Z-P= Zﬂié)d(logf(z))

= 1

217

: fI‘) d-(log lf(z) | +1iarg £(z)).
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Thus as z goes around D, lf(z) | returns to its original value while
‘ ¢

arg f(z) increases by 2 17 times the number of encirclements of the

origin by I‘f.

(2.2-4) Extension of BDD to Partitioned Matrix Rational Functions

We next develop the . main result of this chapter as a
consequence of BDD. First we define,

Definition 2-11: I.et A(s) be an n x n rational transfer function matrix

partitoned into m2 submatrices as in definition 2-1, and let D be a
closed elementary contour in €. Then A(s) is said to be block

diagonally dominant on D (BDD on D) if:

(1) Aii(s) hasnopoleonD, i=1,...,m
and (ii) A(s) is block diagonally dominant for all s on D as in (defn. 2-1).
We then have the following generalization of Rosenbrock's result
[2, Th. 1.9.4].

Theorem 2-12: Let A(s) be an n x n rational matrix partitioned as above,

which is BDD on a closed elementary contour D in the complex plane.
As s traces once around D in a clockwise direction, let det A(s) map D
into the curve I‘A which encircles the origin NA times clockwise,

Similarly, let det Aii(s) map D into I‘i which encricles the origin Ni

times clockwise for eachi=1, ..., m. Then,

3

N. =

A N.. (2.15)

1 1

Proof: We follow here an appropriate generalization of the proof

-
1

used in [2]. Since, by assumption of BDD on D (Definition 2-12) A (s)
ii
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has no pole on D, it is finite on D, and so is det Aii(s)' Again by BDD

(Definition 2-1) det Aii(s) has no zero on D so n(Aii(s)) is non-zero on D,
- )
Therefore, from equation (2. 4) N(Aij(s)) must be finite on D for 1<i, j<m,

i#j. So there are no poles of Aij(s) on D, 1<i, jsm . Also,
and theorem 2-2, A(s) is non-singular on D which implies that there is
no zero of det A(s) on D.

Let A{w, s) be the partitioned matrix

A. (a,s) =A. . (s)
Al@,s) = N 1 (2. 16)
Aij(a, s) = o:Aij(S), 1#.]

where 0<g<l,.

Then for any 0<g<1 A(qw, s) is finite on D and so is det A(wg, s). Let

(2.17)
I det A . (s)
i ii

i=1
where we see that 8(0,s)=1. Let g(l, s) map D into I‘B. For each s on D,
B(x, s) defines a continuous curve joining B(0, s)=1 and the point on T
corresponding to s,

Now assume that T encircles the origin., Then there must exist
some ¢, 0<ag< 1, such that for some s on D, B(a, s)=0. Then from (eqn.
2.17) det A(x, s)=0 or det Aii(s)-'co for some ig[l, m]. However, since
A(s) is BDD and O<a<1 then all A(y, s) are BDD on D and they must all
be non-singular. Likewise, there can be no pole of det Aii(s) on D by
assumption, So we have shown that I‘B cannot encircle the origin.

Therefore, we have using corollary 2-10 by counting encirclements

ofTBthat, m
0=NA~Z Ni (2.19)
i=1
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and this concludes the proof.

From the proof just completed, we see that the crucial use of block
diagonal dominance, theorem 2-2, is in establisl'zing the regularity of
A, s)for 0OSg<l. Then application of the principle of the argument gives
the desired result. Thus any of a wide variety of regularity theorems
for partitioned matrices as reported in [20]-[25] can be used to develop
similar results.,

A graphical test for BDD of A(s) on D is suggested by theorem 2-3,
Clearly, if for every s on D the Gershgorin sets Si,A(S,i,A) i=l,...,m
(eqn. (2.6)) exclude the origin then A(s) is BDD on D by definition 2-11,

We emphasize the flexibility of our approach by choice of:

(1) partitioning for A(s)
(2) norms on individual subspaces,

This implies for the analysis of dynamical systems the following
significant contributions,
(1) Tighter estimates of diagonal dominance are available.
(2) The ''natural" decomposition of a system with respect to its
frequency characteristics can be found, :
(3) Improved estimates for stability may be given over the case of
A(s) partitioned into 1 x 1 matrices as in [1,2].
We recognize that the computational task of determining for A(s) the
Gershgorin sets, Si A(S'i A) for each i=1, ..., mand all s on D may be
burdensome, but in order to establish BDD of A(s) on D we require only

that the Si A(s) (S’i A(s)) exclude the origin for all s on D and each

i=1, ..., m. Define then,
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P A(s)émin | 2|, i=lv, cee,Mm
-~ zeS, ,(s)

1,4 : (2. 20)

p.' A min ]z,,i:l,...,m)
1,A(S)= 4

( zg Si’As)

where we can use min instead of inf because the Si A(s) (Si’ A(s)) are
closed and bounded, and therefore, compact. Then the definition of BDD
on D in (defn. 2-11) is equivalent to; for Aii(s) having no pole on D, and

Aii(s) non-singular on D that,

_min T min min , -
) =seD A e 1, mPi, A se 1, moi, a5 (>0

(2.21)
Equation (2. 21) is the generalization of the result due to Rosenbrock
[2, p. 143, eq. (15.4)].

Furthermore, it is not clear in our work to date how to use the
envelope swept out by the Si,A(S)(S’i,A(S)) as s goes around D for design,
In the scalar case of [1,2], the envelope of the Gershgorin discs sweeps
out 2 broad or "fuzzy' Nyquist locus which can be used to select
compensators for the diagonal subsystems. But for the present
generalization of the partitioned matrix A(s) we would need a relationship
between the n(Aii(s)), N(Aij(s)) and det (Aii) that would provide some
analogous result, Although, in the present development following [20],
the desired relationship is not available, the results of Brenner in [23, 24]
indicate bounds for determinants are available for partitioned matrices,
The application of these results to the present problem will be the subject
of further research.

To ease the computational burden of equation (2. 21), we define (see

lemma 2-6),
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m
(s)An(A ) -3 N
jay U

. m :

’ A -

(or d A, i(S)= n(Aii) z()N(AJl)) (2.22)
J(1

Then we can recognize immediately that A(s) is BDD on D if and only if,

d(A) = (2.23)

min ax— min q (s) min (s)
se D Lig[l,m]JA,i""" ig [l,m] A

The computational aspects of the test described in (egn. (2.23)) are
much simpler than the test described in (eqn. (2.21)). As we will see
in the next chapter, the graphical test suggested by (eqn. (2.23)) will

also lead to useful information which will aid us in our choice of

feedback compensation.
(2.3) SOME OTHER WELL KNOWN REGULARITY RESULTS

In this section we will review some well known regularity results
for complex matrices which are partitioned. As we saw in the last
section, these kinds of results are useful for the analysis of dynamical
systems.,

As in [20], we state the block extension of the ovals of Cassini,

2
Theorem 2-13: Let Abeannxn complex matrix partitioned into m

submatrices as before. Then the spectrum of A is included in the
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union of the m(m-1)/2 sets Cij defined by:

c,.8]z¢a: (A-zIn(A.—zI) ZN(A zN )%
(2. 24)
foralll<i, jsmandi=j.

Also from [20] we have,

Theorem 2-14: Let the n x n matrix A be partitioned as above. Define,

m
b3

IID

N(A. ) c.A% N(A, .)
28 Pk ’ kg K

i=1l, ..., m
Then, for any o with 0< g < 1, each eigenvalue of A satisfies

-

1
n(A,. - L)< R¥C’ (2. 25
i i

for at least one j=1, ... , m.
A similar result due to Fan and Hoffman [see 20], is generalized by
Feingold and Varga in the following,

Theorem 2-13: Let A be an n x n matrix partitioned as before. Let

p>1, and 1/p + 1/q =1, If k> 0 satisfies,

< kY1 +xY) (2. 26)
i=1l] /m p\a/p
(z N(Aij))

j(d)
(where we agree that if 0/0 occurs we let 0/0 = 0), then each

eigenvalue ) of A satisfies at least one of:
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A k(3 N(A pt/P iz 1 2.27
n‘ FESAE (2 NP s, me (227

k(j)
]

Note that these results are even more flexible than that used in
section (2.1). In [22] Johnston develops an algorithm which minimizes
these inclusion regions for the spectrum of A by exploiting this
flexibility. What is suggested for our purposes is that a procedure be
developed for finding the maximum margin of regularity (eqn. (2. 10)).

Of evén more interest for our application is the results of Brenner
in [23, 24]; Here a matrix A is partitioned as above. Then a second

matrix B is constructed from the determinants of the blocks of A,

B is m x m with elements,

b,.. = det A_, (2. 28)
ij ij

Then upper and lower bounds for det A are developed when B is
diagonally dominant in the usual sense. The application of these
results in the context of this paper promise some exciting results for
the decentralized control problem. Further developments in this

research will be reported elsewhere,
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APPLICATION OF BDD TO DECENTRALIZED
FEEDBACK COMPENSATION

(3.0) GENERAL COMMENTS

In this chapter we apply the concepts of the previous chapter to the
design of decentralized compensation. We will first define the poles
and zeros of a system for our stability analysis and review the basic
structure of multivariable feedback compensation. Then we will
establish several useful theorems for decentralized compensation. The
key which unlocks these results is theorem 2-12. Next, we propose a
design procedure for the decentralized control problem in which a
graphical test is developed which guides the choice of the diagonal
(decoupled) sub-compensators in the decentralized feedback .
compensator. Finally, we extend the Ostrowski result for the general
partitioning considered here. Recall that in Rosenbrock's design
technique [2, 3] the Ostrowski result gives a useful bound on the ith
subsystem dynamic response when the other loop designs are connected
to the plant. Then by using the inverse matrix description of the system,
this result gives tighter bounds for the subsystem performance in the
closed loop structure. It is this result which is the primary motivation

for using the inverse matrix transfer function representation [2,3]. As

we will see, our results in this regard are not quite as strong,
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(3.1) FEEDBACK STRUCTURE FOR MULTIVARIABLE SYSTEMS

In figurel,1, we depict the feedback control structure of a multi-
variable system where u(s), e(s), and y(s) are n-vectors of rational
transfer functions, The relationship between u(s) and y(s) in figure
1.1 is established by,

y(s) = G(s)e(s) = G(s)[u(s) - F(s)y(s)]. (3.1)
Therefore, the closed loop input-output response is described by,
H(s) = [I+ G(S)F(S)]-IG(S) = G(s)[I+ F(s)G(s)]-1 (3.2)
Following Rosenbrock [2,3] we define the closed loop relationship

using the inverse system notation where H(s) é H—‘l,(s) as,

“H(s) = F(s) + G(s). (3. 3)

Also, we recognize that by decentralized compensation we mean

F(s) = block-diag. {F|,F .., F_ 1 (3.4)

2 "
m

where Fi(s) is ki X ki and iZ‘: ki = n, This structure for F(s) induces

a partitioning of the vectors e(s), u(s), and y(s) into m subvectors each

and G(s) is partitioned conformally into 1r:r12 submatrices. The design

procedure described in section 3.2-2 will allow the designer to associate

m triples (ei(s), ui(s), yi(s)) in m decoupled designs with the stability

of the overall system. As such the problem statement formed here

requires that ei(s), ui(s), and yi(s) are all ki vectors for each

i=1, ..., m. This restriction is necessary for the theory we use

here since the results are based on square matrices. In practice,

this constraint may not be a problem since it represents problems of
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most interest [2, pp. 155].

With this structure for F(s) we see from (eq. 3.3) that,

. {é’n(s’ + Fi(s), i= ]

H..(s) =¢
Y Gy;(s) , it (3.5)

In discussing stability we will follow the conventions of Rosenbrock
[2, pp. 1-27). Thus the zeros (poles) of a matrix transfer function G(s)
are the zeros of all numerator (denominator) polynomials in the
McMillan form of G(s). Equivalently, if we have a state space

realization of G(s),
-1 :
G(s) = C[sI - A] "B (3.6)

where the realization is not necessarily of minimal degree, then the
system poles are the eigenvalues of the matrix A. For the closed loop
system described by equation (2. 2) if we write,

G(s) = N(s) D-l(s)

and 1 (3.7)
F(s) = D(s) Np.(s) ,

polynomial matrix factorizations for the transfer function matrices. Then

from (eq. 3.2) we recognize as the system poles the zeros of

det[In + G(s) F(s)] det D(s) det DF(S). Often, the poles of G(s) are

defined as the zeros of det D(s) in (eq. 3.7) except that the factorization

is required to be right coprime. We argue for the purposes of design

that we are not interested in ignoring pole-zero cancellations that can
occur in forming the coprime factorization. If these unobservable

and/or uncontrollable modes are
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confined to be stable then the non-minimal realization is usually called

stabilizable/detectable. If the closed loop system has a pole-zero
i
cancellation in the right half plane one can argue that the system is

stable. But we recognize that only the model is stable and since the
parameters of any real system can be modeled with only finite accuracy
small uncertainties in these parameters will lead to instability.

From (eq. 3.2) we have the relation,

det [In + G(s)F(s)] = det [In + F(s)G(s)]

_ det G(s) _ det I:I(sz (3.8)
det H(s) det é(s) .

From (eq. 3.5) we see the importance of the matrix In+ G(s)F{(s),

called the return difference matrix,

Then we develop the generalized Nyquist theorem for determining
stability of a closed loop multivariable system. Following [2, p. 141]
we define a closed elementary contour D in the complex plane consisting
of a large part of the imaginary axis [-iR, iR]and a semicircle of
radius R in the closed right half plane. Supposé the open loop system
has B, poles in the closed right half plane (po is the number of zeros of
det D(s)  det DF(s) in (eq. 3.7)). Choose R large enough so that D
encloses the p, open loop poles in the right half plane. If any open
loop poles lie on the imaginary axis the curve D is modified by
indenting D into the left half plane so as to enclose these poles., Let

det (In-i—G(s)F(s)), det é(s), det fI(s) map D into the curves
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~ -~

rRD' I‘G, I‘H respectively which encircle the origin in the complex plane

NRD’ NG’ NH times clockwise respectively. T}‘len we have the generali-
zation Nyquist theorem.,

Theorem 3-1: The closed loop system shown in figure 1.1 and

described by (eq. 3.1) is asymtotically stable if and only if,

(@  Npp=-p, (3.9)

(b) N.-N

c =Py (3.10)

Proof of (a): With P, defined to be the number of zeros of

det D(s)-det DF(s) found in the closed right half plane (eq. 3.7) we can

define from equation (3. 2),
$(s) = det(In+ G(s)F(s))det D(s)det DF(s). (3.11)
Now on applying the principle of the argument (corollary 2-10) to
det [In+ F(s)G(s)] on the curve D as defined above, except that R may
have to be increased so as to guarantee that D encloses all zeros of 3(s)
(there are ZRD in number), we find on counting the number of
encirclements of T D that,

R

N =z

RD -~ “rRD ~ Po (3.12)

Since the zeros of $(s) are the system poles we conclude asymtotic

stability if and only if equation (3. 9) is satisfied,

Proof of (b): We notice from equation (3. 8) that

=N - R 1
Npp = Ny - g (3.13)

therefore by substitution into equation (3. 9) already proved we have

equation (3.10).
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(3.2) A DESIGN TECHNIQUE FOR DECENTRALIZED COMPENSATION

(3.2-1) Stability Results

]

We can now prove several theorems using theorem 2-12 which are
generalizations of the results of Rosenbrock in [2, pp. 143-144], Here we

use the definition of D and p, 2as in the previous section.

Theorem 3-2: Let G(s) and H(s) both be BDD on D. Let det Gii(s)

(det H (s)) map D into I‘ (]:I‘_I .) closed curves which encircle the origin
i i i = 1 . e o .

NG, i (l\h, i). times clockwise for each i , m. Then the closed loop

system is asymtotically stable if and only if,

m m

lyilNG i 12; lNH i = po (3.14)

Proof: Let det G(det H) map D into I(‘}(I‘H) which encircle the origin
NG (NH) times clockwise. Then by theorem 3-1 (a) and (eq. 3. 8) the

system is asymtotically stable if and only if,

Ng - Ng=Ngp=-p,-

But by the assumption of BDD of G(s) and H(s) on D we have by theorem 2-13,

NG-N _TlNGI-TlNHl

And the result follows.

(3.15)

Also taking a slightly different approach we have,

Theorem 3-3: Suppose (as is usually the case) that F(s) represents an

asymtotically stable compensator (i.e. that det DF(s) has no zeros in the
closed right half plane). Let the matrix transfer function [F~ 1(s)+G(s)]

be BDD on D. Let det[F l +G ] map D into 1". which encircles the origin
Ni times clockwise for each i=1, ., ., m. Then the closed loop system

is asymtotically stable if and only if,
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z N_:-p . (3.16)

Proof: We can write, .

dét [In+ G(s)F(s)]=det [F-(ls) + G(s)]det F(s). (3.17)
Then by the assumption if we ignor the zeros of det DF(s) we can still
apply theorem 3-1 (a) and by theorem 2-12

m
N1 = NRD' (3.18)

For thoroughness of presentation, we will develop rext the stability
theorems for decentralized control via the inverse matrix transfer
function description. In [2, pp. 155], Rosenbrock concentrates on the
inverse system representatioﬁ for a variety of reasons, The most
important of these reasons for the standard case is that in the final
analysis tighter estimates of system performance are available by using
the Ostrowski result with the inverse representation, In the present
generalization, the result is not so meaningful - as we will see.

First, we show the stability result.

Theorem 3-4: Suppose that é(s) and I:I(s) are BDD on D. Let det éii

(resp. det H ) map D into I‘ (resp I‘H i) which encircle the origin

A

NG, i (resp. NH, i) times clockwise for eachi=1, ..., m. Then the

closed loop system is asymtotically stable if and only if,

m ~

Dot N -19)

Proof: Follows immediately from theorem 3-1(b) and theorem 2-12,

(3.2-2) The Design Procedure

We propose, based on the results of the previous section, the

following three step design procedure.
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(1) The plant to be controlled is described by either its direct or

inverse ngatrix transfer function. We test for BDD of the matrix
G(s) (or G(s)) on D by determining that dD(A)> 0 (eq. 2.23) for s
taken along the jwaxis we[0,w ]. Herew is chosen as was

R previously and by symmetrirn?ﬁis guarantgésxthat G(s) (resp.

G(s)) is BDD on D,

(2) We then proceed to design m separate compensators to stabilize
the ideal decoupled subsystems of G(s) (resp. G(s)) (i.e. the

diagonal blocks of G(s) (resp. G(s)).

(3) Finally, we test for BDD of either F-1(s)+ G(s) or H(s) as

appropriate and apply theorems 3-2, 3-3, or 3-4,

In order to aid the choice of compensators is step 2 so that the

appropriate test for BDD is step 3 can be satisfied, we now develop

sufficient conditions for the choice of each Fi(s) so that BDD of the

appropriate test matrix is guaranteed.,

With respect to theorem 3-3, we establish a sufficient condition

for the choice of Fi(s) fori=1, ..., m to guarantee that

-1
Fi +Gii(s) is BDD on D.

Corollary 3-5: If,

- m
N(F,(s)) >N(Gii(s))+j%i)N(Gij(s))

m (3. 20)
or > N(Gii(S))+_Z‘ N(Gji(s)))
(1)
or
-1 m
n(F.(s)) <n(G,.(s))-Z N(G, (s))
I 1) I
m (3.21)
or <n(G,.(s))-T N(G..(s
( (Gyy(3) T NGy, )))
for eachi=1, ..., m and for all s on D then F-l(s) +G(s) is BDD on D.
Proof: We need only prove the following two part lemma. Then

the proof is immediate from the definition of BDD on D (defn. 2-11)
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and the block diagonal structure of F(s).
Lemma 3-6: For A, B n x n complex matrices,
(2) n(A+B) 2 n(A) - N(B) ‘ (3. 22)
(b) n(A+B)=> n(B) - N(A) (3. 23)
Proof: (a) By the triangle inequality for vector norms,,
lax|| <]l(A+B)x|l+|| Bx]| . | (3. 29
Then since the induced infimum matrix norm (eqn. 2. 2) can be defined

equivalently on the unit ball as,

n(A) 2 inf |lax ||
=] =1

xeg X
then (3. 24) implies

n(A)<|| (A+B)x | +||Bx|| for all x such that Ix|=1.
So

n(A) -[[Bx || <|| (A+B)x| where |[x]|=1
implies that

n(A) - N(B)< n(A+B),
(b) follows equivalently from the proof in part (a) by the
communitivity of A + B.
Corollary 3-5 leads to a simple graphical test which can determine

the suitability of a candidate feedback compensator fér the ith decoupled

subsystem design. In figure 3.1, we plot the curves,

m
N(Gy;(s) + T N(Gij(s)) (3. 25)
J(1)
m
and n(G, (s)) - 7 N(Gij(s)) (3.26)

j(1)
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where s = iw for we[O0, wb] and where w, is chosen as a practical upper

b

limit on the bandwidth of the system.

m

/ N(Gyyliu)) + 2 N(Gyyliw)

Region III

SN - .
R(Gj(1) & NG (iw)

Region II

Region I "

. and
) ]
€

Figure 3,1 w

Then if we pick for the ith local compensator Fi(s) such that either
N(Fi(iw))_l is in region III for we(O, wb] or n(Fi(iw))'1 is in region I
for we[O,mb] for eachi=1, ..., m, corollary 3-5 guarantees that the
matrix F'l(s) + G(s) will be BDD on D. Then theorem 3-3 can be

applied to determine stability of the closed loop decentralized control

system.
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Similarly, with respect to theorem 3-4, we establish the result,

Corollary 3-7: If

1}

: " m N
(@  a(FN>NG () + T NG ()

j(i)
(3. 27)
a~ m -
(or> N(Gii(s)) +j2(.i)N(Gji(s)))
A m A X
(b) N(F,(s)) < n(G,.(s)) -.Z. N(G;(s))
(i)
(3. 28)

m
(01‘ < n(Gy;(s)) 'jZ(i)N(Gji(S))
for eachi=1, ..., mand for all s on D,
then ﬁ(s) is BDD on D.
Proof: From lemma 3-6 and (eq. 3.5) the result follows.
Again the simple graphical test described above can be applied

where we plot the curves,

A m -~
N(Gii(s) +Z N(Gij(s)) (3. 29)
(i)
- m ~
and n(Gii(s)) -z N(Gij(S)).' (3. 30)

(i)
If we pick each Fi(s) such that n(Fi(s)) is in region III or N(Fi(s)) is in
region I of the graph in figure 3,2, then corollary 3-6 guarantees that
if G(s) is also BDD on D, then theorem 3-4 can be used to determine

the stability of the closed loop design,
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Notice that in both cases the graphical criteria are based on the BDD
of the test matrix rows., We can of course guarantee the result
equivalently by column BDD on D, What can be done is to plot the

optimum bound based on the two measures for all we[0,w ]. We

max
recognize though that the other regularity results discussed in
section 2.3 may be incorporated in the design procedure here to
establish optimum estimates for these bounds. A design example
using these techniques appears in the next chapter.

(3.3) PERFORMANCE OF THE ITH SUBSYSTEM WITH
INTERACTION

Once decentralized compensation has been applied to a multi-



th

variable system, we are often interested in the performance of the i
local subsystem (i.e. the triple (ei(s),ui(s),yi(s))‘). The question may
be posed: How well does the ith controller per%orm as compared to the
ideal decoupled design developed in step 2 of the design process ?
Rosenbrock [2, pp. 149-152] developed bounds for this performance
question for the case where m = n. We will now follow his approach

in using the Ostrowski results and explore the result in the generalized
framework of BDD. We restrict ourselves to the inverse matrix
transfer fﬁnction representation for reasons explained before and by
Rosenbrock [2, pp. 155].

From theorem 2-8 we find,

Theorem 3-7: Let I:I(s) = F(s) + é(s) be BDD on D. Then for each s on

D,

..l ~ o ~ -~ ~ ~
n[Hii (s) - (Fi(s) + Gii(s)):!<¢>i(s)Gi(s)n(Gii(s))< ei(s)n(Gii(s))

or<@’(s)e(s)n( (8 ))<e (s)n(G (s)) (3.31)
where ) .
N(G..(s)) . N(G..(s))
e(s)9?~—~”— e<s)ﬁm i
i(j) MG3;(s) i(j) n(Gy;(s)) (3.32)
and
" 8.(s) é max 9 ( ) (@ (s)— max 6 (s ),), (3.33)
i i#j i#]j ] _

Proof: By substitution of I:I(s) (see eq. 3.5) into theorem 2-8,
Then with the notation established in theorem 3-7 we can state,

Corollary 3-8: If ﬁ(s) is BDD on D then,
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n{H'I: (s) - Fi(s)}< N(éii(s)) + é'i(s)foi(s)n(éﬁ(s)) (3. 34)

_1 -~ A A -~
N{Hii(s) - Fi(s)}> n(G,(5) - 8,(5) 8 (s5)n(Gy (s)) (3. 35)
fori=1, ..., m,
Let us drop temporarily the Laplace variable s from our notation.
Define,
A ~ -1
H [Fi’ G] = G[In + FG] (3. 36)

where,

F = block-diag {Fl, F .., F 0,F . .,Fm}. (3.39)

A i-1’ i+l” °

Then clearly, " 1
H..[F. G]+F.=H.. .
iit™ i, i

11

So we see that the term, Hi-il(s) - Fi(s) in corollary 3-8, is the ith
diagonal block of the inverse of the transfer function matrix for the
closed loop system when the ith feedback compensator has been
disconnected. This is the plant seen by the ith feedback compensator -
when it is connected to the closed loop system. Corollary 3-8 describes
the effect of the other closed loop controllers on the ith local plant.

Comparing corollary 3-8 with the analogous result of Rosenbrock
[2, pp. 150, th. 6.2] we are somewhat dissatisified with our result.
Rosenbrock [2, pp. 149-152] uses his result to bound the Nyquist locus
of the h;il(s) - f.i using the Gershgorin circles and can therefore
calculate estimates for the gain and phase margins for the ith loop
design in the closed loop system. But in our more generalized

framework the result is not so strong.

Work in this area is continuing and the theorems of Brenner



[23,24] are promising since he develops bounds on -
determinants of the diagonal submatrices.
‘
To characterize our results to date on the performance of the
subsystems we offer a simple result which supplies an estimate for the .

gain margin of the ith subsystem. By gain margin we take here the

simplest definition possible for a multivariable system.

Definition 3-8: (Multivariable Gain Margin) With a stable multivariable
closed loop system described by,
-1
H(s) = G(s)[In + F(s)G(s)]

where F(s) is the n x n dynamic compensator which stabilizes the plant

we define the gain margin as the largest positive real scalar (loop

gain increase) Bm such that for all gg[1, Bm] the closed loop system,
H, (s) = G(s)[1, + 8 F(s)G(s)] "
is asymtotically stable.
With this definition we see that Bm is a positive real scalar or
gain applied equally to all n inputs (or outputs) to the compensator F(s).

Next, we define the margin of dominance.

-1
Definition 3-9: Let the matrix F ~(s) + G(s) be BDD on D. Then

define d,,;, the margin of dominance for the ith block row (or block
column) of F-l(s)+G(s), as the largest positive real scalar such that

1 i 1i
die [1, dmi] implies
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-1 m
n[(diFi(S)) +G;.(s) >i(25)N(Gij(s))

m )
( or>¥y N(G_,(s)))
iy Y

for eachi=1, ..., m and for all s on D.

Then the following theorem will relate the margin of dominance and the
N . th

gain margin for the i =~ subsystem. -

-1
Theorem 3-10: Assume that F “(s)+ G(s) is BDD on D. Let

det (Fi-l(s)v+ Gii(s)) map D into 1'1‘ which encircles the origin Ni times

clockwise. Let det [(diFi(s)))' + Gii(s)] map D into rdi which encircles the

origin Ndi times clockwise where di is any positive real scalar such that

d.e[l,d ] and d_ . is the margin of dominance defined above. Then,
i mi mi

Ni = Ndi

Proof: Choose, d: such that 1< d:s dmi and consider

. det (@ F) 4G (9)]
a(s,di) = -

-1
det [Fi (s)+Gii(s)]
and let «(s, dj) map D into I‘a. Assume I‘a encircles the origin ( as in the
proof of theorem 2-13). But by BDD of F—l(s)+Gii(s) on D, we know
det [Fi_l(s)+ Gii(s)] is bounded on D and non-zero on D, Also by the
definition of margin of dominance drni the same hold for
det[diFi(s)-1 + Gii(s)] for any dig [1, d;] Therefore, by contradiction we
have shown that Fa does not encircle the origin. Applying the principle
of the argument (cor. 2-10) to a(s,d::) and since this is true for any

oo

d e[l,d

.] we see that,
i mi
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The result is proven.
Then corresponding to theorem 3-4, we can state the analogous
result of theorem 3-10 as a corollary.

Corollary 3-11: Assume that F(s)+é(s) is BDD on D. Let

det (Fi(s)+ éii(s)) map D into I‘i which encircles the origin Ni times

-~

clockwise. Let det (aiFi(s) + Gii(s)) map D into 1'(:11 which encircles the

origin ﬁdi’ times clockwise where &i is any positive real scalar such that
&ie [l’ami] and :imi is the margin of dominance for the test matrix |
aiF(s)+ é(s) replacing that in definition 3-9. Then,

N, = Ng..

Proof: Follows exactly as that in theorem 3-10,

These results allow us to say the following about subsystem
performance for the closed loop decentralized design. If the design
procedure proposed here is used to design a decentralized control
system and either theorem 3-3 or theorem 3-4 is used to determine
stability for the system then necessarily the appropriate test matrix
F'l(s)+G(s) {or F(s)+ é(s)) must be BDD on D. Then the margin of
dominance dmi (or &mi) is a lower bound for the gain margin of the ith

local controller in the closed loop design while all other loops are fixed.

This follows immediately from the assumption that at the end of our

m
design procedure we have a stable system (eg. ¥ Ni = -po). Then

1=

apply theorem 3-10.
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A DESIGN EXAMPLE

We pose the following design problem:

given the unstable plant,

r —
15 -5.25 | 4 - 2.5
s- s+3,5 l s+1
5,25 21 | 2.5 0
. +3 s-6 s+1
G(s) = _—— — = L— —_— e
: 0 5 1 -4.5
s+2 l s-6 s+3
5 o | 7 17.5
s+ 2 s+4 » s-5

it is desired to stabilize the plant using constant decentralized feed-
back. We recognize that from our definition in chapter 3 that the
plant has four unstable poles in the closed right half plane.

The simpliest form for a decentralized constant feedback

compensator would be,

F = diag {fl,fz,f3,f4}.
Let us, therefore, attempt the design using the Rosenbrock procedure,
the Direct Nyquist Array., We plot in figures 4,1 and 4, 2 the map of
each gii(s) for s = jw and welO, wmax] wheré we choose here
w oS 25 rad. /sec. Then we plot atop the Nyquist locus for each
gii(s) the Gershgorin circles found from the row criteria. Since the

circles include the origin, we check for diagonal dominance by columns

in figures 4.3 and 4.4. But here again, the requirement of diagonal
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dominance is 'not satisfied for all s on D.

At this point, the usual Direct Nyquist Arra?r technique [2] would
require the design of a series compensator, in this case a 4 x 4 rational
matrix (not in general diagonal), which achieves diagonal dominance for
the open loop plant in cascade with the compensator. When such a
compensator is found, the design of the decentralized feedback
compensator can proceed. But two problems arise in this case. First,
the resulting design is not truly decentralized. This can be seen from the
design structure shown in figure 1.1 Here the ith input correction to the plant
plant u(s) is a function of all the outputs y(s) to be controlled and all the
input commands v(s). Second, the design of these series compensators
remains at best an ad hoc process requiring a great deal of skill and
intuition on the part of the designer,

Now let us try the design procedure proposed in chapter 3 based on
theorem 3-3, We plot in figure 4.5 and 4. 6 the graphical test shown in
figure 3.2 by columns. Here we plot based on the euclidean vector
norm the associated induced supremum and infimum matrix norms for
the 2 x 2 block partitioning of G(s) shown above as in figure 3.2. Then
in figures 4.7 and 4. 8, we plot the same curves for the block row test,
Here we see that the plant G(s) is block diagonally dominant by the 2 x 2
partitioning shown. So we can proceed to step 2 of the design process,

In step 2, we seek choices for the diagonal blocks of F which will
both achieve BDD of> the test matrix F~1 4 G(s) and stabilize the plant

in the context of theorem 3-3. First, we proceed to design compensators
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for the diagonal blocks of G(s). In figure 4.9, we plot the Nyquist loci

and associated Gershgorin circles for the rows of,
i

15 -5.25 |

s-5 s+3.5

G, . (s) =
11 5.25 21
s+3 s-6

Y ——

To stabilize this decoupled plant requires a feedback,

F,= diag {fl,fz}

-1 -1
where fl <1l.5, f2 < 1,8.

But from figure 4.7 and corollary 3-5, we require that,

n(F)) < n(Gy; (s) - N(G,(s))
for all s on D

or from the figure,

£, 0\-1
1 -
0.352.

Since we are using here the euclidean vector norm, the induced infimum
matrix norm implies

A -1
min (fl,fz) < 0,352
or
min (fl, fz) > 2,84,
So we pick fl = f2 = 3.0.
Similarily, from figure 4.10 the Nyquist locus and Gershgorin

circles for
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[ 18 -4.5 |
s-6 s+3
'3
G,,(8) =
: 7 17.5
s+ 4 s-5_1

We see that to stabilize the decoupled plant requires,

F,= diag {f3,f4}
where

-1

1

<1l.5, f <1.8.

4
But from figure 4.8 BDD of -l + G(s) on D can be guaranteed if

n ( £ O)_1< 0.372
0 f4
or

min (f3, f4)> 2.69.

Thus a choice of F = diag {3, 3, 3, 3} will stabilize the plant by
decentralized feedback using non-dynamic compensation, Also, by our
definition of gain margin (defn. 3-8) the closed loop system has
infinite gain margin (infinite margin of dominance (defn. 3-9)). See

figure 4,7 and 4. 8,
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CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have developed, using some basic theorems
establishing the regularity of a complex matrix, results
on the stability of a multivariable system compensated by
decentralized feedback. A design procedure has been proposed which
incorporates a graphical test which can aid in t%qe choice of feedback
compensation to achieve the decentralized design. The techniques posed
use the classical frequency domain description of the dynamic input-
output behavior of a system. Several important conclusions can be
drawn and recommendations made for further research.

The frequency varying norms employed here provide a much more
subtle characterization of the relative autonomy of subsystems in the
presence of interconnections than the results obtained in [16]-[18].
Moreover the results show how the design process can be reduced to a
series of more standard problems with some additional requirements
on each compensator. The additional requirements on the de sign can be
tested graphically; implying a computer-aided design approach is
appropriate,

The flexibility of the block diagonal dominance theorems utilized
here is emphasized, In particular, the choice of partitioning leads to
natural frequency domain decompositions for a multivariable system.
Thus questions like the appropriateness of a decentralized design for a

plant can be considered. The choice of norms in our result and the
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choices available from the other theorems establishing regularity of a
complex matrix discussed in section 2. 3 imply that optimal bounds for
the regularity of a complex matrix can be calculated. The question of
numerical complexity in these calculations and the extension  of these
results using the theorems in section 2-3 is recommended for further
research. Again the calculations involved dictate a computer-aided
design is appropriate. The hierarchy of subpartitions of a partitione‘d
matrix transfer function as illustrated in the design example in
chapter 4 points up another way in which the technique provides
flexibility for design and analysis of large scale probl.erns.

A further recommencation for research is concentrated on the
extension of the present design technique but using the results of
Brenner [23] and [24]. These theorems promise even more subtle
results since upper and lower bounds for the determinant of the matrix
are found. In particular, characterization of subsystem performance
in the presence of interactions may be available in a stronger way
than from fhe present generalized approach. Of course, these
questions cannot be divorced from the question of the numerical
complexity in the required calculations. Further investigation is
certainly warranted.

Finally, we single out from these results potential application for
the general multivariable design problem as an area for further
research. In particular, the hierarchical decomposition of a rational

matrix into partitions and sub-partitions as illustrated in the design
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problem may lead to algorithms which can achieve the design of series
compensators which provide approximate subsystem decoupling as in the
:
approach of Rosenbrock [2, pp. 156-173], In general, the question of
designing compensators for the Inverse Nyquist Array technique which
contain elements of some restricted dynamic degree (usually constant)
is unanswered. But the work of Leininger [26] indicates that for 2 x 2
matrix transfer functions the solution is relatively easy. The
hierarchical partitioning discussed here may pave the way for

developing algorithms which sequentially realize the required

compensator. At each step a 2 x 2 problem can be considered.
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