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ABSTRACT

Title of Thesis: Joint Optimization of Information Pattern
and Control in some Linear Quadratic Guassian
Problems

Sheldon Wolk, Master of Science, 1978

Thesis directed by: Dr. John Baras

Professor
Department of Electrical Engineering

A quadratic cost criterion is optimized for a discrete-time
stochastic control system in which each controller uses a control
law which is a linear combination of observations, as determined by
the information pattern. The optimal information pattern as well
as the optimal control laws are obtained for controllers with no
memory. An example displaying the interplay between communication
costs, control costs, and the optimum information pattern is developed.

Consideration is then given to a system in which the

controllers have finite memory and in which a delay is imposed on
the transmission of information. This is seen to be an extension

of the theory developed for the simpler case without memory.
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CHAPTER 1

1.1 Introduction

The problem considered in this thesis is one of optimizing a
quadractic cost criterion for a discrete linear system in which there
are g observers that can make noisy measurements on the system, and
of controllers to which they may or may not communicate. It has
been shown [7] that due to the decentralized nature of the above
problem that the optimal control laws may in general be non-linear.
Nevertheless, we will constrain the inputs to be a linear combination
of the observations made by some subset of the set of observers.

A sub-optimal problem very similar to the one described
above was examined by Chong and Athans ([4]. However, in their case
no communication was allowed between controllers. Here, we will
optimize over both the allowable control laws and the allowable
information patterns.

The problem will first be reduced to a set of deterministic
equations, to which the maximum principle will be applied. This will
lead to a two point boundary value problem in which the state and
costate equations are coupled. A method of solution for this
problem is presented in Chapter 3, along with an example for a

system with two states, two controllers, and two observers.



Finally, it is shown that the conditions for the optimality
are necessary, and that there is indeed a solution to the above

two point boundary value problem.



1.2 Linear O-memory Control Laws

Consider a discrete linear time invariant system with
g controllers, g observers, the following dynamics:

q
x(i+l) = Ax(i) + w(i) + X B,u, (i) (1.2.1)

and the following observations model:

yk(i) = Ckx(i) + Vk(i), k=1,2,3,...,9 (1.2.2)

where:

x(i) is the nxl state vectors
yk(i) is a vector of the observations of

the kth controller at time i and is Qk x 1
uj(i) is a pjxl vector of the jth controller

at time 1

w(i) is the noise associated with the dynamics

vk(i) is the noise associated with the observers.

It is assumed that the dynamics are known at all control
stations. Thus each controller can use A, Bj’ and Ck

1<i<qg, 1<k<q as known guantities.

Further, there are several assumptions on the random variables:



i) v, (i) and v
S
or i#t

k2(t) are independent if kl#k2

ii) w is independent of vk for all k
iii) x(o) is independent of w and vk for all k
iv) w and vy are zero mean Gaussian
white noise processes
v) The second moment of the noise W (i) and of the

noise vk(i) is known at all stations for all

times i

We further impose a certain structure on the information

pattern:

vi) If control station kl communicates to
station k2, then kl will transmit to k2

at time 1 its whole observation vector ykl
vii) Two control stations either communicate for
all time or never communicate
(The underlying assumption here is that the cost of
communication is incurred primarily from setting up the
communication link, not in using it.)
Finally,
The Control Laws are of the following form:
viii) At each time t each control station has
available a subset of yk(t) k=1,2,....9

ix) The control has to be a linear combination of

the above data basis.



The cost is quadratic in form with weighting matrices

R, Qi, and A(i) with R=RT and Qi=Q§':

n-1
\ T . .

g=e {I x (1)Rx(1) + u (1)Qu(i)}+ .

i=0

T N-1 T

+u ()ou (1) + & trlaA™(i)] (1.2.3)
q q 9 i=1
1 if station i sends information to station j
where .. = ,
i 0 otherwise

Aij(t) is the cost of communication between i and

station j, at time t

The problem is simply to find the control u(i) and the
information pattern « that will minimize the above cost for the

given dynamics.



1.3 Reduction to a Two Point Boundary Value Problem

In this section the problem described in Section 1.2 will be
reduced to the solution of a two point boundary value problem through

the use of the maximum principle.

In order to simplify notation, a number of matrices and vectors

will be defined here:

T T T T .
Y(t) = (yl(t) y2(t) yq(t)) is the 2 x 1
(where £ = I &.) vector made up of the concatonation
j=1 -
of all observation vectors
T T
U(t) = (ul(t) uz(t) cen uz(t))T is the pxl (where
aq
p=L pj) vector made up of the concatonation of
j=1

all control vectors

and, simlarly, for Ci,v. and Bi:

14

A T
C = (cfcg ... Cq)T and the dimension of C is xn
A . . ,
B = (BlB2 .. Bq) the dimension of B 1s nxp
T T T .
v (t) = (v (t) vT(t) e VALY the dimension of v_ is ixl
o} 1 2 q o

The pxp matrix determining the weighting for the cost due to the

controllers is the block diagonal matrix Q where

Ql O .¢. o2+ O
(e} Q2 o
0=\ o SR
6 0. .. .089



Finally, the following matrices will define the second moment of the

noise:

A

T . , .
W(t)nxn = e{w(t)w (t)} is the second moment of the noise in

the state equation

V(t)lxl é E{Vo(t)Vz(t)} is the second moment of the noise

due to observation..

Note that T
Vl(t)Vl(t) O+« .+« « . 0
V(t) = E :
o}
. . o
T .
60 . .. .0 V (£)v (£t} since E{V,
q q 1

by assumption (i) and (iv) section 1.2

With the above definitions, the system dynamics become:

t>v§(t> }=0

x (i+1) = Ax(1)+w(i)+BU(1) (L.3.1L)
Y(i) = Cx(i)+VO(i) (1.3.2)
And the cost is
N-1 T T N-1 T
J=e{Z x (L)Rx(i)+U (1)QU(i)}+I tr(ad” (1)) (1.3.3)
i=0 i=0
Now in section (1.2) the admissible control laws at time i were
constrained to be a linear combination of the observations at
time i of some subset of observers. This subset is to be
determined by the information pattern, a. Therefore, the control
law at time 1 is in fact
U(i) = g(i)Y (1) (1.3.4)



oy s , .. th . , . .
Where g(i) is a pxf matrix, the jk block of which is dimension

pjxlk and is described by:

fo]l if akj =0

. (1.3.5)
(c)19% if a .70
kj

(g(i)13% =

and [G(i)]]k is some yet to be determined matrix

Equation (1.3.5) simply enforces the constraints due to the
information pattern. That is, if O is such that the kth station
does not communicate to the jth station, then the appropriate block
of g(i) is forced to zero by equation (1.3.5)

jk

Since [g(i)] = 0 for akj = 0, g(i) is equivalently given

t
by the pxg matrix the jk h block of which is
kJ

(g i)P¥ = ockj[c;(i)]jk (1.3.6a)

For instance, for the case in which there are exactly 2 controllers

ul, u2 and 2 observers yl, y2 and they are all scalars, equation

(1.3.4) becomes

a Gll 12 v
ul - OLllel 21 22 1
2l \712 22 72
where Gll, Glz, Gzl, G22 are all scalars.

This case will be explored in greater detail in Chapter 3 of this
thesis.
There is, however, a more desireable expression for g(i), but

in order to use it, some definitions will have to be made:



. . t
Let Yk be a symmetric pxp matrix such that the ms h block of

Y, is given by

k

I 1 =S=
ms A pkxpk if m=s=k
y,1 = = .
OPmXPS else where I is the identity matrix

and O is the zero matrix
Similarly, let 6j be a symmetric £ x £ matrix such that the msth

block of Gj is given by:

Ip. %0 if m=s=7
TR T
3 ozmx Q‘s else

Now, an alternative formulation for g(i), equivalent to (1.3.6a) is

a g
g(i) =2 I a., v, G(1)8. (L.3.6b)
k=1 j=1 JF ¥ J

Notice that the constant coefficients Yk and éj simply force the

appropriate blocks of G(i) to zero as in equation (l1.3.6a).

At this point a more useful expression for the cost than equation
(1.3.3) can be found.
By substitution of equation (1.3.2) into (1.3.4),

Uu(i) = g(i)Cx(i)+g(i)Vo(i) (1.3.7)

And substituting (1.3.7) into (1.3.3) to determine the cost,

N-1
J=k£e{z xT(i)Rx(i)+[g<i)cX(i)+g(i)vo(i)]TQ[g(i)cX(i)+g(i)Vo(i)]}+
i=0



10

Regrouping terms,

N-1

7= 5(_ %7 (1) (Recg" ()09 (1)CIx (1) 4% (

1) [c7g" (1) Qg (1)1V_(1)+

N-1

+ Vz(i)[gT(i)Qg(i)C]X(i)+V§[gT(i)Qg(i)]Vo(i)}+Z er (@At (1))
i=0
By Lemma A.l of the Appendix,
2{x" (1) (€T (1)Qg(1)IV_(1)}=0 , i=0,1, ... N-1.
T, . T,. . . ,
and E{Vo(l)[g (1)Qg (i)Clx(i)}=0 , i= 0, ... N-1l.
Thus,
N-1 o TT T T
J =©e{f x (i)[R+C'g (1)0g (1)CIx(1)+V_ (1) [g (i)Qg(i)]Vo(i)}+
i=0
N-1 T
+ T tr(ad (i) (1.3.8)
i=0

T T T . . . .
Note, however that x (i) [R+C g (1)Qg(i)C] x(i) is a scalar.

<T (1) R+ TgT (1)0g (1)Clx (1) = tr x (i) [R+C g  (1)0g(1)Clx (i)

=tr{ [R+C g  (1)0g (i)Clx (1) x" (i)} (1.3.9)

By a similar argument,

T,. . . T,. . L T, . T
Vo(l)[g (l)Qg(l)]Vo(l) = trig (l)Qg(l)]Vo(l)Vo(l) (1.3.10)

Substituting (1.3.9) and (1.3.10) into (1.3.8)},

N-1

7 = B{I trir+C gt (i)0g(1)CIx(1)x (1) I+
i=0
N1l o Nl .
+B{L trig (1)9g(1)IV_(DV_ (LI triah (i) (1.3.11)

i=0 1=0
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By commutativity of the trace with expectation

N=1
J =T tre{ [R¥CTgT(i)Qg (1)CIx (i)x (1) }+
i=0
+trE{gT(i) Qg(i)Vg(i)VE:Htr(xAT(i). (1.3.12)

By lemma A.2 of the Appendix,

ex{{recTy" (1)Qg (1)CTP (1)} (1) [ReCTg" (1)Qg (1)CIH (1)+

+ e g7 (1109 () 1V (D) 1Ll (1) [g7 (1) [g” (DRg (1) T (1) +erad (1)

(1.3.13)

However, by hypothesis, uv(i)=0
Thus,

N-1 T T T T T

J =1 tr(R+¥C'g (i)Qg(i)C]P(i)+uX(i)[R+C g (i)Qg(i)C]HX(i)+
i=0
T, . . . T, .
+trg (1) Qg (1) 1V (i) +trod™ (1) (1.3.14)

This is the desired expression for the cost that must be optimized
over all possible o, and g(i)

Note that (1.3.14) expresses the cost as a function of u(i), P(i),
g(i), o, and known quantities. So, now a recursive expression for

the variables P(i) and U (i) will be derived.



12

Consider the dynamics of (1.3.1)

x(i+l) = Ax(1)+w(i)+BU(1)
Substituting equation (1.3.7} into (1.3.1),

x(i+l) = Ax(i)+w(i)+B[g(i)CX(i)+q(i)Vo(i)]
Rearranging terms,

x(i+l) = [A+Bg(i)C]x(i)+W(i)+Bg(i)Vo(i) (1.3.15)
To simplify notation, we define

M(1i) é A+Bg (1)C (1.3.186)
Thus,

x(i+l) = M(i)x(i)+w(i)+Bg(i)Vo(i) (1.3.17)
Taking the expected value of both sides,

B{x (i+1)} 2 W (i41) = M(i)ux(i)+E{w(i)}+Bg(i)E{Vo(i)}

However, as the expected value of w(t) and Vo(t) is zero for

all t,

Ux(i+l) = M(i)ux(i) (1.3.18)

Now, to develop a similar sort of recurrsion for P(t), subtract

Ux(i+l) from both sides of equation (1.3.17)

x(i+l)—ux(i+l) = M(i)x(i)—ux(i+l)+w(i)+Bg(i)Vo(i) (1.3.19)
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And, substituting for ux(i+l) in the right hand side of equation

(1.3.19) using equation (1.3.18),

x(i+l)-ux(i+l) = M(1) B(i)—ux(i)] +w(i)+Bg(i)VO(i) (1.3.20)

By definition,

B_(i+1) E{[X(i+l)—ux(i+l)][X(i+l)-ux(i+l)]T

Thus,

P (i+1) E{[M(i)(x(i)—ux(i)»w<i)+eg(i)vo<i)]

[M(i)(X(i)—ux(i))+w(i)+Bg(i)Vo(i)]T} (1.3.21)

Expanding this expression,
. . . . . . T T, . R
P, (i+l) = E{M (1) (x(D)-H (1) x(1)-p (1)) "M (L) +w(i)w™ (1)+

+Bg(i)Vo(i)VZ(i)gT(i)BT} (1.3.22)

This is true by the independence of x(i), w(i), and Vo(i), and
the assumptions that Vo(i) and w(i) have zero means,

And so,

P (i+1) = M(i)PX(i)MT(i)+W(i)+Bg(i)V(i)gT(i)BT (1.3.23)

This is the desired recursion for P(i).
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Equations (1.3.18), (1.3.23) and (1.3.14) provide a

convenient reformulation of original problem:

N-1

Minimize I trlR+Cog:(i)Qg(i)CIP(i) +1F (1) [R+C g (1)Qg(i)Clu(i) +
i=0
T,. . R T, .
+trg (1)Qg(i)1v(i) + trald (1) (1.3.23a)
subject to:
{1 -

U (i+d)#M (1) (d)
4
and P(i+f) = M(i)P(L)MT (1) + W(i) + Bg(i)V(i)gT(i)BT

The remainder of this section is centered around this coptimization
problem and its solution (basically) the application of the minimum
principle. In order to do so, however, it will be expedient to
appropriately define the setting for the problem.

To this end, we define elements of a vector space T over

the field of real numbers R by

where Uj is an n x 1 vector and Pj is an n x n matrix

Define now vector addition by ~———
il (ol a M o+ M2
Ty =le ) fle) Tle. 4@
2 1 2

where ul + u2 is the usual element by element sum of two n x 1 vectors

and Pl + P2 is the usual element by element sum of two n x n matrices.

The above definition of vector addition has the following properties:
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i) If Tlg'rand T, €T then Tl+T2€T (closure)

. _ N .

ii) Tl+T2 T2 Tl Tl,TzeT (commutivity)
. - (T + s
iii) (T1+T2)+T3 Tl (T2 T3) Tl,T2,T3€T {associativity

iv) there exists a vector 0 such that

T+ =T TlE:T (identity)
v) for every vector TleT there exists a unique vector

—TlET such that Tl+(-Tl) =0 (additive inverse)

Now define scalar multiplication as follows:

for a€R and TlET

where aul is the nxl vector formed by multiplying each

element of ul by the scalar a

and aPl is the nxn matrix formed by multiplying each

element by P. by the scal r a

1
This definition of scalar multiplication has the following

properties:

vi) for every atER and every TleT, aTleT (closure)

vii) a(le) = (ab)Tl for a, beR ' TleT (associativity)



16

viii) lTl =T, for TleT (identity)
. _ T . . P
ix) a(Tl+T2) aT +aT, aeR TlfTZET (distributivity)
X) (a+b)Tl = aTl+le a,b,er TleT (distributivity)
From the above properties [(i) through (x)] it is clear that
T is indeed a vector space over the reals.
Now, define the inner product of two vectors 'I‘l and T2
< >as:
denoted Tl,T2 as:
Ul U, N
<Tl,T > = < o o > = T .
1/ N\ %2 HyHyttrP Py
(1.3.18),

The above definitions may now be applied to eguations

(1.3.23) and (1.3.14).

We define first the following functions

f(irTlg) = T(i+l)—T(i)

where T(t) = M (t)
P(t)

For the remainder of this section we drop the subindex x of Ux



Rewriting then egns. (1.3.18) and (1.3.23),

p(i+l)-u(i) M(i) -1 Y1)
_ nxn
; = +
£(1,7.9) P(i+1)-P (i)  M(1)P(1)MT(i)+W (1)
0
T
+ (-P(1)+Bg(1)V(i)g (i)B")
and for the cost, from egn. (1.3.14)
. . A - TT,, . .
fo(l,T,g(l)) = tr[R+C g (1)Qg(i)Clrp(i) +
T
o7 () 1recTgT (1) g (1) CIu(4) +
—trlg (i)Qg (i) 1V (1) ~traaT (1)
N-1
(Notice that I fo = J. Thus, maximizing fo is equivalent
i=0

to minimizing J, and the maximum principle will be used)

By definition of the inner product <+ , *> it is clear that the
A Y
adjoint variables ("costates,” Lang@é%e multipliers) for this
problem are also elements of . So let
A1)
e T
A(1)

be the adjoint variables in the formulation of the maximum
principle. For the moment we proceed to establish the
necessary conditions leaving the rigorous justification

of all the steps taken for the next section of this

chapter.

17

(1.3.24)

(1.3.25)

(1.3.26)



We define then the Hamiltonian (following [11])

A A(i+1)
g2 f (1,7,9)+< , £(i.T,q) >
© A(Gi+1)
H = fo(i,T,g)+AT<i+1) (M(1)-I)p(i)+

AT (14+1) [M(1)P () MT (1) ~P (i) +W (1) +

+Bg (1) V(1) g" (1)BT]

Note that H is a function of u(i), P(i), A(i+l), A(i+l1)

and G]k(i) for all integers j, k such that

a = <9 < 7 O<k<
X3 1 o<j =9 SRYq

This refers to the formulation for g(i) given by

equation (1.3.6a). Specifically, H is not a function

ik
of G3°(i) for j,k such that a . = O.

k3
So, assuming that an optimal solution exists and

that the constraint qualifications are satisfied, the

necessary conditions for an optimum solutions are [1]:

18

(1.3.27)



139

oH oH

= Y(i+1l)-p(i), ——— = P(i+1)-P (i)
A (1+1) gh (i+1)
produces the dynamics {1.3.28)
———§—~—-= A{i)- A(i+1), - S = A(i)- A(i+])
ou (i+1) oP (i)
produces the adjoint egns. (1.3.29)
? = 0 for all j,k suchthata, .=1 (1.3.30)
ank kj
From equations (1.3.28) and lemma A.4 of the Appendix,
oH . : . .
—_— = (M{1)-D)u(i) = p(i+dl)-u(i) (1.3.31)
A (i+1)
and
oH T T T
———— = M(1)P(L)M (1) (1)+W(i)+Bg(i)Vv(i)g (1)B"]
aA(i+1)

= P(i+1)-P (i) (1.3.32)

These are, of course, simply the dynamic equations (1.3.24)

and (1.3.25).



20

Now to find oH

U (i)

From eqn. (1.3.26) since there is only one term that is a

function of u (i),
Of (i) o (CernT (1) [RECTgT (1) Qg (1) CIu(i)) (1.3.33)
(i) S (1)

By lemma A.3 of the appendix, and (1.3.33),

n
of
o

= T irecTgT(1)0g (1)CTu (i)~ [ReCTgT (1) Qg (1)C1TH(1)  (1.3.34)
Bu (1)

But Both R and Q are symmetric hy hypothesis.

Thus,
5f
© - T2(r+cTgT(1)0g (i) O p (L) (1.3.35)
Ju (i)
And,
8 T
AT(i+L) (M(L)-T)u(l)
ou (i)
o AT, .
= (try (1)A7 (141) (M(1)-I)) (1.3.36)
Ju (i)

By lemma A.4 of the appendix, and egn. (1.3.36),

3 AT (141) (M(1)-T)u(4) = (M(i)=T) TA(i+1) (1.3.37)
ou (i)



Combining equations (1.3.35) and (1.3.37),

oH
Ju (1)

= T2(R+CTgT (1)Qg (1) O ML)+ (M(1) =) A (1+1)

Similarly, for 0H
oP (i),

From egn. (1.3.26)

afo(i,.,.) d _ T o
= ( tr[R+C g (i)Qg(i)ClP(1i))
9P (1) 3P (1)

By lemma A.4 of the appendix, eguation (1.3.39), and the

symmetry of R and Q,

of
°© - Tirecig(i)og(i)c]

P (1)

Now,

0 r AT (441) [M(4)P (1) M (1)~P (1) +W (L) +

3P (i)
gDV g (1)8T] = = exaT(i41) D) P (DM (L) -P(E) ]

3P (i)

21

(1.3.38)

(1.3.39)

(1.3.40)

(1.3.41)



Due to properties of the trace operator

3
3P (1)

erAT (141) M) P(L)MT (1) =P (i) ] =

3
brp (1) ME (AT (1) M(i) -trp (D) AT (1+1)

P (1)

By lemma A4

5
erAT (i+1) (M(1)P (LM (1)-P(i)] =

aP (1)
T, . . . .
= M (YA (I+1)M{(1)-A(i+1)
so, combining equations (1.3.40) and (1.3.43a)

oH

T T, . . T, . . . .
_EETIT_ = -[R+C g (1)Qg(i)Cl+M (DA (A+1)M (L) -A(i+1)

Finally, coming equations (1.3.29), (1.3.38) and (1.3.43b)

to produce the adjoint equations,

A (i) =A (i+1) L2 (R+CTgT (1) 0g (1) O (1)

M) -AGi+D) ~(rec”g (1) g (1) C)

(M(1) - I) A (i+1)

ME (1) A (141)M(1)-A(i+1)

22

(1.3.42)

(1.3.43a)

(1.3.43b)

(1.3.44)

(1.3.45)
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Now, all that remains is to maximize the Hamiltonian by

satisfying equation (1.3.30). The Hamiltonian is a polynomial

function, and thus everywhere differentiable.

Thus, equation (1.3.30) is equivalent to requiring that:

;o3 oH 84= 0 (1.3.46)
0, Y, = 83= .3.
k=1 3=1 jk'k 9G (i)

Where here the partial differentiation is done with respect to

oH

the entire matrix G(i) and coefficients of ———— simply force
G (i)
JH

blocks of 3 corresponding to [G(i)]]k

=0 (i.e., no communica-

tion) to zero.

The important point here is that H is in fact a function
of [G(i)]jk j.,ksuch that akal (see note after egn. 1.3.27).
However, if H is interpreted as a function of every element
in the matrix G(i), everywhere that a term involving any
[G(i)]jk such that ajk=0 appears the coefficient of that term
will be zero, and hence the derivative of that term will be
zero. In short,

SH (M (i) ,P(i),A(di+1) ,A(i+1),G (1)) _ SH (M (1) ,P (1), A (i+1) ,A(i+1)g (i)

s1e(iy 1k ste(i)17¥

where G(i) = {[G(i)]j
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and so, equation (1.3.30) is eguivalent to

a g
L I o.Y 3 s . , , i _
p=1 51 JK K 5575){H<u(1),P(1>,A(1+1),A(1+1),g(l)}6j =0

Some formulas will now be derived so that the differentiation in
in equation (1.3.46) can be performed in an explicit way.
We have

trigr (1)Sg(i)T] =

;oI 5.7 ot
- [0.,Y,G(1)d,]"s & I o _y e T
Tl =1 KK J Tl exy SMM s (1.3.47)
T, . .
trlg  (1)sg(i)T] =
q q q q T T .
= trXL ¥ I I ajkasméjG (1)YkstG(1)ésT (1.3.48)

k=1 j=1 m=1 s=1

Let h(G(1)) g(i) by equation (1.3.6b)

Then,

tr (' (G(i))Sh(G(T] =

3G (1)

a
qa g q 3

T.T T
= I I I a,0 ——tr(8.G (i)Y, SY_G(1)d_T] (1.3.49)
k=1 j=1 m=1 s=1 jk sm  0G({i) 3 kW 'm s



By: properties of the trace,

9 T, .. . B
3G (1) tr[h™ (G(1)Bh(G(i))T]=

d q d g
=Z L I I o,0Q

T T T
9G (1) i )8 TS
k=1 j=1 m=1 s=1 3k sm oG (i) tr [G (l)YkSYmG(l) ST8

- 4 ¢ g9 g
tr [h (G(i)sh(e(iyrl =2 £ I I a, o

3G (1) k=1 j=1 m=1 s=1 X S®

T R T T T . T.T
{[Ykst]G(l)[65T6j1+£Ym S Yk]G<1)[6jT asn

But¥Y's and §'s are symmetric matrices, so

tr [hT(G(1)SH(G (1))

z z z Ly a

= 7
k=1 j=1 m=1 s=1 7~ M

3
9G (1)

. T T . T.T
{Yks[ymG(l)Gs]de+yms [ykG(l)éj]T 65 }

Rearranging terms,

3 . a 9 g9 g
— tr [h (G(i))sh(G()T] =2 T I I @, 7Y.S
3G (1) k=1 3=1 m=1 s=1 &%

, T T . T T
a LY, G(1)6.] TOSHE VS {ajk[yks(l)dj]}T 8,

25

(1.3.50)

(1.3.51)

(1.3.52)
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or,

P
3G (1)

tr [hY(G(i)Sh(G(i)T] =

S R § 1 6T
= ®..Y.S & [Y.G(i)§ 1 TG,
k=1 j=1 JF X p=1 g=1 S® S
g. g q q
T T.T
+Z I o yYSsS I I a.lfy.G(i)s.1T6
m=1 s=1 ™0 yo1 j=1 jk™ 'k j s (1.3.53)
Now, substituting into equation (1.3.53) with (1.3.6b)
o T 2 4 T
tr[h  (G(iNsh(G(inr] = L z a,kykSg(i)Té. +
3G (i) k=1 j=1 7 J
gq q
+ z asmYmSTg(i)TTSZ (1.3.54)
m=1 s=1
And, finally:
3 T . .
——aG—(.J tr [h(G(1))Sh(G(1i))T] =
q9 q
=% § . v .Sg(i)T6T + a. y.sTgi)T 8T (1.3.55)
k=1 3=1 jk'k J jk 'k J

This is one of the necessary formulas to compute the maximum

of the Hamiltonian.
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It will also be necessary to compute the value of

3 a 4q
el n@N1Ts = o ferl 5 o [y, G(06.17s)
3 G (i) k=1 j=1 jk J
(1.3.56)
Interchanging the order of operations,
3 3 )
T T, .
IO tr[h(G(1))]1's = i-l 3 ajk‘ﬁETZT_ ty [GjG (1)Yk]S
=1 j=1
(L.3.57)
3 9 4g
— trhGUNITs = I T o« 2% 6T (i)y.S6.1 (1.3.58)
3G (1) P jk  9G (1) k™73
k=1 j=1
By lemma A.4 of the Appendix, and (1.3.58),
3 q q
er GGENITS = I D a,y,SS, (1.3.59)
3G (1) k=1 j=1 7 J
Similarly, using the second part of lemma A.4,
3 q q
tr[h(G(i))ls= L I oc_kYkSTcS, (1.3.60)
3G (1) k=1 j=1 7 J

Equations (1.3.55), (1.3.59), and (1.3.60) are the formulas
necessary to compute the derivation of the Hamiltonian, which

we now proceed to do.
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Consider first

9f {-tr [R+CThT (G (1)Qh (G (1))ClP (i) +

9G (1) 9G (1)

= et (1) [R+CTRT (G (1))QR(G(LCIuH (1)  +
— tr[hT(G(1)Ph (G (LW (1)1} (1.3.61)
Keeping only terms involving G(i)

of d
o -

9G (i) 9G (1)

{-tr [T (G(1))Oh(G(1i))CP(i)C ] +

+ —tr[hT (G (L)Dh(G(L)CH (1)U (i)C ) +
- tr[hT(G(L)Rh(G (i)W (i)] } (1.3.62)

From equation (1.3.55) and the symmetry of Q, P(i)

and V(i)
afo a 49
= -2z I a.kYng(i)cp(i)ch. +
3G (i) k=1 j=1 3 J

. U S
+ ajkYng(l)Cu(l)u (1)C 6j +

+ ajkYng(i)V(k)dj (1.3.63)
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Rearranging terms,

of q q9 T
= -2 I z oc.kYng(i)[CP(i)c +
9G (1) k=1 j=1

+ Cu(i)uT(i)cT+V(i)]6j

Differentiating the rest of the Hamiltonian with respect to
G(1),
From equations (1.3.24) and (1.3.25),

A(i+l)

< £>= AT(i+l) M(i)-T)u(i) +
A(i+1),

+erAT (141) (D) P (K)MT (1) +

- P (i)+W(i)+Bg(1)V(i)g® (1)B"] (1.3.64)

Thus, eliminating terms not functions of G(i),

3 < A(i+l) £ > = )

T . R ,
A(isl), { AT (i+1)Bh(G(i))Cu(i) +

3G (1) aG (1)
+ er (AT (i41) [ (A+BR(G(i))C) P (i) (A+Bh(G(i))C) +

+ BR(G(1)) V(D) hT (G(1)BT] } (1.3.65)
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Rearranging terms,

3 <<>\(i+l)) £> = % [ trineiycu) T (1+41)8] +
3G (1) A(i+1)/, 3G (i)

+ tr hT(G(L)BTAT(i+1)AP (i)CT +

+ tr nY(e(1))BT AT (1+1)Bh(G(i)CP(i)CT +

+tr h (G(i))CP(i)A AT (i+1)B +
+ tr AT (G(1))B AT (i+1)Bh(G (1)) V(i) (1.3.66
By equations (1.3.55), (1.3.59) and (1.3.60),

5 ()\(i+l)>
—— < £, =
. Ai+1)/,

3G (1)

a g
% oo,y BIAG+L T (i)cT +8TAT (ie1)api)cT
k=1 §=1 ¢ %

. BTK(i+l)AP(i)CT]6j +

g g
+% 2 a.kYk[BTAT(i+l)Bg(i)CP(i)CT +
k=1 j=1 -

+ BTA(i+1)Bg (1)CP (1)CT +

+ BTAT (441)Bg (1) V(i) + BYA(i+1)Bg (1)V(i)]8. (1.3.67)

J
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Simplifying,
. a g
0 MADY o L s 5 oy DT et +
S\ A+ g k=1 j=1 & X
3G (1) !
+ 8T A+ +AT (141) 1P ()T +
T .. T . . T
+ BO[A(i+1)+A" (i+1)1Bg (i) [CP(i)C +V (1)1} 6j (1.3.68)
So, combining equations (1.3.63)} and (1.3.68),
oH d k! T T T
=L I ST {-20g (i) [CP(i)C +Cu(i)u (1)CT+V(i)] +
3G (1) k=1 j=1

+ B+ T ()cT +BT A (i41)+AT (141) 18P (1)CT +

+ BT[A(i+1)+AT(i+1)] Bg(i)[CP(i)CT+V(i)]} dj (1.3.69)

to maximize the Hamiltonian, the requirement is not that

oH = 0, but it is actually given by

9G (i)

equation (1.3.46):

qa g oH
I I o, y——— 8. =0
k=1 5=1 % % 35(1) ]
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0 kl # k2
But, since Y Y =
k, 'k Y -
1 2 kl kl = k2
0 j, 73
and 6, 6. = §. .l - .2
J1 92 1 1T )
1 if o =1
1k
and (a.k)2 = J
] 0if a,, =0
jk

Substituting (1.3.69) into (l1.3.46),

q
z o, .Y o, .Y
j,=1 Ik Ky 1ok, Ky

Fal e BYe)
i
)

271 3,71

{o(y(2),P (1), u(i),A(i+1)} 8, 8, =0
I N

And so, equation (1.3.46) actually reduces to equation (1.3.69)

For clarity let us summarize the results so far: If an optimal
control exists and appropriate conditions are satisfied,
necessary conditions for optimality are provided by

Dynamic Equations:

W (i+1) u(iJ) (M(i) - T)u(i) ) (1.3.24)

p(i+1)/ \P(4) M ()P (1)MT (1) +W (i) -P (i) +Bg (1)V(1)gT (i)BT (1.3.25)

Adjoint Equations

A (L) A (i+1) ~2 (R+C G T (1) 0g (1) C) 1 (1)
- = T T *
—(R+C g (1)Qg (i)C)

A(L) A(i+l)

M (1) -I)Tx(i+1) (1.3.44)

MY () A(A+1IM(E) - A(i+1) (1.3.45)
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u{o)’ A(N) 0
> is given and =
P (o) A(N) 0

which are coupled via the condition to maximize the Hamiltonian,

q q
DI a,kvk{—ng(i)[cp(i)cT+cu<i)uT(i>cT-+v<i>1 +
k=1 j=1

+ BTX(i+l)uT(i)CT + BT[A(i+l)+AT(i+l)] AP(i)CT +

+ BT[A(i+l)+AT(i+l]Bg(i)[CP(i)CT+V(i)]}5j (1.3.69)
From equation (1.3.45) the symmetry of R, Q and A(N), it is
clear that A(i+l) is symmetric  iSn=1

Thus,

AGi+l) = AT+ (1.3.70)
Consider now equation (1.3.45)
AGi) = - (R+CTGT(1)Qg (1)C) + MY (D) A(i+1)M(4)
Right multiplying both sides by 2u(i),
2M (1)U (1) = =2 (RHCTgT(1)Qg(i)C) i) + 2T (DAGE+DM(DIu(D)  (1.3.71)
By equation (1.3.18),

A (1)1 (1) = ~2(RECTGT(1)0g (1)C)H (1) +2MT (1) A (1+1)p (i+1) (1.3.72)
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But, this is the same recursion in 2A (i) (i) as equation (1.3.44)

is in A{i); and, both have the same terminal conditions. Thus,
2A (LY (d) =A (1) (1.3.73)

Substituting equations (1.3.70) and (1.3.73) into equation
(1.3.69),

g 4 . T . T, T .
L I o, v.{-20g(i)[CP(i)CT+Cu (L)  (L)CT+V(i)] +
k=1 j=1 15 %

+ 28 A (14D p i+l pT () et +
+28 A (141) AP (1)CT + 2BTA(i+l)Bg(i)[CP(i)CT+V(i)]}6j (1.3.74)
And using equation (1.3.18)
2BTA (i+1)u (141 uT (1) ¢t = 2BTA (1+1)M (L) (1) (i)cT (1.3.75)
Defining
(i) = p(i)ut (i) + P(i) (1.3.76)

Substituting equations (1.3.76) and (1.3.75) into (1.3.74),
q q

I I ujkYk{—Qg(i)[CH(i)CT+V(i)] +
k=1 j=1

+ 8TA(3+1)AT(A)CT + BIA(i+1)Bg (i) [l (i)C +v (i)} 6,0 (1.3.77)
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Combining terms,

a g
0=35 I a. v {[BTA(i+1)B-0lg (1) [CH(1)CT+V(i)] +
. jk'k
k=1 j=1
+ BTA(i+l)AH(i)CT]6j (1.3.78)

From the dynamics equations (1.3.24) and (1.3.25),

P(i+l)+u(i+l)uT(i+l) = [[(i+l) = M(i)H(i)MT(i) +

+ W(1)+Bg (1)V(i)g (1)B" (1.3.79)
The necessary conditions for optimality have at this
point been reduced to the solution of the two point
boundary problem of equations (1.3.45), (1.3.79) and
(1.3.78), repeated here for clarity.
) TT,, , T . . .
A(i) = =(R+CTg  (1)Qg(i)C) + M  (L)A(i+1)M(1) (1.3.80)
. . P L . . R A
T(i+l) = M(L)I(1)M (1) + W(i) + Bg(i)v(i)g (i)B (1.3.81)
i g T T
2 I o,y {[BA(i+1)B-Qlg (i) [CMI(1)CT+V(i)] +
. jk'k
k=1 j=1
T, ,. .\ T
+ B A(i+1)All(i)C }6j =0 (1.3.82)
With boundary conditions
T(o) =P(o) + o)yt (o) (1.3.83)

A(N) =0 (1.3.84)



q q
where M(i) = A + Bg(i)C and g(i)=3 I a.

This simplified form of the necessary condition for optimality,
can be obtained in a more direct way if we introduce I (i) in
(1.3.23a) from the beginning. This is due to the observation
that the cost depends only on the quadratic combination of the
two groups of (i), P(i) which we called II(i) in (1.3.76). Thus
the problem we have to solve is

1

N_
max J =5  (-tr [R+C G- (i)Qg(i)CIM(i)+
i=0

br [9r(i)0g (1)V(i)] - traaT (1))

over all admissible &, g(*),

subject to

T(i+1) = M(DT(M(A) T + W(i) + Bg(i)v(i)gT ()BT

(o) = P(o) + u(o)uT(o)

where M(i), g(i) are as in (1.3.85). It is now clear
that if an optimal solution exists and certain conditions
are satisfied , the coptimizing solution must satisfy
(1.3.80)-(1.3.85).

We now proceed to provide the rigorous justification

and the final results of this chapter in the next section.
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(1.3.85)

(1.3.86)

(1.3.87)
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1.4 Rigorous Results for O-memory Problem

We first establish existence of an optimal solution

to the problem posed in Section 1.2. BAn optimal solution is

specified by two components.

i) The information (communication) pattern c

%

k3J

ii) The linear gains that relate o-memory linear

* k
control laws to observations [G (i)]J , 1i=0,1,... N-1
which of course satisfy the information pattern

constraints.

* 1 *
e (1)1 =0, ifa =0
k3

We note here that with very little additional work optimization

with respect to the size of each controller's observation

and control vector can be also performed, working an identical

development as in this and the previous section.

It

is clear that for each possible information pattern,

the non zero blocks of the G(i) matrix over which we optimize

are fixed. To establish then existence of a jointly optimal

solution
pattern)

tion for

(i.e., with respect to control and information
we first establish existence of an optimal solu-

every fixed information pattern . Let

set of all possible information patterns

set of all g x ¢ matrices with elements O or 1

off the diagonal and 1 on the diagonal (1.4.1)



Clearly I' is a finite set with cardinality 23(g-1)

Given ael’ we want to show that the optimization problem
(1.3.86) (1.3.87) where o 1is now fixed has a solution.

Let Ia be the set of pairs of indices (j, k) jkg{l,...,q}

such that akj=l. Then the control laws admissible to this

information pattern are as in (1.3.5). So we really have
to solve for the optimal pij,k matrices [G(i)]Jk, i=0...N-1
jk

(3,k) €Ia , where in our usual notation the super index

indicates the (appropriate size) jkth block of G(i) (which

is p x 2).
From (1.3.85) and (1.3.87) it follows that (i), i=0, 1, ... N-1
is a continuous function of the [G(Q)]Jk, (j,k)ela,

2=0,1, ... i~1l, in the sense that each element of (i) is a
continuous function of the elements of [G(R))jk, (5,k) EIa’
2=0,1, ... i-1l. Consequently, for each admissible set of
6(1)1°%, 1=0, ..., ¥-1, (3,K)eI_, in view of 1.3.86,

J is a continuous function of the elements of those

. . 4k o . s
matrices (i.e., the [G(l)]j 's). We indicate this by writing:

7= v {1c()17%, i=0, ..., N-1, (3,K) e1 )

38

(1.4.2)



where F is a continuous function

n
F: RO>R

and
N-1
na =z z P.Qk
i=0 j.k J
(j,k)EIa

>

Since R 2 0, Qi 2 0 and all elements of A(i) = 0, it follows

from (1.3.86) that for any admissible sequence g(i), i=0, ... N-1,
< .

J < 0. The sequence gf{i) = 0 is admissible for any information

matrix and gives the value

r({1017%, i=0, ... n-1, (3,00er b

-t
i

N-1 T
L ~trRI(i)-trad™ (i)
i=0

with

AT (1) AT+W (1)

=
[ ad
+
[
I

P (o) +u (o)1 (o) |

=]
e}
]

so J<0, and Jo is finite.
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(1.4.4)

(1.4.5)
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As a result for given we have

Jo < sup = sup F(*) £0 (1.4.6)
over over
all all
adm adm. ‘%
g( ) (G(:)1?
[j,k)EIa

We have used above the result of lemma A.5 in the Appendix.

Let now
@a = subset of R?@ such that
jé < rlic()17%, i=0, ... n-1, (j,k)EIa}) < (1.4.7)

@a is closed and bounded in view of the quadratic form

of (1.3.86) (1.3.87). But now since F(*) is continuous

on @a which is closed and bounded in RFa it is well
known that there exist a point in @a where F(*) attains

. . . . *
its maximum. That is there exists an wa€®a

J 3 F(w&) = max F(w) = sup F(w)30 (1.4.8)
© , 5% we%

Then (1.4.6) and (1.4.8) establish that given «, there exist
*,...3k . .
(G (i)1°7, i=0, ... N-1, (j,k)EIa such that
jk

F{1c*(1)17", k=0, ... N=1, (j,k)EIa})z

>F({any other admissible [G(i)]jk}) (1.4.9)



We have then

Proposition 1.4.1: There is an information pattern a*,

and compatible sequence of linear gains [G*(i)]jk, (j,k)EIa*,
i=0, ... N-1, which are jointly optimal for the problem posed

in (1.2.3).

Proof: The arguments leading to (1.4.9) showed that

for each ael there exist compatible Ga such that

J(aG*a) 2 (&, any other G compatible with o )

Let o¥, G&* be defined via

* * _ - *
J(a™, Ga*) = ael’ max (aGy)

Since I' is finite this establishes the result.

We have thus rigorously established existence of an
optimal sclution. We now proceed to justify the use of
the maximum principle, which leads to the two point boundary

value problem (1.3.80)-(1.3.85).
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(1.4.10)

(1.4.11)



Equations (1.3.80) through (1.3.84) are in fact necessary
conditions for optimality if and only if the constraint gqualification
is satisfied. This reduces to showing that the gradients of the

constraint equation (1.3.81) are linearly independent [1].

So, we define

£(i+1) é TT(i+l)--M(i)1T(i)MT(i)-W(i)—Bg(i)V(i)gT(i)BT

and as usual (f(i+l))jk will denote the jkth element of f£(i+l)

It must be shown then that there exist no scalars

j=1,2,..., n k=1,2,..., n such that
9 N-2
3T (N-1) FoAg (L (£G4 = 0
1=0
3 N-2
AT (n=2) ; )xjk(l+l)(f(1+l))jk =0
1=0
9 N-2
3T ; kjk(l+l)(f(1+l)5k =0
1=0
N-2 .
5 T X.. (i+1) (F (i+1)).. = O
dg (N-1) ) jk jk =
1=0
N-2
3 z A (A+1) (£ (i+1) ., = O
3g (o) i=o K ko=

except the trivial case A,  (i+l) =0

jk
for all integers j, k, 1 such that 1 < j < n, 1

0 < i < N-2

(1)

(1.4.12)
(1.4.13)
{(1.4.14)
(1.4.15)
(1.4.16)
(1.4.17)



But equation (1.4.13) reduces to

)

AL, {N=1)(f(N-1)), =0
om (N-1) ik ik

It is clear that the only solution to this equation is

Kjk(N—l) =0 i=1,2, ..., n k=1,2,

Substituting equation (1.4.19) into (1.4.14) and simplifying,

as above, we have

3 Ay (82) (£(8-2)) 5y = 0
aT (N=-2)

This produces the solution

1]

A (N-2) =0 j=1,2, ..., n k=1,2,

Proceeding in a similar fashion, it may be seen that

the only solution to equations (1.4.13) to (1.4.17) is

Xjk(1+l) =0 j=1,2, ..., n
k=1,2, , n
i=20,1, , N=2

n

and, so it has been shown that eguations (1.3.80) through (1.3.84)

constitute necessary conditions for optimality.
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(1.4.18)

(1.4.19)

(1.4.20)

(1.4.21)



CHAPTER 2

2.1 Introduction

Again we consider the problem of optimizing the cost of a
stochastic system over both the set of all allowable linear control
laws and the set of all information patterns. However, unlike
Chapter 1, here we allow the control laws to be a function of past
as well as present observations. This seemingly inocuous generali-
zation of the previous problem greatly increases the difficulty of
computing a solution. The reason for this is that now cross moments
of the noise and state variables appear, where they were absent
before. This results in an increase in the number of states, and
a corresponding increase in the number of constraint equations.

The resulting two point boundary value problem may in
principle be solved; however, the computation involved is indeed
quite complex.

In the classical case (that is, with one controller) the
separation principle exists and a Kalman filter obviates the above
complexity. This suggests the possible alternative, not examined
here, of introducing a filter linearly into the control law. This
would again be a sub-optimal scheme for a decentralized problem,

but may simplify it.
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2.2 Linear Finite Memory Control Laws

The problem considered in this chapter differs from that in

45

Chapter 1 only in as much as each controller is now a linear combina-

tion, the previous k observations of some subset of observers, instead

of being a linear combination of a subset of the present observations.

Otherwise, all assumptions, statistics and dynamics are identical.

They are, however, repeated here for convenience.

Dynamics
q
x(i+l) = Ax(i) + W(i) + £ B.u, (i)
j=1
Observation model
y. (1) = C.x(i) + v, (1) i=1l, 2,

where:

x(i) is the n x 1 state vector

y. (1) is an Zj X 1 vector of the observations
.th . .
of the 3 controller at time 1

uj(i) is a pj x 1 vector of the jth controllerxr

at time i

w(i) is the noise associated with the dynamics

v. (i) is the noise associated with the

observations.

(2.2.1)

(2.2.2)
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The dynamics are known at all stations.
Assumptions on the Random Variables:
i) v, (i) and v, (t) are independent if j. # j, or
Jq > 1 2
i#t
ii) w is independent of vj(t) for all j
iii) x(o) is independent of w and vj for all 3
iv) w and vj are zero mean white noise processes

v) The second moment of the noise w(i) and of the

noise Vj(i) is known at all stations for all time 1i.

Assumptions on the Information Pattern:
vi) If control station jl communicates to station j2,
the jl will transmit at time i its whole observation
vector y.
1

vii) Two control stations either communicate for all time

or never communicate

Assumptions on Control Laws:

viii) At each time t each control station has available
a subset of yj(T) i=1, 2, ...,q

where

and

ix) The control is a linear combination of the above data basis.
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The cost is quadratic in form with weighting matrices R,

O, and A(i) where R = ®T and Q = QT

J = e{Z x  (1)Rx (i) + uI(i)Qlu.(i) + . + ug(i)Qquq(l)} +
i=0
n-1
r et ()
i=0

where

1l if station i sends information to station jJ

Q.. .
i) 0 otherwise

Aij is the cost of communication between station i and station j

The problem is to find the control u{i) and the information

pattern o that will minimize the above cost for the given dynamics.
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2.3 Reduction to a Two Point Boundary Value Problem

In this section the equations necessary to solve the problem
described in Section 2.2 will be derived in a manner very similar
to that of Chapter 1. And, much as in Chapter 1, some definitions

will first be made.

4

B (BlBZ e eny Bq) where B is n x P
. T . T, . T . .

u(i) = (ul(l) a. (i) ..., uq(l)) U(i) is p x n
Y1) 2 (yT(d) yo (i) Ta)T v@) is L x 1
i) = (v y, (1 ., yq i)) i) is 2 x

C é (CT CT vy CT)T Cis 2 xn
1 2 q
v (i) é (VT(i) VT(i) ey VT(i))T v(i) is & x 1
1 2 q
and
g g
p = Z_ Py . L= Z_ lj
J=1 Jj=1

This produces the following dynamics and observation model:

x (1+1) Ax (i) + w(i) + BU(i) (2.3.1)

Y(i) = Cx (i) + v (i) (2.3.2)

However, the case being considered is one of k-step finite
memcry. Thus, the control U at time i is a linear combina-
tion of the observations from time i back to time i-k of some

subset of observers, as determined by a. That is,



g, ()Y (i) +

U(i) =
gi(i)Y(i) +

(Note that the subscript on the matrix gj( i) refers to the

g, (WY(E-1) + ...
9;_, ()Y (i~k) if 12k
(1)¥Y(i-1) + ...

if 1 < k

time of the observation and the argument refers to the

time of the application of the control.

Substituting equation (2.3.2) into equation (2.3.3)

i
u(i) =2 g. (1) [Cx(3) + v(§)]
j=[0, i-k]
where
0 if 0 2 i-k
[Or l_k] =
i-k if 0 < i-k

Consider now the cost

n-1 T
J =

i=0

where
Q2 .
A 2
Q = :
0

N-1

E L x (i)Rx(i) + UT(1)QU(i) + T traA’ (i)

i=0

and Q is p x p

Substituting equation (2.3.4) into eguation (2.3.5),

N-1

J=©5{l x (LRx(i) + [T g.(i)(CX(j)+V(j))}T
i=0 3=[0,i-k]
i N-1
QL g, (1) (Cx(3)+v(3)) 13+ txr I ald” (1)
j=[0,1i-k] i=0

i
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(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)
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Expanding this expressiocon,

N-1 o : T T T
J=EB7 x (i)Rx(i) + [Z x (3)C gl (i)]
i=0 i=[0,i~k] ]
1
QIZ g.{(i)cx(j)] +
j=10,i-k]
i i
F Lz 2T ()¢t (1) 108 g. (1)v(§)] +
j=[0,1i-k] J §=[0,1i~k]
1 T . T . i ) K
+ [z vi(3)g.i (1)1l gj(l)CX(J)] +
j=10,i-k] J j=10,i-k]
i . i
£ 2 vT(3)g" (1)1QL g5V +
j=[0,i-k] J j=[0,1i-k]
N-1 T
+ % troAt (i) (2.3.8)
i=0

The next-to-last term of equation (2.3.8) has a very straightforward

evaluation:
i i
R N G ESEHCIN -1 g, (1)v(H) 1]
J=10, J j=10,1-k]
1 i T T
= E{Z z v (j)gj(i)Qgs(i)v(s)} (2.3.9)

3=10,i-k]s=1[0,i-k]

But, this is just a scalar, and due to assumption (iv),

i

i
£ {(Z v (3)g  (1)1012 g. (1)v()1}
j=10,i-k] J j=10,i-k]
i T
-3 tr g (1)0g. (1)V(3) (2.3.10)
i=[0,i-k] ] J



Where

vii) B v

The other terms in equation (2.3.8) will not evaluate as easily

as the one above. So, much as in the case of zero memory,
recursions in new state variables will be found. To this

end we define:

P(i,m 2 E[ x(3)x (m)]

S(37m) 2 Elv()x" (m)]

e

T(3,m) 2 EW(Hx m)]

>

W3 2 Ew(Hw ()]

From equations (2.3.1) and (2.3.4)

i
x(i+l) = Ax(1) + w(i) + B L g. (L) [Cx(3)+v(i)]
j=[0,i-k]
So,
T T i T
S (m,i+l) = AS (m,i) + B L g.(1){cs (m,j) +
j=1[0,1i-k]

FE[v() v @)}

Further, from the assumption of independence

ST(m,O)= 0 for all m
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(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)



Similarly, from equation (2.3.12),

1T (m,i+1) = AT” (m,i) + E[w(i)w (m)] +

i
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+BI g. (1)CT” (m,5) (2.3.15)
j= [OI l—k]
Where
T
T (m,o0)= 0O (2.3.16)
Now all that remains to redefine the problem is to find a
recursion in the variable P(-,*)
From equation (2.3.12),
P(i+l,m) = E[x(i+1)x> (m)] (2.3.17)
i T
P(i+l,m) = E [Ax(i)+w(i) + BLZ g. (1) (Cx(3)+v(3))]1x (m) (2.3.18)
j= [ol l‘k]
P(i+1l,m) = AP(i,m) + T{(i,m) +
i
+ B L g. (1) [CP(j,m)+S(j,m)] (2.3.19)
j=[0,i~k]
where
P(0,0) = PO (a known quantity) (2.3.20)
Similarly,
P(m,i+l) = P(m,i)A +T (i,m) +
i T T T, T T
+ Z (" (j,m) + P (j,m)C )gj(i)B (2.3.21)

j=[0,1-k]
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Finally, from equation (2.3.10, (2.3.8) and the definitions, the

cost is
N-1 i i
- .. b2 5 TT,. .
J §=otr RP(i,i) + [trj=[0,i—k] ba[0,i-k]C gj(l)Qgh(l)CP(h,j)]+
5 i
+ [try T CTng.‘(i)Qgh(i)S(h,j)] +
j=10,i-k] h=[0,i-k] 7
- : T T
[txrZ z g.(i)Qgh(i)CS (3j,h)] +
j=[0,i-k] h=[0,i-k]
i T T
+ [Z tr gj(i)Qg.(i)V(j)] + trold” (1) (2.3.22)
j=10,1-K] ]

And so, the problem becomes one of minimizing equation (2.3.22)
subject to equations (2.3.13) to (2.3.16), (2.3.19) and
(2.3.20). Notice that equation (2.3.21) is unnecessary since

it is just the transpose of (2.3.20).

It is interesting to note here that if k=0 (i.e., if the control
at time i is a function of observations at time i only), then

equation (2.3.22) reduces to equation (1.3.23a)

Further, since the cost is not functionally dependent on S{.,.)
when k=0, the constraint equations (2.3.13) to (2.3.16) are not
relevant. And finally, since for k=0 the cost is a function of
P(T,T), equations (2.3.19) and (2.3.21) reduce to the constraints

of equation (1.3.23a).
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Now, in order to define the Lagrangian, we first define
A . ,
£ = the summand of J in equation (2.3.22) (2.3.23)

£ 2 T, i+1)-asT (m,1) +

i
- BI g. (1) [CST (m, ) +E{v (v m)}] = 0 (2.3.24)
j=[0,1i-k]

e 8 0T, it1)-aTT (m, i) -Ew(i)wh (m)] +

i
- BL g
j= [O Ii-k]

fi)CTT(m,j) =0 (2.3.25)

£ é P(i+l,m) - AP(i,m)-T(i,m) +

i
- Bgz[o’i_klgj(l)[CP(J,m)+s(j,m)] =0 (2.3.26)

Thus, we form the Lagrangian

N-1 N-1 N-1 T
L =21 £+ LI I tr A l(m,i+1)fl +

i=0 i=0 m=0
N-1 N-1 N-1 N-1

+ Lz L tr A (m,i+l)f2 + z L tr A3(m,i+l)f3 (2.3.27)
i=0 m=0 2 i=0 m=0

The requirements for optimality are:
oL
- 2.3.2

9P (s, t) 0 ( 8)
3
L  _o (2.3.29)

39S (s, t)
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oL
=0 (2.3.30)
daT (s, t)
oL
=0 (2.3.31)
Bgs(t)
oL
=0 j=1,2,3 (2.3.32)

9h. (s,t)
]

[This is effectively the same set of requirements as

those of equations (1.3.28) to (1.3.30)]

Equation (2.3.32) produces the dynamics (i.e. equations

(2.3.24) to (2.3.26)

Next, consider egquation (2.3.28). Since fl and f2 are

not functions of P(-,*),

3L 3 N-1
: = z £ +

3P (s,t)  dP(s,t) i=0 °
N-1 N-1 T

+ I3 trh (m,i+l) £ (2.3.33)

i=0 m=0

Now, it is clear that
for all i such that

v
(@]

T [0,i-k]< s £ i s

0] TT
= LCTg_(i)Qg_(i)C] . <.
3P (s, t) i t s [0,i-kl< t £ i, t

1V
O

(2.3.34a)

when s # t
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5J TT,, . .. T
—_—= r[cC gs(l)Qgs(l)C] + R for all i such that
9P (s, t) i
When s = t 0,i-k] $s S 4 (2.3.34b)
s if s £t
Let (s,t) é
! t if t < s (2.3.35)
Then,
(s,t)+k .
z C g,  (1)Qg (i)C when t # s
. t S
i={s,t]
o J = s+k
r C i i = 2.3.36
3P (s,t) (R + ’ gé(l)QgS(l)C) when t s ( )
i=s
(where it is understood that ? £(i) = 0 when a >b)
i=a
and, from eqguation (2.3.26},
#—t)— 1;—1 1;—1 tr Arg(m,i+l) £,
St i=0 m=0
s+k
= A (t,5) - [Ai(t,s+l)A]T -3 Cng(i)BTA3(t,i+l) (2.3.37)
i=s

Combining equations (2.3.36), (2.3.37) and (2.3.28)
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[s,t]+k T

Ay(trs) = -[Z Crg . (1)Qg (1)Cl + A A (t,s+1) +
- S 3
i=[s, t]

s+k T T T
+ I Cg (1)B A, (t,141) (2.3.38a)
i=s

when s # t

s+k
. TT,. . T
A3(t,s) = lR+iZ=SC gs(l)QgS(l)C]+ A A3(t,s+1) + '

s+k o7 T
+ 2z C gs(i)B A3(t,i+l)
i=s

when s = t {2.3.38b)

Next, we consider equation (2.3.29)

0 . a T m .
3] _ 3 : lerc’ol (1109, (1)8(n,3) +
9S (s, t) j=[0,i-k] h=[0,i-k] 93S(s,t)
+ tr gﬁ(i)Qgh(i)csT(j,h)} (2.3.39)
So,
37 (s,t)+k
=2z g, (1)Qg, (1)C (2.3.40)

9s (s, t) i={s,t]
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And from equations (2.3.24) and (2.3.26),

N-1 N-1 T
z z tr Al(m,1+l)fl +

3S (s, t) i=0 m=0

T T T
+ tr A3(m,1+l)f3 = Al(s,t)—Al(s,t+l)A +

t+k T s+k p
-z [Al(s,i+l)Bgt(i)C] - [z gs(i)B A3(t,i+l)1 (2.3.41)
i=t ' i=s

Combining equations (2.3.40),(2.3.41), and (2.3.29),

T _ (s,t)+k T
Al(s,t) = [ 22 g (i)Qg, (i)C] +Al (s, t+1)A +
1 . S t 1
i=(s,t)
t+k T s+k T
+1Z Al(s,i+l)Bgt(i)C] + [Z gs(i)B A3(t,i+l) (2.3.42)
i=t i=s

The above procedure must be applied to equation (2.3.30)

N-1 N-1
9L _ 9 5% {er Ag(m, i+ £} +
9T (s,t) 9T (s, t) i=0 m=0
T

+{tr A3(m,i+l)f } (2.3.43)

3

t+k
2T(s,t) - AS(s,t+1)a - [T AT(s,i+1)Bg, (i)C] +
2 2 i=t 2 t

oL

9T (s, t)

- A_(t,s+]) (2.3.44)
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T T
A2(s,t) = Az(s,t+l)A + A3(t,s+l) +

£k
+ I A(s,i+l)Bg (i)C (2.3.45)
i=t

Finally, equation (2.3.31) must be used.

t

LR 0g. (£)CP(5,8)CT + 0g. (£)S(3,8)C +
394 (t) j=l0,t-kx] )
+ng(t)CST(s,j)] +Qg_(£)V(s)
when [0,t-k] £ s St
9] = 0 otherwise (2.3.46)
Bgs(t)
aAnd,
3J N-1 N-1

T % [tr Ai(m,i+l)fl] + [tr Ag(m,i+l)f2} +
Bgs(t) i=0 m=0

N-1

T _
+ tr A (m,i+1)f.] = L BT A (m,t+l)[S(m,s)CT +
3 3 1
m=0
N-1
+ E{v(m)vT(s)}] -z BTAz(m,t+l)T(m,s)CT +
m=0

N-1
— T _ BYA_(m,t+l) [P(m,s)C +ST(s,m)]
m=0 3

when [0,t-k] Ss St

= 0 Otherwise (2.3.47)
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Combining equations (2.3.46) and (2.3.47),

t

0 = 2[09_(£)V(s) + I 0g. (t)CP(j,s)CT +
j= [Olt—k]

+

ng(t>S(j,s>cT + ng(t)csT<s,j)] +

N-1
z [BT Al(m,t+l)s(m,s)cT + BT Afnut+l)E{v(m)VT(S)} +
m=0

+ BT A2(m,t+l)T(m,s)CT + BT A3(m,t+l)P(m,s)CT +

+ BT A3(m,t+l)ST(S,m)]

<
when [0O,t-k] - s t (2.3.48)
So, we now have the following equations as necessary conditions
for optimality:

i

sT(m,i+1l) - AST(m,i) - B I g. (i) [csT(m,3) +
j= [OI l'k]
T
+ E{v(i)v m} 1 =0 (2.3.49)
TT(m,i+l) - ATT(m,i) - E{w(i)wT(m)} +
i T
-BZL g.(1)CcT (m,3j) = 0 (2.3.50)

j=1[0,i-k]



AT
2

P(i+l,m) - AP(i,m) - T(i,m) +

i
- BLZ g.(1)Y[CP(j,m) + S(J,m)]1= 0O
3=10,1i-k]

- (s,t)+k T
A (t,s) = z C g (i)Qg (i)c] + A A_(t,s+l) +
3 . t s 3
i=[s,t]

s+k
T
+ 2 CTQZ(i)B A3(t,i+l) when s # t
i=s

s+k
A (t,s) = -[R+Z C gs(i)QgS(i)C] + ATA3(t,s+l) +
i=s

s+k
T
+ L CTgS(i)BTA3(t,i+l) when s = t

i=s

(s,t)+k T o
[-2 Z gs(i)Qgt(i)C] + Al(s,t+l)A +
i=[s,t]

T
Al(s,t)

t+k T s+k P
+ [ AJ(s,i+l)Bg_(i)C] + [ g (i)B A, (t,i+l1)
. 1 t - s 3
i=t i=s
T t+k T
(s,t) = Az(s,t+l)A + A3(t,s+l) + T A2(S’i+l)Bgt(i)c
i=t
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(2.3.51)

(2.3.52a)

(2.3.52b)

(2.3.53)

(2.3.54)
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q q t
LI o, v, {2009 (0)V(s) + I 0g. (£)CP(§,8)C" +
h=1 ¥=1 3=[0,t-k]
N-1
, T T . T T
+ ng(t)S(],S)C + ng(t)CS (s,3)] - ¥ [B Al(m,t+l)S(m,s)C +
m=0

+ BTAl(m,t+l)E{v(m)vT(s)} + BTAz(m,t+l)T(m,s)CT +
+ BTA3(m,t+1)P(m,s)CT + BTA3(m,t+l)ST(s,m)]} Gh =0

when [0,t-k] £ s £t
(Where the matrices &, Y. § have been introduced into the
last equation exactly as in Chapter One.)
And the initial conditions

T

S (m,0) =0
TT(m,O) =0
P(0,0) = Po

Ay () =0 3=1,2,3

An important point to note about equations (2.3.52) to (2.3.553)
is that the upper limit of summation may not exceed N-1

(since the state vector x is not specified at the terminal
time N. As a result of this observation, applying the

initial conditions to the adjoint equations will produce

(2.3.55)

(2.3.56)

(2.3.57)

(2.3.58)

(2.3.59)



solutions forAj(s,t), j=1,2,3; for all s,t once (rch) is known. And
similarly, for equations (2.3.49) to (2.3.51), once gr(h) is known,
they may be integrated forwards in time.
Perhaps one of the more straightforward methods, then
of solving the two point boundary value problem of equations
(2.3.49) to (2.3.59) is use of the method»of steepest descent [6]:
1. Pick an admissible set g?(s) 0< 3Jj,s £N-1
2. 1Integrate eguations (2.3.49) to (2.3.51)
forwards in time
3. Integrate equations (2.3.52) to (2.3.54)
backwards in time
4. Consider equation (2.3.55) as an expression
for the gradient. So, define Vgs(t) = left
side of equation (2.3.55)
5. If]\VgS(tﬂ] is small enough, stop.
6. Otherwise let q:(t) = BVgg(t) + gz (t) and

go to step 2.

On solving the problem for every allowable information pattern, the
optimum pattern may be found. The above method will be discussed
more thoroughly in Chapter 3. It was introduced here simply

to indicate that a solution can indeed be found based on the

above equation.
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Finally, it should be noticed that if a delayed sharing
pattern is to be introduced into the above equations, it may be
done quite simply by changing the limits of summation.
Specifically, the upper limits in equations (2.3.23) to (2.3.26)
become T and the lower limits become [0,T-k] when the input at
time t is a function of k observations from time T backwards

and when T<t.



CHAPTER 3

3.1 Example of a Zero Memory Problem

In this chapter we will further examine the two point boundary
value problem of equations (1.3.80) to (1.3.85). As a closed form
solution to these equations is not feasible, gradient methods,
discussed later, are probably the most expedient means of solving
them. But first the relatively simple case where:

i) the terminal time N=2

ii) the dimension of the state vector n=2
iii) the number of controllers g=2

iv) each controller is a scaler (Pj=l, j=1,2)

is considered

From equations (1.3.80) and (1.3.84),

A(2) =0 (3.1.1)

—(R+CTqT(1)Qg(l)c) (3.1.2)

=
—
il

Similarly, from equations (1.3.81) and (1.3.83),

T (0) m(0) known (3.1.3)

T T

T(1) = M(0)T (O)MT (0)+W(0)+Bg (0)V (0) g~ (0)B (3.1.4)
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And from equation (1.3.82),

a aq
L o, y.{-0g(1)Cm(1)cT+v(1)1}8. = 0 (3.1.5)
. jk'k J -
=1 j=1
a q - .
L I a.y, {(BA(1)B-Qlg(0)[CT(0)C +V(0)]+
. ik'k
=1 j=1
+ BTA(L)AT(0)CT} 5, =0 (3.1.6)

Now, substituting equations (3.1.1) to (3.1.4) into

equations (3.1.5) and (3.1.6)

a g .
I I ooy {-0g (1) [C(M(0)Tm(O)M" (0) +

. j'k
=1 j=1

+ W(0)+B5 (0)V(0)g" (0)B))C 4V (1)1} &, = 0 (3.1.7)

a2 9 T T T T
I I ooy, {[-B" (R+C g (1)Qg(1)C)B-Qlg(0) [CT(0)C +V(0)] +
k=1 j=1 I

- 8" (recTg” (1) g (1)C)AT(0)C ) 55 =0 (3.1.8)

These equations can be solved by the following method:
1. Egquation (3.1.7) always produces a solution g(l) = 0O
2. Inserting this into equation (3.1.8) produces four
linear equations in four unknowns which may easily

be solved by well-known methods.



Consider then, the following problem

<ﬁ i) /1 o>
x (i+l) = O x (D) +w(d) o u)
1 +\p 1

o 1
Y{(i) = <‘ > x(1)+Vv (1)
1 0
where 1
P(0) = 5 I
po) == (g}
V2
W{(0) = W(l) = V(0) = V(1) =1
0 O\\
Q = )
0 G/
0
R

{/1
\o

and I is the identity matrix

Substituting the above values into equation (3.1.7) we

obtain

a9,

+g,,(1) [-1-g_

- 2912(O)g22(0)]} =0

2 2
(l)[4—2g22(0)+2g21(O)+2922(O)+2g21(0)] +

(0)- gll(O)—Zgll(O)g21(0)+g12(O) +
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(3.1.9)

(3.1.10)

(3.1.11)
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a22{921<1> [-1-g,, (0)-g,, (0)-2g,, (0)g,, (0)+g,  (0)-29,,(0)g,, (O)] +

2 2
+ g22(l)[3+2gll(0)+2gll(0)+2g12(O)]}= 0 (3.1.12)

where, as usual, gjk(l) = akj ij from equation (1.3.6a)

Note that the above equations leave (1) and gll(l) unspeci-
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fied. This is due to the choice of Q. As Q has a nonzero
2,2 element only, it costs nothing to use arbitrary inputs
gll(l) and glz(l) unless they cause a change in state (see
equation (1.3.86)). However, from the dynamic egquations
(1.3.87), it is clear that g(l) does not affect T(0) or
m(l), and since there is no terminal weighting in the
expression for the cost (i.e., no term like XT(N)RX(N)),

the inputs gll(l) and 912(1) may indeed be arbitrary.

To simplify the ensuing eguations, we choose

g,, (1) (1) =0 (3.1.13)

11 = 912

(Notice that this choice is valid for all admissible information
patterns.)

There are two solutions to equations (3.1.11) and (3.1.12)

1) (1Y = 0, g2l(l) = 0, g(0) to be determined (3.1.14)

922

2) 922(1), g21(l) arbitrary.
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[l+g21(0)—gll(0) gll(O)ng(O)—gl2(O)+2g12(o)g22(0)] =
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2 2 2 2
= 3+2gll(0)+2gll(0)+2g12(O)][4—2g22(0)+2g21(O)+2g22(o)+2g2l(0)]

Clearly for the conditions (i) to (iv) listed at the beginning
of this section, there will in general be more than one solution
to equation (3.1.7). The implication here is that the optimum
solution may not be unique (assuming, of course, that both
solutions to equation (3.1.7) are allowable. That is, for
example, that equation (3.1.5) does not overspecify the
problem). Since g{l)=0 is a reasonable choice for either

(3.1.14) or (3.1.15), this is the solution we will pursue.

Thus, substituting equations (3.1.14) and (3.1.13) into

equation (3.1.8),

q T T
X a, .y, {[B"RB+Q]g (0) [CT(0)C +V(0)] +
K kj'k

. 0

=1 j=1

- s'rRam(0)C” ) 6= 0

(3.1.15)

(3.1.16)
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This produces the following equations:

all[2gll(0)+l] =0 (3.1.17)

o, 12g,,(0)] = 0 (3.1.18)

al2[2(0+e)g21(0)+€] =0 (3.1.19)
a22[2(o+e)g22(0)-€] =0 (3.1.20)
We will assume that each controller communicates with
its own observer at all times. That is,
all = a22 =1 (3.1.21)
This may or may not in general produce an optimum
information pattern, however, it is not an
unreasonable assumption from the standpoint of
modeling a real system.
The solution to equations (3.1.17) to (3.1.21) is
1 , .
glfo) =-3 for all information patterns (3.1.22)
€
922(0) = ———— for all information patterns (3.1.23)
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And, from equation (3.1.18),

(0) =0 for all information patterns (3.1.24)

with 921(0) yet to be determined,

For ease of notation, we will define the following

information patterns,

Q
'__l
e
(@] —
e (@)
\_/

w
e

Q
o
e
(S
e
\_/ \_/

[

4 Ax( l)
[0} =
1 1

3.
Then, since ng(O) = 0 the information patterns al and o will
produce the same input g(0) and the same dynamics T(1l).
. 2 4 .
Similarly, o and o will produce the same input g(0) and

dynamics T(l). So considering each case separately,.,
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o = OLl
1
gll(O) =3
ng(O) <312(0) =0
€

[STEN

£ +
o+€ %%Yo+e)2 2(0+€)¢

:éf 2 e? Azéa - oe2 N
2

- All(O) - A22(O) - All(l) - A22(l) (3.1.25)
3
=qa
9 52 383 082
= - Z- - ~ 4
- 2 e + o+ 4(0+e)2  2(0+g)“

3.1.26
1) + A22(l) ( )



m(l)
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_ 1
2
20 . e?
o+€ (0+€) ¢
2
z
L @e 5 et °d
o+e . (0+€)2 (O+€) &
L{/
- AZl(O) - A22(0) - All(l) - A l(l) - A22(l)

(3.1.27)
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4
o =0
74 25 o4 4 208 e> _ g0
2 g+e  (O+E)¢  (0+E)2
- All(o) - Alz(O) - A2l(0) - A22(O) +
- All(l) - Alz(l) + AZl(l) - Azz(l) (3.1.28)
where the cost has been calculated using
7 = - tr RIT(L)+T(0)] - 2tr g  (0)Qg(0) +
+eranT() - aAT(0) (3.1.29)

which is simply equation (3.1.86) after the appropriate
substitutions for the above problem.
Notice then that & is never a better choice

1 . L
than o since Ajk(-) > 0. Similarly, a4 is never a

better choice than a2. Thus the optimum information
. . 1 2
pattern will be either o or a .

Consider the case in whiche= 0. Then,

z
5" AL (0) - A22(0) - All(l) -A__ (1) (3.1.30)

11 22

-A_ (1) - A (1) (3.1.31)
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That is, the optimum cost is less with a more complicated
communications structure, as long as the cost of that
communication is not too great. Specifically, for

g = 0.

. . 2,
The optimum cost is J° if

B, (0) + 4, (1) <2 (3.1.32)

When O = 0, corresponding to Q = 0, we have

f
"y i

1
I = -3 - }: € = 81500 = 8,,(0) = A () = A (D) (3.1.33)
2
7 __3

= -2 -56-8,,(0) -4, (0) - 8,,(0) +

4
- A1) =8, (1) =B, (1) (3.1.34)

with a result similar to that above.



3.2 Gradient Algorithm for the Solution of the Two Point Boundary

Value Problem

It is clear from the above example that for N> 2
the above method of solution will quickly become quite
difficult, as solving for A{+*) and T(*) in terms of g (*)
can be a very demanding task.

So, turning now to more general methods of solution,

it should first be pointed out that it is not the intent of this

chapter to present the most efficient algorithm to solve equations

(1.3.80) to (1.3.85) but rather to demonstrate that

methods do indeed exist, and to suggest some of the alternatives.

In Chapter 2, the method of steepest descent was presented.

We repeat it here for equations (1.3.80) to (1.3.85):

1) Guess an admissble gO(O)

2) Using the boundary conditions (1.3.83) to (1.3.84)

integrate equations (1.3.80) to (1.3.8l) backwards

and forwards in time, respectively.
3) Compute VH from equation (1.3.82)
4) If ]lVHl[ is small enough, stop

5) otherwise, let gj+l(0) = gJ + Bj(VH)

6) to to step 2.
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The major advantage of this method is its simplicity.
It does, however, have two drawbacks that can be gquite serious.
The first lies in choosing an g;;imum step size B.
There are many schemes for this. One possibility is to continue
to increase B until the Hamiltonian fails to decrease in value and
let that be the choice of R. However, a more efficient method can
be found inasmuch as the two-point boundary value problem is gquad-
ratic in nature. It basically involves differentiating equation
(1.3.82) with respect to B (see Appendix B).

The second difficulty alluded to earlier is the convergence
rate of the alogrithm. This will vary from problem to problem
and will be a function of the contour of H. 1In the classical
quadratic case, the Hamiltonian produces ellipsoids. If these
are highly eccentric, convergence will be guite slow (actually,
a function of the eigenvalues of the weighting matrix) [5].

So, the procedure for solving equations (1.3.80) to (1.3.86)
is:

1) Select an admissible information pattern Q

2) Set k=0

3) Choose values for the elements of gk(i), gk(l), . . . gk(N)

that are admissible for the selected information pattern
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4) Using the values chosen in step (3) [step (9)] integrate

the dynamic and adjoint equations to determine

™), ﬂk(2), cees ﬂk(N) and Ak(N—l), Ak(N—Z), ey Ak(O).
5) Using equation (B.2), compute the gradient of the
Hamiltonian
6) 1If |l(VH)k|| < €l go to step (1l1).
7) Using egquation (B.8) compute the new stepsize
8) If B < €2 go to step (11)
9) set gk+l(i) = gk(i) + Bk(VH)k i=0,1, ..., N-1

10) Go to step (4)

11) cCalculate the value of the cost from equation (1.3.86)

12) Store the above results

13) If there are no other admissible information patterns
to to step (15)

14) Choose a new information pattern and go to step (2)

15) Choose as optimum the set g({(0), g{(l), ..., g{(N~-1), ¢

that produces the smallest cost.

16) Done

To achieve faster rates of convergence, second order gradient
algorithms or conjugate gradient algorithms may be employed.

Again, as the problem is basically guadratic in nature,
these techniques should be gquite effective. The reader is referxred

to [5] or almost any text on numerical optimization techniques.
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APPENDIX A

Definition
Let g be a p x {4 matrix and let f map g into some scalar f(g)

Then define

0 A
39 £(g) = F(qg)
where F(g) is a p x % matrix such that (F(gnij = 82 f(g)

ij

Lemma A.1l
This Lemma follows a derivation from [2].
Let x(t) and v(t) be independent vector random variables with
E[v(t)] = 0 and s an unknown parameter matrix.
Then,

E[x  (£)Sv(t)] = 0

Proof:
T T T
Elx (t)sv(t)] = E{[x(t)—ux(t)] SIV(E)~=p (£)] + x (£)Su (t) +
T T
+ M (B)svit) - (t)suv(t)}

and since
T T
E[x (t)suv(t)] = E[UXSV(t)]

T
T T
Elx” (0)sv(t)] = B{lx(0)-p ()] slvt)-u (0)] + p (£)su (8) }
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T .
But, x (t)sv(t) is a scalar. So,

ElxT(£)Sv(t)] = E[trxt (t)Sv(t)]

E{tr[x(t)—ux(t)]Ts[v(t)-uv(t)l}

From properties of the trace,

Elx® (t)sv(t)] = E{tr SLv(£)-u (£)] [x (1) -H_(£)]7

T
+ ux(t)suv(t)}=

tr(s)E{[v(t)—uv(t)][x(t)-ux(t)]T}+ ui(t)suv(t)

By hypothesis,

= 0, and

=
<
o+
|

v(t) and x(t) are independent.

Thus,

Elx  (t)Sv(t)] = tr(S) B{lv(t)-u_ (01} ELIx(e)-u_(£)]}+ 0O

and since

"
O

Efv(t) - Uv(t)]

E(x. (t)Sv(t)] = 0O
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Lemma A.2

This Lemma follows a derivation in [2]

Let x(t) be a vector random variable

Then
T T
Elx (t)sx(t)] = tr SPx(t)ﬂJx(t)Sux(t)
where
ux(t) = E[x(t)]
and
T
Px(t) = E{[x(t)—ux(t)][x(t)-ux(t)] }
and
S an unknown parameter matrix
Proof:
T T
Elx (t)sx(t)] = E{[x(t)—ux(t)] Slx(t)-u (£)] +
T
+ ux(t)SUX(t)}
Since

T .
X (t)sx(t) is a scalar,

E{er[x" (t)Sx(£)]}

E [xT(t) sx(t)]

T
E{tr[x(t)—ux(t)]Ts[x(t)—ux(t)]+-ux(t)5ux(t)}

E [xT(t) Sx(t)]
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And, from properties of the trace

BixT (0)sx(t)] = Blers x(0)-u (6] Ge(t) -1 (017} +

T
+ E{ux(t)sux(t)}

Thus,

T T T
E[lx (t)Sx(t)] = tr E{5[x<t)-ux<t>][x(t)—ux<t>] } o+ n (£)SH_(t)

T
tr SPx(t) + ux(t)Sux(t)

Lemma A.3

Let g be a p x £ matrix, S be a p x p constant matrix and T be an

2 x £ constant matrix.
Then,

ER {tr[gTSgT]} = SgT + STgTT
9g

Proof

j P 2
(gTSgT).k =T (g9). T s L g T
J m=1 ""h=1 mh hk

P p £ T

=L L I (g).S8S g T
n=1 m=1 h=1 jn nm~ mh hk

2 P p 2
r ¥ ¥ I g.s g
h=

k=1 n=1 m=1 1 nk nm

tr(gTSgT)

thhk



So,
5 T p 2 '3 P
=~ {tr(g'sgm)} =L I s.g . T .+L I g_ S .T.
aglj m=l h=1 M mh hj k=1 n=1 nk ni jk
2 p £ p
=z T . S. g + T.. g .S
h=1 h =y W mh k=1 jk n=1 nk ni
2 P 2 P T
= [Z S,g . JT .+ [ (7)., g 1T
h=1 m=1 mh™ “hi 5 o in“nk k3j

]

T T
-+
(SgT)ij (s7gT )ij

Thus, from the definition of the derivative given above
T T
g% {tr[gTSgT]} = SgT + S gT

Lemma A.4

Let g be a p x £ martrix and S be a constant  x p matrix

Then,
T
3 {trigsf} =s
ag
and
0 T
33 {trlg'sl} = s
Proof
b} 2
tr(gsS) = & z g.. S
i=1 k=1 % Xt

° T
gg {tr(gs)} = s

84



Now, note that

T. T

o T
56'{tr[g s1}

3 T
55 {tr(gs™)}

So, using the first part of this lemma,

3 Ty _
3 {tr [g"s]l} = s
Lemma A.5

Let A 2 0, B 20both real symmetric matrices.

tr (AB] 2 O.

Proof [4]

Find P orthogonal such that
PTap = D = diag [Xi] from [3]

Then tr [AB] = tr [PTABP]

T
= tr [P AP P BP]

tr [diag[xi] . PTBP]

L A. (P BP) ..
i 1 11

3 3
3o lexlig') M} = 55-{tr<sTg)}

Then
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0, Ai 2 0 and (PTBP) .20 since (PTBP)ii =

Now, since A .
ii

T T T
e, P BPe, = (Pe.) BPe, 2 0
1 1 1 b

by B2 0 (here e = [0 . . .010 . . . 01°

4ith position

So, tr [AB) > min A, I(PTBP)., = (min A.)Tr([B] > O.
i 1 i 11 i 1



APPENDIX B

Here we derive the optimum stepsize for a first order gradient
algorithm to solve equations (1.3.80) to (1.3.86).

From equations (1.3.86) and (1.3.87) we define

H = tr[R+CTgl(1)Qg(i)CIT(L) - trigr(i)Qg(i)Vv(i)] - tr oAt (i) +
+tr AT(i+1) [M(L)T(1)MT (4)4W(1)+Bg(1)V(i)g  (3)BI=T (i+1)]

(B.1)

And from equation (1.3.82), it may be seen that the gradient of H is

a g T -
VH=22 I o. Y. {[BA(i+1)B-Qlg(i)[Cm(i)C +V(i)] +
. jk'k
k=1 j=1
+ BTA(i+l)Aﬂ(i)CT]}6j =0 (B.2)
Now define
Ie1 = S T Bm(VH)m (B.3)

as the m + 1 iteration of g where Bm is the (scalar) stepsize.
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In order to select an optimum stepsize, we will now substitute
equations (B.2) and (B.3) into equations (B.1l) and differentiate
with respect to Bm. (For notational simplicity, the argument i
will be left out of the next few equations. It is understood,
however, to still be there.)

Thus,

_ T T
H(gm+6m(VH)m) = tr [R+C (gm+6m(VH)m) Q(gm+8m(VH)m)C]TTm +

- tr (g +8 (VW) )TQ(g +8_ (VW) V(i)] *

- tr arT (i) +

. T T
+ tr Az(l+1>{[A+B(gm+sm(VH)m)c]wm[cTGm+Bm(vH)$)B aT)

Y (vﬂ)i]BT - T (i+1)

+W(i) + Blg +B (VH) 1V(1) (g +B

(B.4)
Differentiating, now, with respect to Bm’
0= - tr [CTgEQ(VH)mC+CT(VH)$ ngc+2BmCT(VH)mC] T
- tr (g 0(VH) +(VH) og +28 (VH) O(V ;
r ng - 29 n )mQ( H)m]V(l) +
+ tr AT(i+1){ (a+Bg )7 T (VE) 'BT4+B(VH) o (Clg B +AT) +
m m m m m m m
T T T R T.T
+ ZBmB(VH)mC L lCT(VH) BT + Bng(l)(VH)mB +
R T T , T T (R.5)
+ B(VH)mV(l)gmB + 28mB(VH)mV(l)(VH)mB }



89

Combining terms involving Bm,

T T T .
2Bm{tr C (VH)mQ(VH)mcwm + tr (VH)mQ(VH)mV(l) +

T, . T T_T , T_T
- tr Am(1+l)[B(VH)mCﬂmC (VH)mB -B(VH)mV(l)(VH)mB 1}

_ - T T T T .
= u[c%QW%&chﬁ%q%u)+

- tr [g;W(VH)m+(VH)§ng]V(i) +
T

T, . . T T
+ tr Am(1+l){ (A+Bgmc)ﬂm(1)c (VH)mB +

TTT_ T . T T . T T
+ B(VH) Cm_(C7g B +A )+Bg V(i) (Vi) B +B(VH) V(i)g B } (B.6)

And combining terms in equation (B.6)

T T, . LT
2Bm { - tr(VH)m[B Am(l+1>B—Q](vH)m[cwm(l)c +V (1))}
T T , R
= —tr [gm(l)Q(VH)m+(VH)ngm(1)][Cﬂm(l)c +v(i)] +

+ tr BTAm(i+l)Bgm[Cﬂm(i)CT+V(i)](VH)i +

T . . T ) T,
+ tr B Am(l+l)B(VH)m[Cﬂm(l)C +v(1)]gm(1) +

T . .. .T T T . LT
+ tr B Am(1+1)Anm(1)c (VH)m + tr Am(l+l)B(VH)mCﬂm(l)A (B.7)
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28 1 -tx {(Vﬁ)g [BTAm(i+l)B-Q](VH)m[cnm(i)cT+v(i)}}

tr [BTAm(i+1)B—ngm(i) [CTTm(i)CT+V(i)] (vH);f1 +

tr [BTAm(i+l)B-Q](VH)m[CWm(i)CT+V(i)]gi(i) +

+

+ 2 tr BTA (i+1)Am (i)cT(VH)T (B.8)
m m m

when equation (B.8) is solved explicitly for Bm, the optimal stepsize

may be determined.



