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This thesis applies recent developments of the martingale

approach to point processes to obtain a recursive nonlinear filter in the
context of urban traffic. Beginning with a review of the statistical
description of vehicle headways, a convex probability density of headways
is proposed. Techniques are then discussed to determine the four
parameters necessary to specify this density. Subsequently, a complete
description of the interarrival times is given which incorporates the
entire past statistics of an observed counting process and leads to the
derivation of its local description, The results are then utilized to
formulate and solve the disorder problem for the switch rate point process
involved. The utility of these results to traffic estimation/detection

problems is discussed and a series of evaluations are performed.
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1. STATISTICAL DESCRIPTION OF VEHICLE HEADWAYS

1.1 Introduction

With the emphasis on increased fuel efficiency of vehicles, it is
apparent that in urban traffic inefficient traffic light control results
in increased fuel consumption. Consequently in more than 100 cities,
there are plans to alleviate this problem by using computerized
urban traffic control. For residents of the Washington, D.C. area the
most recent development in this regard was the Urban Traffic Control
System (UTCS) where detectorized network link data was processed by
a central computer to update traffic light patterns. However, these
traffic activated controllers using only current traffic volumes obtained
only a marginal improvement over previously implemented systems
based on time of day and historical data [ 1,2]. The limiting factor
in its performance resulted from poor estimates of traffic volume,
occupancy, queue length and average speed. Therefore improvements
in traffic control require more effective filtering and prediction
algorithms.

Current predictions and estimators model detector data as Markov
diffusion processes, i.e. the output of a dynamical system driven by
white noise. However, detector observations are not a continuous
random process but rather constitute a mark point process. In
particular, the observation process has highly localized events distributed

randomly in a continum and can be characterized by:



i) a sequence of activation times W l,W .W3- «.+. Where

2

1
ii) an associated sequence of pulse widths characterizing

vehicle velocity.
Realizing that improper modeling of the physical phenomenon effects
the performance of the estimator, it is reasonable to expect that pre-
whitening techniques and Kalman filtering estimation yields unsatis~
factory results [2]. Therefore, the investigation considered here
models the detector activations as a random point process.

By this approach, we consider the microscopic aspects of
urban traffic in a network link. To be effective though, one must
incorporate the statistics of an underlying process universal to all
traffic conditions and traffic environments. It has been found that one
such parameter is the headway between two vehicles [3,p.20 ].
Because of the ease of acquiring headway measurenments from detector
data and because of its implication to point process theory, it serves
as the basic tool in our subsequent analysis.

Therefore the purpose of this thesis is to apply point process
theory, derived from the statistical description of vehicle headways,
in the development of an urban traffic estimator. In particular, our
discussion can be divided into four areas:

1. development of a complete statistical description of vehicle

headways,

2. development of an urban traffic estimator using the martingale

approach to point processes.



3. investigation of the resulting filter to variation in

parameters.

4, evaluation of the filter against simulated urban traffic.
In this chapter, we review previous headway probability density
models, derived from frequency data. It is shown that a more complex,
four paramenter model yields the best performance in all traffic
conditions; a necessary requirement for any filter considered. The
proposed headway model is extended by a series of reasonable .
assumptions to obtain a complete statistical description. In the next
chapter, the rates of the observed point process are derived from this
statistical description. (In this thesis, we shall not consider the
associated mark process, vehicle velocity.) Utilizing a recent
result in point process theory, a nonlinear filter of a traffic parameter
queue length, is developed. The recursive estimator is shown to
depend on both the historical data and current detector outputs to
obtain this estimate. The filter is then evaluated against an urban
traffic simulator, UTCS-1 whose validity is well-documented [ 47, 48].
In Chapter 3, the filter's sensitivity to parameter variations is studied.
Since the filter is a differentiable function of three unknown parameiers,
small scale sensitivity analysis is performed on the conditional error
variance. Parameter estimation techniques and associated confidence
intervals are discussed. The results reveal the robustness of the

estimate to parameter error.



1.2 Models of Headway Probability Density

Headway is a time and space measurement. At a fixed location,
the interarrival time of two consecutive vehicles is defined as time
headway, which we call simply headway. Time headway as obtained
from presence detectors is simply the time difference of the leading
edge of two consecutive pulses. The space headway which we call
spacing is the distance from the front of one vehicle to the front
of the following vehicle. To obtain space headway measurements,
one can use aerial photogrammatic techniques which measure the location
of vehicles at different instants in time. A generally accepted technique
for obtaining space headway is to assume a uniform velocity and multiply
the measured time headway by this velocity.

The inherent nature of headways implies some degree of inter-
action between vehicles. Since in general traffic vehicles are randomly
placed in space and time, headway is a random variable. As Buckley
noted [ 4 ,p. 156]

'""No matter how homogeneous traffic conditions may be,
headway observed from the roadside, even during a short

period of observation can be extremely dissimilar."
The only satisfactory way to analyze headways is therefore the
determination of the statistics of headway measurements.

For the remainder of this section, the probability density
function for headways is discussed. It is conjectured that the underlying
headway probability is of the same type for all different types of traffic
(rural, freeway, urban, etc.) but the parameters may vary. The
reader should pay close attention to the sampling technique and the
criterion used to verify the results. The development follows earlier

reviews done by Edie [ 5] and Gerlough et al [ 6 ].



One of the first statistical analyses of headways was done
by Adams [ 7 ,p. 122]. Observing the counting process of vehicles
showed ''under normal conditions, freely-flowing traffic correspondes
very closely to a random series of events ....

(a) each event, for example, the moment of arrival of a

a given point is completely independent of any other event.

(b) equal intervals of time are equally likely to contzin equal
numbers of events.,'
Subsequently, by counting the number of vehicles passing a point
in every 10 second observation period, for flows ranging from

70 to 1400 vph, a Poisson density was observed:

k
Pr(N=k) = % e @ k=0,1,2, . . . (1.2.1)

where o = mean number of vehicles expected in a given period.
For such a counting process, the interval of time elapsing between
arrivals obeys a negative exponential density:

ee @b 1sp

p(h) = (1.2.2)
0 h< 0

Therefore, by time sampling, the headway distribution for street

traffic in London was described by a negative exponential density.
However, this model broke down when traffic was no longer

freely flowing. Adams observed that a sudden increase or decrease

in traffic, the presence of external control such as a police officer

or a traffic light or the difficulty in passing other vehicles resulted

in alternating periods of greater or smaller traffic flows. The

result of such platooning caused the headways to be longer or

shorter than that observed in normal freely-flowing traffic. Also



as traffic approached a saturation flow of 1000 vph, Adams noted
that headways became shorter than expected.

This indicated that there are inherent features in the negative
exponential density which limit its ability to describe. headways in
various traffic flows. Because of the assumed independence of
events, knowledge of a vehicle's headway gives no information
about the likely headway of the next vehicle. If such a hypothesis
were true, the car-following models would be useless. Even in
moderate volume traffic, a certain degree of interaction between
successive vehicles is apparent. Although Adams conjectured that
the negative exponential density was applicable for flows up to
1000 vph., his data was obtained for flow only up to 500 vph.

A second shortcoming of the negative exponential occurs for very
short headways. The frequency of short headways predicted

by the negative exponential density is significantly greater than is
actually observed (Fig. 1.1). Hence, a more elaborate probability
density is required for headway in heavier traffic flows.

The work of Adams and his contemporaries has been extended
in several directions. There has been extensive work concerning
the Poisson counting process and the negative exponential density.
A review of this work can be found in [ 8 ]. The independence
of events has been utilized to define headways exceeding a certain
critical headway value. The criteria for defining a platoon of traffic
rest on this property of the negative exponential. The inadequacy
for short headways has resulted in a series of refinements of the

negative exponential, which are presently discussed.
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The deficiency near the origin of the negative exponential is
corrected by displacing the density to the right (Fig. 1.1). From
the definition of spacing, it can easily be seen that there always
exists a minimum distance between two consecutive vehicles.
Consequently, the displacement factor g is related to this minimum

distance. The resulting displaced exponential density has the form:

-(h-a)/8B
-;— € h2 o
p(h) = (1.2.3)
0 h< o

Daou [ 9 ,p. 10], by linear regression techniques, determined this
buffer distance for tunnel traffic to be 34 ft. Several researchers
have obtained satisfactory agreement withthe displaced negative
exponential., For street traffic in San Francisco and Boston, Oliver
[10,p. 810] claimed good agreement with the displaced negative
exponential. However, since no criterion for goodness-of-fit

was defined, it is assumed only a visual check was made.

While specializing his results for traffic through a signalized
intersection, Newell [11 ,p. 366] compared the displaced negative
exponential to the measured time headway relationship obtained by
Clayton [12]. By generating a recursive relationship of the density
of the displaced negative exponential, a first-order approximation
yielded an equivalent formula to Clayton. Newell also found for
light traffic, a uniform probability density of headway agreed with
Clayton's formula. In other words, in light traffic the headway
probability density is not significant. However, Newell [11,p. 369]
claimed as traffic flow increased, headways become less uniformly
distributed; thus also suggesting a dependency of headway statistics

on traffic flow.
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With the displaced negative exponential, one obtains a discontinuity
for headway measurements, which is unrealistic. The family of
Erlang densities which appear frequently in queuing theory, rectifies

this dilemma.

hk'1 e'h/B h= 0 k=1,2,3 . . .
. ..

p(h) =4 B (-1} (1. 2.4)
0 h< O

This density represents the sum of k negative exponentials, (in classical
queuing theory, the k equals the number of servers in a queue).

For k=1, the density is a negative exponential and as k increases the
density becomes more peaked, indicating a higher correlation between
headways. At k=o, the headways become uniformly distributed.
Hence, the parameter k is a measure of interaction between vehicles
and is referred to as the ""Erlang number'. The advantage of this
density is that for small headways, p(h) is small. An application

of the queuing aspect of the Erlang distribution was studied by

Ancker et al [13]. The headway probability density of vehicles

with respect to their queue position was determined using a photo-
detector located two feet after the stopline at a signalized intersection.
Assuming no turns and no bottlenecks downstream, the headway data
was grouped into pairs for eleven queue positions: (1,2), (2, 3),

(3,4), ... (10,11). Each pair was found to be statistically
independent using five different criteria: contingency table, regression
test, Corner test, Spearman rank correlation and correlation
coefficient. The results strongly suggest that headway pairs and

more importantly, individual headways are mutually independent upon

leaving a signalized intersection [13,p. 350]. Furthermore, the

3-11 positions had the same variance and a shifted mean that
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decreased monotonically with increasing queue position. By using
a modified maximum likelihood estimate for the three parameters,
the resulting Erlang density function for all positions agreed well

with the empirical data. The ¥x 2 goodness-of-fit test showed non-
significance at the 5% level.

An undesirable feature of the Erlang density is the integer
values of the Erlang number. From the traffic standpoint, the
degree of interaction k, is not discrete but rather continuous. Also,
to determine integer values for a density's parameters by maximum
likelihood techniques involves computational difficulties [13,p. 358].
Generalizing the Erlang density to include non-integer values of
k results in the gamma probability density for describing headways.
While studying rural traffic, Miller [14,p. 68] found individual
vehicles had headways described moderately well (no criterion
denoted) by the gamma density. Also an unpublished report by
Tindal for l< k< 2, showed bridge headway data yielded good curve
fits to the gamma density [ 4,p. 162].

There are several common properties to the models of headway
densities discussed thus far. First, no internal structure of traffic
is assumed except that vehicles are random in time and space.
Numerous studies [ 8 ] can substantiate this fact. Second, from
the empirical data, the headway frequency function shows a distinct
peak; headways exceeding this value tend to follow a negative
exponential. From this observation, a close examination shows
all densities discussed are special cases of the Pearson Type III

probability density:
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k-1
T ) ete)/B o naa
pi) =1 (1.2.5)

, h< &

where I'(k) is the gamma function. Third, the differences in these
densities clearly exist primarily at shorter headways. This »uggests
that we may consider a model for headways composed of two sub-

populations defined by a composite density:

p(h) = y py(b) + (1-y) p,(h), (1.2.6)
where

pl(h) = density describing short headways

pz(h) = displaced negative exponential for longer. headways

¥ = degree of interaction

Since headway is dependent on traffic flow, the degree of interaction
incorporates this dependency. For example for light traffic, § equals
zero yielding a composite density that is a displaced negative
exponential.

By the composite density model, a certain structure of traffic
is assumed and the emphasis is placed on defining the density for
short headways. The first theoretical work in this direction was
done by Schuhl [15,16 ]. By assuming the spacing between successive
vehicles consisted of two subsets, each having a distinct mean value
and each obeying some Poisson-type density, a composite negative-
exponential was obtained. The justification for such a density
rested on geometrical arguments which divided traffic into constrained
vehicles and free-flowing vehicles. A free-flowing vehicle is
defined as one that can travel without modifying its desired time-

space trajectory. Noting that constrained vehicles had some minimum
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spacing. Schuhl incorporated the displacement factor « in the

composite density:

ph) = ¢ e D L gy dph (1.2.7)

To validate these results, Kell [17 ] used 589 headway measurements
from an urban street with flows ranging from 100 to 1200 vph. By
segmenting the data into 18 constant flow groups, the XZ goodness-
of-fit test was performed with satisfactory results (no significance
level noted). Similar results were obtained by Sword [18].
Following the development of Schuhl, Buckley [ 4 ] considered

the Gaussian density for shorter headways:

e-h2/2cy2 convolution of shifted
pl(h) = — , pz(h) Gaussian density and (1. 2. 8)
2 2 negative exponential
mo. density

where 02 is the variance of headways. Physically, if one assumes a
driver attempts to maintain some desired spacing, his ability to track
the leading vehicle could be described by such a density, pl(h).

Since earlier work showed headways are dependent on traffic flow,
Buckley segmented freeway traffic data into several minute flow
groups and analyzed the 33,34 and 35 vpm headways. For the

607 measurements, a comparison was made of the curve fits of

five densities: negative and displaced negative exponential, gamma,
Pearson Type III and the composite semi-Poisson Gaussian given

in (1.2.8). By the method of moments, the parameter estimates
were obtained. The results showed that the composite semi-

Poisson Gaussian density yielded the best xz goodness-of-fit.
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Unfortunately, this composite density assigned a probability to negative

headway values and numerical techniques were required to obtain
estimates of the four parameters.
However following a suggestion by Buckley, Dawson et al [19 ]

considered the displaced Erlang density for describing short headways:

1 k-1 -(h-a)/B -
———— (h-a) e » h2a k—l, 2, 3,-.-
p,(h) = B (k-1)! ) (1.2.9)
0 » h<a

As noted earlier, by varying the paramter, k of this density, headways
from the most uniform to the most random can be described.
Headway data wa-s obtained from the 1965 Highway Capacity Manual
[20] and a Purdue University study [18]. The measurements
were stratified by flow, ranging from 100 to 1050 vph in 100 vph
increments. By plotting the cumulative frequency function as
probabilistic log vs time, the flow classes had nearly parallel
curves, However because of poor fiow monitoring, several curves
in the Purdue data intersected. The parameter estimates were
obtained by graphical techniques (for rough values) which were
refined by non-linear least-squares methods. The comparison
of the empirical and theoretical densities was done by determining
the multiple correlation coefficient which varied from 0.9959 to
0.9998 (exact agreement yields 1.0).

As a continuation of his earlier work, Buckley [2] ] considered

the composite semi-Poisson gamma density:

p(h) = y py(h) + (1-y) p,(h) (1.2.10)
with pl(h)= gamma density

pZ(h)= convolution of shifted gamma density and negative
exponential density
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Using 10,000 headway measurements from free-flowing freeway
traffic, seven different flow classes from 1 to 30 vpm, in 5 vpm
increments, were analyzed. The following densities were considered:
negative and displaced negative exponential, gamma and displaced
gamma, composite semi-Poisson gamma and composite semi-
Poisson Gaussian with parameter estimates obtained by the method
of moments. A comparison of these densities showed that the
semi-Poisson gamma and the semi-Poisson Gaussian yielded the
best xz goodness-of-fit curves over all flow classes (significance
level - 5%). It was observed that all densities performed best

for intermediate headway values. Only the displaced gamma, the
semi-Poisson Gaussian and the semi-Poisson gamma densities
exhibited good fits for high flows [21,p. 118]. From these results,
one can conclude that composite densities describe headways over
all traffic flows better than Pearson Type III densities.

It can be seen that by strengthening the assumptions on the
structure of traffic flow, we obtain better agreement with empirical
data. Under the intuitive assumption of random vehicles, the resulting
headway densities were from the Pearson Type III family. By
insisting on two subpopulations, the composite density yielded better
agreement between the theoretical and empirical data for higher
traffic flow. As an extension, one can consider traffic as being
composed of random platoons. A platoon is defined as a group of
consecutive vehicles travelling at similar velocity separated by
relatively short gaps.

In order to validate any model resulting from such an assumption,



criteria that can be effectively applied to experimental data for
separating platoons are necessary. A study of random platoons
was done by Miller [14 ] on rural traffic in Sweden and England
using time series data containing velocity and counting information,
The resulting headway frequency function showed that the 4-6
second range fitted a negative exponential. Also it was observed
that the 6-8 second range contained a higher than expected number
of occurrences. A close examination revealed that vehicles in
this range had a slightly higher velocity than the leading vehicle.
Thus, assuming a displaced negative exponential between gaps,
Miller [14,p. 67] defined vehicles with relative velocities less
than 6 mph or with headways below 6 seconds as being in the
same platoon and those exceeding these limits as being in different
platoons. Given this criterion, and unless traffic density was too
high to permit gaps in the traffic stream, a test was performed
to insure independence of platoons. Grouping consecutive counts
into sets of four, eight, etc. vehicles and analyzing the variance
of each pair by Pacey's test, it was found that only 12 of 182 pairs
exceeded the 5% significance level. Applying the same test to
individual vehicles, however yielded a significance level of 45%.
Thus, there is strong evidence to suggest that platoons are
independent and follow an exponential density.

By assuming a random platoon model of traffic, one can

study properties of the traffic structure. For evaluating the model

15

a significant parameter becomes the criterion for determining whether

vehicles are within the same platoon. Also, since platoons are
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random, the critical part of the model becomes the model of headway
density within a platoon. This development is similar to that in the
composite density model. The length, formation and dispersion of
a platoon are also of interest. Finally, fine structural points such
as the effect of the platoon position and platoon length on the headway
density can be studied.
A study was performed by Pahl and Sands [22] to determine
whether headwaywas a valid parameter to differentiate platoons.
Using velocity and counting time series data from an urban freeway
for flows varying from 600 to 2300 vph, a vehicle interaction
process was defined:
i) process of a vehicle slowing down when it approaches
a slower vehicle, resulting in a decrease in headway and
speed of the approaching vehicle.
ii) process of vehicle queuing where relative speed cscillates
around zero and headway varies within small limits.
Using a similar approach to Buckley, over 10,000 measurements
were divided into constant flow groups. The relative velocity
between vehicles was found to be statistically dependent. However
by conditioning the relative velocity by headway, it was determined
that relative vehicle velocities were statistically independent when
a certain critical headway was exceeded. Similarly, for smaller
headway values, the relative velocities became dependent. These
results were validated by a modified xz test (significance level - 1%)
over all flow classes. It was observed that the critical headway
value decreased as flow increased. Therefore, it is concluded

that headway is a valid parameter for distinguishing platoons.
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Since headway measurements differentiate platoons, they can
be incorporated into the platoon criterion (similar to Miller's
definition). The platoon criterion is used to test whether vehicles
are within the same platoon. Several different criteria have been
developed. Edie et al [23] defined vehicles in the same platoon
under the following conditions:

i) if space headway is less than 200 ft. for speed 40 ft./sec.

or greater.

ii) if space headway is less than 170 ft. for speed 35 to 40

ft. /sec.

iii) if space headway is less than 150 ft. for speed less than

35 ft. /sec.
A different approach was taken by Athol [24] who defined a platoon
as the stable portion of traffic throughout the entire spectrum of
traffic behavior and its complement as a group. Then by segmenting
data into platoons and groups using different headway definitions,
the interarrival time of platoons was described by a negative
exponential for a headway definition of 2.1 seconds [24]. In other
words, headways of less than 2.1 seconds represented vehicles in
the same platoon. Other platoon criteria were formulated by
Greenshields [25] and Underwood [26].

Once the platoon criterion is specified, the headway probability
density within a platoon can be experimentally determined. From
velocity and counting data from tunnel traffic, Daou [ 9] obtained

a lognormal density of headway within platoons:
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2

-1 exp ( - @_hZJL ) , h20
/ 20
p(h) =4{ OBV 2T (1.2.11)
0 , h0

where ¢y and 02 are the mean and variance of /nh. Using Greenshields'
200 ft. spacing between vehicles as the platoon criterion, the data

was stratified by velocity into seven classes from 15 to 50 ft./sec.,

in 5 ft. /sec. increments. The XZ goodness-of-fit test was performed
and a non-significance at the 5% level was achieved for the lognormal
hypothesis., An interesting feature of Daou's work was that the
variance to mean ratio overall velocity classes was approximately
constant [ 9 ,p. 9]. More recently, Tolle [27 ] utilized a shifted

lognormal density to describe headways:

2
1 exp ( - (%(h'?f’)' ) ) , hzg=20
oth-a) ¥ 21 20
p(h) = (1.2.12)
0 , h< o

Space headway measurements of freeway traffic were segmented

into 11 flow classes and using the property that /nh is gaussian,
maximum likelihood parameter estimates were obtained. The
Kolmogorov-Smirnov (KS) goodness-of-fit test showed good
agreement with the lognormal hypothesis with o = 0.3 (significance
level - 5%). There are various justification for these findings about
the lognormal density. The primary reason is that multiplicative,
independent identically distributed errors by various drivers
attempting to follow each other combine to give a lognormal density.

One next needs to investigate the dependency of the headway
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density on platoon length and relative position in the platoon.
Athol [24], while studying freeway traffic, found the headway
density within a platoon independent of platoon length by comparing
the relative frequency function of a 2,4 and 6-vehicle platoon.
Also, by grouping headways by queue position and computing the
mean and variance of each position, a significance test showed
the mean headway was not significantly different for relative
position in the platoon.

From the discussion above, we can now formulate a statistical
model of headway. We first observe that the model must accomodate
wide traffic flow conditions. Even as early as Adams, the headway
model proposed broke down with heavy volume. We observed that
the model was not crucial for light traffic but as traffic flow
increased, the model became more significant. Only in the
comparison tests done by Buckley [ 4 ,21] did the merits of the
composite model over other Pearson Type III densities become
apparent in high traffic flows. Therefore, the statistical model
is of the composite structure to accomodate wide traffic flow., A
second feature of any statistical model is its ability to fit the
empirical data. From the numerous densities considered using the
xz or KS curve fitness test, the shorter headways were more
influential on the model chosen. With regard to the composite
models, only the gamma and the lognormal densities provide
good agreement with the following headways [21,p. 131]. Since
the former can be translated into the latter [28], and because
the lognormal has certain satisfying statistical and physical properties

we assume this density for describing the following headways.



20
Finally, the statistical model must incorporate the structural

properties inherent in urban traffic. Clearly traffic lights induce

a periodicity in traffic flow and cause a decoupling of vehicle
platoons. This results in a certain independence in the interplatoon
gaps and these gaps canbe described by an exponential density [14].
The model must incorporate the independence of headways with
respect to platoon position and platoon length and must merge

the following and non-following headway processes. Hence by con-
sidering a non-following headway as resulting from the sum of two
independent variables, one with lognormal density and the other
with a negative exponential (to represent the gap between platoons),
one can embody all these features. In summary then, we propose

the following statistical model of headways:

pth) =¥ pf(h) + (1-9) pnf(h) , h2 0 (1.2.13)
where
2
peh) = —3i——  exp (- Ry 2gm , h2o0
ch v 2m 20
h
Poh) = A exp(-Ah) [ g(x) exprx) dx  ,  , h20
0

where { is the perentage of following vehicles in the overall
traffic flow and 1/) is the mean interbunch (or interplatoon) gap.
According to this model, each following headway within a platoon‘
belongs to a population with a lognormal probability density with
the same parameter y and 0, irrespective of the length of the

platoon or vehicle position in the platoon.
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From the filtering standpoint there are several reasons for

choosing this model. The parameters introduced are physically reason-
able and are important parameters for filtering/prediction. The
model can accomodate all traffic conditions (light, moderate, heavy)
and is valid for practically all ranges of traffic flow and speed.
The densities involved imply underlying stochastic processes that
can be completely described by a finite number of moments (at
most two). This is an important fact for the development of simple
but effective filter/predictors.

The model formulated rests upon two assumptions:

i) a following headway has a lognormal density

ii) interplatoon gaps are independent and exponentially distributed.
To validate these assumptions and therefore the model, Branston [29]
made a comparison of the proposed model (1. 2.13) to the composite
semi-Poisson Gaussian and the composite semi-Poisson gamma.,
The space headway measurements were stratified into constant flow
groups and parameter estimates were obtained by a combination of
the method of moments and the minimum chi-squared. The resulting
X 2 goodness-of-fit test (significance level - 5%) showed that the
model considered gave the best overall performance. Moreover,
the parameter variations to traffic flow were investigated. It was
observed that y and o both decreased as traffic flow increased,
although often the variation was small enough to allow a very good
fit with constant y and ¢ . The dependence on speed was more drastic.
Both p and o tended to increase with speed, but real data indicated

that |; varied widely for the same speed for different traffic locations



22
and/or times, while o did not show a similar wide variation., These

established facts are encouraging, and actually imply that a periodic
estimation of y and o is likely to be an effective way of obtaining
values of |y and ¢ from on-line data. This adaptation of the
parameters can be done at a much slower pace than the actual filter/
predictor.

Finally for the determination of § and )\ and their relation to
traffic flow rate, the following models were found to be in good agree-

ment with real data [29]. Let y denote the traffic intensity

_ mean following headway _ exp (u + % O'E)_ (1.2.14)
Y= mean headway - E {h} T
and )* the flow rate. Then
A o=k - 332
(1.2.15)
3/2
b=y -3 -n e

Although, the above formulas are the results of curve fitting real

data from specific traffic locations, they can be used as a first
approximation to the relations between these parameters, because
experimental evidence indicates low sensitivity to traffic location.

In conclusion the model proposed above (1.2.13) provides an acceptable

model for headway distribution with many desirable properties.
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1.3 Complete Model for Headway Statistics

The statistical model of headway given in the previous section
does not provide a complete description of the stochastic process.
Headway statistics (or interarrival time statistics) need higher
order probability density functions for their complete description.

This is due, as was observed before, to the considerable correlation
between successive headways. On the other hand from point process
theory, we know that interarrival time statistics completely char-
acterize the process and in particular can be used in determining
the rate of the process, which plays a central role in estimation
problems.

The extension of the statistical model of headways to obtain
a complete description develops under two assumptions:

(i) the following and non-following headway processes are

independent.

(ii) there is only a dependency between consecutive pairs

of following headways.
Assumption (i) is reasonable since the statistical model for the convex
combination of two probability densities is obtained by assuming we
have two processes, one consisting of nonfollowing headways and
the other consisting of following headways, together with the relation

Prtheadway is following} = ¢ (1.3.1)

Prt{headway is nonfollowing]} = 1-¥
Assumption (ii) means that a driver reacts only to the vehicle directly
ahead of him, i.e. any other vehicle ahead of his does not affect

his desired trajectory. Since following headways are independent
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of platoon length and platoon position, this is also a fair

assumption. The remainder of this section utilizes these assumptions
to characterize the multidimensional statistics for each process separately
and thus obtain a complete model. In particular, the joint densities
of each of the following cases are treated separately: two consecutive
following headways, two nonfollowing headways, a following headway
preceded by a nonfollowing headway and vice versa.

For the following headway process, the first order probability
density is lognormal and as observed by Buckley [ 4,p. 171],
there is negative correlation between successive headways.
Furthermore, it is reasonable to assume that the correlation between
two non-consecutive following headways is negligible. This is an
approximation but we believe it is well justified. We thus use a

process with memory one to describe the following headway process:

E { b-E{h;}) (b -Eh; D 3 ={p , k=l (1.3.2)
0 >2

where p < 0 usually and the index refers to the order of occurence
of the headways. This is the same as saying that the headway
sequence is a Markov sequence. Then, a reasonable model for
the following headway sequence is described fully by a lognormal
Markov sequence. That is

a) the first order probability density is given by

2
1 exp ( _Lb’_’%u)_ ) , E20
Eo N2m 20 (1. 3.3)
0 , E<O0

where py = E {hi}, 02 = E {(n hi-u)z}

h.(€) =
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b) the transition probability density is given by:

1 _ @nou-r @ng))®

2 e*p 2 1 2
Co ¥ 2m (1-1%) 20 (1-)
ph1+1|h1(glg) = » (20,820 (1. 3.4
0 elsewhere °T
where
E {(nh,-p)(enh, -1}
r = L i+l (1. 3. 5)
(o)
and is related to p of (1.3.2) via
1 2
r = —5 in[1l+p (exp 0" -1)] (1.3.6)
(6]

From elementary facts about Markov processes, the following
headway sequence is completely characterized by (1.3.3) (1.3.4).
Obviously we could have modified our assumption(ii) on consecutive
pairs of following headways and used a higher order lognormal
Markov sequence to model following headways. The advantages
however of the more complex resulting model are at least ambiguous
at this stage. The new parameter p introduced depends among other
things on traffic volume as observed by Buckley [ 4], having larger
absolute values for higher volumes and becoming zero for very
light traffic. Also if the average headway is large there is obviously
no correlation and p=0. In view of (1.3.5),(1.3.6) this parameter
can be easily (and is usually) estimated from data.
For the non-following process, each nonfollowing headway
is the sum of a following headway and an exponential gap which
are mutually independent. We can obtain a complete statistical

description of the nonfollowing headway sequence. By definition,
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a nonfollowing headway is typically larger than a following headway

and corresponds to lighter traffic. But in light traffic headways
are independent, so the nonfollowing headways are an independent,

identically distributed sequence of random variables with common

density:
g
A exp(-A ©) [ gx) exprx) dx , £20 ‘
Py (§) = 0 (1.3.7)
i
0 , E<0

where g(-) is given by (1.2.13). If
h, = h/ +t, , i=1,2,3,. ..
i i i
represents the decomposition of each nonfollowing headway to a

lognormal and negative exponential random variable, respectively

then by the independence of {hi'} and {ti}

€, E
Py n 51082 = Jl JZ Pe(8) -%) P (8,-Y) Py /(X y) dx dy
"7 0 0 i’ g2 0, gzzo
= py (§)) Py (E) (1.3.8)
i j
where the last equality follows from the independence of {hi}. But
81 %2
P, (8y) Py (§5) = _f J P (Ey-%) Py #(x) P _(§5-y) Py o(y) dx dy
! J 0 0 ! J (1.3.9)

, glz o, 522 0
where P, negative exponential density. In other words, the
following components of the nonfollowing headway sequence are independent,
also.
From the completed descriptions of these two processes, the

entire statistical model (1l.2.13) of headways can be obtained from
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the transition probability density:

ph h.(C: g)
Ph. . |n cle) = i+l (gl) (1.3.10)
i+11% Ph,
Let
Ps ¢ = joint probability density of two consecutive following
’ headways
P = joint probability density of a nonfollowing headway
f, nf .
preceded by a following headway
P = joint probability density of a following headway preceded
nf, { .
by a nonfollowing headway
Phf, nf = joint probability density of two consecutive nonfollowing

headways.

Then we have that
' i+1'71 i
Pos nfl&r 8 = Py (O pp (B)
’ i+l i

from (1. 3. 3), (1.3.4) and (l.3.8) respectively., The two other densities

can be obtained from the definition of a nonfollowing headway and (1l.2.13)

g
A exp (-48) | exp () pg (G %) ax (1.3.11)
0
¢
A exp (-A0) [ exp (ux) by (%, 8) ax (1.3.12)
0

Pe el ©)

Py, £(C: 8)

Then the transition density is:

I, (€18 = 18 By (G 84 (1-9) By (G (1-9) By (6, D)

P
l’1i+1 i

(68 1/ {4 pdB) + (1-9)pe(8)]
,(20, €20 (1. 3.13)

+ (l-w)z pnf,n

where Py is provided by (1.2.13). We now have a complete
i
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description of the headway (interarrival time) statistics and can

completely characterize the associated point process [30].

As a consequence of the headway model adopted, a model
can now be developed for urban traffic flow. FEach link is divided
in sections in accordance with the detectorization of the link. For
each section of the link the input and output traffic flows will have
headway distributions as described above. Notice that the headway
distribution model can vary (and it should) from lane to lane. The
required parameters of the model will be estimated at appropriate
intervals from actual data, or from historical data as required.

The effect of the link will be to alter the parameter values as
traffic moves downstream.

The versatility of the proposed model is now briefly indicated
along with the ability to incorporate all desired situations. If the
next downstream section provides greater congestion than the current
section of the roadway, this will appear as an increase in { for the
next section, followed by a decrease in |y and 0. Often, this change
in y and o will not be necessary. In case the current section is
in front of a traffic light which just turned red, then the incoming
flow parameters will be adjusted so that § will increase and y
and 0 will decrease gradually (according to time required to form
the queue). In addition, for properly located detectors, the number
of cars in this particular section can serve as a measure of the
queue in front of the red traffic light. Similarly when the light
turns green, the | will decrease and p and o will increase accordingly
to reflect the transition from stopped queue to the level of traffic

flow. By appropriate variation of §, one can thus create platoons
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or disperse platoons and thus realistically emulate traffic flow.

To complete the model, a distribution for the mark of the

underlying point process, that is pulse length, is also needed.

As a first approximation however, this is omitted here. To
summarize, the model requires the determination of four (4)
parameters for each section, namely {,\,u, 0, which will depend

on traffic flow, speed time and location, in general. This provides

a '"local description' of the underlying point process which is realistic
and allows the use of the modern theory [31] to obtain filter/

predictors.



2. DISORDER PROBLEM

2.1 Introduction

Having developed a complete statistical description of interarrival
times (headways) in the preceding chapter, we now incorporate it
into the framework of point process theory to answer an important
traffic flow question: By using only detector data, can one determine
when a change has occurred in the traffic flow? Two commonly occurring
phenomena  bring this question into perspective:

(i) By observing the detector activation times at a location
on a freeway, determine whether or not an accident has

occurred downstream.,

(ii) At a detector located downstream from a traffic light,
determine when the last vehicle in a queue has passed

(or when a platoon starts and ends).
The motivation for considering (i) is apparent since in freeway traffic,
by knowing the time and location of an accident enables emergency
vehicles to be dispatched to rectify the blockage. Recent research
in this area [32] attempts to solve the 'incident detection problem"
by generalized likelihood ratio methods. We feel that a more
natural modelling can be obtained within the context of the statistical
model proposed. As for situation (ii), many urban traffic systems
are being considered using local computer-oriented controllers to
estimate the queues within links. One shortcoming of these queue
estimators is that they accumulate errors from previous light cycles
because of the estimator's inability to know exactly whether a vehicle
gets caught by an amber-red light change. By utilizing a detector
downstream from the traffic light and determining the last vehicle in

the queue, the queue estimator can be re-initialized each cycle to

30
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correct this cumulative error.

The answer to either question posed can be related to different
interpretations of the mixing parameter § in model (1.3.13). In
particular, for slower estimation of traffic flow parameters, § can
be used to estimate gross traffic patterns. For situation (i), ¥
can be interpreted as the probability of a particular headway being
a following headway and when the estimate of § exceeds a certain
threshold, an emergency vehicle can be dispatched. On the other
hand, if the model is intended for use in urban nets with small
link lengths and for sections where queues occur, in order to compute
estimates or predictions for short time intervals, a different
interpretation for | is needed. In such cases, it is crucial to model
the periodic formation and propagation of platoons or queues as
modulated by traffic lights. Theny is more abrupt and can be
modelled as a time function with value 1 corresponding to passing
of a platoon or a queue discharge and 0 corresponding to nonfollowing,
freely-flowing traffic as shown in the figure below. This latter

interpretation of | is developed in this chapter.

N
¥(t)

0 : .
t

Figure 2.1. Illustrating time variation of { for
accurate platoon or queue modelling.
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In more precise terms, the above problem can be posed:
given a stochastic point process regulated by a probability measure
Po until some random time T, and then governed by a different
probability measure Pl’ estimate the switch time T using the
observations. The solution is based on the martingale approach
of point processes and results in a nonlinear recursive filter
representation, By a series of simplifying assumptions, a closed
form estimator is obtained. The discussion which follows converts
the statistical description of headways into a local description of a
counting process, formulates the ''disorder problem' by the martingale
approach, specializes the results for several cases and evaluates

the resulting estimator against simulated urban traffic,

2.2 Point Processes and their rates

A point process is a mathematical model for describing a
physical phenomenon such that at random times, highly localized
events occur. A point or jump process, as it is commonly called,
is stochastic with the property that each sample path is piecewise

constant, right-continuous and having usually a finite number of

discontinuities on any finite interval. A jump process having only
jumps of unit magnitude is calledacounting process. A common
example of such a process is the homogeneous Poisson process
where interarrival times are independent, identically distributed
random variables with a negative exponential probability density.
One chooses the point process framework over alternative
techniques on the basis of agreement to the physical phenomenon

and for the mathematical structure it affords the particular problem.
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As discussed in the review, as early as 1939, Adams [ 7] modelled
vehicle flow by a homogeneous Poisson process. The reason that
more sophisticated modelling was not utilized was the lack of
extensive mathematical treatment of statistical inference based
on point process observations. On the other hand, the treatment
of estimation problems based on continuous observations was heavily
developed. In particular for certain cases, recursive estimators
were developed (Kalman filter, extended Kalman filter) which were
applied in traffic flow problems [33,34,35]. Recently, embedding
point processes into martigale theory resulted in both a rich
mathematical structure and in several generalizations of earlier
results [31, 36-38].

Underlying the martingale approach in point process theory
is the fact that every stochastic process (Nt,3t. P) can be decomposed
into a predictable process and a local martingale; analogous to
signalin white, additive Gaussian noise. The predictable process,
called the local description has the following intuitive interpretation:
the probability that Nt has a jump in (t,t+At] given the entire past
information Jt,depends only on the past observations of Nt up to

time t and is denoted by:

AN, = Pr {N

¢ -N.=1(3,} (2.2.1)

t+At
Moreover, if A&t is differentiable with respect to time, then the
associated counting process is called a regular point process [39,p. 548]
and the corresponding derivative, ), is called the rate of the process.
The differentiability of Alﬁ\'It depends on the conditional orderliness of

the process [30,p. 50]. Qualitatively conditional orderliness means
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that the probability of two or more occurrences in an interval can

be made arbitrarily small by choosing At sufficiently small. Within
the context of Bremaud [36] and other early researchers [40]

for a counting process Nt’ a square integrable martingale was defined:

w, = N, - sz ds (2.2.2)
0
where the integral is the local description. Heuristically these two

descriptions are equivalent:

E [N, N |B]~ 2 (@) At

t+At

E [N, ,.-N 8] ~ E [ (w) At = A (w) At

t+At
where Bt is a o-algebra containing St and )\t(w) is Bt measurable. For
the remainder of this text, we shall assume ANt is differentiable.

A homogeneous Poisson process can be described by its

occurrence time statistics {wn} as:

n
t
Pr {Nt,t+At=n] = jk_né')_ exp ( -\ At)

or can equivalently be described by its interarrival time statistics,

{tn}. In general, jump processes can be completely described by

their occurrence time statistics or their interarrival time statistics [31].
We shall show that the rate defined above can be explicitly written

in terms of their interarrival times [also see 30,p. 246]. The

rate associated with the predictable process in (2.2.1) is explicitly

defined as:

)‘t )‘t(Nt; Wl’ PRI .,WNt)

lim - pr {N

N, = 1|N =n, w,=W
Atj0 Ot t 1

t+At t o<W pees s W =W ]

1, 2 "2

(2. 2.3)
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Since {Nt,t+At=l} and {t<w__,< t+At] are equivalent events,

Pr {N -Nt=1|Nt=n,w =W,,w, =W

W Wos Wy oo, w =W ]

t+At
= Pr {t<w_,  <tiAt|No=n, w =W, W= W, ..., w =W ]

Pr {t<w__ < t+At | w =W, w,= Wy, eeen, Wn=wn}

Pr {t< Wn+1 l W1=Wl, WZ--WZ’ ses oy Wn=Wn}

where the last equality results because for t> Wn’ {Nt=n} and

{Wn+1> t} are equivalent events. Then taking the limit as At 10 vyields:
pwn+1|wlsw2,o..’w(tlwlywzpo.o,wn)
v | (2.2.4)
(t W » W s e e ey W )
wn+llw1’w2’...’w 1 2 n
where
P

w_ oo |we,w w EWL W, e, W)
n+l!'71” 727" 'n

-I»,
t

(x|W,, Wy,..., W ) dx
ntl IWI’WZ""’Wn 17 2 n

and

P Wn) is the conditional

(LW, Wooenn,
n

Wn+1 IWI, WZ’...’
probability density function of w_,) 8iven {w1=Wl, W2=W2, cess wn=Wn}
evaluated at time t. We also have by (2.2.4)

d

ANN=n W, W_,..., W) = - —— [;nP t|wy oo, W

t t 1 2 n dt Wn+1 leg WZ".., Wn 1 n
and (2.2.5)

P n(tIWI,...,Wn) = exp [-j' )\S(Ns=n;W1,W2,...,Wn)ds]

w1 Wy eee,w
n+l I’ ¢
Wn (2.2.6)

Since interarrival time statistics are related to the occurrence time

statistics by the obvious:
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Pr {t_,,>t|t;=T ), t,=T,,...,t =T}

= P (Ty#T %o o #T #t|T), T) 4Ty 000, Ty 4Tt o 4T ]

wn+1|w1,w2,..., n (2.2.7)
they can be used as the basis for the statistical description of a

point process. In particular, these statistics can be used to compute
the rate. of a counting process. An example is provided by the
following from Snyder [30,p. 265].

Theorem: A self-exciting point process is l-step memory
with rate

A (N=mW ) = F (N =n;t-W )
for some function F(.) if and only if the interarrival times,

t =W W,

statistically independent random variables.

=w -wl,...,tn=w Wy form a sequence of

n n-

By combining (2.2.5),(2.2.7) for a l-step memory process

e N -
NN =nst-W ) = - = [on Pr {tn+1>t Wn}]
i +1(t-wn)
= =2 = h(t-W_) , 2 W (2.2.8)
T p, (%) dx
t-W n+l
n

where Py () is the (n+l)th interarrival time probability density.
n+l

The function h(-) is called the hazard function in birth or renewal
processes. From (2.2.3),(2.2.8) it is seen that to order At the
quantity h(t-T) At is the conditional probability that the (n+l)th

detector activation occurs in (t, t+At] given that the (n)th occurred

at time T. The hazard function is easily measured from experimental
data and has important implications in the performance of the filter

developed below.
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Similarly, for a 2-step memory process

=n: - 4 - =W -
A (Ng=nit-W ., W Wn-l) T dt [on Pr {tn+12 t Wnltn Y Wn-l}]

t-w_|T.)
non (2.2.9)

P
tn+1 'tn
T P (x]T,)
1:n+1 |tn n

t-Ww
n

where Tn=wn'wn-1 . Several useful examples are now considered.

Example 1. Given a homogeneous Poisson process, Nt with rate ),

then the interarrival times {tn} are independent, identically distributed

(iid) with common pdf

Py (Tn) = )\ exp ('Tn)‘) , n=1,2,3,...
n
and rate
1 A exp (<A (=W )))
)\t = )\t(Nt=n;t_Wn) = = A (2. 2. 10)
A exp(-Ax) dx
t-wW
n

The fact that in this case the hazard function is constant is one
criterionusually employed to determine whether empirical interarrival

times result from a homogeneous Poisson process [30,p. 269].

Example 2. Suppose interarrival times {tn] are lognormal variables
as specified by (1.3.3) and notationally denoted by L(u, o) with
transition probability density given by (1. 3.4), then by (2.2.9)

)\t(Nt=n;t-Wn, Wn-Wn_l)

2
1 exp |- R (=W)-=xn (W W _)-)
(t-W_)o ¥ 2m(1-r%) 20%(1-1%)
[P/n(t-Wn)-u-r(Pm(Wn-Wn_l)-u) ] (2.2.11)
1l - erf Y
N 1-r°
C r
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where

x
erf x = J. 1 exp (-tz/Z) dt
-0 ZTT

When p=0 in (l.3.6), then r=0, i.e. the interarrival times are iid

with common density L(uy, o) and (2.2.11) reduces to

0 g(t"wn)
Ay E )\t(Nt=n;t-Wn) = (2.2.12)
Qn(t-Wn)-u
1 - erf [ 5 ]
where g(:) denotes L(y, 0) probability density (see Fig. 2.11 for
plot of )\S vs. time for different parameter values).
Example 3. Suppose interarrival times {tn} are iid with common
pdf given by (1l.3.7)
g
A exp(-A8) | g0 exp (1w dx 20
Py (€) = 0 (2.2.13)
B 0 , E<O
where g(«) is L(y, 0) density and then the rate is
B, (t-W)
n
g = )\t(Nt=n;t—Wn) = W (2.2.14)
n
1- [ a0 ax
0 n

which is shown in Fig. 2.2 below.

From the complete statistical description of headways given

by (1.3.10)-(1.3.13), it can be observed that the rate of the associated

point process has a 2-step memoryand in particular

ptn+1 |tn(t-wnlwn-wn-l)
) = (2.2.15)
(xlwn-wn-l) dx

)‘t(Nt=n;Wn’ Wn- 1

P

t .t

t-W n+l'™m
n
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where p, It (¢ |-) is provided by (1.3.13). This expression for
n+l' n

the rate is complicated and certain computational difficulties arise

in further development. We obtain simpler expressions by considering
special cases of the above. If p=0 in (1. 3.6), then the following
headways are independent and the conditional density in (1.3.13)
reduces to (1.2.13), i.e. the headways are iid with common density

P, (-) provided in (1.2.13).
ntl

p, (X)) = ¥ pyix) + (1-4) p g(x)

n+l
Defining the event and using the relation (1.3.1)
A = {headway is following} , Pr {A} =y
ASz [{headway is nonfollowing} , Pr {A®} = 1-y

then by the definition of rate (2.2.3)

A(N=n;t-W ) = lim Pr {Nt+At-Nt=1|3t}
At10
= ¢ lim Pr {N_ . -N=1[3,A}
At10 t+At 't t
+ (1-y) lim Pr {N_, -N=1|3, A"}
At10 t+At "t t
0
=¥ A+ (-9) Mg (2.2.16)

_ e o _ - 0 .
where & = {Nt—n.wl—Wl,w =W wn-Wn}, A, and )\ . given by

2=Woreees
(2.2.12) and (2.2.14), respectively. Clearly this decomposition results
because of the independence of the following and non-following processes
[assumption(i),p.23]. Since the development of a filter/predictor in
this chapter follows from the fact that § takes on only one of two

values (Fig. 2.1), we determine the rates for these two cases.

If § =1 in (1.3.13), i.e. all headways are following, then the conditional



40
density (1.3.13) has the form of (l.3.4) and the rate computed in

(2.2.11). If {y =0 in (1.3.13), i.e. all headways are nonfollowing,

then the conditional density (l.3.13) reduces to (2.2.13) with rate
provided by (2.2.14). These latter two rates (with slight modifications)
are utilized in the development of the ''disorder problem' presented

below.

2.3 Disorder Problem Formulation

In this section, we discuss the formulation and solution of
the so called ''disorder problem' as it relates to urban traffic
problems. To motivate the development, consider the following
physical traffic situation. Assume traffic downstream from a
traffic light is free-flowing and the time the light changes from
red to green is known. After the light changes, one observes at

light

©,
queue 1

Yetector location

the detector a series of following vehicles whose rate )\2 is specified
by (2.2.12). After the last following vehicle passes, a different

rate )‘tl’ describing nonfollowing vehicles is observed. The relevant
question is: when did the last vehicle in the queue pass the detector
location? By having an estimate of the convex parameter { using
some cost criteria, the time of disorder can be determined. More
precisely, one observes a counting process N, that is governed by

a rate until some random ''disorder' time T at which point the process
is governed by a different rate. The problem is to estimate the

switch time T using only the observations, Nt'
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In a general context, one attempts to estimate a signal process,

x, given the observations of a counting process, N, which is

influenced by X, Let (0,8 ,P) be a fixed probability space, 3t be

an increasing o-algebra generated by {Nt;tz 0} and Bt be an increasing
o-algebra such that all processes discussed below are adapted to it.

Consider the signal process to be modelled by:

dxt = ft dt + dvt , x(0) = X (2.3.1)
where vy is a square-integrable martingale with respect to Bt and
the process ft satigfies:
t
E j‘ Ifsl ds <o for all t>0
0
Let the observation process, Nt with rate )‘t be defined by:
dN, = ) dt +dw, , E [Nt] <® (2. 3.2)
where w, is a square-integrable martingale with respect to Bt.
Finally assume the cross-quadratic variation process defined as:
- c c
d<v,w> = E [dv; dw,|g] + E [AvtAthBt]
where Avt = VetV and v:,w: are continuous processes, is absolutely

continuous with respect to the Lebesque measure. Then a nonlinear

recursive estimate

%, = E [x[3,] (2.3.3)

has been obtained by Bremaud [36], Boel-Varaiya-Wong [37,38] and
Segall-Davis-Kailath [41] using the martingale approach:

s _ 7 s -1 s d iy
d & =fat+ () E{lx,(0-k) + g v w> 1|31 |-@N-) at)

t-
(2.3.4)

;20 = E [x(0)].
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where ' © ' denotes conditional expectation with respect to 3t.

The disorder problem has been considered by several
researchers[42 ,43 ,44 ]. Assuming the apriori probability
density of switch time T is an exponential and using properties
of Markov processes, a switch time estimate can be obtained [42].
Recently, these results have been generalized by Davis within the
martingale approach for point processes [43,44]. We follow
this latter reference in the development presented here.

We first need to establish the structure of the problem as
in (2.3.1),(2.3.2). Let us define

x (2. 3.5)

t - I{tz T}

= HE- 3 = <<
B, =0 {Ns.xs,s_t} , 3, =0 {Ns,s_t}

where I is the characteristic function of the set {t= T} and

{t= T}
o(.) denotes an increasing o-algebra generated by variables specified.
From the discussion above and by (2.3.5), it follows that the counting
process N, has a rate

= 0 1
A T (l-xt) Ay toxg AL (2.3.6)

where )\2 , )\:‘

definition of rates (2.2.2), then Nt has the form of (2.3.2). Notice

are rates measurable with respect to Et. By the

that since A and Nt are sample discontinuous, w, is sample discontinuous.
We now consider several cases in which X, is represented in the form

of (2.3.1) with an explicit filter equation derived.

Case A: Assume T is independent of Nt and has an a priori distribution

function

PL(t) = Pr {T<t} , F, =1 - Pyt (2.3.7)
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Writing x, into form of (2.3.1) by a Bt-decomposition:

E IB]

E [ax|6] Xyt ¥

E [I{t+dtz T}'I{tz T} lﬁt]

The random variable
for t< T< t+dt

1
I{t+dt2 T}'I{tz T} ={o otherwise

and by the independence of Nt and T, then

E [dxtIBt] Itte T) Pr {t<T< t+dt|8,} (2. 3. 8)
= < 2
1{t< T3 Pr {t< T<t+dt|t< T} for tz0
In terms of Ft
dF, dF,

E [ 8] = Iro oyl - _F':') = - (exlF )

Hence
dF

= dx - - - —t
dv, = dx -E [dxtlﬁt] = dx, + (1-x) ( .

t ) (2.3.9)

is a square-integrable B, martingale of the form (2.3.1). Computing
q g t P

the other terms in the filter representation (2.3.4):

dF
ftdt=E[ft|&’t] dt = E [-(1-x) ( w— )!3]
. dFt
= - (1-xt) ( —Ft- ) (2.3.10)
where ’Zt is defined in (2.3.3) and because Ft is deterministic.
d<v,w>t =0 (2.3.11)

because Nt and T are independent.
E [x,(0¢-2y) ‘3t] = E [xt)‘tlgt] - Xk

since it is adapted to Et.
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But
E [x1,3,] = E [x,((1-x) 20 + x,2))[3,]
thtt t t t t7t t
0 - 2 1 2
=) (X,-E [xt l&t] )+, E [xt |3t]
since )\0 )\1 are adapted to & Because x, =1 X, = X 2 and
t Mt P t° t {t=T}"’ "t t
0 A s 1~ _ 1~
E [x 2030 = a0 (- %) 40 x = %
Combining
- 1 Y o
E [x, (02 13,] = 0p-%)) x,
o A0 A 1qq n
= -[-x) Ay + 2.2, 1) %,
R T N
1 0, A oA
= (g-hg) X (1-%) (2.3.12)
and combining (2.3.10), (2.3.11) and (2.3.12) in (2.3.4) yields:
G- (1) ety ¢ G 00 & (%) @NK, dy (2.3.13)
t ~ (T, A g -hg) % (Lo £ i
- -~ 0 " Py
where A = (l-xt) )‘t W and Xq = E [xo] =1 - Fo

Case B: Assume T is equal to {Wn}, i.e. some occurrence time

and the events {T=Wn} are independent of {Nt;tz 0}.

Let
p, = Pr {T=Wn}
and define
pn
q, = Pr {T=W_[T>W_,}= = P (2.3.14)
izn

Consider the Bt-decomposition of the signal process., Clearly,

N, =2 1
t C {tzw]



45
Therefore we have for W St< W
n-1 n

Pr {the switch occurs at the next detector activation time and

in the interval (t,t+dt], given the past observations}

Pr {N =1, T=W_| T> t,N;=n-Liw =W, w,=W,, ..., w =W _,]

t, t+dt

Pr {t< W_St+dt, T=W_[T>t,N=n-Liw =W, w,=W,, .., w =W 1

(by the independence of {T=Wn} and {N,; t2 0})

Pr {t< W < t+dt th=n-1;w1=W1, wysWo, e, wn-1=Wn-l} x

Pr {T=Wn | T>t, Nt=n—1;w1=W1, w2=W2, ooy wn-1=Wn-1}

0
(A dt) a
where we used (2.3.14) and the definition of the rate of point processes

(2.2.3). Summing over all occurrence times {Wn}

Pr {t< T< t+dt|8,]

z Pr {N

L =1, T=W_|[T> ¢, N=n-L;w =W 0o, w =W ] I{Wn_ <t<w )

t, t+dt c

0
=T q A I dt (2.3.15)
st Hw _st<w ]

Define the function

%= 9 Iw <tcw ) (2. 3.16)
n n-1 n
Then by (2.3.8)
E [dx |8] = Iy 7y PF {t< T< t+dt |8, ]
- 0 - Y -
= I{t< T qt )‘t dt = (l—xt) q )\t dt = ft dt (2.3.17)
which has the form of (2.3.1)
_ 0
dxt = (l-xt) qt)‘t dt + dvt (2.3.18)

where Vi is a Bt-martingale. Since x, and q, are sample discontinuous

then vy is sample discontinuous with
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v, = Viiae Ve T

Since

1 t="T
Avt Awt =
0 otherwise

Pr {A VtAwt=1|Bt} = I{t(T} Pr {t< Tst+dt|ﬁt}

and

0
(l-xt) q, )‘t dt
by (2.3.17). Then

- 0
d< v, w> t- = (l-xt) qt )‘t dt It-

and

A

E [ §T< v, w>t_|3t] = (1_§Et) q xf |t = f;c (2.3.19)

By the previous calculation (2. 3.12)
E [x,0,-%) %] = 0f -22) & (1-%) (2. 3. 20)
t't t t t t t t o
and combining (2.3.17),(2.3.19) and (2.3.20) in (2.3.4) yields:

gk, = (1-%) a0 dat + BT LR -0 ) 2, (1-7) H1-R)a, ] (N £, a0

Rearranging

dx;

1_.0 o
-(0 - Ap) X (1-%)) dt

l 0 A A 0 A
(A - % (1-%) + qphy (1-%)

0 - 0 dNt (2. 3.21)

+ 1

with X, = E [xo] = P
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Case C: Assume T is equal to {Wn}, i.e. some occurrence time

and the events {T=Wn} are dependent on {‘Nt;tz 0}.

Consider again the Bt-decomposition of the signal process.

}

Pr {I\It, t+dt=1’ T=Wn lb t, Nt=n-1;w1=wli ce ey Wn-].:Wn-l

Pr {t< Wns t+dt’ T:Wn|T> t, Nt=n-1;W1=W1) se e ,Wn-1= n-l}

Pr {T:Wn lt< W S t+dt, T> t, Nt=n"1?W1=W1' ceeaWp W

n-1
+ Prit<W < t+dt | T> t,N=n-L;iw =Wy, ..., w = n-l}

0
qn(t’ Wl’ ce ey Wn-l) )\t dt

where we have used the definition of rate of a point process(2. 2. 3)

and have defined:

q (6, W,y W ))=Pr {T=Wn|t< W < t+dt, T>t, Ny=n-1Liw =Wy, oo W 1=Wn_1}
(2. 3.22)

Summing over all occurrence times {Wn}:

Pr {t< T< t+dt |8, ]

E Pr {Nt, t+dt=1’ T=Wn|T>t: Nt=n-1;wl=wln--: WI}-].:WI)I} I{wmrgt<wn}

0
Z (0 dt) aplt, Wysees Wy ) Inw <t< W)

n
0
=q A dt (2.3.23)
where
=Zq (t,W,,.., W )I (2. 3. 24)
4= &%R™ n-1' w__St< W ]
The function q, is adapted to 3t and generalizes the results of Case B

by making the a priori probability density dependent on the sample
path {Nt;tz 0}. The resulting filter has the same form as (2. 3.21)

with (2. 3.22) and (2. 3. 24) replacing (2. 3.14) and (2. 3. 16) respectively.
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2.4 Evaluation

From the development of the recufsive filter, it is apparent
that once the rates and the a priori density are specified, the resulting
switch time estimate can be obtained. Considering the traffic
problem posed in the previous section, several assumptions are’
made to simplify the evaluation. First we compare the trade-off
between a higher complexity model for the two rates which
will better represent the sensed data, (2.2.11) (2.2.14) and the
resulting computational complexity of the filter. We use the l-memory
self-exciting point process model for following headways, i.e. )\2
is provided by (2.2.12). As will be seen from the evaluation below,
this approximation does not reduce the performance of the estimator
as it applies to this specific traffic problem. The other rate should
be that for the nonfollowing headways, i.e. 1: = )‘nf as given in
(2.2.14). In view of the complexity of (2.2.13), the nonfollowing
headway probability density, it is difficult to compute.)\: and an
approximation is needed in order to produce a simple filter. From
the nonfollowing hazard function (Fig. 2.2), it is seen that for
headway ranges where the nonfollowing hazard function should deminate,

this function is constant to a fairly good approximation. Therefore

we assume,

A, = A = rate of free-flowing traffic

This indeed is very well justified since a Poisson model for nonfollowing
vehicles is rather widely accepted (see Section 1.2). The evaluation
of the filter's performance under this assumption proves that this

approximation also does not harm the accuracy of the estimator.
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Besides the rates, the a priori density affects the response of the
filter to detector activation times. Clearly, the a priori density
should be related to these activation times because the estimate
desired is the number of vehicles passing a detector location.
From the physical standpoint though these times should also
influence the a priori density., But the degree of such influence
is unknown and the added complexity makes the assumption that the
events {T=Wn} are independent of {Nt;tz 0} acceptable. In summary
then, we shall evaluate the disorder problem formulated in Case B
above with rate )\tl = ) , a constant.

In the following discussion, we consider the implementation

of the filter equation (2.3.21) and the associated simulation techniques.

50

Afterwards the filter's sensitivity to changes in the a priori distribution,

to different hazard functions of )\2 and parameter variations of a
particular hazard function are considered. Finally the filter is tested
against urban traffic simulated data and a summary of results

are presented.

Before turning to the implementation of (2.3.21), we consider
an acceptable range in which the a priori distribution and the following
headway rate may vary. For a long queue (10 or more vehicles)
leaving a traffic light, a downstream detector observes headways
as modelled by the lognormal rate (2.2.12). However, for short
queues (3 or less vehicles), the counting process is more random
and a Poisson rate may be more acceptable. As for the a priori
density, it is clear from the definition of the pn's that the information
carried by them is identical to the probability density for queue

length. In other words, one could bias the estimator around a
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particular activation time if one knew the size of the queue or

alternatively, if no knowledge is known about the queue, a uniform
density would be more appropriate. Therefore we shall evaluate
the filter for the following cases:
Case I Two Poisson rates with a discrete 3-valued
a priori density.
Case II Two Poisson rates with a uniform a priori density.

Case III A lognormal rate switching to a Poisson rate with

a discrete 3-valued a priori density.

Case IV A lognormal rate switching to a Poisson rate with

a uniform a priori density.
Finally, for this phase of the evaluation, the generation of the

sample path {N, ;t 20} with the specified rates follows Knuth [45].

Define
m, = X, = E [xt|3t] (2.4.1)
0 ' 1
Case I,II: For )‘t = )\0 . )‘t = )\1 , and Wn_l<t< Wn’ then by (2. 3.21)

dTTs = -()\1-)\0) TTS(I'TTS) ds

drr t
_— = - (Ay-Apy) ds
j 'rrs(l-ns) I 170
Wn-l Wn-l
( l-ﬂs) t ) )
- in = - (t-W (Aq-2
‘r'|'8 Wn-l n-1 170
l-m -1
1-m w
t n-1
y = exp [(t-W_ 1) (Ay-2n)]
( uA > ”W n-1 170
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-1
= <j”i‘—'l) [(t-W_ ) (A,-Ag)] + 1 (2. 4.2
T = o exp -Wo )\1 0 .4.2)
n-1

and at t = Wn (i. e. at detector activation times)

(k:_- XS_) LA k(i_
ﬂt-wt- = (l-ﬂt ) 1 0 ) (2.4.3)
) (Ap_=Ap_ ) m_ + )
t- t- t- t-
1
Case III, IV: For ), =21, Wn_1< t< W and by (2.2.12)
)\0 - glt-W,_y)
¢ =
on(t-W ) -u
1 - erf | n-l I
(o)
where g(+) denotes L(u, o) probability density. Then by (2.3.21)
dm_ = - (A-A2) m (1-m) ds
Mg = “Ag) T 1Ty
dws f 0
f LT R I‘HS) ds
Wn—l Wn-1
1-m, i f 0
- on = W = - Mt_wn-l) + J A ds (2. 4. 4)
s n-1 W
n-1
By (2.2.6),(2.2.7)
t
0
[20 as = - mppr 1t > t-w, )]
Wn-l ©
M(t-Wn_l)-u
= -l | g0 ax 1= - m[1-erf( — )]
t-wn-l (2. 4.5)

(since interarrival times for following process are modelled by

lognormal density L(u,0) ). Combining (2.4.4) and (2.4.5)
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)] +1

-1
l-mm
1-1 ) ( w ) b (t-W_ )-u
t n-1 n-1
( = exp [\ (t-W )]-[l-erf(
m m n-1 o
t Wn-l
l-m1
w__ on(t-W_ ,)-u
m, = (_F;ﬂ_l_) exp [(\(t-W_ )] [1-erf( — 1
n-1

for W <t< W
n-1 n

(2. 4.6)

Hence given the sample path {Nt;tz 0}, then between occurrence

times, 'rrt

jump times t=Wn , the discontinuity is computed using (2.4.3).

is computed by using either (2.4.2) or (2. 4,6) and at

The evaluation of the erf function is performed by a five (5) term

series expansion [46].

The above equations are implementable once the a priori density

and the rates are specified. For Case I and III, a discrete 3-valued

a priori density centered around the 10th activation time was used

0 n=0,l,2,oao,8
p, = 4 0.0125 n=9,11
0.975 n=10

with the associated q shown in the figure below.

% ¢
1.0 |
0975 T

.0125 |

-

(2. 4.7)

)

3— 0} 4 44 i | I——
W W W W R R We

t

Figure 2.3 The function 9 for nonuniform a priori density

of switching time T.
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For Cases II and IV, the uniform density was selected as:

= L n=012...,19 (2. 4. 8)

4

L]
]

} 1 ) !
]

. ! ! 1

Wi Wiy W7 Wig Mo Yo
Figure 2.4 The function g, for uniform a priori distribution
of switching time T.

e e - - -

t

The parameter values for specifying the rates were chosen arbitrarily
but are reasonable values given the empirical results of Branston [29].
The variations considered attempt to show the sensitivity of the

filter. Several lognormal rates are shown in Fig. 2.11., The

sample path {Nt;tz 0} generated for the different rates specified,

had the switch time set arbitrarily to occur after WIO'

Having presented the necessary assumptions to implement the

filter (2.3.21), we now consider certain general properties. Re-writing

dm, = -()\t - xf) m, (1-m) dt +£(m, ) dN, (2.4.9)

where

1 0
fhen ) = (Lory) Ay T 2y (qt_'”t-)
m) T T 1 0
A Tl T A (1-m._)
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Suppose )\2 > )\: and dNt=0’ then us is strictly increasing, approaching
one asymptotically. For dNt# 0, the discontinuities of m, are positive
or negative depending on the rates and the associated a priori density.
Defining

A={teW')\0(TT- )2)\111’}

ntAp M "9) S Ay Ty
(2.4.10)
T =imf (A)

then A-rrT= o < 0. The propagation of the minimum error variance

v
estimate of the signal x, given in (2.4.9) is a conditional distribution.
Therefore to obtain a scalar estimate of x, one generally accepted cost

criterion is optimizing the expectation of some integral functional of Xy i.e.

E T f(xs) ds
0

over acceptable values of the integrand. By the properties of conditional
expectation, this optimization can sometimes be simplified. A particular
Poisson rate disorder problem using the above criterion was shown

to reduce to a simple threshold test [42,43]. In our situation, we felt

a more relevant criterionwasto choose the activation time which showed
the largest increase in the estimated probability that a platoon of vehicles
had passed the detector. This estimate is called the maximum jump
estimate. From the physical standpoint such a single, scalar estimate
could be directly related to the number of vehicles passing the detector

in any particular traffic light cycle. The conditional error variance of X,
can be shown to achieve its maximum using this estimate (see Section 3.2).
Finally, u being a functional of y, ), 0 makes the filter's performance
sensitive to parameter variations. In a subsequent chapter, this sensitivity

of T is examined and bounds on the error performance are discussed.
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We consider first the effect of the a priori density on the filter's

response. For the highly localized 3-valued a priori density, the filter
should be biased around the IOth activation, Wlo' For the resulting q,
(Fig. 2.3), the set A in (2.4.10) is the null set. Therefore (-nt=0 for

t< W9), all sebsequent activation times cause A A to be positive. For

the two types of rate processes,
sk
Fig. 2.5 : Case I, Rates )\2 =0.9 7\: =0.1
Fig. 2.6: Case II, Rates A, ~ L(-0.2412,0.832) x: =0.2

the filter responds only around t:wlo. The filter is independent of the
lognormal or the Poisson rate for )\2 . Therefore (as other simulations
showed) variation of rate parameters for either Case I or III did not
alter the filter's behavior., Obviously

0 t< W9

t> Wy,
causes the influence of the filter to different rates to be minimal. However
once the a priori density is uniform, the filter responds to each activation
time and variation of rate parameters is more pronounced. By having

q; (Fig. 2.4) perturb uA at each activation time, the filter weighs more

highly upon the difference between the two rates to determine the switch

time.

Fig. 2.7: Case II, Rates )\0 =0.9 )\1 =0.1

Fig, 2.8: Case II, Rates =0.3 )\1 =0.2

Ao

* This series of figures shows the evolution of T, VS. time computed by
equations (2.4.2), (2.4.3) and (2.4.6). The associated table of numbers

are the randomly generated activation times {Wn} and interarrival times

r,
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Fig. 2.9%: Case IV, Rates )\0 ~ L(-0.2412,0.832) )\1 =0.2
t t

Fig. 2.10: Case IV, Rates xf ~ L(0.857,0.832) xtl = 0.2

In Fig. 2.7,2.9 the filter's response is almost identical. The smoothness
of the latter u results because )\2 is time varying (Fig. 2.11) while in the
former )\2 is constant., In both figures though for widely separated rates,
the filter readily distinguishes the switch time. When the rates are
nearly equal (Fig. 2.8, 2.10) the filter is unable to determine the switch
time and uA follows the a priori distribution (a ramp). In summary, a
highly localized a priori density makes the filter insensitive to past
observations of the counting process and becomes biased around the
associated P, Alternatively for the uniform a priori density, the filter
has a greater difficulty in determining the switch time but clearly utilizes
the entire past observations in the process.

From the above (Fig. 2.7-2.10), the filter's sensitivity to parameter
changes in the rate can be seen. For the widely separated rates (Fig. 2.7,
2.9) and before the 1oth activation time, 'whatever increase determined

by the continuous part n:, is negated by the discontinuous part TT:I. In

other words uniformity in the pn's causes a balancing effect between

c
t

and even zero (Fig. 2.8,2.10). The influence of this nonlinear term

m, and rr(ti on the filter's response. Notice that n-f can be positive

in the rates is obviously related to the set A in (2.4.10). However, an
explanation relating the quantities involved to the filter's response is

unknown.

* The parameters for the lognormal rates in Fig. 2.9,2.10 were chosen
such that their mean and variance, given by (2.4.11) are equal to the

mean and variance for a Poisson rate of 0.9 and 0. 3 respectively.
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To understand the effect of the different types of rates on the

filter's behavior requires an examination of their associated hazard
functions. As noted above, for a homogeneous Poisson process, the
hazard function is constant and equal to the rate parameter, ). The
lognormal hazard function (2. 2. 12) is time varying and concave with
respect to time (Fig. 2.11). Because of this concavity, the lognormal
rate effects -rrtc more for shorter headways and less for longer headways.
In Fig. 2.10, this fact is apparent for the time interval between W9
through Wi where the slope of rr: decreases with larger interarrival
times. But for a homogeneous Poisson rate, -rr: increases linearily
(Fig. 2.7,2.8). Although from empirical data, following headways

are modeled better by a lognormal density, certain considerations
became apparent in the simulations. In Fig. 2.11 observe for short
headways, it is possible for )\: to be greater than )\2. This explains
why after each activation time in Fig. 2. 10, TT: momentarily decreases
before increasing. However the major impact of these short headways
occurs in -rrf. For W16-W17 in Fig. 2.10, the filter responds with a
positive jump, i.e. increases the conditional probability that the switch
has occurred. In other words, the filter is misled by this short headway.
The discrepancy results from the assumption that the nonfollowing rate
can be approximated by a constant, \. More correctly, the nonfollowing
headways can be approximated by a displaced negative exponential, i.e.
)\: =0 for short headways. For urban traffic (velocity ~ 25 mph), it
would be unrealistic to have headways less than 0.5 seconds because

of time and space constraints between vehicles. Thus this would suffice

as the displacement factor in )\tl above. This modification was made in

the rate and the associated discrepancy in the filter was removed. A



65

sanfea xojowrered JUSISJJIP I0J dWII} °*SA N< ‘93ex yewraouBory Jo 301d [1°Z ‘813

U T

L WA 4

- |

{211

Ll 1 I |

s'et

1

[ M )

| | | S .

1

$°L

1

1

1.1

e I §

b

C189T° ) =2~ _

(2€8°’2tv2’e

-)1--- B

L6811

re

UIL SN (NOILONNS GuuZuM) Iivy TYWNONDOY 40 401d

%o

«%e

s2°1



66

sonjea I9jdweled JudI3JJIP 107 Sw} °*sA Ajsuap [ewraoudorT jo Jo1d i1z *Sid
$°Lt ( 11 §°2t ”® e 8L s $°? Ll ]
11 L1 44 [ I

e

- -

[ 2€8° 288° )1~

e

(2E8° ‘25p2° 0~ )1~

- ot

L8ty are IelL SN ALISNIQ TuNAOND0T 40 10N



67
s econd observation can be made about the evaluation of )\2 in (2.2.12).

Because the numerator and denominator approach zero as t+« and the
erf function is evaluated by a five (5) term series expansion, oscillations
in )\2 are observable (Fig. 2.11, L(1.0,0,41) for t=20). In particular,
this hazard function has analytical difficulties for large interarrival
times and the rate computed is only valid for headways less than
these oscillations. Fortunately, this results in no shortcomings in the
statistical model of headways nor the filter's response because for either
the following or non-following processes, it is clear that only the neigh-
borhoods of the means of each process is modelled reasonability correct;
the outliers are generally discarded (see Section 3.2). These facts are
brought to the attention of the reader to show the physical insight and
the mathematical structure afforded the problem by point process
theory.

Finally, the parameter variation of the lognormal rate is discussed.
The convexity of the lognormal rate makes it possible to have a highly
localized rate in one case while in the other a less peaked function can
be obtained (Fig. 2.11). Consequently, the filter is more sensitive
to parameter variations of the lognormal rate than the Poisson rate. A
highly localized lognormal rate results in a greater difference in the two
rates and therefore the slope of Tr: and the variation of nf are both
greater (Fig. 2.9). Alternatively, for a less peaked lognormal rate,
the difference in the two rates is more uniform and the slope of 'rf and

the variation of 'nd are less drastic (Fig. 2.10). In other words, when

t
the following headways have a small variance, the hazard function is
more peaked and the filter distinguishes the switch time more readily.

The ""peakness' of the lognormal density is related to the ratio of its
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mean and variance defined as:

Mean = exp (|4 +% g‘z)
5 5 (2.4.11)
Variance = exp (2 +0°) [exp(c”)-1]

For the same ¢ (=0.832) and different |y , the density is more localized
for the negative  (Fig. 2.12) and the resulting hazard function is more
peaked (Fig. 2.11). Similarly for the same | and different ¢, the rate
is more peaked for the smaller ¢ (Fig. 2.11). In summary, a more
localized interarrival time probability density gives a more localized
hazard function and thereby increases the performance of the filter,

Having developed an understanding of the filter's dependence on its
apriori density and the rates, we shall present the results of the filter
to simulated urban traffic. The Urban Traffic Control System (UTCS),
developed for the U.S. Federal Highway Administration, simulates various
urban traffic networks and its use and validity are well-documented [47, 48].
From the UTCS, we obtained the queue length every second, the signal
code of the traffic light, and the activation time and velocity of each
vehicle crossing a detector location. Two different street configurations
were considered (see Fig. 2.13,2.14).

The filter discussed above with the switch time apriori density
independent of the observations and th equal to a constant, ) was evaluated.
For any given cycle, an average vehicle discharge rate of 3 seconds and
a green phase of 40 seconds, meant that no more than 15 queued vehicles
could pass a detector loaction, Thus the apriori density was uniformly
distributed between 0 to 15 occurences. The parameters ),y and ¢
were held fixed during this phase of the evaluation. The variance (g =0.41)

in the lognormal was chosen to match Branston's empirical data [29, p. 143].



69

Fig. 2.13 Characteristics of Test Network #1

° 1] Q D2 0

Cycle: Length = 80 seconds, split 40 seconds, no amber
Node 6 offset 20 seconds relative to Node 5
Node 7 offset 40 seconds relative to Node 5

Link: Length = 500 feet, one-way

Headway discharge rate = 3.0 seconds

Detector: D1 (D2) are located 210 feet from the stopline of
Node 5 (6).

Fig. 2.14 Characteristics of Test Network #2

o w 1

2 i
%
D2 ol
Cycle: Length = 80 seconds, split 40 seconds, no amber

Node 2 offset 20 seconds relative to Node 1

Link: Length = 800 feet, two lanes, two-way

Headway discharge rate = 3.0 seconds

Detector: D1 (D3) are located 26 feet from stopline of Node 1 (2)
D2 (D4) are located 210 feet from stopline of Node 1 (2)
(Each detector location denotes two separate detectors,

one for each lane).
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The associated mean (y=1.0) was selected so that the average headway

discharge rate and the average following headway (eq. 2.4.11) were equal,
The Poisson rate () =0.1) was selected to yield an average nonfollowing
headway of 10 seconds. These parameter selections were arbitrary and
could have been replaced by using the moment estimates of the headway
data. However, because of the small sample size these parameter
estimates would not have been reliable. Finally, a parameter not
mentioned previously, the detector location was selected following
the recommendation of a study utilizing the UTCS, which found that
the detector placement can critically effect the performance of a traffic
controller strategy [49]. Clearly at a stopline location, we should
observe a greater rate change than at a detector located downstream
(e.g. D2 in Fig. 2.13) where the traffic flow is more regular.

For the ease of comparing the filter's maximum jump estimate

to the actual queue size, we tabulate the results below:

Table 2.1 Link(2,1)-Lane 2- Stopline detector Dl

Cycle Actual Estimate Deciding
Number Queue Tn (sec)
1 6 7 24.2
2 8 8 24.4
3 7 7 8.0
4% 7 1 24.2
5 9 9 20.4

6 7 6 Aok

% Switch time condition distribution is shown,
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Table 2.2 Link(6, 7)-Lane 1-Detector D2

Cycle Actual Estimate Deciding
Number Queue Tn (sec)
2 11 19.9
2 6.5
3 9.9
4 1 10 18.7
5 1 11 *3k
6 2 3 8.8

Table 2.3 Link(l, 2)-Lane 1-Stop-1'1ne detector D3

Cycle Actual Estimate

Number Queue

1% 0 6
2 1 4
3 1 4
4 1 8
5 1 6
6 0 4

For a large and distinct queue, the maximum jump estimate gives

generally the exact estimate of the queue size (Table 2.1). The definition
of a distinct queue is done by way of a typical cycle, e.g. the fourth. In

Fig. 2.15, observe that at a stopline detector the vehicles leave a queue

%% The interarrival time is either the default value because it is the end

of the cycle or the end of the simulation.
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with a fairly constant headway before the switch time estimate. As we

conjectured, a lognormal density for describing headways implies this
degree of regularity, When the first Tn is abnormal (T5= 24, 2), the
filter interprets a rate chage has occurred and the estimate obtained

is related to the subsequent activation time and vehicle position. For
a small queue, the filter gives a less satisfactory estimate (Table 2. 2).
Since the observations are 290 feet dowstream from the light, the
switch time is more difficult to determine. The estimate for the first,
fourth and fifth cycles show a significant error. Considering the fourth
cycle, for a one vehicle queue, one would expect a large interarrival
time after the first activation. In Fig. 2.16, observe that the headways
are nearly the same until W9 whereupon with T10= 18,7 seconds, the
filter estimates a queue of 10 vehicles, Although this appears as an
incorrect estimate of the queue, it results because after the ISt vehicle
leaves the street, a platoon of nine (9) vehicles joins the first by the
time it reachs detector D2. This situation occurs frequently in urban
traffic; the queue is not empty before an upcoming platoon of vehicles
joins it. One can improve the filter's performance in this regard by
making the apriori density dependent on the past observations. Then the
associated q provided by (2. 3, 22), (2. 3. 24) would depend on not only

a particular activation but also on the amount of time since the previous
activation. However for a stopline detector with a small queue, the
above would not necessarily improve the filter (Table 2.3). Since
detector DI is 26 feet from the stopline at least three (3) vehicles are
required in the queue (one interarrival time) before the filter can be
utilized. This results because the filter must be governed by a lognormal

rate )\2 before the switch time and governed by a Poisson rate )\: afterwards.
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Considering the first cycle (Fig. 2.17) with no vehicles in the queue,

the estimation problem is ill-posed. Therefore to avoid this situation,
one must position the detector closer to the stopline and utilize some
knowledge about the queue in the a priori density.

In conclusion, the effectiveness of the disorder problem to this
particular traffic problem is somewhat guarded. Clearly, the assumptions
concerning the two rates did not adversely affect the filter's performance.
Naturally by "'fine-tuning'’ the filter to these parameters would have
improved the resulting estimates. The extend of such techniques are
discussed in a subsequent chapter. The apriori density and the associated
q; did affect the filter's accuracy. Since p was uniform, the filter
depended more heavily on the counting process rates. For a distinct
queue, the change in the rate was easily distinguished. When the queue
was small or when vehicles override a queue, q, provided by (2. 3.16)

did not incorporate the necessary influence to the filter. Therefore, the
associated estimates were unreliable. Improvements in this regard

can be obtained by using (2. 3. 24) for 9 and making the P, less uniform.
One interesting feature of the filter was an improved criteria for separating
platoons. In Table 3.1 and 3.2, the deciding interarrival time varied

with each traffic light cycle.



3. PARAMETER SENSITIVITY AND ESTIMATION

3.1 Introduction

The estimation problem considered here can be divided into two areas:
parameter estimation and sequential estimation. From the historical data,
in the sense that all vehicular traffic follows the same characteristic
pattern, the statistical model of headways was developed. The model is
complete once the estimates of the four parameters are specified. Utilizing
this model a sequential traffic flow estimator was developed which used cur-
rent detector outputs to update the estimator, nt . This latter estimator
specializes the historical data to a particular link in a traffic network.
Yet, to be addressed is the affect of uncertainty in the statistical headway
model, i.e., parameter estimates, on the performance of the traffic estimate.

By assuming the following headways have a lognormal density one obtains
the robustness of the associated gaussian process, {n hi . Reducing the
nonfollowing density from a convolution to a negative exponential eliminated
both computational and statistical difficulties. These assumptions have
simplified the determination of the parameter estimators. However, these
estimates are probabilistic and, consequently, there is a margin of uncer-
tainty between the estimate and the parameter. The amount of error in any
given parameter can affect the filter's performance differently.

In the discussion which follows we shall assume that the parameters
are known exactly. In the first section we discuss the affeqt of a nominal
change in a parameter on the filter's performance. The sensitivity analysis
of the conditional variance is shown to be an important tool in this regard.

Subsequently, an error bound for one activation interval (Wn_1 . Wn] to

77
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parameter error is developed. In the next section, parameter estimation is
discussed. The degree of uncertainty is determined from the sufficient
statistics of these parameter estimators. The emphasis here being not on
the exact estimate, but rather on the range in which the parameter estimate
may lie within a certain confidence level. These results are then inter-
preted against nomial parameter variation to the maximum jump estimate de-
fined above. To conclude this chapter, areas of future research and ex-

tension of these results are considered.

3.2 Sensitivity Analysis

In the development of the traffic estimator, we desired a model for
the signal (2.3.18) and sufficiently simple so that the resulting algorithm
was computationally feasible (2.3.21). The rate processes essential in the
formulation were desired to be indicative of the actual processes involved.
Though developed (2.2.11), (2.2.14), the complete probalistic description of
these processes are computationally difficult to determine. Consequently,
unaccountable errors are introduced into the signal and observation models.
A major tool in determining the affect of these errors on the filter's per-
formance is a sensitivity analysis of the conditional error covariance.

The conditional mean, ﬂt , defined in (2.4.1) is the minimum mean

square error estimate of the signal, L In particular T, was chosen to

A 2
mi El(x, - X
in [( ¢ t) ]
where the minimization is over the set of estimators of xt. Let the actual

signal and observation processes be modeled by (2.3.1.) and (2.3.2), and

suppose we assume the signal and observation processes are modeled by
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dx = f dt + dv
t t t

dN =X dt + dw (3.2.1)
t t t

Define the actual and assumed conditional error variance

<
n

A (2
El(x, - %) [F.]

M

El(x, - it)ZIFt] (3.2.2.)

<
[]

The algorithm presented for the optimal estimate ﬁt yields the minimum cost
function only if the model represents the actual process. Otherwise the
actual and assumed conditional errors variance are different. Consequently,
when the incorrect model is utilized, the conditional error variance gives
an indication of the error, and therefore is incorporated in an error analysis
and sensitivity study. The analysis development using the conditional vari-
ance is dependent though on the observation algebra, Ft .

Because of our state equation (2.3.5), the conditional error variance

reduced to a simple expression

v, = El(x,-2)°|F,] = ELC|E,] - & = 7 (1-m) (3.2.3)

where we have used "t defined in (2.4.1). Large-scale sensitivity analysis
of the conditional error variance can be defined
vV -V ) (l-ﬂt)ﬂt - (l—'rrt)Trt

t t
AB - ) (3.2.4)

where A8 represents the difference between a parameter in the actual process
and the same parameter in the assumed process. Similar small-scale analysis

can be defined:
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th s
’Wle = Ea[(l—'ﬂt)'n'tlle (3.2.5)

where 80 has a similar interpretation as A8 above. The advantage and results
of either method can be different. In small-scale analysis, the evaluation
may be easier than large-scale analysis because typically Vt is an involved
expression. For the model provided in (2.3.1), (2.3.2), the conditional

error variance has the representation [30, p. 349]

dv_ = E[2(f -f ) (x -%) + 1|F Jdt

+

& -1 o 2, 4 -
A7 EL(x,~%,) (A=A ) | F 1(aN -\ dt)

A _2 2 ~ ~
A " E [(xt—xt)(xt-xt)]Ft]dNt (3.2.6)

- 2 2 -
V0 = E(xo) - E (xo) =0

However, large-scale sensitivity results are more useful [50, p. 386]
especially when Vt is not differentiable in the parameter under study.
Since ﬂt is a differentiable function of u, A,0 , we shall examine only
small-scale analyses below.

The dependency of T, on these parameters is through the rates (2.4.2),

(2.4.3)
c 1-an_1 1 ﬂn(t-wn—l)_u -
mo= (—%—————) exp[kt(t—wn_l)][l—erf( 5 )] + 1
W
n-1
for W <t <W (3.2.7)
n-1 n
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1
d Og-Adm _ + g, A0
"t = (l-nt_) ) i) (3.2.8)
(At—At)nt_ + At
where
R
t
)\0 _ g(t—wn—l)
t 1- erf[ﬂn(t-wn_l) - u]
o
g(*) = L(u,0) density .

From (3.2.5), the parameter variation in the conditional error variance

v Sm

t - (1-2m

_t t
56 (3.2.10)

t) 66
is directly proportional to the variation in the conditional mean. Conse-
quently, the sensitivity analysis has been reduced to studying the variation
in the filter equations (3.2.7) - (3.2.9).

The approach we follow is to examine the continuous part and the dis-

continuous part of the estimate separately. Suppose on the interval

(Wn_1 . Wn], the actual and assumed estimates LA %t are identical at
t = wn-l . At t = Wn , we desire to know the amount of change
= - .2.11
Aﬂt LA (3 )

that occurs in the estimate due to errors in the parameter estimates.
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[a g\

Fig. 3.1. Variation of Conditional Mean Due to Variation in Parameter

. . s s . c
First we consider the variation of the continuous part ﬂt .

Variation wrt A

Define

W n(t-Ww ) -u
c, = (<5—153> [1 - erf ( n-1 )] (3.2.12)

then by (3.2.7)

c _ -1
mo= [Cl exp[A(t-Wn_l)] + 1]
and
c
dnt —(t—Wn_l)C1 exp[l(t—wn_l)]
o (3.2.13)

[c, exp[A(e-w__ )] + 11%

for W <t <W
n-1 n



Before continuing, we develop two useful equalities.

Define

1 2
Ln(t-W ) -u i
h(u,0) = 1 - erf ( e i 2 dt
Ln(t-wn_l) -H
[¢)

so that
2

Sh(u,o0) _ _1 expl —(En(t—wn_l) -1 :

Su oVET 267

= (=W __ ) s(e-w__.)
2

Sh(u,0) _ -1 exp[—(ﬂn(t—wn_l) -n - [-(ln(t—wn_l) M)

8o voxs 202 o2

n(e-w ) - u
- —=— 2 a0

where g(+) is L(u, 0) density provided in (1.2.13)

Variation wrt Uu,O

Define

¢, = b ewD(e-u )]

then by (3.2.7), (3.2.14)

'rri = [Cyh(u,0) + 177t

83

(3.2.14)

(3.2.15)

(3.2.16) |

(3.2.17)
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and

5
& -C, —[h(u,0)] =-C_(t-W__ )g(t-W__.)
Gut _ 2%y s -2 n-1 -1 (3.2.18)
[C2 h(y , 0)+1] [C2 h(u,0) + 1]
by (3.2.15)
§m. -C. > [h(u,0)]
t _ 2 8o ¢
% 1c, G, o)+
n(e-Ww ) -y 6nm
= n-1 t (3.2.19)

by (3.2.16) .

The variations above all have the same denominator and since C1 , C2
are positive, HE is a decreasing function of A, u (3.2.13), (3.2.18). There-
fore, if ﬂz < L% , then overestimating A or u causes the conditional error
variance (continuous part) VE to be smaller (3.2.10) and, conversely, if
ﬂi > L, By (3.2.19), WE is a decreasing function of 0 for u < Zn(t-wn_l)
and an increasing function for the reverse inequality. Similar comments can

be made about the affect of 0 on the conditional error variance V: . If

h(u, 0) = {fw g(x)dx > g(t-W__) (3.2.20)
n-1

then from (3.2.12), (3.2.13) and (3.2.17), (3.2.18)

om. oy ) bh(u,0) - g, Y1
(C, h(u,0) + 11°




c
om
Since — —t are negative
s\’ &p
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an nz »
lﬁl > —5—u—l for all t >0 (3.2.21)
om

By (3.2.19), 7§f is negative for ﬂn(t-Wn_l) > Y and positive for the reverse

inequality, so by (3.2.21)

5"2 5“2 5ﬂ§

! 2 ’S—ﬁ" = |_53‘| if [Ln(e-W ) - u]l <o

5“2 GWE 5ﬂ:

_&Tl <yl g if [n(t-w ) -ul 20 (3.2.22)

From (3.2.22) observe that the filter is not dominated by any one
parameter for all time. Instead, the filter's sensitivity is divided into
two regions. For long headways, the filter is more sensitive to variations
in 0 . This fact can be deduced from the lognormal rate (Fig. 2.11). For
the same variance (0 = .832) and different mean, the rate has the same
asympotic shape. But for the same mean (approx.) and different variance,
there is a more drastic change. Recall, the localization of the lognormal
rate depends on the ratio of its mean and variance (2.4.11) which can
clearly be seen to be more sensitive to 0 than u . For short headways,
variations in A dominate the filter's sensitivity provided (3.2.20) is
satisfied. This is reasonable since in this region, the filter attempts to
distinguish the following and nonfollowing headways. Representative curves
of (3.2.13), (3.2.18) and (3.2.19) are shown in Fig. 3.2, 3.3, and 3.4,

respectively. The initial condition 7 (= PIN(-)) in (3.2.12) and

wn--l
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(3.2.17) is varied as shown. The relation (3.2.20) plotted in Fig. 3.5

simplifies the results (3.2.22). However, if not satisfied, (e.g.,
L(-0.2412 , 0.832), then (3.2.21) is no longer true and, consequently, the
filter's sensitivity can be divided into three regions. In particular, for
short headways variations in y dominate, for medium headways variations in A
dominate, and for long headways variations in O dominate. In summary though,
if (3.2.20) is satisfied since 0 , A are always less than 0.5 in real traf-
fic, the error introduced by the mean is insignificant.

The variation of the continuous part of the conditional error vari-

ance, V: can be easily determined by (3.2.10). By (3.2.22) for T, < b

dvi GVE Vi
5l 2 '?Hfl-i =57l if o > [n(t-W__,) - ul
(3.2.23)
SVE GVE sz
—6E| i Iﬂ-l _<_ Wl if o < [len(t"'wn_l) - u]

and conversely for m_ > % (assuming (3.2.20) satisfied). The variation of

t
VE with respect to A, U, 0 are shown in Fig. 3.6--3.8, respectively. The

curves are of the same shape as the variation in ﬂt but are symmetric about
the time axis. For M, < % the sensitivity of VE to parameter variation de-
creases for increasing ﬂ: and the maximum for any particular ﬂwn-l moves to
the left. It is apparent from Fig. 3.2--3.4 that for increasing Ty s the
conditional mean has less sentivity to parameter variations. However, be-
cause of the convex relationship (3.2.10), variations of the conditional

variance are smallest in the neighborhood of m_ = % and greatest in the

t

neighborhood of = 0, mo= 1.
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For the discontinuous part NS , we define

(@]
L]
[
!
=

(1=m )m (1-q )

1,0 0,2
[A-ADm _ + 2]

then by (3.2.8)

Variation wrt A

0
3)kt

4.1 0,2
[Atnt_ + Cakt]

0
om Trt_kt(c4 -C - ko
57t

by applying (3.2.26).

d
Since Ht is more involved, several useful equalities are developed.

(1.2.13)

. ~(en(ew__ ) - W’

g(t—Wn_l) = — exp
c(t—wn_l)/Zn

we have

94

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)
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Sg(t-w_ )  g(t-W_ ) £n(t-w__.) -y
n-1 n-1 n-1
M = 5 [ 5 ] (3.2.28)
2
Sg(t-W_ ) @n(t-w_ ) = u)
n-1" _ n-1 1
- 8o g(t'wn-l) [ 3 - o]

(o

g(t=W __)) (Kn(t—wn_l) - 3)2 {1_(£n(t—wn_1) - u)-2]

(o o) o]

i Sg(t=w__;) (ﬁn(t—wn_l) - u) {1_(£"(t“wn-1) - u

-2
Y 5 ) ] (3.2.29)

(o]

and by (3.2.9), (3.2.14)

O T 2
é}t _ Su h(u, 0) - g(t-W__,) 8u L(u, 0)
S b (u, 0)
g(t-W__;)
= —— Ln(e-w__) - W) h(y, 0)
[oh(u, 0)]

(- )0° g(t=H__ )] (3.2.30)

by applying (3.2.15).

Sg(t-W__.)

n~-1 Sb(u, 0)
m‘t’ 5o b, 0) - g(t-W )45
80

niu, 0)
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Y 5 ) Jlh(u,0)

_ _ Sg(t-W__.) En(t-W_ ) - p -2
(Ln(t wn—l) u) { n-1 [1-( n-1
\

g

hz(u , 0) - g(e=W__ ) 'd%h(“ > 0)}

by applying (3.2.16), (3.2.29)

20 tne-w ) -u a0 a0
t - [ n-1 ]( t) - _t (3 2 31)
(o] o] Sy o] tee

by applying (3.2.28), (3.2.30) and (3.2.14), (3.2.9)

Variation wrt U, O

gl n Al c,-c) &0 520
—t - _c t= 4 3 b - ¢ a =t (3.2.32)
Su 4 [}\11T +C )\0]2 Sy 57t 8y
t t- 4"t
by (3.2.24) - (3.2.26). Similarly
o TN
—ga- = —C5 At ('6? (3.2.33)

From this development, it is apparent that the parameter sensitivity of the
nonlinear terms in the rates, ﬂ: , 1s more complicated and bounds similar to
(3.2.22) are not feasible. Although analytically difficult to prove, it can

0
SA
be shown computationally that Tﬂf' in (3.2.30) is negative (Fig. 3.9).

Consequently, since C_ is positive (3.2.26), ﬂi is an increasing function

5
of A, u (3.2.27), (3.2.32).
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The functional dependency of O on wg is not as explicit because of the in-
volved relationship (3.2.31) and thus no comment is made. From the results

of Fig. 3.9 and by (3.2.31) - (3.2.33),

0 0
So du 5 7t "8y 8o
csxg axg .
= (—g—){(—ﬁ) [0 - n(e=W__) - W] + A} (3.2.34)

is positive if Kn(t—Wn_l) - 4 >0 . In other words, on this interval

dng Gng
35 75? are positive and hence
"d Trd
t t
oo | 2 5] if o < Ln(t-W__)) - ¥ (3.2.35)

On the complement interval, no such simple relationship can be obtained as
observed from the right most factor in (3.2.34) and by (3.2.30). A plot of

this factor for various parameters is shown in Fig. 3.10. By (3.2.27),

(3.2.32)
Gni Gﬂi 0 1 6A2
NG = C5(>\t + )\t T (3.2.36)
%

Observe a similar difficulty results because of Tﬁf given in (3.2.30) and
hence no conclusive statement can be made. A plot of the right most factor
in (3.2.36) is given in Fig. 3.11. Since the bounds similar to (3.2.22)
are not obtainable, the relationship between (3.2.27), (3.2.32), (3.2.33),

shown respectively in Fig. 3.12-3.14, are dependent on the specific parameter
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values.* By Fig. 3.11

0, .1 °>‘2
)xt+)\t—éﬁ-30 for all t > 0
and thus by (3.2.36)
o o
_a)T|3|—6—u'l for all t > 0
By Fig. 3.10
8AL o[ >0 for © > 2.550
() o= fnew ) -ul+ 2 7 for t < 2.550

and by comparing Fig. 3.12, 3.14

617‘: Gni
lﬁl 3 I_S? for all t 3 0

Gn: anf ang

l N I Rd l Su | 2 l_go_l if t < 2.550
d d d

o T
t t t

x! 2 5l 2 b5 if t > 2.550

101

(3.2.37)

(3.2.38)

From (3.2.38), the discontinuous part of the filter is more sensitive

to one parameter, A , over all time. This result is reasonable for two

2

*Discussion concerns parameter values W = 1.0 , ¢ = 0.1681 ,

A=0.1gq =0.2.
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reasons. First, ﬂg is explicitly dependent on A in (3.2.8), while u, 0

are implicitly dependent on ﬂ: via Ag . Second, in the evaluation (Fig.
2.7-2.10) for almost all activation times, ﬂi is negative, i.e., the
probability that the switch had occurred decreases. In other words, the
second rate dominates the behavior of the discontinuity. The interesting
aspect of (3.2.38), though, is the relationship between U and 0 . As in
(3.2.22) for short headways, U influences the filter more and for long head-
ways, O influences the filter more. This result can be readily related to the
lognormal rate as discussed above.

The variation of the discontinuous part of the conditional error

variance, Vi , is similarly deduced from (3.2.10), (3.2.38). For ™ <k

d

vy 8V, ve
=l 2 |57 557! if  t < 2.550
(3.2.39)
svd vl e
! 2 bl 2 |57 if t > 2.550

and conversely for ":-3 % . Comments similar tg those concerning Vg can be
made except if “t < ¥ , the maximum value of g;; for increasing ﬂt— moves
to the right (instead of the left). The variation of Vg with respect to
A,u,0 are shown in Fig. 3.15-3.17, respectively.

From the analysis of the continuous and discontinuous parts of the

conditional variance, several comments are made. First, since

t —6—6—?— ——é— (3.2.40)

the discontinuous part ﬂi is more gensitive to parameter variation given any

arbitrary interval time. From (3.2.40), let td(tc) denote the time when the
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left (right)-hand side achieves its maximum. Then from Fig. 3.6-3.8, 3.15-

3.17, observe that t, is always less than t_ for any particular parameter,

d
® . Recall from Fig. 2.10 that the short headway between W16 - W17 misled

the filter. 1In this neighborhood in which t, is included, the difference

d
in the rates Ag , Ai has a sign change (Fig. 2.12). Similarly (although
not shown), V: has a second peak when this difference in the rates reverses
sign. Thus, for short headways and quite long headways, ﬂi is more sensi-
tive to any given parameter variation, while for intermediate headways nz
is more sensitive. This latter fact can be deduced from (2.3.21) for

%%
<t< Wn where the greatest influence of-?%r occurs when the difference

wn——l
between Ag , Ai is greatest. Observe (Fig. 2.11), t. defined above is in
this neighborhood. One desirable property of any estimator is that the
error variance decreases with increasing observations. The conditional
variance curves show that parameter error introduced into the signal model
affect the filter differently. Parameter uncertainty in ﬂi approaches zero
for increasing (larger interarrival) time, while in ﬂg , the inaccuracy de-
creases to a nonzero value. In the case of A , error in ﬂ: even increases

with increasing time. Finally, the symmetry of the conditional variance

results because of (3.2.10). Naturally, parameter uncertainty has its

d

greatest influence when nt = 0or 1. Notice, though, that ﬂz and “t

have a complementary affect to this uncertainty. The variation with respect
to any particular parameter is of opposite sign and for increasing initial

conditions, m , the maximum defined in (3.2.40) move in the exact oppo-
n~-1

c d
site direction. Recall this same complementary effect of T and m, was

noted when the a prior density, p_ was uniform.
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To conclude this section, we return to the discussion of (3.2.11).

Any uncertainty in a parameter can be approximated to first order by

d
Gﬂt _ Gnt Gnt _
Am_=m - W= 5z (6-6) < l55 + 55| (6-®) (3.2.41)

The dependency on time of this left-hand side is explicit. By removing it,
one can obtain a sample independent error bound (maximum number of inter-

arrival times are specified by a prior density)

c d
max Gnt Gnt _
ame < 70 g+ 5ld 0 (6-9) (3.2.42)

Unfortunately analytical expressions for this extremization were not obtainable
and, consequently, computational techniques are necessary. Fortunately,
such optimums exist by the convexity of the functions involved. Hence, given

any interval (W Wn] , except in the neighborhood of M= 0 or 1, varia-

n-1"~

tion of the filter to parameter uncertainty can be bounded.

3.3 Parameter Estimate Uncertainty

For the bound in (3.2.42) to be meaningful, one must specify the
neighborhood of the parameter, 6 . However, any estimator 6 of this un-
known constant is probabilistic. (For a particular sample, we shall denote

the estimate by ® .) From its statistics, the uncertainty between the

parameter and the estimate can be related by the probability measure:
Pr{|6-8] <e} <6 (3.3.1)

In other words, given a certain confidence coefficient § , one can insure

(in probability) that
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|6 - 8] <e

for € > 0 . By (3.2.42), one can similarly insure this same confidence level
for the bound on Aﬂt . Before preceding in this line of discussion, we first
examine techniques to estimate these parameters.

In our initial development, we conjectured that the statistical model
of headways was the same for all traffic flows (light, moderate, heavy) and
different traffic environments (urban, rural, freeway, etc.), but the para-

meters would vary. Therefore, the model proposed (1.2.12)

p(h) = Yp (h) + (1-%) P (h) (3.3.2)
1 (1 he) 2

pe(h) = =3 exp [————1 = g(h) , h>0
< 20

pnf(h) = X exp (—Ah)gh g(x) exp (Ax)dx . h>0

was specialized to a particular traffic network link by the parameters
V,A,U,0 . Then the obvious question arises: Given traffic detector data
and traffic signal code, determine estimates of these parameters? This
question appears somewhat similar to the one posed in the introduction of
the disorder problem. However, in that context, we were concerned with es-
timating a traffic parameter, queue length, while here we are concerned with
estimating parameters in our model. Also the observation period of the for-
mer was smaller compared to that for the latter. As mentioned previously,
the parameter estimates have a certain periodicity defined by the lights.
Fortunately, there are a number of techniques available for determin-

ing parameter estimates from traffic data. The method of moments, whereby
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one equals the sample moments {mi} to the population moments determined

by (3.3.2) results in a set of four equations in four unknowns. Using this
technique, Buckley [4 ,2]1 ] found numerical methods necessary to solve the
composite model equations. The population moments about the origin of (3.3.2)
can be shown to satisfy

= . -
un = Ufn + ()\)[ Un_l \Puf(n_l)] (3'3'3)

where Mo (ufn) is the nth moment about the origin of the overall (following)
headway density. These parameter estimates, by simple calculation can seem
to be complex expressions and Branston found poor overall x2 goodness-of-fit
results [29, p. 129]. Only when m; , m, are small compared to m, are these
estimators efficient.

Consequently, variations of the method of moments were necessary.
Branston utilized a combination of minimum chi-squared and method of moments.
By varying U and ¢ , the parameters, A and y were determined from the first
two sample moments. Then, the resulting chi-squared was minimized using a
numerical routine. The resulting parameter estimates were obtained from
suburban traffic data. In urban traffic, since the maximum headway is de-
pendent on the light cycle, the model (3.3.2) is a truncated density. Con-
sequently, a different approach is necessary.

Before continuing, we consider the model proposed (3.3.2) in the urban
traffic environment. Since there is a maximum (finite) headway, the observed
headways are truncated in the sense that only a certain range of the variate
is defined, e.g., 0 < hi < maximum light cycle. Alternatively, though, given
n observations obeying (3.3.2), those determined by pf and Pnf are not easily

identifiable. Instead, for parameter estimates, the sample set must be
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censored. In particular, from these n observations, we may consider only
n -3 (j >0) of them whose value lies within a certain range. For example,
following headways are (on the average) always less than nonfollowing head-
ways and, consequently, only variates between 0 < hi < preselected threshold
are used in determining estimates of Y and 0 . The distinction between
truncating and censoring is that the latter is a property of the sample while
the former is a property of the distribution.

To clarify these remarks and develop an alternative estimation tech-
nique, we consider a lognormal density L(u, O ) and a shifted negative ex-
ponential density with parameter A . Given n observations {x1}2=1 of which
n - j obey a lognormal density, we wish to determine estimates of W and 0 .
By the robustness of the gaussian process, we first take the Zn of every data
point which enables us to use the so-called outlier test [51,8 32.23] to re-
move the remaining j impurities. In particular, let §(§2) denote the sample

mean (variance) and it can be seen that the following algorithm converges.
ALGH1: Censored Normal Variate Estimates

(i) Let k = 1 and compute §1 and Ef for the entire sample of n
truncated observations.
(ii) By a two-sided outlier test, discard those observations out-
-2 . -
side the ZSk neighborhood of X,
(iii) Let k = k + 1 and compute ;k and Ei of the remaining sample

= = -2 =2
(iv) 1If ]xk - xk_1| < & and Isk - sk-ll < €y » then set u = X

and 02 = Ezk . Otherwise go to step (ii).

Clearly the outlier test censors the observations and the 2§§ criteria re-

moves both the high and low variates and retains 99.6%Z of the remaining
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(normal) observations. Suppose the j impurities obey the displaced negative
exponential. Then by the law of large numbers a similar technique can be
developed with the difference that only a one-sided outlier test is meaning-
ful. Since the smallest observation X in is a sufficient statistic of the

displacement factor, [51 , §17.40] then

- -1
A= [x - xmin] (3.3.4)

ALGH2: Censored Shift Negative Exponential Variate Estimates

(1) Let k = 1 and compute §1 and Ef for the entire sample of n

truncated observations and determine kl from (3.3.4)

(ii) By a one-sided outlier test, discard those observations less

-2 -
than 25k neighborhood of X
- -2

(iii) Let k = k + 1 and compute X » Sy and Ak of the remaining
sample

(iv) 1f lAk - Ak | <e. and |§2 - 82 | < e, , then set A = Ak

-1 1 k k-1 2

Otherwise go to step (ii).

Since the variance of these j observations is large (for A ® 0.1), the re-
sulting estimate may not be reliable.

The parameter estimates required in the disorder problem can be de-
termined by using ALGH1 and/or 2. However, the observations must be trans-
lated by £n before ALGH1 is used. To test the validity of this technique,
headway sample paths were generated (as in Section 2.4) with the displace-

ment factor, a = exp (4 + %02) and sample size of 500 observations. Only

one parameter set was examined: u = 1.0 , 02 = 0.1681 , A = 0.1 with

€, = € = 10-3 . The reason a(=3.0) was selected to be the mean of the

1 2
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lognormal density was to insure sufficient separation of the two populations
under study. The resﬁlts of ALGH1 for different values of § is shown in

Table 3.1.

Table 3.1. Censored Lognbrmal Parameter Estimates

_ _2 _ Number of
Y u o A Following
Headways
1.0 1.017 .0605 2.101 382
0.5 1.355 .3485 .048 407
0.25 1.976 6749 .041 479

The parameter estimate % was determined from (3.3.4) using that part of the
population discarded by the two-sided outlier test (translated by exponential
though). These preliminary results show that for Y near 1.0 , U is quite
near the exact value, but deteriorates as Y approaches zero; similarly for

82 . TFor ALGHl1 , these results are reasonable. With decreasing ¥ , the

sample variance increases and, consequently, 0° increases. But with an
increasing Ei , the two-sided outlier test discards more of the lower value
variates and causes J to increase. The estimate A is unreliable for ¢y = 1.0
but increases in reliability as { decreases. The censored shifted negative
exponential technique performed even worse (ALGH2). Because the variance
was so large (*70), the outlier test did not discard any observatioms. A
slight variation of ALGHl and 2 was investigated where instead of using

2§2 in the outlier criteria, §2 and 3§2 were used. The effect was a de-

k k k

terioration in the results.
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The accuracy of the parameter estimate, however, cannot be measured
simply by comparing the difference of 8 and 6 . Having statistics, the es-
timator 6 defines a certain level of confidence as specified by (3.3.1).
Let 2 be a variable dependent on the observations {xi}izl and on a parameter
g ,1i.e.2 = £(0, X) x2,",xn) whose sample distribution is independent of

6, e.g., let 2 be a sufficient statistic of the observations. Then given

z,, such that

6 , we can find a z 2

1 ?

Pr {zl <2< zz} <3

Consequently, by the inverse mapping f—1(2) and the independence of 6 ,

6, can be determined such that

limits 61 » 0,

Pr {e1 <6< 62} <86 (3.3.5)

This statement must be interpreted very carefully. It does not mean with

probability 6 that 6 is within the specific limits of the interval, but
rather says that with probability & , the random interval [91 s 62] contains
the parameter 6 . In other words, on the average, in a proportion of )
cases, we are insured that 6 lies within this interval.

For the parameters M and 6 , there are sufficient statistics having

well-known distributions. For an unknown 0 , the "student" statistic

¢ = X H (3.3.6)

with

2 1 n -2
8" = o -1 &1 (M

is a sufficient statistic of u having a Student t- distribution with (n-1)

degrees of freedom [52, p. 305]. Since this distribution is symmetric, given
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§=1~-qa>0, there exist a t such that
n-1, 1—0L/2
pr {-t tet =1-a
n-1, l-o/, < < 1, 1-a/2}
or by (3.3.6)
- Vs - Vs
Pr {x - T tho1 . l-a SuSx+ ot , 1-a } =1-0a (3.3.7)
/2 2
where t 1 1-a, is determined from a table of the t - distribution [ 53],
? 2

For the variance of a normal population, the statistic

2
2 = {n-ls (3.3.8)

2
(o

is distributed as a chi-square distribution with (n-1) degrees of freedom.
For large n (greater than 30), the chi-square distribution can be approxi-

mated by the normal distribution [52, p. 198] by

Pr {leﬁ xi} = d( 2xi - '2n-3)

so that for a confidence coefficient of 1 - o

2
, (DS
Prixg <—5—2X

-
I
Q
]

2(n-1)82 ) 2(n-1)s2
Pr { 0" < }

(6 (1-a7,) + /28312 (6 o) + /2031




118

where ¢(*) 1s the evaluation of the standard normal distribution, N(O, 1).
From the results in Table 3, 1, the confidence interval of u and

02 can be computed using (3.3.7) and (3.3.9), respectively.

Table 3.2. Confidence Intervals of u and 02

Confidence Confidence
Confidence Interval Interyal
Y Coefficient of u of O
1.0 0.999 (.9745, 1.0594) (.0484, .0781)
0.90 (.9962, 1.0377) (.0540, .0685)
0.80 (1.000, 1.0331) (.0553, .0666)
0.5 0.999 (1.2569, 1.4543) (.2805, .4461)
0.90 (1.3074, 1.4038) (.3119, .3931)
0.80 (1.3180, 1.3932) (.3196, .3827)
0.25 0.999 (1.8493, 2.1025) (.5519, .8462)
0.90 (1.9141, 2.0378) (.6091, .7537)
0.80 (1.9277, 2.0241) (.6229, .7353)

Knowing the exact value of U and 02 for the sample population, we can
assess the merits of the associated estimates using these Confidence
Intervals (CI). Since, for 99.9% of the time, M is outside the CI for ¢ =
0.25 and ¥ = 0.5, the associated estimates are poor. Only for ¥ = 1.0 is
the estimate ﬁ accuracy with a confidence coefficient of 80%. The vari-
ance estimates are overall poor with the inaccuracy increasing with de-

creasing V¥ .
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Although the estimation technique obtained generally poor estimates,
other techniques have not yet been examined (or tested). From these
methods, the CI can serve as a useful tool in insuring the accuracy between
the estimate and the parameter and thereby obtain a bound necessary in
(3.2.42).

In this regard, a qualitative investigation was made of the condi-
tional mean T, and variance Vt when a known parameter error was introduced
into the signal model (2.3.1). 1In particular, for the same parameter set
used in Table 3.1, an interarrival time sample path obeying (3.3.2) was
generated (as in Section 2.4). The conditional mean (variance) was computed
using this set of parameters and using the same set with one parameter per-
turbed. In Fig. 3.18, T and ﬁt (dotted line) have a 50% variation in u .
Similarly, a 50% variation in A , 1 , O on the conditional variance Vt are
shown respectively in Fig. 3.19-3.21.

These results reveal the robustness of the filter to parameter vari-
ation. Clearly the maximum jump estimate (defined in Section 2.4) is not
affected by these perturbations for the parameter set considered. From
Fig. 3.19, the variation to A is quite small due to the fact that AA = 0.01 .
However, variations to Y and O are not significant. Notice in Fig. 3.18,
the parameter variation does cause different effects on 7° and "S are dis-

t

cussed in the previous section.

3.4 Future Regearch

The results of the maximum jump or queue length estimate are promising
for large queue. The insensitivity of the filter to parameter variations in

A, 1,0 is satisfying. However, certain areas still need to be investigated.
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The preliminary results in the parameter estimation show that at best the

parameter estimates, needed in (3.3.2) are poor (see Table 3.1 and 3.2).
Consequently alternative techniques need to be examined. Since the observed
data is censored, the approach of Menhenhall et al.[54] seems promising.
They obtain maximum likelihood parameter estimates, required in a mixed
exponential density by using a modified likelihood function that
incorporates the truncation in the observations. However, as Hill[55] noted,
in general any estimate of the mixing parameter { is difficult to obtain
when the two populations are not well separated. Although, these parameter
estimates do not significantly effect the filter's performance (Fig. 3.18),
the case is not the same for the a priori switch time density, p, . We
observed that for small queues (3 or less) or when a platoon of vehicles
override a queue, the resulting estimate was unreliable. In other words,
the uniform p,, independent of the observations Nt’ did not incorporate
enough of the statistical information. Consequently to improve

the filter's performance, the dependency of p on Nt needs to be examined
with the more complex expressions (2.3.22),(2.3.24) replacing (2.3.14),’
(2.3.16).

Besides these two areas, one may consider how the filter is effected
by altering certain assumptions necessary in the above development. In our
discussion, the headways were considered independent. Clearly though,
following vehicles in urban traffic are influenced by the lead vehicle, i.e.

p is nonzero.in (1.3.6) and the following rate xf has the form (2.2.11).
The hazard function will have the same shape (Fig. 2.11) but now depends on
both the previous activation time and interarrival time and should improve
the filter's performance. Assuming that the second rate X:' resulted

from a homogeneous Poisson process, may have been premature. From the
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filtering standpoint and because the observations are censored, the

hazard function may have been more fittingly chosen to peak in a neighbor-
hood to the left of 12 and decrease more rapidly for large t. Finally
throughout this thesis, the observations have been considered counting
processes and the estimate therefore is only applicable to single-lane
traffic. The extension to multi-lane traffic and more general jump processes
will be an involved matter and its fruitfulness is questionable.

In the onset of this research, we conjectured that the underlying
headway probability was the same type for all different types of traffic
(rural, freeway, urban, etc.) but the parameters may vary. In urban traffic,
external inferences are induced into traffic and complicate the study
of vehicle headways. Thus validation of the proposed model (3.3.2) against
urban traffic has not been done previously and needs to be completed
to insure any further extension. Also in our initial comments, we simplified
are development by discarding the mark process associated with the
activation times. The extension will result in summations over the mark
space in the filter equations and the statistics required, derived from

vehicle velocities, can be considered gaussian.
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